
Investigating

the Consistency and Convexity of

Restricted Boltzmann Machine

Learning

Author:

Bjørn Erik Juel

Supervisor:

Yasser Roudi

Norges Teknisk-Naturvitenskapelige
Universitet (NTNU)

The Kavli Institute for Systems Neuroscience

and Centre for Neural Computation

Summary

In this thesis we asses the consistency and convexity of the parameter inference in
Boltzmann machine learning algorithms based on gradient ascent on the likelihood
surface. We do this by �rst developing standard tools for generating equillibrium
data drawn from a Boltzmann distribution, as well as analytically exact algorithms
for inferring the parameters of restricted and semi-restricted Boltzmann machine
architctures.

After testing, and showing, the functionality of our algorithms, we assess how
di�erent network properties e�ect the inferrence quality of restricted Boltzmann
machines. Subsequently, we look closer at the likelihood function itself, in an
attempt to uncover more rigid details about its curvature, and the nature of its
convexity.

As we present results of our investigation, we discuss the �ndings, before sug-
gesting possible future directions to take, improvements to make and aspects to
further investigate.

We conclude that the standard, analytically exact restricted Boltzmann machine
algorithm is convex up to certain permutations of the parameters, when initial-
ized within reasonable ranges of parameter values, and given that the strength of
connectivity in the underlying model is within a speci�ed range. Additionaly, for
strengths of connectivity, the distribution of Hessian eigenvalues of the likelihood
function, as a funtion of the distance to a peak, may be stable both within and
across network sizes.

Contents

1 Introduction 2

1.1 Ising Models . 3
1.1.1 The Inverse Problem . 5

1.2 Boltzmann Machines . 6
1.2.1 Mathematical Model of the Boltzmann Machine 9
1.2.2 Permutations of the Hidden Nodes 12

1.3 Formulating the Project . 12

2 Simulation Algorithms 16

2.1 Metropolis Algorithm for Data Generation 16
2.2 Boltzmann Machine Learning . 18
2.3 De�ning the Standard Network Parameters 19
2.4 Simulation Algorithm Functionality 20
2.5 Performance of Data Generation 20
2.6 Boltzmann Machine Inference . 21

3 Restricted Boltzmann Machine Learning 28

3.1 Inference Sensitivity in RBM Learning 28
3.1.1 Sensitivity to the Data Set Size 28
3.1.2 Sensitivity to Initial Conditions 30
3.1.3 Sensitivity to the Strength of Connectivity 32
3.1.4 Sensitivity to the Number of Parameters 35

3.2 Curvature of the Likelihood Surface 38
3.2.1 Qualitative Investigation . 38
3.2.2 The Hessian Matrix . 41

3.3 Permutations of Hidden Nodes and Local Convexity 48
3.3.1 Learning with Clamped Parameters 48

4 Concluding Remarks 52

4.1 Possible Future Directions . 52
4.2 Conclusion . 54

A 60

A.1 Derivations . 60
A.1.1 Maximum Entropy Distribution 60
A.1.2 Learning Rules from Log-Likelihood 63
A.1.3 The Hessian Matrix . 69

iii

iv CONTENTS

A.1.4 Correlations Without Connections 73

B Sample Code 79

C Additional Plots and �gures 85

List of Figures

1.1 Illustration of neural action . 2
1.2 General architecture of an Ising model 4
1.3 Figure of the general structure of Boltzmann machines 7
1.4 Illustration of invariance in permutation of hidden nodes 11

2.1 Metropolis algorithm pseudo-code 17
2.2 Pseudocode for the learning algorithm used 18
2.3 Visualization of the precision of data generation as a function of

data points using the Metropolis algorithm 21
2.4 The learning evolution of a 5x1 Boltzmann machine with restricted

architecture . 22
2.5 The likelihood surface of the simplest RBM, with two observed and

one hidden node. 24
2.6 Learning evolution of Monte Carlo Approximation 26

3.1 Illustrating the RBM learning precision as a function of data sets . 29
3.2 Final RMS error as a function of noise in the initial conditions. . . 30
3.3 Root mean square error as a function of the connection strength

scaling factor, g . 33
3.4 The Likelihood functions variation as a function of distance from

the inferred parameters. 34
3.5 The e�ect of learning precision when changing the number of nodes

in the model . 37
3.6 The likelihood surface of the simplest RBM, with two observed and

one hidden node. 38
3.7 Surface values of the likelihood function in di�erent areas of the

parameter space . 40
3.8 Histograms of all, and the maximum, eigenvalues of the Hessian

matrix of the likelihood surface . 42
3.9 Descriptive statistics for the eigenvalues of the Hessian matrix around

the inferred point in parameter space 44
3.10 Maximum Hessian eigenvalues as a function of connection strength 45
3.11 Visualization of the positive eigenvalues of the Hessian matrix of

the log Likelihood for di�erent network sizes and data lengths . . . 47
3.12 Visualization of the convexity, up to permutations of the parame-

ters, in the restricted Boltzmann machine learning 49

v

vi LIST OF FIGURES

A.1 Visualization of the many equivalent solutions of the semi-restricted
Boltzmann machine . 77

C.1 Illustrating the RBM learning precision as a function of data sets . 85
C.2 Final RMS error as a function of noise in the initial conditions and a

comparison with initial conditions independent of the ground truth
parameters . 85

C.3 Sensitivity of learning algorithm to initial conditions for di�erent
size RBM's . 86

C.4 The the behavior of likelihood values as a function of the distance
in parameter space from the inferred values 87

C.5 Figure for predicting the number of hidden variables in the model . 87
C.6 Surface values of the likelihood function in di�erent areas of the

parameter space . 88
C.7 Histograms of Hessian eigenvalues in single realizations of 8-by-3

restricted Boltzmann machines . 89
C.8 Descriptive statistics of the Hessian eigenvalues as a function of the

distance from the inferred peak parameters. 90
C.9 Histograms of all eigenvalues used for the descriptive statistics . . 91
C.10 Visualization of the convexity, up to permutations, of the parame-

ters in the restricted Boltzmann machine architecture for a 6-by-1
network . 92

Chapter 1

Introduction

Figure 1.1: A simple illustra-
tion of the standard properties of
neural �ring

The human cortex has been estimated to contain
approximately 100 billion neurons, each of which
is connected to tens of thousands of other neu-
rons on average. There are countless types of neu-
rons with distinct structure, function or both, but
nearly all of them have certain important proper-
ties in common: they receive input stimuli from ex-
ternal sources, most commonly through dendritic
synapses from other neurons, which lead to a slight
depolarization of the membrane potential. These
voltage changes are propagated along the dendrites
to the soma, where its response is computed based
on an integration of the total input it received. The
cell's range of reaction is generally limited to a bi-
nary, all-or-nothing response in the form of only
generating, and propagating, an action potential
along its axon if the summed membrane depolar-
ization is above threshold. Such an action poten-
tial eventually reaches the axon terminals, where
the electrical impulse generally leads to the release
of chemical signal molecules, called neurotransmit-
ters. They di�use across the synaptic cleft to the post-synaptic cell's receptors,
eliciting some intracellular response. In cases where the post-synaptic cell is a
neuron as well, the intracellular response is usually a change in the membrane
potential caused by opening of ion channels, restarting the cycle described above
[1, 2].

This general chain of neural actions - depolarization, summation and �ring - has
led to a common practice in neural modeling of disregarding the cell-type speci�c
functional di�erences. Taken to the extreme, one ends up with a neuron being
modeled as a binary point variable with some numerical functional connection
with other cells. This sort of approximation dates all the way back to the be-
ginning of the twentieth century, when Lapique introduced the integrate-and-�re

1

2 CHAPTER 1. INTRODUCTION

neuron [3], and was expanded upon in the 40's with McCullogh and Pitt's point
unit neuron [4].

Obviously, if the goal is to study single cell responses or action potential gen-
eration, it makes little sense to ignore cell-speci�c details, and for those purposes
one could apply a range of other mathematical models developed. For example,
small variations of the Hodgkin and Huxley conductance based model of the mem-
brane for action potential generation [5] and Rall's mathematical description of the
electrical properties dendritic arborizations [6, 7] are are still popular for detailed
description of neuron properties although they are old [8]. On the other hand,
in cases where the interest lays in studying the properties and functions of popu-
lations, or networks of neurons, such drastic simpli�cations of the single neurons
turn out to have little e�ect on the analysis, and works similarly to averaging out
small scale, noise from larger scale network processes and essential dynamics [9, 10].

When we allow for the most drastic approximations for the data-generating net-
work - an assembly of binary point neurons with instantaneous information transfer
through numerical, functional synapses - we can take advantage of the vast meth-
ods of statistical mechanics to tell us about the network. The �eld was originally
developed to understand the properties of large ensembles of identical particles
from their individual properties and interactions, which �ts the description of a
population of our approximate neurons well. Such applications of the methods
from statistical physics is a rapidly expanding area of the �eld, and is of major im-
portance for understanding the complex networks of systems biology, such as those
relevant for neuroscience [11]. As an example, Roudi et al. have used methods
from statistical physics to reverse engineer the biological functional structure of
networks of neurons, just from data correlated time-series of several single neuron
spike trains [12].

As we learn more about the apparent anatomy, and functions of the brain, from
the network and systems level, down through single neurons and into the realm of
chemistry, computational neuroscientists are able to make more biologically realis-
tic models to capture the complexity in the structure and architecture of arguably
the most important organ in our body. Coupling simulation results and predic-
tions with analytical models and experimental results, scientists may go several
rounds back and forth between simulations, analytics and experiments to improve
their model's consistency with nature [8]. However, copying or imitating biological
systems is not always the end goal of computational neuroscience.

1.1 Ising Models

When viewed at the most abstract level, some complex systems can be evaluated
using simple models originally developed for di�erent problems in di�erent �elds
to extract properties that remain obscure, or hard to analyse, when working with
biologically relevant model systems. One such simple model, originally developed

1.1. ISING MODELS 3

to work with magnetization in structured materials and phase transitions in quan-
tum gases, is known as the Ising-model [13]. It is a computational model which
can be used to calculate the statistics of the stable states in macroscopic systems
of identical binary units interconnected in some user de�ned arrangement. Even
though the Ising model was originally developed for spins with nearest-neighbor
connectivity in a crystalline lattice architecture, the term will be used more lib-
erally in this thesis. Here, an Ising model of a network is simply a collection of
binary nodes with some de�ned scheme of interconnectivity, and a related energy
function de�ning its states of activity.

Figure 1.2: The general
structure of an Ising model,
where circles denote the bi-
nary nodes, or spins, and the
lines connecting them show
which nodes are connected.

When the activity of the i'th node is denoted as si, and
a state of the network, S, is de�ned as the vector of all
the network unit's activities, S = [s1, s2, . . . si, . . . sN],
we can de�ne its energy function, E =

∑
i,j Ji,jsisj ,

where Ji,j is a number quantifying the strength of con-
nection between unit i and j. Usually, E will also
contain a collection of terms relating some external
�eld's in�uence on each node of the network, but we
have omitted that here for simplicity. The energy,
E , is directly related to the probability distribution
of states through the Boltzmann distribution, P (S) =
exp(−E (S))Z −1, where Z =

∑
states exp(−E (S)) is

known as the partition function from statistical me-
chanics, and is a sum over all states of the system. This
means that if we know the strength of all the connec-
tions in the network, we can in theory calculate the
probability for �nding the system in any given state,
and subsequently any statistic of the system.

Unfortunately, the number of possible states increases exponentially with the num-
ber of nodes, N , quickly making it impossible to compute the partition function
exactly, since it demands summing over the entire state space. This can be partly
remedied using approximations like mean �eld methods[14, 15, 16], or by probing
the network's state space using a clever algorithm developed by Metropolis et al.
in the 50's [17]. These approximations would give estimates of the network statis-
tics as well as the partition function itself, a function that basically contains all
information about the model, and can be used to calculate many properties of the
macroscopic system from relations derived in statistical mechanics.

In neuroscience, the Ising model architecture was used by Hop�eld to simulate
a network of neurons recovering memories [18]. In his model, the spins are inter-
preted to be neurons, with the activity being 1 when it �res an action potential
and -1 otherwise. Additionally, giving the parameters for connectivity a loose in-
terpretation as functional synapses, gave the network an intuitive resemblance to
the biological neural networks. Starting from any example input state of activity,
a stochastic, asynchronous scheme of updating neurons to a more cost e�cient

4 CHAPTER 1. INTRODUCTION

(lower energy) state would lead the system as a whole to settle in a local minimum
of the energy-function, which could be interpreted as the network having retrieved
a memory most resembling the input [18]. In other words, given a set of parame-
ters for the unit interactions, it was possible to �nd the stable state of a network
in the vicinity of any initial state.

Elsewhere, similar large scale systems of interacting variables, being studied us-
ing a network regime, can be found in several �elds of research. For example,
in molecular biology, genetic patterns of expression are studied as networks con-
trolling protein synthesis [19], which in turn interact in networks of pathways to
control cellular function [20]. On a di�erent level, but with a similar structure,
dynamical systems in the �nancial world [21], as well as in the study of our cli-
mate system [22], use complex network models with large numbers of variables to
predict future developments of the system. In other words, understanding com-
position and function of dynamic networks is important for the understanding of
complex systems in general, and biology and neuroscience speci�cally.

1.1.1 The Inverse Problem

The Ising model is interesting for studying physical systems, but a inverse imple-
mentation can also be quite appealing. It allows us to gain knowledge about the
underlying network's structure and dynamics based on the observed information
provided by experimentalists. Assuming that the observations are samples from
an equilibrium distribution of an Ising model, one can iteratively reconstruct a
statistically plausible structure of the e�ective interactions in the network as a
whole [23]. This type of reverse engineering of networks can be used to functional
connections of any system, satisfying some limitations on the structure. Already
and it has been used to model both protein-protein [24] and genetic interactions
[25] from high throughput method data in molecular biology, as well as functional
connections from neural activity [26].

One way to reverse engineer a statistically relevant model of the network, without
being overwhelmed by the vast dimensionality of the problem, is to use a para-
metric model which approximates the statistics of the real distribution over the
state space well, even with a relatively small number of variables [27]. Now, there
are an in�nite number of potential models consistent with the measured momenta
of the data, though most will over-�t them and not generalize to new samples.
This is a problem which is generally caused by including too many parameters in
the model. A good way to avoid such over-�tting is putting hard constraints on
the number, or type, of parameters, or introducing some cost for having more of
them. In statistical physics it is popular to choose the model which maximizes
entropy, under the constraints of �tting only low order moments, such as means
and pairwise correlations [27, 28]. An important motivation for using such models
is that they are the most informative, yet least structured, model consistent with
the lower order moments, without assuming the existence of higher order interac-
tions. It is known as the maximum entropy distribution [29, 30].

1.2. BOLTZMANN MACHINES 5

Looking for the maximum entropy model can seem reasonable when considering
the second law of thermodynamics, which says that systems in equilibrium tend
towards the distribution of maximum entropy [31]. On the other hand, there is
no a priori reason why we should only include second order correlations in our
model, except for the sake of simplicity. As mentioned above, it is, in theory,
possible to construct a maximum entropy model consistent with any K'th order
moment, where 1 < K < N and N is the number of nodes in the network. De-
manding the model be consistent with all N orders of interaction leads to a model
able to exactly replicate the data statistics, while choosing an order K = 1 would
make the assumption that every node is independent, and the model would only
regenerate the unit means seen in the data [28].

In 2003, Schneidmann et al. [29] studied the di�erence in entropy in, or infor-
mation carried by, systems when including di�erent orders of correlations in their
description of the underlying model for real spiking data. They used the concept
of mutual information, IK = SK−1 − SK in their analysis, to quantify the K'th
order correlation's contribution to the total information in the model, calculated
as the di�erence between the di�erence in entropy S between the K'th and the
(K−1)'th order model. The total amount of correlation in the network is measured
by IN =

∑
K IK = S1 − SN , and can be used to explore whether the correlation

terms we include are su�cient or not for a good description of the network model.
For example, the ratio I(2)/IN quanti�es the proportion of total information gained
from pairwise correlation terms [29].

When applying this method to two sets of real retinal spike data, Schneidmann et
al. [28] found that 90% of the correlational information could be extracted from
the second and �rst order terms. Their �ndings implied that pairwise models give
a good picture of the true distribution of neuronal couplings and that "the net-
work is much more than the sum of its parts, but a nearly complete model can be
derived from all its pairs" [28]. This dominance in explanatory power was shown
by Roudi et al. [12] to be an e�ect of considering only few neurons, all having low
�ring rates, and it is not generalizable.

Most inference methods in use for systems biology at present only consider a
network of the observed units. This can be a serious problem, as a large part of
the systems being studied is not directly observed in the data, such as unrecorded
neurons or gene products, but still interact with the network of interest [32]. As
an example, most of the spike data from cortical networks are assumed to stem
from excitatory cells, even though it is known that the e�ects of inhibitory cells is
an essential factor for the cortical network dynamics [33].

1.2 Boltzmann Machines

The reverse engineering of underlying model parameters is an important part of the
�eld of machine learning. It is a part of the broader discipline known as arti�cial

6 CHAPTER 1. INTRODUCTION

intelligence, and is basically a set of statistical methods in which computer pro-
grams learn to do some task optimally, without being explicitly instructed in how
to do it. Some of the problems they tackle can be set up using a framework known
as graphical models - basically networks of nodes with statistical interdependencies
conveyed by connections between them. These have been shown to be useful when
working on the types of networks interesting for researchers in systems biology [34].

Methods and algorithms from machine learning can be used for neuroscienti�c
purposes in di�erent ways. For example, they can be used to assist with data min-
ing and statistical analysis, such as connecting spikes with neurons in electrode
data, or more directly as a source for theories on how the brain is structured, or
functions [34]. Here we will focus on one family of graphical models, and assess
the strength of inverse problem of learning the connections.

The graphical model we will be assessing is a popular network model which was
developed when Ackley, Hinton and Sejnowski set out to �nd an adaptive system
that would learn the structure of a model, without requiring a lot of problem spe-
ci�c information. This led them to what we now know as Boltzmann machines
(BM), a general network model that "is capable of learning the underlying con-
straints of a domain simply by being shown examples from the domain" [35]. In
other words, like in the inverse Ising problem, the Boltzmann Machine is able to
�nd a set of parameters that characterizes the network that generated the data,
just based on the data sampled from it [35].

Figure 1.3: The architecture of a general
Boltzmann Machine, containing two layers of
nodes (can also be referred to as spins and
neurons) and three distinct sets of connections.
There are No observed and Nh hidden nodes,
of which some general un-numbered node is de-
noted as the i'th or j'th respectively.

Learning the set of parameters best
suited for reconstructing the statistics
of the presented test-data, within some
given model framework, is a detrimen-
tal part of the �eld of machine learn-
ing in general, and a strong prop-
erty of the Boltzmann machine speci�-
cally. Hinton called this application of
the Boltzmann Machine the 'learning
problem', in contrast to the so called
'search problem', in which the param-
eters, or connection weights, are set,
and the Boltzmann Machine is fed an
input vector and used to search the so-
lution space for the optimal output vec-
tor [36]. These two applications show
a link to the previously discussed Ising
models and Hop�eld networks. In the
search problem, �nding the best out-
put vector can be compared with mem-
ory retrieval in Hop�eld networks [37],
while the learning problem is similar to the reverse Ising problem of constructing

1.2. BOLTZMANN MACHINES 7

connections from data statistics.

Before we delve deeper into the properties of Boltzmann machine learning, we
should get familiar with a few variations of the graphical model used to describe
the network. In �gure 1.3 the general architecture of a Boltzmann machine can be
seen, a structured group of symmetrically connected nodes. Normally, the nodes
(also called spins or neurons) are divided into a set of observed, with which the
data can be related, and a distinct set of hidden elements. Following this division,
the connections between distinct nodes can also be grouped - there are two sets of
within-layer and one set of between-layer connections. The grouping into observed
and hidden variables is visualized by color coding in the �gure, with red being
related to the observed, and blue with the hidden.

The grouping of di�erent types of connections draws up natural guidelines for spec-
ifying di�erent types of Boltzmann machine architectures. The general Boltzmann
machine displayed in 1.3 is fully connected, with every node directly interacting
every other node. This gives a vast number of parameters, and a network in which
the activity of all nodes is conditionally dependent on all others. With such a high
number of parameters, and heavy interconnectivity, also between the unobserved
nodes in the network, we will have a very hard time inferring the correct model
parameters generating the data we observe. This is because there is likely to be
several di�erent solutions for parameters that match the pairwise correlation con-
straints. Additionally, this network gets tedious to work with because we need to
solve sets of self-consistent equations repeatedly to even be able to use our learning
algorithms.

The simpler, semi-restricted Boltzmann machine (sRBM) removes the connec-
tions between the hidden nodes. This makes them independent, and even though
they are still indirectly connected through the observed layer, we can separate the
terms containing each hidden node in the energy function, E . This still seems to
be under-constrained, as there are many parameters to �t only to match pairwise
correlations, but we will look further into this in the next chapter.

The simplest system, and the one we will be studying the closest is the completely
restricted Boltzmann machine (RBM). Here, we set all observed-to-observed node
connections to zero as well. As long as we keep the number of hidden nodes below,
or near, the number of observed nodes, we should not face over-�tting problems
when �nding the optimized set of parameters. Even though it is an old model,
this type of network is still used a lot in machine learning.

This is especially true in a framework known as Deep Belief networks, which were
introduced some years ago by Hinton et al., where large RBM's are stacked verti-
cally to function as feature detectors in a pattern recognition framework [38]. Such
deep architecture networks can describe complex, non-linear concepts using much
fewer nodes than shallow architectures with only one or two layers. However, it
was, generally considered impractical to use, until Bengio et al. developed an e�-
cient algorithm for training in which one could approach the parameter inference

8 CHAPTER 1. INTRODUCTION

in a layer-wise fashion [39]. This made the deep architecture networks much more
approachable, and when the RBM's are trained using an algorithm based on con-
trastive divergence developed in the beginning of last decade [40], even networks
with large numbers of nodes in each layer could be learned in a reasonable fashion.

