
Virtual Wires: Rethinking WiFi networks
Yudong Yang1, Yuming Jiang2, Vishal Misra1, Dan Rubenstein1

1Dept. of Computer Science, Columbia University, United States
2Dept. of Information Security and Communication Technology, Norwegian University of Science and Technology, Norway

1{yyd, misra, danr}@columbia.edu, 2jiang@ntnu.no

Abstract—WiFi is the dominant means for home Internet
access, yet is frequently a performance bottleneck. Without
reliable, satisfactory performance at the last hop, end-to-end
quality of service (QoS) efforts will fail. Three major reasons
for WiFi bottlenecking performance are its: 1) inherent wireless
channel characteristics, 2) approach to access control of the
shared broadcast channel, and 3) impact on transport layer
protocols, such as TCP, that operate end-to-end, and over-react
to the loss or delay caused by the single WiFi link.

In this paper, we leverage the philosophy of centralization in
modern networking and present our cross layer design to address
the problem. Specifically, we introduce centralized control at the
point of entry/egress into the WiFi network. Based on network
conditions measured from buffer sizes, airtime and throughput,
flows are scheduled to the optimal utility. Unlike most existing
WiFi QoS approaches, our design only relies on transparent
modifications, requiring no changes to the network (including
link layer) protocols, applications, or user intervention. Through
extensive experimental investigation, we show that our design
significantly enhances the reliability and predictability of WiFi
performance, providing a “virtual wire”-like link to the targeted
application.

I. INTRODUCTION

Protocol layering, decentralization and end-to-end conges-
tion control have been the cornerstones of the Internet archi-
tecture, enabling continual growth of backbone infrastructure
and rapid development of novel applications. However, the
traditional end-to-end, TCP-based approach that determines
an individual flow’s bandwidth allocation at bottleneck links
assumes that competing flows have the same priority and
will benefit equally from an equal share of bandwidth. Such
assumptions are no longer realistic, failing to effectively
capture the bandwidth and delay needs of the corresponding
applications [1].

In this paper we apply the philosophy of centralization at
the end of the network spectrum: the modern home network,
where access is dominated by WiFi, and where a diverse and
ever-growing mix of device types and applications must be
supported. We highlight the limitations of the current protocol
layering and distributed control schemes in the context of
WiFi, and present, implement and experiment with a cross
layer design that uses a similar philosophy of centralization.
Our design consists of three components:

This work was funded in part by the NSF through awards CNS-1717867 and
CNS-1618911. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of NSF.
978-1-7281-1434-7/19/$31.00 ©2019 IEEE

1) A flow classifier that automatically classifies flows into
utility-based application categories, which feeds into:

2) A novel optimizer that maximizes the sum of the applica-
tion utilities, accounting for the mix of application types,
device types, and wireless link rates;

3) A work conserving scheduler which, sitting at the center
of the design, takes the bandwidth allocated by the
optimizer as input and manages airtime use by flows to
meet the optimizer’s allocation.

Together, the components work to find and deliver the most
application-appropriate QoS to the flows under the available
bandwidth constraints. This is accomplished with complete
transparency, requiring no user intervention. For this reason,
we call our system Virtual Wires (or VW for short), as it
brings switched Ethernet-like performance characteristics to
WiFi. As our experiments show, in a wide variety of scenarios,
VW enables automatic provisioning of a “virtual wire”-link
for each application that supplies it with a QoS-appropriate
amount of bandwidth.

In particular, while traditional WiFi bandwidth manage-
ment mechanisms are implemented within the link layer, we
implement ours within the transport layer via a transparent
splitting proxy, hence applications benefit without needing
any modification. While the use of session splitting is not
new [2], [3], our use of splitting is novel in that it not
only enhances a flow’s throughput and delay but also permits
better coordination of allocations among competing flows,
which improves WiFi performance given its limitations due
to its physical layer characteristics and link layer shared
channel access control. In addition, splitting compensates for
transport layer artifacts caused by end-to-end TCP congestion
control, which might influence bandwidth and delay allocated
to sessions, i.e., VW overrides the rates assigned by TCP’s
congestion control mechanism that is oblivious to application
requirements.

