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Abstract 

Offshore wind turbines operate in ocean environments with irregular waves and turbulent 

winds and experience technical faults during their service life. Faults and failures in their 

actuators, sensors, and system components could lead to system interruptions. These 

faults change the system characteristics, the efficiency of power production, and the 

operational safety. Therefore, fault detection, diagnosis and accommodation techniques 

are required to ensure the reliability and lower the repair costs of floating wind turbines. 

Among wind turbine components, the blade pitch system is one of the most critical 

components due to its effect on the operational safety and the dynamics of wind turbines. 

In addition, this subsystem has the highest failure rate. 

This thesis presents model-based fault detection, fault diagnosis, and fault-tolerant control 

schemes for blade pitch systems in a spar-type floating wind turbine. Early-stage fault 

detection and diagnosis should be conducted to prevent escalation of faults and failures. 

To detect faults of blade pitch systems, a discrete-time Kalman filter is designed to 

estimate the states of the blade pitch angle of the system. Residuals are generated by a 

Kalman filter and a threshold based on H∞ optimization, and a linear matrix inequality 

(LMI) is used for residual evaluation. The fault diagnosis algorithm is based on inference 

methods under specific fault conditions. Another fault diagnosis scheme uses an artificial 

neural network and is capable of determining the fault type, location, magnitude and time. 

For fault detection and diagnosis, the blade pitch angle and valve spool position are 

measured. Fault diagnosis algorithms can be used for both condition monitoring and 

active fault-tolerant control purposes. The fault-tolerant controller based on a 

reconfiguration block with a virtual sensor and a shutdown mode controls the floating 

wind turbine to avoid unexpected external loads. 

Numerical simulations are based on detailed numerical models for the blade pitch 

actuators coupled to the global analysis model and models of various faults. The proposed 

methods are demonstrated in case studies simulated using Simo-Riflex, which is an aero-

hydro-servo-elastic simulation tool with stochastic wind and wave conditions that 

considers different types of faults, such as biases and fixed outputs in pitch sensors, 

excessive friction and wrong voltage, or slit-lock or short circuits of valves in pitch 

actuators. These faults contribute to imbalance rotation in the rotor, which results in 

different effects on the turbine structure and the platform motion. The proposed method 

for combining the global and hydraulic actuator models is demonstrated in case studies 

under stochastic wind and wave conditions and different types of faults in pitch sensors 

and actuators. The simulation results show that the proposed methods can effectively 

detect and diagnose faults at an early stage with reasonable accuracy. Additionally, the 

effectiveness of the fault-tolerant control systems for different load cases for single and 

multiple fault conditions is verified by numerical simulations. 
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Preface 
 

This thesis is submitted to the Norwegian University of Science and Technology (NTNU) 

for partial fulfilment of the requirements for the degree of doctor of philosophy.  

This doctoral work has been performed at the Department of Marine Technology and the 

Centre for Autonomous Marine Operations and Systems (AMOS), NTNU, Trondheim, 

supervised by Professor Torgeir Moan (Main supervisor) and Professor Zhen Gao (Co-

supervisor). This project was funded by the Research Council of Norway (RCN) through 

the “MIT-NTNU-Statoil Energy project”. 

The thesis addresses model-based fault detection, diagnosis, and fault tolerant control of 

wind turbines based on the simplified and detailed hydraulic blade pitch actuator of 

floating wind turbines. 

The thesis consists of a summary report and four research papers, written during the 

period August 2014 to September 2019. Three research papers have been published in 

and the other one paper has been submitted to international peer-reviewed scientific 

journals. 
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1. Introduction 

 

 

 

 

 

1.1. Trend of the offshore wind industry 

The wind energy industry has experienced rapid growth because of environmental issues 

and the demand for sustainable solutions. Wind turbines placed offshore are attractive 

because of the higher wind speeds and more consistent wind patterns compared to those 

on land. Moreover, offshore wind turbines cause less environmental damage and 

annoyances to people due to noise and visual effects than turbines on land. Offshore wind 

technology has experienced rapid development in recent years, with an annual cumulative 

global installed capacity of 23 GW at the end of 2018 [1]. European countries are leading 

the offshore wind energy market with a total installed offshore wind capacity of 18.5 GW 

[3], as shown in Figure 1.1. This wind capacity corresponds to 4,543 grid-connected wind 

turbines across 11 countries in Europe. Four hundred-nine new offshore wind turbines in 

2018 were installed and grid-connected in Europe with 2.65 GW of new capacity lower 

than that in 2017 by 15.8% which was a record year, but the cumulative total capacity is 

nevertheless constantly increasing. Among cumulative installations, the UK has the 

largest amount of offshore wind capacity with 44% of all installations in Europe. 

Germany is second with 34%, followed by Denmark (7%), Belgium (6.4%) and the 

Netherlands (6%). The UK and Germany have 1.31 GW and 0.97 GW, respectively. 

 

Figure 1.1: Annual offshore wind installations by country and cumulative capacity 

(MW) 2008 - 2018 [3]. 
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Currently, offshore wind farms are moving further into deeper water off the shore to better 

capture wind energy resources. The average size of the offshore wind turbines in 2018 

was 6.8 MW [3], which is 15% larger than in 2017, as shown in Figure 1.2. Since 2014, 

the average rated capacity of newly installed wind turbines has grown at an annual rate 

of 16%. In terms of the distance from the shore, Hornsea One in the UK and EnBW Hohe 

See in Germany are located farthest from the shore at 103 km away. Deutsche Bucht, also 

in Germany, follows at 93 km from the shore. 

 

 

Figure 1.2: Yearly average of newly installed offshore wind turbine rated capacity 

(MW) [3]. 

Figure 1.3 describes the average water depth and the distance to shore for online, under 

construction and consented offshore wind farms, and the size of the bubble indicates the 

overall capacity of the site [2, 3]. In deeper waters (water depth greater than 50 m), 

floating wind turbines are more cost-effective and economical in terms of power 

production than bottom-fixed wind turbines [4]. Hywind Demo [5], installed in Karmøy 

in Norway, has shown to function well in all wind and wave conditions in the North Sea 

after 8 years of testing a full-scale prototype, which began in 2009. Hywind Scotland pilot 

park [6], the first floating offshore wind farm in the world, was installed in a water depth 

ranging from 90 to 120 m at a distance of 25 km  from the shore, where work was 

conducted in 2017. In 2018, the 2MW Kincardine pilot [7] with a 77 m average water 

depth, was constructed for the test of the Kincardine project in Scotland, which has a 50 

MW wind farm capacity with 5 turbines. France saw the grid connection of two floating 

offshore wind turbines: the Floatgen project [8] (2 MW) off the coast of Brittany, and the 

Eolink 1/10 project [9], which connected a prototype turbine of approximately 200 kW 

in Brittany. Therefore, it is clear that the average water depth and distance to the shore 

will increase as floating wind farms are developed in European countries. 
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Figure 1.3: Average water depth and distance to the shore for offshore wind 

farms under construction during (a) 2017 and (b) 2018 [2, 3]. 

 

1.2. Floating wind turbines 

1.2.1. Types and components of wind turbines 

Wind turbines are designed to convert energy from the wind into mechanical energy. 

Wind turbines are composed of a rotor that rotates due to propulsion by lift or drag forces 

from the wind force. Depending on the rotor axis, the wind turbines are classified into 

vertical-axis wind turbines (VAWT) and horizontal-axis wind turbines (HAWT). Figure 

1.4 shows the two different types schematically. 

 

Figure 1.4: (a) Vertical- and (b) Horizontal-axis wind turbines [10, 11]. 
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The VAWT has a vertical shaft with a generator located at ground level. Vanes are 

mounted on the vertical shaft, which extract the wind energy. The main advantage of 

VAWTs is their ability to capture the wind energy from any wind direction. The most 

desired attributes include a silent operation, enabling urban installations and making them 

less visually intrusive. However, most VAWTs have difficulty being mounted high on a 

tower to capture higher speeds or less turbulent winds found at greater elevations above 

ground. Furthermore, they must utilize lower speed winds found near ground level with 

a consequent reduction in power output [12] since the rotor extracts less wind energy. 

The HAWT has a horizontal shaft and rotor positioned on the top of the tower, which 

creates a more efficient system as more wind energy is produced. The HAWT has become 

the standard configuration for the modern large wind turbine because it has a higher 

efficiency than the VAWT, as shown in Figure 1.5. Currently, most commercial wind 

turbines connected to the grid have horizontal-axis two-bladed or three-bladed rotors. 

Therefore, only HAWTs are treated in this thesis. 

 

Figure 1.5: Power coefficients of wind rotors of different designs [12, 13].  

The HAWT typically has a rotor with 3 blades that capture energy from the wind. This 

rotor is mounted at the end of a shaft that is connected to a generator through a gearbox 

in a nacelle. When the shaft rotates the generator, the wind turbine produces electricity. 
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Figure 1.6 illustrates the components involved in a three bladed HAWT [14]. Here are 

brief descriptions of the wind turbine components: 

• Rotor: Together with the blades and hub. The hub connects to the low-speed shaft. 

• Blades: Extracts wind energy and converts it into rotational energy to the low-speed 

shaft. 

• Pitch System: Controls the rotor speed, blade pitch angle, and generator torque. This 

system is used to maximize the efficiency in low winds and reduce the aerodynamic loads 

in high winds to protect the wind turbine from structural damage. 

• Brake: To slow down and stop the rotor at the cut-out wind speed or in emergency 

conditions. 

• Low-speed shaft: Connects the rotor to the gearbox. 

• Gearbox: Connects and transfers the rotational energy from the low-speed shaft into 

high-speed shaft. 

• High-speed shaft: Driven by the gearbox. Drives the generator. 

• Generator: Converts the rotational energy from the high speed shaft into electricity. 

• Controller: Controls the pitch angle to generate the maximum power output and yaw 

system to position the wind turbine into the wind direction and develop the generator 

torque to the wind turbine in the operational wind speed region. 

• Anemometer: Measures the wind speed and sends the data. 

• Wind Vane: Measures the wind direction to control the yaw system. 

• Nacelle: Located on the top of the tower and contains the drive-train assembly, shafts, 

gearbox, generator, converter and brake. 

• Yaw system: Includes a yaw drive and motor. This system controls the nacelle and the 

rotor position perpendicular to the wind direction. 

• Tower: Supports the nacelle and the rotor at an appropriate height. A taller tower enables 

a wind turbine to capture more wind energy since the wind speed increases depending on 

the height. 

The tower is supported by bottom-fixed or floating structures, depending on the water 

depth. The focus in this thesis is on the pitch control of the blades in HAWTs on floating 

support structures. The pitch control system and procedures are described in detail in 

Chapter 2. 
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Figure 1.6: Main components of a typical modern high-power wind turbine [14]. 

 

1.2.2. Floater concepts 

Several offshore wind turbines were installed and grid-connected in shallow water on 

bottom-fixed substructures such as a monopile, tripot, and jacket [4]. To access better and 

larger wind resources, wind turbine support platforms for intermediate water depth (45 - 

150 m) and deep water (> 150 m) are also being considered. At water depths beyond 50 

- 70m, gravity-based and monopile foundations are not economically feasible [15]. 

Floating structures have many merits including greater flexibility in terms of construction 

procedures and a resistance capability against hydrodynamic loads. The floating 

structures provide the required buoyancy to support the weight of the wind turbines and 

sufficient stability under the action of mean environmental loads. Therefore, different 

floating platforms are categorized with a strategy of providing static stability. There are 

three primary types of floating structures for offshore wind turbines: the spar, the tension-

leg platform, and the semi-submersible. Figure 1.7 illustrates the current types of offshore 

wind turbines including three types of floating wind turbines for deep water areas where 

the water depth is greater than 50 m [16]. 
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Figure 1.7: Offshore wind foundations [16]. 

• Spar Buoy: A very large cylindrical buoy stabilizes the wind turbine using ballast 

weights with catenary mooring cables hanging from the midpoint of each anchor cable to 

provide additional tension. In this case, the center of gravity is much lower in the water 

than the center of buoyancy, which creates a righting moment and a high inertial 

resistance to roll, pitch and usually enough draft to limit heave motion. The Hywind demo 

concept [5] and the Hywind Scotland pilot projects [6] consist of this slender, ballast-

stabilized cylinder structure.  
 

• Tension Leg Platform (TLP): A TLP is usually ballasted and moored by three or four 

pairs of vertical mooring lines in tension. Tensioned mooring lines are anchored on the 

seabed to add buoyancy and stability. This anchoring maintains stability through tension 

in the mooring lines and reserved buoyancy, which is important for preventing the 

mooring from going slack under extreme conditions. The TLP is the most stable platform 

and thus has the least impact on the dynamics and power absorption of the wind turbine. 

Pelastar [17] and Floating Haliade [18] are based on a tension stabilized concept 

integrating proven TLP technology. 
 

• Semi-submersible: Combining the main principles of the spar and TLP designs, a semi-

submerged structure obtains buoyancy from ballasted cylindrical pontoons to reach the 

necessary stability. A semi-submersible structure creates a large restoring moment in the 

roll and pitch with a water-plan area. The catenary mooring line prevents the floater from 

drifting from wave loads and increases the resistance to overturning. A Vestas’s 2 MW 

wind turbine mounted on a Wind-Float [19] was installed in the Portuguese coast and has 

been tested. In 2018, the Kincardine pilot [7] with a 2 MW capacity was installed in 

Scotland. 

Although there are many benefits with floating structures, there are a number of 

challenges such as electrical infrastructure design, operation and maintenance procedures. 
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1.3. Fault statistics and maintenance strategies in wind turbines 

1.3.1. Fault statistics 

Wind turbines are exposed to a variety of wind load conditions and there is a high 

possibility of unpredicted faults and failures occurring, which could lead to system 

interruptions and cause huge economic losses. Specifically, offshore wind turbines 

operate in stochastic ocean environments, such as turbulent winds, irregular waves, 

component erosion due to the sea water and significant disturbances.  

The wind turbines experience various failure modes in mechanical and electrical 

components. The EU Reliawind project provides wind turbine reliability profiles from an 

analysis of the long-term operational data and fault records from 350 onshore wind 

turbines [20]. Figure 1.8 shows the relative contributions of subsystems and assemblies 

to the failure frequency and downtime. In a recent research article for statistics of offshore 

wind turbines, Carroll et al. [21] showed the results of an analysis determining the failure 

rates for the repair of modern offshore wind turbines and their sub-assemblies for offshore 

multi-megawatt turbines. The full dataset consists of over 1768 turbine years of 

operational data based on 350 offshore wind turbines. According to these studies, the 

blade pitch systems have the highest failure rates among the components and account for 

24% [20] and 13.3% [21] of the total failures of wind turbines, respectively. These results 

confirm that pitch systems are the largest contributors to the total turbine failure rate. 

The blade pitch system has an important role for pitch-regulated wind turbines, and the 

relevant faults change the aerodynamic torque, power, and response of the tower and the 

support structures. Faults in the blade pitch sensors and actuators influence the control 

feedback and result in imbalanced loads on the rotor, shaft, and main bearings. 

The faults of the blade pitch system can be categorized into the pitch sensor and actuator 

faults. The pitch sensor faults occur by dust on an encoder disc, miss-adjustment of the 

blade pitch bearing, beyond the acceptable range of temperature and humidity or improper 

calibration. The incorrect pitch of a blade resulting from sensor faults causes 

asymmetrical forces on the blades and leads to unbalanced rotation in the rotor. 

In the case of the pitch actuator faults, the high failure rate that is related to oil, valve and 

sludge issues accounts for a large portion (37.3%) of the total failure rate for hydraulic 

pitch systems as shown in Carroll et. al. [21]. Essentially, faults in the pitch actuator are 

mainly categorized as either mechanical or electrical faults. After these faults occur, the 

actuator cannot provide an adequate control of the blade pitch angle. In addition, high air 

content or hydraulic leakage faults in the pitch actuator can change the system’s 

characteristics [23]. These faults affect the blade pitch angle and response delay. These 

faults can also affect the dynamic response of wind turbines and floaters in transient and 

steady-state condition. The incorrect pitching of a blade due to blade pitch faults causes 
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asymmetric forces on the blades, introducing an unbalanced rotation that significantly 

increases structural loads on the rotor and induces yaw motions of the floaters and tower 

base torsional bending moments. In the worst cases, it is associated with actuator seizure, 

which leads to inoperable conditions. Consequently, wind turbine failure rates and 

downtime should be reduced to ensure reliability. A method to avoid catastrophic long-

term damage to the wind turbines is needed to allow for fast fault accommodation. 

 

 

Figure 1.8: Normalized average time lost and failure rate of subsystems and 

assemblies for wind turbines. Values less than 2% are excluded. [20][22]. 
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1.3.2. Maintenance strategies 

Maintenance and optimal operations of offshore wind turbines have become critical 

issues. The ocean environment makes the maintenance of wind turbines much more 

complicated, raising the capital and operation costs to an undesired level because of the 

difficult and limited access. The reliability of an offshore wind turbine is even more 

important because maintenance costs account for 25-30% of the lifecycle cost of energy 

for offshore wind farms [24-26]. 

To achieve a further reduction in the cost of wind energy and ensure safety, it is essential 

to have proper maintenance strategies for maintaining the adequate safety level regarding 

fatigue, corrosion, wear, crack growth, and other degradation phenomena in the wind 

turbine components. An inspection and maintenance approach contributes to the safety 

with respect to a structural damage tolerance. Normally, the conventional maintenance 

strategies are corrective maintenance or a predetermined maintenance in fixed time 

intervals. With the corrective maintenance strategy, there is a high possibility that wind 

turbines that have undergone long downtimes, have a risk of damage or catastrophic 

failure because maintenance cannot be scheduled. Predetermined maintenance has the 

advantages of being schedulable allowing an efficient management than a corrective 

maintenance. However, the maintenance cost will be increased with regular component 

changes, human inspection and extra costs. Figure 1.9 illustrates the influence of the 

different maintenance strategies on the condition. 

 
Figure 1.9: Influence of the maintenance strategy on asset condition [27]. 

In contrast with predetermined preventive maintenance, condition-based maintenance has 

a high potential to utilize the technical life of components. Condition-based maintenance 

is based on the information collected via measurements from condition monitoring. A 

number of sensors are installed on a wind turbine, e.g., anemometers, rotor speed sensors, 

pitch angle sensors, and vibration sensors for collecting data. The condition monitoring 
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with installed sensors can provide the operator with valuable information on the status of 

operational conditions.  

Condition monitoring can identify a change in the dynamic responses of the wind turbine 

that represent deviations from the normal operational behavior and indicate a developing 

fault. In practice, 99% of equipment failures are preceded by certain indications and 

conditions that a failure is going to occur [24, 25]. 

To prevent equipment failures, fault detection and diagnosis in components at a very early 

stage should be conducted to give the operator opportunities to take remedial actions such 

as fault-tolerant control or shutdown. They are related to damage tolerant operational 

control before its consequences of the dangerous state of the wind turbine realized, such 

as tower or blade collapse. By taking appropriate steps from faults, severe damage of the 

monitored component and damage propagation to other components can be avoided. 

However, condition monitoring still relies on an operator for information from 

observation and inspection, as well as determination of faults. When a fault alarm occurs, 

the operator takes some time to analyze the observation results. In this case, an automatic 

fault diagnosis function can be helpful for determining the fault types in a short amount 

of time, which provides enough time for a fast step to be taken, such as other operations, 

maintenance or repair after fault occurrence in the systems, and reduces costs as a result 

of possibly improved maintenance procedures [26, 27]. Therefore, condition monitoring 

and fault diagnosis schemes avoid unnecessary maintenance in wind turbines and provide 

diagnostic details for the maintenance staff by remote diagnosis, which leads to reduced 

repair or maintenance costs and minimizes the turbine downtime and the related revenue 

loss. 

 

1.4. Fault detection and diagnosis  

Fault detection and diagnosis (FDD) is a topic that has become a growing demand on 

operational reliability, safety and product quality. The general idea is to detect a fault 

occurrence in a system based on measured system data and to identify the characteristics 

of the fault type and its location in the system. Isermann and Ballé [28] provide definitions 

for important functions of such a scheme. 

- Fault detection: determination of faults present in a system and the time of detection. 

- Fault diagnosis: determination of the kind, size, location and time of a fault; follows 

fault detection. 

Isermann [29] and Blanke et al. [30] provided overviews of fault detection and diagnosis 

techniques in practical aspects. 
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1.4.1. Fault detection 

Fault detection methods are based on the model-based methods, and signal-based 

methods. These are distinguished from how the data are processed in the process of fault 

detection. The basic principle is to determine the relationship among the data, model, 

signal, and knowledge with various fault detection methods. 

1.4.1.1. Model-based methods 

A model-based method uses the system’s input and measurement signals, which is based 

on the mathematical or knowledge models. Figure 1.10 shows the basic structure of 

model-based fault detection. Based on the input and measurement from output signals 

from the actual system, this method with appropriate models (healthy and faulty models) 

generates the residual formed as the difference between the measured data and estimated 

values. The residual can then be used as a fault indicator. The residual is close to zero 

when the system is under normal conditions. If a fault or unusual behavior occurs in the 

system, the residual begins to deviate from zero. The process of residual evaluation 

enables reliable decision-making with proper decision logic to present fault detection. 

 

Figure 1.10: General scheme of model-based fault detection [31]. 

There are three types of model-based methods: 1) state and output estimators, also known 

as observers [31 - 35], 2) parity equations [36 - 38], and 3) identification and parameter 

estimation [39 - 41]. When the process parameters are all unknown, they can be 

determined by the parameter estimation in a model. If the process parameters are known, 

state estimation and parity equation methods can then be applied, which generate 

residuals with fixed parametric models for 1), fixed parametric or nonparametric models 

for 2), and adaptive nonparametric or parametric models for 3). 
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1.4.1.2. Signal-based methods 

A signal-based fault detection method is based on the analyses of the features from the 

measured output signals. Suitable features from the measurements represent whether the 

operating conditions are under normal or fault conditions. These features can be 

determined by statistical methods, such as the mean, standard deviation, skewness, 

kurtosis, crest factor, or the power spectrum in the time and frequency domains. Figure 

1.11 shows the basic scheme of the signal-based fault detection. 

Signal-based methods are effective for irregular vibration detection in the mechanical 

components [29, 42 - 46]. The power spectrum from irregular vibration, which may 

correspond to particular instabilities, can be compared to find deviations from reference 

frequencies. In addition, other sensor signals such as the position, force, electrical current, 

and pressure contain oscillations with various frequencies under fault conditions 

compared to the normal process dynamics. 

 

 
 

Figure 1.11: Scheme for the fault detection with signal models [29]. 
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1.4.2. Fault diagnosis 

In the condition monitoring of wind farms, there are various databases with an amount of 

collected and measured data from each sensor. The fault diagnosis methods need an exact 

function to determine the fault type with such details as the fault magnitude, location, and 

time of detection. In the diagnosis procedure with data acquisition and interpretation, the 

diagnosis system analyses and recognizes the fault patterns. Two types of algorithms can 

be distinguished: classification and inference methods. Classification methods can be 

applied for fault diagnosis in cases where the information of the fault-symptom causalities 

is not available. Otherwise, inference methods are applicable. Both approaches will be 

discussed in detail in the study. 

1.4.2.1. Inference methods 

If the relations between the faults and symptoms are at least partially known, then causal 

relations can be used: fault → events → symptoms. Inference methods are based on 

linguistic rules, which can be formulated in IF (condition) - THEN (conclusion) rules [47 

- 49]. These methods allow conclusion to be drawn from the observed symptoms of the 

faults. If the condition with several symptoms is satisfied with causal relations, the fault 

type can be determined. When several symptoms indicate a fault, the facts are associated 

with AND and OR connectives, leading to Boolean rules in the form e.g. IF < S1 AND 

S2 > THEN < E1 >, IF < E1 AND E3 > THEN < F1 > as described in Figure 1.12. 