The contrastive divergence method is basically a truncated Monte Carlo method
from which a low variance estimate of the model distribution is obtained [40].
Other approximations for large systems have been developed as well, for example
using mean �eld approaches, both naive and expanded with self-reaction terms,
to handle the popular large Boltzmann machines [41, 14, 42]. But even though
these great approximations do very well for large systems, and has been studied
in detail, it is not easy to �nd exhaustive studies of Boltzmann machines at the
most basic levels.

1.2.1 Mathematical Model of the Boltzmann Machine

The BM family got its name because the probability density over the space of
its states of activity is described by the Boltzmann distribution. This can be seen
quickly when we work with a symmetric coupling matrix, which we will. It ensures
the dynamics of the network �satis�es detailed balance� - a property which can be
shown to lead directly to an equilibrium distribution of the correct form [32]. We
encountered it in the previous section, and we saw that the probability for observ-
ing some given state, S, of the Ising model was related to that states energy, E (S).
Since the Boltzmann machine contains two distinct sets of nodes, one with No
visible nodes and one with Nh hidden, it is useful to separate them in the state
vector. We use the notation, vi and hj for the i'th visible and j'th hidden node,
respectively, and we write the full network state as S = [v1, . . . , vNo, h1, . . . , hNh].

In the the appendix A.1.1 we show the derivation of the maximum entropy distri-
bution for the sRBM using Lagrange multipliers constraining the model to match
data means and correlations. The derivation generalizes easily to be used on the
fully connected Boltzmann machine as well, giving

−E =
∑
ij

Jijvihj +
∑
ik

Wikvivk +
∑
jl

Kjlhjhl +
∑
i

fivi

=⇒ P (v,h) = exp
(∑

ij

Jijv
s
i h

s
j +

∑
ik

Wikv
s
i v

s
k +

∑
jl

Kjlh
s
jh

s
l +

∑
i

fiv
s
i

)
Z −1

where Z =
∑
s

exp
(∑

ij

Jijv
s
i h

s
j +

∑
ik

Wikv
s
i v

s
k +

∑
jl

Kjlh
s
jh

s
l +

∑
i

fiv
s
i

)

Since we do not know the values of any of the hidden variables, hj , we would like to
�nd a distribution over the observed states, v, by marginalizing out the h's. This
is not straight forward for the fully connected case, but for the more restricted
variations, the hidden variables are independent, making them separable in the
exponent. The system we will end up studying closest in the following chapters is
the RBM with a zero external �eld, f , and for it the PDF over the observed states

1.2. BOLTZMANN MACHINES 9

turns out to be

P (v) =
∑
h

P (,h) =
∑
h

exp(E (v,h)
)

Z
=

∑
h exp(

∑
i,j Jijvihj)∑

v

∑
h exp(

∑
i,j Jijvihj)

=

∏
j

(
exp(

∑
i Jijvi) + exp(−

∑
i Jijvi)

)∑
v

∏
j

(
exp(

∑
i Jijvi) + exp(−

∑
i Jijvi)

)

=⇒ P (v) =

∏
j cosh

(∑
i Jijvi

)∑
v

∏
j cosh

(∑
i Jijvi

) (1.1)

This is the distribution we are actually seeing data from, but realizing that it
does contain all the same parameters, it could be su�cient to describe the full
distribution. Having access to this, quite compact, formula may also come in
handy when discussing the properties and shape of the density function.

Inferring the Connections in Boltzmann Machines

Looking at the appendix A.1.1 where the derivation maximum entropy model for
the Boltzmann machine is found, there is an important thing to notice; we were
only able to derive the general structure of the formula, and there are still parame-
ters that need �tting. For the RBM, we also constrain the formula to be consistent
with with the data means and correlations, but at the time of the derivation we
did not have any data to use. However, when we have received a data set of the
observed activity, we are ready to �nd the rest of the model parameters. That is,
given some set of data we can try to reconstruct the parameters of the underlying,
generative model by adjusting the parameters of some test model, such that it can
recreate statistics comparable to those found in the dataset [27].

One way of updating to �nd these parameters is by trying to maximize a mea-
sure quantifying how likely a model is to generate the data observed, given some
suggested set of parameters. The likelihood function, L =

∏
d P (Sd), is such a

measure, and maximizing the logarithm, L = log(L), of it leads to a set of itera-
tive learning rules �rst introduced by Ackley et al. in 1985 [35]. For the Boltzmann
machine the rules take the following form

∆Wik = ηW
(
〈vivk〉data − 〈vivk〉model

)
∆Jij = ηJ

(
〈vihj〉data − 〈vihj〉model

)
∆Kjl = ηK

(
〈hjhl〉data − 〈hjhl〉model

)
∆fi = ηf

(
〈vi〉data − 〈vi〉model

)
Here, the angled brackets denote calculating the expected values of variables inside
them, with respect to the distribution indicated in the su�x. The �rst expected
value is calculated directly from the data set, while the right is calculated under
the model distribution, using the current guess as parameters. The η is a learning

10 CHAPTER 1. INTRODUCTION

rate, which can also be optimized; it should be small enough for the momentary
gradient to be a decent approximation of the slope in the entire step, while being
big enough to allow the learning to be reasonably fast.

Notice that the update rule for Jij seems to require knowledge of the hidden node
activity in the data, to calculate the correlations. In the appendix A.1.2, we show
the derivations explicitly, and also discuss the apparent problem of needing the
knowledge of the hj 's. It turns out that an equivalent expression for the update
rule is

∆Jij = ηJ
(
〈vi tanh(

∑
i

Jijvi)〉data − 〈vi tanh(
∑
i

Jijvi)〉model

)
(1.2)

Interestingly, the expression we use in place of hj is equivalent to the expected
value of hj given a observed state of activity, E(hj |vs) = tanh(

∑
i Jijv

s
i), which

gives an intuitive explanation for the substitution.

Figure 1.4: A simple illustra-
tion of the insensitivity to per-
mutations of hidden nodes in the
RBM architecture. The observed
nodes do not notice the di�erence
between the two permutations of
hidden nodes, as long as the con-
nections permute along with them
(visualized by the yellow lines).

We can use the above learning rules in an it-
erative manner to progressively learn parame-
ters that �t our data better. Since using
them moves our guessed parameters in the di-
rection of most increasing likelihood, and the
step size is proportional to the same gradient,
the parameters will keep changing until they are
in, or arbitrarily near, a stationary point of
the likelihood surface, with a higher value than
the initial guess. If this stationary point is
a maximum of the surface, it yields, by def-
inition of the likelihood, the local parameters
most likely to generate the data we are analyz-
ing.

These same rules have been derived in other ways
as well, for example by taking a di�erent objective
function such as the Kullback-Liebler divergence, a
measure quantifying the di�erence between two dis-
tribution, as a starting points [43]. Minimizing the
di�erence between the full data distribution, and
the distribution depending on our guess of weights,
leads to the exact same learning rules as the ones
presented above [35]. This tells us that the param-
eters we learn are not only the ones most likely to
generate the data observed, but also the parame-
ters which make the best pairwise approximation
of any underlying distribution used for generating
the data.

1.3. FORMULATING THE PROJECT 11

1.2.2 Permutations of the Hidden Nodes

An interesting property of the distribution over the observed states in 1.1, is that
the simplest RBM is invariant to permutations of hidden nodes. The concept is
sketched in �gure 1.4, and it attempts to show why switching the position of two
hidden nodes will not e�ect the probability of the observed state, v. As long as the
connections, J, are switched along with the node, every argument in the hyperbolic
cosines of 1.1 remains the same, and the probabilities are unchanged. Another way
to see that the PDF should be invariant to permutations is to view it as an issue
with labeling the unobserved nodes; the observed states do not care which of the
hidden nodes is the �rst or last, as long as every visible node sees the same labels.

When it comes to the learning algorithm, we seem to be let of the hook when
using the rules of the form presented in 1.2. Again, the argument of the hyper-
bolic function is just a sum over all the visible nodes; the order of the terms in the
hyperbolic tangent makes no matter, as long as each argument gets one, and only
one, contribution from every observed node. This could lead to di�erent results
when inferring model parameters, but since the value of L is nothing but a prod-
uct of the data point probabilities, the likelihood values for the di�erent solutions
should be equivalent.

Another symmetry present in the network is in the sign of the parameters. This
can most easily be understood by the symmetry of the hyperbolic cosine function;
switching sign on all connections Ji,X to the X'th hidden node, has no e�ect on
the value of the X'th term in the numerator of 1.1. The fact that we can neither
label nor know the true sign of the hidden nodes should not worry us to much,
however, as they are indeed hidden, and therefore cannot be told apart for real
data sets in any case. When it comes to testing our algorithms, we need to keep
the labeling problem in mind, though.

1.3 Formulating the Project

In the previous sections, we mentioned why choosing a maximum entropy model of
our data would be a good idea when trying to reconstruct the underlying param-
eters of a network in equilibrium. We also presented some reasons only to include
lower order statistics in the formulation of the model when studying neural spike
data. However, in this thesis we will not be studying real, experimental spike data,
but rather the Boltzmann machine learning algorithm itself, and its precision and
reliability, to assess whether it is a good model to use for statistical parameter
inference when faced with data that is believed to have been drawn from an equi-
librium maximum entropy pairwise distribution.

To do this, we write the necessary simulation algorithms for generating appro-
priate data, and also for inferring model parameters. The reasoning for not using
biological data in this project is related to the need to know the true underly-

12 CHAPTER 1. INTRODUCTION

ing parameters of the data generating model if we are going to have any way of
measuring the precision of the inference algorithm. Therefore we generate data
synthetically, from known parameters using the Boltzmann distribution with pair-
wise interactions. This also ensures that the model we sample from formula is
indeed the maximum entropy distribution, and so some pitfalls of making a bad
assumption of the underlying model framework are avoided.

In what follows, we present our algorithms and assess their precision for a range of
network sizes and varying parameter values. We asses the stability and consistency
we can expect from the parameter inference algorithms in Boltzmann machines
with hidden nodes, and investigate its sensitivity to varying numbers and distri-
butions of the generative model parameters. We also research the surface of log
likelihood function, L , using both qualitative and quantitative methods, to see
what can be said about its convexity. Finally, even though it seems clear from the
mathematical form of probability distributions that the surface of the likelihood is
not globally convex, ultimately we would like to produce an answer to whether the
learning problem of the RBM is locally convex and whether the individual peak
parameters are all relevant to the true parameters of the model.

1.3. FORMULATING THE PROJECT 13

14 CHAPTER 1. INTRODUCTION

Chapter 2

Simulation Algorithms

To research the precision of Boltzmann machine learning, and the convexity of
the likelihood function used in it, we need functioning computer algorithms. We
derive and write two commonly used general algorithms to asses the problems of
interest: one to generate an equilibrium sample from the Boltzmann distribution,
and one to infer the most likely parameters of the networks used to generate those
data points. In the following, the general structure of those two algorithms will be
presented, followed by a de�nition of some standards we use for the networks and
a presentation of simulation results showing their functionality.

2.1 Metropolis Algorithm for Data Generation

First of all, every parameter learning simulation in this project used synthetically
generated data. This is useful since a main goal of our research has been to ex-
plore when the parameters of the model generating our data can be reconstructed
using a restricted Boltzmann machine (RBM). In other words, when we know the
actual ground truth parameters of our model, it is easy to compare our algorithm's
suggested parameters, and make a measure of its predictive ability.

Given the connectivity of the RBM, and the de�nition that each spin can only
take on one of the values ±1, the Metropolis algorithm lends itself perfectly to
generate a set of data sampled from its equilibrium distribution of states [17]. It
is widely used to sample probability distributions due to its simple nature, logical
structure and independence of the, often hard to calculate, partition function.

Starting from some random state in a user de�ned system, the algorithm iter-
atively attempts to move to an adjacent state by perturbing the current state of
the system. By comparing the probabilities of the previous and the perturbed
states, the Metropolis algorithm decides whether to accept or reject the change.
Since this comparison depends only on the ratio between the new and old state
probabilities, and that they are both drawn of the same equilibrium distribution,

15

16 CHAPTER 2. SIMULATION ALGORITHMS

Metropolis Algorithm for the Boltzmann Distribution

Guess some initial state of the system, s1
calculate the energy, E (s1), of the state

For a given length of data:
Flip the activity in a randomly chosen spin
calculate the energy, E (s2), of the new state, s2

If log
(P (s2)
P (s1)

)
= log

(exp(E (s2))
exp(E (s1))

)
= E (s2)− E (s1) > log(randomnumber):

Accept the change of state and set E (s1) = E (s2)
Else :

Reject the change, reset the activity to the previous
state and keep E (s1) unchanged

Record and save the state activity in a data matrix

Figure 2.1: Pseudo-code for the Metropolis algorithm when the probability density is given
by the Boltzmann distribution, P (s) = exp(E (s)).

the partition function Z cancels out. A short pseudo-code for how the Metropolis
algorithm works can be found in �g 2.1.

Looking closer at the test for accepting a suggested change of state, we see that
whenever the new energy, E (s2), is smaller than the old E (s1), the change is ac-
cepted. However, there is a non-zero chance to move to lower probability states
whenever the di�erence is larger than the randomly generated parameter as well.
This allows for the algorithm to explore the entire state space while retaining the
model's probability mass di�erences in the samples. The term 'energy' is used here
mainly because the methods were originally developed for physical systems which
prefer low energy states, and is kept here for a lack of a more descriptive term.

In general, any data set size is insu�cient to perfectly sample the models prob-
ability density function, but the precision of the approximated statistics should
increase with the sample size. This increase can be quanti�ed, and be used as a
sanity check for whether our simulations are working. In general, the statistical
sampling error, ε, depends on the number of samples, D, in the following way

ε =

√∑S
s P (s)(1− P (s))/D

S
∝ 1/

√
D

So, if the sampling error falls o� linearly, with a slope −1/2 in a log-log scale, the
algorithm can be expected to work.

2.2. BOLTZMANN MACHINE LEARNING 17

Learning Algorithm

Guess some initial set of parameters

While parameters keep changing:
Calculate necessary statistics from data
Calculate corresponding statistics using the parametrized model
Apply learning rules to update model parameters

Figure 2.2: Pseudocode for the Learning algorithm by maximizing the log Likelihood

2.2 Boltzmann Machine Learning

Given a dataset generated from the algorithms discussed above, a set of learning
rules and the number of variables in the model, the algorithm to be presented aims
to �nd the maximum likelihood parameters within the assumed model framework.

In section 1.2 we introduced the Boltzmann machine as a statistical model of
inference, and we saw a set of learning rules developed which we can use to reach
the most likely set of parameters. Because of the form of the pairwize Boltzmann
distribution, the potentially complicated formula for the gradient of the log like-
lihood turns out to be relatively simple, only requiring the calculation of lower
order statistics.

As can be seen by the derivation in A.1.2, these rules are developed to move
the parameters in the direction of the gradient of the log likelihood, L , and will
therefore seize to progress when a stationary point is found. In other words, we
should be able to guess any set of initial parameters, and our algorithm will ter-
minate arbitrarily close a point in parameter space with a greater or equal value
of likelihood compared to the initial, and a derivative of zero. Whether those pa-
rameters comprises the global maximum likelihood solution, is a more complicated
question, and will be explored in the next chapter.

Following the structure outlined in the short pseudo-code in �gure 2.2, which
shows the basic structure of the algorithm, the learning of parameters starts by
making an initial guess. The most important part is the iterative section of the
algorithm, in which the parameter learning takes place, is a loop which contin-
ues until some user de�ned rules are reached. Optimally, this would be when the
algorithm �nds a stationary point in the cost function, but this is not always vi-
able because of the form of the learning rules. Since they are proportional to the
derivative in each dimension of the parameter space, and since the derivative of
smooth functions tend to decrease as a peak is approaching, the learning will keep
slowing down as it nears its conclusion. Since one could theoretically let learning
continue ad in�nitum, while the parameters inch closer to their optimum, we have
implemented some limiting conditions for stopping learning algorithm when the
parameters are virtually unchanging over several iterations.

18 CHAPTER 2. SIMULATION ALGORITHMS

As the learning progresses, values of interest can be calculated for the interme-
diate parameters to track how the learning evolved, to be visualized in plots and
�gures by the end of the simulation. These are not really part of the learning
algorithm per se, but are an integral part to analyze the system at hand.

In the appendix B we show some example code using functions developed for our
research and investigation, including functional matlab codes for the algorithms
discussed above.

2.3 De�ning the Standard Network Parameters

When running simulations, we have tried to keep the choice of parameters as stable
as possible. This is done to minimize any unwanted bias in the result, and to be
able to compare di�erent simulations with each other. Therefore we have certain
standard values, and relations, we have used consistently across trials.

When generating a network, the parameters, or connection weights, are drawn
from a normal distribution with a standard deviation related to the number of
nodes they connect in the network. For example, the J 's connect No observed
with Nh hidden nodes, and are therefore drawn from N (0, 1/

√
No ∗Nh).1 The

reason for doing this is to normalize the contribution of each parameter type in
the energy function; we sum over all pairs of nodes connected, which has a total of
No∗Nh terms in the case of the between-layer connections, J. Because the weights
are independent Gaussian variables, and since we know that σ∑

i Xi
=
√∑

i σ
2
i

from statistics, we get that σJ =
√∑No∗Nh

i (1/
√
No ∗Nh)2 = 1. This type of

normalization makes sure our energy function gets an equal contribution from all
parameter types on average, and we avoid a possible source of bias. The external
�elds f are chosen in a similar fashion when they are present, but standard devia-
tion of their distribution is 1/N .

In general, there is no a priori reason why we should aim for a standard devi-
ation of one in the total contribution of a certain parameter type, as long as they
are consistent for all types. Therefore we also have a scaling factor, g, in our model.
This g-value can be thought of as a substitute for the inverse temperature com-
monly found in statistical physics, and should make the probability density across
state space more or less uniform when it is decreased, or increased, respectively.
It is one of the parameters we will be testing our model for in later sections, but
otherwise it will be kept to one unless explicitly stated.

1Very late in the writing process, it was brought to the author's attention that it may be a

better choice to draw the parameters from another distribution dependent on the total number

of nodes. N (0,
√

(No+Nh)/No ∗Nh) was suggested as a good factor, as it would make the

the energy function act as a thermodynamic entity, scaling linearly with the system size, as it

should. This should be taken into account in any �gure or result where two systems of di�erent

sizes have been compared.

2.4. SIMULATION ALGORITHM FUNCTIONALITY 19

When it comes to the number of nodes in the network we have been working
in a regime with a larger number of observed nodes. More speci�cally, we have
≈ 80% of the network nodes as observable when generating data. This is because
we prefer to study the simpler systems initially, and a choice we made to make the
inference more precise since we will marginalize out less information when only
using observed statistics. Additionally, we did most of the simulations on fairly
small systems, usually with less than 20 nodes in total, to be able to calculate the
energies and partition function exactly.

In the Boltzmann learning algorithm, we also have certain set standards. For
the learning rate, we use η = 0.5. This is based on trial and error, and was small
enough to avoid oscillations, but large enough to approach solutions relatively
quickly. Since the algorithm is unlikely to ever converge completely on a station-
ary point, we decided to set two hard limits on the learning. First, we implement
a rule that when the parameters have changed less than ∆ = 10−8 over the last
50 iterations, the algorithm is considered to have converged. Additionally, if the
learning does not reach this limit after 10000 iterations, we stop the algorithm,
and consider it to have not converged.

These standards were initially chosen by empirical, yet mostly qualitative test-
ing, but was continuously monitored, to avoid biases based on them.

2.4 Simulation Algorithm Functionality

Here we go through some results of the algorithms introduced above, which were
used to make sure that the codes and simulations used are functioning properly. If
the Metropolis algorithm for generating data sets, for example, does not generate
data from the equilibrium Boltzmann distribution, we will probably not get any
useful results, regardless of how advanced our analysis is. Similarly, if the Boltz-
mann learning algorithms are dysfunctional, our conclusions about the curvature
of the likelihood and the vicinity of peaks would likely be �awed.

2.5 Performance of Data Generation

First we asses the performance of our Metropolis algorithm for sampling data from
the distribution of interest. We know from statistics that the data generated prob-
ability density function's (PDF) deviation from the true model distribution should
decrease proportionally to N− 1

2 as the sample size, N , increases. In �gure 2.3
we visualize the precision of the data generated PDF as compared to the true for
several di�erent data lengths using histograms and a log-log plot of the root mean
square (RMS) error of the states of the system.

Figure 2.3 shows the results of the data generation from one example network,
a semi-restricted Boltzmann machine (sRBM) with three observed and two hidden

20 CHAPTER 2. SIMULATION ALGORITHMS

!b

Figure 2.3: Precision of the Metropolis algorithm visualized through a comparison of the
Probability density function from the sampled data and the analytical calulation. Top left:
histogram of the number of observations of all states in the network. Top right: Histogram
of he observations of observed node states. The di�erent colors in the histograms correspond
to di�erent numbers of iterations in the Metropolis algorithm (observations in the data set).
Bottom: The root mean error in the data PDF as a function of data points. The two lines
correspond to the two top plots.

nodes and no external �eld. The behavior seen is representative of that seen in any
other network tested, and we can see some of the known properties of the PDF.
For example, the symmetry of the PDF seen in the histograms is expected, and
disappears when external �elds are introduced.

In the histograms, the states are set up and numbered as if they were a sta-
tistical truth table, in which state 1 has all negative nodes. From there, it goes
through all permutations of the states by �ipping the spins in an ordered fashion
(N 'th spin �ipped for every state, N − 1 �ipped every other, and so on), until
all spins are positive in the 2N 'th state. Inspecting the di�erence in the height
of the bars as we move from blue to red, or small to large data sets, we can see
that the proportions of of steps spent in a state gets closer to the real, dark red,
distribution. This behavior can be seen quantitatively by looking at the bottom
plot, which shows the root mean square error in the proportion as a function of
data length in a log-log scale. As expected it shows a linear decrease with a slope
of −1/2.

