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Norsk sammendrag
Hjernen skaper stabile og sammenhengende representasjoner av verden fra om-
skiftelige perseptuelle input. Denne prosessen involverer et omfattende nettverk
i hjernen, fra de tidlige synssentrene på lavt nivå til hukommelsessentrene i den
mediale tinninglapp på høyere nivå. Langs denne banen gjennomgår informasjon
fra visuelle input en rekke endringer før den ender opp som del av det kogni-
tive kartet, som utgjør en ikke-sensorisk representasjon av omgivelsene som un-
derstøtter hukommelse og atferd. I mitt doktarbeid undersøkte jeg det nevrale
grunnlaget for spatial persepsjon og kognitive kart i menneskehjernen, samt hvor-
dan det kan knyttes til hukommelse og atferd. Prosjektene som presenteres,
tilnærmet seg problemstillingene fra flere vinkler ved å fokusere på ulike kom-
puteringstrinn langs den hierarkiske rekkefølgen av kortikale områder.

Vi undersøkte først hvordan synssystemet stabiliserer visuell persepsjon under
bevegelse ved å observere menneskelig hjerneaktivitet ved bruk av magnetreso-
nanstomografi (fMRI) under en visuell sporingsoppgave (VSO). Da oppdaget vi at
et stort nettverk av områder kodet for visuell bevegelse uavhengig av selvbeveg-
else, inkludert i de tidlige synssentrene på laveste nivå. Denne mekanismen
forankrer visuell persepsjon eksternt i ens omgivelser. Deretter undersøkte vi
hvordan høyere kognitive områder representerer ens synlige omgivelser. Fremde-
les ved bruk av fMRI og en VSO, observerte vi gittercellelignende aktivitet i entorhi-
nal cortex, et hjerneområde vi vet kartlegger omgivelsene ved navigering. Vi fant
en fMRI-signatur som lignet på denne aktiviteten som samsvarte med øyebeveg-
elsene alene. Dette utgjør det første bevis på at entorhinal cortex også koder for
et ikke-sensorisk kart over synsfeltet i mennesket. Det siste prosjektet samførte
sensoriske og ikke-sensoriske spatiale representasjoner og fokuserte eksplisitt
på atferden de understøtter. Jeg utviklet et toppmoderne prediktivt modeller-
ingsrammeverk til studier av naturtro atferd ved bruk av virtuell virkelighet og
ultrahøyfelts fMRI i mennesker. Undersøkelser av retningsstuning i regioner for
navigasjon og visuell sceneprosessering viste at omgivelsesprosessering på tvers
av nettverket er avhengig av korrekt innkoding av omgivelsene.

Samlet sett opplyser dette verket om hvordan menneskehjernen integrerer persep-
tuelle opplevelser i kognitive kart over omgivelsene. Det demonstrerer sterk gjeng-
jeldelse mellom visuell koding og høyere kognitiv koding, samt belyser videre at
det spatiale kartleggingssystemet understøtter domenegenerelle funksjoner som
understøtter atferd.



English summary
Our brain derives stable and unified representations of the world from ever-
changing perceptual inputs. This process engages a large brain network spanning
from early visual to high level memory regions in the medial temporal lobe. Along
this pathway, visual information undergoes a series of transformations, which ul-
timately culminate in the formation of the cognitive map, a non-sensory repre-
sentation of the environment that guides memory formation and behavior.

In my doctoral work, I examined the neural underpinnings of spatial perception
and cognitive mapping in the human brain as well as their relationship to be-
havior and memory. The projects presented here approach these questions from
multiple angles by focusing on di�erent computational stages along the cortical
hierarchy.

With my coauthors, I examined how our visual system stabilizes perception when
we move. We investigated this by monitoring human brain activity with functional
magnetic resonance imaging (fMRI) during a visual tracking task (VTT). We found
that a large network of regions encoded visual motion independent of our own
movements, including even the earliest visual cortices in the brain. This mecha-
nism anchors our visual perception in space. Next, we investigated how high level
regions represent the space we see. Again using fMRI and a VTT, we examined
grid-cell like activity in the entorhinal cortex, an area known to map space during
navigation. We found an fMRI-signature that resembled this process using eye
movements alone, providing the first evidence that the human entorhinal cortex
encodes a non-sensory map of visual space as well. The final project then bridged
across sensory and non-sensory spatial representations and explicitly focused
on the behavior they support. I developed a state-of-the-art predictive model-
ing framework to study naturalistic behavior using virtual reality and 7T-fMRI in
humans. Examining directional tuning in visual scene processing and navigation
regions revealed that network-wide environmental processing depends on the
successful encoding of the environment.

Collectively, this work illuminates how the human brain integrates perceptual ex-
periences into cognitive maps of the environment. It demonstrates strong reci-
procity between visual and high level cognitive coding and further highlights that
our spatial mapping system supports domain-general functions in the service of
behavior.
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Chapter 1

General introduction

1.1 Aim of this thesis

The ability to integrate sensory information into stable mental representations
of the world is a fundamental basis of human cognition. We acquire information
with our senses and use it to construct an internal model of the environment
and ourselves in it. This process engages a large network of brain regions ranging
from early visual cortices to high level mnemonic areas in the medial temporal
lobe. Along this pathway, sensory information undergoes a series of transforma-
tions that ultimately convert it into world-centered non-sensory representations
of space. Together, these high level spatial representations form a ’cognitive map’
of the environment and guide memory formation and behavior.

How does the brain derive stable representations of the world from sensory in-
puts? In my doctoral work, I addressed this question by investigating the neural
underpinnings of spatial perception and cognitive mapping in humans. More-
over, I examined the relationship between these processes and the behavior they
are thought to support. All thesis chapters address these central questions, but
approach them from various angles focusing on di�erent levels of the cortical hi-
erarchy. Because vision is our most prominent means to explore, I use viewing as
a model for exploration in general. The first project focuses on computations in
early visual cortices that stabilize our perception during movements. The second
project highlights how high level mnemonic regions represent non-sensory maps
of visual space. Finally, the third project spans across these computational and
cortical levels and examines how behavior and memory influence environmental
coding in visual and high level mnemonic regions.

13



14 General introduction

This thesis bridges multiple long standing lines of research by examining spatial
perception and cognitive mapping from a broad, behavioral and network-level
perspective. Before discussing empirical work, the following paragraphs will in-
troduce these topics in three steps. First, I will describe how visual areas repre-
sent spatial information during perception, how it is stabilized during movements
and how environmental features are extracted. I will then introduce the cognitive
map and how mnemonic areas encode the environment in a non-sensory repre-
sentational format. Finally, I will connect the dots by showing how sensory and
non-sensory representations of space combine to form a stable and unified rep-
resentation of the environment. I will argue that our visual and memory systems
are strongly intertwined and that viewing and navigation are guided by a common
medial temporal mechanism that allows us to explore the world.

1.2 Perception: the sensory representation of space

1.2.1 Retinotopy

Vision is an active process. We scan our surroundings with our eyes and focus
perceptual sampling on features of the world that seem relevant to us. With every
eye movement, the image on our retina changes completely, making it necessary
for visual information to be transformed into stable representations that anchor
our perception in space. This engages a large portion of the brain, starting with
the early visual cortex.

The importance of this area for visual perception has long been known. Published
in 1881, Hermann Munk lesioned the occipital lobes of dogs and monkeys. He was
the first to observe visual deficits following lesions of the particular brain area
later known as the early visual cortex (EVC) [1]. By studying his animals over a
long time post lesioning, he could also observe partial recovery of their visual
abilities, pointing to cortical plasticity within the visual system very early on. Only
a few years later, the physician Salomon Henschen described that all his patients
with damage in the occipital lobe, or more specifically in the calcarine fissure, had
hemianopsia: they were blind in parts of the visual field [2].

While such lesion studies showed for the first time that the occipital lobe was
important for vision, they did not explicitly map the cortical representation of the
visual field. This was done in the early 20th century by Tatsuji Inouye [3] and Sir
Gordon Holmes [4]. They studied soldiers with ballistic head injuries and system-
atically related the position of the cortical damage to the position of the blind
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spots they perceived. They found that neighbouring locations in the visual field
are represented at neighbouring locations in the cortex as well. This cortical or-
ganization of visual information is called ’retinotopic’, because it follows the same
organizational principle as it does on the retina. With this, they had discovered
a visual field map that corresponded to the primary visual cortex (V1) in the hu-
man brain. They described cortical magnification of the fovea and that di�erent
hemispheres represent di�erent parts of the visual field.