Symptoms can be observed by heuristic methods from the operator in the form of 

measurements by inspection. These empirical methods can usually be represented in the 

form of qualitative measures. Therefore, mostly structured knowledge has to be included, 

which is known from inspection of the process faulty behavior. 

 

 

Figure 1.12: Inference methods for fault diagnosis [29]. 
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1.4.2.2. Classification method 

If the relations between features and faults are unknown, then classification methods can 

be used. Classification methods perform pattern recognition using data with a set of input 

patterns that consider their statistical variation. The classification algorithms are able to 

classify the data into different categories by a particular pattern. In this procedure, it is 

important to design a feature extractor that transforms the raw data into a suitable feature 

vector from the classification algorithm. Pattern recognition systems are in many cases 

trained by supervised learning from labeled training data. However, when the data are 

unlabeled, unsupervised learning can be used to discover the previously unknown patterns.  

Classification methods can be divided by geometrical probabilistic classification [50 - 52], 

machine learning [53 - 58], and fuzzy clustering methods [59 - 62]. In recent years, 

machine learning (ML) has led to huge leaps for artificial intelligence (AI) and internet 

of things (IoT), which requires massive amounts of data collected by sensors to continue 

being online. Machine learning allows for a machine to be fed with raw data and to 

automatically discover the representations needed for classification or regression. 

Machine learning algorithms build a mathematical model of training data to make 

predictions or decisions without being explicitly programmed to perform the task. 

Machine learning algorithms have been applied to the applications of computer vision, 

speech recognition, language translation, and email filtering, where it is infeasible to 

develop an algorithm of specific instructions for performing the task. Machine learning 

algorithms can also be used for fault diagnosis in mechanical components. Figure 1.13 

shows the general scheme of machine learning. 

 

Figure 1.13: General scheme of machine learning [63]. 
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1.5. Fault tolerant control 

If the system domain experiences faults or are no longer available, then the nominal 

controller cannot provide the correct control to the system under unexpected faults. To 

maintain the operational condition in the system, it is necessary to use a different set of 

input and output signals. Then, a fault-tolerant control (FTC) is needed to manage the 

faulty system before maintenance is conducted. The fault-tolerant control is used for 

preventing component failures after the consequences of faults in the system.  

Fault-tolerant control (FTC) methods can be divided into two categories: passive and 

active FTC methods [30]. In passive FTC systems [64, 65], the controllers are fixed 

control systems that are predetermined to be robust against faults and uncertainties 

throughout the entire system. Passive FTC methods are optimized while satisfying a 

specific fault scenario, which implies that it has limited fault-tolerant capabilities for 

various faults. 

Active FTC methods [66 - 70] can compensate for tolerable faults by interacting with any 

nominal controllers to cancel the fault effects on the system. The active FTC consists of 

reconfiguration blocks that are linked to the nominal controller under fault conditions. 

Active fault-tolerant control systems need FDD schemes due to fault information and they 

need to send reconfiguration signals to the nominal controller as shown in Figure 1.14. 

The main concept underlying this FTC scheme is to reconstruct the system output to 

replace the faulty measurement. Because faulty measurement cannot be used with the 

existing controller, a configuration block must be found that generates a suitable signal 

from a faulty measurement. This reconfiguration system applies a minimal change to the 

control loop. The existing controller then remains in the system of the control loop. 

 

  

Figure 1.14: Active fault-tolerant control system based on fault detection and 

diagnosis. 
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1.6. Research objectives and contributions 

1.6.1. Research objective, questions and methods 

The main objective of this PhD work is to develop model-based FDD and FTC schemes 

that can detect, diagnose and accommodate faults in the blade pitch system of a wind 

turbine at an early stage. The main research questions (RQs) are how we can build a 

mathematical model of a blade pitch system, apply fault detection and fault diagnosis, 

and include fault-tolerant control schemes. 

RQ1: How to build a blade pitch actuator model and link it to the global model of a 

floating wind turbine? 

RQ2: How to apply control to the blade pitch actuator to achieve the demanded pitch 

angle? 

RQ3: What type of faults will typically occur in this blade pitch system, and what is the 

influence of the turbine structure? 

RQ4: What methods are used to develop FDD and FTC algorithms? 

RQ5: How to verify the effectiveness of the proposed FDD and FTC schemes? 

To answer these research questions (RQ), the author primarily distinguished three 

different research subjects: i) modeling and control, ii) fault detection, diagnosis, and 

fault-tolerant control, and iii) validation with numerical simulations. As the research 

continued, the RQs gave the results related to the appropriate methods, and Figure 1.15 

shows the overall relations among the research questions, methods, and contributions. 

Figure 1.16 shows the scopes of the appended papers that are interconnected in this thesis, 

which shows how all paper are related. 
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Figure 1.15: The relationship among the research questions (RQs), methods, 

and contributions.  

 

 
 

Figure 1.16: The scope of the thesis and the interconnection among appended 

papers. 
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1.6.2. Summary of the papers 

Paper 1: Model-based fault detection of blade pitch system in floating wind turbines 

• Status: Published in Journal of Physics: Conference Series 2016; 753, 092012. 

• Authors: Seongpil Cho, Zhen Gao and Torgeir Moan 

• Summary:  Maintenance and repair of offshore wind turbines are challenging because 

of their difficult access. Specifically, faults occur unexpectedly in the components of wind 

turbines, such as the blades, drivetrain or generator. Faults in wind turbines can directly 

influence the operational safety, dynamics and power production efficiency of wind 

turbines. An early-stage fault detection technique should be conducted regarding 

maintenance and repair to prevent a catastrophic failure of wind turbines with active fault 

accommodation. 

This paper presents a model-based fault detection scheme for a blade pitch system of 

floating wind turbines. To detect the faults of the blade pitch actuators and sensors, a 

Kalman filter is designed to estimate the states of the system. Residuals are generated by 

a Kalman filter and a threshold using H∞ optimization, and linear matrix inequality (LMI) 

is used for the residual evaluation. The proposed method is demonstrated by case studies 

with bias (PSB) and fixed output (PSF) in pitch sensors and stuck (PAS) in pitch actuators. 

The simulation results show that the proposed method detects different realistic fault 

scenarios of wind turbines under the stochastic external winds and wave conditions. 

 

Paper 2: Model-based fault detection, fault isolation, and fault-tolerant control of a 

blade pitch system in floating wind turbines 

• Status: Published in Renewable Energy 2018; 120, 306-321. 

• Authors: Seongpil Cho, Zhen Gao and Torgeir Moan 

• Summary: After a successful fault detection, the main challenge is fault diagnosis. In 

this diagnosis procedure, the determination of the fault characteristics should be 

conducted, and a fault diagnosis system should analyze the pattern of faults for the 

decision making. Then, a fault-tolerant control (FTC) is needed to manage the faulty 

system before maintenance is conducted. 

This paper presents model-based fault detection, fault diagnosis, and fault-tolerant control 

schemes focused on blade pitch systems in floating wind turbines. Faults in blade pitch 

systems should be detected at an early stage to prevent inoperable conditions in the wind 

turbine. To detect faults of the blade pitch systems, a Kalman filter is designed to estimate 

the blade pitch angle of the system and determine the fault time. 
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The fault diagnosis algorithm is based on inference methods and is capable of determining 

the fault type, location, and magnitude. The fault-tolerant controller with virtual sensors 

and a shutdown mode controls the floating wind turbine to avoid unexpected external 

loads. The proposed methods are demonstrated in case studies with stochastic wind and 

wave conditions that consider different types of faults, such as PSB, PSF, and PAS. The 

simulation results show that the proposed methods can detect and diagnose multiple faults 

effectively at an early stage. Additionally, the effectiveness of the fault-tolerant control 

systems for different load cases for single and multiple fault conditions is verified by 

numerical simulations. 

 

Paper 3: Numerical modeling of the hydraulic blade pitch actuator in a spar-type 

floating wind turbine considering fault conditions and their effects on global 

dynamic responses 

• Status: Published in Wind Energy 2019; Early View Publication, 1-21. 

• Authors: Seongpil Cho, Erin E. Bachynski, Amir R. Nejad, Zhen Gao and Torgeir Moan. 

• Summary: A previous blade pitch system has been modeled in Papers 1 and 2 based on 

the simplified model. However, this model cannot represent the exact faults in the actuator 

component. This paper presents the dynamic modeling and response analysis of the 

hydraulic pitch actuator in a floating spar-type wind turbine under valve fault conditions. 

A spar-type floating wind turbine concept is modeled and simulated using an aero-hydro-

servo-elastic simulation tool (Simo-Riflex). A numerical model of the hydraulic blade 

pitch actuator with/without valve faults is developed and linked to Simo-Riflex to study 

the effects of faults on the global responses of the spar wind turbine, as a function of the 

fault magnitude and environmental conditions.  

The hydraulic pitch actuator system has a high failure rate, due to oil and valve faults 

such as excessive friction, slit-lock on spool, wrong applied voltage, and short-circuit of 

the solenoid. The consequence of valve faults in a pitch actuator is that the blade cannot 

be pitched to the desire angle, such as a response delay, stuck, or runaway. These faults 

lead to an increased rotor imbalance, which has different effects on the turbine structure 

and the platform motion. The proposed methods are demonstrated in case studies with 

stochastic wind and wave conditions and different types of valve faults in pitch actuators. 

 

 

 

 



 

 21 

Paper4: Fault detection and diagnosis of a blade pitch system of a spar-type floating 

wind turbine based on a hybrid approach with a Kalman filter and artificial neural 

network 

• Status: Submitted to Wind Energy 

• Authors: Seongpil Cho, Minjoo Choi,  Zhen Gao and Torgeir Moan 

• Summary: This paper proposes a fault detection and diagnosis method to automatically 

identify different fault conditions of a blade pitch system in a floating wind turbine. For 

fault detection, a Kalman filter is employed to estimate the blade pitch angle and the valve 

spool position of the system. The fault diagnosis scheme is based on an artificial neural 

network that is capable of determining the fault type. The proposed methods are 

demonstrated in case studies with stochastic wind and wave conditions that consider 

different types of faults, such as biases and fixed outputs in pitch sensors and excessive 

friction, slit-lock, wrong applied voltage, and short-circuit in actuators. The validation of 

the ANN model is conducted with the training model in order to prove the model’s 

performance. The test results show that the proposed fault diagnosis methods can 

diagnose faults effectively with a good performance. 
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1.7. Thesis Structure 

This thesis consists of 5 chapters and 4 appended papers, given in appendix A. 

Chapter 2: Modeling of a spar floating wind turbine and a blade pitch actuator 

Chapter 2 gives the basic knowledge on a blade pitch system and a baseline control system 

of a spar floating wind turbine under stochastic environmental loads. The mathematical 

model of a stochastic wind field and irregular sea waves are explained. The basis of the 

aero-hydro-servo-elastic model used in Simo-Riflex is explained afterwards. This chapter 

ends with the controller model used in this thesis. 

This chapter also addresses the numerical modeling of a hydraulic pitch actuator with a 

simplified model and detailed model with hydraulic power units. The remainder of the 

chapter presents the summary of the work performed in Paper 3. 

Chapter 3: Fault detection, diagnosis and fault-tolerant control of a blade pitch 

system using a simplified model 

Chapter 3 presents the fault detection, diagnosis and fault-tolerant control scheme on a 

blade pitch actuator using a simplified model and appropriate fault models. The remainder 

of the chapter includes the simulation results based on the performance of the FDD and 

FTC schemes under fault conditions. Papers 1 and 2 are partly presented in this chapter. 

Chapter 4: Fault detection and diagnosis of a blade pitch system using a detailed 

model with hydraulic power units 

Chapter 4 describes a fault detection and diagnosis method to automatically identify 

different fault conditions of a blade pitch system with hydraulic power units in a floating 

wind turbine. An overview on the simulation results based on the accuracy and 

performance of fault diagnosis in the wind turbine is given afterwards. The overview on 

the fault detection and diagnosis scheme is explained, as well as how to apply this scheme 

to other fields. Paper 4 presents the full story of this chapter. 

Chapter 5: Concluding remarks and recommendations for future work 

Chapter 5 presents a summary of the works, main contribution and conclusions in this 

thesis. The chapter is closed with recommendations for future work. 
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2. Modeling of a spar floating wind turbine and a blade 
pitch actuator 

 

 

 

 

 

2.1. Spar type floating wind turbine concept 

A spar-type floating wind turbine is modeled as a rotor, nacelle, tower, floater, and 

mooring lines. The model in this thesis is based on the NREL 5 MW offshore wind turbine 

model [71], supported by a spar buoy floater (OC3-Hywind) [72] and three catenary 

mooring lines as shown in Figure 2.1. The NREL 5 MW wind turbine is a conventional 

three bladed upwind turbine designed by the National Renewable Energy Laboratory 

(NREL). This model has been used as a standard reference for baseline offshore wind 

turbine specifications. 

 

Figure 2.1: Schematic view of the floating wind turbines. 
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The OC3-Hywind spar-buoy platform was developed in the Offshore Code Comparison 

Collaboration (OC3) project. The OC3-Hywind platform features a deeply drafted, 

slender spar-buoy moored by three catenary mooring lines. The specifications of the 

NREL 5 MW reference wind turbine are provided in Table 2.1. Additionally, properties 

for the OC3-Hywind floater and mooring system are listed in Table 2.2 and Table 2.3, 

respectively. 

Table 2.1: Properties of the NREL 5 MW wind turbine [71]. 

Rated Power (MW) 5  

Rotor orientation, Configuration Upwind, 3 blades, horizontal axis 

Rotor diameter (m) 126 

Hub height from the mean water level (m) 90 

Cut-in, rated, cut-out wind speed (m/s) 3, 11.4, 25 

Cut-in, rated rotor speed (°/s) 41.4, 72.6 

Max pitch rate (°/s) 8 

Gearbox ratio 97 

 

Table 2.2: Properties of the OC3-Hywind floater [72]. 

Draft (m) 120 

Diameter above taper (m) 6.5 

Diameter below taper (m) 9.4 

Center of mass (m) (0, 0, -89.9115) 

Mass, including ballast (kg) 7.466 × 106 

Mass moment of inertia, Ixx and Iyy (kg·m2) 4.229 × 109 

Mass moment of inertia, Izz (kg·m2) 1.642 × 108 

 

Table 2.3: Mooring system properties [72]. 

Angle between adjacent lines (deg) 120 

Depth to anchors below SWL (Water depth) (m) 320 

Depth to fairleads below SWL (m) 70 

Mooring line diameter (m) 0.09 

Equivalent mooring mass density (kg/m) 77.7066 

Equivalent mooring weight in water (N/m) 698.094 

Equivalent mooring extensional stiffness (N) 3.842 × 108 

Additional yaw spring stiffness (Nm/rad) 9.834 × 107 



 

 25 

2.2. Blade pitch actuator 

The blade pitch systems in modern wind turbines are driven by electrical or hydraulic 

pitch actuators [73] as shown in Figure 2.2. An electrical pitch system adjusts the blade 

pitch angle using gears with an electric motor and it is able to precisely control the 

position. The main challenges related to electrical pitch systems are gear wear, high 

backlash, and low robustness against external disturbances. 

On the other hand, a hydraulic pitch actuator controls the blade pitch angle by moving a 

hydraulic cylinder driven by a hydraulic power unit and gears are unnecessary. Hydraulic 

systems with a high level of stiffness and appropriate damping [74] are suitable in the 

case of high aerodynamic loads in large wind turbines (5 – 10 MW). In addition, hydraulic 

pitch actuators have a low component sensitivity to the environment with the working 

temperature spanning from -25°C to +55°C, which is suitable for offshore environmental 

conditions. The oil in the system reduces the structural vibrations and power peaks/loads, 

and increases the overall reliability of the turbine [75]. In this thesis, the hydraulic pitch 

actuator is only considered because of these reasons. The hydraulic pitch actuator can be 

in 2 different ways: a simplified pitch actuator and a blade pitch actuator with a hydraulic 

power unit. 

 

Figure 2.2: Electrical (a) and hydraulic (b) pitch actuator placed in a hub [76]. 
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2.2.1. Simplified blade pitch actuator model 

A commonly used three-blade wind turbine consists of three identical independent pitch 

actuators. A pitch actuator can be modeled as a 2nd order differential equation for a 

simplified global analysis. The blade pitch system is described as the following equation: 

C,ibpibpibpbpi βωβωβωζβ 222   , i = 1, 2, and 3 (the blade number),                     (2.1) 

where ζbp is the damping ratio, ωbp is the natural frequency of the blade pitch actuator, 

and (˙) represents time derivatives. Additionally, βi is the ith blade pitch angle, and βC,i is 

the blade pitch angle command. The parameters are ωbp = 11.11 rad/s and ζbp = 0.6 [23]. 

2.2.2. Blade pitch actuator model with a hydraulic power unit 

The hydraulic pitch actuator can be driven by a hydraulic power unit. The blade pitch 

actuator as simplified model, was described in Eq. (2.1). Actuator faults in a simplified 

model can only represent changed dynamics in the change of the natural frequency and 

damping ratio changes such as pump wear, hydraulic leakage, or high air content [23]. 

However, this simplified model has limitations when applying various actuator faults in 

the hydraulic blade pitch actuator. Therefore, it is essential to model the hydraulic power 

unit to apply various actuator faults. 

The hydraulic power unit consists of a hydraulic pump, an accumulator, a set of 

directional control valves, and a hydraulic cylinder. The blade pitch angle is controlled 

by a hydraulic cylinder placed in the hub of the turbine. The oil flow to and from the 

cylinders is controlled by a number of control valves. The energy to drive the hydraulic 

cylinders is supplied by a power unit placed in the nacelle, and the energy is transferred 

to the cylinder as oil flow. 

The valve controller gives a command voltage signal to control the valve spool position 

based on PI control. The schematic diagram of a hydraulic actuator, as shown in Figure 

2.3(a), consists of a constant pressure pump, an accumulator, a reservoir, a hydraulic 

cylinder, and a directional control valve. Figures 2.3(b) and 2.3(c) depict the hydraulic 

actuator, including the cylinder and the hydraulic power unit with a pressure pump, an 

accumulator, a reservoir, and valves. 



 

 27 

 

Figure 2.3: The hydraulic pitch system: (a) schematic diagram, (b) hydraulic 

actuator [77], and (c) hydraulic power unit [78]. 

2.2.2.1. Directional control valve model 

The directional control valve controls the valve spool position to open and close the 

valves by using an electromagnetic field via the solenoid coil to move an internal steel 

armature assembly. Current through the coil in the solenoid generates a magnetic field 

across the air gap. The magnetic field produces a force between the opposing stator and 

the armature. The armature makes the valve spool move to the left and right sides. Figure 

2.4 shows the schematic of a 4/3 directional control valve with a solenoid. 

 

Figure 2.4: 4/3 directional control valve with a solenoid. 
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To control the blade pitch angle, the valve controller adjusts the hydraulic flow into the 

cylinder. The valve model is simplified through a second order system [79]. The valve 

system is then explained by the following equation: 

vs,iuvsvs,ivsvs,ivsvsvs,i ukωxωxωζx 222   , i = 1, 2, and 3 (the blade number),           (2.2) 

where xvs is the valve spool position, uvs is the control input voltage, ωvs is the valve 

natural frequency and ζvs is the valve damping ratio of the valve system. ku is the voltage 

gain and (˙) represents the time derivatives. It is assumed that the valve spool is symmetric 

and zero-overlap design. ku simplified the valve model to being only directly controlled 

by uvs. 

The hydraulic flow rate at A and B can be determined based on the spool position. The 

continuity equation of the hydraulic flow rate at A and B depends on the sign of the spool 

position, 

for xvs > 0, 

,

,

A q vs A R

B q vs S B

q k x p p

q k x p p

  

 
                                                                                            (2.3a) 

and for xvs < 0, 

,

,

A q vs S A

B q vs B R

q k x p p

q k x p p

  

 
                                                                                            (2.3b) 

where qA and qB are the hydraulic flow rates to the cylinder chamber A and B sides, kq is 

the valve flow coefficient, and pS and pR are the supply pressure and the return pressure, 

respectively. Table 2.4 describes properties for the directional control valve from 

Rexroth’s valve model (RE 29093, Size 16) [80]. The supply pressure pS is controlled to 

250 bar. The kq values can be estimated from [81, 82] with the nominal pressure drop 

(ΔpN) and nominal flow rate (qN) from Rexroth’s valve model [80]. 

Table 2.4: Properties of the directional control valve [80]. 

Valve natural frequency, ωvs (rad/s) 141 

Valve damping ratio, ζvs 0.74 

Minimum, maximum valve position, xvs,min, xvs,max (m) -0.02, 0.02 

Minimum, maximum input voltage, uvs,min, uvs,max (V) -10, 10 

Valve voltage gain, ku (m/V) 0.002 

Valve flow gain, kq ( bar/s/m2
) 0.0233 
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2.2.2.2. Blade pitch dynamics 

As illustrated in Figure 2.3, a cylinder model in the actuator is a single-rod and double-

acting cylinder that consists of a piston. The cylinder produces the force from the 

hydraulic pressure acting on the piston from the oil flow. The pressure dynamics based 

on the flow mechanism into two chambers (A and B sides) in the cylinder are written by 

( ),
( )

eff

A A A p

A p

E
p q A x

V x
                                                                                         (2.4a) 

( ),
( )

eff

B B B p

B p

E
p q A x

V x
                                                                                         (2.4b) 

where VA and VB are the total control volume of chambers A and B, respectively, 

depending on the piston position xp. AA and AB are the areas of the piston on the A and B 

sides, respectively. Eeff is the effective bulk modulus of the hydraulic fluid, which is 

assumed to be incompressible. 

By calculating the hydraulic pressures on sides A and B of the cylinder, the piston force 

F can be obtained: 

.A A B BF P A P A                                                                                                        (2.5) 

The blade pitch angle can be controlled by a pitch moment from the piston force F. Figure 

2.5 shows the geometry of the hydraulic pitch actuator. The geometry has a relationship 

between the piston position xp and the pitch angle β, described as 

2/)cos(2)( 0
22

ppppppp lrLrLx   ,                                                      (2.6) 

where rp is the torque arm, lp is the rod length, Lp is the length between the pivot and the 

rotational center, and α0 is the initial angle between the pin-to-center axis and the torque 

arm when xp = 0. From the geometry of this actuator, the blade pitch moment MT, p can be 

described by 

)(, gFrM pbpT  ,                                                                                                     (2.7) 

where g(βp) is a force factor represented by



d

dx

r
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1
)(  . 
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Figure 2.5: Geometry of the blade pitch actuator: (a) β = 0 ° and (b) β = 90 °. 

The blade pitch angle dynamics are described by 

AbpTbpbp MMBJ  ,  ,                                                                                     (2.8) 

where Jbp is the blade inertia, Bbp is the viscous damping coefficient of the blade pitch, 

and MA is the aerodynamic pitching moment. 

Table 2.5 shows the pitch actuator geometries and parameters. 

Table 2.5: Pitch actuator geometries and parameters [83]. 

Piston rod length, lp (m) 2 

Torque arm, rp (m) 1 

Pin-to-center axis length, Lp (m) 1.7 

Initial angle, α0 (rad) 2.5128 

Blade pitch inertia, Jbp (kg·m2) 28600 

Blade pitch viscous damping coefficient, Bbp (N·s/rad) 8.545 × 105 

Effective bulk modulus, Eeff (bar) 18000 
 

 

2.2.2.3. Valve spool position control 

The geometrical relationship, as described in Eq. (2.6), is the relationship between β and 

xp. xp is controlled by the valve spool position xvs corresponding to the desired position 

[84]. The valve spool position is controlled according to the control input voltage in the 

directional control valve. 
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The control input uvs can be calculated by a PI controller from the piston position error 

e(t), that is, 

))()(()(,)(
1

)()(
0

Cpp

t

i

pvs xxtede
T

tektu  







  ,                                        (2.9) 

where kp is the proportional gain, Ti is the integral time, and the position error e(t) is given 

as a function of the blade pitch angle β and the blade pitch command βC from the baseline 

controller. Paper 3 describes how to calculate kp and Ti with Routh’s methods, and the 

Ziegler-Nichols method, as described in [85]. 