Our work shows that reliability and predictability of WiFi
can be enhanced by centralized control and transparent mod-
ifications at the point of entry/egress into the WiFi network,
which can also be viewed as complementary to any efforts
in the link or physical layers to improve WiFi performance
reliability. Our contributions can be summarized as follows:

• We present a 3-component architecture which, from an
application’s standpoint, vastly improves the utilization of
sessions traversing a WiFi link.
• We demonstrate a novel benefit of session splitting, using it

as a means to both a) control the allocation across different
flows at the WiFi bottleneck, and b) apply appropriate
congestion control to different connectivity regions based on
their unique characteristics (i.e., backbone vs WiFi link)
• We present extensive experimental validation of our system,

using testbeds that include commodity home WiFi routers
built by Google and Linksys under real Internet applications.
• Experimental results show that the performance reliability

is improved in terms of bandwidth, delay and system utility.
In a wide variety of settings, Virtual Wires is able to meet
higher QoS for tagged applications in the presence of greedy,
background flows, providing much higher and more stable
throughput rates for flows whose applications depend on
stable throughputs, thereby enabling higher quality (e.g., 4K)
streaming. Delays are reduced by 59.9%-89.5% depending
on the congestion level. By utilizing differing TCP variants
on opposite sides of the split, our system improves link
utilization by 30.7% for long distance WiFi.

The remainder of the paper first introduces the rationale of
our design, and then presents the overall design architecture. In
addition, we present experimental results. Finally, we discuss
related work, and conclude.

II. DESIGN RATIONALE

In this section, we present the rationale for our design, going
over both the limitations of WiFi as well as prior art that does
not fully address these limitations.

A. WiFi Limitations

The unpredictability in WiFi performance is due to many
wireless channel factors such as multipath, fading, and inter-
ference. However, WiFi suffers from additional challenges that
are unique from other wireless technologies:

Poor isolation: A shared WiFi radio channel experiences
interference due to activity of other devices in the WiFi
network. Such interference is known to cause large variations
in WiFi network bandwidth and delays [4].

Rate anomaly: In a WiFi network, the link rate is ad-
justed per device. The packet-by-packet arbitration of WiFi
scheduling induces a phenomenon termed rate anomaly [5],
where low-rate users1, who require longer times to transmit
their frames, consume a disproportionate share of the airtime
needed by other connected devices.

Air time allocation policy: To address the above chal-
lenges, some commercial implementations apply a technique
called Air Time Fairness, where the air time is simply par-
titioned equally among the competing devices. However, this
mechanism lacks the expressivity and flexibility to deal with
differing QoS requirements across different applications. For
instance, flows that can afford being slowed down should yield
airtime to e.g., a video streaming app that needs additional
airtime to meet its video bitrate.

1whose rates are often low due to either the use of legacy WiFi technologies
or weak (low SNR) signals.

B. Existing Approaches to QoS

There exist prior attempts to develop non-obtrusive means
to provide QoS within a WiFi environment. WiFi Multimedia
(WMM) [6], introduced by the WiFi Alliance, classifies all
traffic into four classes via the setting of the differentiated
services code point (DSCP) bits in the IP header. Each class
is mapped to a queue where the four queues are served
with differing priorities. However, predefined priorities are
insufficient at meeting the optimal QoS of the whole system.
For example, a video streaming application won’t have higher
QoS when its goodput becomes greater than its video bitrate.
In this case, assigning a higher priority to the video will offer
no improvement to video quality, but may unnecessarily reduce
throughputs of other (lower priority) applications. Moreover,
DSCP bits are often altered by network operators along the
Internet path before packets reach the WiFi router [7], and
hence may not even be tuned specifically for the needs of
the WiFi link. We will show that in contrast, VW requires no
setting of header bits, as we do automatic classification at the
WiFi access point. In addition, unlike WMM, we tune at the
wiFi boundary specifically to the needs of current applications.

An alternate approach to achieving QoS at the WiFi bound-
ary is via implementation of an artificial bottleneck. For
instance, the Linksys, D-Link, Netgear routers and firmware
OpenWRT (with qos-scripts module) and DD-WRT we tested
use this approach where the router imposes an aggregate
throughput that is less than the available bandwidth of the
interface. Since available bandwidth in WiFi is a function
of the set of devices and their current physical rates which
continually fluctuate, an artificial bottleneck will at times waste
available bandwidth when actual bandwidth is greater than the
imposed artificial bottleneck, and at other times be insufficient
because actual bandwidth falls below the imposed artificial
bottleneck. In contrast, our scheduler is work conserving, and
makes use of all available bandwidth while also directing that
available bandwidth to best meet the QoS needs for existing
application (requiring no user intervention).