The first electrophysiological evidence for the retinotopic organization of the vi-
sual system was obtained by recording neurons in the cat and monkey cortex while
presenting visual stimuli. This showed that there are multiple visual field maps in
the brain [5] and that primary visual neurons respond only to stimuli presented
at specific orientations and locations in space [6, 7]. The primary visual receptive
field had been discovered, the earliest and most fundamental neuronal represen-
tation of visual locations in the neocortex. Since then, the number of reported vi-
sual field maps has grown enormously [8]. They form a recursively connected and
hierarchically organized brain network in which each region contributes di�erent
computations to vision [9–12]. We now know that there are several dozens of brain
areas involved in visual processing or associated motor functions [8, 11, 12], many
of which are retinotopically organized [13]. In fact, the way di�erent areas repre-
sent visual space has become an important criterion for parcellating and studying
visual cortex as a whole [14, 15].

In humans, ample neuroimaging studies showed that retinotopic representations
can be studied using functional magnetic resonance imaging (fMRI) or magne-
toencephalography (MEG). In order for this to work, some functional characteristic
of the underlying neurons needs to translate to a population-level activity bias
that can be assessed. Importantly, and unlike other cell types we will discuss later,
this is the case for retinotopic neurons. Specifically, a subset of the cells does not
represent all visual locations homogeneously [16, 17], which induces a stronger
fMRI signal when a stimulus is displayed at certain locations that are overrepre-
sented by the population [14, 15]. The resulting population receptive field (pRF)
of an fMRI voxel is thought to approximate the cumulative sum of the underlying
single cell receptive fields [18, 19]. Today, this circumstance is being utilized rou-
tinely in a great number of studies to map visual field representations across the
human brain. This includes the early visual cortex [14,15,18], the superior occipital
lobe [20], the ventral visual stream [21], the intraparietal sulcus [22], the lateral
occipital cortex [23], the medial parietal lobe [24, 25], the thalamus [26] and the
cerebellum [27]. Modern computational approaches to study pRF’s in fMRI have
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recently been extended to estimate pRF sizes that approximate the ones of single
cells [28]. Inspired by these [18] and related approaches [29–33], I will introduce a
similar computational approach in Chapter 4 to study spatial behavior in human
fMRI.

In sum, many visual cortices represent retinotopic maps of visual space. Together
they form a hierarchical network of areas that extracts and processes increas-
ingly complex information from the visual scene. This retinotopic organization
of space is useful, because it might help to bind co-occurring visual features to-
gether [34–36]. However, a purely retinotopic system would face a critical chal-
lenge: Each movement shifts the retina relative to the environment and changes
the retinal representation completely. We move our eyes multiple times per sec-
ond [37], meaning that the receptive field onto which a given feature is projected
also changes perpetually. To maintain a stable perception of the world during
self-motion at least some visual representations need to be invariant to these
movements. Such representations are called non-retinotopic because they do
not move when the retina does. How they are computed will be explained in the
following paragraph.

1.2.2 Visual stability

Non-retinotopic representations of space are abundant in the brain [38]. They
are useful for the planning of actions and anchor our perception during move-
ment [34]. A typical experiment to study non-retinotopic representations employs
a step-wise saccade task, in which two objects are presented successively at the
same spatial location separated by a saccade that shifts their retinotopic posi-
tions apart. The fact that the two objects interfere on a perceptual level strongly
suggests that our vision indeed relies on non-retinotopic coding [34].

There are multiple terms in use to describe the reference frames of non-retinotopic
codes. This thesis uses following definition of the terms (Fig.1.1). ’Head-centered’
or ’craniotopic’ describes all coordinates that are referenced to our head. Head-
centered receptive fields are invariant to our own eye movements, but do not
move when environmental features do. In contrast, ’world-centered’ or ’spa-
tiotopic’ coordinates are referenced to the external world explicitly. They could be
referenced for example relative to landmarks such as objects or geometric fea-
tures of the environment. When the reference landmark moves, world-centered
receptive fields move along. They do not move when our eyes or head does.
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Importantly, all visual information we acquire is retinotopic, making it neces-
sary for the brain to reconstruct non-retinotopic representations from retinotopic
ones. This process comprises multiple interconnected mechanisms that are im-
plemented along the cortical hierarchy [38–42]. One important computation is the
integration of incoming visual information with internal motoric self-motion sig-
nals [43, 44]. These signals are called e�erence copies, or corollary discharge [41],
because they provide a copy of the motor commands that produced the move-
ment. The perceptual role of e�erence copies is easy to demonstrate. Closing one
eye and gently pushing the eyelid of the other with the finger leads to a movement
of the perceived visual environment. When the eyes move naturally instead the
environment stays stable. Hermann von Helmholtz argued that pushing the eye
does not produce an e�erence copy and hence no compensatory anti-movement
e�ect on perception [43]. This mechanism, or more specifically its neural imple-
mentation, received strong experimental support in the past decades [39].

In the context of eye movements, e�erence copies originate in the superior col-
liculus, which performs basic but fast image decompositions to guide the eyes
across the scene [40, 42, 45]. This signal is then being sent to various oculomotor
control regions such as the frontal eye fields (FEF), but also to occipital and pari-
etal lobe regions to modulate perceptual processing directly [39]. Knowing how
much the eyes (will) move enables at least four important computations. First,
perceptual sensitivity can be reduced to avoid processing blurry information cor-
rupted by movement. Intriguingly, this desensitization of perception at the time
of saccades has been observed for both the spatial and the temporal domain [46].
Second, it can be used to compensate self-induced visual motion, a computation
implemented in so called ’real-motion neurons’. They were first described in the
monkey brain [47,48] and fire only when incoming motion signals were induced by
movements in the external world, not when they were self-induced. Third, it can
trigger predictive spatial updating, or retinotopic remapping [49], which allows
some receptive fields and attention to ’jump ahead’ or stretch towards the spatial
position they will be occupying after the following saccade. This phenomenon
has been observed for example in lateral parietal neurons [50, 51], which encode
space in a head-centered frame of reference. Their receptive fields remain fixed at
one location in space independent of the eye position [50]. A similar remapping
phenomenon has also been described in FEF and V4 neurons, which shift their
receptive fields towards the saccade target before the saccade is executed [52].
Finally, e�erence copies and bottom-up proprioceptive signals [53, 54] together
might generate ’gain fields’, a modulation of retinotopic neuronal activity by gaze
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position. This modulatory gain field e�ect has been observed in multiple brain
regions and modulates the activity of visual neurons even in the dark [55–59]. Pro-
prioceptive signals might also compensate for the consequences of ocular torsion
on V1 receptive fields [60].

In humans, comparably few studies examined non-retinotopic coding in the visual
system. However, a growing body of literature does suggest that it can be studied
with fMRI as well. Visual motion velocity for example has been shown to be en-
coded in world-centered coordinates in areas V3A and V6 [61], paralleling earlier
findings in monkeys [62,63]. The authors suggested that V3A showed a near com-
plete integration of the incoming motion signal with e�erence copies [61]. In the
cortical hierarchy, V3A and V6 are situated on an intermediate level in between
early visual areas and higher-level visual cortex and the parietal lobe [12,64]. They
were proposed to monitor the location of objects in the visual scene to support
the motor network in the planning of behavior [64]. Similar non-retinal motion
responses have also been shown in the visual area within the cingulate sulcus
(CSv) [65–67] and the human motion complex hMT+ [68]. In Chapter 2, I will pro-
vide an overview of such world-centered motion responses across the visual sys-
tem and show that even the earliest stages of visual processing in the brain are
involved.

To investigate gain fields, several fMRI studies probed whether visual responses
are modulated by gaze position in visual areas [68–71]. A typical fMRI experi-
ment to study non-retinotopic coding utilizes fMRI adaptation, which measures
the decrease in activity that follows a repeated exposure to the same stimu-
lus [72]. McKyten & Zohary for example presented objects repeatedly at the same
location while having participants fixate at various locations on the screen. They
observed adaptation in mid-level visual regions such as the lateral occipital cor-
tex [73], an e�ect that was later shown to likely rely on active vision and eye move-
ments [74] and needs time to build up [75, 76]. Golomb and colleagues showed
that the parahippocampal place area (PPA) shows fMRI adaptation only when the
eyes move, not when participants fixate and the stimuli are moved instead [74],
demonstrating that the e�ect is independent of the retinotopic location. By com-
paring multivariate pattern analyses of fMRI responses between free and gaze-
constrained movie watching, others showed that many such high-level regions
encode information in a non-retinotopic frame of reference [77]. This is consis-
tent with the idea that the processed information becomes increasingly abstract
at higher levels of the cortical hierarchy (for review see [11, 12]). Intriguingly, after
a stimulus has been presented at a given location, the parietal cortex of monkeys
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encodes a head-centered memory trace of that stimulus, keeping this location
in memory for some time [78]. One fMRI study showed that such memory traces
are being remapped across eye movements also in the parietal cortex of humans,
even if the representation needs to be remapped to the opposite hemisphere [69].

