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Abstract—Learning activities for/with children include rich interactions with peers, tutors and
learning materials (in digital or physical form). During such activities, children gain new
knowledge and master their skills. Automatized and continuous monitoring of childrens learning
is a complex task, but, if efficient, can greatly enrich teaching and learning. Wearable devices,
such as eye-tracking glasses, have the capacity to continuously and unobtrusively monitor
childrens interactions, and such interactions might be capable of predicting childrens learning.
In this work we set out to quantify the extent to which childrens gaze, captured with eye-tracking
glasses, can predict their learning. To do so, we collected data from a case study with 44 children
(8-17 years old) during a making-based coding activity. Our analysis shows that childrens gaze
can predict their learning with 15.79% error. Our results also identify the most important gaze
measures with respect to childrens learning, and pave the way for new research in this area.

Introduction

Learning gains are currently assessed using
pre- and post-tests. However, such tests pose ad-
ditional strain on children, do not provide to-the-
minute information, require considerable effort
and language competence, and sometimes are not
appropriate (e.g., for children with special abili-
ties). Wearable eye-tracking devices have made
it possible to monitor subtle phenomena, such as
the quality of social interactions, mental health
and work-outs [16]. However, despite the great
potential of wearable eye-tracking devices to en-
able the continuous and unobtrusive monitoring
of learning, research in this direction remains
rather underexplored.

In this work, we argue that if eye-tracking
data can accurately infer the learning gain from
standardized pre- and post-tests, then learning can
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be measured continuously and unobtrusively from
children, as well as providing a reliable solution
when conducting a test is not possible.

Thus, to investigate the potential of wearable
eye-tracking devices to monitor learning, we for-
mulate the following research questions:

1) Can wearable eye-tracking devices be uti-
lized to predict childrens learning during a
making-based coding activity?

2) What are the most important gaze-based
predictors of childrens learning?

To tackle the aforementioned research ques-
tions, we conduct a study in which we use eye-
tracking glasses to capture childrens gaze during
a making-based coding activity. The data is cou-
pled with a standardized pre- and post-test. We
then apply machine learning to investigate the
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possibility of inferring childrens learning from
the gaze data. By investigating the feasibility of
childrens gaze informing us about their learning
progress, we provide a path towards a technology
design that enables the continuous and unobtru-
sive monitoring of their learning and overcomes
the disadvantages of traditional standardized tests.

Related work

Previous works have employed several prac-
tices to assess childrens learning. A common
practice is to collect the actual artefact (code,
in the case of programming) created in childrens
projects and then analyse it using a framework,
rubric or checklist (e.g., [17]). A more qualitative
way of assessing childrens learning is to conduct
interaction analysis [7]. Interaction analysis tech-
niques investigate human activities, such as talk,
non-verbal interaction, and the use of artefacts
and technologies, identifying routine practices
and problems and the resources for their solution.
Another qualitative way of assessing childrens
learning is to use the think-aloud approach [9].
Think-aloud can reveal a more authentic cogni-
tive process, but it increases the cognitive load
and often distracts the participant from the core
task [3]. The most common, and more subjective
and quantitative [9], method to capture childrens
learning gain is to utilize standardized post-tests,
multiple-choice instruments, or quizzes that quan-
tify childrens learning [6].

Capturing childrens eye movements (gaze)
when they look at a stimulus while working
on a task can provide a range of useful infor-
mation. Gaze data is a good proxy for various
cognitive mechanisms [13], and data on childrens
gaze provides insight into their visual attention,
which enables researchers to explore childrens
cognitive processes. Existing studies have ap-
plied eye-tracking methods to investigate program
comprehension and debugging [9] [3]; however,
these studies have concentrated on the source
code rather than looking at other representations,
with the different representations being taken to
be different areas of interest (AOIs). In addi-
tion, related work [10] has focused on university
students or even professionals, and has utilized
stable eye-trackers, thus being able to eye-track
only on-screen activities. Although this practice
might provide accurate results for professionals or

adult students (since the coding/learning activities
occur only on-screen), in the case of children,
focusing on on-screen activity alone captures
only part of the learning experience and provides
inaccurate insights. In our study, we utilized eye-
tracking glasses in order to collect eye-tracking
data to capture the gaze of children while they
were working with instructional tasks (1) on the
screen, (2) while talking with other children and
(3) while working with other objects/materials
outside the screen.