2.6 Boltzmann Machine Inference

Moving on to check the inference of model parameters, we use a �gure showing the
convergence of learning in a sample system as an example of the general progress
in the algorithm. Figure 2.4 shows the evolution of training in an RBM with ten

2.6. BOLTZMANN MACHINE INFERENCE 21

Figure 2.4: The evolution of parameter optimization with four di�erent sets of initial con-
ditions, separated by color (gold is initialized at the generative parameters, while the rest are
initialized at random points in parameter space). Top left: the likelihood value as learning
progresses. Top right: the root mean square error of the parameters as learning progresses. Bot-
tom left: scatter-plot of the �nal, inferred model parameters versus the real, generative values.
Bottom right: path through a plane in parameter space as learning progresses.

observed and two hidden variables. It presents and compares simulations from
four di�erent sets of initial conditions, and the plots contain most of the aspects
found in such a simulation.

The two top plots of �gure 2.4 show the two main measures we used to visu-
alize the convergence of the learning process, the log likelihood value, L and the
root mean square (RMS) error of parameters respectively. The development of the
log likelihood value by itself tells us something about the gradient of the surface at
the current point in parameter space, but it tells us nothing about the correctness
of the parameters found. Supplementing with a plot of the error, such as the top
right plot here, gives more of an indication of whether the parameters learned have
a connection to the generative parameters.

The RMS is a standard measure for the error ε when �tting parameters cite?,
and it gives a quantity of their average absolute deviation from the underlying
model's true parameters. It is given by the formula

ε =

√√√√ 1

N

N∑
i

(xi −Xi)2

22 CHAPTER 2. SIMULATION ALGORITHMS

where xi and Xi are the i'th inferred and true parameters, and N is the num-
ber of parameters in the model. Assuming that the algorithm infers the optimal
parameters to the data, one could expect the error to depend on the data size,
and it is possible to show that this deviation also declines as D−1/2. It should be
mentioned that, in the error presented here, the possible permutations in J's have
been controlled for. In fact, after the learning has converged, we have a function
�nding the permutation yielding the lowest RMS, and we use that ordering of
weights for calculating all values of the RMS presented in the �gure.

The bottom left plot further investigates whether the learning led to the correct
model, by making a scatter-plot of the inferred versus the generative parameters.
When the points fall on the diagonal line, the inferred parameters coincide with
the underlying, ground-truth model parameters, and the algorithm has found the
correct solution. The scatter and the RMS �gure lose some of their value when we
do not actually know the parameters, but are helpful in this case for checking the
algorithm, and they could be useful for checking consistency in results over several
runs.

The �nal, bottom right, plot in �gure 2.4 shows how the value of J11 and J21
change during learning, showing how the weights move through parameter space
as learning progresses. The parameters tend to take some unintuitive route through
parameters space to �nd its solution, and it indicates that it may not straight for-
ward to predict the �nal solution permutation, even if we know the true solution
and the initial guess parameters.

Taking all the information available in the �gure, paints a picture of how sen-
sitive the learning process is to the initialization of the system, but simultaneously
how robust the resulting set of parameters is across trials. Even though this �g-
ure only shows a single simple example network, the result indicates a functioning
algorithm.

Inference with a Semi-Restricted Architecture

Originally, we also wanted to do an in-depth assessment of the of the semi-restricted
Boltzmann machine (sRBM) learning, but we quickly encountered problems with
consistency in the parameter inference. The algorithm was highly sensitive to ini-
tial conditions.

Figure 2.5 is used to show the sRBM algorithms learning precision and its in-
consistency and sensitivity to initial conditions. The sensitivity is probably most
easily seen in the second row of the �gure matrix, where the �nal parameters of
inference are scattered against each other for two di�erent initial conditions. The
�gure shows that there is almost no correspondence between the suggested param-
eters, even though these are results from the largest data sets. This is especially
clear for the between layer connections in the right plot, and indicates problems
with the algorithm. Either there are close-to-�at areas on the likelihood surface
which cause the algorithm to remain virually unchanged for many iterations, or
the likelihood surface is indeed �at, close to it or contains several, not permuta-

2.6. BOLTZMANN MACHINE INFERENCE 23

Figure 2.5: An overview of the in-
ference precision in the semi Restricted
case. In the �rst two rows, the left col-
umn of plots concern the W's, connec-
tions within the observed layer, while
the right column concerns the between
layer connections, J. The top row shows
the �nal RMS error for di�erent sizes of
data, initializing with random (red) and
true (blue) parameters. The second row
contains scatter plots of the inferred val-
ues after initializing at the two di�erent
conditions. The �fth �gure, bottom row
to the left, shows a scatter plot for the
inferred values of both W (circles) and
J (stars), from one of the runs used in
the �rst plot. Again, red marks ran-
dom, while blue marks true, initial con-
ditions. The sixth plot shows the covari-
ance of the RMS error in between-layer
and within layer inference. The same re-
lation holds for both random (red) and
true (blue) initial conditions.

tionally related, peaks that are seemingly unrelated to the preferred optimum.

In the top two panels of the �gure we plot the RMS error for within observed
layer connections, W, on the left, and the between layer connections, J, on the
right as a function of the sample data set size. Both are plotted for random and
true initial conditions, and the same trends can be seen in both plots; the error
is decreasing, but not necessarily in a linear fashion, and the slope depends on
the type of initial condition. Even though the inference with both types of initial
conditions are getting better when the data set size increases, the RMS value of
the inference from random initial conditions seems like it will never get as good
as inference from the true solution. This is problematic, as it means the inference
is sensitive to initial conditions, and we cannot trust the parameters suggested by
the algorithm.

The possibility that the relationship between RMS and data length can be non-
linear in the log-log scale gives a chance that the error will eventually saturate,
unlike what was seen for the RBM. Taking the divergence and possible saturation
together may suggest that our algorithm is unable to perfectly infer the connec-
tivity of an sRBM, even for in�nite data set. Unfortunately, we were unable to
research whether the error saturates, as the simulations could not handle signi�-
cantly large data sets.

The bottom left panel of �gure 2.5 shows a comparison of the end result of in-
ference for one single realization of the sRBM, but for both initial conditions.
Here we can see again that the resulting parameters of inference starting from true

24 CHAPTER 2. SIMULATION ALGORITHMS

valued (blue) and random (red) initial conditions are not the same. It is clear that
the true initial condition yields a better result as compared to the true parameters,
but that is not surprising, as the typical behavior of the learning was to just shift
slightly from their initial guess, and then get stuck. As such, if one starts near the
correct solution, one will tend to end near the correct solution.

From the last �gure, we plot the �nal RMS in J's against the RMS in W's, to see
how they covary. And it does seem like a clear pattern, when the J 's are poorly
inferred, so are theW 's. This may not be surprising, since there is no fundamental
di�erence between the two types of connections here, even though we have de�ned
one subset as hidden, but is worth while to mention. In any case, this �gure's
hints at a lack of consistency in our sRBM inference was seen consistently, across
trials, and led us to the decision to focus on the restricted architecture initially.
In appendix A.1.4, we do however show how the smallest possible sRBM can be
mathematically proven to be non-convex, and we hypothesize how this property
could scale with network sizes.

Exactness of Monte Carlo

To be able to look at larger networks, we need to approximate the probability
density function when calculating the correlations in the learning rules. This is
because the number of states in the model grows exponentially with the number
of nodes in the network, and it quickly gets impossible to exactly calculate the
partition function, Z , which contains one term for every state. Of course, this
problem of an exponential number of states also makes the chance of properly
sampling the distribution in the data generation exceedingly small. Therefore we
should not expect to make a good reconstruction of the real parameters in any
case, but we can see if there are some properties of the learning, and the error
within it, that scales with the size of the system.

Monte Carlo (MC) methods are exact in the limit of in�nite samples, and here
we test the algorithm to make sure it works properly. In �gure 2.6a we compare
it with the exact algorithm using a small and simple network, checking for two
initial conditions - true and random. From the scatter plot (bottom left) we can
see that both algorithms converge on, more or less, the same solution whether
the initial conditions were random or the underlying, generative parameters of the
model. The slight di�erences in the inferred values is due to using a �nite number
of samples in each step of the MC learning. It can be seen more clearly in the bot-
tom right panel, where we see that the MC method learning follows a similar, but
noisy, path as the exact algorithm towards the inferred solution. While the exact
algorithm settles on an optimum solution quite quickly, the MC method search
around restlessly for some peak in the likelihood after reaching the vicinity of the
right solution. This is to be expected though, as every learning iteration needs a
new set of samples to approximate the correlations used in our learning rules, and
the uncertainty in the MC sampling makes it unlikely for each of these samples
to yield the same exact collection of correlations. Therefore each step will likely
move the current guess in a di�erent direction in parameter space. This means

2.6. BOLTZMANN MACHINE INFERENCE 25

(a)

(b)

Figure 2.6: A look at the learning evolution using the Monte Carlo sampling approximation
for calculations of momenta, again using 5 observed and 1 hidden node.
In (a) we show a comparison of the learning progression of the analytical algorithm and the
Monte Carlo sampling approximation for two di�erent initial conditions, black and brown have
a random set of parameters, while orange and gold start at the real parameter values. Top left:
Likelihood values during learning, zoomed in to the �rst 70 iterations of learning. Top right: Root
mean square error during learning. Bottom left: Scatter plot of the �nal inferred parameters.
Bottom right: Path through parameter space during learning for J11 and J21.
In (b) we show the e�ect of increasing the number Monte Carlo samples. Here, the network was
initialized with the correct set of parameters. Top left: The likelihood of the points suggested
by the algorithm during learning. Top right: The RMS error of parameters for each iteration in
learning. Bottom left: The standard deviation of the parameters suggested, as a function of MC
samples, for di�erent size data sets. Bottom right: A visualization of the path taken through
parameter space for J21 and J11, as learning progresses.

26 CHAPTER 2. SIMULATION ALGORITHMS

that the algorithm will keep changing its suggested optimal parameters, and never
settle on a de�nitive best solution.

Even though the algorithm keeps its suggestions con�ned to the same area of the
parameter space, it is hard to set some threshold for when to stop the learning. If
we stop learning after an arbitrary number of steps of searching being restricted
to the same area, we would expect the error to depend on the arbitrarily chosen
number of MC samples. The relationship between the standard deviation from the
solution and the number of MC samples is investigated further in �gure 2.6b.

As discussed in the section about data generation, which uses the same type of
algorithm, we expect to see a linear relationship between the standard deviation
of the error and the number of MC samples on a log-log scale. This relationship
can be seen in the bottom left panel of 2.6b, in which we also see that noise in
suggested parameters when the algorithm is close to the optimum seems to be
independent of the size of the data set. This could possibly be taken advantage
of in the learning algorithm, by adaptively increasing the MC sample size when
the parameters are deemed to be in the peak area. This could let us dip into the
precision of large, with the speed of the small, sample sizes.

Of course, the distance from the generative parameters to the optimum in the
likelihood does depend on the size of the data set, as presented in the section
about the data generation, but that is besides the point as our algorithm can't be
expected to learn anything beyond the data it is presented with. All in all, the MC
algorithm seems to work well, and its precision is only restricted by the numbers
of MC samples used to approximate the correlations, as expected. Unfortunately,
we know that the sizes of data needed to properly sample a PDF is related to the
dimensionality of underlying network, and we would need exponentially larger MC
samples every iteration for comparable results when increasing the network size.
As such, even though the MC methods is exact in the limit of large sample sizes,
we were unable use it in networks that were signi�cantly larger than the systems
we could simulate using analytical calculations. We decided to focus our attention
on these analytically solvable problems for the rest of this project.

Chapter 3

Restricted Boltzmann Machine

Learning

In this chapter we make a more thorough investigation of the Boltzmann machine
learning algorithm. We asses how sensitive the precision of inference and likeli-
hood surface curvature is to changing the number and values model parameters.
We aim to investigate the surface of the log likelihood function, L , both in a qual-
itative and quantitative fashion, to �nd out what we can say about its curvature
and convexity. Finally, we look into the apparent permutational invariance of the
probability distribution over observed states, and how the algorithm evolves to
end up in one solution rather than another.

3.1 Inference Sensitivity in Restricted Boltzmann

Machine Learning

In the �rst section of this chapter, we assess how the learning algorithm is a�ected
by varying di�erent aspects of it. Initially we check its dependence on number
of samples in the data set, and how well it regenerates the distribution we draw
the true model parameters from. Secondly, we research the algorithm's sensitivity
to its initial conditions, and ask whether we can expect to regenerate the ground
truth parameters if we, theoretically, had no prior knowledge about how they may
be valued. Before moving on to the investigation of the likelihood function itself,
we investigate how the inference sensitivity depends on the number of nodes, both
hidden and observed, in the network, and the strength of the connections between
them.

3.1.1 Sensitivity to the Data Set Size

Since our goal with the restricted Boltzmann machine (RBM) learning algorithm
is to approximate the model parameters of a probability density over some space of
observable states, we would expect the power of it to depend on the amount of data

27

28 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

Figure 3.1: Illustrating the RBM learn-
ing precision as a function of data sets. The
top plot shows the log-log scale linear reduc-
tion in inference error as a function of data
length, while the red dashed line shows the
expected RMS of a random set of parame-
ters drawn from the same distribution as the
true parameters. The bottom plot shows a
histogram of the inferred parameters of 30
distinct runs and four data set sizes. They
are compared to the red dashed line which
represents the true underlying distribution
of weights. In each simulation we used a 8-
by-3 network with a standard distribution of
the weights (g = 1).

we have available. In �gure 3.1 the observed, along with the expected, reduction in
inference error as a function of data set size, can be seen in the top plot. They falls
of linearly with a slope of −1/2 in the log-log scale and is fairly consistent across
trials. For very small data sets, however, the inference error exceeds the expected
error if one was to draw completely random parameters, E(RMS), marked by the
red dashed line.

The fact that our algorithm does a worse job than randomly guessing parame-
ters, seemed strange at �rst, but we soon realized a possible explanation for it.
There is no inherent reason why the algorithm should suggest parameters drawn
from the same distribution that the ground truth parameters were drawn from,
and in the bottom plot, we can see the distribution of inferred parameters in
histograms for four di�erent data lengths. It is quite clear that the parameters
inferred from small sets of data seem to be from a di�erent distribution than the
true parameters, visualized by the dashed red line.

The heavier tails seen in the black and brown histograms (cumulated in the out-
ermost bars in the �gure) are due to having too few data points. This leads to
skewed distributions in which certain states are sampled too frequently relative
to their true probability. Such an over-representation of some states will lead to
observing too strong correlations in the data, and since the learning rules depend
directly on these correlations the algorithm is bound to suggest too strong weights.
Taking this to the extreme, with only one sample in the data set, the issue becomes
more obvious. In that case, all nodes will be perfectly correlated or anti-correlated,
which would lead to suggested weights of −∞ and ∞ for all parameters, indepen-
dent of what the true model parameters really were.

In the supplementary �gure C.1 we show the relation between the distribution
of the inferred weights as a function of the data length in a more rigid way. With
the Küllback-Liebler divergence, DKL(P ||Q) =

∑
s Ps log(Ps/Qs), mentioned in

3.1. INFERENCE SENSITIVITY IN RBM LEARNING 29

an earlier section, we have a quantitative formula for comparing two distributions
P and Q. Using this formula, we compare the distribution used to draw the true
weights, P = N (0, 1/

√
NoNh), with the distribution of the inferred weights, Q.

The �gure shows that the KL-divergence decreases as we increase the size of the
data for both the 10-by-2 node, and the 5-by-1, networks.

We hypothesized that DKL would saturate at some data set size, due to the fact
that we only do a �nite number of inference runs, which would leave us with an
incomplete sampling of the distribution. This, as with most sampling issues, will
yield an approximation error, which would not be overcome by increasing the size
of the data used for inference. Signs of saturation can be seen for the smaller
system, and if we tilt our heads and squint it can also be seen for the 10-by-2
network. We did, however, not quantify this error, and leave it as an exercise for
the interested reader.

Here we have discussed, and argued for, why the learning algorithm we use is
sensitive to the length of data observed. Its error in inference falls o� as a power
law, having a scale-free decay with a slope of −1/2 when plotted in a log-log
scale against the length of data, and it regenerates the statistics of the parameter
distribution well when the data is su�ciently large.

3.1.2 Sensitivity to Initial Conditions

In the previous section, we initialized our learning algorithm with the true values
of the parameters. This gave us con�dence in that the result we got would be the
best possible inference the algorithm could do, but it is not a very realistic scenario
in real-world applications, where the true model parameter values are unknown.
Therefore, in the following section, we aim to investigate the RBM algorithm's
strength and consistency by assessing its sensitivity to initial conditions. To do

Figure 3.2: The root
mean square error of
inference as a function
of the amount of noise
in the initial conditions.
The standard deviation
of the random variable
used to add noise is
varied along the x-axis,
and the values marking
the axis are the di�er-
ent standard deviations
of the noisy σ used.

30 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

this, we draw a random number, σ, and add it to the true values of the weights, and
use these noisy parameters as the initial conditions. Incrementing the standard
deviation of σ systematically, and doing the inference of a network several times
with di�erent initial conditions, lets us visualize how the inference error depends
on the accuracy of our initial guess.

To get �gure 3.2, we inferred the parameters of 30 di�erent RBM's with ten ob-
served and two hidden nodes, for three di�erent sizes of data sets. The learning
was initialized at noisy initial conditions using several di�erent, logarithmically
spaced values of noise, and we recorded the error in the parameter reconstruction.
We initialized each of the network parameters in Jguess

ij = J true
ij + σ, where J true

ij

is the ground truth value of the connection between the i'th observed and the j'th
hidden node, and σ is a random variable, scaled by 1/

√
NoNh to make it com-

parable to the true parameters. We varied the standard deviation of σ from very
small (O(10−3)) to values ≈ 100 times larger than the standard deviation of the
distribution we draw the true parameters from. The resulting root mean square
error of the parameter inference as a function of the standard deviation of σ is
presented in �gure 3.2.

The �gure shows how stable the inference is as long as the initial conditions are
near the real solution. In fact, it seems as though the algorithm is completely
insensitive to the initial conditions of inference as long as the initial conditions are
of the same order of magnitude as the true parameters, or smaller. This was true
for all sizes of networks tested, as can be seen from supplementary �gures in C.3.
However, from noise levels slightly bigger than the standard deviation of the true
parameter distribution, we see that the error increases quickly.

This behavior for big values of noise is a signal of warning for learning weights
in cases where we do not know the ground truth parameters of the model. In
the supplementary �gure C.2 we look at the inference error when initializing the
learning at random values, independent of the true parameters as well. In it one
can see that the error is stable, and comparable to the noisy initial conditions, as
long as the initial guess has relatively small parameter values. This indicates that
the inference is stable independent of the initial conditions, as long as they are not
large compared to the standard deviation of the true model.

From this we could be tempted to use origo as the initial condition for all learn-
ing, but unfortunately, initializing all weights to zero in the RBM will lead to the
parameter learning getting stuck there, and never learn. This is because origo is a
stationary point of the distribution, as can be seen from the form of the learning
rules and the likelihoods gradient. Origo is an unstable stationary point however,
so it could be safe to initialize all parameters at values near, but strictly not equal
to, zero to be safe from over-estimating parameters.

The instability of the learning algorithm can be due to several things. Some
possibilities we would like to mention are the following: there could be peaks in
the likelihood in which some parameters are large, while the others are small, but

3.1. INFERENCE SENSITIVITY IN RBM LEARNING 31

independent of the true variables; alternatively, the likelihood could be �at, or
near-�at, when certain parameters have large values, leading to an immature ter-
mination of the algorithm due to thresholding when the change is su�ciently slow;
lastly, the algorithm could eventually converge, but since it starts so far away it
needs to travel further to get to the right parameters, and it just has not gotten
there yet, and was terminated du to taking too many iterations.

The two �rst suggested explanations cannot easily be separated, and by inves-
tigating properties of the learning evolution, it is unclear which of our possible
explanations is more likely. The gradients at the endpoints were very small, and
we never reached the limit of 10k learning steps, so we can say quite certainly
that there are more or less �at areas outside the regions of the optimal parameter
values. Whether the algorithm would eventually converge is hard to say, but when
we removed the threshold for stopping learning when the parameters change very
slowly over 100's of iteration, and let the algorithm run for 100, 000 iterations, it
did not look promising. The parameters were still updating, but over the last ten
thousand iterations the total change was O(10−10), and the parameters had been
virtually unchanged for the last 99, 000 iterations.

Taking the �gures and arguments of this section together, it seems like the learning
algorithm is consistent in its inferred parameters as long as the initial conditions do
not have parameters which are large compared to the true model parameters. If we
initialize our parameters cleverly, in relatively small non-zero values, the expected
inference precision seems to be dictated by the length of data, and its trial-to-trial
variability is governed by the user de�ned cuto�-value in the algorithm.

3.1.3 Sensitivity to the Strength of Connectivity

Since we focus on restricted networks with external �elds, f , set to zero, the only
model parameters to �t are the weights connecting the observed and hidden layer.
Since these parameters completely describe the probability distribution, we should
make sure the values we use are well chosen. We saw, in the previous section, that
having large parameters in the initial conditions of our learning process spelled
disaster for the precision of inference. However, in the examples we saw, the true
parameters were drawn from N (0, 1/

√
NoNh). Will we see similarly drastic e�ects

when changing the size of the model parameters?

To answer this, we will, in the following section, investigate how the precision
of inference depends on the scaling of connection strengths. We use the parameter
g to change the distribution from which we draw our model parameter as follows,
J = N (0, g/sqrtNoNh).