Importantly, spatial updating and self-motion compensation are imperfect and in-
evitably a�ected by noise. Retinotopic remapping alone for example would hence
lead to the accumulation of updating errors, resulting in a shifting representation
of space during movement. One mechanism that could correct such errors post-
hoc is ’transsaccadic integration’, or ’transsaccadic memory’, which allows to de-
tect visual features in both the pre-saccadic and the post-saccadic visual image.
The location of salient features can then be matched between the two [79, 80].
Shifting some visual receptive fields back to where they have been before the
movement could hence mediate perceptual stability post-hoc. Again, the pari-
etal cortex might be crucial in this process, which might relate to modulations of
retinotopic parietal responses by non-retinotopic memory [78]. Substantial em-
pirical evidence suggests that our visual system does indeed use transsaccadic
memory to anchor our perception in space (e.g. [81–86]). However, the simple
fact that other mechanisms such as retinotopic remapping and self-motion in-
tegration exist suggests that perceptual stability does not build on transsaccadic
memory alone. It might rather serve as an error correcting mechanism for recep-
tive fields that were imperfectly remapped.

Notably, some studies did explicitly not observe any non-retinotopic coding and
suggested that the native coordinate system of visual cortices is exclusively retino-
topic [87,88]. Further investigations however showed that this depends on task de-
mand and that non-retinotopic coding is not being maintained continuously [70].
Instead, such representations are likely recruited only when needed by an atten-
tional mechanism to meet the task at hand [38]. Many areas for example switch
between retinotopic and non-retinotopic coding depending on whether attention
is being focused on the fovea or not [70]. Consistently, some parietal neurons flex-
ibly switch between reference frames to encode visual and gaze related informa-
tion depending on task demand [89]. This is also consistent with the observation
that spatiotopic representations require time to be formed [75, 76]. Together, this
suggests that attention recruits non-retinotopic representations when needed, an
idea to which I will come back in the Chapter 5.
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Figure 1.1: Spatial reference frames A) Visual reference frame transformation pathway.
Predominant reference frames are color coded: Retinotopic (representation changes dur-
ing movements of the eyes or head), Non-retinotopic (representation remains stable when
the eyes move) and world-centered (receptive fields are referenced to the external world
explicitly. World-centered coordinates are invariant to self-motion of the eyes or head and
only move if the environment does). B-D) Movement conditions: B) no movement, all re-
ceptive fields appear similar. C) eyes move. Retinotopic receptive fields move along. D)
environmental feature moves. World-centered receptive fields move along.

Similar visual, motor and proprioceptive integration mechanisms might be in place
to compensate not only for movements of the eyes, but also for the ones of the
whole body. This likely involves information about the current state of our body
and more complex movements in space. Again, the interaction between di�er-
ent sensory and motor cortices likely relies on networks involving the superior
colliculus and the parietal cortex [90]. The latter has access to retinotopic [13]
and non-retinotopic [38] visual representations, encodes information about body
posture [91] and movement [56, 92], and is generally well connected to sensory
and motor [12, 64, 93, 94] as well as to higher order mnemonic brain areas [95].
Importantly, the fact that some receptive fields are invariant to our own move-
ments does not imply that they are referenced to the external world. In order to
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be considered as world-centered, the receptive fields would need to move when-
ever the environmental feature does to which they are referenced to (Fig.1.1). The
parietal cortex has rather been proposed to provide viewpoint dependent visual
information to downstream areas such as the retrosplenial cortex [96].

Together, there are multiple interconnected mechanisms that allow visual re-
ceptive fields to represent visual space independent of one’s own movements.
Retinotopic remapping, the integration of motor e�erence copies and propriocep-
tive signals allow to reconstruct non-retinotopic, head-centered receptive fields
when needed. Transsaccadic memory might serve as a post-hoc error correcting
mechanism. The combination of these mechanisms stabilizes receptive fields dur-
ing self-motion and hence anchors our perception in space. The following para-
graph will describe how high level visual cortices use this stable vision to extract
the environmental layout and track the direction of objects as we move [97–99].

1.2.3 From scenes to spaces

A stable spatial perception enables to extract more complex information about
the environment from the visual scene. Landmarks and boundaries for exam-
ple can be recognized and their relative direction, position and distance can be
tracked over time (Fig.1.2). Human fMRI and electrophysiological recordings in
monkeys revealed that a network of higher order brain areas is involved in this
process, together referred to as the high level visual cortex. Among such regions
are face selective [100, 101] and object selective cortices [102] as well as regions
encoding visual scenes [99]. In the context of cognitive mapping, the latter ones
are most relevant here.

Scene perception regions include the retrosplenial cortex (RSC) [96], the occipi-
tal place area (OPA) [103] and the parahippocampal place area (PPA) [104]. These
areas represent the spatial layout of a scene [104], the 3D surface structure [29],
the relative openness [105] and the presence of boundaries [106] as well as nav-
igational a�ordances [107], that is where an observer would be able to move in
the current scene. They overlap with known retinotopic maps [13], even though
there is no one to one correspondence between the two concepts [99]. Intruig-
ingly, the selectivity to scenes in these regions is not a consequence of encoding
low level features typically associated with scenes. Rather, responses directly re-
flect whether a given stimulus is perceived as a scene or not [108], also likely
independent of the retinotopic position of each feature [77].
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Importantly, these regions are not only critical for recognizing which landmarks to
rely on, but are also an integral part of the coordinate transformation circuit that
interfaces between self-centered and world-centered representations in the brain
[96–98]. They likely receive head-centered visual input from parietal neurons,
which allows them to be directionally selective, and represent it conjunctively with
positional information they receive from the downstream hippocampal formation
[109]. Consistent with this idea, the RSC encodes facing direction in rodents [110–
112] and also the homologue region in humans has been shown to be directionally
tuned [113–115]. Indeed, lesions of the RSC impair the ability to orient oneself
relative to landmarks [116]. Furthermore, multiple recent studies showed that
the rodent RSC, the striatum, the postrhinal (parahippocampal) cortex and the
hippocampal formation contain cells that fire when boundaries or the center of
the room are located at a given distance and direction relative to the animal
[117–120]. The RSC and parahippocampal regions are well connected to parietal
cortex [121, 122] as well as to medial temporal lobe regions, where some of the
strongest evidence for world-centered representations of space have been found
[123, 124].

Taken together, the scene perception network is a key transformation stage of
visuospatial information in the brain [97,99]. Areas such as the retrosplenial cortex
and the parahippocampal (postrhinal) cortex transform head-centered, viewpoint
dependent representations into a conjunctive directional and positional code [98,
109]. This allows us to orient ourself relative to the environment. Self-centered
visual representations are likely mediated by parietal neurons, which combine
in scene perception areas with non-sensory spatial representations found in the
hippocampal formation [93, 97, 98, 125–127]. Scene processing areas reconstruct
world-centered coordinates from head-centered ones, ultimately providing the
basis for anchoring our sense of location and direction in space.
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Figure 1.2: The scene perception network extracts environmental information from the
scene. This allows to track the relative direction and distance of objects or boundaries (e.g.
the yellow house on the left side of the Trondheim old town bridge) from di�erent positions
(X,Y) and as we move. This is signaled by cells in retrosplenial and parahippocampal areas,
which interface between self-centered and world-centered reference frames likely via a
conjunctive representation of place and direction.

It is important to note that all retinotopic, head-centered and world-centered
spatial representations mentioned so far are still sensory in nature. Without the
ability to store them over time, they would fade away quickly after visual inputs
stop. In the following, I will discuss spatial codes in the hippocampal formation
that are referenced to the external world just like the ones in the scene pro-
cessing network, but arise from intrinsic network dynamics and do not reflect
a sensory stimulus per se. These high level spatial codes form a non-sensory
world-centered representation of space referred to as the cognitive map.
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1.3 The cognitive map: non-sensory representations of space

1.3.1 Spatial mapping in the hippocampal formation

Decades of navigation research revealed a ’zoo’ of world-centered spatial repre-
sentations within the rodent hippocampal-entorhinal circuit [123,124]. In a typical
experiment, rats forage for food in an open box while electrophysiological mea-
sures of neuronal activity are recorded. This has for example led to the discovery
of place cells [128, 129], a spatially tuned cell type in the hippocampus that fires
when the animal occupies a certain position in the box. The hippocampus is an
evolutionary old brain region present in all vertebrate species [130]. Likewise,
place cells have been observed in many species such as mice [131], rats [128],
bats [132–134] and humans [135, 136]. Because each place cell prefers a di�erent
location, the population of cells covers the entire space equally and is thought
to represent a cognitive map of the environment [129, 137]. This map comprises
di�erent levels of granularity, which is reflected in the receptive field size of place
cells varying across cells [138]. Place cells are controlled by visual cues [139] as
well as by path-integration mechanisms that update the representation when the
animal moves [140]. When it enters a new environment, place cell receptive fields
remap to a new location independent from the previous one [141–145]. On the
population level, this creates a unique place cell map for each environment. Im-
portantly, unlike retinotopic neurons, neighboring place cells do not represent
neighbouring locations in space. Interestingly, evidence from neuroimaging stud-
ies still suggested that place-cell like population responses may nevertheless ex-
ist [146–149]. These studies used virtual reality to have participants navigate in
a virtual environment using visual cues only. Successfully decoding the spatial
location of the participant from hippocampal voxels has been interpreted as ev-
idence for the detectability of the hippocampal place cell code with fMRI. These
conclusions however have been challenged and the underlying mechanism re-
mains controversial. When visual and path-related confounds as well as statisti-
cal shortcomings are corrected, no place-cell like hippocampal coding could be
observed [150]. Interestingly, the receptive field sizes of place cells do follow a
cortical topography along the dorsoventral hippocampal axis [138].

