
Pay-Burst-Only-Once in Real-Time Calculus
Yue Tang1, Yuming Jiang2, Xu Jiang1, Nan Guan1

1The Hong Kong Polytechnic University, Hong Kong 2Norwegian University of Science and Technology, Norway

Abstract—Real-Time Calculus (RTC) is a powerful frame-
work for modeling and analyzing complex networked real-time
systems. RTC builds up on and shares many similarities with
Network Calculus (NC), but some concepts are not completely
the same in RTC and NC. One of the most important properties
in NC is pay-burst-only-once, which can improve the precision of
end-to-end performance analysis. Naturally, people would expect
the pay-burst-only-once property to also hold in RTC. In fact,
some existing work has used it in some performance analysis
problems. Unfortunately, the pay-burst-only-once property has
never been proved in RTC. There are even some results seeming
to be against the pay-burst-only-once property in RTC. In this
paper, we prove that the pay-burst-only-once property indeed
holds in RTC.

Index Terms—Real-Time Calculus, Network Calculus, Con-
catenation, Pay-burst-only-once

I. INTRODUCTION

Network Calculus (NC) is a theory analyzing queuing sys-
tems found in computer networks, whose focus is to provide
performance guarantees [1], [2]. NC models traffic and service
with arrival and service curves respectively, and performance
bounds are derived with min-plus and max-plus algebra. NC
has been widely and successfully used for modeling and
analysis in networked systems such as in aeronautics industry
for AFDX [3].

Real-Time Calculus (RTC) originates from NC and is
also a queuing theory for performance analysis of real-time
networked embedded systems [4]. Similar to NC, RTC uses
arrival and service curves to model workload and resource
(the comparison will be conducted in Section IV), and the
performance analysis is also mainly conducted with min-plus
and max-plus algebra. Compared with the traditional real-time
scheduling theory, RTC is more expressive and can model a
much wider range of realistic systems due to usage of much
more general workload and resource models. At the same time,
the models and analysis techniques of RTC generate closed-
form analytical results, thus having higher analysis efficiency,
compared to state-based modeling and analysis techniques
such as model checking [5], [6]. All these advantages make
RTC draw much attention from both real-time community and
industry, and much work has been done to extend RTC for
wider application [7], [8].

Pay-burst-only-once is a fundamental and powerful prop-
erty in NC, which states that the delay bound obtained by
considering the overall service curve of nodes a flow traverses
is better (tighter) than that by summing up the delay bound

of each individual traversed node. The pay-burst-only-once
property relies on the concatenation property in NC, which
proves that concatenating the service curve of a sequence of
nodes generates the overall service curve for the whole system
composed of these nodes. The pay-burst-only-once property is
proved based on the concatenation property.

Since RTC inherits many concepts and properties from NC,
people naturally expect the pay-burst-only-once property to
also hold in RTC. Much work has already assumed it to be
true and applies it for performance analysis. However, the
pay-burst-only-once property has never been proved in RTC.
Even worse, some existing results seem to be against the
concatenation property in RTC [9] (recall that in NC the pay-
burst-only-once property is proved based on the concatenation
property). Therefore, it leaves an important open problem to
find out whether the pay-burst-only-once property holds in
RTC.

Our work gives the answer to the problem mentioned above.
We prove that the pay-burst-only-once property indeed holds
in RTC. The basic idea is that we first find some numerical
relations between curves in RTC and NC and then prove the
property in RTC indirectly by using the pay-burst-only-once
property in NC.

Moreover, since the concatenation property does not hold
in RTC, the service curve for the whole system can not
be derived, and then the output arrival curves of the whole
system seemingly can only be derived by calculating the
output arrival curves one node after another. However, this
process is so tedious, especially with large-scale systems. As
a consequence, it raises a question whether we can find a once-
for-all derivation for output arrival curves without knowing the
exact overall service curve.