In short, standardized pre- and post-tests pro-
vide reliable assessments of childrens learning,
but at the same time entail certain disadvantages.
For instance, children need to invest time and ef-
fort into these tests, and it is not possible to apply
the tests to every activity. In addition, assessments
that involve heavy text can be inappropriate for
young students (e.g., those in primary education)
who have not yet fully mastered the written word
or have certain disabilities and other learning
difficulties. Thus, if we can automatically and
pervasively collect gaze data that can accurately
predict childrens progress (as assessed from stan-
dardized tests), then childrens learning can be
measured continuously and unobtrusively using
wearable eye-tracking devices.

Experiment: Case Study of a
Making-Based Coding Activity

Participants

The study was conducted in a dedicated lab
space at the Norwegian University of Science
and Technology (NTNU) in Trondheim, Norway.
Over a two-week period, 44 children from 3rd to
12th grade (aged 8-17 years old) participated in
a coding activity. The sample comprised 12 girls
(mean age: 12.64, SD: 2.838) and 32 boys (mean
age: 12.35, SD: 2.773). Five workshops took
place over two weeks, that followed a specially
designed coding activity (described below). Our
activities were organized for children who were
novices at coding and who participated volun-
tarily. Once the participants had been selected,
a researcher contacted their teachers and parents
in order to obtain the necessary consent from the
legal guardian for data collection. Consent from
the children themselves was also obtained.
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Figure 1. Left: Eye-tracking glasses; Middle: Snapshot from the study; Right: QR codes in the main AOls.

Apparatus

In order to collect childrens gaze data dur-
ing the coding activity, we utilized eye-tracking
glasses that allowed us to track childrens on-
screen and off-screen gaze (see see Figure 1,
left, middle). We used SMI RED 250 and TOBII
mobile eye-trackers working at 60Hz. A sampling
rate of 60Hz is considered sufficient for usability
studies. In order to automatically compute the
necessary features from our data, we put QR
codes in the main AOIs (i.e., screen and robot),
with the exception of the face AOI, which was au-
tomatically extracted via face recognition (Figure
1, right).

Activity

The workshop activities were based on the
constructionist approach, as one of the main
principles of this is learning-by-making. The
workshop was conducted in a largely informal
setting, as an out-of-school activity, and lasted for
four hours in total; it was designed for children
without (or with minimal) previous experience
in coding. Participants in the workshops com-
prised various student groups, ranging from 8-17
years old, who were invited to rooms at NTNU
that have been specially designed for creative
purposes. The children worked collaboratively
in triads, and student assistants supported them
during the activity, with each assistant observing
and helping one or two teams. The childrens gaze
was monitored during the activity.

The activity consisted of two parts (Figure
2, left): first, developing interaction concepts
in digital robots using the Arduino hardware
platform, and second, developing games using
Scratch (a block-based programming language).
Specifically, for the first part Arduino was at-
tached to the digital robots to connect them to the
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computer. At that point, an extension of Scratch
called Scratch for Arduino (S4A) provided the
extra blocks needed to control the robots. Chil-
dren had to accomplish a series of simple loops
to make the robots react to the physical environ-
ment (i.e., each robot had a specific movement
that caused lights to be turned on and off; see
examples in Figure 2, right). The duration of this
part varied for each team, and lasted between 45
minutes and 1.5 hours, ending with a break before
the next section.

The Scratch programming language uses
colourful blocks grouped into categories (motion,
looks, sound, pen, control, sensing, operators, and
variables), with which children can develop sto-
ries, games, and various types of animation (see
Figure 3). During the second part of our work-
shop, the children developed their own games
by collaboratively designing and coding using
Scratch. They created their games step by step
by iteratively testing and coding them, using
loops and other computational thinking concepts.
Depending on the needs of each team, complex
programming concepts were introduced by the
assistants according to the relevance to the teams
project. This section lasted approximately three
hours.