In addition to place cells, also grid cells have been shown to represent a map
of navigable space [151]. They can typically be found in the entorhinal cortex, an
area adjacent to the hippocampus that is responsible for the major part of cortico-
hippocampal communication [152]. Strikingly, grid cells fire not at one location,
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but at multiple ones that tesselate space with a hexagonal lattice [151]. Similar
to place cells, the relative position of this grid pattern as well as the grid field
size di�er across cells [153]. This provides a unique population activity vector for
each location in space [154]. Again, the di�erences in field size and spacing be-
tween fields is topographically organized [153, 155]. Grid cells combine visual and
self-motion cues to maintain their firing [154,156] and are thought to provide a sta-
ble spatial metric for the hippocampal place cell map [157]. Notably, in contrast
to place cells, grid cells likely have functional characteristics that translate to a
population response accessible by neuroimaging. As mentioned above, they rep-
resent self-location using a hexagonally organized firing pattern tesselating space.
The orientation of the grid pattern relative to the environment is shared across
cells [153]. On a population level, this has been hypothesized to give rise to six-
fold rotationally symmetric activity biases as a function of running direction [158].
First evidence for the presence of this (hexadirectional) population signal has
been described in human fMRI studies, which examined entorhinal fMRI-activity
while participants navigated in a virtual reality [158]. Here, the entorhinal signal
amplitude varied across running directions and followed the hypothesized 60°-
modulation. Since then, a large number of studies reported similar hexadirec-
tional modulations of entorhinal activity during virtual navigation [159–167] but
also during non-spatial tasks [168, 169]. In Chapter 3, I will discuss how similar
principles might allow to study entorhinal codes of visual space as well [170–172].
Importantly, the presence of grid cells in the human brain has been confirmed by
electrophysiological studies [172–174].

Place cells and grid cells represent self-location and therefore indicate where
we are. However, for spatial orienting it is also necessary to know which way we
are facing. Head direction cell firing indicates our head direction relative to the
environment and has been observed in many regions in the rodent brain [175]
including the anterior thalamus [176], the postsubiculum [177], the parahippcam-
pal region [178], the retrosplenial cortex [110–112] and the medial entorhinal cor-
tex [178–180], but also in monkey [181]. Head direction cells are thought to form
a ’neural compass’ that mediates our sense of direction and guides path integra-
tion and reorientation behavior [175]. Interestingly, there are at least two types
of head direction cells in the brain: ’classical’ non-sensory head direction cells
as well as sensory head direction cells [178]. The firing of non-sensory head di-
rection cells is referenced to the environment but does not reflect a stimulus per
se. It is maintained even in the absence of visual cues over some time (but is
then subject to drift) [177,182,183]. In addition, sensory head direction cells in the
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parahippocampal [178] and retrosplenial cortex [112] can switch between active
and inactive states. In humans, multiple studies investigated directional repre-
sentations with fMRI. These typically use directional judgment and mental imagery
tasks in combination with virtual reality to make participants mentalize certain di-
rections. Consistent with observations in rodents, evidence for the encoding of
direction has been observed for example in the retrosplenial [113,114,184,185] and
the parahippocampal cortex [114, 158, 162, 186–190], the hippocampal region [186],
the entorhinal cortex [113, 158, 185, 189, 191], the thalamus [113] and the superior
parietal cortex [192, 193]. Whether these directional representations reflect the
activity of head direction cells however remains unknown. Chapter 4 will elabo-
rate more on this topic and investigate human directional tuning for the first time
during active navigation.

Place cells, grid cells and head direction cells are all integral parts of the neu-
ral implementation of the cognitive map [129]. They are complemented by other
spatially tuned cells such as entorhinal border cells [194, 195], which fire along
environmental boundaries, subicular boundary vector cells [196] and entorhinal
object vector cells [197], which fire at a given distance and direction to boundaries
and objects, as well as entorhinal speed cells, which track the running speed of
the animal [198].

It is important to note that many of the spatial coding principles in the hip-
pocampal formation sound similar to the ones observed in visual cortex on a
superficial level, yet the receptive fields, their cortical organization and most im-
portantly the presumed nature of their representation are drastically di�erent.
Place cells, grid cells, border cells and head direction cells mediate an explicitly
non-sensory representation of space. Instead of ’responding’ to a specific combi-
nation of cues, their firing pattern likely arises from the recurrent activity within
the hippocampal-entorhinal circuit. This connectivity gives rise to attractor dy-
namics [199, 200].

An attractor network is a recurrently wired network of neurons in which each cell
excites proximal cells while inhibiting distal cells [199–205]. This leads to net-
work activity that converges onto a stable set of activity states. If the transitions
between these states are continuous, the network is referred to as a continuous
attractor. Substantial evidence points to such continuous attractor dynamics in
head direction cells [200, 206, 207] and grid cells [156, 202]. In grid cells, this idea
has received empirical support by multiple recent studies demonstrating that the
pairwise cell-to-cell correlation structure across cells remains stable across be-
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haviors [208] and even during sleep [209, 210]. This suggests that it is indeed
the network connectivity within the entorhinal cortex [152] that gives rise to their
firing, rather than external inputs. Similar results have been observed for head
direction cells, whose population dynamics follows ring attractor dynamics dur-
ing walking and during sleep [207]. Strikingly, in fruit flies this head direction ring
attractor is anatomically organized in the shape of a ring [211, 212].

In sum, the hippocampal formation contains spatially tuned cell types, which ref-
erence self-location or direction relative to the environment. They rely on sensory
cues to be anchored to the environment but do not represent a visual stimulus
per se. Together, the cells in the hippocampal-entorhinal circuit form a cognitive
map of the environment.

1.3.2 A cognitive map of visual space

As described above, most of our knowledge about the cognitive map builds on
electrophysiological studies in rats and mice [123, 124]. Rodents however per-
ceive the environment very di�erently than humans do, relying less on vision
and more on their somatosensory and olfactory senses [213–215]. Humans, like
other primates rely predominantly on vision and eye movements to explore the
environment [213]. This raises the question whether these di�erences in sensory
experience and behavior are reflected also in the way the hippocampal formation
represents space. A large number of studies suggested that rodents and primates
indeed employ similar spatial coding principles [127, 216–218]. Importantly, while
the reported cell types in rodents primarily encode self-location, the homologues
in monkey often reflect where the animal is looking [127, 216, 217].

Similar to rodent place cells for example, the hippocampus of monkeys contains
cells that are responsive to certain locations in the environment [219]. These neu-
rons however encode the world-centered location of gaze [220]. These ’spatial
view cells’ maintain their place selectivity even in darkness for some time similar
to place cells [221] or when the view is obscured with obstacles [222]. In addition,
related hippocampal neurons represent gaze, self-location and head direction in
a conjunctive code [223]. Spatial view cells are likely not unique to the primate
brain. Recent work suggests for example that the hippocampal formation in rats
and bats contains similar cells that represent locations in the environment that
are not their own [134, 224].
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In addition to place cells, also entorhinal grid cells have a purely visual analogue
in monkeys. These neurons encode a map of visual space using a hexagonal fir-
ing pattern that strikingly resembles the one observed in rodents during naviga-
tion [151, 225]. The representation mediated by (at least some) visual grid cells is
world-centered, meaning that their firing pattern moves coherently whenever the
stimulus moves [226]. The fact that these patterns emerge in the analysis after
pooling data across many stimuli [225] also shows that visual grid cell activity is
invariant to the stimulus content (at least of the cells reported to date). Instead,
it likely reflects the encoding of a ’content-free’, non-sensory metric map of visual
space. Also, visual grid cells do not represent the eye position in the eye orbit, but
rather the location in space that is currently attended [227]. This is independent of
whether the location was attended overtly or covertly [225, 227]. Whether spatial
view cells are modulated by spatial attention similar to visual grid cells seems
likely but remains an open question. In Chapter 6, we propose that visual grid
cells guide our gaze by computing vectors between locations in space similar to
the proposed analogous function of grid cells in navigation [127,154]. Interestingly,
computational models recently suggested that this mechanism might allow visual
grid cells to support recognition memory [228]. Once the locations of visual fea-
tures in the scene are associated with unique grid cell population activity, this can
be used to compute vectors between these features, which are then forwarded to
the oculomotor system.