In �gure 3.3, we show how the reconstruction error in a 10-by-2 RBM scales with
the strength of the model connections for two data set sizes. The top �gure shows
the absolute error, while the bottom shows the relative error, normalized by the
value of g. Both plots send the same message: there is an optimal range for the
value of g if the goal is to be able to reconstruct the network connectivity. It seems

32 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

that choosing a g to be O(1) will lead to a slightly better inference precision, and
this result seemed quite stable for all network sizes, when drawing parameters from
N (0, g/

√
NoNh). This shows that our choice of g = 1 was a good one, though we

could possible have done even better with the inference on average for a slightly
bigger factor.

Figure 3.3: Plotting both the actual,
and normalized, root mean square error
of inference as a function of the connec-
tion strength scaling factor, g, used when
drawing the true model parameters. Using
10 observed and 2 hidden nodes and two
data set sizes to assess the inference error
when the true parameters are drawn from
N (0, g/

√
(NoNh)). The normalized RMS

is scaled by g−1/2 to control for possible
bias from parameters being relatively big-
ger.

The reason for the optimal range found
for the values of g can be understood
by considering the e�ect of strong and
weak connections in the model. In
the lower extreme, having a connec-
tion Jij = 0 makes the nodes it con-
nect, vi and hj , independent; they have
no preference to be in the same or
opposite states, and the model corre-
lations between them would be zero.
In the other end, when Jij = ±∞,
the two are completely determined by
each other, they will always be in the
same or opposite state of activity, de-
pending on the sign of the weight,
and both their data and model corre-
lations are exactly ±1. Now, if all
the model parameters are small or large,
artifacts of these e�ects show up in
the data sampling, we will get an un-
satisfactory sampling of the true dis-
tribution, and we will be unable to
reconstruct the model parameters cor-
rectly.

For the small values of g, the PDF of the system will be virtually uniform across
the state space, the Metropolis algorithm will accept most spin �ips, and the small
deviations from uniformity will be indistinguishable from the noise in data sam-
pling. The learning algorithm will understand that the weights are more or less
independent, and it will suggest small weights for the reconstruction, but the val-
ues suggested are hardly relevant. The fact that the inferred weights are small
makes sure we get quite a small absolute RMS, but it falls through when the error
is normalized by g.

When the underlying parameters are drawn from distributions with a large stan-
dard deviations, we get an opposite situation, where nodes depend strongly on the
activities of the others. This gives rise to a heavily peaked PDF in which certain
states have a signi�cantly higher chance of being observed than others. When
the Metropolis ends up in one of these high probability states, any perturbation
will be very unlikely to be accepted, which may lead to getting trapped in certain

3.1. INFERENCE SENSITIVITY IN RBM LEARNING 33

states over disproportionately long periods of time, making it over-represented in
our data set. This is translated into too large data correlations, which skews the
optimum of the learning algorithm accordingly.

The trough represents a sort of Goldilocks size of parameters, which has large
enough valued parameters to make the PDF signi�cantly non-uniform, but still
small enough to avoid freezing into single states for too long. This leads to
quite strong correlations which are signi�cantly di�erent from noise, but still small
enough to avoid freezing into single states of activity for long times during sam-
pling. This should lead to a more proper sampling the space.

E�ect of g on the Likelihood Surface Near Peak Parameters

Our reason for having both an absolute and a normalized measure of RMS is that
we thought certain properties of likelihood surface landscape may scale with the
strength of connectivity. For example the region of convexity could be wider in
an absolute measure for stronger connectivities, and as such lead to worse results
when compared absolutely, but being relatively similar. This could help explain
why the root mean square error is larger for those g's, as our stopping criterion
may be reached further away from the functions actual optimum.

In �gure 3.4 we show how averaged likelihood values depend on the distance from
the inferred parameters for a range of di�erent values of g. There are mainly three
things that stand out here. First, the peaks seem to have more or less the same
width for all strengths of connectivity, as can be seen by the lines all starting to
drop o� around at distances around O(1/

√
NoNh) from the inferred point. This

tells us that the top plot in �gure 3.3 is the most relevant to use. Secondly, results
for the three smallest g-values show no visible di�erence in the likelihood peak
structure, both considering where the the values start dropping o�, the slope as
the parameters get far from the inferred values and the maximum values sampled.

Lastly, there seems like the strongly connected networks have larger areas with

Figure 3.4: Variation in the log like-
lihood value as a function of the dis-
tance, in parameter space, from the
inferred values of learning a 10-by-2
RBM. The x-axis is denominated by
1/
√
NoNh, so the distances are propor-

tional to the parameter's standard devi-
ation. The lines are averages of several
sample points around the peak of the
likelihood, and the stars show the max-
imum of the sampled values.

34 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

near maximum likelihood. This is illustrated by the colored stars, marking the
maximum likelihood value calculated of all the random points sampled at the
given distances from the peak. In other words, changing the strength of connec-
tivity by the scaling factor, g, has little e�ect on the average distance to the 'edge'
of the peak. However, for large g's there seems like there are certain dimensions
with a, more or less, �at likelihood. This can be understood in light of how the
probability distribution responds to large parameters; they will make up a dom-
inating term in the energy function, and as long as it is signi�cantly bigger than
the others, its exact value does not really matter.

The gold stars in �gure 3.4, showing that there are many values far from the
true parameters with near maximum values of L , may help explain the resulting
RMS of large noise values seen in 3.2. The near maximum values necessarily imply
that there are signi�cant areas of almost �at likelihood surface, in other words, it
is not shocking that the learning algorithm stops at erroneous parameter values.

Even though this is only shown here for a single network, we show the same
type of plots for two other networks in the supplementary �gure appendix C.4,
and similar properties are apparent in both of them. The width of the peaks are
comparable for all values of g, weak connection strengths have indistinguishable
peaks and maximal likelihood values and strongly connected networks can have
maximally valued points far from the inferred parameters.

Taken together, these results show that there is a region of connection strengths
which allow for better inference of the underlying model parameters due to more
complete, and less biased or noisy, sampling of the state space. Additionally, we
can say that the width of peaks in the likelihood function seem to be independent
of the standard deviation of the weights, if we loosely de�ne the end of a peak by
the distance at which the average likelihood value is visibly lower.

3.1.4 Sensitivity to the Number of Parameters

Since the number of parameters in our model is directly dependent on the number
of nodes we have in our network, one could expect the inference of some general
network to be less precise for increasing network complexity given a set number of
data points. As such, we wish to assess how sensitive our algorithm is to changing
the amount of observed or hidden nodes present.

We are restricted to only look into small systems, though, since an RBM with
No observed and Nh hidden nodes has 2No+Nh available states. In addition to
the number of states demanding an exponentially large data set to get a su�cient
sampling of the space, this means that the number of terms in the partition func-
tion increases exponentially with the number of nodes. In the following we have
therefore limited the investigation to containing no more than ten observed and
seven hidden nodes.

In �gure 3.5 we have plotted the RMS error of the inferred parameters after learn-

3.1. INFERENCE SENSITIVITY IN RBM LEARNING 35

ing the connectivity of several di�erent sized networks using di�ering sizes of data
sets and a few properties pop out. First, from the left plot, it seems like the error
in parameter inference is independent of the number of observed nodes, at least in
the case with two hidden nodes, which is what we show here. However, this is only
true for the case when inference starts from the true parameters, and we see that
the �nal RMS seems to depend on both data length and number of nodes when
the initial conditions are random (dashed lines). This observation is somewhat
surprising, as most other simulations tended to be insensitive to the initial condi-
tions. Interestingly, the deviation between true and random initial conditions is
also most clearly visible for the larger data sets; a counter intuitive result. As the
number of observed nodes increases, however, this deviation disappears, and the
algorithm seems to be insensitive to initial conditions again.1

In the right plot of �gure 3.5, the RMS seems to increase signi�cantly with in-
creasing the number of hidden nodes, for all sizes of data, but it also looks as if it
will saturate at some point. The saturation is only really seen for the smallest data
sets in �gure 3.5b, and when we compare the error with the expected error from
drawing random parameters, we see that they overlap quite well. We remember
from earlier, that the statistical distribution of the reconstructed parameters can
be biased towards larger values when the data sets are small, and this can explain
why it saturates at levels above the red dashed line. I would expect the saturation
levels of the brown and gold lines (larger data) to be at slightly lower errors than
the black, but still above the red due to them sampling the distribution more cor-
rectly. This would be consistent with the analysis in 3.1, but we were unable to
do this assessment do to limitations in computer storage capacity.

Taking the results of inference from random conditions in 3.5a and those from
changing number of hidden nodes in 3.5b together, we could get the idea that it
is the ration No/Nh that determines the precision it is possible to achieve with
our algorithm. However, our preliminary tests showed no clear trends in how the
reconstruction precision behaved for di�erent No/Nh-ratios which could not be
deduced from the plots already shown.

Predicting the Correct Number of Hidden Nodes in the Network

In this thesis, we are looking at systems where we have knowledge of not only the
connectivity, but also the number of hidden units in the network. In a real-world
example, however, where data is provided by some experimentalist's results, this
information is obviously not given, due to the very nature of hidden variables.
Therefore it would be interesting to see whether there is anything we can do to
predict the existence and number of hidden. Using the correct number of nodes
will not generally do a better job at regenerating the observed statistics [44], but
it could yield a numerically more relevant result if each node is to be interpreted

1We are not sure how to interpret these results, and as the �gures take day to make, and we

�rst discovered the sensitivity to initial conditions days before the thesis deadline, we were unable

to generate the required �gures to back up any conclusion. It could be mentioned, however, that

the independence of number of nodes when initializing the network at the correct solution was

seen in networks in which Nh = 4 as well.

36 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

(a) Change in inference precision with in-

creasing numbers of observed nodes in the

model, keeping the number of hidden nodes

stable at two. The dotted lines show the

RMS after starting from random connec-

tions, while the solid are from the true pa-

rameters

(b) Change in inference precision with in-

creasing numbers of hidden nodes in the

model, keeping the number of observed

nodes stable at eight. The red line shows

the RMS for a random set of weights drawn

from the same distribution as the generative

parameters.

Figure 3.5: The e�ect of inference precision when changing the number of nodes in the model
while keeping the number of data points stable. The di�erent colored lines correspond to di�erent
numbers of sampled points in the data set.

as some entity, such as a neuron.

Dunn and Roudi [45] found that, by varying the number of hidden units in the
reconstruction, a normalized likelihood had a maximum for the correct value of
hidden units. Furthermore, the correct value of hidden nodes is accompanied by
a minimum in the reconstruction error in the observed-to-observed weights. As
such, one can predict what number of hidden nodes must have been present in the
generation of the observed data, given that the scheme of connectivity is relevant.
These results were achieved in a fully connected, kinetic Boltzmann Machine, and
they used an advanced mean �eld method in their inference, but it would be in-
teresting to see if we could get similar results in our simpler system.

We did some preliminary studies, looking for ways to predict the number of hid-
den nodes used to generate the data. Using standard information measures, such
as Akaike's and Bayesian information criterion, as well as di�erently normalized
likelihood measures, we were unfortunately not able to say anything useful about
the number of hidden units from our investigation. The results can be seen in the
supplementary �gure C.5, and they did not look immediately promising. Therefore
we leave this endeavor here for now, but note it as being an interesting problem
to assess should we be confronted with real data for which the RBM seems to �t
well as a parametrized model.

The results from this review of the e�ect of the number of nodes on the infer-
ence precision of the RBM seems to imply that we need to separate between the

3.2. CURVATURE OF THE LIKELIHOOD SURFACE 37

e�ect of adding hidden and observed nodes to the network. The strength of infer-
ence seems to be reduced when our model has more hidden nodes, while adding an
observed node either increases, or has no e�ect on, our precision in inferring the
model connectivity depending on how many nodes we could previously observe.
However, we have not been able to �nd a strong property to be used in predicting
the number of hidden nodes in our model.

To sum up our �ndings concerning the sensitivity of the restricted Boltzmann
machine learning, we can say that the most detrimental factor to precisely recon-
struct the network connectivity is having a su�ciently large set of data. If the true
model parameters are generated with parameters drawn from a distribution with
g ∈ [1, 10] we are likely to to do slightly better in our parameter reconstruction
do to a more appropriate sampling of the state space. And, �nally, having few
hidden nodes in the data generating network seems preferable for the the inference
algorithm.

3.2 Curvature of the Likelihood Surface

The likelihood function is the bread and butter of our version of Boltzmann ma-
chine learning. Since the learning rules are derived from this very function, and
because they are designed to shift our parameter guess in the direction of its gra-
dient, the likelihood surface geometry is of interest. As such assessing the shape
of the likelihood surface is critical for understanding the strengths and weaknesses
of our learning algorithm. If the function is not convex in relevant areas of the
parameter space, has large �at areas or saddle points, our approach of using gra-
dient ascent to �nd the maximum likelihood values will be futile.

Figure 3.6: The likelihood surface
of the simplest RBM, with two ob-
served and one hidden node. The black
star marks the generative model pa-
rameter values.

We have already seen that the RBM learning
algorithm is more or less only restricted by how
completely the data samples the state space of
the network. In the following we will focus on
the function used to learn the parameters, and
we will start by making a qualitative assess-
ment of the surface curvature. We move on
to use a qualitative measure, the Hessian ma-
trix, to describe the curvature more rigorously,
and investigate how this measure depends on
the same properties we varied in the previous
section.

3.2.1 Qualitative Investigation

To get an intuition for the shape of the likeli-
hood, we start by a purly observational inves-

38 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

tigation of the surface. Since L is a function of model parameters conditional on
some data set, the dimensionality of it depends on the number of variables present
in the model we want to infer the parameters of. As such, the only network with
a likelihood surface we can visualize completely in a �gure is the 2-by-1 RBM.
It only has two parameters in its model, making it two-dimensional, and we can
therefore potentially calculate and plot the likelihood value for every point in its
entire, two dimensional parameter space in the paper plane.

In �gure 3.6 we have done this for the area around the true values of param-
eter space, marked by the black star. The initial result is not promising with
regards to function convexity; there seems to be a large region of the likelihood
surface that has a similar value of L as the true parameters. This means that
if we just follow the gradient of the function from some random initial condition
until it is virtually zero, we have no way of predicting whether we end up in the
correct solution.

In fact, it can be shown analytically that the simplest RBM network is not con-
vex. Considering the true weights J11 and J21, we can easily show that there are
alternative sets of weights, J11∗ and J∗

21, which has the exact same probability
distribution over the observed states as the true parameters. Starting from equa-
tion 1.1, and using properties of hyperbolic functions, some algebra and arithmetic
gives us

P2x1(vs) =
1

4

(
1± tanh(J11) tanh(J21)

)
=⇒ tanh(J∗

11) =
tanh(J11) tanh(J21)

tanh(J∗
21)

which has a solution for any, non-zero J∗
21. In other words, this RBM is not only

non-convex, it has an in�nite number of points in parameter space with exactly the
maximum likelihood value. In fact it also has an in�nite number of valid solutions
when J∗

ij = 0, given that one of the original weights was also zero.

Luckily, we know that properties of simple systems do not always carry over to
more complex and high dimensional versions of the problem [12], so there may be
hope for convexity in higher dimensional problems. Unfortunately, it gets hard to
survey the likelihood surface by eye when the network contains more than two pa-
rameters, as we have restricted tools for visualization. In any case, we have tried to
give an idea of the shape of a likelihood function surface in an RBM with eight ob-
served and three hidden nodes. The resulting plots of this can be seen in �gure 3.7.

The three surface plots are generated in a similar way to 3.6, but because there
are so many more variables in the model visualized here, we have done one thing
di�erently: every parameter except two has been clamped to certain values while
we systematically sweep the two last two parameters over a range of values, cal-
culating and plotting L for every point. This lets us inspect a two dimensional
slice of the multidimensional likelihood hyperplane. In 3.7 we hold the clamped
variables at di�erent values for each plot, e�ectively sampling three di�erent, but

3.2. CURVATURE OF THE LIKELIHOOD SURFACE 39

Figure 3.7: Surveying the Likelihood surface of an RBM with 8 observed and 3 hidden nodes
in three di�erent areas of the parameter space. In all �gures we sweep over a range of values for
the weights between observed number 1 and hidden node 3, and observed number 5 and hidden
node 3. In the left �gure, the remaining parameters are held at their correct values - the values
which they had during data generation. In the central �gure, the remaining weights are held at
the inferred values. In the right �gures, all parameters were given a random value drawn from
the same distribution as the real parameters. The black stars mark the true and inferred values,
of J53 and J13, in the left and center plot respectively. The value in the bottom left corner of
each plot denotes the maximum likelihood value encountered during each local sweep.

parallel plains in parameter space. From left to right, the parameters are clamped
at the inferred, the true and some random set of parameters.

At �rst glance, they all look quite similar, with the same ranges of values and
comparable geometries. However, the central image stands out a little bit with
what looks to be more of a peak near the black marker. This is somewhat com-
forting, as the remaining parameters were clamped at their inferred values as our
program sweeps over values for J13 and J53 near their own inferred solution. Even
though there does not seem to be any peaks in the other two plots, the value
written in the bottom left corner of each image shows that the local maximum
likelihood. Those values do indeed seem to be higher in the inferred solution than
elsewhere in parameter space, even though only by a few percent.

Another property to notice, which was also typical for this type of analysis, is
that there does seem to be areas with a virtually �at likelihood surface, stretching
quite far from the true solution. Even though they are not true maxima, or indeed
saddle points (as the gradient is not quite zero), they may cause problems for our
learning algorithm. If we, for example, end up in one of these near �at areas,
the learning will slow down signi�cantly due to its update rate being proportional
to the gradient and a small, static learning rate, η, and may even be considered
to have converged. This is very hard to control for without close inspection on
a network to network basis, and is very di�cult when the ground truth of the
connectivity is unknown.

40 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

From this qualitative overview, it seems like there is indeed a peak near the true
model parameters. Unfortunately, there seems to be large �at areas, in other areas
of parameter space, or near-�at dimensions stretching out far from the true values
of the weights. We give another example like �gure 3.7 from another slice through
the parameter space in the supplementary �gure C.6, in which the �at areas are
even more apparent. These properties can give our algorithm trouble, making it
slow at best, and completely stuck in at worst.

3.2.2 The Hessian Matrix

Now, this type of qualitative assessment is obviously not exhaustive, nor rigid
enough to draw strong conclusions about the general curvature of the log likelihood
surface. A quantitative measure, relevant to the issues studied here, is the so
called Hessian matrix and its eigenvalues. The Hessian is a matrix containing all
di�erent partial second derivatives of a multi-variate function, F , making it an
n-dimensional matrix (n is the number of variables, X, in the function), where
each element takes the form

Hi,j =
∂2

∂Xi∂Xj
F (X1, X2, ..., Xn)

For our purposes the general function F (X1, ..., Xn) will be the likelihood, L , and
the derivations of the exact form of the matrix for RBM's and sRBM's can be
found in the appendix A.1.3. For the RBM architecture, which is what we will be
reviewing here, the elements of the Hessian matrix take the form

Hxy = D ∗
{
〈viva〉d − 〈viva〉m − 〈vivahjhb〉d + 〈vahb〉m〈vihj〉m if j = b
〈vahb〉m〈vihj〉m − 〈vivahjhb〉m if j 6= b

where x = i+ j and y = a+ b.

Our Hessian matrix elements tell us something about the curvature of the likeli-
hood function in any chosen point in parameters space. Using standard techniques
from linear algebra, it is possible to transform the matrix in such a way that its
only non-zero elements are on the diagonal. The values on diagonal after such a
transformation are known as the eigenvalues, and each of them is associated with a
certain eigenvector, given by the characteristic equation. In the case of the Hessian
matrix of the likelihood function, the eigenvalues quantify the magnitude of the
curvature of the likelihood in the direction of the eigenvector through parameter
space. In other words if the Hessian has relatively large eigenvalues for a set of pa-
rameters, the curvature of in the corresponding point in parameter space is sharp.
On the other hand, if the eigenvalues are near zero, there is very little curvature,
and the function is close to linear.

If the Hessian eigenvalues of a function are all negative, we say that the func-
tion has negative curvature in that point, and if that very point is a stationary
point of the function, we can identify it as a peak. Additionally, if all the eigenval-
ues are negative for every point in the parameter space, we say that the function

3.2. CURVATURE OF THE LIKELIHOOD SURFACE 41

Figure 3.8: Normalized histograms
showing the Eigenvalues of the Hessian ma-
trix of the Likelihood surface for an 8-by-
3 RBM. After 50 realizations of the same
network, the top �gure shows all the eigen-
values of the likelihood in the inferred, true
and random parameters (separated by color
coding). The bottom �gure shows the max-
imum eigenvalue in each of the three points
for every realization of the network. We
used our standard g = 1, we used ≈ 100k
data points in every simulation, and the
eigenvalues were calculated using inbuilt
functionality in matlab. The random pa-
rameters are drawn from the same distribu-
tion as the true model parameters.

is globally convex, since it can only have a single peak and has negative curvature
over its entire parameter space. Since we wish to investigate the convexity of the
likelihood function, it is a good idea to look at the distribution of eigenvalues for
various points in its parameters space, to see if it lets us draw any strong conclu-
sions about its curvature.

To do this, we implemented the formulas presented above, and used inbuilt matlab
functionality to �nd the eigenvalues. Doing this let us plot histograms to review
the eigenvalue distribution for a given size or type of Boltzmann machine. In �gure
3.8 such distributions are presented for three di�erent points in parameter space,
after 50 distinct realizations of Boltzmann machine learning, where we used 8-by-3
RBM's.

We can see that the distribution for the three kinds of points in parameter space
- generative, random and inferred plotted in black, brown and gold respectively -
have certain quite similar properties. They all seem to have a similar number of
negative eigenvalues, with a lighter tail of distinctly larger values. Histograms of
the trial-to-trial variation of this distribution of eigenvalues is investigated in the
appendix, in �gure C.7, and is seen to be quite stable across the separate realiza-
tions of the system.