 

2.3. Fully coupled numerical model 

The dynamic responses of the wind turbine model have been simulated with Simo-Riflex-

Aerodyn (SRA) [86, 87, 88], which is an aero-hydro-servo-elastic code for fully coupled 

nonlinear time-domain numerical simulations of offshore wind turbines. Hydrodynamic 

forces and moments on the rigid hull, according to first order potential flow theory and 

Morison-type viscous drag, have been accounted for in Simo [86]. The flexible elements 

for the tower, shaft, mooring system and blades are modeled in Riflex [87] with the finite 

element solver. Aerodyn [88] calculates the aerodynamic forces and moments on the 

blades based on the blade element momentum (BEM) method or the generalized dynamic 

wake (GDW) including tower shadow, dynamic stall, and skewed inflow correction. The 

models for structural dynamics, hydrodynamics, aerodynamics, and mooring line 

dynamics are simultaneously considered with an external code that consists of 1) a 

baseline control system for a torque and pitch controller and 2) a model of the blade pitch 

system under various operational conditions. Figure 2.6 (a) shows the data transmission 

of Simo-Riflex-Aerodyn (SRA) and the controller algorithm.  

For the modeling of a blade pitch actuator with the hydraulic power unit described in 

Section 2.2, the fully coupled model needs to be modified because other physical values 

are transferred: the blade pitch moment. To conduct data transmission between Riflex and 

the Java code, Simo-Riflex (SR) ver. 4.15 developed by SINTEF Ocean has been used 

for numerical simulation. In SR ver. 4.15, Riflex takes the role of calculating the 

aerodynamic forces and moments on the blades based on the BEM on behalf of the 

Aerodyn. Figure 2.6 (b) shows the data transmission of the SR and controller algorithm. 

The simulation was first conducted by SRA in Papers 1 and 2. Eventually, SR was used 

for simulations in Papers 3 and 4. In addition, SR can be used also for the previous studies 

in Papers 1 and 2. 
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Figure 2.6: Data transmission between the fully coupled model and controller: 

(a) SRA and (b) SR. 
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2.4. Wind turbine control strategies under normal and fault 
conditions 

Wind turbines are normally designed to maximize the generated power and ensure 

continued reliability during operation. The region from the cut-in wind speed to the cut-

out wind speed is divided into below-rated (Region II) and above-rate regions (Region 

III) of the wind speed, as illustrated in Figure 2.7. A baseline control system can be used 

to optimize the power productivity of a wind turbine in operational regions (Region II 

and III). 

 

Figure 2.7: Ideal power curve as a function of the mean wind speed at the 

nacelle height on the wind speed characteristics. 

The baseline control system has a blade pitch and generator torque controller. In Region 

II, the maximum power is captured by adjusting the generator torque maintaining an 

optimal tip speed of the blades [71]. Within this region, the blade pitch controller is not 

active. In Region III, the blade pitch controller is activated to adjust the blade pitch angle 

to keep the aerodynamic loads within a rated power output at a constant rotor speed. A 

blade pitch command is computed based on the gain-scheduled proportional-integral (PI) 

controller as the function of the generator torque error based on a constant-torque strategy 

[89] in floating wind turbines. 

Figure 2.8 shows a block diagram of the baseline control system that represents how the 

system makes the blade pitch system interact with other systems by measuring the 

generator speed and pitch angle. The parameters can be described, where Ωr is the rotor 

speed, Ωg is the generator speed, Ωg,m is the measured generator speed, Ωg,rated is the rated 

generator speed, Qg is the generator torque, Qa is the aerodynamic torque, βm is the 

measured blade pitch angle, and Vwind is the wind speed. 

Since this baseline controller includes the pitch actuator and sensor models, the controller 

and model need to be validated by the control performance. Figure. 2.9 shows the 

comparison of the control performance with different blade pitch models: 1) NREL blade 

pitch model (BPNREL), 2) simplified blade pitch actuator, and 3) blade pitch actuator 
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with the hydraulic power unit. The BPNREL model assumes that the demanded pitch 

angle can be obtained with a certain pitch rate and no pitch actuator dynamics are 

considered. In this figure, the performances are almost identical for the three methods.  

 

Figure 2.8: A block diagram of the baseline control. 

 

Figure 2.9: Comparison of the control performance with different control 

methods: 1) NREL blade pitch model (BPNREL), 2) simplified blade pitch 

actuator (BPSIM), and 3) blade pitch actuator with the hydraulic power unit 

(BPHPU). 

Figure 2.10 shows the control procedure for a wind turbine with the FDD and FTC 

schemes. The baseline controller regulates the blade pitch and generator torque control 

for the power production in operational conditions. The sensors in the condition 

monitoring system measure the blade pitch angle, tower acceleration, rotor speed, wind 
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speed, and other physical values for wind turbines. By using an FDD algorithm, the 

system can detect and diagnose faults at an early stage. After successful FDD, the fault-

tolerant controller selects a remedial action based on the protection strategy. If the fault 

is tolerable, it can be accommodated by a reconfiguration system. If the situation is 

intolerable and the wind turbine is not in a safe state, then the wind turbine goes to 

shutdown mode. 

 

 

Figure 2.10: Control procedure for a wind turbine with FDD and FTC. 
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2.5. Environmental conditions 

The floating wind turbine operates under variable wind conditions, such as a stochastic 

wind model that presents realistic wind and wave loads. The wind model is based on the 

IEC 61400-3 design code [91]. The turbulent wind field Uw (x, y, z, t) is commonly 

modeled by a mean wind and a fluctuating component as described by 

Uw(t) = Um + Uf (t),                                                                                                 (2.10) 

where Um is the mean wind speed represented as the normal wind profile model (NWP) 

and Uf is the fluctuating wind for the normal turbulence model (NTM). The turbulent 

wind Uw is modeled using Turbsim [92] according to the Kaimal turbulence model 

including the turbulence intensity with IEC Class C. The turbulence intensity is a function 

of the wind speed at the hub height. The wind model was based on IEC 61400-3 [91]. In 

the vertical plane, 32 × 32 points were used over an area of 160 × 160m, with a time step 

of 0.05 seconds for the wind field generation. The wind shear model was according to the 

power law with exponent 0.14. 

Offshore wind farms have been primarily installed in European offshore sites, mostly in 

the North Sea (62%), the Irish Sea (15%), the Baltic Sea (14%), and the Atlantic Ocean 

(9%) [3]. The North Sea registered the largest amount of grid connections (1,651 MW), 

representing 62% of the installations. For irregular waves in the North Sea, the Joint North 

Sea Wave Project (JONSWAP) wave spectrum was used. The peak period (Tp) and 

significant wave height (Hs) were decided based on their correlation with wind speed for 

the Statfjord site in the North Sea [93]. Wind and wave directions are aligned.  

The wind condition is generally correlated with wave conditions. To examine the lifetime 

loads on the wind turbine, a joint wind and wave distribution is required. Therefore, the 

joint wind-wave distribution for the Northern North Sea [94] was used to choose the 

relevant environmental conditions for numerical simulation. Load cases with different 

wind and wave conditions were provided by simulating the dynamic responses of the 

floating wind turbine, as given in Table 2.6, which provides four categories of the load 

cases. 

Table 2.6: Load cases based on winds and waves. 

Load case Uw (m/s) 
Turbulence 

model 
Hs (m) Tp (s) 

1 11.2  

 

IEC Class C 

3.2 10.0 

2 14 3.62 10.30 

3 17 4.2 10.50 

4 20 4.8 10.80 
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3. Fault detection, diagnosis and fault-tolerant control of 
a blade pitch system using a simplified model 

 

 

 

 

 

3.1. State space model of the simplified blade pitch system 

A simplified blade pitch actuator has been modeled as a 2nd order differential equation 

described in Eq. (2.1). This differential equation can be transformed into a state space 

representation. State space representations provide a convenient way to model and 

analyze systems with multiple inputs and outputs. The state space representation of the 

simplified blade pitch actuator is described by 
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i = 1, 2 and 3,                                         (3.1 b) 

where xbp(t), ubp (t), and ybp (t) are the state vector, input vector, and measurement vector 

by the blade pitch angle, respectively, and Abp, Bbp, and Cbp are system matrices 

representing the state transition, input, and measurement matrices, respectively. In Eq. 

(3.1), the input vector ubp (t) consists of a set of the blade pitch command βC (t). Uncertain 

disturbances are given, including the process noise vector wbp(t) and the measurement 

noise vector vbp(t). The process and measurement noises in a state-space model of the 

blade pitch system are assumed to be zero-mean Gaussian white noises. Observability, 

controllability, and stability for this blade pitch system are checked according to the 

observability matrix, controllability matrix, pole and Nyquist diagram from Chen [95]. 
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3.2. Fault description and modeling 

A fault occurring in the blade pitch system affects the control system and the dynamic 

responses of a wind turbine. The incorrect blade pitch leads to unbalanced rotation in the 

rotor due to asymmetrical forces on the blades. Therefore, a fault occurring in the sensors 

and actuators can affect the system characteristics, or lead to inoperable conditions, which 

result in hydraulic leakage, valve blockage or pump blockage [23]. In this case, the blade 

pitch system cannot properly perform the role of an aerodynamic brake while large wind 

loads are acting on the rotor. 

The blade pitch system faults are categorized by the pitch sensor and actuator fault. In 

this thesis, three types of faults can be considered: a bias value (PSB), a fixed output 

(PSF), and a stuck actuator (PAS) in the blade pitch system, as shown in Papers 1 and 2. 

PSB is an offset value that is added to the measurement from the sensor. PSF retains the 

last measurement after fault occurrence. The PSB and PSF are main faults of the blade 

pitch sensor. PAS is mainly caused by a valve blockage, which is mainly due to clogging 

the valve or short-circuit in the hydraulic blade pitch actuator. Table 3.1 describes the 

updated fault equations of the blade pitch system. Parameters can be described, where 

βPSB(k) is the pitch bias angle, βPSF(k) is the fixed pitch angle after the fault, and βPAS is 

the pitch angle for the stuck actuator. 

 

Table 3.1: Fault equations. 

Status Fault value 

Fault-free sensor ( ) ( ) ( )m k k v k    

Biased output (PSB) ( ) ( ) ( ) ( )m PSBk k k v k      

Fixed output (PSF) ( ) ( )m PSFk k   

Stuck (PAS) ( 1) , ( 1) 0PASk k       

 

Faults of the blade pitch sensor and actuator typically result in structural loading on the 

turbine structure because of rotor imbalance. These faults also affect the stability of the 

floater or the support structure. 
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3.3. Fault detection, fault diagnosis and fault-tolerant control 
methods 

3.3.1. Fault detection 

Model-based fault detection approaches detect faults based on the system model and 

estimator. Figure 3.1 shows the basic structure of the model-based fault detection with a 

Kalman filter. Based on the input command u(k) and measured output ym(k), the states 

and measurements are estimated by a Kalman filter. By comparing the residual and 

threshold, normal or fault conditions are identified. 

 

Figure 3.1: Scheme of an observer-based fault detection in the blade pitch 

system. 

3.3.1.1. Observer design based on the discrete-time state-space model 

The state-space model of the blade pitch system in the discrete time domain with 

disturbance and faults in the pitch actuator and sensor are transferred from the proposed 

system (3.1) and applied with the Euler discretization approach, 
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                              (3.2) 

where Φbp = Ibp + AbpT , Ψbp = BbpT and Hbp = Cbp (sampling time T). Here, Φ, Ψ, H, Γd, 

Γf, Ξd, and Ξf are known matrices in a discretized system. In addition, fA(k) and fS(k) are 

the actuator and sensor fault vectors. 

The Kalman filter for the healthy case is designed as follows, 
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                                  (3.3) 

where )(ˆ),(ˆ kk bpbp yx , and Kbp are the estimated state vector, estimated output vector, 

and Kalman gain matrix in the blade pitch system, respectively. 
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3.3.1.2. Fault modeling 

The state-space model for the blade pitch system (3.2) is updated when faults occur in the 

system. Table 3.2 describes the fault vectors in the actuator and values in the sensor. If a 

fault occurs in the pitch system, the fault value is applied in the pitch system equation in 

this algorithm. 

Table 3.2: Mathematical model of faults applied in numerical simulations. 

Type Fault value 

Biased output (PSB) 0)( kAf , ( )S PSBf k   

Fixed output (PSF) 0)( kAf , ( ) ( ) ( )S PSF bpf k k v k      

Stuck (PAS) 

,1

2 2

,2

( ) ( ) ( )
( )

( ( ) 2 ( ) ( )) ( )

PAS bp

A

bp bp bp bp C bp

k T k w k
k

k k k T w k

  

      

    
  

    

f , 

( )S PASf k   

 

3.3.1.3. Residual generation and evaluation 

A residual r(k) is described as follows: 

ˆ( ) ( ) ( ).mr k y k y k                                                                                                   (3.4) 

A residual energy J(k) is defined by the L2 norm [31] as follows: 
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 .                                                               (3.5) 

The residual determines the fault status by applying fault detection logic with the 

threshold Jth, 

( ) , fault free,

( ) , fault .

th

th

J k J

J k J

 


                                                                                             (3.6) 

If the residual energy exceeds this threshold, the fault can be detected. Otherwise, the 

fault-free state is indicated. The threshold design procedure using H∞ optimization and 

linear matrix inequality (LMI) was described in Paper 1 with more details on the 

derivation. 
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3.3.2. Fault diagnosis using the inference method 

Fault diagnosis makes a decision after a detection alarm occurs. An inference method-

based fault diagnosis algorithm [29] is used in this chapter. 

Figure 3.2 shows a fault diagnosis algorithm using the measurements of the blade pitch 

and nacelle yaw angle. Initially, the trend of the pitch measurement βi,k must be 

determined. If the faulty sensor continuously outputs βi,k+1 - βi,k = 0, then the diagnosis 

algorithm makes a decision for the fault: either PSF or PAS. Then, by comparing the 

standard deviation of the nacelle yaw angle in the normal σYaw,n and fault conditions σYaw,f, 

the two faults can be differentiated. If the fault estimation errors are bounded in a certain 

range δ, then the algorithm decides the fault as a PSB. 

 

 

Figure 3.2: Algorithm for fault diagnosis with a single pitch sensor. 

 

3.3.3. Fault tolerant control with virtual sensors 

If the sensors and actuators are no longer available due to a fault occurrence, then the 

controller cannot control the system in an appropriate action. In this chapter, a fault-

tolerant control (FTC) scheme is suggested, which includes a reconfiguration block and 

a nominal PI controller to minimize the unexpected fault effects. The FTC scheme 

reconstructs the system output yc to replace the faulty measurement yf. Because the 

nominal PI controller cannot use the faulty measurement yf, a configuration block need to 

generate a suitable signal yc from yf and uf. Figure 3.3 shows the block diagram of the 

control reconfiguration for the sensor and actuator faults. 
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Figure 3.3: Control reconfiguration for the sensor and actuator faults. 

In this chapter, virtual sensors [30] are used to calculate the state vectors by replacing the 

measurements from the faulty system. The virtual sensor is defined as follows: 
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where Hv = H.  If the fault detection scheme detects any faults in the pitch sensor of the 

ith blade, the value in Hv allocated by the faulty sensor is replaced by 0 in Hf which means 

that this sensor is no longer available. P is a design parameter, and for P = 0 only observed 

values are used, and (v) represents values in the virtual sensors. 

Figure 3.4 shows the reconfiguration procedure with the virtual sensor. The matrix Hbp,f 

reflects the sensor faults. The virtual sensor estimates the state 
,

ˆ
bp fx  of the faulty system 

and replaces the faulty system output. This system output ybp,c is corrected by using the 

other available sensor values. If this virtual sensor works well, then the virtual sensor state 

xv is equivalent to the state of the nominal system xbp. Hence, the controller reacts like 

the same system as before.  

Actuator faults are critical to the safety of wind turbines when the pitch actuator is under 

inoperable conditions regardless of the controller command in Esbensen and Sloth. [23]. 

Then, the blade cannot be pitched anymore at the aerodynamic load from the wind loads. 

Therefore, pitch actuator faults require a safe and rapid shutdown of the wind turbine as 

a standard from Jonkman et al. [71]. 
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Figure 3.4: Reconfiguration with a virtual sensor after sensor fault. 

 

3.4. Simulation results and discussion 

Faults of the blade pitch system affect the dynamic behaviors of the wind turbine. In this 

section, the simulation results are presented to investigate the dynamic responses and 

performance of the proposed FDD and FTC schemes. Simulations of the wind turbine are 

conducted under PSB, PSF, and PAS on a single blade and multiple blades. In this 

simulation, the load cases described in Table 2.5 were used to study the dynamic response 

of the floating wind turbine. 

The fault detection algorithm can effectively detect faults in actuators and sensors by the 

residual energy and threshold. When a fault alarm is set to 1, it means that a fault is 

detected. The residual energy is normalized to adjust the scale factor. The normalized 

residual energy JN is described as follows: 

thN JkJkJ /)()(  .                                                                                                    (3.8) 

Figure 3.5 shows the simulation results for the blade pitch angle, the normalized residual 

energy, a fault detection alarm and fault diagnosis under LC4. In Figure 3.5 (a), a PSB 

occurs after 250 s, which corresponds to a -3° offset value on blade 3. The normalized 
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residual is greater than the threshold, and then the observer detects the PSB fault 

immediately. In Figure 3.5 (a), the diagnosis algorithm analyses the PSB fault after 

successful detection. 

In the PSF and PAS faults, the pitch angle measurement shows a constant value that 

represents the same values comparing the last measurement value before the faults. The 

pitch angle oscillates irregularly at a large amplitude and the pitch angle difference 

between the fault-free blades (blades 1, 2) and faulty blade (blade 3) is given as the 

unbalanced rotation. The PSF and PAS simulation results show the same pattern in 

Figures 3.5 (b) and (c). 

 

 

Figure 3.5: Simulation results of the (a) PSB, (b) PSF and (c) PAS cases 

corresponding to the blade pitch angle under LC4: normalized residual energy 

(JN), fault detection alarm, and fault diagnosis. 
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Paper1 and 2 presented the results and performance of this fault detection algorithm 

within a reasonable time after a fault is generated. Therefore, this method can guarantee 

fault detection at an early stage in the blade pitch system. 

A series of simulations are conducted to evaluate the FDD and FTC schemes against 

different fault scenarios and load cases. Each simulation has a 1-h duration to reduce the 

stochastic uncertainty for each load case. Paper 2 shows the effects of the fault cases on 

the normalized mean and standard deviation of the surge, roll, pitch, and yaw motions of 

a floating wind turbine. The results show that faults influence a significant amount of 

platform yaw motions compared with other motions such as the surge, roll and pitch 

motions, because the incident variations in an aerodynamic thrust caused by an 

unbalanced rotation on the rotor directly affect the instability of the platform motion, 

especially the yaw motion. Additionally, Paper 2 shows that the torsional moment is more 

affected by faults than the fore-aft and side-to-side bending moments. In fault 

accommodation, the mean and standard deviation results demonstrate that the proposed 

FTC schemes with signal correction for sensor faults have a good performance. The 

platform motions with FTC schemes in the PSB and PSF faults have nearly equivalent 

values as the fault-free case. 

Figure 3.6 shows the platform roll and yaw motions in the PSB and PSF cases for LC4 to 

check the effectiveness of the FTC for sensor faults. After 250 s, the FDD algorithm can 

precisely diagnose the faults and the FTC scheme conducts a signal correction for faulty 

sensors, which means that the FTC successfully eliminates the unbalanced rotation in the 

rotor during the PSB and PSF faults. The FTC with signal correction brings the wind 

turbine back to normal operational conditions. However, instability still occurs in the 

wind turbine when a nominal controller (PI controller) is used during the PSB and PSF 

faults. 

 

Figure 3.6: Comparison of the platform pitch and yaw motions under PSB and 

PSF fault conditions with nominal PI and fault-tolerant controllers under LC4. 
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In addition, the effect of faults on the tower with the proposed FTC schemes should be 

presented. The FTC schemes using a virtual sensor demonstrate better performance than 

the nominal PI controller. Figure 3.7 shows the torsional moment and side-to-side 

bending moment on the tower base in the PSB and PSF cases to validate the FTC scheme 

from 230 to 330s. These results show that the FTC scheme successfully eliminates the 

unbalance rotation in the rotor during the PSB and PSF faults. 

 

Figure 3.7: Comparison of the torsional and side-to-side bending moments on 

the tower base under PSB and PSF fault conditions with nominal PI and fault-

tolerant controllers under LC4. 
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4. Fault detection and diagnosis of a blade pitch system 
using a detailed model with hydraulic power units 

 

 

 

 

 

4.1. Modeling and fault description 

4.1.1. Blade pitch and valve systems 

The hydraulic pitch actuator with the hydraulic power unit was modeled as described in 

Section 2.2.2 from Paper 3. To estimate the blade pitch angles and valve positions, models 

inserted in the Kalman filter are built as 2nd order differential equations of motion. 

Consider the blade pitch system that describes a blade pitch command from the pitch 

controller and the pitch angle measurement in Eq. (2.1). 

As the blade pitch angle command from the pitch controller varies, the voltage value for 

the controlling spool position eventually adjusts the hydraulic flow into the cylinder for 

the cylinder described in Section 2.2.2. The valve spool position xvs described in Eq. (2.2) 

is calculated from the voltage uvs defined by a second order system. 

To measure the blade pitch angle, incremental rotary encoders installed on the blade roots 

can be used. Linear variable displacement transducers (LVDTs) are used to measure the 

position of the valve spool. Figure 4.1 shows the schematic diagram of the blade pitch 

system with the sensor distribution. The measurements must be accurate and reliable, 

because the turbine monitoring and control are using sensor data during wind turbine 

operations. The state space representation of the valve systems is described by 
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where xvs(t), uvs(t), and yvs(t) are the state vector, input vector, and measurement vector 

by the valve spool position, respectively, and Avs, Bvs and Cvs are system matrices 

representing the state transition, input and measurement matrices, respectively. Uncertain 

disturbances are given, including the process noise vector wvs(t) and the measurement 

noise vector vvs(t). Process and measurement noises in the state-space model of the blade 

pitch system, described by Eq. (4.1), are assumed to be zero-mean Gaussian white noises. 

 

Figure 4.1: Position sensors distributions for measurement of the blade pitch angle 

and valve spool position: (a) Schematic diagram, (b) incremental rotary encoder 

[98], and (c) valve system with a spool position feedback transducer [99]. 

 

4.1.2. Fault description and scenarios 

In the case of hydraulic actuator faults, Carroll et. al. [21] showed that the high failure 

rate related to oil, valve and sludge issues accounts for a large portion (37.3%) of the total 

failure rate for hydraulic pitch systems. Specifically, a valve fault can change the system 

characteristics [100]. 

Especially, faults in the directional control valves are mainly categorized by mechanical 

and electrical faults. Mechanical faults are related to oil contamination and sludge build-

up on the surface of a spool that disturb the spool movement by increasing friction in the 

valve. This fault is called excessive friction in valves (VEF). This sludge narrows the 

clearance and more particles enter into the clearance space. In the worst case, the sludge 

buildup and the particles become hardened and cause high static friction. If the excessive 

friction is larger than the maximum force from the solenoid, it will seize the valve spool. 

This phenomenon is commonly referred to as 'slit-lock' (VSL). 
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Electrical faults are related to residual current through the solenoid due to the damage or 

dirt armature. When the solenoid coil reaches the magnetic saturation level, the coil is 

overheated due to high inrush currents. In extreme cases, the core of the solenoid is 

subjected to damages or the coil inductance is permanently changed. Then, it applies a 

wrong voltage and the current cannot move through the circuit via the applied voltage. 

The wrong applied voltage (VWV) resulting from a changed coil impedance can be 

described by changing the value of the valve voltage gain ku. Furthermore, if solenoids 

cannot properly dissipate the heat generated by their residual current or go through a high 

inrush current due to faults, then the solenoid is damaged and burnt-out which means that 

the insulation around the coil windings will burn, and the coil will short out. As the 

solenoid short-circuit occurs (VCS), the applied voltage has been changed as zero. 