Research Design

The children completed pre- and post-
knowledge acquisition tests. These consisted of
nine questions of increasing difficulty, and were
adopted from literature on how to assess childrens
computational thinking skills [6] (see an example
in Figure 3). The children took approximately
10 minutes to finish the tests. The tests were
paper-based and were manually graded by the
researcher. Children wore the eye-tracking glasses
during all parts of the activity, and their gaze was
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Figure 2. Left: Description of the two parts of the activity; Right: Examples of the tasks (top) and the robots

children (bottom).

continuously and unobtrusively captured.

Measures

First, we calculated the relative learning gain
(RLG) [5]. RLG is more accurate compared to
learning gain, since it takes into consideration the
difficulties inherent in gaining more knowledge
if the learner is already very knowledgeable in a
subject. In this work, RLG is considered as the
dependent variable.

Posttest — Pretest

Max. in pretest — Pretest’
Posttest — Pretest

if Posttest > Pretest
RLG =

,if Posttest < Pretest
Pretest

We employed 15 measures (Table 1), and the
observations of the researchers during the study;
these comprised four AOIs, six transitions (to and
from one AOI to another) and five behavioural
measurements. All the measurements were cal-
culated for a fixed time window of 10 seconds
and then aggregated for the whole session. For
variables such as transitions, we counted the fre-
quencies and normalized them by the duration of
the window; variables including fixation duration
and skewness of saccadic velocity were averaged
over the time window and later aggregated.

For the cognitive load, the mean and SD of
pupil diameter was combined with the number
of long fixations and saccade length in order
to provide a reliable measurement of cognitive
load (to counterbalance the effect of emotions). In
particular, to measure the cognitive load of partic-
ipants we calculated the four measures proposed
by Buettner [2] (i.e., mean pupil diameter (PDM),
pupil diameter SD (PDS), number of fixations
longer than 500ms (NLF) and saccade speed (SS),
see the following formula). These values were
calculated and combined for every participant.

{0 if PDM < median (PDM)
1if PDM > median (PDM)}
+
{0 if PDS < median (PDS)
1if PDS > median (PDS)}

Cognitive load = +
{0if NLF < median (NLF)
1if NLF > median (NLF)}
+
{1if SS < median (SS)
0 if SS > median (SS)}

To account for variations in pupil diameter
due to susceptibility of pupil diameter measures
towards time of the day, age and gender, after
removing noise we used the first two minutes of
the data from each participant to normalize their
pupil diameter. Further, to account for changes in
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Increases the score

The figure does not move at all

The figure reacts only when you press a key
Sets the starting position of the figure
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Figure moves up for 0.1 seconds

Checks the height of the figure

When figure is at the far right, goes to the far left, then waits 0.1 sec
When figure is at the far left, goes to the far right, then waits 0.1 sec

Figure 3. Top-left: Interface of Scratch IDE; Top-right: Children interacting with the robots; Bottom: Example of

questions used in the pre and post-tests.

brightness, pupil diameter was normalized within
the brightest and the darkest frames in the field
of view for each child. For attention, we utilized
the average fixation duration. Fixation duration
is context sensitive and has been associated with
mind-wandering; however, in the context of pro-
gramming [1] it has been attributed to higher
levels of information processing and attention
(in terms of time spent on the content of a
specific part). For anticipation, the skewness of
the saccade velocity histogram how fast the eyes
were moving was used. Anticipation is related
to the individuals familiarity with the interface
(stimulus). If a person is familiar with a given
interface (Scratch IDE, in our case), the eye
movement between the different parts of the inter-
face to solve a particular problem should be faster
compared to that of a person who is not familiar
with the interface. The saccade velocity skewness
gives us a general idea this phenomenon, since
the higher the skewness of the saccade velocity
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histogram the higher the overall speed of eye
movements [14].