Similar to how head direction cells encode the direction of the animal’s head, en-
torhinal saccade direction cells encode the direction of future or past eye move-
ments in monkey [229]. The two cell types were proposed to share an evolutionary
origin [217]. Akin to rodent border cells, visual border cells in monkeys indicate the
proximity of the current gaze position to visual boundaries such as for example
the edges of a visual display [225]. Intruigingly, they do not fire along edges within
that same stimulus, demonstrating that they do not encode the visual appear-
ance of these edges, but rather the behavioral consequence, or task relevance,
associated with it. Similar coding of the task-related ’meaning’ of spatial features
independent of their visual appearance has recently been observed on a broader
scale in other hippocampal cells that encode space into a schema-like represen-
tation [230]. Given the strikingly similar firing properties of rodent and monkey
spatial representations in the hippocampal-formation, the representations of vi-
sual space likely also follow attractor dynamics as described above. However,
future studies will need to test this prediction empirically.
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In Chapter 6, I will discuss the function and computational tasks these codes might
solve in more detail. In short, the spatial codes in rodents and monkeys might
not only be related, but could both be expressions of one common mechanism
that maps the environment and guides exploratory behavior. This hippocampal-
entorhinal mechanism might have been co-opted and adapted according to the
sensory experience and the behavior, which the di�erent animals express.

1.4 How sensory and non-sensory representations combine

Hippocampal-entorhinal codes mediate a cognitive map that is generated by in-
ternal network dynamics, not by sensory inputs. How can such non-sensory rep-
resentations of space be anchored to the external world? To understand this
process it could help to consider a practical example (Fig.1.3). As mentioned be-
fore, the firing of head direction cells for example is governed by a continuous
attractor [207]. The network always maintains a certain level of population activ-
ity even though the cells that are active change over time. Because nearby cells
are excited and distal cells are inhibited, the population activity forms an ’activity
bump’ in the network. Because head direction is a circular variable, all possible
population activity states this network can occupy fall onto a circle in state space.
When the animal moves, vestibular inputs bias the activity bump to switch to a
new state [199,231]. In the case of head direction cells, this means that the network
now encodes a new head direction. By moving the activity bump via vestibular
inputs the network can do path integration, meaning that even in the absence of
visual cues the current head direction of the animal can be tracked. This explains
why many of the spatial cell types can maintain a certain activity level and with it
a representation over some time.

However, path integration has at least one limitation: it accumulates error with
every update [156]. Just like retinotopic updating, the vestibular self-motion in-
tegration process is not perfect and subject to noise. The representation hence
needs to be anchored frequently to the external world in order to remain useful
and to avoid drift. This is likely done by visual inputs that have been processed as
described in Sections 1 and 2. Computational models proposed that the anchor-
ing is achieved by an ’outer ring’ of visual cells that are directly connected to the
head direction cells in the ring attractor network [199, 200, 203–205, 232]. These
visual cells indicate the direction of salient landmarks or boundaries. Each visual
cell provides input to very few head direction cells in the network, firing only when
the observer faces towards the landmark they are referenced to. If the attractor
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activity was misaligned, this visual input biases it back towards the ’correct’ state.
This process is called ’cue control’ or ’landmark control’, which simply describes
the process of anchoring the ring attractor to these landmarks.

Figure 1.3: Anchoring attractor dynamics to the visual world via cue control. Head direc-
tion cells are thought to follow continuous attractor dynamics. The currently represented
head direction (HD, black arrow) is reflected in the activity bump (hot colors) of the HD
ring attractor (’inner ring’). A second ’outer ring’ of visual cells represents the direction of
environmental landmarks (LM), which could be objects or other features that define the
environmental layout. When the observer faces towards a landmark (distal or proximal),
the corresponding visual cell would fire and bias the activity bump in the ring attractor
to represent the correct HD. In this example, the visual neuron representing the bridge
straight ahead (LM2) is exhibiting cue control.

In this model, the direction of the landmarks is being tracked by upstream regions
such as the retrosplenial cortex [96, 98, 99] as described in Section 1.2. Because
attractor dynamics sustain the activity over time, and because path integration
mechanisms can update the representations to a large degree, this anchoring
mechanism does not need to be maintained continuously. Rather, it could be
recruited as needed by additional attentional mechanisms for example during
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reorientation [233]. This would be in line with the observation that also non-
retinotopic representations are non-continuous and modulated by attention in
visual cortices [38, 70]. It is also in line with parietal neurons switching reference
frames depending on task demand [89] and with the fact that non-retinotopic
representations need time to build up, because the above-described sequential
computations first need to be conducted.

In the case of grid cells, the possible network states would not occupy a ring in
state space, but instead a torus, reflecting the 2D spatial representation they me-
diate [151, 154, 202]. Note however that there is evidence that such spatial codes
might also represent 3D space [187, 234–236] or even higher dimensional non-
spatial variables [168, 169, 237–239]. Hippocampal activity likely follows similar at-
tractor dynamics as suggested by computational models [240, 241] and empirical
findings in rodents [242] and humans [243]. Notably, while hippocampal place
cells typically remap when an animal enters a new environment [141–145], some
of them, not all, also remap when only few of the environmental features are al-
tered [143]. This phenomenon is called ’partial remapping’ and shows that the
population activity of place cells does not always converge on one stable state.
This shows that there is not only one attractor network controlling all spatially
tuned cell types. Instead, there might be multiple ones, likely including contin-
uous and discrete attractors to allow smooth transitions between states while
still encoding our experiences using high-dimensional and orthogonal represen-
tations [205, 244–246].

In sum, the spatial representations in the hippocampal formation are fundamen-
tally di�erent from visually evoked responses or from self-motion compensated
non-retinotopic ones in visual cortices. Instead, they mediate representations of
space that are referenced to the external world, but are non-sensory in nature.
They build on the intrinsic hippocampal-entorhinal network connectivity, which
gives rise to attractor dynamics. Visual input supports the anchoring of the repre-
sentations to the external world. Collectively, these representations are thought
to form the basis of the cognitive map [137, 139].
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1.5 Thesis outline

The above-described mechanisms allow the brain to perceive a stable visual world
and to form cognitive maps of the environment. This comprises several complex
multi-sensorimotor integration processes, which ultimately interface between sen-
sory and non-sensory representations of space. While most of our knowledge
about this topic is grounded in electrophysiological recordings in rodents and
monkeys, the neural systems that support a stable perception and cognitive map-
ping remain poorly understood in humans.

This thesis addresses the central question how the human brain derives cognitive
maps from visual inputs and how they relate to spatial perception, behavior and
memory. The following projects approach these topics from multiple angles and
focus on several cortical and computational stages of this process.

Empirical paper 1 investigates how the human visual system integrates self-motion
information to maintain a stable perception during eye movements [247]. This
likey builds on the integration of visual input with motoric self-motion signals,
a computation that is critical to anchor our perception in space. In addition to
showing that many regions of the human visual motion network are involved in
this process, this project provided the first evidence that the human early visual
cortex signals visual motion velocity in a world-centered frame of reference. This
suggests that extra-retinal signals modulate even the earliest stages of visual pro-
cessing in the human cortex in support of a stable perception of space.

Empirical paper 2 examines how high-level regions implicated in environmental
mapping represent what we see [170]. Specifically, we ask whether the human
entorhinal cortex represents a grid-like map of visual space akin to its monkey
homologue [225]. We tested this by examining human fMRI-proxies of grid-cell-
like representations during a viewing task, which suggested that this was indeed
the case. Our results demonstrate that the entorhinal cortex maps visual space
with a grid-like code and provided the first evidence of a non-sensory visual field
map in the human brain. Our results support the proposal of the cognitive map as
a general organizational principle of neural information coding and further em-
phasizes its domain-general function.
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Empirical paper 3 spans across these levels of processing, probing world-centered
directional tuning in both low-level visual and high-level scene processing and
navigation regions during active spatial behavior [248]. Here, we ask how be-
havior and spatial memory influence environmental coding in the human visual-
navigation network. Using virtual navigation during 7T-fMRI and a newly devel-
oped voxel-wise behavioral encoding model, we demonstrated directional tuning
in this network for the first time during active spatial behavior. More importantly
however, our results revealed that this directional code depends on the behav-
ior of our participants as well as on how well the environment has been encoded.
This demonstrates a direct link between neural population tuning and human be-
havior and shows that network-wide perceptual processing directly interacts with
the high level cognitive mapping process.