C. End-to-End Effects

WiFi’s unreliability in performance is even more pro-
nounced end-to-end, as WiFi is increasingly the only shared
broadcast link on an end-to-end path, whereas almost ev-
erything else is switched. The inconsistent and unpredictable
behavior of the one-hop WiFi link not only causes challenges
for transmissions crossing that link, but in fact has a substantial
effect on transport layer protocols that operate end-to-end.
For example, the recently developed BBR TCP congestion
control algorithm [8], designed to reduce delay and increase
throughput, is aimed at wired links. WiFi links not only hide
losses from the transport layer to a great extent by link layer
retransmissions, but the varying physical rates on a WiFi link
can cause BBR to underperform. We present a detailed anal-
ysis of this effect in Section III-B and experimental validation
in Section IV.

Fig. 1. System overview. Solid arrows are data flows (uplinks are omitted), doted arrows are control flow

III. ARCHITECTURE

In this section, a design overview is first presented, followed
by introduction to the detailed ideas of the design.

A. Design Overview

Our system resides within a WiFi router, as illustrated
by Fig.1. For simplicity of presentation, we only show the
downlink portion of the design (where the WiFi link is the
final hop). It contains a similar mechanism to handle the
uplink portion. The modules with solid borders already exist
in traditional Linux implementations, while the modules with
dashed line borders are our design. Solid arrow lines indicate
the flow of network traffic, and the dashed arrow lines indicate
the relations between the various modules.

The following provides a summary of our design ideas,
which are further explained in the subsequent subsections.

(i) Session Splitting. Virtual Wires uses a proxy approach to
split network sessions into two parts, and for each part of
a split session, we select TCP implementation that is more
suitable for the characteristics of that part of the session.

(ii) Traffic Classification. Each network session is mapped
into application classes, where a QoS profile can be assigned
per application class. The QoS profile can also be made
dependent on the capabilities of the flow receiver, e.g. a 4K
TV vs a smartphone. Each application class session maps to
its own queue that can be used to schedule its packets.

(iii) Utility Optimization. Based on the QoS profile, a utility
function is mapped to each application. The optimizer solves
the utility maximization problem, and assigns the optimal
airtime allocation to the scheduler.

(iv) Scheduling. When the network is not congested, the
packets are forwarded as soon as they arrive. Otherwise, our
system schedules packets to meet the airtime assigned by
the optimizer.

(v) Feedback. Virtual Wires tracks the achieved transport-
layer rates of the split portion of the connection traversing
the WiFi network, and feeds this information back to the
optimizer and scheduler to select traffic for forwarding that
ensures the optimal use of WiFi airtime when congested.

Together, these design ideas result in a transparent proxy
solution that requires no changes to existing applications or
end-systems.

B. Session Splitting

The system uses a transparent proxy as a means to intercept
and split network sessions. The transparent proxy is similar to
Network Address Translation (NAT). Instead of translation, in
our system, the proxy splits the network sessions and forwards
data between the WiFi portion and Internet portion of the split.

Specifically, a connection is split into two parts: a client’s
session that ends at our proxy, and a remote session that
connects the proxy with the remote server. The proxy sits
in the middle and listens on both sessions. Whenever a data
packet arrives on one side, the proxy receives and forwards
the data packet to the other side. The proxy is similar in
transparency to a NAT, and does not require any setup on
the user’s smart phone or laptop.

For TCP sessions, the system obtains two benefits by
splitting: One is related to throughput gains due to separate
and shorter feedback loops running at two ends of the split,
and this effect is well known in the TCP-splitting literature [3].