Analysis

To test the potential difference in gaze be-
haviour between children with low versus high
RLG, we formed two different groups via a
median split on RLG. Subsequently, an indepen-
dent samples analysis of variance (ANOVA) was
conducted between children with low and high
RLG.

To identify how gaze data features can predict
RLG, we divided the whole data-set into train-
ing and testing subsets, retaining data from 10
children for testing. We perform a 10-fold cross-
validation (retaining 10 children for testing each
time) to remove sampling bias from the training
set. We used ensemble learning with model trees
to predict the childrens RLG using the gaze
data features. Ensemble learning uses multiple
learning algorithms to obtain better predictive
performance than could be obtained from using



Measure Name Type Meaning
Proportion of time not looking at -screen, Nothing AOI Off-task activity.
-face and -robot.
Proportion of time looking at the robot. Robot AOI Interaction time with the
robot.
Proportion of time looking at faces. Face AOI Interaction time with other

students and the tutor.

Proportion of time looking at the screen. Screen AOI Interaction time with the
IDE.
Transition from face to screen. Face .screen Transition Shift of attention between

a face and the screen.

Transition from screen to face.

Screen.face Transition Shift of attention between
the screen and a face.

Transition from other children’s/tutor’s Face. Transition | Shift of attention between
faces to something else. a face and another AOI.
Transition from screen to something else. Screen. Transition | Shift of attention between
the screen and another
AOL
Transition from something else to the screen Transition Shift of attention between
screen. another AOI and the
screen.
Transition from something else to other face Transition | Shift of attention between
children’s/tutor’s faces. another AOI and a face.
Mean and S.D. of pupil diameter; number | Cognitive Behavioral Child’s mental effort.
of long fixations; saccade length. Load

Average fixation duration.

Attention Behavioral Child’s level of focus.

Skewness of saccade velocity histogram | Anticipation | Behavioral Child’s level of
(how fast the child’s eyes are moving). anticipation.
Blink rate. Fatigue Behavioral Child’s tiredness.
Gaze similarity (common gaze): The Joint Behavioral Level of collaboration
proportion of time all children were Attention between the team of
looking at the same AOI within a time children.

window of 4 seconds.

Table 1. Summary of the gaze measures used in our study.

any of the constituent learning algorithms alone. Results

We used the normalized root mean squared error On average, childrens learning increased from
(NRMSE) metric; NRMSE is the proposed metric  the pre- to the post-test, with the majority of
for prediction models regarding learning [12]. children having positive RLG (except nine that

had a gain of 0 i.e., scored the same in the pre-
and the post-assessment) after the coding activity
(mean RLG: 0.45, SD: 0.38). A bi-modality test
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on RLG (Hartigans dip test: D = 0.11, p < .001)
revealed that the data were not unimodal and thus
we could perform a median split between low
and high RLG. To investigate any potential differ-
ences between the two groups, we performed an
ANOVA including childrens RLG as a dependent
variable and their gaze behaviour as independent
variables. All statistical analyses reported had a
significance level of 0.05. As we can see from the
outcome data in Table 2), the time the children
looked at the screen and at the face had an impact
on their RLG, as did the behavioural measures
of cognitive load, joint attention, anticipation and
attention.

Utilizing wearable eye-tracking devices to
capture childrens learning

To identify how the different eye-tracking
features can predict RLG, we divided the whole
data-set into training and testing sets, with data
from 10 children retained for testing. We per-
formed a 10-fold cross-validation (again retaining
10 children for testing each time) to remove
sampling bias from the training set. The average
value across all cross-validation folds for the
testing sets of NRMSE was 15.79%. To identify
whether we could make a reliable prediction with
a smaller portion of our data, we attempted to
predict RLG using different data segments (e.g.,
100%, 50%, 25%). With 75% of the data-set,
NRMSE was 18.45%; with 50% it was 19.68%;
and with 25% it was 21.26% (using 25% of data
translates to dividing the data into four quarters
based on length of time and using only the first
quarter for prediction purposes). Thus, when we
moved to 25% of the data-set, we noticed a
significant increase in NRMSE.