After presenting this empirical work, I will discuss its implications in the ’Gen-
eral discussion’ Chapter 5 as well as in the ’Extended discussion’ Chapter 6. The
latter has been published as Review paper 4 [127] and reviews the growing body
of literature implicating the hippocampal formation in representing non-sensory
map of visual space. The underlying cell types provide the optimal solution to
multiple computational challenges that are shared between navigation and vi-
sion. They may provide world-centered coordinates for the encoding of space,
the planning and guidance of behavior as well as for the formation and recall
of episodic and contextual memories. I will propose that these high-level visu-
ospatial codes shape perceptual processing on a large scale and that navigation
and viewing are two behavioral expressions of a common spatial mapping and
exploration system in the medial temporal lobe.
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Methods Box 1

Functional magnetic resonance imaging (fMRI)

In order to study human brain activity non-invasively I use fMRI. As discussed
throughout this thesis, fMRI is well suited to examine spatial representations in
the brain and has been successfully used to study the retinotopic [13] and non-
retinotopic [38] organization of visual cortices as well as spatial representations
in the medial temporal lobe [165]. It measures changes in the oxygenation and the
volume of blood, which typically follow the dynamics of neural population activity
for following reason [249].

Neuronal signaling requires energy, which is produced via glycolytic oxygenation
in the tissue of need. The local oxygen storages are too small to support the
activity of larger populations of neurons and need to be refilled after periods of
enhanced activity. This leads to increased blood flow supplying the tissue with
fresh oxygen. Both, the change in blood-oxygenation level and in blood volume
a�ect the local magnetic field strength of a region, in turn inducing currents in
receiver coils placed around the participants head. These changes in current can
be used to reconstruct a 3D image of the brain, digitally sliced into thousands of
voxels. By monitoring each voxel over time, one obtains signal time courses that
serve as a basis for all imaging analyses presented in this thesis. The experimental
paradigms themselves were presented on a screen placed outside the scanner
bore, which participants could see via a mirror display.

Eye tracking

For the first two experiments it was critical to know where participants were look-
ing and when they moved their eyes. We therefore recorded their viewing behavior
online during fMRI scanning. The eye trackers were infrared-based video cam-
eras placed outside the scanner bore, emitting low-energy light and recording the
reflections of the cornea and retina. Because the spatial arrangement of these re-
flections is unique for each location on the screen, tracking it allowed to monitor
gaze locations continuously.
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Methods Box 2

Visual tracking task

In many instances, it is important not only to know where participants look,
but to control their gaze behavior and therefore their experience tightly. This
is accomplished for example by using visual tracking tasks, typically comprising
a fixation dot at which participants are asked to fixate for the duration of the
experiment. By moving the dot, one also controls what participants see. This
has at least two great advantages over unconstrained viewing. First, it allows to
balance the sampling of di�erent behaviors (e.g. eye movement directions) and
can therefore greatly improve the e�ciency of experimental designs. Second,
it reduces the number of confounding factors that need to be accounted for
when interpreting the results. In the present thesis, the first two papers build on
such visual tracking tasks, which were superimposed with another stimulus or
task such as optic flow in project 1 and an object-location memory task in project 2.

Virtual reality

Paradoxically, the strength of the visual tracking task, i.e. the tight control over
the participants behavior and experience, is also its weakness. It allows to
study certain cognitive functions with high certainty, it does so however in an
unrealistic, artificial setting. Our brain evolved in a highly complex and engaging
environment, making the use of more naturalistic paradigms imperative when
trying to understand its function. Virtual reality is a powerful tool to do so by
providing a flexible and realistic environment, which is still easy to control and to
monitor. Most importantly, virtual reality enabled us to record fMRI data during
active navigation behavior inside the MRI machine. In project 3 and as a control
condition in project 2, we used a simple virtual environment in the form of a
circular arena, which participants saw from first person perspective. They could
navigate freely within this arena using key presses while performing an object
location memory task.

Object-location memory task

Object-location memory tasks were used in projects 2 and 3. Participants memo-
rized and reported the location of objects either on the screen or within a virtual
environment. In the course of di�erent trials, we cued these objects, prompting the
participants to either move a cursor to the location they remembered the object at
(project 2) or to navigate to that location themselves and press a button (project 3
and control condition of project 2). This task not only ensured that the participants
remained attentive, but also allowed to assess their spatial memory performance
later on.
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2.1 Abstract

Eye movements induce visual motion that can complicate the stable perception of
the world. The visual system compensates for such self-induced visual motion by
integrating visual input with e�erence copies of eye movement commands. This
mechanism is central as it does not only support perceptual stability but also
mediates reliable perception of world-centered objective motion. In humans, it
remains elusive whether visual motion responses in early retinotopic cortex are
driven by objective motion or by retinal motion associated with it. To address this
question, we used fMRI to examine functional responses of sixteen visual areas to
combinations of planar objective motion and pursuit eye movements. Observers
were exposed to objective motion that was faster, matched or slower relative to
pursuit, allowing us to compare conditions that di�ered in objective motion ve-
locity while retinal motion and eye movement signals were matched. Our results
show that not only higher level motion regions such as V3A and V6, but also early
visual areas signaled the velocity of objective motion, hence the product of in-
tegrating retinal with non-retinal signals. These results shed new light on mech-
anisms that mediate perceptual stability and real-motion perception, and show
that extra-retinal signals related to pursuit eye movements influence processing
in human early visual cortex.
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2.2 Introduction

When objects change their position in the visual field, the brain needs to infer
whether the object moved (’Objective motion’) or whether the eye moved and
therefore shifted the visual field relative to the object (’Pursuit Motion’). Even
though both options result in retinal motion, only the former is perceived as
world-centered ’Real-motion’. Previous behavioral and electrophysiological stud-
ies suggest that the discrimination between these sources for visual motion is
mediated by integrating e�erence copies of eye movement commands with vi-
sual input, reflected in responses of real-motion neurons [47] von Helmholtz, 1867;
von Holst and Mittelstaedt, 1950), allowing to separate self-induced from world-
centered objective visual motion [47,48,62,250]. Similar non-retinotopic coding of
visual motion and visual locations has been found in various areas in the monkey
brain such as MST [251], V3A [62], V6 [252], VIP [50] and early visual areas V1 [47,60]
and V2 [250].

In the human brain, comparably few studies examined objective motion responses,
and a systematic overview across visual regions is still missing. A recent func-
tional magnetic resonance imaging (fMRI) study showed that human areas V3A
and V6 respond almost exclusively to planar objective motion, suggesting a near
complete integration of e�erence copies with visual input [61]. Both areas, along
with hMST have also been shown to encode objective motion when visual stim-
uli simulate head motion [66, 67], and the same regions encode visual stimuli in
a spatiotopic (head- or world-centered) reference frame at fixed eye-positions
[38, 68, 70]. Among the motion responsive regions in the cingulate sulcus, areas
Pc [253] and CSv [254], the latter has been shown to encode objective motion to a
limited extent [65]. Finally, there is evidence that human VIP [69] as well as sev-
eral regions in the intraparietal sulcus (IPS) [255] have access to both retinal and
eye movement information and might hence show objective motion responses.
While early visual cortex does respond to objective motion in monkey [47,250], its
involvement in the human brain has not been examined before.

To examine early visual cortex in this context and to provide the yet missing
overview across the visual system, we used fMRI to investigate the responses of
sixteen visual brain areas to objective motion during eye movements. We used
retinotopic mapping (early visual areas V1-hV4, parietal regions IPS-0 to IPS-4)
and dedicated motion localizers (hMT/V5, hMST+, V3A, V6, CSv, Pc, VIP) to indepen-
dently identify these regions in every participant prior to examining their objective
motion responses.
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We used planar dot motion and a moving fixation disc to induce di�erent objec-
tive motion velocities while pursuit speed as well as retinal motion were matched.
Given that early as well as high level visual motion responses have previously
been shown to be speed tuned [66, 256–258] we expected di�erent objective mo-
tion velocities to yield di�erential responses. Eye tracking was employed through-
out the experiment and participants conducted an independent task at fixation to
keep attention balanced across conditions. We specifically tested which regions
were involved in perceptually relevant estimation of objective motion velocity
while physical input parameters were exactly matched. This estimation can only
be achieved by the multi-modal integration of e�erence copies with visual sig-
nals, and it is essential to maintain a stable perception of the visual environment
during self-motion.