After these faults occur, the valve cannot provide an adequate amount of flow in the 

cylinder from the control input. These faults influence the results of the pressure, piston 

force, blade pitch angle and response delay. These faults can also affect the global 

dynamic response of the wind turbines in transient and steady-state conditions. The 

incorrect pitching of a blade due to faults causes asymmetric forces on the blades, 

introducing an unbalanced rotation that significantly increases the structural loads on the 

rotor. In the worst cases, it is associated with valve seizure that leads to inoperable 

conditions. 

 

Figure 4.2: Illustration of the mechanical and electrical valve faults. 

Paper 3 describes the updated fault values in the valve model and the consequences in 

each fault. In this chapter, six fault types are considered in the pitch sensor and actuator 

of the blade pitch system. Table 4.1 describes the fault types. 
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Table 4.1: Fault description. 

Fault number Fault name Fault occurrence location 

1 Bias value (PSB) 
Pitch sensor 

2 Fixed output (PSF) 

3 Excessive friction (VEF) 

Directional control valve 
4 Slit lock on spool (VSL) 

5 Wrong applied voltage (VWV) 

6 Short-circuit (VCS) 

 

 

4.2. Fault detection and diagnosis 

Fault detection and diagnosis methods are described in this section. Figure 4.3 shows the 

basic structure of the FDD schemes in the general system. Based on the input command 

u(k) and the measured output y(k), states and outputs are estimated by the Kalman filters. 

By comparing measured and estimated values, changes of a state are identified by 

residuals compared to a threshold. If the fault detection decision making algorithm 

determines that the state has a fault condition, an artificial neural network model 

diagnoses the fault type with the arrayed ANN inputs using feature extraction from faults. 

Paper 4 describes the configuration of the input of the ANN model. 

 

Figure 4.3: Overall procedure for the FDD Scheme in general systems. 
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4.2.1. Fault detection with a Kalman filter 

A Kalman filter as a model-based method, which is often used in fault detection, satellite 

navigation device, computer vision, or computer games [101], is used. Using the input 

command u(k) and measured output y(k), the Kalman filter estimates the states and 

outputs. 

The discrete-time state-space model of the blade pitch system with disturbance and faults 

in the pitch actuator and sensor can be transferred from the proposed system (4.1) where 

the Euler discretization approach is applied: 
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where Φvs = Ivs + AvsT , Ψvs = BvsT, and Hvs = Cvs. Here, Φ, Ψ, H, Γd, Γf, Ξd, and Ξf are 

known constant matrices in the discretized system. In addition, T is the sampling time and 

fA(k) and fS(k) are the actuator and sensor fault vectors described in Cho et al. [97], 

respectively. 

An observer for the healthy case based on the Kalman filter method is designed as follows:  
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where )(ˆ),(ˆ kk vsvs yx , and Kvs are the estimated state vector, estimated output vector, and 

the Kalman gain matrix, respectively. In terms of the residual generation and evaluation 

procedure, Section 3.2 describes this procedure. 
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4.2.2. Fault diagnosis with the ANN method 

4.2.2.1. Training, validation, and test procedure using ANN 

An artificial neural network is employed in the fault diagnosis procedure in this section. 

An ANN is a framework of machine learning algorithms that automatically identifies the 

system’s characteristics from the training data. In ANN implementations, artificial 

neurons receive input signals and process them with hidden layers that are computed by 

some nonlinear function for calculating the output results. Figure 4.4 illustrates a simple 

illustration of an ANN. 

 
 

Figure 4.4: A simple illustration of an artificial neural network (ANN). 

In this thesis, an artificial neural network determines the fault among the six fault types, 

which are described in Table 4.1. In the process of fault diagnosis using an ANN, the 

training, validation, and test procedure are essential for building the fault diagnosis model. 

The ANN algorithm makes the predictive model with training and validation data. Then, 

the final performance evaluation to evaluate the accuracy of the model is conducted with 

the labelled test data for the predictive model. While training a model, the label is 

separated before training begins. Upon completion of training, the data that were removed 

are used to test the performance of the learned model. Figure 4.5 shows the flowchart of 

the training, validation, and test procedure. The details of the training, validation, and test 

procedure are described in Paper 4. 

 

Figure 4.5: Flowchart of the general training, validation and test procedure. 
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4.2.2.2. Fault diagnosis results 

Essentially, the fault diagnosis model was trained, validated, and tested with an ANN 

library based on TensorFlow [102] coded by Python. Then, the FDD scheme in Java code 

imports the optimized predictive model exported from the ANN library. Via the 

predictive model imported in Java code, the fault diagnosis can be conducted in 

combination with Simo-Riflex with the same structure after successful fault detection. 

Figure 4.6 shows the data transmission between the ANN library and the FDD scheme in 

Java for the optimized predictive model. 

 

Figure 4.6: Data transmission among the SR, JAVA code and neural network 

model. 

For a fault diagnosis, 50 simulations in each fault type simulated from the Simo-Riflex 

simulator have been performed with a new wind profile generated by Turbsim [92] and 

different fault occurrence times. Note that the fault diagnosis algorithm can be activated 

after the fault detection signal occurs. Figure 4.7 shows the fault detection and diagnosis 

in real-time. In Figure 4.7 (a), Fault 1 (PSB), corresponding to a -3° sensor bias on blade 

3, occurs after 150 s (time of fault, TF). Concurrently, the fault detection algorithm detects 

the fault at 153 s (time of fault detection, TFD). In the fault detection signal, zero indicates 

the fault-free condition and 1 indicates the fault condition. Then the fault diagnosis 

scheme classifies the fault 1 at 170 s (time of fault diagnosis, TFDG). Fault 3 (VEF) and 

Fault 5 (VWV) are detected and diagnosed in the same pattern in Figures 4.7 (b) and (c), 

respectively. 

Table 4.2 presents the fault diagnosis results obtained by the ANN scheme on a different 

set of examples under different fault conditions. In each fault type, the ANN is tested with 

the range of rated wind speed (11.2 – 24 m/s) correlated with the wave conditions. The 

results describes that the ANN based fault diagnosis has a good performance, with an 

overall accuracy of approximately 97.33 %. 
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Figure 4.7: Fault detection and diagnosis in the faulty blade (blade 3) in real time: 

(a) fault 1 (PSB), (b) fault 3 (VEF), and (c) fault 5 (VWV). 

Even if the ANN scheme shows a high accuracy, the scheme incorrectly diagnoses the 

faults with 2.67 % which is critical for the system. If the scheme makes a fault decision 

with not much difference to the score in the vector in the ANN’s output layer after the 

Softmax function procedure, the scheme automatically performs two more diagnoses. 

Then the diagnosis scheme makes a final decision with the results of the triple fault 

diagnosis tests. Paper 4 describes the fault diagnosis correction in an incorrect decision 

procedure. Based on these results, it should be noted that the proposed ANN-based fault 

diagnosis method presented here is capable of properly diagnosing faults in the operation 

of the monitored component. 

 

Table 4.2: Fault diagnosis results. 
 

 Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6 

No. simulations 50 50 50 50 50 50 

No. failures 0 3 0 1 1 3 

No. successes 50 47 50 49 49 47 

Accuracy (%) 100 94 100 98 98 94 

Overall accuracy (%) 97.33 
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5. Concluding remarks and recommendations for future 
work 

 

 

 

 

 

5.1. Concluding remarks 

This thesis describes the model-based fault detection, fault diagnosis (FDD), and fault-

tolerant control (FTC) schemes in the blade pitch system of a floating wind turbine. The 

wind turbine model is based on a NREL 5 MW wind turbine model mounted on an OC3-

Hywind floater with three catenary mooring lines. The blade pitch system is considered 

to be either a simplified model with 2nd-order differential equations or an advanced 

model with a detailed hydraulic power unit. Numerical simulations under various 

environmental conditions with the correlated winds and waves are conducted using Simo-

Riflex Ver. 4.15. FDD and FTC techniques are applied to the blade pitch system to detect 

and diagnose of unexpected faults at an early stage to prevent catastrophic failures. 

The key results of the blade pitch system modeling, baseline controller, fault detection, 

fault diagnosis, and fault-tolerant control are summarized in Sections 5.1.1 – 5.1.6. The 

original contributions are summarized in Section 5.2. Some of the limitations of the 

present work and recommendations for future work are presented in Section 5.3. 

5.1.1. Blade pitch system and baseline controller 

A blade pitch system was modeled using two different types: a simplified pitch actuator 

and a hydraulic pitch actuator with a hydraulic power unit. To avoid a complex problem, 

the blade pitch actuator was modeled using 2nd order differential equations to simplify the 

model for global analysis. However, this model has a limitation in applying various types 

of faults. To capture the dynamics of the exact model of the blade pitch actuator and the 

various actuator faults, the hydraulic power unit should be modeled. The hydraulic power 

unit, with the hydraulic pump, accumulator, a set of directional control valves, and a 

hydraulic cylinder, was modeled to drive the hydraulic pitch actuator and to apply various 

faults in real applications. 

The baseline controller was achieved by determining the reference rotor speed to maintain 

a constant torque above the rated wind speed. The blade pitch angle was controlled by 

directional control valves that regulate the flows to the two cylinder sides. 



 

 56 

5.1.2. Fault modeling 

Up to 25% of the hydraulic system’s failures are caused by oil contamination with poor 

filtration. In this thesis, six types of faults in the pitch sensors and pitch actuators were 

considered. These faults include the bias value (PSB), fixed value (PSF) in pitch sensors, 

excessive friction (VEF), slit lock (VSL) on the spool, wrong applied voltage (VWV) and 

short-circuit (VCS) in the directional control valves. These faults result in sludge buildup 

on the surface of the spool and bore, which increases the possibility of excessive friction 

(VEF) and slit lock (VSL) on spool. An additional current through the solenoid overheats 

it and changes its coil impedance through the solenoid, which is subject to damage and 

causes wrong applied voltage (VWV) and short-circuit(VCS). 

5.1.3. Fault detection 

Here, a fault detection method is suggested based on a Kalman filter with a focus on the 

blade pitch actuator and sensor faults. In fault detection, a Kalman filter is used for 

residual generation and a threshold is used to detect the fault conditions. H∞ norm and a 

linear matrix inequality (LMI) technique are used to set a threshold for the residual 

evaluation to detect faults in the blade pitch actuators and sensors. The proposed method 

is shown to detect all faults in a case study with 6 fault types in pitch sensors and pitch 

actuators at the early stage. 

5.1.4. Fault diagnosis 

In fault diagnosis, a single blade pitch angle and a nacelle yaw angle measurement are 

employed to diagnose the faults in the blade pitch system via the inference method. Based 

on fault diagnosis logic, the fault diagnosis decision can be made by comparing the 

measured values of the blade pitch and the nacelle yaw motion. 

In an artificial neural network model, pre-trained ANN models are used for fault diagnosis 

after successful fault detection. In the diagnosis procedure, the training, validation, and 

ANN model tests uses numerical simulation results that were generated by Simo-Riflex 

combined with Java code. The accuracy in the validation procedure is approximately 98%. 

Additionally, the diagnostic performance, experimentally verified with the test procedure, 

shows a 96 % accuracy in each fault type and different environmental (wind and waves) 

conditions. 

5.1.5. Fault-tolerant control 

 Two fault-tolerant control schemes are suggested for reconfigurations using a virtual 

sensor for sensor faults and a shutdown for actuator faults. The FTC controller 

accommodates PSB and PSF faults by correcting the system output yc with the virtual 

sensor. These FTC schemes can accommodate single and multiple sensor faults. If the 
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FTC controller works well, then the system recognizes the nominal system and reacts in 

the same way as before. However, faults in the pitch actuator that are intolerable require 

another wind turbine FTC method. Once the actuator faults are diagnosed, an emergency 

shutdown of the wind turbine should be conducted to prevent other failures. 

5.1.6. Response analysis 

The difference in the pitch angles of the three blades is the main cause of rotor imbalance, 

which affects the yaw motion and tower base torsional bending moment. Additionally, 

rotor imbalance causes a blade root bending moment in the flap-wise direction that 

influences the aerodynamic thrust, platform pitch motion, and tower base fore-aft bending 

moment. 

PSB, VEF, and VWV had minor effects on the floating wind turbine responses compared 

with the other faults. The PSF, VCS and VSL faults lead to an increased aerodynamic 

thrust due to the difference in the blade pitch angle between the fault-free and faulty 

blades. The VSL– fault is the most severe fault in terms of the platform yaw motion and 

the tower base bending moment. The fault-induced frequency incurring from the VSL– 

fault is the 1P frequency of the wind turbine. If the fault continues, the damage in the 

wind turbine structure will be amplified. 

5.2. Original contributions 

This thesis includes original contributions to the development of the modeling, controller, 

FDD and FTC schemes for the blade pitch system of a spar-type floating wind turbine.  

• Blade pitch system modeling 

The modeling of a hydraulic pitch system is implemented and added to Java. In the first 

stage, the simplified pitch actuator is modeled to apply faults and conduct a global 

analysis. Then, a detailed hydraulic pitch actuator with a hydraulic power unit, including 

a pump, valves, and hydraulic cylinders, is developed to apply detailed fault conditions 

in the valve. 

• Wind turbine control system 

The blade pitch and generator torque controllers are implemented in Java, coupled with 

the Riflex, and tested to achieve satisfactory performance of blade pitching. In the blade 

pitch actuator model with the hydraulic power unit, the additional PI controller for the 

valve control is modeled. 

• Fault modeling in the pitch sensors and the pitch actuators 

Faults in blade pitch sensors and pitch actuators are considered and modeled in Java. In 

the blade pitch actuator, the mechanical and electrical faults in the valves are considered.  
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• Fault detection scheme 

The fault detection scheme is designed using a Kalman filter to present an estimation and 

fault detection strategies for different types of faults that might occur in the blade pitch 

system. To set a threshold, H∞ norm and linear matrix inequality (LMI) theories are used. 

• Fault diagnosis scheme 

Fault diagnosis schemes are designed using 2 different methods. The inference method 

with appropriate logics for fault diagnosis is developed in Java. The ANN-based fault 

diagnosis is developed in Python using the TensorFlow library. These two schemes are 

tested to achieve a satisfactory performance with a high overall accuracy for fault 

diagnosis. 

• Fault-tolerant controller 

A fault-tolerant controller using a virtual sensor is designed to achieve a satisfactory 

performance when all the control components function normally again after a fault occurs. 

This controller is added to Java. 

• Response analysis 

Simulations using Simo-Riflex are conducted to check the wind turbine performances and 

the dynamic responses, e.g., the blade root bending moments, platform motions, and 

tower base bending moments of floating wind turbines, under blade pitch fault conditions 

considering different ocean environmental load cases. 

 

5.3. Recommendations for future work 

The method established in this thesis refers to the FDD and FTC schemes for the blade 

pitch system of wind turbines on spar support structures. This model can be extended to 

other applications. 

• ANN-based FDD scheme for other wind turbine components 

- The FDD method can be applied to all wind turbine components to ensure damage 

tolerant operational control. The proposed FDD schemes based on the ANN methods can 

be applicable to other components, such as the drivetrain, generator, or yaw system in the 

wind turbine. In addition, the FDD scheme can be modified to diagnose multiple faults in 

the blade pitch system or other components. Further studies could also consider the 

application of the proposed methods by using data obtained from measurements during 

field operations of wind turbines. 
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• Wind estimation 

- Depending on the site where wind turbines are installed, strong wind loads, such as gusts 

or turbulent winds, acting on the rotor or blades can affect the lifetime of the wind turbine. 

Therefore, accurate wind estimation is essential for the reliable operation of the wind 

turbine for the characterization and prediction of wind resources as well as for the 

integration of wind power into the energy systems. Wind estimation can be conducted 

based on the measurement of the rotor rotational speed, the blade pitch angle, the 

generator torque and the power production with the following methods: a Kalman filter 

and an artificial neural network. 

• Model predictive control (MPC) 

As the size of the wind turbines increases, the blades and the tower become increasingly 

flexible. Control of the flexible parts in the wind turbines in the stochastic wind fields is 

very challenging. To enhance the robustness in the controller and the load alleviation 

strategies in the wind turbines, model predictive control can be applied to achieve better 

balancing of the tuning parameter and to predict its controlled outputs. An online 

optimization procedure based on a pre-defined cost function can be used to calculate the 

optimal control sequence. 

• Fault prognosis 

Condition and health monitoring is one of the main maintenance methodologies for wind 

energy industries. A fault in the mechanical components of wind turbines usually 

escalates as a smooth and crescent degradation of behavior and performance. If a suitable 

fault prognosis method with condition monitoring is used, operators can predict these 

incipient, or gradually developed faults. Afterwards, they can take action before causing 

major problems, premature breakdown or damage to other components. Additionally, it 

can estimate the remaining lifetime of the component. 
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Abstract. This paper presents a model-based scheme for fault detection of a blade pitch system 

in floating wind turbines. A blade pitch system is one of the most critical components due to its 

effect on the operational safety and the dynamics of wind turbines. Faults in this system should 

be detected at the early stage to prevent failures. To detect faults of blade pitch actuators and 

sensors, an appropriate observer should be designed to estimate the states of the system. 

Residuals are generated by a Kalman filter and a threshold based on H∞ optimization, and 

linear matrix inequality (LMI) is used for residual evaluation. The proposed method is 

demonstrated in a case study that bias and fixed output in pitch sensors and stuck in pitch 

actuators. The simulation results show that the proposed method detects different realistic fault 

scenarios of wind turbines under the stochastic external winds. 

1. Introduction

Maintenance and repair of offshore wind turbines are challenging because of the difficult access. 

Especially, faults occur unexpectedly in components of wind turbines such as blades, drivetrain or 

generator. Faults in wind turbines can directly influence the operational safety, dynamics and power 

production efficiency of wind turbines. An early-stage fault diagnosis technique should be conducted 

regarding maintenance and repair to prevent loss of energy production and economic values of wind 

turbines with active fault accommodation. Therefore, there is a growing demand for fault-tolerant 

control which can be achieved an efficient fault diagnosis and accommodation.  

The blade pitch system is crucial to adjust the blade pitch angle for controlling rotor speed, 

aerodynamic force, torque, and power. The main faults of the blade pitch system occur in its blade 

pitch sensor and actuator. These faults influence control feedback and result in imbalance loads on the 

rotor, shaft, and the main bearings. The detection of faults allows for fast accommodation to avoid 

catastrophic long term damages in the wind turbines. 

A model-based fault detection method comprises residual generation and evaluation based on a 

threshold method [1][2]. The residual signal must be close to zero in a normal condition. In a model-

based approach, the faults are detected typically by a residual signal, the value of which must be 

greater than zero in a fault condition. The threshold based on the H∞ norm that represents a maximum 

effect of the disturbance was employed by Zhang et al. [2]. Also, linear matrix inequality (LMI) was 

used to determine the optimal H∞ norm and to design a robust fault detection observer [2]. 
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Sensor fault detection and isolation in the blade pitch system, generator shaft and converter were 

simulated by Odgaard et al. [3]. Chen et al. [4] applied observer-based FDI schemes to the model 

presented by [3]. The simulations in those studies were performed in frequency domain analyses that 

have limitations on fast detection of the pitch sensor and actuator faults. Wang et al. [5] used a time-

domain approach that ensured fast fault detection for floating wind turbines. 

This paper deals with a fault detection method in blade pitch sensors and actuators of a wind 

turbine model by using Kalman filter. The case study is based on the NREL 5MW wind turbine model 

[6] supported by the spar buoy floater (OC3 Hywind) [7]. The dynamic behavior of the wind turbine 

model is simulated by using Simo-Riflex-Aerodyn (SRA) [8] and external control code for a PI pitch 

and torque controller. A subroutine is added to SRA to account for pitch actuator and sensor. The 

observer based on Kalman filter estimates the states of the system based on a mathematical model, 

sensor measurements, and input commands. Faults generated in blade pitch sensors and actuators can 

be detected by this observer based on residual generation and evaluation method by using a threshold. 

Faults in the blade pitch system are given in the input file of SRA to test the feasibility of the fault 

detection. Fault magnitude, type and occurrence time are decided in advance. The optimal threshold is 

computed by H∞ norm and the LMI approach.  

This paper is organized as follows: Section 2 describes the blade pitch system consisted of the 

baseline controller, pitch actuator, and pitch sensor. In Section 3 fault detection schemes of the blade 

pitch system are introduced with Kalman filter, H∞ norm and the LMI approach for threshold design. 

In Section 4, simulation results for the fault detection technique are presented by a residual method 

and fault decision by a fault detection criterion. The conclusions are presented in Section 5.  

2. Blade pitch system

Wind turbines should be designed to maximize generated power and ensure continued reliability

during operation. The operational region from the cut-in wind speed to the cut-out wind speed is 

divided into below-rated (Region II) and above-rated regions (Region III) of wind speed as illustrated 

in Figure 1. In order to optimize the productivity of a wind turbine in Region II and III, its power 

output must be maximized from the cut-in wind speed (Vcut-in, 3m/s) to the rated wind (Vrated, 11.4m/s) 

in Region II and constant until the cut-out wind speed (Vcut-out, 25m/s) in Region III achieved by 

adjusting the blade pitch angle and controlling generator torque with blade pitch and torque controller. 

A blade pitch system mainly comprises a PI controller, pitch actuator and pitch sensor. 

2.1.  Baseline Control system 

The baseline control system includes two separate controllers for regulating blade pitch angles and 

generator torque, respectively. In Region II, the control strategy is to capture the maximum power by 

maintaining optimal tip speed ratio [6]. The generator torque is inversely proportional to the filtered 

generator speed. Within this region, the blade pitch controller is not active and maximum power is 

achieved by adjusting the generator torque. 

Figure 1. Ideal power curve as a function of the wind speed 

In Region III, a constant torque variable pitch controller is used for floating wind turbines 

regarding stability issue [9] by modified gains of the controller. A blade pitch reference βref (t) is 

computed based on gain-scheduled proportional-integral (PI) controller as the function of the 

generator torque error e(t) based on a constant-torque strategy [10] in floating wind turbines.  
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The blade pitch control system of the wind turbine regulates the blade pitch angle and the generator 

speed. The values of control gains are described as follows 

)/1/(1)(,)()(,)()( 0,0, KIIPP KGKKGKKKGKK     (2) 

where KP (β) is the proportional gain, KI  (β) is the integration gain,  GK(β) is the gain correction factor, 

KK is the pitch angle where the gain function is equal to 0.5 for the NREL 5MW wind turbine [6]. 

Using the properties for the recommended response characteristics, the resulting gains are KP,0 = 

0.0188268s, KI,0 = 0.00806863, and KK = 0.11 [6]. The pitch rate limit is set from -8 to 8°/s based on 

General Electric (GE)’s long-blade test program. Also, the pitch range is also set from 0° to 90°. 

Figure 2 shows a block diagram of the baseline control system that can represent how the system 

interacts the blade pitch system with other systems by measuring the generator speed and pitch angle. 

The parameters can be described in Figure 2 that Ωr is the rotor speed, Ωg is the generator speed, Ωg,m 

is the measured generator speed, Ωg,rated is the rated generator speed, τg is the generator torque, τa is the 

aerodynamic torque, and βm is the measured blade pitch angle, and Vw is the wind speed. 

Figure 2. Block diagram of the baseline control system 

2.2.  Pitch actuator 

Regulating each blade pitch angle individually, a 2nd-order pitch actuator is modeled to the 5 MW 

turbine model. Consider the blade pitch system that describes a blade pitch reference from the PI 

controller and the pitch angle measurement 

refninini  222    , i = 1, 2 and 3          (3) 

where ωn is the natural frequency and ζ is the damping ratio of the actuator. The parameters are ωn = 

11.11 rad/s and ζ = 0.6 [1].  

Eq. (3) can also be represented as state space form including varying parameters as 
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where x(t) and u(t) are the state vector and input command by the individual blade pitch angle in the 

blade 1,2 and 3, respectively. A and B are system matrices: the state transition matrix and input 

matrix. 