Important gaze-based predictors of children’s
learning

Regarding the role of each of the 15 features
(see Variable importance for the RLG column in
Table 2, the three most important (i.e., impor-
tant predictors) were (1) childrens anticipation
(i.e., how fast the childs eyes moved) during
the activity; (2) interaction time with the IDE
(i.e., proportion of time the child was looking
at the screen); and (3) the childs level of focus
(i.e., childs attention average fixation duration).
The three least important features were (1) child
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looking at something other than the main AOIs
(i.e., not at the screen, face or robot); (2) in-
teraction time with the robot (i.e., proportion of
time the child was looking at the robot); and
(3) childs transition from something else to other
childrens/tutors faces.

Insights from observations during childrens
learning

From the qualitative observations made during
the study, we also identified that the time spent in
the various regions of Scratch interface differed
between the low and the high performers, but
also between the younger and the older children.
Children with better final games (based on the
submitted code) shared certain characteristics:
They started coding from sprites and changing
the costumes of their characters, and all members
of the team were engaged with coding and spent
a lot of time looking at the screen to familiarize
themselves first with the commands. In addition,
they had a lot of interaction with the assistants.
Another interesting insight coming from the ob-
servations is that children older than 13 spent
more time on the commands, output and scripts
compared to the younger ones, who spent more
time on the sprites. In general, younger children
focused more on the aesthetics of the characters
they were designing for their games.

Discussion

Using gaze data to understand and predict
learning is not a new approach (see a recent
literature review by Lane and DMello [8]). Pre-
vious studies have revealed significant findings in
terms of gaze data and their appropriateness for
modelling learners engagement with an activity
and predicting learning. However, previous results
have focused on digital environments [8], thereby
completely missing the authentic learning that
occurs outside the screen, and have focused only
on adult learners in lab studies. The present study,
in contrast, considers how continuous and unob-
trusive monitoring of childrens gaze during an
authentic and rich activity can help us to predict
their learning. Our results suggest that gaze data
produced during the learning activity can be good
predictors of childrens learning, with the screen
AOI and some behavioural features serving as
very good predictors.



Variable (Based Mean (SD) ANOVA Normality | Variable
on names in importance*
Table 1) LowRLG | HighRLG | F p | Cohen’sd | W p |[for the RLG
(effect
size)
AOIs
Nothing 0.04 (0.02) | 0.06 (0.02) | 0.26 | .60 0.1 094 | 41 0
Robot 0.16 (0.05) | 0.16(0.06) | 1.2 | .28 03 097 | 43 525
Face 0.12 (0.03) | 0.14(0.03) | 521 | .02 0.7 093 | .11 18.52
Screen 0.39(0.08) | 0.33(0.11) [ 454 | 03 0.6 094 | 08 9261
Transitions
Face.screen 0.12 (0.02) | 0.13(0.02) | 0.1 | .85 0.1 094 | 45 29.09
Screen.face 0.13(0.01)| 0.12(0.02) [ 1.6 | .20 03 093 | .13 17.25
Face. 0.13(0.02) | 0.13(0.01) | 03 | 57 0.1 095 | .56 4845
Screen. 0.14(0.01)| 0.13(0.02) | 1.7 | .20 03 091 | 41 31.89
.screen 0.12 (0.02) | 0.14(0.02) | 045 | .54 0.1 091 | 45 1122
face 0.12 (0.01)| 0.13(0.01) | 0.39 | .53 0.1 096 | 22 11.18
Behavioral
Cognitive Load | 1.51 (1.11) | 2.14(1.05) | 3.75| .05 05 090 | .18 41.37
(scalar between
0 and 4)
Attention 310.10 228.64 4721 03 0.6 098 | .11 76.94
(milliseconds) (162.52) (85.51)
Anticipation 0.41(0.46) | 0.02 (0.60) [ 595 | 01 0.7 093 | .12 100
(degrees/ms)
Fatigue (mm, | 0.62 (0.08) | 0.64 (0.08) | 0.54 | 45 02 092 | 09 2282
normalized
between 0 & 1)
Joint Attention | 0.46 (0.03) | 0.39 (0.15) | 489 | .03 0.6 096 | 22 5233
(scalar between
0&1)
* The importance is scaled between 0 (least important, should not be confused with not important) and 100 (most important).