Another gain with session splitting is that it allows us
to select different congestion control algorithms on the two
sides of the split to match with the diverse characteristics
of the respective paths they traverse, namely a likely wired
Internet path and a WiFi link. To understand its necessity,
consider the BBR case as an example: BBR [8] is a recently
proposed TCP congestion control algorithm being deployed on
Google’s servers. However, our tests in Section IV show that
BBR throughput is significantly suboptimal across a WiFi link.
In part, this is because BBR underestimates the congestion
window when the last hop WiFi link is bottlenecked. BBR
sets congestion window to B · r, where B is the bandwidth
of the bottleneck and r is the minimum end-to-end RTT. With
WiFi link in the path, unlike wired link, the average RTT R
is greater than r, not only because of queuing but also factors
like channel waiting, packets aggregation, retransmissions on
the wireless link. As a consequence, the achieved throughput
becomes B r

R that can be low when the propagation time is
small relative to the average delay.

Our system maximally make use of the full bandwidth while
also take advantages of BBR, by using BBR on the wired link
but switching the congestion control on the WiFi link.

C. Automatic Traffic Classification

In our system, network connections are grouped into appli-
cation classes, with each class maps to a utility function.

To classify the traffic, we use the random forest algorithm.
The advantage of using a machine learning-based algorithm is
that user or application intervention is not required, i.e., users
need not select or specify applications classes, and applications
require no modification. Since the topic of traffic classification
has been well-studied [9], [10] and the classifier itself is not the
focus of this paper, we use the same statistic feature as [9] to
implement the classifier. In addition, we separate connections
by device’s IP address and use MAC address to identify the
type of devices [11] which is added in the feature. To enable
run-time classification, we update statistics and predict every
2 seconds.

D. Utility Optimization

In the WiFi system that has N concurrent applications,
and each application has utility function u1(b1), · · · , uN (bN),
where ui(bi) is the utility generated by application i when its
goodput is bi. In our system, we use ui(bi) to characterize the
QoS requirements for applications. For example, a YouTube
video application can map to a simple step function that
increases at where bi equals to the bitrates of each quality
levels (720p, 1080p). For web, or other bandwidth-greedy
applications, we can use wi log(bi) to achieve proportional
fairness weighted by wi [12].

The goal is to maximize the summation of all the utility
functions within the WiFi system. The optimization problem
is

max

N∑
i=1

ui(bi)

s.t. bi = aiLi, 0 ≤ ai, and

N∑
i=1

ai ≤ U

where ai is the airtime fraction assigned to application i,
and Li is the physical link rate of the device. 0 < U ≤ 1
is the measured WiFi network utilization, the total fraction
of airtime that can be used to transfer data. Depending on
the radio interference, fading and transmission overhead, U is
estimated by U =

∑N
i=1

b̂i
Li

, where b̂i is the measured goodput
of application i.

The optimizer is triggered whenever input U,Li or ui(·) is
changed. If all the utility functions in the system are concave
functions, e.g. log(·), then an L-BFGS-B algorithm from scipy
package [13] is used. If there exist non-concave functions in
utilites, e.g. step function for videos, then we divide [0, U] into
20 grids, and evaluate on all feasible combinations of grids.
Then L-BFGS-B is applied on the best grid point to find the
local maximum near the grid. To speed up the process, we add
the condition

∑N
i=1 ai = U when the utility functions are non-

decreasing. After the optimal airtime allocation solved, the
bandwidth is computed by bi = aiLi and sent to the scheduler.

E. Scheduling

In our system, a scheduling module controls the order in
which packets are forwarded. When the system determines
that the WiFi link is not the bottleneck, the system forwards
packets in an unmanaged (FIFO) manner: packets are simply
forwarded across the session sockets.

When the WiFi link is identified as the bottleneck, the
scheduler enforces the rates assigned by the optimizer in
a work conserving manner. Each flow’s rate is regulated
according to its application class, and the scheduler selects
the next packet to transmit as a function of both a flow’s
need and its required airtime usage to forward its next packet.
More specifically, each application session’s rate is regulated
to prevent it from possibly consuming more than its allocated
share of bandwidth bi. The regulation is achieved via a token
bucket mechanism.

Algorithm 1: Scheduler

1 while p = recv packet() do
2 if WiFi link is bottleneck then
3 a = application of p
4 if tokena > 0 then
5 forward packet p;
6 tokena = tokena − psize;
7 update airtime measurement of a
8 else
9 store p, schedule upon tokena > 0

10 else
11 forward packet p;

Algorithm 1 details the scheduling module’s implementa-
tion. In addition, there are other threads that increase tokens
at rate bi, forward stored packets when tokena > 0, and set
scheduler back to unmanaged FIFO when WiFi link becomes
not congested.