In our work, we solve the output arrival curve problem:
we figure out how to compute the output arrival curves of
a concatenated system with a once-for-all method. The basic
idea is similar to the proof of the pay-burst-only-once property,
and the difficulty lies in the calculation of lower output arrival
curves in NC, which as far as we know have never been
defined and calculated before.

The comparison between our contribution and existing work
is summarized in Table I, where our work is marked in blue.

II. RELATED WORK

In the development of NC, two branches have appeared:
algebraic NC [11], which derives delay bound based on the
composition of operators such as min-plus and max-plus978-1-7281-3197-9/19/$31.00 © 2019 IEEE

Output arrival curve (a single node) Concatenation Pay-burst-only-once Output arrival curve with concatenation
RTC upper output arrival curve lower output arrival curve about lower service curve

Status derived in [10] proved to not hold in [9] used but not proved no results
proved to hold in our work derived in our work

NC output arrival curve lower output arrival curve about maximum/minimum service curve
Status derived in [1] derived in our work proved to hold in [1] proved to hold in [1] same as for a single node

TABLE I
THE COMPARISON OF OUR CONTRIBUTION AND EXISTING WORK

algebra [12], and optimization-based NC, which derives a
linear program formulation whose solution bounds the end-
to-end delay [13]. In our work, we focus on algebraic NC
(called NC for short).

The service guarantee in NC is described with three types
of service curve, the comparison of which is introduced in
[9], [14], [15]. Although the comparison with curves in RTC
is considered in these work, numerical relations are not given
and maximum service curve is not considered.

In NC, the concatenation property plays an important role
in deriving tighter delay bound. The first well-known appli-
cation of the concatenation property is the pay-burst-only-
once property, which avoids considering the analyzed flow’s
burst at each node it traverses. Another application is the
pay-multiplexing-only-once property [16], [17], which extends
the pay-burst-only-once property to cross-flows and convolves
as much service curves as possible before subtracting the
cross traffic. The influence of the concatenation property is
further explored in [18], which stated that concatenation brings
pessimism to delay bound under arbitrary multiplexing. The
reason is that the convolution operation is not sensitive to the
operation order so that the topological information is ignored,
making the burst paid at nodes that the flow does not even
traverse. All above work focuses on how to improve the
application of concatenation for deriving tighter bounds and
does not explore the results for lower bound of arrival curves.

In RTC, the pay-burst-only-once property has been adopted
to derive tighter delay bound, which is first proposed in [10].
Then it is used in [19] for the delay bound calculation under
operator-finitary RTC, and also in [20] to minimize the energy
consumption for pipelined multiprocessor embedded systems.
However, none of these includes the proof of correctness.

III. NETWORK CALCULUS AND REAL-TIME CALCULUS
BASICS

In this section, we introduce some basic definitions and
properties in NC and RTC respectively.

A. Basics in Network Calculus
In NC, the accumulated number of input bits on a flow

from time 0 to t is denoted by input function R(t), which
by definition is wide-sense increasing. Correspondingly, the
number of output bits during the same interval is denoted by
output function R∗(t). The limitation of bits is denoted by
arrival curve, which describes an upper constraint of the flow.

Definition 1 (Arrival Curve in NC). Assume the input function
of a flow is R(t), then the flow has an arrival curve αU iff

∀s ≤ t, R(t)−R(s) ≤ αU (t− s)

. which is equivalent to

R ≤ R⊗ αU

, where (f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆− λ) + g(λ)}.

While arrival curve constrains the input flows, service curve
describes the service guarantees provided to these flows by
network nodes. There are three types of service curve in NC:
minimum service curve, strict service curve, and maximum
service curve.

Definition 2 (Minimum Service Curve). The network node
offers a minimum service curve β to a flow with input function
R(t) and output function R∗(t) iff

R∗ ≥ R⊗ β

Definition 3 (Strict Service Curve). The network node offers
a strict service curve βstrict to a flow with output function
R∗(t) iff during any backlogged period from s to t, it holds

R∗(t)−R∗(s) ≥ βstrict(t− s),

Definition 4 (Maximum Service Curve). The network node
offers a maximum service curve γ to a flow with input function
R(t) and output function R∗(t) iff it holds

R∗ ≤ R⊗ γ

Next we introduce how to obtain performance bounds in
NC.