The actuator model in Eq. (4) describes the dynamic behavior between a pitch reference from the 

controller and the measurement of a pitch angle. 

2.3.  Pitch sensor 

Since the turbine monitoring and control are based on sensor data during wind turbine operation, it 

is important that the acquired data should be accurate and reliable. A discretized control system 

including measurement noise is used in this paper. Measurement noise modeled as zero-mean 
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Gaussian distribution to the deterministic values according to the standard deviation is added to the 

pitch sensor model. Measurement equation for the sensor in the blade 1, 2 and 3, respectively is 

represented by a state space form as 
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where y(t) is the pitch angle measurement in the blade 1, 2 and 3 and C is the measurement matrix. 

3. Fault detection methods

Basic methods for establishing and evaluating residual are described in this section. Figure 3 shows

the basic structure of model-based fault detection. Based on the input command u(k) and measured 

output y(k), states and measurements are estimated by an observer. By comparing measured and 

estimated values, changes of a state are identified by a threshold. 

3.1.  Observer design based on discrete-time space model in the blade pitch system 

The continuous system (4) and (5) should be discretized for suitable numerical computing and 

employing observer. The discrete-time state space model of the blade pitch system with disturbance 

and faults in the pitch actuator and sensor can be transferred from the proposed system (4) and (5) that 

Euler discretization approach is applied. 
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where Φ = I + AT and Ψ = Γf = BT. Here, Φ, Ψ, H, Γd, Γf, Ξd and Ξf are known constant matrices in a 

discretized system. T is sampling time. The sensor noise is given as the uncertain disturbance 

including the process noise vector w(k) and measurement noise v(k). Regarding faults, fA(k) and fS(k) 

are the actuator fault vector and sensor fault value, respectively. 

The observer with fault-free case based on Kalman filter is designed as follows, 
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        (7) 

where )(ˆ),(ˆ kykx and K are the estimated state vector, estimated output and Kalman gain matrix. 

Figure 3. Scheme of observer-based fault diagnosis in the blade pitch system 

3.2.  Fault modelling 

A pitch actuator is internally controlled by a pitch controller connected to a pitch sensor. A fault 

occurring in pitch system can influence the closed-loop control system and the dynamics of a wind 

turbine. Faults of the blade pitch system are mainly categorized by the pitch sensor and actuator fault. 

The pitch sensor fault occurs by dust on encoder disc, miss-adjustment of the blade pitch bearing, 

beyond acceptable range of temperature and humidity or improper calibration. These causes can result 

in the unbalanced rotation of the rotor from the sensor bias and fixed outputs from last measurements.  
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The fault-free sensor is modeled as 

)()()( kvkkmes    (8) 

Bias (PSB) can be represented by a constant offset value that is added to the measurement from the 

sensor  

)()()()( kvkkk biasmes    (9) 

where βbias(k) is the pitch bias angle. 

Fixed output (PSF) of sensor is that keeps the last measurement after the fault occurrence described 

as 

)()( kk fixedmes      (10) 

where βfixed(k) is the pitch after the fault. 

The stuck actuator (PAS) is mainly due to valve blockage in a hydraulic pitch actuator system. 

Once one of the valves is blocked, the piston cannot move in pitch actuator and the ability to pitch the 

blade. This stuck actuator is described as 

0)1(,)1(  kk SA    (11) 

where βSA is the pitch angle for the stuck actuator. 

     These faults for the blade pitch sensor and actuator frequently appear and result in structural 

loading of the turbine due to rotor imbalance and affect the stability of the floating platform. 

Modeling the faults in the system, the state space model for the blade pitch system (6) should be 

updated. Table 1 describes the fault vectors in the actuator and values in the sensor. If a fault occurs in 

the pitch system, the fault value is applied in the pitch system equation in this algorithm. 

Table 1. Mathematical model of faults applied in numerical simulations 

   Location Type Fault value 

   Sensor 
Biased output (PSB) 0)( kAf , BiasS kf )(

Fixed output (PSF) 0)( kAf , )()()( kvkkf fixedS    

   Actuator Stuck (PAS) 
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3.3.  Residual generation and evaluation 

A residual r(k)  is difference between the measured and estimated values described as 

)(ˆ)()( kykykr      (12) 

A residual energy J(k) is defined by L2 norm which is described by root-mean-square (RMS) of 

residual as 
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Since the residual energy in fault cases includes fault information, the generated residual energy 

should be evaluated by fault detection logic. The residual determines the fault status by applying fault 

detection logic with threshold Jth in Eq. (14). 

fault,)(
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         (14) 

The threshold is generated with the uncertainty that is bounded. Hence, while the residual energy is 

less than this threshold, the fault-free state can be indicated. Otherwise, the fault can be detected. 
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3.4.  Threshold design 

Since residual energy defined by RMS of the residual is used for fault detection, H2 norm could be 

used for threshold design. H2 norm gives a characterization of the RMS-value of the system response 

to uncertain inputs. However, H∞ norm is more fundamental norm for systems and provides a measure 

of a worst-case system gain. H∞ optimization is a robust method considered various uncertainties, 

especially disturbance. It also measures the maximum effect of the disturbances on the residual. H∞ 

optimization problems are frequency-domain oriented as described in (15)  

))((sup)( 


jzH rdrd GG 
    (15) 

where Grd (z) is disturbance transfer function. 

As described in (16), residual energy J(k) is consisted of  rd  (k) and rf (k). 

2
)()()( krkrkJ fd   (16) 

where rd  (k) and rf (k) are residuals in disturbance and fault, respectively. 

If the system is a fault-free state, rf (k) should be zero. Then the residual energy is expressed as 

drdd vzkrkJ min22
)()()( 


G         (17) 

where the residual energy is bounded by 
2

vrd 
G .  min is determined in Appendix A with more 

details for the derivation of the threshold. 

Therefore, the threshold is set as 

dthJ min
.

 (18) 

4. Simulation results and discussion

In this section, a series of simulation results are presented where one blade has faults in the pitch

sensor and actuator. The results prove the performance of the fault detection technique under different 

fault scenarios with the baseline controller. Simulations for the wind turbine subjected to a stochastic 

wind speed are conducted under three different fault conditions: bias (PSB), fixed output (PSF) in 

sensors, and a stuck actuator (PAS). For these three cases, blade 3 is subjected to a fault at 200s. 

4.1.  Wind modelling 

Wind turbines operate under variable wind conditions such as a stochastic wind model presenting 

realistic winds. Turbsim [11] which is the turbulent wind simulator is used to generate realistic 

turbulent wind model and to test the turbine controllers in a more realistic scenario in this study. The 

wind model is based on the IEC 61400-3 design code. The stochastic wind data have the following 

characteristics in Table 2. As shown in Figure 4 that the range of the stochastic wind (12 – 24.2 m/s) 

covers the Region III, as its values range from 11.4 m/s up to the maximum of 25 m/s. 

Figure 4. Wind speed measured at hub height 

Table 2. Turbulent wind characteristics 

  Turbulence model Kaimal’s model 

  IEC wind type NTM 

  Wind profile type Power law profile 

  Grid size 160 × 160 

  Reference height 90m 

  Mean wind speed 17 m/s 

  Surface roughness length 0.0003 m 
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4.2.  Effects of sensor and actuator faults 

This section studies effects of faults in pitch sensors and actuators. Figure 5 shows simulation 

results in comparison with the pitch angle reference and measurement from a faulted blade. Each 

simulation has a duration of 400s where the first 200s shows the fault-free operation of the wind 

turbine. After 200s, sensor measurement difference caused by pitch sensor and actuator faults starts to 

occur. In PSB, an offset value (-3°) takes place between the reference and measurement corresponding 

to pitch bias. In the case of a PSF and a PAS, the pitch angle measurement shows a constant value that 

is the same amount of last measurement value before faults. The blade is seized that cannot respond to 

the change in the wind speed in the PAS case. However, a blade still operates as the pitch reference 

command in the PSF case that results in oscillating pitch angle. The difference between reference and 

measurement values makes the pitch angle oscillate irregularly with a large amplitude. Also, it makes 

pitch angle difference between a fault-free (blade 1, 2) and faulty (blade 3) blade. 

Figure 5. Comparison between pitch reference and measurement in the faulty blade (Blade 3) pitch 

corresponding (a) Sensor bias, (b) Fixed output in sensor and (c) Stuck actuator 

Figure 6 shows a pitch angle difference between a fault-free (blade 1) and faulty (blade 3) blade 

corresponding to a PSB, PSF, and PAS. The incorrect pitching of a blade due to sensor measurement 

difference causes asymmetry forces on blades affecting the rotor introducing an unbalanced rotation. It 

means that a fault occurred in sensors and actuators can affect rotor dynamics and platform motions of 

wind turbines.  

Figure 7 shows the changes of rotor speed, aerodynamic thrust, and platform yaw motion in a wind 

turbine due to PSB, PSF, and PAS after 200s. Incident variations in an aerodynamic thrust due to an 

unstable rotor speed directly affect instability of platform motions, especially a yaw motion. A PSF 

fault has a largest effect on dynamic behaviors compared with PSB and PAS because the magnitude of 

changes in aerodynamic thrust and platform yaw motion is highly increased. It concludes that 

structural loads are dangerously increased on the rotor, drivetrain or tower of the wind turbine. 

Figure 6. Measured pitch angles using sensors in fault-free (blade 1, green) and faulted (blade 3, black) 

blade pitch system under different fault cases corresponding (a) PSB, (b) PSF and (c) PAS 
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Figure 7. Effect of faults on (a) rotor speed, (b) aerodynamic thrust and (c) platform yaw motion 

under different fault cases corresponding PSB (blue), PSF (red) and PAS (black)  

4.3.  Fault detection results 

Fault detection for the blade pitch system takes into account the faults that influence dynamics of 

the wind turbine. Faults in actuators and sensors can be detected effectively by the residual energy and 

the threshold. When the residual energy is greater than the threshold, a fault alarm is set to 1 which 

means that a fault is detected. The residual energy should be normalized to adjust scale factor from 

data. The normalized residual energy JN is described as 

thN JtJtJ /)()(          (19) 

Figure 8 shows simulation results in connection with the blade pitch angle, normalized residual 

energy, and fault alarm. In Figure 8 (a), a blade pitch sensor bias value gradually occurs during 10s 

after 200s in the wind turbine corresponding to a sensor bias of -3° on blade 3. At the same time, the 

normalized residual exceeds the threshold, and then the observer detects the blade pitch bias fault 

immediately by setting to fault alarm in Figure 8 (b) and (c), respectively.  

Simulation results on PSF and PAS show the same pattern as well in Figures 9 and 10, respectively. 

These are illustrated that it is possible to detect a pitch offset on a blade 3 based on the fault detection 

algorithm. 

For reliability of this fault detection algorithm, 15 simulations runs are conducted for mean wind 

speeds from 11 to 25 m/s as an increment of 1m/s. As listed in Table 3, average fault detection time in 

sensor and actuator faults is within 4 seconds after fault generated. It means that this method can 

guarantee the fault detection at the early stage in the blade pitch system.  

Figure 8. Simulation results of the PSB case corresponding the blade pitch angle: (a) pitch angle 

measurement (blue) and estimation (black), (b) normalized residual energy and (c) fault alarm 
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Figure 9. Simulation results of the PSF case corresponding the blade pitch angle: (a) pitch angle 

measurement (blue) and estimation (black), (b) normalized residual energy and (c) fault alarm 

Figure 10. Simulation results of the PAS case corresponding the blade pitch angle: (a) pitch angle 

measurement (blue) and estimation (black), (b) normalized residual energy and (c) fault alarm 

Table 3. Detection time of each fault after fault occurrence 

   Location Type Average detection time 

   Sensor 
Biased output 3.7s 

Fixed output 1.3s 

   Actuator Stuck 1.1s 

5. Conclusion

Faults in the floating wind turbine should be detected at the early stage to prevent catastrophic

failures. The fault detection method is suggested based on an observer designed by Kalman filter focus 

on the blade pitch actuator and sensor faults. In a model-based approach, it is typical that a fault is 

detected by residual signal and threshold. A Kalman filter is used for residual generation, and H∞ norm 

and an LMI technique are used to set a threshold for residual evaluation for detecting faults in blade 

pitch actuators and sensors. The proposed method is shown to detect all three faults in a case study 

that bias and fixed output in pitch sensors and stuck in pitch actuators at the early stage. In the future, 

an algorithm to decide more accurate by the fault status to isolate described faults in the blade pitch 

system will be addressed. It can be used in the fault-tolerant control to avoid propagating damages in 

the floating wind turbine. 
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Appendix A. Threshold design 

A1. Residual generator in frequency domain 

Remember that for the state space form (4); the residual generator can be realized as a composition 

of Kalman filter (7). It transforms by setting )(ˆ)()( kkk xxe  , the residual system equations can be 

re-written as 
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    (20) 

Where KHΦΦ  , ddd KΞΓΓ   and fff KΞΓΓ  . 

Residual generator also can be defined in frequency domain as 

)()()()()()()( zfzzvzzrzrzr rfrdfd GG     (21) 

where ddrd zz ΞΓΦIHG  1)()(  and ffrf zz ΞΓΦIHG  1)()( . Grd (z) is the disturbance 

transfer function, and Grf (z) is the fault transfer function. 

A2. Linear matrix inequality (LMI) in a discrete-time system 

Consider a system (6) and observer (7). For a given constant γ > 0, system (6) is asymptotically 

stable and satisfies 
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There exists a matrix K and a symmetric matrix P > 0 such that 
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where γ is a design parameter named as the performance bound. 
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a b s t r a c t

This paper presents model-based fault detection, fault isolation, and fault-tolerant control schemes
focused on blade pitch systems in floating wind turbines. Fault detection, isolation, and accommodation
techniques are required to achieve high power capture efficiency and structural reliability in floating
wind turbines. Faults in blade pitch systems should be detected at an early stage to prevent catastrophic
failures. To detect faults of the blade pitch systems, a Kalman filter is designed to estimate the blade pitch
angle of the system. The fault isolation algorithm is based on inference methods and capable of deter-
mining the fault type, location, magnitude and time. The fault-tolerant controller based on a reconfi-
guration block with a virtual sensor and shutdown mode controls the floating wind turbine to avoid
unexpected external loads. The proposed methods are demonstrated in case studies with stochastic wind
and wave conditions that considering different types of faults, such as biases and fixed outputs in pitch
sensors and stuck pitch actuators. The simulation results show that the proposed methods can detect and
isolate multiple faults effectively at an early stage. Additionally, the effectiveness of the fault-tolerant
control systems for different load cases for single and multiple fault conditions is verified by numeri-
cal simulations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The wind energy industry has experienced rapid growth
because of environmental issues and the demand for sustainable
solutions. Offshore wind technology in particular has experienced
rapid development in recent years, with an annual cumulative
global installed capacity of 12.105 GW by the end of 2015 [1]. His-
torically, most wind turbines were installed in shallow water on
bottom-fixed substructures. Currently, offshore wind farms are
moving further into deeper water at an average distance of 43.3 km
[2] from the shore to capture the high wind energy density. In
deeper water, floating wind turbines are more cost effective than
bottom-fixed wind turbines. Development projects for floating
wind turbines are emerging, including the Hywind 2 project in
Scotland and the WindFloat Atlantic and Pacific project in the USA.

Floating wind turbines operate in stochastic ocean environ-
ments, such as turbulent winds, irregular waves, and significant

disturbances, and they might experience unexpected failures that
could lead to system interruptions and cause huge economic losses.
Therefore, maintenance and optimal operations of floating wind
turbines become critical issues because of limited access. The reli-
ability of an offshore wind turbine is even more important because
maintenance costs account for 30% of the overall cost of energy [3].
Faults in wind turbines occur in the sensors, actuators, and system
components, and faults with the potential to propagate to turbine
failures change the system behavior, the operational safety, and the
power production efficiency of the wind turbines. Consequently,
wind turbine failure rates should be reduced to ensure reliability
and decrease downtime.

A nominal controller may be inefficient and unstable under fault
conditions. To supervise potential faults in sensors, actuators or
other components, different control techniques are needed. These
methods are called fault detection and isolation (FDI) and fault-
tolerant control (FTC) techniques. The FDI technique can provide
the operator with valuable information on the type, location, and
magnitude of the fault. The FTC is a dynamic system that can
compensate for sensor and actuator faults by interacting with any
pre-existing nominal controllers to cancel the fault effects on the

* Corresponding author. Department of Marine Technology, Norwegian Univer-
sity of Science and Technology (NTNU), Trondheim, Norway.
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system. The FTC consists of reconfiguration blocks that are linked to
the nominal controller in fault conditions. The FDI and FTC tech-
niques use real-time sensor data to clearly detect, isolate and
accommodate the wind turbine faults to improve their reliability
and reduce the cost of repairs.

The FDI and FTC ofwind turbines have been subjected to intensive
research. FDI techniques are based on model-based methods and
signal-processing methods. For the model-based methods, the sys-
tem model could be mathematical or knowledge-based. Faults are
detected based on residual generation by state variables or parameter
estimations. Chen et al. [4] and Wei et al. [5] proposed model-based
FDI schemes using a diagnostic observer for the pitch system and
drive train faults to the benchmarkmodel. A diagnostic technique for
imbalance fault identificationbasedon aprobabilistic neural network
was presented by Malik et al. [6]. For signal-processing-based fault
detection, mathematical or statistical operations are performed on
the measurements. Fault detection and isolation schemes applying
data-driven designmethods to avoid difficultmodelingwere used by
Dong et al. [7]. Santos et al. [8] presented a multi-sensory system
combined with a data-mining solution for fault diagnosis and classi-
fication using support vectormachines inwind turbines. Ghane et al.
[9] and Feng et al. [10] demonstrated statistical change detection for a
gearbox model of a wind turbine using frequency analysis.

Fault-tolerant control methods can be divided into two cate-
gories: passive and active FTC methods [11]. In passive FTC systems,
the controllers arefixed control systemspredetermined to be robust
against faults and uncertainties throughout the entire system. Pas-
sive FTC methods are optimized while satisfying a specific fault
scenario, which implies that it has limited fault-tolerant capabilities
for various faults. Additionally, this approach does not need FDI
schemes and controller reconfiguration. Active FTCmethods react to
system component failures by reconfiguring control references so
that acceptable performance and stability of the system can be
maintained. An active FTC relies on an FDI scheme, which should
feed real-time information to accommodate the faults by reconfi-
guring control references in the system. Shi and Patton [12] pro-
posed an active fault-tolerant control approach based on an
extended state observer to an offshorewind turbinemodel. By using
a bank of virtual sensors and actuators, Seron et al. [13] suggested a
FTC scheme that manages sensor and actuator faults. Fan et al. [14]
proposed an FTC scheme that is a combination of model reference
adaptive controlwith neural network compensation. Vidal et al. [15]

presented a disturbance compensator for controllers to estimate
actuator faults and design fault-tolerant controllers.

Fault occurrence rates and their effects are an important factor in
thedesignofwind turbines. Carroll et al. [16] showed the results of an
analysis determining the failure rates for the repair of modern
offshore wind turbines and their sub-assemblies. According to this
study, the blade pitch systems have the highest failure rates among
the components and account for 13.3% of the total failures of wind
turbines. The blade pitch system is critical for pitch-regulated vari-
able-speed wind turbines, and the relevant faults change the aero-
dynamic load and power output immediately and thus affect the
response of the tower and support structures. The main faults of the
blade pitch system occur in the blade pitch sensors and actuators.
These faults influence the control feedback and result in imbalanced
loads on the rotor, shaft, and main bearings. The detection of faults
allows for fast accommodation to avoid catastrophic long-term
damage to the wind turbines. The effect of pitch system faults on
turbine performance and platform motion in wind turbine compo-
nents has been studied in recent years for specific fault scenarios
[17e19].

This paper focuses on model-based FDI and FTC methods in the
blade pitch sensors and actuators of a floating wind turbine model.
Faults generated in blade pitch sensors and actuators can be
detected by a Kalman filter based on residual generation and an
appropriate evaluation method. The simple cases of faults, such as
bias (PSB) and fixed values in pitch sensors (PSF) and stuck in pitch
actuators (PAS), are predetermined by the fault magnitude, type
and occurrence time to verify the feasibility of the FDI method. The
FTC for the fault scenarios considered in this paper provides a
complete solution for immediately accommodating faults. The
objectives of this work are as follows:

- Present detection and isolation strategies for different types of
faults that might occur in the blade pitch system;

- Design an active fault-tolerant controller to achieve satisfactory
performance when all control components are back to func-
tioning normally after a fault occurs; and

- Verify the effectiveness of the proposed FDI and FTC schemes
under blade pitch system faults by comparing the structural
load, response, and safety of floating wind turbines and
considering different wind and wave conditions.

This paper is organized as follows. Section 2 describes the
floating wind turbinemodel, baseline controller, blade pitch system
and faults. Section 3 introduces the fault detection, fault isolation,
and fault-tolerant control schemes for the blade pitch system.
Section 4 describes environmental load cases, such as waves and
aerodynamic loads, acting on the floating wind turbine. Section 5
presents the simulation results for the fault detection and isola-
tion technique according to a residual method and fault decision
and accommodation according to a fault detection criterion. Sec-
tion 6 provides the conclusions.

2. Methodology

2.1. Floating wind turbine concept

A floating wind turbine is modeled as a rotor, nacelle, tower,
floater, and mooring system. The model in this paper is based on
the variable-speed pitch-regulated NREL 5MW offshore wind tur-
bine model [20] supported by the spar buoy floater (OC3-Hywind)
[21] and three catenary mooring lines as shown in Fig. 1. The
specifications of the NREL 5MW reference wind turbine are pro-
vided in Table 1. Additionally, properties for the OC3-Hywind
floater are listed in Table 2.

Abbreviations

FDI fault detection and isolation
FTC fault-tolerant control
FWT floating wind turbine
LMI linear matrix inequality
MF# number (#) of multiple faults
NC nominal PI control
NREL National Renewable Energy Laboratory
NTM normal turbulence model
NWP normal wind profile model
PAS stuck in pitch actuator
PSB bias value in pitch sensor
PSF fixed value in pitch sensor
TF time of fault occurrence
TFD time of fault detection
TFI time of fault isolation
TFTC time of fault-tolerant control
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2.2. Fully coupled numerical model

The dynamic behavior of the floating wind turbine model is
simulated with the Simo-Riflex-Aerodyn software (SRA) [22],
which is an aero-hydro-servo-elastic code for fully coupled
nonlinear time-domain numerical simulations of offshore wind
turbines while simultaneously considering the aerodynamics, hy-
drodynamics, structural dynamics and mooring line dynamics with
an control code for a proportional-integral (PI) pitch and a torque
controller under various operational conditions. Models coded by
JAVA are added to the SRA to account for the pitch actuator and
sensor. Fault data in the blade pitch system are provided in the
input file of the SRA to test the feasibility of the fault detection.

2.3. Baseline controller

The baseline control system includes two separate controllers
for regulating blade pitch angles and generator torque. The oper-
ational region is divided into below-rated and above-rated regions
of wind speed. Below the rated wind speed within low wind
speeds, the control strategy is to capture the maximum power by

adjusting the generator torque and maintaining the optimal tip
speed of the blades [20]. Within this region, the blade pitch
controller is not active and maximum power is achieved by
adjusting the generator torque and then the rotation speed.

Above the rated wind speed, the blade pitch system controls the
blade pitch angle to keep aerodynamic loads within specified limits
by producing a rated power output at a constant rotor speed. A
constant-torque variable pitch controller is used for floating wind
turbines to improve the dynamic response of the system and
reduce the motion of the floater response to stability issues [23] by
modifying the gains of the controller [21]. A blade pitch reference is
calculated based on the gain-scheduled PI controller as a function
of the generator torque error based on a constant-torque strategy
[21] for floating wind turbines.