F. Measurements and Feedback

To detect whether the WiFi network becomes bottleneck, we
monitor the send buffers on the WiFi side using Unix syscall
ioctl(SIOCOUTQ). When the scheduler releases a packet to
the WiFi link, the packet is enqueued to the send buffer and
waits for the underlying AP’s link layer to forward the packet
onward. When the WiFi network is not a bottleneck, the WiFi
rate is greater than the enqueue rate so the packets in the
buffers will be cleared after a short time. In contrast, when
the WiFi becomes the bottleneck, packets in the buffer are
backlogged. Using this fact, we monitor the size-sum of the
buffers of all sessions as a measure to indicate the condition
of WiFi network.

In addition, the system measures the actual goodput b̂i of
each queue on the WiFi side. And Li, the physical link rate,
is measured directly from driver using iwinfo. These values
are updated every 2 seconds and fed back to the optimizer.

IV. PERFORMANCE EVALUATION
In this section, we experimentally demonstrate how Virtual

Wires performs in enhancing the reliability and predictability
of WiFi performance.

The experiments were conducted in an indoor environment.
As shown in Fig.2, we placed the client receivers in two
areas with distance at 3 and 75 feet to the router. We ran
our tests on WiFi on 2.4Ghz. In our test environment, there

Fig. 2. Positions of WiFi router and receivers

(a) without Virtual Wires (b) with Virtual Wires
Fig. 3. 4K video on mobile v.s. Dropbox at 3 feet

were approximately 50 APs visible to our WiFi router, causing
interference that one might expect in a typical setting in cities.
Virtual Wires was implemented on OpenWRT [14] operating
systems using a Linksys WRT1200AC WiFi router.

1) Reliable bandwidth allocation: In this set of experiments
we demonstrate 1) our ability to maintain reliable QoS for
high bandwidth video flows, e.g. for 4K video at home; 2) the
impact of varying physical rates (through distance change) on
the performance, with and without our system.

We stream 4K video at bitrate 30Mbps and we walk with
the device back and forth in the following way: the target is
at 3 feet from the router when t=0, 60 and 120, and at 75 feet
when t=30 and 90. The utility function for this flow is set to a
step function: u(b) = 10 if bandwidth b ≥ 32Mbps, otherwise
u(b) = 0. There is a background receiver, downloading large
files from Dropbox.com and staying at 3 feet from the router
throughout the experiment, and that flow is tagged as a greedy
flow with utility function 0.1 log(b).

Shown in Fig 3, Virtual Wires is able to sustain the through-
put of the 4K flow, whereas without our system there are wild
fluctuations and dips in the download rate. Another thing to
note is that with Virtual Wires, when the signal of the video
receiver is weak (t∈ [10, 50] ∪ [70, 110]), our utility based
optimizer ensures that the air time allocation and targeted
QoS are feasible, thus we are able to maintain its throughput
demand all the way. As expected we sacrifice the throughput
of the background flow.

2) Improved delay performance: We demonstrate the ad-
vantage of our system on isolating the delay of applications.
We stream a 1Mbps flow and some greedy background flows.
We use a step function for the utility of the fixed-rate flow to
make optimizer assign bandwidth slightly more than its send
rate. Background flows use log(b) as utility. The delays of the
fixed-rate flow is measured by the router to device TCP round
trip time. We test the scenarios on two routers “Linksys” and
“Onhub”, both with(w/) and without(w/o) our system. Each
experiment was repeated 100 times.

Fig. 4. Delay comparison, receiver at 3 feet(L) and 75 feet(R)

In Fig 4, we show the delay performance of the receiver
at two distances. When there is no background flow, the
delay overhead introduced by our system is caused by session
splitting, kernel/userspace memory copying. When there is
even just one background flow, our system already decreases
delay by 60% to the Linksys, and such improvement is more
dramatic when there are more background flows. In addition,
when the receiver is at 75 feet with weaker channel quality,
the savings are even more pronounced.