Assume that a flow with input function R(t), output func-
tion R∗(t), arrival curve αU , traverses a node that offers a
minimum service curve β and a maximum service curve γ.
The virtual delay d(t) for all t satisfies:

d(t) = inf{τ ≥ 0 : R(t) ≤ R∗(t+ τ)} ≤ h(αU , β)

where

h(f, g) = sup
s≥0
{inf{τ ≥ 0 : f(s) ≤ g(s+ τ)}}

The output flow is constrained by output arrival curve

α∗U = (αU ⊗ γ)� β

where (f � g)(∆) = sup
λ≥0
{f(∆ + λ)− g(λ)},

or
α∗U = αU � β

when γ is unknown.
After introducing the properties for a single node, we

consider networked nodes. One of the important properties is

concatenation, which concerns the calculation of service curve
when a flow traverses several nodes.

Property 1 (Concatenation). Assume that a flow traverses m
nodes S1, S2, ..., Sm in sequence, each offering a minimum
service curve βi, a maximum service curve γi, i = 1, 2, ...m
to the flow respectively. Then the concatenation of the m nodes
offers a minimum service curve β1⊗β2...⊗βm and a maximum
service curve γ1 ⊗ γ2...⊗ γm to the flow.

According to the concatenation property, the overall mini-
mum service curve of networked nodes equals the convolution
of minimum service curve offered by each node in the net-
work. As a result, the output arrival curves and delay bound
can be calculated in the same way as that of a single node,
except replacing the minimum service curve with the overall
service curve. Specially, the delay bound derived in this way
is tighter than that by simply adding up delay bound at each
traversed node, which is known as the pay-burst-only-once
property.

Pay-burst-only-once in NC! Assume that a flow with
arrival curve αU traverses m nodes S1, S2, ..., Sm in sequence,
each offering a minimum service curve βi, i = 1, 2, ...m to the
flow respectively. Then

h(αU , β1 ⊗ β2...⊗ βm)

≤h(α∗U0 , β1) + h(α∗U1 , β2) + ...+ h(α∗Um−1, βm)

where α∗Ui = α∗Ui−1�βi is the output arrival curve of the i−th
node and the input arrival curve of the (i+ 1)− th node, and
α∗U0 = αU . The proof of the pay-burst-only-once property can
be found in [1].

B. Basics in Real-Time Calculus

RTC uses arrival curves and service curves to describe
timing properties of event streams and available resource1.

Definition 5 (Arrival Curve in RTC). Let R(s, t] denote the
total number of arrived events in time interval (s, t] 2, where
s and t are two arbitrary non-negative real numbers. Then,
the corresponding upper and lower arrival curves are denoted
as αu and αl, respectively, and satisfy:

∀s < t, αl(t− s) ≤ R(s, t] ≤ αu(t− s),

where αu(0) = αl(0) = 0.

Definition 6 (Service Curve). Let C(s, t] denote the total
available resource in time interval (s, t]. Then, the corre-
sponding upper and lower service curves are denoted as βu

and βl, respectively, and satisfy:

∀s < t, βl(t− s) ≤ C(s, t] ≤ βu(t− s),

where βu(0) = βl(0) = 0.

1We assume that the concept of event, event stream and component (to be
introduced) are equivalent to that of bit, flow, and node respectively.