2.3 Methods

Participants
A total of 18 participants (7 male, 11 female) participated in this study (23–34 years
of age, normal or corrected to normal vision, no neurological pathologies). Prior
to scanning, participants were instructed about the experiment in spoken and
written form, performed several test trials and gave written consent. The study
was approved by the joint ethics committee of the university clinics Tuebingen
and the Max Planck Institute Tuebingen.

Stimulus
The stimulus was written in MATLAB 2013b (http://www.mathworks.de) using Psych-
toolbox (http://psychtoolbox.org) and was projected onto a translucent screen in
a back-projection setup via a gamma corrected NEC PE401h projector. The display
covered 22×16.4 visual degrees. The stimulus (Fig.2.1) consisted of a fixation disc
(light grey, 0.9° in diameter) as well as a random dot pattern (black and white
dots, 100% contrast) on a grey background (mean luminance: 10 participants with
487cd/m2, 8 participants with 244cd/m2. The luminance split between participants
was due to technical reasons and unlikely to a�ect any question of interest). The
planar random dot pattern consisted of an average of 1540 dots varying randomly
in size between 0.08 and 0.2°, with all dots moving coherently and simultane-
ously while keeping their relative distances fixed. The random dots hence moved
together as one background image, inducing global planar visual motion. Both fix-
ation disc and the random dots in the background moved on a circular trajectory
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with a radius of 4.1° (quarter of the screen height). The random dot pattern could
however move at di�erent velocities relative to the fixation disc, yet always on
the same trajectory (see experimental conditions below). The motion radius was
chosen such that the area of controlled visual stimulation was maximal: the near-
est border to the screen edge was at all times further away than 4 visual degrees,
leading to controlled visual stimulation within at least 8×8 visual degrees [61].
The rotation direction and starting point of the fixation disc was randomized and
counter balanced across trials within each participant.

Figure 2.1: Illustration of stimulus timeline and experimental conditions. A) Stimulus time-
line across a typical trial. Each trial started with a stationary background and stationary
fixation disc, shown for 2s. This was followed by the condition-specific motion (of back-
ground and fixation) for 12s. Note that the circular trajectory of fixation disc and background
plane were identical, but that background motion could be faster, matched, or slower rel-
ative to pursuit. Trials ended with a stationary period lasting 1s. B) At two di�erent pursuit
speeds (2°/s and 3°/s) we presented objective motion that was 1°/s slower (’Slower’ condi-
tions), matched (’Matched’ conditions) or 1°/s faster (’Faster’ conditions) relative to pursuit.
Data was pooled across pursuit speeds to obtain the 3 (pursuit-speed invariant) conditions
Faster, Matched and Slower.

Fixation task
Participants were instructed to always fixate the fixation disc on which we dis-
played a character repetition-detection task to balance attention across condi-
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tions. Random black characters (A-Z) were presented in random order with a
frequency of 1Hz. Every three to eight presentations one of these characters was
repeated, which participants had to report via button press. As a control measure
we recorded hit rate, false alarms rate and response time across all conditions. A
button press was counted as a hit if occurred within 1s after a character repetition;
otherwise it was counted as false alarm. Response time depicts the time between
a character repetition and the corresponding hit. For each of these measures we
performed repeated-measures ANOVA to test for condition dependent e�ects.

Trial timeline
A typical trial started with a stationary stimulus for 2s, followed by the movement
of the stimulus for 12s, ending with another stationary period of 1s (Fig.2.1). The
motionless pre- and post-stimulus periods provided enough time to facilitate the
saccade from the end-point of the fixation disk of the preceding trial to start-point
of the current trial, as well as stable fixation before the actual motion stimulus
was shown.

Experimental conditions
Pursuit eye velocity was experimentally determined through movement of the
fixation disc and objective motion by movement of the background dots. Retinal
motion is the di�erence between the two. We presented a total of nine conditions
that resulted from combinations of two pursuit speeds and three objective motion
speeds. Data was pooled across the two pursuit speeds (2°/s and 3°/s) to provide
invariance with respect to pursuit. Hence, only three (pooled) conditions were of
interest for this study: objective motion was either 1°/s slower (’Slower’ condi-
tions), exactly matched (’Matched’ conditions) or 1°/s faster (’Faster’ conditions)
relative to pursuit. Faster and Slower conditions di�ered only in objective motion,
not in pursuit or retinal motion velocity. Di�erences in responses between these
two conditions hence reflect responses to objective motion alone, and constitute
the key contrast in this study. An additional three conditions presented 0°/s, 1°/s
and 3°/s objective/retinal motion during stationary fixation (Supplementary fig-
ure 1). These three non-pursuit conditions are not of interest for this particular
study and will be neglected in the following. Each condition was presented 18
times in a pseudo-randomized, history-matched order.
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Data acquisition
Functional T2*-weighted gradient-echo multiplexed echoplanar images (EPI) were
acquired on a Siemens MAGNETOM Prisma 3 T magnetic resonance tomograph
using a 64 channel phased-array head coil. The pulse sequence included Gen-
eRalized Autocalibrating Partially Parallel Acquisition (GRAPPA) with factor 2 and
multiband radiofrequency excitation with factor 4 (for more information see [259]).
Images were acquired using the following parameters: repetition time (TR)=870ms,
echo time (TE)=30ms, voxels size 2 ×2 × 2 mm3, flip angle 56°, field of view (FOV)
192×112mm. In 4 runs a total of 2902 volumes were scanned, each containing 56
slices with 96×96 pixels. An anatomical scan was recorded for each participant
using a T1-weighted ADNI-sequence with 1mm3 voxel size.

fMRI preprocessing and statistical analysis
Data were preprocessed using SPM12b (www.fil.ion.ucl.ac.uk/spm/). All images
were corrected for head motion and field distortions, spatially normalized to MNI
space and smoothed with a full width at half maximum (FWHM) kernel of 4mm for
regions of interest (ROI) analysis and 9mm for group analysis. The data of each
participant was then analyzed using a General Linear Model (GLM). The model
involved one regressor per condition as well as one for button presses. These
regressors were convolved with the hemodynamic response function. The six
realignment parameters (translations of X, Y, and Z coordinates, pitch, roll, and
yaw) as well as the global signal of each volume orthogonalized to the rest of
the design matrix were modeled as nuisance regressors to further reduce move-
ment artifacts and global signal fluctuations induced by scanner or physiological
noise [260]. Low frequency drifts were removed using a high-pass cuto� filter of
128s.

Regions of interest definition of motion responsive areas
To identify motion responsive areas hMT/V5, hMST+, V3A, V6, VIP, CSv and Pc (Fig.2.2),
a separate localizer paradigm was scanned. The stimulus resembled the one used
in the main experiments involving a fixation disc with attention task and random
dot patterns on grey background. It di�ered in the actual motion pattern that
was shown as follows. In total the paradigm involved seven conditions: 1) fixation
on static dots, 2) pursuit on static dots, 3) pursuit and objective (planar) motion
matched in their trajectories, 4) full field 3D (expansion-contraction) optic flow, 5)
random motion (derived from and trajectory-matched with 4), 6) left and 7) right
hemi-field optic flow.



44
Empirical paper:

Real-motion signals in human early visual cortex

Figure 2.2: Illustration of locations of the regions of interest defined by our motion lo-
calizer on the example of a representative participant. Motion responsive regions were
color coded and shown overlaid on sections of the participant’s structural T1-scan at MNI-
coordinates X=10, Y=-39, Z=20.

Data acquisition (one scanning run of approximately 10min), preprocessing and
statistical analysis were identical to the main experiment and ROI definition was
done using MarsBar region of interest toolbox for SPM [261]. To this end, t-maps
of respective motion contrasts (explained in the following) were overlaid on in-
dividual structural scans and thresholded at ROI-specific p-values as amplitudes
of motion responses di�ered substantially between areas. Thresholds were cho-
sen so that ROI sizes were approximately matched across participants and that all
areas were identifiable in all participants. ROIs were then defined by selecting sig-
nificant clusters according to the following criteria. The hMT+/hV5+ complex was
identified using standard methods [262] and subdivided into hMT/V5 and hMST+.
Area hMST+ was defined as the ipsilateral response to optic flow versus static
dots within the hMT+/hV5+ complex, leaving the contralateral response without
hMST+ as hMT/V5 [262, 263]. We use the term hMST+ as several additional motion
responsive satellite regions of monkey MT/V5 have receptive fields extending into
the ipsilateral hemifield like those of MST that are most likely included in our
hMST+ [264, 265].
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We used a previously established motion localizer to robustly localize V3A [61].
Area V3A was defined as the strong response on the superior occipital lobe to
pursuit with co-moving objective motion versus pursuit on a static background,
corresponding to contrasting objective with retinal motion, which replicably leads
to selective activation of voxels overlapping with retinotopically defined V3A [61].
While area V6 also exhibits consistent responses in this contrast [61, 252], we lo-
calized V6 [24, 61] along with areas VIP [56], CSv [65] and Pc [253] on the basis of
their preference for optic flow compared to random motion. Note that the region
defined here as V6 is located slightly anterior compared to previous reports [266]
and most likely also includes voxels of the neighboring V6Av as this region also
marginally prefers coherent compared to random dot motion [266, 267]. Detailed
information about ROIs defined in this study is given in Table 1.