Table 2. Differences in gaze behaviour between children with low versus high RLG, and variable importance for RLG.

Design considerations

In the context of programming, attentional
distribution and shifts (i.e., AOI and transitions)
have been found to relate to performance [11]
[10]. In our study, transitions between the differ-

ent AOIs and the non-core AOISs (i.e., nothing and
robot) were found to be insignificant, while mea-
surements related to the core AOI (i.e., screen)
were found to be significant (positively). This
result is not surprising, and confirms the relation-
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ship between on-task engagement and learning
performance. Thus, it is important to cultivate
interaction quality time with the IDE when de-
signing coding activities for children. However,
this is also difficult, since it is extremely easy for
children to disengage (as we also observed in our
study).

The most important results come from the
measures related to behaviour in particular,
anticipation, attention and joint attention were
found to be the most important predictors of
childrens learning. Anticipation is a key factor
for expertise; experts are known to have a top-
down approach to solving problems, with the
main factor of such processing being that experts
gaze is driven by their experience/knowledge
[15]. Prior knowledge provides children with a
working hypothesis, and thus they are able to
anticipate. In this study, some children had prior
knowledge about the programming environment
(some also developed knowledge quickly during
the activity); thus, including the measure of antic-
ipation allowed us to encode the expertise of the
children. The fact that the measure of anticipation
was found to be the most important predictor,
and was also significantly higher in children with
high RLG, supports related work in the context of
programming, but also informs future work about
the importance of utilizing anticipation-related
features when monitoring childrens learning and
skills development.

Attention and joint attention were also found
to play an important role in childrens learning.
In particular, moments of joint attention are a
viable predictor of the quality of collaboration
and outcome [5]. Thus, when designing learn-
ing activities and technologies for children it
is important to enhance childrens collaboration
with one another, keep their attention/focus on
the task at hand, and support anticipation during
interactions. These considerations might sound
simple, but they are directly connected to several
approaches employed in childcomputer interac-
tion (CCI), such as using interactive elements to
increase sociability or game elements to increase
attention, or setting the physical space design
in a way that amplifies childrens abilities to
collaborate and stay focused.

Interestingly, childrens cognitive load was not
a top predictor of learning. Cognitive load is a
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widely used measurement in the intersection of
eye-tracking and learning. This result indicates
the importance of relaxation of mental effort dur-
ing learning, and is grounded in the importance
of meaningful learning. For meaningful learning
to occur, the cognitive process/load of the ac-
tivity should be moderate; or, as Csikszentmi-
halyi [4] demonstrated, achieving the optimal or
flow experience that neither frustrates nor deters
the learner. This can be achieved by selecting
relevant information, organizing it into coherent
mental representations, and integrating it with
prior knowledge, but also by helping children to
relax by designing the activity in a way that mixes
mentally heavy with playful and social elements.

Working with children in wearable eye-tracking
device studies

The present study is one of the first to use
mobile eye-tracking data to examine childrens
learning gain. When the children were initially
asked to wear the glasses, they were curious to
know more about them; therefore, we had to
spend time explaining why we were running the
experiment and how the gaze data would look
on the monitor. Most of the children had never
seen anything similar before and were excited
to wear the glasses, without complaining about
them being heavy or uncomfortable. However,
they were less tolerant than adults with respect to
the temperature of the glasses, which heat up after
being in use for some time; after informing us of
this, we had to take a break and allow the children
to remove the glasses for a while. In addition,
there were practical difficulties inherent in captur-
ing childrens gaze because of their constant head
movements during the activity, and the fact that
the eye-tracking glasses were designed mainly for
adults (and thus sized for adult heads, causing
irritation). Moreover, the collaborative concept
of the activity encouraged children to heavily
interact with each other, which made it difficult
to collect high-quality data. However, our study
proved that it is feasible to eye-track children
using glasses, since 75% of the data were of
good quality and gave us very interesting insights
regarding gazes ability to predict childrens learn-
ing in rich activities. Overall, when conducting
studies in which children are asked to wear eye-
tracking glasses it is important to look carefully
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at the value and need for childrens involvement
in the development process, and of the value and
purpose of childrens participation.