2When s = 0, R(s, t] = R(0, t] = R(t)

In this paper, we focus on the most widely used abstract
component in RTC called Greedy Processing Component
(GPC). A GPC processes events from the input event stream in
a greedy fashion, as long as it complies with the availability
of resources. The output event stream produced by GPC is
described by arrival curve α∗u, α∗l

α∗u = min((αu ⊗ βu)� βl, βu)

α∗l = min((αl � βu)⊗ βl, βl)

The maximum delay dmax experienced by any event on the
event stream is bounded by

dmax ≤ h(αu, βl) = sup
λ≥0

{
inf{δ ≥ 0 : αu(λ) ≤ βl(λ+ δ)}

}
where ⊗, �, h(f, g) is introduced in last subsection.

Pay-burst-only-once in RTC? Assume that an event stream
with upper arrival curve αu traverses m GPC components with
lower service curve βli, i = 1, 2, ...m, then

h(αu, βl1 ⊗ βl2...⊗ βlm)
?
≤h(α∗u0 , βl1) + h(α∗u1 , βl2) + ...+ h(α∗um−1, β

l
m)

where α∗ui = α∗ui−1 � βli is the output arrival curve of the
i−th component and the input arrival curve of the (i+1)−th
component, and α∗u0 = αu.

Note that although the pay-burst-only-once property has
already been widely used in RTC for tighter delay bound,
it has not been formally proved yet. Even worse, the concate-
nation property, which is the basis of the pay-burst-only-once
property in NC, has been proved not to hold in RTC. As a
consequence, the correctness of applying the pay-burst-only-
once property in RTC is not clear yet.

IV. COMPARING CURVES IN NC AND RTC

Before stepping into the analysis of the pay-burst-only-once
property, we first explore the relations among curves in NC and
RTC, which are the basis of further analysis and summarized
in Table II.

Curve A Curve B Relation
arrival curve in NC upper arrival curve in RTC A ⇐⇒ B

lower arrival curve in NC lower arrival curve in RTC A ⇐⇒ B
strict service curve in NC minimum service curve in NC A =⇒ B

lower service curve in RTC strict service curve in NC A =⇒ B
upper service curve in RTC maximum service curve in NC A =⇒ B

TABLE II
THE SUMMARY OF RELATIONS AMONG CURVES IN RTC AND NC

A. Comparison of arrival curves

Based on the definitions in Section III, the upper arrival
curve in RTC is equivalent to the arrival curve in NC. As
a counterpart, we adopt the definition of lower arrival curve
in NC from [21], which lower bounds the number of arrived
bits in NC and is equivalent to lower arrival curve in RTC by
definition.

Definition 7 (Lower Arrival Curve in NC). A lower arrival
curve αL describes the minimum number of arrived bits on a
flow with input function R(t) in any time interval iff for all
0 ≤ s ≤ t, there holds

R(t)−R(s) ≥ αL(t− s),

which is equivalent to say:

R(t) ≥ R⊗̄αL,

where(f⊗̄g)(∆) = sup
0≤λ≤∆

{f(∆− λ) + g(λ)}.

B. Comparison of service curves

In both NC and RTC, the amount of available resource is
described with (different types of) service curves. However,
what the definitions in these two frameworks emphasize is
different. In NC, service curve expresses more about how
much resource is used by some input, that is, how much
service is provided, while in RTC, it addresses the capability
of the system, no matter whether there is an input or how
much traffic the input brings. That is why the definitions of
service curves in NC always involve an input. In this section
we first explore the relations between strict service curve and
minimum service curve in NC, and then the relations between
lower/upper service curve in RTC and strict/maximum service
curve in NC3.

Theorem 1. If a node offers βstrict as a strict service curve
to a flow with input function R(t) and output function R∗(t),
and then it also offers βstrict as a minimum service curve to
the flow.

Proof. For any time t ≥ 0, consider the output R∗(t). There
are two cases: t is either in a backlogged period or not.