The most striking di�erence between the eigenvalue distributions for the di�er-
ent types of points is the magnitude of the values in the tail. It is large positive
for the random, smaller positive for the true and mostly negative for the inferred
parameters. If it is the case that the eigenvalues calculated using inferred param-
eters are indeed contained in its entirety on the negative values of the x-axis, it
would mean that the curvature in the stationary point found by our algorithm is
completely negative, in other words that it is a peak on the surface.

42 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

To investigate whether they are indeed all below zero, the lower �gure shows
only the maximum eigenvalues for each of the 50 learning simulations in each
point. Though the vast majority of the Hessian eigenvalues calculated from the
parameters inferred have a negative maximum eigenvalue, some are seen having
positive values on our x-axis. It is important to mention here that we transformed
the eigenvalues to have better separation of the relatively smaller values, using a
logarithmic scaling. Since there may be both positive and negative eigenvalues,
a standard logarithmic axis will not work, so we decided on keeping the axis lin-
ear, while transforming the values themselves using log(|Eig|) ∗ sign(Eig). This
transformation is an unambiguous mapping as long as log(|Eig|) > 0 for all eigen-
values, but it is impossible to separate < 1 positive from complementary negative
eigenvalues (f.ex. log10(| − 0.1|) ∗ sign(−0.1) = log10(|10|) ∗ sign(10)), and vice
versa. In other words, what looks like positive eigenvalues can be either very small
negative, or the corresponding positive, eigenvalue.

Since the eigenvalues tend to be on the same order of magnitude as the size of
the data, it is unlikely to �nd eigenvalues of an absolute value below 1, and we
never ran into issues here. Therefore, the gold values with positive values, are
indeed positive, which means that the inferred set of parameters seems not yield
a true maximum of the likelihood. This was not true for most simulations, and
having positive eigenvalues in the inferred parameters became more prevalent for
more complex systems. However, in tests where we removed the threshold limit
in the learning, and let the inference continue for a large number of iterations
(O(105)), we never had issues with positive eigenvalues in the inferred parameters,
making it likely to just be an artifact of the threshold, or iteration limits, used to
stop learning.

E�ect of Distance from Inferred Parameters on Hessian Eigenvalues

Even though the Hessian matrix is most informative in stationary points of the
function, it can be interesting to explore its eigenvalues in the vicinity of such
points too. It can give us an idea of how the curvature changes as we move away
from the peak, and quantify how far away from the peak the curvature of the
likelihood surface could stay strictly negative. In the following we try to visualize
how the Hessian eigenvalues depend on the distance from the inferred parameters.

In �gure 3.9 we show some descriptive statistics about the eigenvalues of the Hes-
sian matrix around the inferred parameters of an RBM with eight observed an
three hidden nodes. Having sampled 50 random points in parameter space at sev-
eral distances from the inferred solution, the eigenvalues were only strictly negative
in the very close vicinity of the peak. Already at a distance 10−2 times smaller
than the standard deviation of the distribution we sample the model parameters
from, we see the overall maximum eigenvalue sneaking into positive values.

This means that the �rst positive second derivative occurs at points very near
the optimum in parameter space. In other words, the convex region of the likeli-
hood seems to be quite small, and cover only narrow areas of the state space. We

3.2. CURVATURE OF THE LIKELIHOOD SURFACE 43

see similar properties in the supplementary �gure C.8, where we study two other
RBM's, with a di�erent numbers of nodes. In both of those �gures, we have a
small range of noise levels around the inferred points in which all eigenvalues are
negative. Both the systems presented in the supplementary �gures also display
the quite sudden transition into a region with large positive eigenvalues, but the
transition happens at slightly di�erent distances from the inferred values.

Figure 3.9: Descriptive statistics for the eigenval-
ues of the Hessian matrix, normalized by the number
of data points used, around the inferred point in pa-
rameter space for a 8-by-3 RBM. Again we have done
the logarithmic transformation of the eigenvalues to
have better control over the separation of relatively
smaller values. We draw 50 random points the sur-
face of hyper-spheres with a given radius centered at
the inferred parameters, and calculate the eigenval-
ues there. Incrementing the radius systematically, we
plot the overall maximum eigenvalue (red star), the
average of the maximum eigenvalues from each point
(red line), the overall average eigenvalue (black), the
average of the minimum eigenvalues from each point
(blue line) and the overall minimum eigenvalue (blue
star) from that all the points sampled at each radius.

Here, in �gure 3.9 we see a
sudden shift in the average cur-
vature at the largest distances,
a property that is not seen in
the supplementary �gure. This
could just be due to a sam-
pling issue, it can be an ef-
fect of the number of nodes in
the system, or it can be that
it will happen at larger distances
for the systems presented in the
appendix. When we increase
the noise further, beyond stan-
dard deviations of O(100), how-
ever, we run into problems with
computer tolerance of big num-
bers in the exponent when cal-
culating the Hessian, and it gets
di�cult to study the behavior in
depth.

From the general shape of the
curves, the eigenvalues seem to
be quite consistently distributed
for di�erent systems. This is
seen more clear in the supplemen-
tary �gure C.9 we present the his-
tograms of all the eigenvalues used
to produce both �gure 3.9 and C.8.

It shows that there is quite a standard development of the eigenvalue distribution
as we move the suggested parameters away from the inferred peak. Going from a,
more or less, unimodal distribution completely contained in the negative values,
there is a steady trickle of eigenvalues switching sign (but keeping their magnitude)
as the distance from the inferred point increases. When the distribution reaches
a symmetric, bi-modal distribution, the magnitudes of the eigenvalues appear to
start decaying. After this, we are unable to follow the development, as our algo-
rithms cannot handle such large parameters.

It seems clear, however, that there is a region of strict convexity around the in-

44 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

ferred parameters. It appears to be small in general, but it's radius may depend
on the number of nodes in the network. Taking the �gures presented here, to-
gether with the distributions seen in �gure 3.8 and the histograms presented in
the supplementary �gure C.9, we can suggest that the distribution of eigenvalues
are quite consistent across networks, even though their scaling as a function of
distance from the inferred peak may vary.

E�ect of Connection Strength on Hessian Eigenvalues

In a previous section, we saw that the width of the convex region of the likelihood
surface seemed to be independent of the connection strength scaling factor, g. In
that case, however, we only looked at averaged likelihood values, and we could
not say anything speci�cally about the curvature's dependence on the strength
of connectivity. We have also seen that when the model parameters are sampled
from a certain range, g ∈ [1, 10], the inference precision is somewhat better than
for models using other values for g. Here, we inspect the Hessian eigenvalues for
the true and inferred parameters for the same range of g's previously investigated,
to see whether they have an impact of the likelihood surface curvature as well.

Figure 3.10: Averaged maximum eigen-
values as a function of the scaling used to
generate the model parameters. Plotted for
two data set sizes, for both the true model
(dashed) and the inferred (solid) parame-
ters, in a network with ten observed and
two hidden nodes. The weights were drawn
from N (0, g/

√
No ∗Nh).

In �gure 3.10 we plot the maximum
eigenvalues, averaged over ≈ 100 infer-
ence runs, calculated in the true (dashed
line) and inferred (solid line) points of
parameter space. We left out the er-
ror bars here, as they mostly clogged
up the �gure, without giving much in-
formation of interest. In the inferred
points, the eigenvalues rarely exceeded
zero2 but were relatively small for both
large and small values of g. This indi-
cates that the algorithm did �nd a peak,
but that there was at least one dimen-
sion in which the surface was more or less
�at.

However, there is a region that behaves
di�erently yet again, and it is the very
same range of values which generated mod-
els we could infer better. We see a sudden
drop in the maximum eigenvalues, which
means that the likelihood surface is rela-
tively more peaked for these strengths of connections. Interestingly, the maximum
eigenvalues are also far below zero when calculated in the point of true parameters.

2As mentioned earlier, the positive eigenvalues found for the inferred parameters are likely to

be artifacts of our, user-de�ned thresholds for when the algorithm has converged, and was not

an issue when we let the algorithm learn for large numbers of iterations with no threshold for

stopping.

3.2. CURVATURE OF THE LIKELIHOOD SURFACE 45

We should be careful when interpreting, but such a result indicates that true pa-
rameters are within the convex region of the likelihood surface. If this is in fact the
case, then in any data generating network with a g ≈ 2, we can use our algorithm
not only to �nd an optimal set of parameters, but also to set boundaries within
which we will �nd the true model parameters. Without going overboard with
interpretations of anecdotal results, however, we can say that using 1 < g < 10
seems to be accompanied by interesting properties of the likelihood surface, which
lead to preferable results in the inference of model parameters.

Another property to note is that the maximum eigenvalues found for strong con-
nections were very near zero, for both true and inferred parameters. This means
that there is likely to be at least one dimension in which the likelihood surface is
more or less �at for such values of g, which could be interpreted to indicate that
there are areas of a near-�at likelihood landscape away from the optimum too.
This corresponds well with our earlier observations, and provides more evidence
for why the algorithm would not converge completely on the optimal solution for
large noise initial conditions with our threshold rules, as seen in �gure 3.2.

This assessment of the e�ect g has on the Hessian matrix eigenvalues gave us
at least two interesting observations. First, models generated with the Goldilocks
values of g seem to yield signi�cantly di�erent eigenvalues in both inferred and
true parameters, than those generated with both weaker and strong connectivity.
Secondly, for stronger connectivities, there seems to be more or less �at dimen-
sions. This reverberates well with our observations about the maximum likelihood
values presented in �gure 3.3.

E�ect of the Number of Parameters on Hessian Eigenvalues

We saw earlier that the precision in inference depends strongly on the number of
hidden nodes in the network. We investigate how the positive eigenvalues, calcu-
lated from the true model parameters, picks up this dependence, and whether we
can observe any trends of interest.

Holding the number of observed nodes constant, No = 8, and with g = 1, we
generate a large data set (O(107)) for an each number of hidden nodes. From
each data set we subsample three smaller data sets which we use to calculate the
Hessian matrix for the true model parameters. We record the Hessian eigenvalues,
and in �gure 3.11 we take a closer look at the positive ones. Here, the eigenvalues
have been normalized by the number of data points, and their sum by the number
of parameters, to make their values comparable.

In the �gure we can see that a remarkably large proportion of all eigenvalues
get positive as the network size increases, up to 40 percent when there are 10 hid-
den nodes present, even though the true weight values are still relatively close to
the inferred solution in parameter space. Interestingly, the right plot shows that
the sum of these eigenvalues are almost completely independent of the number of
unobserved nodes in the network, and decreases in a scale-free fashion with in-

46 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

(a) (b)

Figure 3.11: A visualization of positive eigenvalues of the Hessian matrix in the Likelihood
function for the models true parameters, using di�erent size networks and data lengths. The
points are averaged over several (O(10)) di�erent realizations of the network. They all contained
eight observed nodes, and for each realization a large data set was drawn from which smaller
subsamples were used to calculate the Hessian matrix. In (a) we show the proportion of positive
eigenvalues for di�erent size networks and datasets, while (b) shows the sum of the positive
eigenvalues for di�erent size networks and datasets

creasing data lengths. In other words, the values of the positive eigenvalues of H
seems to get smaller on average as the data sets increase, and stay in a similar
range as the number of nodes go up.

Comparing the proportion of the observed that is positive with the apparent
eigenvalue distributions presented in supplementary �gure C.9, we can hypoth-
esize about the network sizes with ≈ 40% positive eigenvalues sample points in
parameter space that are a distance O(1/

√
NoNh) away from what would be the

inferred parameters of the data. This is, of course, based on qualitative investiga-
tion of anecdotal �gures, and it can not be taken as conclusive evidence of anything.

It is, in fact, hard to say anything conclusive from these two �gures, other than
that it seems like the magnitude of the positive curvature falls as the complexity of
the network increases. We get a general idea of the magnitude of the eigenvalues,
however, since we have not added in what the gradient of the likelihood is in the
points measured, we cannot really draw many conclusions.

To summarize our �ndings from this section, we can say that the multidimensional
surface of the likelihood has peaks, surrounded by a small region of convexity, at
points in parameter space relatively close to the true model parameters, and the
corresponding sets of permuted parameters. The general distribution of eigenvalues
changes from a unimodal, strictly negative, to a symmetric, bimodal distribution
as the distance from the inferred parameters increases. And the eigenvalues of
single points in parameter space sample these distributions quite consistently on
a trial-to-trial basis.

Additionally, there are indications that the magnitude of the curvature decays,

3.3. PERMUTATIONS OF HIDDEN NODES AND LOCAL CONVEXITY 47

making the surface more linear, when the guessed parameters are signi�cantly
larger than the true values used to generate the observed data. Finally, if the true
model parameters are sampled from a wide distribution (g > 10), there is good
chance that there is at least one dimension on the likelihood surface is �at, both
in the true and inferred points of parameter space. On the other hand, if the true
model was generated with g ≈ 2, there is a good chance that the true parameters
of the model will be contained within the inferred peak's region of convexity.

3.3 Permutations of Hidden Nodes

and Local Convexity

So far in this chapter we have been talking about the inferred solution, almost as
if it is a single point in parameter space. This is not the case, of course, because
when we are working with mutually independent hidden nodes, no external �elds,
or both, there will be more than one equivalent solution. In other words, there
are several equivalent peaks on the likelihood surface of the RBM we have been
working on. More precisely, there should be at least 2∗Nh! di�erent local maxima,
where the Nh! stems from the possible permutations of the hidden nodes while
the factor 2 is because of the sign invariance of the parameters when there is no
external �eld. In the simulations done in previous sections we have reported that
the learning in RBM's tend to converge on solutions with a low RMS error when
compared to the true model parameters. We have not mentioned, however, that in
the calculation of this root mean square, we have always controlled for the permu-
tations of hidden nodes, and consequently chosen the permutation which yielded
the lowest �nal RMS.

We brie�y discussed the permutations, and why they must give equivalent prob-
ability density functions over the state space, in the introduction (take a look at
�gure 1.4 for a refresher), but since then we have left the issue untouched. Here we
look into the local properties of the likelihood surface and the learning algorithm,
in an attempt to learn how the parameters evolve to end up in a given permutation
of the solution, and whether there are other points in parameter space that can
yield the maximum likelihood value.

3.3.1 Learning with Clamped Parameters

To assess this, we decided to use a two-step process of learning the parameters in
the network. In the �rst step we clamped one parameter, J1,1 to a �xed value and
let the rest of the weights converge to the maximum likelihood solution, given the
clamped parameter value. Our goal here was to see if the �nal value of likelihood
it ended up at was consistent across trials, and whether its likelihood value was
equal to the global maxima. After recording the values of interest from the �rst
stage, we un-clamp J1,1 as well, and start the second stage of the inference. In
this stage, all parameters are free to change, and we let them learn until they stop

48 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

Figure 3.12: Clamping a single parameter, J11, and learning the remaining parameters, gives
the likelihood values marked by stars. Releasing J11 and using the previously learned parameters
as initial conditions for a new stage of learning yields the likelihood values, with updated J11,
marked by squares. The stars are colored according to which 'square they ended up in' after free
learning. Black crosses are just references to the values of all connections from observed node 1
to hidden nodes, and their negatives.
To generate the above plot we used a 10-by-3 RBM, with typical weight distributions (g = 1)
and 50k samples in the data set. We clamped each value of J1,1 50 times and let all other pa-
rameters be drawn randomly from the same distribution as the true parameters. In the appendix
supplementary �gure C.10 shows a similar plot generated from a network with six observed and
one hidden node, which may be simpler to decipher.

changing, just like in the normal algorithm.

We did this for di�erent size networks, and we present two of the resulting �g-
ures in this report; in �gure 3.12 the resulting �gure is shown for a network with
ten observed and three hidden nodes, and in supplementary �gure C.10 for a sim-
pler network with six observed and only one hidden node. Using g = 1 as usual, we
draw parameters and generate a set of 500, 000 data points from the equilibrium
distribution. We set 25 linearly spaced clamping values ranging over ±max(|J|),
and start the two-stage procedure.

In the �gures we have marked the end-points of both learning stages by plot-
ting the obtained value of L as a function of J1,1's value. The stars mark the
�nal values of the �rst learning stage, while the middle of the squares mark the
ultimate values of the second stage. We have color coded the stars according to
which square they converged to during the un-clamped learning stage, and it is
interesting to note that the �nal value of J1,1 is not completely decided by its
initial value. For example, when clamping J1,1 to values around −0.2 it can end
up in the purple, yellow, turquoise, and blue squares. Which square it ultimately

3.3. PERMUTATIONS OF HIDDEN NODES AND LOCAL CONVEXITY 49

converges on is probably strongly related to the values of the remaining, randomly
initialized, parameters.

A second thing to take note of, is the trial-to-trial consistency for both stages
of learning. The clamped learning yields virtually identical values of likelihood
every time, depending only on which square they will end up in after the second
stage. The un-clamped learning is even more consistent - not only does it consis-
tently yield one of six values for the, previously clamped, parameter J1,1, but they
all have the exact same likelihood.

Incidentally, the x-position of the six squares correspond very well with the black
crosses at the top of the �gure. These crosses mark the values of ±J1,1, ±J1,2 and
±J1,3 taken from the true model, which constitutes the complete list of connections
to observed node nr.1 and their negatives, and as such exhausts the possible values
J1,1 can realize when taking into account the possible, equivalent permutations of
the hidden nodes.

Taking all the information in �gure 3.12 and C.10 together, it seems highly likely
that the only peaks on the likelihood surface are 2 ∗Nh! equivalent permutations
of the model parameters. At least, when considering values of the same order of
magnitude as the true model parameters.

This sentiment rings true for what we have seen for the entire chapter; as long
as we initialize the learning algorithm with weights of relatively similar magnitude
as the true parameters, we can reconstruct the network connectivity arbitrarily
well, only restricted by the length of the data, given that we control for permuta-
tions of the hidden nodes and sign invariance of the parameters. Of course, there
are properties of the underlying model which helps in our quest to further improve
the inference, such as having proper strength of connection, and containing more
observed than hidden nodes, but in the end it seems the precision of RBM learning
is only limited by the amount of data.

50 CHAPTER 3. RESTRICTED BOLTZMANN MACHINE LEARNING

Chapter 4

Concluding Remarks

The work presented here should be considered a preliminary assessment of the
strength and precision of RBM learning, and the convexity of the likelihood func-
tion associated with it. By investigating small networks with Boltzmann machine
connectivity, we have been able to extract how certain properties of the learning
algorithms developed depend on types, values and numbers of model parameters.
This is by no means an exhaustive investigation of the e�ciency of all Boltzmann
machine methods, but merely a �rst step towards building up the currently lacking
literature about the simplest versions of this stochastic neural network model - a
model which is widely used with huge numbers of nodes, and approximate meth-
ods, due to its apparent functionality and simple implementation .

In this �nal chapter, we brie�y discuss how to improve upon the algorithms ap-
plied and where move on from here, before trying to pull results of our investigation
together into a conclusion.

4.1 Possible Future Directions

A common problem for numerical algorithms doing gradient ascent is that it is very
hard to know when they have converged su�ciently close to a stationary solution.
Of course, we would prefer to �nd the actual peak in the likelihood landscape, but
this is not likely to happen, due to the nature of the algorithm used and computer
precision. The gradient is unlikely to ever be calculated to exactly zero, and the
algorithm will in most cases either start oscillating around some point in parame-
ter space by overshooting the solution, or slow down to quickly to ever reach the
solution.

These two problems are related, and depend strongly on the choice of learning
rate. How we faced the issue here was �nding a suitable value for the learning
rate, η, by trial and error, keeping it constant and stopping the learning when the
parameters were changing signi�cantly slowly. This approach can lead the algo-
rithm to suggest sub-optimal results, such as stopping the inference on near-�at
areas of the likelihood. There are several ways to improve on our approach. For ex-

51

52 CHAPTER 4. CONCLUDING REMARKS

ample by using adaptive learning rates or more intelligent stopping criteria such as
taking into account the Hessian eigenvalues. These are aspect to investigate which
could potentially be applied to any method using gradient ascent or descent, and
could therefore be bene�cial for problem solving in a large range of �elds.

On a more problem speci�c note, there are many things that can still be done
to understand the most basic properties of Boltzmann machine learning on a more
fundamental level. One thing to research closer would be the true number of peaks
in the likelihood. We have already seen that there is likely to be at least two peaks
for every permutation of hidden nodes when no external �eld is present, giving a
total of 2 ∗ Nh! equivalent maxima for the likelihood surface. However, we have
not proven that these are the only maxima on the likelihood.

It is theoretically possible to analytically count the number of stationary points
in any function, the log likelihood included, taking advantage of mathematical
tools such as derivatives, delta functions and multivariate integrals. An expres-
sion for the number of peaks, NP , could be derived from the general form NP =∫
δ
(∑

ij
∂L
∂Jij

)
∂J. This may look harmless in the form presented here, but we have

no strong indications of this multi-dimensional integral leading to a simple closed
form expression. Additionally, it would be necessary to �nd a way to separate
the maxima from other stationary points, such as saddles and troughs, in which
the sum of the derivatives are also zero. One way to get around this could be to
multiply the integrand with the Heaviside step function of the Hessian eigenval-
ues. It could be arranged in a way so that the integral only gets a contribution
when all the eigenvalues are negative, but is also likely to lead to an even messier
expression...

Had it not been for the curse of time, we would have loved to look more in-depth
into the Goldilocks-region of g-values. It is interesting both because it seemed
to give more precise inference results, but also for the properties of the Hessian
eigenvalues. Since the scaling factor we use here can be related to the inverse tem-
perature in statistical mechanics, it can be tempting to look for evidence of critical
points in the network. Even if there is no such point to be found, the mere fact
that these values showed such peculiar properties justi�es the resources needed to
throughly investigate its e�ect on the network.

Another aspect that could be interesting to investigate more closely is the ap-
parent saturation of inference error. We saw some anecdotal evidence for this
when the number of hidden nodes got large, and the data set was comparatively
small. What properties are responsible for such a saturation, and whether it even
occurs, is not at all obvious, but if it does, one could possibly �nd an analytic
expression for the number of data points needed to avoid saturation for a given
network size.