Despite the aforementioned difficulties, we
found that contemporary wearable eye-tracking
solutions (SMI and Tobii glasses) have the ca-
pacity to be used with children as end-users.
This does require some additional work from the
researcher, as there is a need to pay extra attention
to monitoring the activity and ensuring proper
calibration, when needed (e.g., removing glasses
during play), and proper use of the glasses. How-
ever, besides those considerations, eye-tracking
glasses are a good solution that enables us to
unveil rich interactions in the context of CCI.

Another important consideration when work-
ing with children in wearable eye-tracking device
studies pertains to appropriate preparation of the
apparatuses and the space. Eye-tracking glasses,
in contrast to stable eye-tracking, need a carefully
prepared and modelled environment (e.g., AOIs)
that allows the researcher to automatize the post-
processing, but at the same time endures the ex-
tensive playing, learning and socializing activities
that occur during a collaborative learning activity
with children.

Limitations

The findings support our proposition that chil-
drens gaze has the capacity to infer their gains
during a learning activity, but are subject to
certain limitations. The participants of our study
were children; this represented an appropriate
sample for our study, since we wanted a child
population that could effectively participate in
a typical coding activity, use the eye-tracking
glasses, read the standardized test and provide ac-
curate responses. However, younger or older pop-
ulations (e.g., kindergarten, university students,
etc.) might produce slightly different results. The
generalizability of our findings is somewhat con-
strained by the design of the learning activity,
since longer, more passive or less collaborative
activities might give slightly different results.
However, this study employs a learning design
that is widely used (i.e., collaboratively coding
using a visual programming tool) and can thus
serve as a baseline for future studies.

Pre- and post-tests were used to provide the
ground truth; these tests consisted of standardized

questions based on the literature [6]. Different
assessment techniques, such as interaction analy-
sis [7] or think-aloud [9], could have allowed us
to assess childrens cognitive process in a more
authentic manner; however, the subjective quan-
tification of learning would had been challenging.
Despite its limitations, standardized pre- and post-
tests represent a reliable method for measuring
childrens learning [6]. Complex constructs, such
as cognitive load and attention, could have been
measured by asking the participants themselves
(e.g., via a NASA-TLX survey or a dual task),
either at the end of the task or at regular inter-
vals during the task. However, such methods are
neither automatic nor pervasive, do not provide
temporal measures, add inherent complexity of
the main task and cause important disruptions to
the task and collaboration. Thus, to compute the
behavioural constructs (Table 1), we employed
gaze measures from the literature [2] [1] that have
been found to provide adequate results in similar
contexts (e.g., programming).

Conclusions

Overall, our work shows that monitoring
childrens gaze with eye-tracking glasses holds
the potential to intuitively capture their learning
progress. We provide evidence that leveraging
eye-tracking glasses can be a viable method to
accurately track childrens learning during rich
learning activities. In summary, the contribution
of this paper is twofold: (1) we conducted an
in-the-wild study that provided data on childrens
gaze during a making-based coding activity, and
quantified the capacity of childrens gaze data to
give accurate predictions of their learning; and
(2) we identified the importance of the various
gaze-based data to predict childrens learning, and
discussed how these findings can inform future
CCI and learning technology research.

Future work should collect data from different
learning activities. Cross-validating and extending
our findings will allow us to build generalized
prediction models and identify the learning ac-
tivities in which we can most accurately predict
childrens engagement. This will allow us to build
an integrated understanding of the potential (as
well as the limitations) of using childrens gaze
data to infer their learning progress.
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