3) Impact of congestion control: We evaluate the impact
of congestion control mechanisms on throughput, and demon-
strate the advantage of our ability to not only split, but
switch TCP’s congestion control mechanism as discussed in
Sec.III-B. We send a flow using BBR and Cubic through an
emulated wire path with different loss rate and delay. We show
the results in Fig 5 where the wire delay is 10ms, the typical
network delay from our WiFi router to Google CDN. We also
performed experiments for other wired link delays with the
same observation, so the results are omitted here. In this test,
we use Cubic TCP algorithm on the wireless link because
Cubic outperforms other algorithms (Reno, Vegas, BBR, Bic)
on wireless link in our tests. We test when the receiver is at
3 feet and 75 feet to show the impact of distance.

As can be observed in Fig 5, our system, which is
“BBR+Cubic”, increases link utilization. Though the increase
is less observable at 3 feet, it achieve 30.7% at 75 feet
compared to “Cubic” without our system when no packet
loss on wire. This is because Cubic is frequently affected by
packet losses on WiFi when the link is unreliable. However,
our system has isolated TCPs for each side so that packet
losses on WiFi does not shrink the sending window of the
sender. As soon as the WiFi becomes available, our WiFi side
TCP adapts faster than “cubic” because our system shorten
the feedback loop, and hence improves link utilization.

Cubic outperforms BBR when there is no loss, BBR main-
tains its performance at losses (validating the design goal)
while Cubic falls off. With our system, the link utilization is
improved by taking the advantages of both BBR on wired link
and Cubic on WiFi. The improvement is more significant when
more packet loss introduced on the wire part and longer WiFi
distance. We can also observe that BBR performs better at 3
feet compared to 75 feet, since the average delay at 3 feet is
more stable than at 75 feet. In other experiments, as the wired
link delay increases the gap between BBR and BBR+Cubic
reduces as expected.

(a) receiver at 3 feet (b) receiver at 75 feet
Fig. 5. BBR+Cubic v.s. BBR v.s. Cubic at different loss rate

V. RELATED WORK AND DISCUSSION

In the literature, session splitting can be traced back two
decades and a recent review can be found [15]. Specifically,
in [3], the authors propose to split TCP connection by a wired
path and a wireless link to handle performance degradation
caused by packet loss on the wireless link. In [16] and [17], the
authors compare TCP splitting against end-to-end protocols
and reliable link-layer protocols. In [18], the authors propose
removing TCP congestion control on the last hop when in
the presence of packet loss. However, these works focus on
improving the performance of each TCP flows, while our work
also focuses on resource allocation among multiple competing
TCP flows. In [19], the authors mainly focus on the asymmetry
property of WiFi and provide priority and fairness control.
Their work relies on implementation on the AP’s MAC and
IP layer which differs from ours.

In this paper, we mainly focus on the home WiFi environ-
ment where there is only one bottleneck under the control
of Virtual Wires. In the case of multiple APs or channels,
the problem becomes more challenging. As the bottlenecks
in the system are no longer unique, we need to identify
the competing groups among the channels and ranges of the
APs. A sophisticated QoS scheduler should also consider the
interference amongst APs and clients. Roaming is another
problem in such an environment. Using session splitting, we
can hand over TCPs between APs to make the application layer
session transfer seamlessly [20]. However, the QoS guarantee
needs to adjust as the client move to another network with
different WiFi conditions.

VI. CONCLUSION

Our work addresses the challenges of improving utility in a
WiFi environment through a cross layer design. Our design
supports automatic classification of flows into utility-based
categories, based on which, utility-optimizing bandwidth /
airtime allocation is made and implemented by a scheduling
mechanism. Together, the classifier, the optimizer and the
scheduler work to create and deliver, under the available
bandwidth constraints, the most appropriate utility to the
applications, completely transparently to network (including
link layer) protocols and applications, requiring no user in-
tervention. As our experiments show, in a wide variety of
scenarios, we are able to automatically provision a “virtual
wire” for the application, with the right amount of bandwidth,
on top of WiFi.

REFERENCES

[1] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila, M. Robin,
A. Siganporia, S. Stuart, and A. Vahdat, “Bwe: Flexible, hierarchical
bandwidth allocation for wan distributed computing,” in Proceedings of
ACM SIGCOMM, 2015, pp. 1–14.