We discussed the apparent saturation when comparing the error with the expected
error when drawing random parameters for the model. In this comparison we have
implied an expectation of the inferred parameters being drawn from the same dis-

4.2. CONCLUSION 53

tribution as the ground truth model parameters. This notion could be interesting
to investigate as well; is the learning able to regenerate the distribution that the
model parameters are drawn from? In our investigation we have only been using
the normal distribution, and we have only been generating data from the correct
underlying model framework. It could be interesting to study both of these; Can
the inferred parameters tell us something about the underlying distribution of pa-
rameters, even if the actual values we �nd are incorrect? And what can a simpli�ed
network architecture tell us about the connectivity if the data is generated from
more complex networks?

Another natural expansion of our investigation would be to study the impact of
adding external �elds in the analysis? From the form of the energy function, we
can see that we will remove the sign invariance in the probability density. This
would reduce the number of equivalent likelihood maxima, but it is not immedi-
ately obvious whether they are still local maxima or not. There may also be other,
unforeseen aspects related to external �elds, but we will not speculate further here.

Finally, it would be of interest to look more closely at how properties of the Boltz-
mann machine learning scales to larger networks. However, to avoid the enormous
amount of computing power required for exact summation over, or time consump-
tion of Monte Carlo sampling of, the exponentially growing number of states, other
approximations are useful. Among the most popular ones are a class of methods
stemming from the �eld of statistical physics, the mean �eld methods. In mean
�eld approximations to Ising models, one seeks the best approximation to the
probability distribution of states with the restriction that P (h|v) is separable in
the hidden node variables [32]. Each of these are parametrized by a single variable,
and a convenient choice turns out to be the magnetization µj , which is de�ned as
the di�erence between the probability for the j'th hidden node to be +1 and −1.
Three more advanced methods of approximations was discussed by Roudi et al..
[27] are 1) the independent-pair approximation, 2) the Sessak-Monasson approx-
imation, a combination of the naive and independent-pair approximation, and 4)
the inversion of TAP equations, in which the Onsager self-interaction terms are
taken into account.

4.2 Conclusion

We have seen that the standard gradient ascent algorithm for �nding the maximum
likelihood parameters of a restricted Boltzmann machine is stable for small net-
works. It can infer the model parameters arbitrarily well, limited by the size of the
data and the quality at which it has sampled the state space. To get parameters
that are of relevant when assuming the hidden nodes are some unobserved, but
existing entity, it is advantageous that the underlying model had its parameters
drawn from a distribution with g ≈ 1, and that the initial conditions of learning
are not large compared to them.

54 CHAPTER 4. CONCLUDING REMARKS

From the investigation of the likelihood function surface, it seems like the magni-
tude, and sign of its curvature is quite consistent as a function of the distance to
a peak. The same goes for the Hessian eigenvalues: they have quite a distinct dis-
tribution, and its variability as a function of the distance to a peak is quite stable.
These properties seem to hold, not only on a trial-to-trial basis and for di�erent
realizations of a given size network, but also across networks sizes. Finally, the
Goldilocks strengths of connectivity, give rise to a more strongly peaked likelihood
surface and large deviations from these values for g open doors for maximum like-
lihood solutions with �at dimensions.

Bibliography

[1] Kandel, E. R. and Schwartz, J. H. and Jessel, T. M and Siegelbaum, S. A and
Hudspeth, A. J. Principles of Neural Science, Fith Edition. McGraw Hill, 5
edition, 2012. ISBN 978-0-07-139011-8.

[2] Bear, M. F and Connors, B. W. and Paradisio, M. A. Neuroscience: exploring
the brain, Third Edition. Lippincott Williams and Wilkins, a Wolters Kluwer
business, 3 edition, 2006. ISBN 978-0-7817-6003-4.

[3] N. Brunel and M. C. van Rossum. Lapicque's 1907 paper: from frogs to
integrate-and-�re. Biol Cybern, 97(5-6):337�339, 2007.

[4] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. 1943. Bull Math Biol, 52(1-2):99�115, 1990.

[5] A. L. HODGKIN and A. F. HUXLEY. A quantitative description of mem-
brane current and its application to conduction and excitation in nerve. J
Physiol (Lond), 117(4):500�544, 1952.

[6] W. RALL. Branching dendritic trees and motoneuron membrane resistivity.
Exp Neurol, 1:491�527, 1959.

[7] W. Rall. Theory of physiological properties of dendrites. Ann N Y Acad Sci,
96:1071�1092, 1962.

[8] E. De Schutter. Why are computational neuroscience and systems biology so
separate? PLoS Comput. Biol., 4(5):e1000078, 2008.

[9] Dayan, P. and Abbott, L. F. Theoretical Neuroscience: computational and
Mathematical Modeling of Neural Systems. The MIT Press, 1 edition, 2001.
ISBN 978-0-262-54185-5.

[10] Rolls, E. T. and Treves, A. Neural Networks And Brain Function. The Oxford
University Press, 1 edition, 1998. ISBN 0-19-852432-3.

[11] M. Mezard and T. Mora. Constraint satisfaction problems and neural net-
works: A statistical physics perspective. J Physiol Paris, 103(1-2):107�113,
2009.

[12] Y. Roudi, S. Nirenberg, and P. E. Latham. Pairwise maximum entropy models
for studying large biological systems: when they can work and when they
can't. PLoS Comput Biol, 5(5):e1000380, 2009.

55

56 BIBLIOGRAPHY

[13] B.A. CIPRA. An introduction to the Ising-model. Am Math Mon, 94(10):
937�959, 1987.

[14] M Opper and O Winther. Tractable approximations for probabilistic models:
The adaptive TAP mean �eld approach. Phys Rev Lett, 86:3695�3699, 2001.

[15] Yasser Roudi and John A. Hertz. Mean �eld theory for non-equilibrium
network reconstruction. Phys Rev Lett, 106,:048702, 2010.

[16] H. C. Nguyen and J Berg. Mean-�eld theory for the inverse Ising problem at
low temperatures. Phys. Rev. Lett., 109,:050602, 2012.

[17] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. J Chem Phys, 21
(6):1087�1092, 1953.

[18] J. J. Hop�eld. Neural networks and physical systems with emergent collective
computational abilities. Proc Natl Acad Sci USA, 79(8):2554�2558, 1982.

[19] E. Segal, M. Shapira, A. Regev, D. Pe'er, D. Botstein, D. Koller, and N. Fried-
man. Module networks: identifying regulatory modules and their condition-
speci�c regulators from gene expression data. Nat Genet, 34(2):166�176, 2003.

[20] R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein
function. Mol Syst Biol, 3:88, 2007.

[21] C. Xianggao, H. Su, and L. Xiaola. Feature extraction using restricted Boltz-
mann machine for stock price prediction. In Computer Science and Automa-
tion Engineering (CSAE), 2012 IEEE International Conference, volume 3,
pages 80�83, 2012. doi: 10.1109/CSAE.2012.6272913.

[22] A. Pasini. Neural network modeling in climate change studies.
Springer Netherlands, 2009. ISBN 978-1-4020-9117-9. doi: 10.1007/
978-1-4020-9119-3_12.

[23] J. Hertz, Y. Roudi, and J. Tyrcha. Ising models for inferring network structure
from spike data. 2011.

[24] M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa. Identi�cation
of direct residue contacts in protein-protein interaction by message passing.
Proc Natl Acad Sci USA, 106(1):67�72, 2009.

[25] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. V. Fedoro�. Using
the principle of entropy maximization to infer genetic interaction networks
from gene expression patterns. Proc Natl Acad Sci USA, 103(50):19033�19038,
2006.

[26] S. Cocco, S. Leibler, and R. Monasson. Neuronal couplings between retinal
ganglion cells inferred by e�cient inverse statistical physics methods. Proc
Natl Acad Sci USA, 106(33):14058�14062, 2009.

BIBLIOGRAPHY 57

[27] Y. Roudi, J. Tyrcha, and J. Hertz. Ising model for neural data: model quality
and approximate methods for extracting functional connectivity. Phys Rev E
Stat Nonlin Soft Matter Phys, 79(5 Pt 1):051915, 2009.

[28] E. Schneidman, M. J. Berry, R. Segev, and W. Bialek. Weak pairwise correla-
tions imply strongly correlated network states in a neural population. Nature,
440(7087):1007�1012, 2006.

[29] E. Schneidman, S. Still, M. J. Berry, and W. Bialek. Network information
and connected correlations. Phys Rev Lett, 91(23):238701, 2003.

[30] Gasper Tkacik, Elad Schneidman, Michael J. Berry, and William Bialek. Ising
models for networks of real neurons. 2006.

[31] P. Smolensky. Parallel distributed processing: explorations in the microstruc-
ture of cognition, vol. 1. chapter Information processing in dynamical systems:
foundations of harmony theory, pages 194�281. MIT Press, 1986.

[32] J. Tyrcha and J Hertz. Network inference with hidden units.

[33] C vanVreeswijk and H Sompolinsky. Chaos in neuronal networks with bal-
anced excitatory and inhibitory activity. Science, 274:1724�1726, 1996.

[34] G. E. Hinton. Machine learning for neuroscience. Neural Syst Circuits, 1(1):
12, 2011.

[35] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for
Boltzmann machines. Cognitive Sci, 9:147�169, 1985.

[36] G.E. Hinton. Boltzmann Machines. http://www.cs.toronto.edu/ hin-
ton/csc321/readings/boltz321.pdf, March 2007.

[37] A. Barra, A. Bernacchia, E. Santucci, and P. Contucci. On the equivalence
of Hop�eld networks and Boltzmann Machines. Neural Netw, 34:1�9, 2012.

[38] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep
belief nets. Neural Comput, 18(7):1527�1554, 2006.

[39] Bengio, Y. and Lamblin, P. and Popovici, D. and Larochelle, H. Greedy
layer-wise training of deep networks. In In NIPS. MIT Press, 2007.

[40] Hinton, G. Training Products of Experts by Minimizing Contrastive Diver-
gence. Neural Computation, 14:2002, 2000.

[41] T. Tanaka. A theory of mean �eld approximation.

[42] M. Welling and G.E. Hinton. A new learning algorithm for mean �eld Boltz-
mann machines. In JosÃ c©R. Dorronsoro, editor, Arti�cial Neural Networks
â ICANN 2002, volume 2415 of Lecture Notes in Computer Science, pages
351�357. Springer Berlin Heidelberg, 2002. ISBN 978-3-540-44074-1. doi:
10.1007/3-540-46084-5_57.

58 BIBLIOGRAPHY

[43] S. Kullback and R.A. LEIBLER. On information and su�ciency. Ann Math
Stat, 22(1):79�86, 1951.

[44] N Le Roux and Y Bengio. Representational power of restricted boltzmann
machines and deep belief networks. Technical report, 2007.

[45] B. Dunn and Y Roudi. Learning and inference in a nonequilibrium Ising
model with hidden nodes. Phys Rev E, page 022127, 2013.

Appendix A

A.1 Derivations

A.1.1 Maximum Entropy Distribution

We are seeking the least structured, or equivalently, the maximum entropy, distribution
available that agrees with the observed means and correlations in our data. This can be
achieved by maximizing the entropy, H(P), under the constraints that the probability
distribution, P , is normalized, and that it yields means and correlations agreeing with
those calculated from the data

By way of Lagrangian multipliers, this amounts to:

Function to be maximized: H(P) = −
∑
s

Ps log(Ps)

Under constraints:
Normalized distribution

∑
s

Ps = 1

Observed correlations E[vivk] = 〈vivk〉
Between-layer correlations E[vihj] = 〈vihj〉
Observed expected values E[vi] = 〈vi〉

where the notation 〈. . . 〉 denotes averages calculated from the data.

When attempting to maximize a function, f(x), under a set of constraints, gi(xi) = Ci,
by using Lagrange multipliers, λi, the standard approach is to de�ne a Lagrangian

L = f(x) +
∑
i

λi(gi(xi)− Ci)

and proceed to di�erentiate L with respect to all the function variables, x, as well as every
λi. Demanding that every derivative equals zero, gives the parameters for a stationary
point in f(x), and we can explore the solutions to �nd the points of interest.

In our case, the Lagrangian turns out to be

L =−
∑
s

Ps log(Ps) +
∑
ik

Wik

(
E[vivk]− 〈vivk〉

)
+
∑
ij

Jij
(
E[vihj]− 〈vihj〉

)
+
∑
i

fi
(
E[vi]− 〈vi〉

)
+ λ

(∑
s

Ps − 1
)

59

60 APPENDIX A.

=−
∑
s

Ps log(Ps) +
∑
ik

Wik

(∑
s

vivkPs − 〈vivk〉
)

+
∑
ij

Jij
(∑

s

vihjPs − 〈vihj〉
)

+
∑
i

fi
(∑

s

viPs − 〈vi〉
)

+ λ
(∑

s

Ps − 1
)

where I have called the multipliers constraining the observed correlations, the between-
layer correlations and the means Wik, Jij and fi respectively to be consistent with the
rest of the thesis. The multiplier for the normalization constraint is still called λ.

Now, the next step is taking the derivative with respect to the variables of the La-
grangian (P , all Wik, all Jij , all fi and λ), and setting them equal to zero. In our case,
that gives

∂

∂Ps
L =−

(
log(Ps) + 1

)
+
∑
ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi + λ = 0 (A.1)

∂

∂λ
L =

∑
s

Ps − 1 = 0 (A.2)

∂

∂Wik
L =

(∑
s

vivkPs − 〈vivk〉
)(∑

s

vivk
∂

∂Wik
Ps

)
= 0

∂

∂Jij
L =

(∑
s

vihjPs − 〈vihj〉
)(∑

s

vihj
∂

∂Jij
Ps

)
= 0

∂

∂fi
L =

(∑
s

viPs − 〈vi〉
)(∑

s

vi
∂

∂fi
Ps

)
= 0

Now, the variable that we are interested in here is the probability distribution, P . To
get an expression for it, we rearrange (A.1)(

log(Ps) + 1
)

=
∑
ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi + λ

log(Ps) =
∑
ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi + λ− 1

Ps = exp(
∑
ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi) exp(λ− 1) (A.3)

Using this expression with the condition from (A.2), gives

∑
s

Ps =
∑
s

exp
(∑

ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi
)

exp(λ) exp(−1) = 1

exp(−λ) = exp(−1)
∑
s

exp
(∑

ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi
)

λ = 1− log
[∑

s

exp
(∑

ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi
)]

λ = 1− log(Z) (A.4)

A.1. DERIVATIONS 61

where

Z =
∑
s

exp
(∑

ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi
)

(A.5)

is called the partition function.

By inserting the expression (A.4) into (A.3), to eliminate λ from the expression for
P , we get

Ps = exp(
∑
ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi) exp(1− log(Z)− 1)

Ps = exp(
∑
ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi)Z
−1 (A.6)

Recognizing the exponent here as the negative energy function, E , of a semi restricted
Boltzmann machine, we get the following familiar expression for the probability distri-
bution

Ps =
exp(E)

Z
(A.7)

Now, notice that we only used one of the four constraints in this derivations. This is to
keep it general, as the observed means and correlations, obviously, depend on the data
set used. In main part of this thesis, we will use the remaining constraints iteratively in
our simulation algorithms to �nd the optimal parameters J , W and f for our model.

62 APPENDIX A.

A.1.2 Learning Rules from Log-Likelihood

Here we de�ne the log likelihood function, �nd expressions for its gradient, and derive the
learning rules used for our inference algorithm doing gradient ascent on the log likelihood
surface. For this derivation I am assuming statistical independence between the points
of the data sample, in accordance with the assumption that all observations are drawn
from an equilibrium distribution. In this case, the log likelihood, L , is de�ned as

L (J|data) = log(

D∏
d

P (datad|J))

=

D∑
d

log(P (datad|J))

=

D∑
d

log(
∑
{h}

P (datad|J,h) (A.8)

Taking the derivative of L with respect to some parameter, X, and setting it equal to
zero, gives us an expression for the stationary points in the log-likelihood function given
some value for the other parameters. Using the Boltzmann distribution, (A.5) derived
above, gives us

∂

∂X
L =0

∂

∂X

D∑
d

log(
exp(Ed)

Z
) =

D∑
d

∂

∂X
log(

exp(Ed)

Z
)

=

D∑
d

∂

∂X
(log(exp(Ed))− log Z) (A.9)

As an example, taking the derivative with respect to one of the between-layer weights
gives

∂

∂Jij
L =0

=

D∑
d

vdi h
d
j −D

S∑
s

vsi h
s
j

exp(Es)

Z

=D〈vihj〉data −D〈vihj〉model

〈vihj〉data =〈vihj〉model

From this we see that, for the function to be in a stationary point, it is required that all
the correlations between observed and hidden nodes are the same whether they are cal-
culated from the data, or exactly from the modeling equilibrium Boltzmann distribution.
This result holds as long as the energy function, E , is separable in the weights.

Depending on which parameter the likelihood function is being di�erentiated with respect
to, and the form of the energy function, the end result will look somewhat di�erent. But
as we will see in the following sections, they all have the same general form.

A.1. DERIVATIONS 63

Restricted Boltzmann Machine

In the case of the restricted Boltzmann machine (RBM), there are only between-layer
weights present, which leads to energy and partition functions of the form

E =
∑
ij

Jijvihj +
∑
i

fivi

Z =
∑
s

exp(
∑
ij

Jijv
s
i h

s
j +

∑
i

fiv
s
i).

Using these, with a data set, we can construct an expression for the log-likelihood, or
use expressions of the form (A.9) directly to �nd the learning rules associated with this
system. The parameters one needs to consider when �nding learning rules for the RBM
are the weights, J, and the external �elds, f . Taking the derivatives necessary to �ll in
(A.9) gives the following expressions

∂

∂Jij
E = vihj

∂

∂Jij
Z =

∑
s

vsi h
s
j exp(

∑
ij

Jijv
s
i h

s
j +

∑
i

fiv
s
i)

∂

∂fi
E = vi

∂

∂fi
Z =

∑
s

vsi exp(
∑
ij

Jijv
s
i h

s
j +

∑
i

fiv
s
i)

Inserting these expressions back into (A.9), where X is substituted for the corresponding
parameter, gives

∂

∂Jij
L =

D∑
d

vdi h
d
j −D

∑
s

vsi h
s
j

exp(
∑
ij

Jijv
s
i h

s
j +

∑
i

fiv
s
i)

Z

=D〈vihj〉data −D〈vihj〉model

for the between-layer weigths, and similarly

∂

∂fi
L =

D∑
d

vdi −D
∑
s

vsi

exp(
∑
ij

Jijv
s
i h

s
j +

∑
i

fiv
s
i)

Z

=D〈vi〉data −D〈vi〉model

for the external �elds.

Since the 〈. . . 〉model depend on all parameters in the model, the above expressions will
only yield a true stationary point when all the formulas equal zero simultaneously. One
way of �nding this set of parameters is, after making an initial guess at their values,
updating each one by adding a term proportional to their derivative to them. This, an

64 APPENDIX A.

algorithm known as gradient ascent, should move the model to a coordinate in parameter
space with a higher likelihood-value, and culminate in a stationary point of the likelihood
surface.

Since each variables component of the gradient, a vector pointing in the direction of
highest increase, is proportional to the di�erence between the correlations, gradient as-
cent leads to the following rules for updating the model parameters

∆Jij =η(〈vihj〉data − 〈vihj〉model) (A.10)

∆fi =η(〈vi〉data − 〈vi〉model) (A.11)

Here, η is known as the learning rate, which is responsible for how large the steps taken
should be. This parameter needs to be set, and adjusted, depending on the system being
analyzed. It should be as big as possible to speed up the simulation, but small enough
to avoid over-shooting the peak in the likelihood, leading to oscillations and slow, or no,
convergence.

Semi-Restricted Boltzmann Machine

A semi-restricted Boltzmann machine (sRBM) is similar to the RBM, but has additional
weights, W, between the observed nodes. This changes the energy function, and subse-
quently the partition function, to have the following forms

E =
∑
ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi

Z =
∑
s

exp(
∑
ik

Wikvivk +
∑
ij

Jijvihj +
∑
i

fivi).

Since the only thing distinguishing these from the corresponding expressions for the RBM,
is the addition of the term

∑
ikWikvivk in the energy function, and the analogous term

in the partition, the derivatives with respect to J and f remain unchanged. Again, using
(A.9) to �nd the gradient of L with respect to the intra-layer weights, W, we get the
following

∂

∂Wik
E = vivk

∂

∂Wik
Z =

∑
s

vsi v
s
k exp

(∑
ik

Wikv
s
i v

s
k +

∑
ij

Jijv
s
i h

s
j +

∑
i

fiv
s
i

)
When this is inserted back into (A.9) we get

∂

∂Wik
L =

D∑
d

vdi v
d
k −D

∑
s

vsi v
s
k

exp(
∑
ik

Wikv
s
i v

s
k +

∑
ij

Jijv
s
i h

s
j +

∑
i

fiv
s
i)

Z

=D〈vivk〉data −D〈vivk〉model

Using similar arguments as in the RBM case, the update rules for connections between
the observed nodes can be written as

∆Wik =η(〈vivk〉data − 〈vivk〉model) (A.12)

A.1. DERIVATIONS 65

The Issue with the Values of h in the Correlations

Since we do not actually know the values of the hidden node activity when observing
a state, it may seem hard to �nd correlations between them and other nodes. We do,
however, know some properties of the hidden nodes, and their interactions with their
environment. which can help us in the task of calculating the correlations. For example,
the nodes only take the values ±1, and we have some parameters, J, that connect their
values to that of the observed nodes.

The following derives an expression for ∆Jij , equivalent to (A.10), which does not depend
on the speci�c values of the hidden nodes. Again using the energy function of the sRBM
for generality, and starting from (A.8), we derive an expression for the log-likelihood, and
do the di�erentiations necessary to �nd a valid expression for its gradient with respect
to J.