2.4. Blade pitch system

A commonly used blade pitch system consists of three identical
independent pitch actuators and sensors with PI controllers.
Regulating each blade pitch angle individually, a 2nd-order pitch
actuator is modeled for the 5MWwind turbine. Consider the blade
pitch system that describes a blade pitch reference from the PI
controller and the pitch angle measurement:

€bi þ 2zun
_bi þ u2

nbi ¼ u2
nbC ; i ¼ 1;2 and 3ðthe blade numberÞ

(1)

where z is the damping ratio, un is the natural frequency of the
actuator, and (_) represents the time derivatives. The parameters are
un¼ 11.11 rad/s and z¼ 0.6 [24]. Additionally, bi is the ith blade
pitch angle, and bC is the blade pitch command.

The recorded measurements must be accurate and reliable
because the turbine monitoring and control are based on sensor
data during wind turbine operations. A discretized control system
that includes process and measurement noises are used in this
paper. Process and measurement noises in a state-space model of
the blade pitch system described by Eq. (2) are zero-mean Gaussian
white noises.
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where x(t), u(t) and y(t) are the state vector, input vector and
measurement vector by the blade pitch angle, respectively; and A, B

Fig. 1. Schematic view of the floating wind turbines.

Table 1
Properties for the NREL 5MW wind turbine [20].

Rated Power (MW) 5
Rotor orientation, Configuration Upwind, 3 blades, horizontal axis
Rotor diameter (m) 126
Hub height from the mean water level (m) 90
Cut-in, rated, cut-out wind speed (m/s) 3, 11.4, 25
Cut-in, rated rotor speed (rpm) 6.9, 12.1
Max pitch rate (�/s) 8
Gearbox ratio 97

Table 2
Properties for the OC3-Hywind floater [21].

Water depth (m) 320
Draft (m) 120
Diameter above taper (m) 6.5
Diameter below taper (m) 9.4
Center of mass (m) (0, 0, �89.9115)
Mass, including ballast (kg) 7.466� 106

Mass moment of inertia, Ixx and Iyy (kg$m2) 4.229� 109

Mass moment of inertia, Izz (kg$m2) 1.642� 108
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and C are system matrices representing the state transition, input
and measurement matrices, respectively. Uncertain disturbances
are given, including the process noise vectorw(t) andmeasurement
noise vector v(t). This blade pitch system is observable, controllable
and stable according to the observability matrix, controllability
matrix, pole and Nyquist diagram from Chen [25].

2.5. Fault description

According to the wind turbine reliability analyses [16], the most
common faults occur in the blade pitch system. A fault occurring in
the blade pitch system can influence the closed-loop control sys-
tem and the dynamics of a wind turbine. The incorrect pitch of a
blade resulting from faults causes asymmetrical forces on the
blades and lead to unbalanced rotation in the rotor. Therefore, a
fault occurring in the sensors and actuators can affect the system
characteristics or lead to inoperable conditions that have resulted
in hydraulic leakage, valve blockage or pump blockage [24]. There is
a high possibility that a blade pitch system under multiple fault
conditions in blades cannot perform a role of an aerodynamic brake
properly while large wind loads are acting on the rotor.

Faults of the blade pitch system are mainly categorized by the
pitch sensor and actuator fault. To model the faults, the pitch
actuator and sensor equations are updated. In this paper, three
types of faults in the pitch sensor and actuator of the blade system
can be considered: bias value (PSB), fixed output (PSF) in the pitch
sensor and stuck actuator (PAS) as shown in Cho et al. [26]. PSB can
be represented by a constant offset value that is added to the
measurement from the sensor. PSF of the sensor retains the last
measurement after fault occurrence. PAS is mainly caused by valve
blockage which is mainly due to debris that could clog the valve in
the flow in the hydraulic pitch actuator and represents one of the
hazards announced by the fault analysis with a level of occurrence
and severity by Esbensen and Sloth [24].

Faults to the blade pitch sensor and actuator frequently occur
and result in the structural loading of the turbine because of rotor
imbalance, and they affect the stability of the floating platform.
Other faults, such as hydraulic leakage and high air content in oil,
can occur only by changing the natural frequency and damping
ratio in the actuator. Therefore, these uncritical topics are not
evaluated in this paper.

3. Fault detection, fault isolation and fault-tolerant control
methods

Fig. 2 shows the control procedure for a pitch-regulated wind
turbine. The baseline controller regulates the wind turbine power
production through blade pitch and generator torque control under
normal operational conditions. The condition monitoring system
with sensors measures the blade pitch angle, tower acceleration, and
rotor speed. By using a fault detection and isolation algorithm, the
system can detect, isolate, and accommodate faults at an early stage.
Upon fault detection, the fault-tolerant controller selects a remedial
action based on the protection strategy. If the fault is tolerable, then it
can be accommodated by a signal correction in the case of sensor
faults. If thesituation is intolerableandthewindturbine isnot ina safe
state, then the controller brings the turbine to a shutdownmode.

3.1. Fault detection

In fault detection, faults in a system and their detection time are
determined. Model-based approaches detect faults by comparing
the generated residual from the measured pitch angle and
threshold. The basic methods for establishing and evaluating the
residual are described in this section. Currently, observer methods

are the main model-based approaches for detecting faults. In this
paper, a Kalman filter, which is a classical method used in fault
detection and other fields, is used. Fig. 3 shows the basic structure
of model-based fault detection. Based on the input command u(k)
and measured output y(k), the states and measurements are esti-
mated by an observer. By comparing the measured and estimated
values, changes of a state are identified by a threshold.

3.1.1. Observer design based on the discrete-time space model
The discrete system is more suitable for numerical computing

and employing an observer than the continuous system. The
discrete-time state-space model of the blade pitch system with
disturbance and faults in the pitch actuator and sensor can be
transferred from the proposed system (2) where the Euler dis-
cretization approach is applied.

xðkþ 1Þ ¼ FxðkÞ þJuðkÞ þ Gf fAðkÞ þ GdwðkÞ
yðkÞ ¼ HxðkÞ þ Xf fSðkÞ þ XdvðkÞ (3)

whereF¼ Iþ AT,J¼ BTandH¼ C. Here,F,J,H,Gd,Gf,Xd, andXf

are known constant matrices in a discretized system. In addition, T
is sampling time and fA(k) and fS(k) are the actuator and sensor fault
vectors described in Cho et al. [26], respectively.

The observer with a healthy case based on the Kalman filter
method is designed as follows:

bxðkþ 1Þ ¼ FbxðkÞ þJuðkÞ þ K
�
yðkÞ �HbxðkÞ�byðkÞ ¼ HbxðkÞ (4)

where bxðkÞ; byðkÞ and K are the estimated state vector, estimated
output vector, and Kalman gain matrix, respectively.

3.1.2. Residual generation and evaluation
A residual r(k) is the difference between the measured and

estimated values described as follows:

rðkÞ ¼ yðkÞ � byðkÞ (5)

A residual energy J(k) is defined by the L2 norm [27], which is
described by the root-mean-square (RMS) of the residual as follows:

JðkÞ ¼ krðkÞk2;k ¼
Xn
i¼1

rTi ðkÞriðkÞ
!1=2

(6)

Because the residual energy in fault cases includes fault infor-
mation, the generated residual energy should be evaluated by fault
detection logic. The residual determines the fault status by applying
fault detection logic with threshold Jth.

JðkÞ< Jth; fault� free
JðkÞ> Jth; fault

(7)

The threshold is generated with bounded uncertainty. Hence,
when the residual energy is less than this threshold, the fault-free
state is indicated. Otherwise, the fault can be detected. The
threshold design procedure using H∞ optimization and linear ma-
trix inequality (LMI) was described in Cho et al. [26] with more
details for the derivation.

If the system is a fault-free state, the residual energy is
expressed as

JðkÞ ¼ k rdðkÞ k2 � k GrdðzÞ k∞k v k2 � gmindd (8)

where rd (k) is a disturbance residual, Grd (z) is a disturbance
transfer function, gmin is a minimum design parameter for a
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performance bound and dd is a measurement noise boundary. Grd

(z) is defined in frequency domain and gmin is calculated according
to LMI in a discrete-time system described in Cho et al. [26]. In
addition, dd is defined by sensor resolution.

Therefore, the threshold is set as follows:

Jth ¼ gmindd: (9)

3.2. Fault isolation

After a successful fault detection, the main challenge is fault
isolation. Fault isolation means determining the type, location, and

magnitude of a fault following detection. The fault isolation deci-
sion can be made after the residual generator has generated a
detection alarm that indicates the occurrence of a fault as presented
in Fig. 3. This paper suggests a fault isolation algorithm based on a
Kalman filter using inference methods [4,28].

Most wind turbines have a single pitch sensor in each blade. As
shown in Fig. 4 (a), PSF faults cannot be easily distinguished from
PAS faults solely by measurements of the pitch angle. However, the
nacelle yaw motions are completely different between the two
faults illustrated in Fig. 4 (b). The reason why nacelle yaw motions
are different under PSF and PAS faults depends on whether the
pitch actuators are still working or not. The blade is seized in the
PAS case and cannot respond to the pitch command (control value).
However, the blade can still pitch in the PSF case, but the pitch

Fig. 2. Control procedure for a wind turbine with FDI and FTC.
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sensor gives a fixed value and the pitch command is affected by
faults, which results in an oscillating irregular pitch angle with a
large amplitude than PAS. This leads to a larger yaw motion under
PSF, as shown in Fig. 4. The pitch command from the pitch
controller can be influenced by the difference between reference
and measurement values that makes a pitch angle oscillate and
consequently a wind turbine unstable that results in the unbal-
anced rotor. Alternatively, fault isolation can be conducted using
measurements of nacelle yaw motions.

Fig. 5 shows an algorithm for fault isolation using the single
blade pitch angle and nacelle yaw angle measurements. Initially,
the trend of the pitch measurement bi,k must be determined. If the
faulty sensor keeps outputting bi,kþ1�bi,k¼ 0, then the algorithm
decides that the fault is PSF or PAS. Then, by comparing the stan-
dard deviation of the nacelle yaw angle in normal sYaw,n and fault
conditions sYaw,f, the two faults can be differentiated. Once sYaw,f is
greater than sYaw,n, then the algorithm makes a decision of PSF in
the pitch system. Otherwise, the algorithm indicates that there is

PAS in the pitch system. To identify PSB, the estimation error should
be determined, which can be performed by the residual of the pitch
angle from the residual generator. If the fault estimation errors are
bounded in a certain range d, then the algorithm makes a decision
that the fault is a PSB.

In the verification procedure, 300 simulations of each fault case
were conducted with a duration of 300 s to evaluate the algorithm
of fault isolation. The location, magnitude and time of the faults
were randomly generated. Once a fault alarm occurred, this algo-
rithm isolated 99% of these faults after 11.5 s. Then, the algorithm
makes a fault isolation decision regarding the faults generated from
Fig. 6. PSF and PAS can be distinguished by the standard deviation
values of the nacelle yaw angle sYaw.

3.3. Fault-tolerant control

If the sensors and actuators experience faults or are no longer
available, then the controller cannot provide the correct control

Fig. 3. Scheme of observer-based fault detection in the blade pitch system.

Fig. 4. Comparison of the effects of PSF and PAS faults on the blade pitch angle and nacelle yaw.
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actions for the system. To minimize the potential risks of unex-
pected faults, new control techniques are needed to manage the
faulty system before maintenance is conducted. In this paper, a
fault-tolerant control (FTC) scheme is suggested that includes a
reconfiguration block and a nominal PI controller after successful
fault isolation. The main concept underlying this FTC scheme is to
reconstruct the system output yc to replace the faulty measure-
ment yf. Because faulty measurement yf cannot be used with the
existing controller, a configuration block must be found that
generates a suitable signal yc from yf and uf. Fig. 7 shows the block
diagram of the control reconfiguration scheme for sensor and
actuator faults.

In the scheme, virtual sensors [11] are used to represent the
main part of the reconfiguration block for the FTC to conduct signal
corrections. The virtual sensor can be used to calculate state vectors
by replacing the measurements from the faulty system. The virtual

sensor is defined by the state-space model as follows:

bxVðkþ 1Þ ¼ FbxVðkÞ þJucðkÞ þ KV

�
yf ðkÞ �Hf bxðkÞ�

ycðkÞ ¼ HVbxVðkÞ þ Pyf ðkÞ
uf ðkÞ ¼ ucðkÞ

(10)

where P is a design parameter, and for P¼ 0, only observed values
are used; and (v) represents values in the virtual sensors. The ma-
trix of Hv is set as equal to measurement matrix H in Eq. (3). If the
fault detection scheme detects any faults in the pitch sensor of the
ith blade, the value in Hv allocated by the faulted sensor has been
replaced by 0 in Hf which means that this sensor is no longer
available anymore.

Fig. 8 shows the reconfiguration with the virtual sensor after
faults. The sensor faults are reflected by the matrix Hf. The virtual

Fig. 5. Algorithm of fault isolation with a single pitch sensor.

Fig. 6. Successful rates of fault isolation at each number of steps.
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sensor estimates the state of the faulty system bx f and replaces the
faulty system output. This system output yc is improved by using
the available sensor values and observing only the difference be-
tween the nominal and the faulty output. If this virtual sensor
works well, then the state of the virtual sensor xv is equivalent to
the state of the nominal system x. Hence, the controller recognizes
the same system and reacts in the same way as before.

Actuator faults are critical to the safety of wind turbines when
leaving the pitch actuator inoperable regardless of the controller
command as shown in Esbensen et al. [24]. Then, the blade cannot
be pitched effectively at the large aerodynamic torque above the
nominal value. Therefore, pitch actuator faults require a rapid
shutdown of the wind turbine as a standard from Jonkman et al.
[20]. Once PAS faults are isolated, a safe and fast shutdown of the
turbine could be reconfigured to continue power production in
response to other faults.

4. Load cases

Floating wind turbines are exposed to a variety of loads in their
lifetime. Critical environmental conditions, such as waves, wind
gusts, turbulence, and sudden wind direction shifts, are another
source of transient loading. For floating wind turbines, appropriate
wave conditions must be combined with the wind conditions.

The floating wind turbine operates under variable wind condi-
tions, such as a stochastic wind model that present realistic wind
andwave loads. Thewindmodel is based on the IEC 61400-3 design
code [31]. A turbulent wind field Uw (x, y, z, t) is commonly
modelled by a mean wind and a fluctuating component as
described by

Uw (t)¼Um þ Uf (t) (11)

where Um is the mean wind speed represented as the normal wind
profile model (NWP) and Uf is the fluctuating wind for the normal
turbulence model (NTM). The turbulent wind Uw is modeled using
Turbsim [29] to generate realistic turbulent wind fields according

to the Kaimal turbulence model including the turbulence intensity
with IEC Class C. The turbulence intensity is a function of the wind
speed at the hub height [30,31]. The wave condition is modeled by
the JONSWAP wave spectrum. The significant wave height (Hs) and
peak period (Tp) are set based on their correlation with wind speed
for the Statfjord site in the northern North Sea.

The load cases used to study the dynamic response of the
floating wind turbine are given in Table 3. Four independent sim-
ulations for turbulent wind and irregular waves were conducted by
representing the mean value and standard deviation of the dy-
namic response for 1-h ensembles.

5. Simulation results and discussion

In this section, a series of simulation results are presented to
investigate the performance of the proposed FDI and FTC schemes.
Simulations of the wind turbine subjected to a stochastic wind
speed are conducted under three different fault conditions: PSB,
PSF, and PAS on a single blade and multiple blades.

5.1. Fault detection, fault isolation, and fault-tolerant control with a
single fault

5.1.1. Fault detection and isolation results
Faults in the blade pitch system influence the structural dy-

namics of the wind turbine. Faults in actuators and sensors can be
detected effectively by the residual energy and the threshold.When
the residual energy exceeds the threshold, a fault alarm is set to 1,
which means that a fault is detected. The residual energy should be
normalized to adjust the scale factor from the data. The normalized
residual energy JN is described as follows:

JNðkÞ ¼ JðkÞ=Jth (12)

Fig. 9 shows simulation results in connection with the blade
pitch angle, normalized residual energy, a fault detection alarm and
fault isolation under LC4. In Fig. 9 (a), a PSB occurs abruptly after
250 s in the wind turbine corresponding to a sensor bias of �3� on

Fig. 7. Control reconfiguration for sensor and actuator faults.
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blade 3. Concurrently, an offset value (�3�) occurs between the
reference and measurement corresponding to pitch bias. The
normalized residual exceeds the threshold, and then the observer
detects the blade pitch bias fault immediately by setting to the fault
alarm in Fig. 9 (b). As shown in Fig. 9 (c), the PSB fault can be iso-
lated by the fault isolation algorithm after successful detection.

In the case of PSF and PAS, the pitch angle measurement shows a
constant value that is the same as the last measurement value
before the faults. The difference between the reference and mea-
surement values makes the pitch angle oscillate irregularly at a
large amplitude and the pitch angle difference between fault-free
(blades 1, 2) and faulty blade (blade 3) occur as unbalanced rota-
tion. The PSF and PAS simulation results show the same pattern in
Figs. 10 and 11, respectively, which indicate that faults on blade 3
can be detected based on the fault detection and isolation
algorithm.

Cho et al. [26] studied a series of simulations for the reliability of
this fault detection algorithm that can detect sensor and actuator
faults within a reasonable time after a fault is generated. Therefore,
this method can guarantee fault detection at an early stage in the
blade pitch system.

5.1.2. Structural response of the floating wind turbine under fault
conditions

In this section, numerical results for the fault effects in pitch
sensors and actuators are presented. The main objective of the FDI
and FTC systems is to avoid unexpected mechanical loads and
maximize energy capture. The simulations are conducted to eval-
uate the proposed FDI and FTC schemes against different fault
scenarios. Each simulation has a 1-h duration to reduce the sto-
chastic uncertainty for each load case.

Ocean environmental loads, such as wave and wind loads, excite
the structural dynamics of the floating wind turbine. The responses
are normalized to adjust the scale factor according to the

Table 3
Wind and wave conditions.

Load case Uw (m/s) Turbulent model Hs (m) Tp (s)

1 11.2 IEC Class C 3.2 10.0
2 14 3.62 10.30
3 17 4.2 10.50
4 20 4.8 10.80

Fig. 8. Reconfiguration with a virtual sensor after sensor faults.
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corresponding values from the fault-free case as described

RVnorm ¼ RVi

RVf�free
i ¼ 1;2;3;4;5;6 (13)

where RVnorm is the response value normalized by the means and
standard deviations of the fault-free case RVf-free, and RVi is the ith
response value (1: NC under PSB, 2: FTC under PSB, 3: NC under PSF,
4: FTC under PSF, 5: NC under PAS, and 6: shutdown under PAS).

In particular, the mean and standard deviation (STD) values are
calculated for the structural dynamics. Fig. 12 shows the effects of a
series of fault cases on the normalized mean and STD of the surge,
roll, pitch, and yaw motions of a floating wind turbine. The results
show that faults affect a significant amount of platform yaw mo-
tions compared with the surge, roll and pitch motions because the
incident variations in an aerodynamic thrust caused by an unbal-
anced rotor speed directly affect the instability of platform motion,
especially the yaw motion as described by Cho et al. [26].

Fig. 9. Simulation results of the PSB case corresponding to the blade pitch angle under LC4: (a)normalized residual energy, (b) fault detection alarm, and (c) fault isolation.

Fig. 10. Simulation results of the PSF case corresponding to the blade pitch angle under LC4: (a) normalized residual energy, (b) fault detection alarm, and (c) fault isolation.

Fig. 11. Simulation results of the PAS case corresponding to the blade pitch angle under LC4: (a) normalized residual energy, (b) fault detection alarm, and (c) fault isolation.
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In the case of PAS, the actuator fault cannot tolerate the
reconfiguration block. In cases of platform yaw motion of the FTC
in a pitch actuator fault, the fault accommodation is a shutdown to
stop wind turbine operations. In this procedure, the standard
deviation should be reduced significantly. However, the mean
value has been changed because of the unbalanced pitch
arrangement even if a wind turbine has undergone shutdown
states. As shown in Fig. 13, the yaw motion with shutdown pre-
sents a positive stable condition. However, the rotor has under-
gone an unbalanced state because the faulted blade has been
seized and the other blades are feathered. Although the results of
the nominal and fault-tolerant controllers are similar, changing

the dimensionless value generates more considerable differences
as described in Table 4. The motions and structural loads of wind
turbines can decay to zero by the emergency shutdown. Jiang et al.
[18] showed that the dynamic response of wind turbines from the
beginning of the shutdown can be unstable but ultimately decay
over time.

The PSF fault has a greater effect on dynamic behavior than the
PSB and PAS faults. In fault accommodation, the mean and STD
results demonstrate that the proposed FTC schemes with signal
correction for sensor faults have good performance. The platform
motions with FTC schemes in PSB and PSF faults have nearly
equivalent values as the fault-free case, which are close to 1. The

Fig. 12. Mean values and standard deviations (STDs) of the platform surge, roll, pitch, and yaw motions for the floating wind turbine under PSB, PSF and PAS fault conditions with
nominal PI and fault-tolerant controllers (blue line: fault-free; dark blue bar: nominal PI controller with PSB; blue bar: FTC controller with PSB; cyan bar: nominal PI controller with
PSF; yellow bar: FTC controller with PSF; orange bar: nominal PI controller with PAS; and brown bar: shutdown). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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signal correction brings the floating wind turbine back to normal
operational conditions, which means that the FTC scheme with FDI
is apparently able to accommodate the fault effects on the pitch
system.

Fig. 14 shows the platform roll and yaw motions in sensor fault
cases for LC4 to check the effectiveness of the FTC for sensor faults.
After 250 s, the FDI and FTC algorithms can detect and isolate the
faults precisely and conduct signal correction as fault accommo-
dation for faulty sensors, which means that the fault accommoda-
tion successfully eliminates unbalanced rotation in the rotor during
the PSB and PSF faults. However, unbalanced rotation still occurs in
the rotor when a nominal PI controller is used during the faults and
leads to instability in the floating wind turbine.

Additionally, the effect of faults on the tower during fault ac-
commodation with the proposed FTC schemes should be pre-
sented. Fig. 15 shows a comparison of the normalized mean and
STD for the tower torsional, fore-aft, and side-to-side bending
moments. The bending moments are calculated by the local co-
ordinate system for each component. The results show that the
torsional moment is more affected by faults than the fore-aft and
side-to-side bending moments. The torsional moment under fault
conditions is significant because of the unbalanced aerodynamic
loads on the rotor. The PSF fault has a much greater effect on the

vibration (STD) than the two other fault cases because of the large
oscillation. In fault accommodation, the mean and STD results of
the FTC schemes using signal correction from the redundancy
sensor demonstrates better performance than the nominal PI
controller as shown in Fig. 15. The bending moments present
nearly equivalent values for both the fault-free case and FTC
schemes. In the case of PAS, the bending moments decay to zero
with the shutdown.

Fig. 16 illustrates the torsional moment and side-to-side
bending moment on the tower base in sensor fault cases for LC4
to validate the pitch FTC scheme from 230 to 330 s. After 250 s the
FDI and FTC algorithms can detect and isolate the fault precisely
and conduct successful signal correction to eliminate the unbal-
anced rotation during the PSB and PSF faults. The bendingmoments
when a nominal PI controller without the FTC is used increase in
the two PSB and PSF cases because of the rotor imbalance and the
growth in the aerodynamic thrust force.

5.2. Fault detection, fault isolation, and fault-tolerant control with
multiple faults

In this section, the performance of the FDI and FTC schemes is
demonstrated for cases with multiple fault scenarios. Simulations
for the floating wind turbine subjected to various load cases are
conducted considering simultaneous PSB and PSF faults in multiple
blades. Faults in actuators and sensors can be detected effectively
by the residual energy and the threshold.

Fig. 17 shows simulation results in connection with the
normalized residual energy, fault alarm, and fault isolation. A PSB
corresponding to a sensor bias of �3� abruptly occurs on blade 3
after 100 s, and then a PSF occurs on blade 2 after 200 s. Concur-
rently, the normalized residual is greater than the threshold, and
then the observer detects the PSB and PSF faults immediately by

Fig. 13. Platform yaw motion after PAS fault (blue line: fault-free; green line: nominal controller with PAS; and red line: shutdownwith PAS). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Mean and dimensionless values of platform yaw under LC4.