If t is in a backlogged period, let s0 denote the start time of
the backlogged period, implying all arrivals that have arrived
before time s0 have been served by s0 and hence R∗(s0) =
R(s0). We then have:

R∗(t) = R∗(s0) +R∗(t)−R∗(s0)

= R(s0) +R∗(t)−R∗(s0)

≥ R(s0) + βstrict(t− s0) ≥ (R⊗ βstrict)(t)

If t is not in any backlogged period4, let t0 denote the
finish time of the latest backlogged period before t. Then
R(t0) = R(t) and R∗(t0) = R∗(t), since otherwise we would
not have had t0 being the finish time of that backlogged period.
In addition, the definition of t0 also means that all arrivals that
have arrived before time t0 have been served by t0, and hence
R∗(t0) = R(t0). Combining these, we consequently have
R∗(t) = R(t). Finally in this case, together with βstrict = 0,
we obtain

R⊗βstrict = inf
0≤s≤t

{R(t)−R(s)+βstrict(s)} ≤ R(t) = R∗(t)

3Note that in the following analysis, we assume that the start time of the
system is 0, which is consistent with the definitions of arrival and service
curves in both RTC and NC.

4This case is not considered in [9].

Then the theorem is proved.

Corollary 1. Let βsup denote the supremum among all
minimum service curves offered by a node in NC, then
βstrict ≤ βsup.

Next we show the relation between lower service curve in
RTC and strict service curve in NC.

Theorem 2. If a node offers a lower service curve βl to a
flow with input function R(t) and output function R∗(t), then
it offers strict service curve βl, also minimum service curve
βl to the flow.

Proof. Consider any backlogged period from s to t. In this
period, the node will be busy serving, implying no capac-
ity remaining in the period after serving the input. Hence,
R∗(0, t]−R∗(0, s] = C(0, t]−C(0, s]. Since the node offers
lower service curve, i.e. C(0, t] − C(0, s] ≥ βl(t − s), we
hence have

R∗(t)−R∗(s) = R∗(0, t]−R∗(0, s] ≥ βl

This proves that the node offers a strict service curve βl. In
addition, since strict service curve implies minimum service
curve in NC, βl is a minimum service curve to the flow.

Corollary 2. Let βsupstrict denote the supremum among all strict
service curves offered by a node in NC, then βl ≤ βsupstrict.

Theorem 3. If a node offers an upper service curve βu to a
flow with input function R(t) and output function R∗(t), then
it offers a maximum service curve βu to the flow.

Proof. For any time t ≥ 0, consider the output R∗(0, t].
For any 0 ≤ s ≤ t, by the definition of upper service
curve together with the fact R∗(0, s] ≤ R(0, s], there holds:
∀0 ≤ s ≤ t,

R∗(t) = R∗(0, t] = R∗(0, s] +R∗(0, t]−R∗(0, s]
≤ R(0, s] +R∗(0, t]−R∗(0, s]
≤ R(s) + βu(t− s)

Hence

R∗(t) ≤ inf
0≤s≤t

{R(s) + βu(t− s)} = R⊗ βu(t)

Corollary 3. Let γinf denote the infimum among all maximum
service curves offered by a node in NC, then βu ≥ γinf .

V. PAY-BURST-ONLY-ONCE IN RTC

The pay-burst-only-once property has been assumed to
be true in RTC and much work has already applied it for
deriving tighter delay bound. However, none of these work
directly proves the correctness of applying the pay-burst-only-
once property in RTC, but simply refers to the proof in
NC. This direct mapping seems not so convincing since the
concatenation property, based on which the pay-burst-only-
once property is proved in NC, does not hold in RTC.

Theorem 4. If βl1, βl2 are lower service curves offered by two
nodes S1, S2 respectively, βl1 ⊗ βl2 is not necessarily a lower
service curve offered by the concatenation of these two nodes.

Proof. Based on Theorem 2, if a node Si offers βli as a lower
service curve, then it offers βli as a strict service curve. Since it
has been proved in [9] that the concatenation of strict service
curves does not necessarily generate a strict service curve, the
concatenation of lower service curve is not necessarily a lower
service curve, so the concatenation property does not hold for
lower service curve in RTC. Then the theorem is proved.