L =

D∑
d

log(
∑
{h}

P (datad|J,h))

=

D∑
d

log(
∑
{h}

exp(E)

Z
)

=

D∑
d

log

[
exp(

∑
ik

Wikv
d
i v

d
k +

∑
i

fivi)
∑
{h}

exp(
∑
ij

Jijv
d
i h

d
j)

]
−

D∑
d

log(Z)

=

D∑
d

(∑
ik

Wikv
d
i v

d
k +

∑
i

fivi

)
+

D∑
d

log

[∑
{h}

exp(
∑
ij

Jijv
d
i h

d
j)

]
+D log(Z)

(A.13)

Now, this may look messy, but considering we only need the expression for di�erentiating
to �nd learning rules, it is not too bad. Since we want to get rid of the dependence on h,
we need to rewrite the middle term and partition function of (A.13). The middle term
can be rewritten in the following way

D∑
d

log[
∑
{h}

exp(
∑
ij

Jijv
d
i h

d
j)]

=
D∑
d

log

[∑
h1=±1

∑
h2=±1

. . .
∑

hm=±1

∏
j

exp(hd
j

∑
i

Jijv
d
i)

]

=

D∑
d

log

[∑
h1=±1

exp(hd
1

∑
i

Ji1v
d
i)

∑
h2=±1

exp(hd
2

∑
i

Ji2v
d
i) . . .

∑
hm=±1

exp(hd
m

∑
i

Jimv
d
i)

]

=

D∑
d

log

[
(e

∑
i

Ji1v
d
i

+ e
−

∑
i

Ji1v
d
i
)(e

∑
i

Ji2v
d
i

+ e
−

∑
i

Ji2v
d
i
) . . . (e

∑
i

Jimvd
i

+ e
−

∑
i

Jimvd
i
)

]

=

D∑
d

log

[∏
j

2 cosh(
∑
ij

Jijv
d
i)

]

=

D∑
d

∑
j

log

[
2 cosh(

∑
ij

Jijvi)

]
(A.14)

Getting back to the task of �nding learning rules for J's, we insert (A.14) into (A.13)
and di�erentiate with respect to JIJ , the connection strength between observed node I

66 APPENDIX A.

and hidden node J , much like in the equation (A.9) above. Since the �rst term in (A.13)
is independent of J it disappears during the di�erentiation, leaving us with having to
di�erentiate (A.14) andD log(Z). In the following, we will be di�erentiating with respect
to a speci�c coupling, between the I'th observed and J 'th hidden node.

∂

∂JIJ
L =

∂

∂JIJ

D∑
d

∑
j

log[2 cosh(
∑
ij

Jijvi)]−
∂

∂JIJ
D log(Z)

=

D∑
d

∂

∂JIJ
log[2 cosh(

∑
ij

Jijvi)]−D
∂

∂JIJ
log(Z)

=

D∑
d

vI sinh(
∑
i

JiJvi)

cosh(
∑
j

JiJvi)
−D

∂
∂JIJ

Z

Z

=

D∑
d

vI tanh(
∑
i

JiJvi)−D
∂

∂JIJ
Z

Z
(A.15)

Separating each term in the partition function in a similar fashion as in the derivation of
(A.14), we get

∂

∂JIJ
Z =

∂

∂JIJ

∑
{v}

(
exp(

∑
ij

Wikv
s
i v

s
k +

∑
i

fivi)
∑
{h}

exp(
∑
ij

Jijv
s
i h

s
j)

)

=
∂

∂JIJ

∑
{v}

(
exp(

∑
ij

Wikv
s
i v

s
k +

∑
i

fivi)
∏
j

2 cosh(
∑
i

Jijvi)

)

=
∑
{v}

(
exp(

∑
ij

Wikv
s
i v

s
k +

∑
i

fivi) ∗
∂

∂JIJ

∏
j

2 cosh(
∑
i

Jijvi)

)

=
∑
{v}

(
exp(

∑
ij

Wikv
s
i v

s
k +

∑
i

fivi) ∗ 2vI sinh(
∑
i

JiJvi)
∏
jrJ

2 cosh(
∑
i

Jijvi)

)

Multiplying through each of the terms in this expression by 1 =
cosh(

∑
i

JiJvi)

cosh(
∑
i

JiJvi)
, we get

∂

∂JIJ
Z =

∑
{v}

(
exp(

∑
ij

Wikv
s
i v

s
k +

∑
i

fivi) ∗ vI tanh(
∑
i

JiJvi)
∏
j

2 cosh(
∑
i

Jijvi)

)

=
∑
{v}

vI tanh(
∑
i

JiJvi)

(
exp(

∑
ij

Wikv
s
i v

s
k +

∑
i

fivi)
∏
j

2 cosh(
∑
i

Jijvi)

)

=
∑
{v}

vI tanh(
∑
i

JiJvi)

(
Z ∗ P (v)

)

In the transition to the last expression above, we have recognized the terms contained
by the parenthesis as the numerator of the models probability of observing state v. This
can be seen by the separability of the energy function, and a derivation follows a very
similar framework as the one seen leading up to A.13.

A.1. DERIVATIONS 67

Inserting this equation into (A.15), we get

∂

∂JIJ
L =

D∑
d

vI tanh(
∑
i

JiJvi)−D
Z ∗

∑
{v}

vI tanh(
∑
i

JiJvi)P (v)

Z

=

D∑
d

vI tanh(
∑
i

JiJvi)−D
∑
{v}

vI tanh(
∑
i

JiJvi)P (v)

=D〈vI tanh(
∑
i

JiJvi)〉data −D〈vI tanh(
∑
i

JiJvi)〉model

This result generalizes for any connection Jij , and can be written as

∂

∂Jij
L =D〈vi tanh(

∑
i

Jijvi)〉data −D〈vi tanh(
∑
i

Jijvi)〉model

The expression for the gradient is now on a form very similar to that of (A.10), only
the h has been exchanged with the expression tanh(

∑
Jijvi). We shall see that this

substitution makes sense in certain systems, or analyses. Brie�y explained, it is because
it can be shown that the expected value of the j'th hidden node given some state of the
observed nodes, v, is tanh(

∑
Jijv

s
i), where vsiÂ denotes the activity of the i'th node in

the s'th observed state.

This can be shown using some algebra, and it holds as long as the hidden nodes are
all independent in the model.

E(hJ |J,v,hrJ) =1 ∗ P (hJ = 1|J,v,hrJ) + (−1) ∗ P (hJ = −1|J,v,hrJ)

=
exp(E (hJ = 1|J,v,hrJ))− exp(E (hJ = −1|J,v,hrJ))

exp(E (hJ = 1|J,v,hrJ)) + exp(E (hj = −J |J,v,hrJ))

=

exp(
∑
ik

Wikvivk) exp(
∑
i

fivi) exp(
∑

ijrJ

Jijvihj)

exp(
∑
ik

Wikvivk) exp(
∑
i

fivi) exp(
∑

ijrJ

Jijvihj)

...

(
exp(

∑
i

JiJvi)− exp(−
∑
i

JiJvi)

)
(

exp(
∑
i

JiJvi) + exp(−
∑
i

JiJvi)

)

=

exp(
∑
i

JiJvi)− exp(−
∑
i

JiJvi)

exp(
∑
i

JiJvi) + exp(−
∑
i

JiJvi)

= tanh(
∑
i

JiJvi)

These calculations show that we, in the learning rules for between-layer connections, J,
can exchange the the unknown, hidden, binary activity, hj , with its fully observable,
continuously valued, expected value, tanh(

∑
i Jijvi). It is analytically equivalent in cases

where the hidden nodes are mutually independent, and the substitution hj → 〈hj〉 can be
used as a naive approximation in systems where the hidden nodes are also interconnected.

68 APPENDIX A.

A.1.3 The Hessian Matrix

When surveying the shape of the likelihood surface, the Hessian matrix can be very help-
ful. It is basically a matrix containing all di�erent second derivatives of a multi-variate
function, so for a general function f(X) of n di�erent variables, it can be written in the
following form

H =



∂2

∂X1∂X1
f(X) . . . ∂2

∂Xi∂X1
f(X) . . . ∂2

∂Xn∂X1
f(X)

∂2

∂X1∂X2
f(X)

. . . ∂2

∂Xn∂X2
f(X)

... ∂2

∂Xi∂Xi
f(X)

...

∂2

∂X1∂Xn−1
f(X)

. . . ∂2

∂Xn∂Xn−1
f(X)

∂2

∂X1∂Xn
f(X) . . . ∂2

∂Xi∂Xn
f(X) . . . ∂2

∂Xn∂Xn
f(X)


Like the normal second derivatives, this measure can tell us something about the cur-
vature of the function being studied in any given point. Transforming it to a diagonal
form, we also get an orthogonal set of vectors (its eigenvectors) informing us of the prin-
ciple directions of the functions' curvature, with corresponding eigenvalues re�ecting the
magnitude of the curvature.

Restricted Boltzmann Machine

When working with a network with RBM architecture and no external �eld, there are only
between-layer connections, meaning the only parameters of the model are the No ∗ Nh
between-layer connections, J. This gives a Hessian matrix containing elements of the
form

Hxy =
∂

∂Jab

∂

∂Jij
L

such that a+ b = x and i+ j = y. Since we already know, from (A.10), that

∂

∂Jij
L = D

[
〈vihj〉data − 〈vihj〉model

]

we can rewrite the equation of the Hessian as,

Hxy =
∂

∂Jab
D[〈vihj〉d − 〈vjhi〉m]

=D
[∂

∂Jab
〈vi tanh(

∑
i

Jijvi)〉d −
∂

∂Jab
〈vi tanh(

∑
i

Jijvi)〉m
]

=D

[
〈vi

∂

∂Jab
tanh(

∑
i

Jijvi)〉d −
∂

∂Jab
〈vj tanh(

∑
i

Jijvi)〉m
]

=
∑
d

[
vi

∂

∂Jab
tanh(

∑
i

Jijvi)

]
...

−D ∂

∂Jab

∑
states

[
vi tanh(

∑
i

Jijvi)
∏
j

2 cosh(
∑
i

Jijvi)

]
Z −1 (A.16)

A.1. DERIVATIONS 69

Where Z =
∑

v

∏
j 2 cosh(

∑
i Jijvi) like earlier, and we have used the functional simi-

larity of h and tanh(
∑

i Jijvi).

Now, working with one part of this expression at a time, we can simplify it step by
step as follows. Starting with the �rst term of (A.16), we get∑

d

[
vi

∂

∂Jab
tanh(

∑
i

Jijvi)

]
=
∑
d

[
viva

(
1− tanh2(

∑
i

Jibvi)
)
δ(b− j)

]
=D

[
〈viva〉d − 〈vivahjhb〉d

]
δ(b− j)

where δ(b − j) = 1 when b = j, and zero otherwise. It should be noted that we use hj

here for notational convenience only, and it is always substituted for tanh(
∑

i Jijvi) in
this section.

For the second part of (A.16) we can write

D
∂

∂Jab

∑
states

[
vi tanh(

∑
i

Jijvi)
∏
j

2 cosh(
∑
i

Jijvi)

]
1

Z

=D
∑

states

(
vi tanh(

∑
i

Jijvi)
∏
j

2 cosh(
∑
i

Jijvi)
∂

∂Jab

1

Z
...

+
1

Z

∂

∂Jab

[
vi tanh(

∑
i

Jijvi)
∏
j

2 cosh(
∑
i

Jijvi)

])

where
∂

∂Jab

1

Z
= −〈vahb〉m ∗Z −1

=⇒
∑

states

vi tanh(
∑
i

Jijvi)
∏
j

2 cosh(
∑
i

Jijvi)
∂

∂Jab

1

Z

=− 〈vahb〉m
∑

states

vi tanh(
∑
i

Jijvi)
∏
j

2 cosh(
∑
i

Jijvi) ∗Z −1

=〈vahb〉m〈vihj〉m

and
∂

∂Jab

[
vi tanh(

∑
i

Jijvi)
∏
j

2 cosh(
∑
i

Jijvi)

]
1

Z

= D

[
〈viva〉m − 〈vivahjhb〉m

]
δ(b− j) + 〈vivahjhb〉m

Putting all of this together in the order of (A.16), we get an expression for each of the
elements of the Hessian matrix.

Hxy = D

[(
〈viva〉d − 〈vivahjhb〉d

)
δ(b− j)− 〈vahb〉m〈vihj〉m...

70 APPENDIX A.

−
(
〈viva〉m − 〈vivahjhb〉m

)
δ(b− j) + 〈vivahjhb〉m

]
=⇒ Hxy = D

[(
〈viva〉d − 〈vivahjhb〉d − 〈viva〉m + 〈vivahjhb〉m

)
δ(b− j)...

+ 〈vahb〉m〈vihj〉m − 〈vivahjhb〉m
]

Written on another form, this means

Hxy = D ∗
{
〈viva〉d − 〈viva〉m − 〈vivahjhb〉d + 〈vahb〉m〈vihj〉m if j = b
〈vahb〉m〈vihj〉m − 〈vivahjhb〉m if j 6= b

These expressions are possible to calculate analytically for any system in which we can
calculate the partition function.

Semi-restricted Boltzmann Machine

When we add connections between the observed nodes into the network, the amount of
parameters in the model increases by No2. This is re�ected in the dimensionality of the
Hessian, as we now have to deal with an No ∗Nh+No2-dimensional square matrix, and
we will see that it takes the form of a symmetric block matrix of the following type

H =

[
∂2

∂W∂W
L ∂2

∂W∂J
L

∂2

∂J∂W
L ∂2

∂J∂J
L

]
(A.17)

Now, the bottom right block of this matrix should remind you of Hessian of the RBM,
with the exception that the form of the likelihood function itself is di�erent. But since
the probability function for the semi-restricted Boltzmann machine (sRBM) is separable
in the weights, we have ∂

∂J
LsRBM = ∂

∂J
LRBM , and we see that the bottom right corner

is, in fact, identical to the RBM Hessian. Since all the second partial derivatives of L are
continuous we can use Schwartz's theorem, saying that the order of taking derivatives is
irrelevant, so it will su�ce to �nd the derive the left half of the Hessian to �ll in the blanks.

Again, starting from the derivations of learning rules of the sRBM, we already know
that ∂

∂Wik
L = D

(
〈vivk〉d − 〈vivk〉m

)
. Now, di�erentiating this expression with respect

to W will yield the top left corner, while di�erentiating with respect to J gives the bot-
tom left quadrant:

∂2

∂Jab∂Wik
L =

∂

∂Jab
D
(
〈vivk〉d − 〈vivk〉m

)
= −D

∑
s

vsi v
s
k

∂

∂Jab
P (s)

= −D
∑
s

vsi v
s
k

[
vahbP (s)− P (s)

∑
s

vahbP (s)
]

= −D〈vivkvahb〉m − 〈vivk〉m〈vahb〉m

where it is implicit that the data correlation between visible units is independent of J,
and that P (s) = exp(E (s)) ∗Z −1, and Z =

∑
s exp(E (s)). Using the same expressions

A.1. DERIVATIONS 71

for probabilities, and the same sort of arguments, we get that

∂2

∂Wab∂Wik
L =

∂

∂Jab
D
(
〈vivk〉d − 〈vivk〉m

)
= −D

∑
s

vsi v
s
k

∂

∂Wab
P (s)

= −D
∑
s

vsi v
s
k

[
vavbP (s)− P (s)

∑
s

vahbP (s)
]

= −D〈vivkvavb〉m − 〈vivk〉m〈vavb〉m

Putting all these expressions into their rightful place in a matrix corresponding to (A.17),
we get

H = D

 〈vivj〉m〈vavb〉m − 〈vivjvavb〉m 〈vihj〉m〈vahb〉m − 〈vihjvahb〉m

〈hivj〉m〈havb〉m−〈hivjhavb〉m

(
〈viva〉d − 〈viva〉m + 〈vivahjhb〉m

)
δ(j − b)

−〈vivahjhb〉m + 〈vihj〉m〈vahb〉m



It is notable that only terms in the lower right quadrant, with elements calculated solely
from the between-layer connections, depend on statistics from the data. In other words,
the curvature of the likelyhodd function is completely described by the model parameters
in a fully observed Boltzmann machine.

72 APPENDIX A.

A.1.4 Correlations Without Connections

This section of the appendix is somewhat beside the scope of the thesis, but the author
found its results to be interesting, and we therefore present some �ndings about connec-
tions between restricted and semi-restricted Boltzmann machines.

Even though restricted Boltzmann Machines do not have direct connections between
the observed nodes, the correlations due to indirect connections through the hidden layer
can be quanti�ed. In the following, an expression for the value of these correlations will
be derived.

The correlation between the I'th and the K'th observed node is de�ned as

〈vIvK〉 =
∑
s

vsIv
s
KP (s)

=
∑
s

vsIv
s
K exp(

∑
ij

vsi h
s
jJij)Z

−1 (A.18)

where we, as always, have that

Z =
∑
s

exp(
∑
ij

vsi h
s
jJij)

When looking at a restricted architecture, the partition function can be rewritten in the
following way

Z =
∑
s

exp
(∑

ij

vsi h
s
jJij

)
=
∑
v

∑
h

exp
(∑

ij

vsi h
s
jJij

)
=
∑
v

∑
h1=±1

∑
h2=±1

. . .
∑

hNh=±1

exp
(∑

ij

vsi h
s
jJij

)
=
∑
v

∑
h1=±1

∑
h2=±1

. . .
∑

hNh=±1

∏
j

exp
(
hs
j

∑
i

vsi Jij
)

Since each term in this product only depends on one hidden node value, we can separate
the expression, placing each factor into its respective sum.

Z =
∑
v

∑
h1=±1

exp
(
hs
1

∑
i

vsi Ji1
)
. . .

∑
hNh=±1

exp
(
hs
Nh

∑
i

vsi JiNh

)
=
∑
v

[
exp

(∑
i

vsi Ji1
)

+ exp
(
−
∑
i

vsi Ji1
)]
. . .
[

exp
(∑

i

vsi JiNh

)
+ exp

(
−
∑
i

vsi JiNh

)]

=
∑
v

∏
j

2 cosh
(∑

i

vsi Jij
)

(A.19)

A.1. DERIVATIONS 73

This result is general for any RBM, and is generally the simplest form of the partition
function. For very small networks, though, this can be rewritten to a form which we can
use to do further calculations. For example, in the special case with two observed and one
hidden node, there is only four possible con�gurations of the observed node activity, so
we can write out the expression explicitly, leading to the following form for the partition
function

Z = 2 cosh
(
J11 + J21

)
+ 2 cosh

(
− J11 + J21

)
+ 2 cosh

(
J11 − J21

)
+ 2 cosh

(
− J11 − J21

)
= 4
[

cosh
(
J11 + J21

)
+ cosh

(
− J11 + J21

)]

Here we have used the symmetric property cosine hyperbolic function, cosh(A) = cosh(−A).
Now, using cosh(A±B) = cosh(A) cosh(B)± sinh(A) sinh(B), we can rewrite the expres-
sion for the partition further.

Z =4
[

cosh(J11) cosh(J21) + sinh(J11) sinh(J21) + cosh(−J11) cosh(J21) + sinh(−J11) sinh(J21)
]

=4
[

cosh(J11) cosh(J21) + sinh(J11) sinh(J21) + cosh(J11) cosh(J21)− sinh(J11) sinh(J21)
]

=8
[

cosh(J11) cosh(J21)
]

(A.20)

where we again used the symmetry of cosine hyperbolic together with the corresponding
anti-symmetric property of the sine hyperbolic function, sinh(A) = − sinh(−A).

Going back to the original problem of �nding an expression for the correlation between
the observed nodes, we start with rearranging (A.18) for correlations between the I'th
and K'th observed nodes, using similar arguments as in the rewriting of Z

Z 〈vIvK〉 =
∑
s

vsIv
s
K exp(

∑
ij

vsi h
s
jJij)

=
∑
v

vsIv
s
K

∑
h1=±1

∑
h2=±1

. . .
∑

hNh=±1

∏
j

exp
(
hs
j

∑
i

vsi Jij
)

=
∑
v

vsIv
s
K

[∑
h1=±1

exp
(
hs
1

∑
i

vsi Ji1
)

∑
h2=±1

exp
(
hs
2

∑
i

vsi Ji2
)
. . .

∑
hNh=±1

exp
(
hs
Nh

∑
i

vsi JiNh

)]
=
∑
v

vsIv
s
K

∏
j

2 cosh
(∑

i

vsi Jij
)

For the simplest case of two observed and one hidden node, using the same arrangement
of observed states as in the derivation of the partition, this can be written out as

Z 〈v1v2〉 = 2 cosh
(
J11 + J21

)
− 2 cosh

(
− J11 + J21

)

74 APPENDIX A.

− 2 cosh
(
J11 − J21

)
+ 2 cosh

(
− J11 − J21

)
= 4
[

cosh
(
J11 + J21

)
− cosh

(
− J11 + J21

)]
= 4
[

cosh(J11) cosh(J21) + sinh(J11) sinh(J21)

− cosh(−J11) cosh(J21)− sinh(−J11) sinh(J21)
]

= 4
[

cosh(J11) cosh(J21) + sinh(J11) sinh(J21)

− cosh(J11) cosh(J21) + sinh(J11) sinh(J21)
]

= 8
[

sinh(J11) sinh(J21)
]

Combining this expression with (A.20), we get an expression for the correlation between
v1 and v2

〈v1v2〉 =
8
[

sinh(J11) sinh(J21)
]

8
[

cosh(J11) cosh(J21)
]

=⇒ 〈v1v2〉 = tanh(J11) tanh(J21) (A.21)

Additionally, it can be shown that for any RBM with a single hidden node, there
is a general expression for the correlation between the I'th and K'th observed node,
〈vIvK〉 = tanh(JI1) tanh(JK1). Unfortunately this result does not seem to easily gen-
eralize to networks with more hiddennodes, due to the symmetric, and antisymmetric,
properties of sinh(. . .) and cosh(. . .) are harder to take advantage of for more than two
arguments. This is not to say it is impossible to �nd analytical expressions (which it is
not, as we have found formulas for several examples), but �nding a general formula for
the observed correlation given the number of hidden nodes is non-trivial.