Yaw (Mean) Yaw (Dimensionless)

Fault-free �0.1458 1
NC in PAS fault �0.1303 0.8937
Shutdown in PAS fault �0.8083 5.55439
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Fig. 14. Comparison of the platform pitch and yaw motions under PSB and PSF fault conditions with nominal PI and fault-tolerant controllers under LC4.

Fig. 15. Mean values and standard deviations (STDs) of the torsional, fore-aft and side-to-side bending moments for the floating wind turbine under PSB, PSF and PAS fault
conditions with nominal PI and FTC controllers (blue line: fault-free; dark blue bar: nominal PI controller with PSB; blue bar: FTC controller with PSB; cyan bar: nominal PI
controller with PSF; yellow bar: FTC controller with PSF; orange bar: nominal PI controller with PAS; and brown bar: shutdown). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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setting to fault alarm as shown in Fig. 17 (a) and (b), respectively.
Based on the fault isolation algorithm described in Section 3.2, the
faults are isolated as shown in Fig. 17(c). These results indicate that
the presentedmethod can guarantee the FDI at an early stage in the
blade pitch system.

Figs. 18 and 19 show the platform yaw motion and torsional
moment in the tower base for LC4 in PSB and PSF faults at 100 s and
200 s, respectively. The FDI algorithm can detect and isolate faults
precisely within 11.5 s. After a successful FDI, the FTC controller
with virtual sensors conducts signal correction after 111.5 s. The
results indicate that yaw motion with the FTC controller converges
to fault-free yaw motion when the FDI is complete. In PSB faults
without the FTC controller and only a nominal PI controller, the
imbalanced loads act on the rotor representing the unstable values

of platform yaw.
Moreover, the occurrence of a PSF fault in blade 2 after 200 s

decreases of the stability of the wind turbine. More precisely, the
FTC scheme with the FDI demonstrates a highly effective fault ac-
commodation. After the FDI, the FTC controller is well activated in
211.5 s and control is gradually restored as evidenced by the
convergence of the platform yaw in the FTC (red line) case with the
line of the fault-free case. However, without the FTC, two faults are
observed in the rotor in blades 2 and 3; therefore, the platform yaw
with a nominal PI controller is magnified over time to a greater
degree than that observed with fault-free yaw motion. The
torsional moment in the tower base in Fig. 19 presents similar
behavior in Fig. 18. Those figures represent the effectiveness of the
FTC, which means that the system can return to a normal state.

Fig. 16. Comparison of the torsional and side-to-side bending moments under PSB and PSF fault conditions with nominal PI and fault-tolerant controllers under LC4.

Fig. 17. Simulation results of the PSB and PSF cases corresponding to the blade pitch angle: (a) normalized residual energy, (b) fault detection alarm and (c) fault isolation under LC4.
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6. Conclusions

Fault detection and isolation techniques should be applied to
floatingwind turbines for the detection and isolation of unexpected
faults at an early stage to prevent catastrophic failures. Here, a fault
detection method is suggested based on a Kalman filter with focus

on blade pitch actuator and sensor faults. In fault detection, a
Kalman filter is used for residual generation and a threshold is used
for detecting fault conditions in the blade pitch actuators and
sensors. In fault isolation, a single blade pitch angle and nacelle yaw
anglemeasurement are employed to isolate faults in the blade pitch
system by the inference method. Based on fault isolation logic, the

Fig. 18. Comparison of the platform yaw motion under PSB and PSF fault conditions with nominal PI and fault-tolerant controllers under LC4.

Fig. 19. Comparison of the tower base torsional moment under PSB and PSF fault conditions with nominal PI and fault-tolerant controllers under LC4.
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fault isolation decision can be made by comparing the measure-
ment values of the blade pitch and nacelle yaw motion.

Two fault-tolerant control schemes are suggested for reconfi-
gurations using a virtual sensor for sensor faults and shutdown for
actuator faults. The FTC controller accommodates the PSB and PSF
faults by correcting the system output yc with the virtual sensor.
These FTC schemes can accommodate single and multiple sensor
faults. If the FTC controller works well, then the system recognizes
the nominal system and reacts in the sameway as before. However,
faults in the pitch actuator that are intolerable require another
wind turbine FTC method. Once the PAS faults are isolated, an
emergency shutdown of the wind turbine should be conducted to
prevent other failures.

The results of the numerical simulations clearly indicate the
effectiveness of the proposed FDI and FTC schemes for load cases
with faults. The proposed FDI method can effectively detect and
isolate all three faults (PSB, PSF, and PAS) at an early stage. With the
proposed FTC strategy, the system response in simulations with
single and multiple faults is close to the response of wind turbines
in the fault-free condition, which means that the FTC scheme can
identify and correct faults within a reasonable time. Finally, the
proposed FDI and FTC schemes can be easily applied in practice.
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Abstract

This paper deals with numerical modeling of the hydraulic blade pitch actuator and its

effect on the dynamic responses of a floating spar‐type wind turbine under valve

fault conditions. A spar‐type floating wind turbine concept is modeled and simulated

using an aero‐hydro‐servo‐elastic simulation tool (Simo‐Riflex [SR]). Because the

blade pitch system has the highest failure rate, a numerical model of the hydraulic

blade pitch actuator with/without valve faults is developed and linked to SR to study

the effects of faults on global responses of the spar‐type floating wind turbine for dif-

ferent faults, fault magnitudes, and environmental conditions. The consequence of

valve faults in the pitch actuator is that the blade cannot be pitched to the desired

angle, so there may be a delay in the response due to excessive friction and the

wrong voltage, or slit lock may cause runaway blade pitch. A short circuit may cause

the blade to get stuck at a particular pitch angle. These faults contribute to rotor

imbalance, which result in different effects on the turbine structure and the platform

motions. The proposed method for combining global and hydraulic actuator models is

demonstrated in case studies with stochastic wind and wave conditions and different

types of valve faults.
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blade pitch actuator faults, fault characteristics, floating wind turbine, global dynamic responses,

hydraulic pitch actuator
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1 | INTRODUCTION

Offshore wind turbines operate in ocean environments with irregular waves and turbulent winds and also experience technical faults during their

service life. Faults and failures in the actuators, sensors, and system components can lead to system interruptions. They change the system char-

acteristics, the efficiency of power production, and the operational safety. Significant economic losses are associated with operation and mainte-

nance—up to 30% of the life cycle cost for offshore wind farms.4,5

Hydraulic pitching drives are still in the majority in older wind turbines as described in Hau.6 Statistical data on downtime per failure and failure

rates of wind turbine sub‐systems have been employed to evaluate the wind turbine reliability.1-3,7 Using failure statistics for wind turbines in

Sweden, Ribrant and Bertling1 showed that the failures in pitch systems accounted for 27.5% of the total component failures. According to the

RELIAWIND report,2 the pitch system has 21.3% and 23.4% contribution to the total failure rate and downtime, respectively. Carroll et al3 ana-

lyzed the failure rates for the offshore wind turbines and their subassemblies, finding that the hydraulics and pitch systems have the highest failure

rates among the system components and account for over 14% of the total failures of wind turbines. NordzeeWind7 shows that the pitch system

accounts for over 20% of the production stops.

According to the mentioned references, it is clear that blade pitch systems contribute to the failure rate and downtime of wind turbines. The

blade pitch system is critical for wind turbines to maintain constant power generation in above‐rated regions of wind speed while protecting the

wind turbine from damage. Faults in the blade pitch sensors and actuators influence the control system and result in imbalanced loads on the

rotor, main bearings, and shaft. Imbalanced aerodynamic loads on the rotor also affect the power production and the structural responses of

the blades, tower, and support structure.

Detailed dynamic analyses of wind turbines under fault situations are required to identify critical conditions and understand the perfor-

mance of wind turbines. Studies of the effect of pitch system faults on wind turbine performance, loads, and platform motions in wind turbine

components have been conducted for specific fault scenarios. Jiang et al8 and Chaaban et al9 examine the structural response of floating wind

turbines under various pitch mechanism faults. Bachynski et al10 show the performance of different types of floating wind turbines under pitch

actuator fault, grid loss, and shutdown, using a SR‐AeroDyn tool. Etemaddar et al11 analyzed the fault effects in the pitch system on onshore

and offshore wind turbines using the extreme response analysis in short term with the HAWC2. These studies focused on the effect of the

blade pitch actuator faults on global dynamic responses of the wind turbine. However, the details of the blade pitch actuator were not

modeled.

The blade pitch systems of modern wind turbines are driven by electrical or hydraulic pitch actuators.12 An electrical pitch system requires

gears to adjust the pitch angle with an electric motor. It is able to control the position precisely. The main challenges related to electrical pitch

systems are gear wear, high backlash, and low robustness against external disturbances. On the other hand, a hydraulic pitch actuator is con-

trolled by a servo or directional control valve, and gears are unnecessary, thus reducing backlash and preventing wear. Hydraulic systems with

a high level of stiffness and appropriate damping are suitable in the case of high aerodynamic loads. In particular, rapid load changes in the blade

root due to turbulence and wind gusts are controlled and dampened and not transferred through the mechanical system.13 In addition, hydraulic

pitch actuators have low component sensitivity to environment; for example, temperature spans from −25°C to +55°C does not affect the sys-

tem's performance. The oil in the system reduces structural vibrations and power peaks/loads and increases the overall reliability of the

turbine.14

Dynamic modeling of the hydraulic actuator for the blade pitch system (valve, cylinder, pump, and reservoir) has been carried out to observe

the behavior of wind turbines due to the large blade deflection15 and fault conditions.16,17 In these studies, the input voltage is assumed to be

directly proportional to the flow rate constants, and the valve spool position is not considered. However, the response of an actual valve is delayed

with respect to the input voltage. Carroll et al3 show that oil, valve, and sludge issues account for a large portion (37.3%) of the total failure rate of

hydraulic pitch systems. Therefore, valve modeling and dynamic analysis are essential when considering valve faults in the blade pitch actuator.

This paper focuses on coupled nonlinear aero‐hydro‐servo‐elastic simulations of spar‐type floating wind turbines under valve fault conditions.

The main contributions of the present work are (a) the numerical modeling of the hydraulic pitch actuator including valve model and spool position

controller and (b) modeling of the pitch actuator faults related to mechanical and electrical failures. The hydraulic pitch actuator model is inserted

into the global simulation model to investigate how these faults affect the dynamic responses of a floating wind turbine. The objectives of this

paper are as follows:

a. Model a hydraulic pitch actuator including a pump, valves, and hydraulic cylinders.

b. Design a proportional‐integral (PI) valve controller to achieve satisfactory performance of blade pitching.

c. Model faults in valves.

d. Conduct numerical simulations under fault conditions in aero‐hydro‐servo‐elastic tools coupled with the modeled blade pitch actuator.

e. Compare the wind turbine performance and dynamic responses, eg, blade root bending moments, platform motions, and tower base bending

moments, in fault conditions considering different environmental load cases.
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In this paper, Section 2 shows the floating wind turbine model, baseline controller, and the hydraulic blade pitch system. Section 3 includes the

fault modeling and scenarios for directional control valves. Section 4 shows the simulation results for wind turbine performance, blade root bend-

ing moments, platform motions, and tower base bending moments. Section 5 provides the conclusions.

2 | CASE STUDY MODEL AND METHODOLOGY

2.1 | Floating wind turbine model and fully coupled numerical simulation

A spar‐type floating turbine has been modeled as a rotor, tower, nacelle, floater, and mooring lines. The model in this paper is based on the

National Renewable Energy Laboratory (NREL) 5‐MW offshore wind turbine model18 supported by a spar buoy floater (OC3‐Hywind)19 and three

catenary mooring cables as shown in Figure 1. The NREL 5‐MW wind turbine specifications are listed in Table 1. In addition, the OC3‐Hywind

floater properties are provided in Table 2.

FIGURE 1 Schematic view of a spar‐type floating wind turbine

TABLE 1 Properties for the National Renewable Energy Laboratory (NREL) 5‐MW wind turbine18

Rated power, MW 5

Rotor orientation and configuration Upwind, three blades, horizontal axis

Rotor diameter, m 126

Hub height from the mean water level, m 90

Cut‐in, rated, cut‐out wind speed, m/s 3, 11.4, 25

Cut‐in, rated rotor speed, °/s 41.4, 72.6

Max pitch rate, °/s 8

Gearbox ratio 97
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The dynamic responses of the wind turbine model have been simulated with SR,20,21 which is an aero‐hydro‐servo‐elastic code for fully

coupled nonlinear time‐domain numerical simulations. Hydrodynamic forces and moments on the rigid hull, according to first‐order potential flow

theory and Morison‐type viscous drag, have been accounted for in Simo.20 The flexible elements for the blades, shaft, tower, and mooring system

with the finite element solver are modeled in Riflex.21 Additionally, Riflex calculates the aerodynamic forces and moments on the blades based on

the blade element momentum (BEM) method including tower shadow, dynamic stall, and skewed inflow correction.21 The models for structural

dynamics, hydrodynamics, and aerodynamics are considered simultaneously with an external code that consists of (a) a baseline control system

for a torque and pitch controller and (b) a model of the blade pitch system under various operational conditions. Figure 2 shows the data trans-

mission of SR and controller algorithm.

2.2 | Baseline controller for operational wind turbines

The baseline control system consists of the blade pitch and generator torque controllers. In the below‐rated wind speed region, the torque

controller is active to capture the maximum power by regulating the generator torque and thus maintaining the optimal tip speed ratio.18 In

above‐rated wind speed region, the blade pitch controller adjusts the blade pitch angle to reduce the aerodynamic loads while producing the rated

power. For floating wind turbines, the blade pitch controller may be used to improve the system responses and reduce the floater motions.22 In

the baseline controller18 developed by NREL, the pitch actuator is not modeled; it is assumed that the blade pitch angle can be adjusted directly

the pitch command. In this paper, a hydraulic pitch actuator is modeled and interacts with the baseline controller with modified proportional and

integral gain values.19 Figure 3 shows the block diagram of the modified baseline controller, where Ωr is the rotor speed, Ωg is the generator speed,

Ωg,m is the measured generator speed, Ωg,rated is the rated generator speed, Qg is the generator torque, Qa is the aerodynamic torque, βm is the

measured blade pitch angle, and Vwind is the wind speed.

TABLE 2 Properties for the OC3‐Hywind floater19

Water depth, m 320

Draft, m 120

Diameter above taper, m 6.5

Diameter below taper, m 9.4

Center of mass, m (0, 0, −89.9115)

Mass, including ballast, kg 7.466 × 106

Mass moment of inertia (Ixx and Iyy), kg·m
2 4.229 × 109

Mass moment of inertia (Izz), kg·m
2 1.642 × 108

FIGURE 2 Data transmission between Simo‐Riflex (SR) and controller
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2.3 | Hydraulic actuator system

The hydraulic pitch system includes the hydraulic pump, a set of directional control valves, a fluid tank, and a hydraulic cylinder. The blade pitch

angle is controlled by a hydraulic cylinder placed in the hub of the turbine. Hydraulic pitch control is not sensitive to vibrations. The oil flow to and

from the cylinders is controlled by a number of valves, in particular a control valve. The energy to drive the hydraulic cylinders is supplied by a

power unit placed in the nacelle, and the energy is transferred to the hub via a rotary union.

The system controller provides a command voltage signal to control the valve spool position based on the difference between the blade pitch

angle and the reference signals. The schematic diagram of a hydraulic actuator as shown in Figure 4A consists of a constant pressure pump, an

accumulator, a reservoir, a hydraulic cylinder, and a directional control valve.

2.3.1 | Directional control valve model

The directional control valve uses an electromagnetic field via the solenoid coil to move an internal steel armature assembly. This assembly con-

trols the position of the main cylinder to change the state of the main valve to open or closed. Figure 5 shows the schematic of a 4/3 directional

control valve with solenoid.

FIGURE 3 Block diagram of the baseline controller

FIGURE 4 The hydraulic pitch system: (A) schematic diagram, (B) hydraulic actuator,23 and (C) hydraulic power station24 [Colour figure can be
viewed at wileyonlinelibrary.com]
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To control the blade pitch angle, the valve spool position control adjusts the hydraulic flow into the cylinder. The valve spool position xvs is

calculated from the control input voltage uvs through a second‐order system25 given by

€xvs þ 2ζvsωvs _xvs þ ω2
vsxvs ¼ ω2

vskuuvs; (1)

where ωvs is the valve natural frequency, ζvs is the valve damping ratio, ku is the voltage gain, respectively, and (˙) represents the time deriva-

tives. It is assumed that the valve spool is symmetric with zero overlap design.

As described in Figure 6, flow directions can be determined by the valve spool position. If the spool is at the right‐side position (xvs > 0) as

shown in Figure 6B, hydraulic fluid flows from the pump (supply) into the cylinder chamber B side and from the cylinder chamber A side to the

reservoir tank (return). On the other hand, if the spool position is set to the left‐side position (xvs < 0) in Figure 6C, then the hydraulic fluid can

flow from pump to A side and B side to the reservoir tank. Hydraulic fluid cannot flow when the valve spool is at the neutral position (xvs = 0).

The hydraulic flow rate at A and B can be determined based on the spool position. The continuity equation of hydraulic flow rate at A and B

depends on the sign of the spool position:

For xvs > 0,

qA ¼ −kqxvs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA − pR

p
;

qB ¼ kqxvs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pS − pB

p
;

(2a)

and for xvs < 0,

qA ¼ −kqxvs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pS − pA

p
;

qB ¼ kqxvs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pB − pR

p
;

(2b)

where qA and qB are the hydraulic flow rates to the cylinder chamber A and B sides, kq is the valve flow coefficient, and pS and pR are the supply

pressure and the return pressure, respectively. Table 3 describes properties for the directional control valve from Rexroth's valve model

(RE 29093, size 16).26 The supply pressure pS is set to 250 bars controlled by the accumulator.

From Merritt,27 the valve flow coefficient can be calculated by

kq ¼ CdAd

xvs;max

ffiffiffiffiffiffiffiffiffiffi
2

ρfluid

s
; (3)

where Cd is the discharge coefficient, Ad is the discharge area, and ρfluid is the density of fluid.

FIGURE 6 Flow mechanism of the valve with spool position [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 4/3 directional control valve with solenoid [Colour figure can be viewed at wileyonlinelibrary.com]
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However, it is hard to directly calculate the exact discharge coefficient Cd values from the technical data. Alternatively, kq values can be esti-

mated by Equation 4 from Albers28 and Šulc and Jan29 with the nominal pressure drop (ΔpN) and nominal flow rate (qN) from Rexroth's valve

model.26

kq ¼ qN
xvs;max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ΔpN

p (4)

2.3.2 | Blade pitch dynamics

Calculation of hydraulic force in a cylinder

As illustrated in Figure 4, the hydraulic actuator is modeled by a single‐rod and double‐acting cylinder that consists of a piston inside a cylindrical

housing. The cylinder produces the force from hydraulic pressure acting on the piston. The pressure dynamics based on the flow mechanism into

two chambers (A and B sides) in the cylinder are written by

_pA ¼ Eeff
VA xpð Þ qA − AA _xpð Þ; (5a)

_pB ¼ Eeff
VB xpð Þ qB þ AB _xpð Þ; (5b)

where VA and VB are the total control volumes of chambers A and B depending on the piston position xp. AA and AB are the areas of the piston

on the A and B sides. Eeff is the effective bulk modulus of the hydraulic fluid that is assumed to be incompressible. Additionally, the volumes VA and

VB are calculated by

VA xpð Þ ¼ VA0 þ AAxp;

VB xpð Þ ¼ VB0 þ AB lp − xpð Þ; (6)

where VA0 and VB0 are the initial volumes of the two‐cylinder chamber.

By calculating hydraulic pressures in sides A and B of the cylinder, the piston force F can be obtained as follows:

F ¼ PAAA − PBAB: (7)

Blade pitch dynamics

The blade pitch angle can be adjusted by the hydraulic actuator controlled by a pitch moment from piston force F acting on the rigid bar. Figure 7

shows the geometry of the hydraulic pitch actuator. The geometry of the actuator is related to the piston position xp and the pitch angle β by

xp βð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2p þ r2p − 2Lprpcos α0 − βð Þ

q
− lp=2; (8)

where rp is the torque arm, lp is the rod length, Lp is the length between the pivot and rotational center, and α0 is the initial angle between the

pin‐to‐center axis and the torque arm when xp = 0. From the geometry of this actuator, the blade pitch torque MT,bp can be described by

MT;bp ¼ Frpg βð Þ; (9)

where the g(β) is a force factor represented by g βð Þ ¼ 1
rp

dxp
dβ

.

TABLE 3 Properties for the directional control valve26

Valve natural frequency (ωvs), rad/s 141

Valve damping ratio (ζvs) 0.74

Minimum and maximum valve position (xvs,min, xvs,max), m −0.02, 0.02

Minimum and maximum input voltage (uvs,min, uvs,max), V −10, 10

Valve voltage gain (ku), m/V 0.002

Valve flow gain (kq), m2=s=
ffiffiffiffiffiffiffi
bar

p
0.0233
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The pitch angle dynamics are governed by

Jbp€β þ Bbp
_β ¼ MT;bp þMA; (10)

where Jbp is the pitch inertia, Bbp is the viscous damping coefficient, and MA is the aerodynamic pitching moment.

Table 4 shows the pitch actuator geometries and parameters. However, it is hard to directly measure the viscous damping coefficient Bbp.

Therefore, an alternative method, described in Section 2.4, was used to estimate Bbp.

2.4 | Valve spool position control

The blade pitch angle β can be determined by the piston position xp in the hydraulic cylinder based on the geometrical relationship as described in

Equation (8). The piston position xp of the cylinder is controlled by the valve spool position xvs corresponding to the desired position. The valve

spool position is changed according to the input voltage applied to the directional control valve.

First, the control input uv can be calculated by a PI controller from the piston position error e(t) feedback to the directional control valve posi-

tion as follows:

uvs tð Þ ¼ kp e tð Þ þ 1
Ti
∫
t

0e τð Þdτ
� �

; e tð Þ ¼ xp βð Þ − xp βCð Þð Þ; (11)

where kp is the proportional gain, Ti is the integral time, and the position error e(t) is given as function of the blade pitch angle β and pitch com-

mand βC from the pitch controller in Figure 3.

In order to calculate the proportional gain kp, the valve and pitch cylinder systems need to be transformed by transfer function in steady‐state

condition. The directional control valve model can be described by the transfer function Gvs(s) obtained from Equation (1).

TABLE 4 Pitch actuator geometries and parameters30

Piston rod length (lp), m 2

Torque arm (rp), m 1

Pin‐to‐center axis length (Lp), m 1.7

Initial angle (α0), rad 2.5128

Pitch inertia (Jbp), kg·m
2 28 600

Viscous damping coefficient (Bbp), N·s/rad 8.545 × 105

Effective bulk modulus (Eeff), bar 18 000

FIGURE 7 Geometry of the blade pitch actuator: (A) β = 0° and (B) β = 90° [Colour figure can be viewed at wileyonlinelibrary.com]
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Gvs sð Þ ¼ Xvs sð Þ
Uvs sð Þ ¼

ω2
vsku

s2 þ 2ζvsωvssþ ω2
vs

; (12)

where Uvs(s) and Xvs(s) are the transfer functions of the valve system input (voltage) and output (valve spool position).

The blade pitch system in a steady‐state condition can be modeled by third‐order transfer function from Merritt.27 .