However, although the concatenation property does not hold
in RTC, the pay-burst-only-once property can be proved in
RTC. Next we first explain the basic idea of the proof and
then give the formal deduction.

According to Section III, the delay bound a flow experiences
when it traverses a concatenated system in RTC is calculated
with a similar method as in NC and the difference lies in the
service curve involved: in RTC lower service curve is adopted
while in NC it is minimum service curve. To prove the pay-
burst-only-once property in RTC, we first calculate the delay
bound in RTC and NC respectively. Then by utilizing the
numerical relations among curves explored in Section IV, we
compare the derived delay bounds and then prove the property.

Theorem 5. The pay-burst-only-once property holds in RTC.

Proof. The proof of the theorem involves two aspects:
(1) Safety. The delay bound derived with convolved lower

service curve is no smaller than maximum delay experienced
by the flow.

(2) Tightness. The delay bound derived with convolved
lower service curve is no larger than summing up the delay
bound at each node.

Assume that a flow with upper arrival curve αu in RTC,
arrival curve αU in NC traverses a sequence of m nodes, each
offering a lower service curve βli, i = 1, 2, ...m, the supremum
of strict service curves of node Si is denoted by βsupstrict,i, and
supremum of minimum service curves of node Si is denoted
by βsupi .

We first prove (1). According to Section III, the maximum
delay experienced dmax satisfies

dmax ≤ h(αU , βsup1 ⊗ βsup2 ...⊗ βsupm)

Since arrival curve in NC is equivalent to upper arrival curve
in RTC, we have αu = αU .

According to Section IV, βli ≤ βsupstrict,i ≤ βsupi , then we
have

βl1 ⊗ βl2...⊗ βlm
≤βsupstrict,1 ⊗ β

sup
strict,2...⊗ β

sup
strict,m ≤ β

sup
1 ⊗ βsup2 ...⊗ βsupm

Then

h(αu, βl1 ⊗ βl2...⊗ βlm) ≥ h(αU , βsup1 ⊗ βsup2 ...⊗ βsupm)

So
dmax ≤ h(αu, βl1 ⊗ βl2...⊗ βlm)

showing that the delay bound calculated with concatenated
lower service curve in RTC is safe.

Next we prove (2). Since βli ≤ β
sup
strict,i ≤ β

sup
i , there must

exist a minimum service curve β′i = βli for each node Si.
According to the pay-burst-only-once property in NC, we have

h(αU , β′1 ⊗ β′2...⊗ β′m)

≤h(α∗U0 , β′1) + h(α∗U1 , β′2) + ...+ h(α∗Um−1, β
′
m)

Then by replacing β′i with βli , and replacing αU with αu, we
have

h(αu, βl1 ⊗ βl2...⊗ βlm)

≤h(α∗u0 , βl1) + h(α∗u1 , βl2) + ...+ h(α∗um−1, β
l
m)

Then (2) is proved.

VI. COMPUTATION OF OUTPUT ARRIVAL CURVES

After verifying the correctness of the pay-burst-only-once
property in RTC, we move on to compute the output arrival
curves when concatenating the nodes a flow traverses. Similar
as the proof of Theorem 5, we first explore how to calculate
output arrival curves in NC, then prove that the corresponding
results are applicable in RTC.

Since the derivation of (upper) output arrival curve is known
in NC, we focus on how to calculate the lower output arrival
curve in NC.

Theorem 6. Consider a node offers a minimum service curve
β and maximum service curve γ to the input flow R(t) with
arrival curve αU and lower arrival curve αL in NC. Then
output flow has a lower output arrival curve α∗L with

α∗L = [(αL ⊗ β) ∧ (β�̄αU)]+

, where f�̄g(∆) = inf
λ≥0
{f(∆ + λ)− g(λ)}.