[2] S. Kopparty, S. V. Krishnamurthy, M. Faloutsos, and S. K. Tripathi,
“Split tcp for mobile ad hoc networks,” in IEEE GLOBECOM, vol. 1,
Nov 2002, pp. 138–142 vol.1.

[3] R. Yavatkar and N. Bhagawat, “Improving end-to-end performance of
tcp over mobile internetworks,” in First Workshop on Mobile Computing
Systems and Applications (WMCSA). IEEE, 1994, pp. 146–152.

[4] S. Gollakota, F. Adib, D. Katabi, and S. Seshan, “Clearing the rf smog:
Making 802.11n robust to cross-technology interference,” in Proceedings
of ACM SIGCOMM, 2011, pp. 170–181.

[5] V. Bahl, R. Chandra, P. P. C. Lee, V. Misra, J. Padhye, D. Rubenstein,
and Y. Yu, “Opportunistic use of client repeaters to improve performance
of wlans,” in Proceedings of 2008 ACM Conference on Emerging
network experiment and technology (CoNEXT 2008), Madrid, Spain,
December 2008.

[6] Wi-Fi Alliance, “Wi-fi certified for wmm-support for multimedia ap-
plications with quality of service in wi-fi® networks,” Austin, Wi-Fi
Alliance, 2004.

[7] A. Custura, R. Secchi, and G. Fairhurst, “Exploring dscp modification
pathologies in the internet,” Computer Communications, vol. 127, pp.
86–94, 2018.

[8] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5, p. 50,
2016.

[9] W. M. Shbair, T. Cholez, J. Francois, and I. Chrisment, “A multi-
level framework to identify https services,” in Network Operations and
Management Symposium (NOMS), 2016 IEEE/IFIP. IEEE, 2016, pp.
240–248.

[10] M. Shafiq, X. Yu, A. A. Laghari, L. Yao, N. K. Karn, and F. Abdessamia,
“Network traffic classification techniques and comparative analysis
using machine learning algorithms,” in Computer and Communications
(ICCC), 2016 2nd IEEE International Conference on. IEEE, 2016, pp.
2451–2455.

[11] J. Martin, E. Rye, and R. Beverly, “Decomposition of mac address
structure for granular device inference,” in Proceedings of the 32nd
Annual Conference on Computer Security Applications. ACM, 2016,
pp. 78–88.

[12] R. J. La and V. Anantharam, “Utility-based rate control in the internet for
elastic traffic,” IEEE/ACM Transactions on Networking (TON), vol. 10,
no. 2, pp. 272–286, 2002.

[13] E. Jones, T. Oliphant, P. Peterson et al., “Op-
timization and root finding (scipy.optimize).” [Online].
Available: https://docs.scipy.org/doc/scipy/reference/optimize.minimize-
lbfgsb.html

[14] “Openwrt: a linux distribution for embedded devices.”
http://openwrt.org, 2018.

[15] B. H. Kim, D. Calin, and I. Lee, “Enhanced split tcp with end-to-end
protocol semantics over wireless networks,” in Wireless Communications
and Networking Conference (WCNC), 2017 IEEE. IEEE, 2017, pp. 1–6.

[16] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A
comparison of mechanisms for improving tcp performance over wireless
links,” IEEE/ACM transactions on networking, vol. 5, no. 6, pp. 756–
769, 1997.

[17] H. Elaarag, “Improving tcp performance over mobile networks,” ACM
Computing Surveys (CSUR), vol. 34, no. 3, pp. 357–374, 2002.

[18] F. Le, S. H. Wong, R. Raghavendra, V. Pappas, and E. Nahum, “Remov-
ing tcp congestion control on the last hop in split tcp environments,” in
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), 2016 14th International Symposium on. IEEE, 2016, pp. 1–8.

[19] A. Gupta, J. Min, and I. Rhee, “Wifox: Scaling wifi performance for
large audience environments,” in Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies, ser.
CoNEXT ’12. New York, NY, USA: ACM, 2012, pp. 217–228.

[20] G. Hampel, A. Rana, and T. Klein, “Seamless tcp mobility using
lightweight mptcp proxy,” in Proceedings of the 11th ACM international
symposium on Mobility management and wireless access. ACM, 2013,
pp. 139–146.