Correlation with Connections

It seems plausible, for the simple restricted architecture, that there exists some semi-
restricted architecture that generates data with equivalent correlations between the ob-
served nodes. This idea can be argumented for by thinking of an RBM as atype of sRBM
in which the observed-observed connections, W, just happen to be zero. It is not be-
yond our imagination to picture a change in these W's being followed by a corresponding
change in the J's which tweaks the observed correlations back to what they originally
were with no observed-observed connections.

In the following we will derive an expression for the observed correlations in a two ob-
served one hidden (2x1) semi-restricted Boltzmann machine (sRBM). We will then com-
pare it with (A.21) and �nd an analytical solution showing that any observed-observed
connection, W , can generate equivalent correlations given a suitable set of between layer
connections, J .

A.1. DERIVATIONS 75

Now, we start by �nding an expression for the observed node correlations in a sRBM.

〈vIvK〉 =
∑
s

vsIv
s
KP (s)

=
∑
s

vsIv
s
K exp(

∑
ik

vsi v
s
kWik +

∑
ij

vsi h
s
jJij)Z

−1 (A.22)

where the partition function now is

Z =
∑
s

exp(
∑
ik

vsi v
s
kWik +

∑
ij

vsi h
s
jJij)

Using much the same arguments as in the derivation of the correlations in the RBM, we
get

〈vIvK〉 =

∑
s

vsIv
s
K exp(

∑
ik

vsi v
s
kWik +

∑
ij

vsi h
s
jJij)∑

s

exp(
∑
ik

vsi v
s
kWik +

∑
ij

vsi h
s
jJij)

=

∑
v

vsIv
s
K exp(

∑
ik

vsi v
s
kWik)

∑
h

exp(
∑
ij

vsi h
s
jJij)∑

v

exp(
∑
ik

vsi v
s
kWik)

∑
h

exp(
∑
ij

vsi h
s
jJij)

=

∑
v

vsIv
s
K exp(

∑
ik

vsi v
s
kWik)

∏
j

2 cosh(
∑
i

vsi Jij)∑
v

exp(
∑
ik

vsi v
s
kWik)

∏
j

2 cosh(
∑
i

vsi Jij)

Again, since there are only four possible observed states, and the vi can only take the
values ±1, we can write out the full expression explicitly.

〈v1v2〉 =
2 ∗ exp(W12) cosh(J11 + J21)− 2 ∗ exp(−W12) cosh(−J11 + J21)

2 ∗ exp(W12) cosh(J11 + J21) + 2 ∗ exp(−W12) cosh(−J11 + J21)

where we have, once again, used the symmetry of the hyperbolic cosine. Using the
relation cosh(A±B) = cosh(A) cosh(B)± sinh(A) sinh(B) and the antisymmetry of sine
hyperbolic, we can rewrite this equation quite drastically, to

〈v1v2〉 =
4 sinh(W12) cosh(J11) cosh(J12) + 4 cosh(W12) sinh(J11) sinh(J12)

4 cosh(W12) cosh(J11) cosh(J12) + 4 sinh(J12) sinh(J11) sinh(J12)

=
cosh(J11) cosh(J12) cosh(W12)

[
tanh(W12) + tanh(J11) tanh(J12)

]
cosh(J11) cosh(J12) cosh(W12)

[
1 + tanh(W12) tanh(J11) tanh(J12)

]

76 APPENDIX A.

(a) Paths of parameters during learning, and

the analytical surface of predicted sets of param-

eters recreating the data statistics.

(b) Likelihood evolution for the learn-

ing.

Figure A.1: Here we try to visualize the continuum of solutions in a semi restricted Boltzmann
machine predicted by equation A.23. The plane shows the possible solutions, the stars show
the paths of several learning simulations based on data generated from a restricted Boltzmann
machine.

=
tanh(W12) + tanh(J11) tanh(J12)

1 + tanh(W12) tanh(J11) tanh(J12)

Equating this with (A.18) could give us an expression for the W 's and J 's needed to
regenerate the correlations obtained from an RBM with J∗11 and J∗21.

tanh(J∗11) tanh(J∗21) =
tanh(W12) + tanh(J11) tanh(J12)

1 + tanh(W12) tanh(J11) tanh(J12)

tanh(J∗11) tanh(J∗21)
(
1 + tanh(W12) tanh(J11) tanh(J12)

)
= tanh(W12) + tanh(J11) tanh(J12)

tanh(W12) =
tanh(J11) tanh(J12)− tanh(J∗11) tanh(J∗21)

tanh(J11) tanh(J12) tanh(J∗11) tanh(J∗21)− 1
(A.23)

This equation has solutions as long as the absolute value of the right hand side is smaller
than one. In other words, we check which values for J 's give a solution, given a pair of
J∗. ∣∣∣∣∣ tanh(J11) tanh(J12)− tanh(J∗11) tanh(J∗21)

tanh(J11) tanh(J12) tanh(J∗11) tanh(J∗21)− 1

∣∣∣∣∣ ≤ 1

|t(J11)t(J12)− t(J∗11)t(J∗21)|
|t(J11)t(J12)t(J∗11)t(J∗21)− 1| ≤ 1

|t(J11)t(J12)− t(J∗11)t(J∗21)| ≤ |t(J11)t(J12)t(J∗11)t(J∗21)− 1|

(t(J11)t(J12)− t(J∗11)t(J∗21))2 ≤ (t(J11)t(J12)t(J∗11)t(J∗21)− 1)2

(t(J11)t(J12))2 + (t(J∗11)t(J∗21))2 ≤ (t(J11)t(J12)t(J∗11)t(J∗21))2 + 1

(t(J∗11)t(J∗21))2 − 1 ≤ (t(J11)t(J12)t(J∗11)t(J∗21))2 − (t(J11)t(J12))2

A.1. DERIVATIONS 77

(t(J∗11)t(J∗21))2 − 1 ≤ (t(J11)t(J12))2
[
(t(J∗11)t(J∗21))2 − 1

]
1 ≥ tanh(J11)2 tanh(J12)2

where we have used the name t in place of tanh to get past spacial limitations. The result
tells us that (A.23) is valid for any set of J 's, since since tanh(J)2 ≤ 1 for any J , and that
one can predict the value of W that gives equivalent correlations as an RBM with J∗'s,
given any pair of J . Additionally, this leads us to the conclusion that the 2x1 case of the
semi restricted Boltzmann machine is not a strictly convex problem, since the statistics
of any dataset can be generated from from a RBM with the correct set of J∗'s, can be
recreated by an sRBM with an arbitrary set of J∗.

This result is not very surprising, however, as the 2-by-1 RBM is not convex either,
and adding another degree of freedom does not generally constrain systems more. Also,
generalizing this result to larger systems is not trivial, but we did �nd closed form ex-
pressions of the observed correlations for 3-by-1, 3-by-2 and 4-by-1 systems, which gave
similar, but more complex, formulas only consisting of hyperbolic tangents of single pa-
rameters. Such expressions may lead to closed form expressions connecting RBM and
sRBM parameters, and could provide strong insight into the convexity of the sRBM.

Appendix B

Sample Code

Here we include example code containing some of the functions written and used in the
project. It is supposed to be a more or less minimal functioning code, containing data
generation from a restricted Boltzmann machine network, learning of parameters from
di�erent initial conditions, and visualization in form of plots.

Template Code for Boltzmann Learning

% Number of nodes in the network
No = 8; Nh = 2; N = No+ Nh;

% Generative parameters of the model
W = zeros(No); % Observed-Observed connections
W = (W+W'-2*diag(diag(W)))/2; % Making W symetric with 0 diagonals
J = randn(No,Nh)/sqrt(No*Nh); % Observed-Hidden connections
K = zeros(Nh); % Hidden-Hidden connections
K = (K+K'-2*diag(diag(K)))/2; % Making K symmetric with 0 diagonals
f = zeros(No,1); % Observed node external fields

D = 100000; % Length of data
L = 10000; % Maximum learning steps

% Genrating matrix of all possible observed (Os) and hidden (Hs) states
[Os,Hs] = StateGeneration(No,Nh);

% Generating data set from the specified network
data = MetropolisDataGeneration(No,Nh,W,J,K,f,D,1);

% Inferring the maximum likelihood parameters from the data
% From correct
Jinf = BMinference('RBM',data,J,W,K,L);
% and random initial conditions
JinfRan = BMinference('RBM',data,rand(No,Nh)/sqrt(No*Nh),W,K,L);

% Visualizing the learning evolution
SubplotEvolutionRBM(J,data,Jinf,JinfRan);

78

79

State Generation

A function for generating truth tables; a matrix containing all possible states of activation
in the network. It returns separate matrices for for observed (Os), hidden (Hs) and all
states, given that the number of nodes is not to big to kill the memory.

function [ObsS,HidS,AllS] = StateGeneration(No,Nh)

N = No + Nh;

if N<20
AllS = 2*bitget(repmat((0:2^N-1)',1,N),repmat(-(-N:-1),2^N,1)) - 1;

end

ObsS = 2*bitget(repmat((0:2^No-1)',1,No),repmat(-(-No:-1),2^No,1)) - 1;
HidS = 2*bitget(repmat((0:2^Nh-1)',1,Nh),repmat(-(-Nh:-1),2^Nh,1)) - 1;

Metropolis Data Generation

The function for generating data uses a Metropolis algorithm, with a burn-in period to
control for bias in the initial conditions. If not explicitly stated, most input arguments
have de�ned standard values, but we advice de�ning everything to control the simulation.

function [vdata hdata data Sfinal] = ...
MetropolisDataGeneration(No,Nh,W,J,K,f,steps,flips,Sinit)

N = No + Nh;

% Controlling for options in input variables
Train = 1;
if nargin==6

steps = 20000*No*Nh;
flips = ceil(N/10);
Sinit = 2*round(rand(N,1))-1;

elseif nargin==7
flips = ceil(N/10);
Sinit = 2*round(rand(N,1))-1;

elseif nargin == 8
Sinit = 2*round(rand(N,1))-1;

elseif nargin == 9
Train =0;

elseif nargin == 3
J = W;
W = zeros(No);
K = zeros(Nh);
f = zeros(No,1);
steps = 50000*No*Nh;
flips = ceil(N/10);
Sinit = 2*round(rand(N,1))-1;

end

if steps<100*round(sqrt(Nh))
train = steps;

else
train = 100*round(sqrt(Nh));

end

% Data generation
data = zeros(N,steps);
S = Sinit;
flip = ceil(N*rand(flips,steps));
accept = log(rand(1,steps));
oldE = -(0.5*S(1:No)'*W*S(1:No) + S(1:No)'*J*S(No+1:N)...

+ 0.5*S(No+1:N)'*K*S(No+1:N)+ S(1:No)'*f);

% Generating data to get to equilibrium (burn-in period)
if Train

80 APPENDIX B. SAMPLE CODE

for i=1:train

% flip one spin
for j=1:flips

S(flip(j,i)) = S(flip(j,i))*(-1);
end

data(:,i) = S;

% calculate and compare energy to accept/reject flip
newE = -(0.5*(S(1:No)'*W*S(1:No)+AddSelfW) + ...

S(1:No)'*J*S(No+1:N) + 0.5*S(No+1:N)'*K*S(No+1:N)...
+ S(1:No)'*f);

changeE = oldE - newE;

if changeE<accept(i)
for j=1:flips

% rejecting
S(flip(j,i)) = S(flip(j,i))*(-1);

end
data(:,i) = S;

else
% accepting
oldE = newE;

end

end
end
% Assuming equilibrium, generating data
for i=1:steps

% flip one
for j=1:flips

S(flip(j,i)) = S(flip(j,i))*(-1);
end

data(:,i) = S;

% calculate and compare energy to accept/reject flip
newE = -(0.5*(S(1:No)'*W*S(1:No)+AddSelfW) ...

+ S(1:No)'*J*S(No+1:N) + S(No+1:N)'*K*S(No+1:N) ...
+ S(1:No)'*f);

changeE = oldE - newE;

if changeE<accept(i)
for j=1:flips

% rejecting
S(flip(j,i)) = S(flip(j,i))*(-1);

end
data(:,i) = S;

else
% accepting
oldE = newE;

end

end
Sfinal = S;
hdata = data(No+1:N,:);
vdata = data(1:No,:);

Boltzmann Learning Algorithm

The part of our code speci�c for the restricted Boltzmann machine learning is presented
here, but the functionality to do learning for di�erent architectures or clamped learning
has been removed here to save space.

81

unction [Jinf Winf Kinf] = BMinference(type,data,Jinit,Winit,Kinit,maxSteps)

[No Nh] = size(Jinit);
etaJ = 0.5;
etaW = 0.5;
etaK = 0.5;
L = size(data,2);

% Generating weight matrices
Jinf = zeros(No,Nh,maxSteps); % Weight guess
Jinf(:,:,1) = Jinit;

Winf = zeros(No,No,maxSteps);
Winf(:,:,1) = Winit;

Kinf = zeros(Nh,Nh,maxSteps);
Kinf(:,:,1) = Kinit;

[ObsStates,HidStates] = StateGeneration(No,Nh);

i = 0;
j = 0;
lim = 10^(-8);

% Updating loop for performing gradient ascent on the likelihood
while i<maxSteps && j<2

i = i+1;

% Calculate correlations from data
meanHdata = tanh(Jinf(:,:,i)'*data);
corrHdata = data*meanHdata'/L;

% Calculate model correlations
meanHmodel = tanh(ObsStates*Jinf(:,:,i));
eModel = (ObsStates*Jinf(:,:,i))*HidStates';
Z = sum(sum(exp(eModel)));
pModel = sum(exp(eModel),2)/Z;
corrOHmodel = meanHmodel'*(repmat(pModel,1,No).*ObsStates);

% Update weights
Jinf(:,:,i+1) = Jinf(:,:,i) + etaJ*(corrHdata-corrOHmodel');

% Checking tresholds for stopping learning
if mod(i,50)==0

testJ = sum(sum((Jinf(:,:,i)-Jinf(:,:,i-13)).^2));
testJ2 = sum(sum((Jinf(:,:,i)-Jinf(:,:,i-13)).^2));

if testJ<lim && testJ>0 && testJ2>0
j = j+1;
etaJ = etaJ/2;

elseif testJ<0 || testJ2<0
etaJ = etaJ/2;

end
end

end

Visualizing the Learning

One of the functions used for visualizing the parameter behavior during learning. Sending
in the real RBM parameters, the data matrix and any number of matrices containing the
parameters during learning, will result in a matrix of subplots showing certain variables
of interest.

function SubplotEvolutionRBM(J,data,varargin)

r = 0.97;
b = 0.97;

82 APPENDIX B. SAMPLE CODE

g = 0.97;

[No Nh] = size(J);
[Os Hs] = StateGeneration(No,Nh);

B = max(size(varargin)) ;
col = copper(B+1);
Jr = vararginB(:,:,end);

figure;
hold on;
subplot(2,2,3);hold on;scatter(J(:),Jr(:),25,col(1,:),'o','filled');

for i = 1:B
Jif = varargini;
s(i) = max(size(Jif));

end

K = max(s);

% Making plots for every
for i = 1:B

Jinf = varargini;
A = max(size(Jinf));

RMS = zeros(1,A);
Jperm = zeros(No,Nh,A);
Likelihood = zeros(1,A);

[~,Jperm] = PermutedRMS(J,Jinf);

for j = 1:A
RMS(j) = sqrt(sum(sum((Jperm(:,:,j)-J).^2))/(No*Nh));
Likelihood(j) = LikelihoodCalculation(No,Nh,W,Jperm(:,:,j),Kw,data,Os,Hs);

end
if A<K

for k=A:K
RMS(k) = RMS(A);
Jperm(:,:,k) = squeeze(Jperm(:,:,A));
Likelihood(k) = Likelihood(A);

end
end

J1 = Jperm(:,:,1);
Jf = Jperm(:,:,end);

x = linspace(1,length(RMS),length(RMS));

size(squeeze(Jinf(2,1,:)))
size(squeeze(Jinf(1,1,:)))
subplot(2,2,1);hold on;plot(x,Likelihood,'Color',col(i+1,:),'Linewidth',2);
subplot(2,2,2);hold on;plot(x,RMS,'Color',col(i+1,:),'Linewidth',2);
subplot(2,2,3);hold on;scatter(J(:),Jf(:),25,col(i+1,:),'*'); hold on;
subplot(2,2,4);hold on;plot(squeeze(Jperm(1,1,:)),squeeze(Jperm(2,1,:)),':*','MarkerSize',3,'Color',col(i+1,:))

end

% Finalizing plots with labels, titles and background color
subplot(2,2,3);plot([-1 1],[-1 1],'k:');
subplot(2,2,1);xlabel('Learning iterations');ylabel('log Likelihood');
title('Likelihood evolution');set(gca,'Color',[r b g]);
subplot(2,2,2);xlabel('Learning iterations');ylabel('Root Mean Square Error');
title('RMS evolution');set(gca,'Color',[r b g]);
subplot(2,2,3);xlabel('Inferred weights');ylabel('Real weights');
title('Scatter of inferred Parameters');set(gca,'Color',[r b g]);
subplot(2,2,4);hold on;scatter(J(1,1),J(2,1),40,'g','*');
xlabel('No1 - Nh1');ylabel('No2 - Nh1');title('Path of Parameters');
set(gca,'Color',[r b g]);
subplot(2,2,1);xlabel('Learning iterations');ylabel('log Likelihood');title('Likelihood evolution');
suptitle('Evolution of measures/parameters during inference');

83

These just show a small sample of the codes written. There are several more functions
and variations written to investigate the properties visited in the main text. And in case
full functional code is of interest, please contact the author at bjorneju@gmail.com, for
matlab �les.

Appendix C

Additional Plots and �gures

Figure C.1: KL-divergence be-
tween the distribution used to draw
the true weights, the distribution
of weights inferred by the RBM al-
gorithm (O(100) runs). The left
(blue) �gure shows the relation for
the same network of 8 observed and
3 hidden nodes presented in �gure
3.1, while the right (red) shows the
same for a 5x1 network. In both
cases we use the standard g = 1
for scaling weights.

Figure C.2: On the left: the
root mean square error of inference
as a function of the amount of noise
in the initial conditions. On the
right: root mean square error as a
function of the standard deviation
of random initial conditions. The
standard deviation of the random
variable used to add noise is var-
ied along the x-axis, and the values
marking the axis are the di�erent
standard deviations of the noisy σ
used.

84

85

Figure C.3: Expanding on the results from �gure 3.2 we show the sensitivity to initial
conditions for three di�erent sized networks. In every case the g = 1 and the lines show averages
of 5 simulations.

86 APPENDIX C. ADDITIONAL PLOTS AND FIGURES

(a) No = 6 and Nh = 3
(b) No = 8 and Nh = 1

Figure C.4: Two supplementary �gures showing the e�ect on the average value of the like-
lihood surface as a function of the distance from the inferred point in parameter space. These
�gures agree well with the main observations inf �gure 3.4. The peak sizes are similar, smal
g-values are virtually indistinguishable and large g-values have near-max likelihood values far
from the inferred solution.

Figure C.5: Plotting measures to �nd the models goodness-of-�t to the data observed. Com-
paring two versions of Akaike, and the Bayesian, information criterion with the a normalized
log likelihood against the number of hidden nodes in the reconstruction. There were two, four
and eight nodes in the generative models for the top-left, bottom-left and bottom-right �gures
respectively.

87

Figure C.6: Surveying the Likelihood surface of an RBM with 8 observed and 3 hidden nodes
in three di�erent areas of the parameter space. In all �gures we sweep over a range of values for
the weights between observed number 1 and hidden node 3, and observed number 5 and hidden
node 3. In the left �gure, the remaining parameters are held at their correct values - the values
which they had during data generation. In the central �gure, the remaining weights are held at
the inferred values. In the right �gures, all parameters were given a random value drawn from
the same distribution as the real parameters. The black stars mark the true and inferred values,
of J53 and J13, in the left and center plot respectively. The value in the bottom left corner of
each plot denotes the maximum likelihood value encountered during each local sweep.

88 APPENDIX C. ADDITIONAL PLOTS AND FIGURES

Figure C.7: Showing histograms of the Hessian eigenvalues from ten di�erent realizations of
8-by-3 restricted Boltzmann machines. It shows that the within trial variation in the eigenvalue
distributions, for all points (true, random and inferred) is small, and very similar to the overall
distributions depicted in �gure 3.8.
Below we show a similar plot from a 5-by-1 network, in which the distribution of eigenvalues still
seems stable. In the inferred all eigenvalues are positive, but that is likely due to the fact that
the parameters are inferred with a smaller error in simpler systems, and is therefor closer to the
ground truth parameters.

89

Figure C.8: Following the procedure explained in the caption of 3.9, this �gure shows some
descriptive statistics of the Hessian eigenvalues as a function of the distance from the inferred
peak parameters. Here we have used 10-by-2 and 5-by-2 RBM networks in the left and right
�gures respectively.

90 APPENDIX C. ADDITIONAL PLOTS AND FIGURES

Figure C.9: Histograms of all the eigenvalues used to generate the plots, both in the main text
(�gure 3.9) and here in the appendix (�gure C.8). Each column contains the eigenvalues from
one network, while the rows contain the values for one distance, each. The bottom left histogram
looks wrong, but it is due to it having more than 50% of its eigenvalues valued between −1
and 1, making the logarithmic transformation unambiguous. The unambiguity is also visible in
the bottom center �gure, but is less apparent. This observation makes it clear that there are
near zero eigenvalues for large distances away from the peak. However, since we are no longer
(necessarily) in a stationary point, it is hard to draw more precise conclusions from this.

91

Figure C.10: Following the procedure explained in the caption of 3.12, this �gure shows the
local convexity of a 6-by-1 RBM, with typical weight distributions and 50k samples in the data
set.

92 APPENDIX C. ADDITIONAL PLOTS AND FIGURES

93