Proof. Since the output in any time interval can not be larger
than the input, we have R∗(t) ≤ R(t). Based on the definitions
of minimum service curve and maximum service curve, for
any time t we have (R⊗ β)(t) ≤ R∗(t) ≤ (R⊗ γ)(t). Based
on the definitions of upper and lower arrival curve, we have
(R⊗̄αL)(t) ≤ R(t) ≤ (R⊗ αU)(t).

Then

R∗(t− s)
= R∗(t)−R∗(s)
≥ (R⊗ β)(t)− (R⊗ γ)(s)

= inf
0≤u≤t

[R(t− u) + β(u)]− inf
0≤v≤s

[R(s− v) + γ(v)]

= inf
0≤u≤t

sup
0≤v≤s

[R(t− u)−R(s− v) + β(u)− γ(v)]

= sup
0≤v≤s

inf
0≤u≤t

[R(t− u)−R(s− v) + β(u)− γ(v)]

= sup
0≤v≤s

[inf
0≤u≤t−s+v

[R(t− u)−R(s− v) + β(u)− γ(v)]

∧ inf
t−s+v≤u≤t

[R(t− u)−R(s− v) + β(u)− γ(v)]]

= sup
0≤v≤s

inf
0≤u≤t−s+v

[R(t− u)−R(s− v) + β(u)− γ(v)]

∧ sup
0≤v≤s

inf
t−s+v≤u≤t

[R(t− u)−R(s− v) + β(u)− γ(v)]

(1)

≥ sup
0≤v≤s

inf
0≤u≤t−s+v

[αL(t− u− s+ v) + β(u)− γ(v)]

∧ inf
t−s≤u≤t

[R(t− u)−R(s) + β(u)] (2)

= sup
0≤v≤s

inf
0≤u≤t−s+v

[αL(t− u− s+ v) + β(u)− γ(v)]

∧ inf
t−s≤u≤t

[β(u)− (R(s)−R(t− u))]

= sup
0≤v≤s

[(αL ⊗ β)(t− s+ v)− γ(v)]

∧ inf
0≤u′≤s

[R(u′)−R(s) + β(t− u′)] (3)

≥ (αL ⊗ β)(t− s) ∧ inf
0≤u′≤s

[β(t− u′)− αU (s− u′)] (4)

= (αL ⊗ β)(t− s) ∧ inf
0≤u′≤s

[β(t− s+ s− u′)− αU (s− u′)]

= (αL ⊗ β)(t− s) ∧ inf
0≤u′′≤s

[β(t− s+ u′′)− αU (u′′)]

≥ (αL ⊗ β)(t− s) ∧ inf
0≤u′′

[β(t− s+ u′′)− αU (u′′)] (5)

= (αL ⊗ β) ∧ (β�̄αU) (6)

where ∧ gets the minimum of the two parts it connects; in
obtaining (2) we take v = 0 of the second part of (1); (4) is
to take v = 0 in the first item of (3) and apply upper arrival
curve to R(s)−R(u′) in the second half of (3); (5) is because
of taking larger range for infimum operation.

Based on the definition of lower arrival curve, for any
interval ∆, α∗L(∆) ≥ 0, then we have

α∗L = [(αL ⊗ β) ∧ (β�̄αU)]+

Then we know how to calculate the output arrival curves after
concatenation in RTC.

Theorem 7. Assume an event stream with arrival curve
αu, αl traverses m GPC components with service curves
(βu1 , β

l
1), (βu2 , β

l
2), ..., (βum, β

l
m), then the output arrival curve

at m− th component is upper and lower bounded by:

α∗u = (αu ⊗ βu)� βl

α∗l = [(αl ⊗ βl) ∧ (βl�̄αu)]+

Proof. The proof is similar to that of Theorem 5 with the
combination of Theorem 1, 2 and 3.

VII. CONCLUSION

In this work, we for the first time prove the pay-burst-only-
once property holds in RTC, which benefits the calculation of
delay bound of networked systems. We also explore how to
calculate the output arrival curves of a concatenated system in
a once-for-all way, rather than calculate it one node by another.