Gbp sð Þ ¼ B sð Þ
Xvs sð Þ ¼

Cpω2
p

s3 þ 2ζpωps2 þ ω2
ps
; (13)

ωp ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeff
Jbp

A2
A

VA
þ A2

B

VB

 !vuut ; ςp ¼
Bbp

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JbpEeffg

A2
A

VA
þ A2

B

VB

 !vuut (14)

Cp ¼

AAkq
ffiffiffiffiffiffiffiffiffi
ΔpA

p
VA

þ ABkq
ffiffiffiffiffiffiffiffiffi
ΔpB

p
VB

 !

g
A2
A

VA
þ A2

B

VB

! ; (15)

where Xvs(s) and B(s) are the transfer functions of the blade pitch system input (valve spool position) and output (blade pitch angle), ωp is the

natural frequency of piston system, ζp is the damping ratio, and Cp denotes the flow rate gain. The volume V and force factor g can be changed to

influence each natural frequency and damping ratio of the pitch system in steady‐state condition. The minimum damping ratio for the system is 0.2

from Merritt.27 Then, Bbp is calculated by Equation (14).

Total system transfer function GT(s) can be derived by

GT sð Þ ¼ Gvs sð ÞGbp sð Þ ¼ B sð Þ
Uvs sð Þ ¼

ω2
vsω

2
pkuCp

s s2 þ 2ζvsωvssþ ω2
vs

� �
s2 þ 2ζpωpsþ ω2

p

� �: (16)

To set the critical proportional gain kp,crit, the characteristic equation and Routh's methods were applied. Stability should be checked in every

piston position in cylinder for the pitch angles from 0° to 90°. Using an empirical method and applying kp,crit values from 1 to 300 in the system,

the critical proportional gain is found to be kp,crit = 139.2 V/rad in every piston position and pitch angle. The period of oscillation Tc = 0.3012 sec-

ond can be calculated by applying kp,crit and Routh's methods as described in Dutton et al. 31 Using the Ziegler‐Nichols method,31 the proportional

gain and integral time are therefore set to kp = 0.45kp,crit and Ti = Tc/1.2 in case of PI control, respectively. The blade pitch control system is tested

for the 15° step reference signal in Figure 8. The response of the blade pitch angle, valve spool position, and control input voltage shown here

demonstrates the ability to follow the pitch angle reference and for controller performance.

FIGURE 8 The step response of the blade pitch system with 15° step reference signal: (A) blade pitch angle, (B) valve spool position, and (C)
control input voltage [Colour figure can be viewed at wileyonlinelibrary.com]
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3 | FAULT MODELING AND SCENARIOS

Carroll et al3 show that oil, valve, and sludge issues account for a large portion (37.3%) of the total failure rate for hydraulic pitch systems. Valve

faults can change the system characteristics.25

Basically, faults in the directional control valves are mainly categorized as mechanical or electrical faults. Mechanical faults are related to oil

contamination and sludge that disturb the spool movement, acting as increasing friction in the valve. Electrical faults may be related to additional

and residual current through the solenoid due to damage or dirt on the armature. After these faults occur, the valve cannot provide an adequate

amount of flow in the cylinder from control input. These faults influence the results of pressure, piston force, blade pitch angle, and response

delay. They also could affect the global dynamic response of wind turbines in transient and steady‐state conditions. The incorrect pitching of a

blade due to faults causes asymmetric forces on blades, introducing an unbalanced rotation, which increases structural loads on the rotor signif-

icantly. In the worst cases, it is associated with valve seizure that leads to inoperable conditions.

In this paper, four different cases of valve faults are considered (two mechanical faults and two electrical faults): excessive friction (VEF), slit

lock (VSL) on spool, wrong voltage applied (VWV), and circuit shortage (VCS), in the directional control valve. Figure 9 illustrates mechanical and

electrical valve faults. These faults are selected based on information in Institute of Electrical and Electronics Engineers,2 Cho et al,32 and

Watton.33

3.1 | Mechanical faults

Directional control valves operate over thousands of cycles with adequate oil and undergo mechanical and thermal stresses periodically in a nor-

mal operation state. The operational conditions mainly influence the service life of the valve. According to Carroll et al,3 oil contamination causes

up to 25% of the total failures in hydraulic systems. Oil contamination with poor filtration results in sludge buildup on the surface of spool and

bore. The sludge is a mixture of rusted metal particles, sand, dust, and polish compound.

As the sludge builds up on the spool, the clearances between the spool and body decrease. This decreased clearance space leads to more force

being required to move the spool as the static friction increases. This fault is called excessive friction in valves (VEF). The increasing friction is

modeled as follows:

€xvs þ 2ζvsωvs _xvs þ ω2
vsxvs ¼ ω2

vskuuvs − FF ; (17)

FF ¼ FCsgn _xvsð Þ; (18)

where F C is the Coulomb friction. The value of friction F F in the normal condition is set to 0 because it is negligible in real valve spools.

This sludge narrows the clearance, allowing more particles into the clearance space. In the worst case, these mixtures with sludge buildup and

particles become hardened. If the friction is larger than the maximum force from the solenoid, the valve spool will be seized. This phenomenon is

commonly referred to as “slit lock.” When slit lock (VSL) in valves occurs, the spool position is described by

xvs ¼ xvs;VSL; (19)

where xvs,VSL is the spool position after the VSL fault.

FIGURE 9 Illustration of mechanical and electrical valve faults [Colour figure can be viewed at wileyonlinelibrary.com]
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3.2 | Electrical faults

When the solenoid coil reaches the magnetic saturation level, the coil is overheated caused by high inrush currents. This phenomenon changes its

coil impedance and the current through the solenoid. In extreme cases, the core of the solenoid is subject to damages, or the coil inductance is

permanently changed. Then, it applies the wrong voltage.

The wrong voltage applied (VWV) resulting from changed coil impedance can be described by changing the valve voltage gain ku,

ku ¼ ku;WV; (20)

where ku,WV is changed voltage gain.

Furthermore, if solenoids cannot properly dissipate the heat generated by their residual current or go through high inrush current due to faults,

then the solenoid is damaged and burnt out, which means that the insulation around the coil windings will burn and the coil will short out. When a

solenoid circuit shortage occurs (VCS), the voltage applied is as follows:

uvs ¼ uVCS ¼ 0; (21)

where uVCS is the voltage value in the VCS fault. If a VSC fault occurs in the valve system, the spool position reacts and moves to a neutral

position that allows no flow due to the spring described in Figure 5. Then, the valve is closed, and the actuator gets stuck in the same position.

Table 5 describes the updated fault values in the valve model and consequences in each fault.

4 | SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are presented to illustrate the effect of the valve fault conditions. Numerical simulations are conducted under

four different fault cases: VEF, VSL, VWV, and VCS, on a single blade.

4.1 | Environmental conditions

Four load cases with different wind and wave conditions were selected for simulating the dynamic responses of the floating wind turbine, as given

in Table 6.

The turbulent wind field Uw(x, y, z, t) represented by the normal wind profile and the normal turbulence model is modeled by using TurbSim34

according to the Kaimal turbulence model. The wind model was based on the International Electrotechnical Commission (IEC) 61400‐135 and 338 .

In the vertical plane, 32 × 32 points were used over an area of 160 × 160 m, with time step of 0.05 second of the wind field generation. The wind

shear was modeled according to the power law with exponent 0.14.

TABLE 5 Mathematical model of faults applied in numerical simulations

Type Fault Modeling Consequence

VEF €xvs þ 2ζvsωvs _xvs þ ω2
vsxvs ¼ ω2

vskuuvs − FF Response delay

VSL xvs = xvs,VSL Blade pitch runaway

VWV €xvs þ 2ζvsωvs _xvs þ ω2
vsxvs ¼ ω2

vsku;WVuvs Response delay

VCS uvs = uVCS = 0 Actuator stuck

Abbreviations: VCS, circuit shortage in the valve; VEF, excessive friction in the valve; VSL, slit lock in the valve; VWV, wrong voltage applied in the valve.

TABLE 6 Load cases based on winds and waves

Load Case Uw, m/s Turbulence Model Hs, m Tp, s

1 11.2 IEC Class C 3.2 10.0

2 14 3.62 10.30

3 17 4.2 10.50

4 20 4.8 10.80
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For irregular waves, the Joint North Sea Wave Project (JONSWAP) wave spectrum was used. The peak period (Tp) and significant wave height

(Hs) were decided based on their correlation with wind speed for the Statfjord site in the North Sea.36 Wind and wave directions are aligned. Six

1‐hour simulations with different random seeds are carried out for each load case and fault condition to capture the significant stochastic

variation.8

4.2 | Fault description

The fault studied here can degrade the control quality and accuracy. In order to identify representative and comparable fault magnitudes, we

examine the squared integral error of the blade pitch eIEBP during the response in each simulation:

eIEBP ¼ ∫
τ
TF βactual tð Þ−βC tð Þð Þ2dt: (22)

On the basis of the load cases described inTable 6, the fault magnitude has been decided by measuring eIEBP. Figure 10 shows the average eIEBP

values for VEF and VWV faults during 400 seconds after fault occurs. The time of fault (TF) is 100 seconds after the turbine reaches the steady‐

state condition.

For the response study, several different magnitudes M1, M2, and M3 are simulated to illustrate the severity of the faults. The input corre-

sponding to M1, M2, and M3 here has been decided based on the value of eIEBP = 0.006, 0.018, and 0.03 (in fault‐free eIEBP = 0.001 432) in

VEF and VWV faults, respectively, and is given in Table 7. In case of the VSL fault, both the positive (VSL+) and negative (VSL−) stuck valve spool

positions have been considered. There is no magnitude in the VCS fault. The fault‐free cases correspond to normal operation.

Figure 11 shows the response in terms of the valve spool position and blade pitch angle under four valve faults in the blade pitch system

(blade 3). Two faults, VEF and VWV, make the responses of valve position and blade pitch angle slower due to increased friction and gain change,

respectively. As shown in Figure 11A, the valve spool cannot move to until the solenoid force is larger than the excessive friction due to sludge in

VEF fault. If the solenoid force exceeds the friction, the valve spool moves quickly to follow the control input, and the blade pitch angle increases

suddenly in Figure 11B. In this case, the direction change of the valve spool delays the response of the blade pitch system. The VWV fault delays

the response due to gain change.

The valve spool position is stuck after occurrence of a VSL fault. However, the valve is still open, and hydraulic fluid flows continuously to the

cylinder, making the pitch angle increase. This fault depends on the direction of the valve position. If the valve is stuck in the right position

(positive, VSL+), the blade pitch angle continuously increases to the maximum pitch angle. If it is left (negative, VSL−), the pitch angle decreases

FIGURE 10 Integral error of the blade pitch depends on the fault magnitudes: (A) excessive friction in the valve (VEF) and (B) wrong voltage
applied in the valve (VWV) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 7 List of magnitudes for VEF and VWV faults

Fault Case

Magnitude

Theoretical Permissible RangeM1 M2 M3

VEF ( F c), N/kg 45 155 260 <400

VWV (ku), m/V 0.0005 0.0003 0.000 23 >0

Abbreviations: VEF, excessive friction in the valve; VWV, wrong voltage applied in the valve.
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to the minimum pitch angle. When VCS occurs, the input voltage goes to 0 value, and the valve position returns to the neutral position due to the

restoring force of the spring. Then, the valve will be closed, and the actuator gets stuck.

4.3 | Wind turbine performances and response analysis

Numerical results for the dynamic responses of the spar‐type floating wind turbine under valve faults are presented. The simulations are

conducted to evaluate the effect of different fault scenarios. Six realizations of each load case, each lasting for 1 hour, are carried out. The

root‐mean‐square (RMS) values are calculated for the responses for floating wind turbine after fault occurrence (TF is 100 s). The response values

are normalized by the corresponding results in the fault‐free cases as

RVnorm ¼ RVi

RVf−free
i ¼ 1; 2; 3; 4; (23)

where RVnorm is the response value normalized by response value in the fault‐free case RVf‐free and RVi is the ith response value (1: VEF, 2:

VSL, 3: VWV, and 4: VCS).

4.3.1 | Wind turbine performance

As shown in Figure 12, the blade pitch angle has been influenced by the valve faults in VEF, VWV, and VCS in faulty blade (blade 3). However,

these pitch angle differences do not affect the results of rotor speed and power very much.

Figure 13 shows the results of the rotor speed, power, and blade pitch angle under VSL fault. If the valve spool is stuck in the right‐side posi-

tion (VSL+, positive xv), hydraulic fluid can flow continuously into the B side of cylinder, and piston moves to the left side of the cylinder until the

pressure relief valve starts to work. Due to the difference of blade pitch angle between blades 1 and 3, the rotor speed starts to decrease grad-

ually, which influences power output because of the loss of the generator torque acting on the low‐speed shaft described in Figure 13A. Then, the

pitch controller adjusts the blade pitch angle of fault‐free blades (blades 1 and 2) to 0° to maintain the rated rotor speed, which also increases the

aerodynamic thrust. On the other hand, if the valve is locked in the left‐side position, the hydraulic fluid can flow to the A side of cylinder. The

pitch angle on the faulty blade decreases to 0° due to the piston moving to the right side. In this case, the rotor speed and power output are

not influenced significantly by stuck blade 3 as shown in Figure 13B. The aerodynamic torque increases due to the stuck blade (blade 3), and

the pitch controller adjusts other two blades (blades 1 and 2) to reduce the aerodynamic torque by increasing their blade pitch angles, thus main-

taining the rotor speed.

Figure 14 shows the normalized RMS values of the rotational speed, aerodynamic thrust, and generator power after fault occurrence. VEF,

VWV, and VCS faults have little effect on the rotor speed and power production from generator. For VSL fault when the valve spool is stuck

at the right position (VSL+), the generator cannot produce any power because the rotor has been stopped. The blade pitch angle difference (around

20° between blades 1 and 3 in case of VSL−) causes an increase of aerodynamic thrust as the wind speed increases.

FIGURE 11 Comparison of the valve position and blade pitch angle under fault conditions under LC3: (A) valve position and (B) blade pitch angle.

VCS, circuit shortage in the valve; VEF, excessive friction in the valve; VSL, slit lock in the valve; VWV, wrong voltage applied in the valve [Colour
figure can be viewed at wileyonlinelibrary.com]

CHO ET AL. 13

113



4.3.2 | Blade root bending moments

Fault in a pitch actuator affects the torsional, flap‐, and edge‐wise bending moments in the blade roots. Figure 15 illustrates the load and blade

root bending moment directions. Figure 16 shows the effects of fault cases on the RMS of the blade root bending moments, of floating wind

turbine. The value in Figure 16 is the difference of RMS values of the blade root bending moment between normal blade (blade 1) and faulty blade

(blade 3) along each axis, normalized as follows:

mean RMS MBR;fault‐free
� �� �

− RMS MBR;Blade3

� �
mean RMS MBR;fault‐free

� �� � ; (24)

where mean (RMS (MBR, fault‐free)) = (RMS (MBR, Blade1) + RMS (MBR, Blade2) + RMS (MBR, Blade3))/3 and RMS (MBR, fault‐free) corresponds to the fault‐

free condition.

Figure 16 shows that the blade root bending moments due to faults depend on the difference of the blade pitch angle between blades 1 and 3.

In fault‐free condition, the value of the metric in Figure 16 is nearly 0, implying no rotor imbalance.

In case of VEF faults, the variation of the blade root bending moment along the torsional direction has above 25% of the magnitude of the

fault‐free blade root bending moments, while the differences in the flap‐ and edge‐wise bending moments are almost 0. VWV has little effect

on the blade root bending moment along the torsional, flap‐, and edge‐wise directions. In VSL−, as the wind speed increases, the difference in

flap‐wise moments between faulted and fault‐free blades can be increased from one to three times. There is also imbalance in the torsion and

flap‐wise moments for VCS. The imbalance shown here affects the platform motions and tower base bending moments.

4.3.3 | Platform motions and tower base bending moments

The platform motions and tower bending moments are mainly related to wind and wave loads. The spar‐type platform has large yaw stiffness from

the mooring system. Wave loads do not influence yaw motion much because of the floater's cylindrical shape. Figures 17 and 18 show the effects

of fault cases on the RMS of the platform motions and tower base bending moments of floating wind turbine. VEF and VWV faults brought slow

response of blade pitch angle. VEF and VWV faults have little effect on platform motions (roll, pitch, and yaw) and tower base bending moments

(torsional, fore‐aft, and side‐side).

The VCS fault tends to cause the actuator to get stuck and leads to aerodynamic imbalance on the rotor plane depending on the operating

condition. As a consequence, the yaw and tower torsional moments increase. Yaw motion is increased by approximately 20%, and the torsional

FIGURE 12 Effects of excessive friction in the valve (VEF), wrong voltage applied in the valve (VWV), and circuit shortage in the valve (VCS)
faults on wind speed, wave elevation, the blade pitch angle, rotor speed, aerodynamic thrust, and power under LC3 [Colour figure can be
viewed at wileyonlinelibrary.com]
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moment can be doubled compared with fault‐free conditions. This fault does not greatly affect platform motions (roll and pitch) and tower base

bending moments (fore‐aft and side‐side).

The dynamic responses in case of VSL depend on the spool position. While continuously increasing or decreasing the blade pitch angle in VSL+

(positive valve position) or VSL− (negative valve position) faults, increasing blade pitch angle difference causes rotor imbalance. The severe rotor

imbalance under VSL fault occurs when the faulty blade is pitched to 0° based on the stuck spool position. The yaw motion is increased by approx-

imately two times, and torsional moment is up to four times larger than the fault‐free conditions under VSL− faults. In addition, the increasing aero-

dynamic thrust as shown in Figure 14B affects platform pitch motion and tower base fore‐aft bending moments in Figures 17C and 18C.

FIGURE 13 Effects of VSL fault on the valve position, blade pitch angle, rotor speed, aerodynamic torque, and power: (A) positive (VSL+) and (B)
negative spool position (VSL−) under LC3 with (C) wind speed and (D) wave elevation [Colour figure can be viewed at wileyonlinelibrary.com]
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If the pitch angle difference is beyond a certain limit (above 30°), one or more of the blades acts as a brake, and the rotor speed starts to

decrease. With decreasing rotor speed, the wind turbine loses the generator torque acting on the low‐speed shaft VSL+ fault. The pitch and

fore‐aft bending moment also decreased. When the faulty blade (blade 3) angle reaches 90°, the rotor has lost much of the aerodynamic thrust,

and it affects the results of platform motions and tower base bending moments. The platform motions and tower base bending moments were not

affected by the change of the blade root torsional and edge‐wise bending moments.

Figure 19 shows a comparison of normalized expected maxima of platform motions and tower base bending moments in above‐rated wind

speed region. Response values that are platform motions and tower base bending moments are divided by the fault‐free values of the expected

maxima. These faults have been considered: VEF M3, VSL−, VWV M3, and VSC. Similar to the RMS values shown in Figures 16 and 17, the

FIGURE 14 Normalized root‐mean‐square (NRMS) values of the rotor speed, thrust, and power production described by Equation (23) for the
floating wind turbine under (A) excessive friction in the valve (VEF), (B) slit lock in the valve (VSL), (C) wrong voltage applied in the valve (VWV),
and (D) circuit shortage in the valve (VCS) fault conditions with different fault magnitudes [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 The schematic of blade for direction of loads and blade root bending moments [Colour figure can be viewed at wileyonlinelibrary.
com]
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FIGURE 16 Normalized root‐mean‐square (NRMS) values of the blade root torsional (BRT), blade root flap‐wise (BRFW), and blade root edge‐
wise (BREW) bending moments described by Equation (24) for the floating wind turbine under (A) excessive friction in the valve (VEF), (B) slit lock
in the valve (VSL), (C) wrong voltage applied in the valve (VWV), and (D) circuit shortage in the valve (VCS) fault conditions with different fault
magnitudes [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 17 Normalized root‐mean‐square (NRMS) values of the platform roll, pitch, and yaw motions described by Equation (23) for the floating
wind turbine under (A) excessive friction in the valve (VEF), (B) slit lock in the valve (VSL), (C) wrong voltage applied in the valve (VWV), and (D)
circuit shortage in the valve (VCS) fault conditions with different fault magnitudes [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 18 Root‐mean‐square (RMS) values of the torsional moment (TM), fore‐aft bending moment (FABM), and side‐side bending moment
(SSBM) described by Equation (23) for the floating wind turbine under (A) excessive friction in the valve (VEF), (B) slit lock in the valve (VSL),
(C) wrong voltage applied in the valve (VWV), and (D) circuit shortage in the valve (VCS) fault conditions with different fault magnitudes [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 19 Normalized expected maximum (NEM) response values: (A) platform motions and (B) tower base bending moments [Colour figure
can be viewed at wileyonlinelibrary.com]
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platform motions and base bending moments are not sensitive to response delay due to VEF M3 and VWV M3 faults. VSL− and VSC faults are

dominant in yaw and tower base torsional moments.

Figure 20 presents the effects of VSL and VCS faults on the power spectral density (PSD) of the platform roll, pitch, and yaw responses for

LC3. The sample duration is 1 hour under faults in stationary condition. The response at the natural frequency in roll motion increases. VSL−

and VCS faults slightly influenced platform pitch motion due to the small blade angle difference. The loss of aerodynamic thrust causes reduced

amplitudes and changed frequencies in platform pitch and yaw in VSL+.

The asymmetric force acting on the rotor triggers large aerodynamic excitation of the tower and the spar‐type platform. The VSL− fault has a

large effect on the yaw motions compared with the other fault cases in stationary responses. The yaw response is greatly increased, and roll and

pitch resonant responses are relatively decreased under the VSL fault when the valve position is negative. In addition, the fault‐induced frequency

of 1.288 rad/s due to VCS and VSL− faults corresponds to the 1P frequency of the wind turbine at rated speed.37

5 | CONCLUDING REMARKS

This paper deals with numerical modeling and response analysis of the hydraulic pitch actuator in a floating spar‐type wind turbine in valve fault

conditions. The pitch‐regulated NREL 5‐MW wind turbine model mounted on the OC3‐Hywind floater with three catenary mooring cables has

been used in these simulations. Fully coupled time‐domain simulations were conducted for the dynamic response analysis using SR with a baseline

controller under various environmental conditions with correlated wind and waves. The baseline controller maintained a constant generator

torque above the rated wind speed. The hydraulic pitch system was modeled by a pressure supply pump, directional control valve, hydraulic cyl-

inder, and fluid reservoir. The valve spool position is controlled by a PI controller, where a voltage signal is determined from the piston position

error that regulates the flows to the two‐cylinder sides.

Up to 25% of the hydraulic system's failures are caused by oil contamination with poor filtration. In this paper, two mechanical and two elec-

trical faults have been modeled to check the effect of faults. They include excessive friction (VEF), slit lock (VSL) on spool, wrong voltage applied

(VWV), and circuit shortage (VCS) in the directional control valves. This results in sludge buildup on the surface of the spool and bore, which

increases the possibility of excessive friction (VEF) or slit lock (VSL). Also, additional current through the solenoid changes its coil impedance

and can lead to damages, resulting in the wrong voltage being applied (VWV) and circuit shortage (VCS).

VEF and VWV had minor effects on the floating wind turbine responses compared with the other faults. The faults VCS and VSL lead to an

increased aerodynamic thrust due to the difference of the blade pitch angle between fault‐free and faulty blade. Serious rotor imbalance occurs

while the wind turbine is operating. As a consequence of the rotor imbalance, the platform's yaw and tower torsional moments increase. The VSL−

fault is the most severe fault case regarding platform yaw motion and tower base bending moment. The fault‐induced frequency incurring from

VSL− fault is the 1P frequency of the wind turbine. If faults continue, the damage in the wind turbine structure will be amplified. In summary,

FIGURE 20 Time realization and power spectral density (PSD) of the platform (A) roll, (B) pitch, and (C) yaw motions in LC3 [Colour figure can be
viewed at wileyonlinelibrary.com]

CHO ET AL. 19

119



the difference of the blade pitch angle causes rotor imbalance, which affects the yaw motion and tower base torsional bending moment. The pitch

angle difference also influences the aerodynamic thrust, platform pitch motion, and tower base fore‐aft bending moment.

In order to validate the models of fault effects in the wind turbines, field measurements of the blade pitch actuator under faults are needed. In

addition, faults affect the wind turbine performance and structural responses of wind turbines. Hence, it is important to detect, diagnose, and

mitigate faults at the early stage before they propagate to failure of components.
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