For future work, we will explore the application of other
properties in RTC and try to enrich the framework of RTC.

VIII. ACKNOWLEDGMENT

This work is supported by the Research Grants Council of
Hong Kong (GRF 15204917 and 15213818), National Natural
Science Foundation of China (No.61532007 and 61672140)
and the Ministry of Education Joint Foundation for Equipment
Pre-Research under grant 6141A020333.

REFERENCES

[1] J. L. Boudec and P. Thiran, “Network calculus - a theory of deterministic
queuing systems for the internet.” Springer Verlag, 2012.

[2] Y. Liu and Y. Jiang, “Stochastic network calculus.” Springer Verlag,
2008.

[3] F. Geyer and G. Carle, “Network engineering for real-time networks:
comparison of automotive and aeronautic industries approaches,” IEEE
Communications Magazine, vol. 54, no. 2, pp. 106–112, 2016.

[4] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems.” in ISCAS, 2000.

[5] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan, “Event count
automata: a state-based model for stream processing systems,” in RTSS,
2005.

[6] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Schedulability
analysis of fixed-priority systems using timed automata,” Theoretical
Computer Science - Tools and algorithms for the construction and
analysis of systems, vol. 354, no. 2, pp. 301–317, 2006.

[7] L. T. X. Phan, S. Chakraborty, P. S. Thiagarajan, and L. Thiele, “Com-
posing functional and state-based performance models for analyzing
heterogeneous real-time systems,” in RTSS, 2007.

[8] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis
and timed automata: a hybrid methodology for the performance analysis
of embedded real-time systems,” Design Automation for Embedded
Systems, vol. 14, no. 3, pp. 193–227, 2010.

[9] A. Bouillard, L. Jouhet, and E. Thierry, “Service curves in network
calculus: dos and donts.” Research Report, 2009.

[10] E. Wandeler, “Modular performance analysis and interface-based design
for embedded real-time systems,” in Ph.D. Thesis, Swiss federal institute
of technology Zurich, 2006.

[11] K. Lampka, S. Bondorf, and J. B. Schmitt, “Achieving efficiency without
sacrificing model accuracy: Network calculus on compact domains,” in
MASCOTS, 2016.

[12] A. Bouillard, L. Jouhet, and E. Thierry, “Tight performance bounds in
the worst-case analysis of feed-forward networks,” in INFOCOM, 2010.

[13] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of
deterministic network calculus: design and evaluation of an accurate and
fast analysis,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 1, no. 1, pp. 15:1–15:34, 2017.

[14] A. Bouillard, L. Jouhet, and . Thierry, “Comparison of different classes
of service curves in network calculus,” IFAC Proceedings Volume,
vol. 43, no. 12, pp. 306–311, 2010.

[15] A. Bouillard, “Composition of service curves in network calculus,”
Proceedings of the 1st International Workshop on Worst-Case Traversal
Time, pp. 35–42, 2011.

[16] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving performance
bounds in feed-forward networks by paying multiplexing only once,” in
MMB, 2008.

[17] S. Bondorf and J. B. Schmitt, “Boosting sensor network calculus by
thoroughly bounding cross-traffic,” in INFOCOM, 2015.

[18] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay bounds under
arbitrary multiplexing: When network calculus leaves you in the lurch...”
in INFOCOM, 2008.

[19] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan, and W. Yi, “Generalized
finitary real-time calculus,” in INFOCOM, 2017.

[20] G. Chen, K. Huang, C. Buckl, and A. Knoll, “Applying pay-burst-
only-once principle for periodic power management in hard real-time
pipelined multiprocessor systems,” ACM Trans. Design Autom. Electr.
Syst., vol. 20, no. 2, pp. 26:1–26:27, 2015.

[21] H. Schioler, J. J. Jessen, J. D. Nielsen, and K. G. Larsen, “Network
calculus for real time analysis of embedded systems with cyclic task
dependencies,” in CATA, 2005.