Retinotopic mapping
Retinotopic regions of interest were delineated in 10 participants using standard
retinotopic mapping techniques [14,22]. The stimulus consisted of a wedge shaped
checkerboard (90° in size, 100% contrast, 6Hz contrast inversion flicker, check
sizes increased logarithmically with eccentricity) rotating around the central fixa-
tion dot (55.7s period, matched clockwise and counterclockwise rotation) in front
of gray background. An attention task (button press when red dot appeared af-
ter on average every 4sat random location) was superimposed onto the checker-
board to facilitate parietal responses [22]. Image acquisition and preprocessing
was identical to the main experiment except that images were not smoothed.
Polar angle maps were calculated as described in previous studies [14], and ROI
definitions were performed on inflated brain surfaces of individual participants.
In short, we estimated the phase of an oscillatory BOLD-activity induced by the
rotating stimulus and mapped it across all voxels of the visual brain. In retino-
topic regions, neighboring voxels respond to neighboring visual field locations
and hence estimated phases of neighboring voxels are similar. Since the orienta-
tion (among other features) of the represented visual field di�ers across regions,
the resulting polar angle maps allow to trace borders and to delineate visual ar-
eas [17]. We used this approach to identify areas V1, V2, V3 and hV4 as well as IPS0
(V7), IPS1, IPS2, IPS3 and IPS4. Left and right hemispheres as well as dorsal and
ventral parts of these areas were combined to obtain one ROI per area and par-
ticipant. We did not subdivide the V3AB-complex into V3A and V3B as this would
have required eccentricity maps which were not obtained in this study. Here, we
identified V3A using a dedicated functional motion localizer (see above). Surface
reconstruction [268], analysis of polar angle maps [14] as well as retinotopic ROI
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Table 2.1: ROI coordinates in SPM normalized space (approximating MNI space)
(meanSEM) for left (L) and right (R) hemispheres, number of voxels for each
ROI(meanSEM), and number of hemispheres in which each ROI was found. Note
that not all areas were localizable in all participants and hemispheres.

Brain region Hemisphere X [mm] Y [mm] Z [mm] #Voxels #Hemispheres

Functional Motion Localizer (n = 18 participants):

V3A L -16 ± 4 -91 ± 4 25 ± 5 107 ± 7 36

R 19 ± 4 -89 ± 4 27 ± 5

V6 L -14 ± 5 -78 ± 4 40 ± 7 100 ± 11 35

R 17 ± 6 -77 ± 4 42 ± 5

CSv L -10 ± 3 -19 ± 4 42 ± 3 15 ± 2 31

R 10 ± 3 -19 ± 4 45 ± 3

Pc L -10 ± 4 -43 ± 4 51 ± 5 21 ± 2 28

R 10 ± 4 -41 ± 5 54 ± 6

hMST+ L -45 ± 4 -71 ± 5 8 ± 5 82 ± 9 35

R 48 ± 5 -67 ± 3 8 ± 6

hMT/hV5 L -45 ± 3 -76 ± 2 8 ± 5 264 ± 16 35

R 47 ± 2 -70 ± 3 7 ± 6

VIP L -26 ± 5 -52 ± 5 53 ± 5 25 ± 2 32

R 27 ± 6 -52 ± 8 53 ± 4

Retinotopic Mapping (n = 10 participants):

V1 L -7 ± 1 -91 ± 2 -1 ± 4 1110 ± 26 20

R 10 ± 1 -88 ± 2 2 ± 2

V2 L -8 ± 2 -88 ± 3 1 ± 4 911 ± 41 20

R 12 ± 2 -86 ± 3 1 ± 4

V3 L -18 ± 3 -86 ± 3 -2 ± 3 700 ± 41 20

R 21 ± 3 -83 ± 3 0 ± 3

hV4 L -27 ± 3 -78 ± 4 -13 ± 1 445 ± 31 20

R 30 ± 3 -77 ± 5 -11 ± 2

IPS0 L -23 ± 4 -79 ± 2 32 ± 5 598 ± 61 20

R 26 ± 4 -77 ± 2 36 ± 6

IPS1 L -21 ± 5 -70 ± 3 40 ± 7 418 ± 45 19

R 23 ± 3 -68 ± 4 44 ± 7

IPS2 L -20 ± 5 -68 ± 4 49 ± 6 259 ± 27 19

R 22 ± 5 -64 ± 3 54 ± 4

IPS3 L -22 ± 6 -65 ± 6 57 ± 5 274 ± 39 17

R 23 ± 5 -57 ± 3 59 ± 5

IPS4 L -19 ± 7 -58 ± 6 59 ± 4 397 ± 44 17

R 24 ± 7 -52 ± 6 60 ± 6
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definition was done in FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). See Table
1 for ROI coordinates and volumes.

Spatial localizer control
Since participants’ visual fields extended beyond the size of the stimulus display,
we localized voxels in the early visual cortex that responded only to positions we
could control the motion stimulation for. We presented checkerboard stimuli sim-
ilar to the one used in the retinotopic mapping experiment (100% contrast, 6Hz
contrast inversion flicker, logarithmically increasing check size), while participants
were fixating a fixation cross at the screen center. We presented three condition: 1)
Stimulation only at central 0.9° (size of the fixation disc in main paradigm), 2) full-
field stimulation without central 4° and 3) stimulation only at central 4° (quarter
of screen size) without area of fixation disc (Fig.2.3). Data acquisition, prepro-
cessing and statistical analysis were identical to the main experiment. We then
contrasted responses to condition 3 versus 2 and 1 to localize voxels responding
only to stimulation at the central 4×4 degree of the visual field surrounding the
fixation disc. For a control analysis, ROIs were then intersected with the resulting
t-map, thresholded at p<0.001 (uncorrected) on single participant level. Please
note that voxels with population receptive field sizes exceeding 4° would likely
be lost in this contrast and would hence be excluded in this control analysis. Typ-
ically, higher level motion- and parietal regions have population receptive field
sizes far bigger than this, which is why we limit this control analysis to early vi-
sual cortex whose population receptive fields are typically smaller than 4° visual
angle [18].
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Figure 2.3: Spatial localizer. A) Stimulus: flickering checkerboard, three conditions: 1)
localize area of fixation disc, 2) localize periphery, 3) localize center of the visual field
surrounding fixation disc (central 4.1 visual degree, quarter of screen height). Figures were
cropped for visualization and do not show true stimulus proportions. B) Localizer contrast:
condition 3 contrasted against conditions 1 and 2. Corresponding T-map thresholded at
T (667)=3.1, p=0.001 of an exemplary participant overlaid on his respective inflated brain
surface for illustration purposes. This contrast was applied to early visual ROIs of each
participant to localize voxels preferring stimulation within the central 4.1 visual degrees
to stimulation at the fixation disc and in the periphery beyond 4.1°. Shown is the left
hemispheric occipital lobe from a posteromedial view. Dotted lines show ROIs for early
visual cortex as obtained by the retinotopic localizer.

Regions of interest analysis
For regions of interest analysis, beta estimates for each condition were extracted
and averaged for each ROI and hemisphere of each individual participant. Beta
estimates were averaged across the two pursuit speeds for each condition, as our
interest for this study was on activity related to relative speeds between objective
motion and pursuit. This resulted in three averages per ROI: ’Slower’, ’Matched’
and ’Faster’ objective motion compared to pursuit. One-tailed paired t-tests were
performed to test whether Faster conditions generally elicited a stronger response
than Slower conditions. In this contrast, retinal- as well as pursuit motion were
exactly matched while only objective motion velocity di�ered. It hence consti-
tutes the cleanest and most powerful test to determine whether an area showed
velocity-dependent objective motion responses in the absence of retinal- or pur-
suit motion biases. The Faster vs. Slower contrast constitutes the key comparison
on which the main conclusion of this study are based. In order to examine these
responses in more detail, we additionally used one-tailed paired t-tests to test
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whether Faster conditions elicited a stronger, and Slower conditions a weaker re-
sponse compared to the Matched condition.

Eye tracking
We used a video-based infrared eye tracker with long-range optics (Eye-Trac6;
Applied Science Laboratories, Bedford, MA, USA) to track the gaze at 60Hz online
during the experiment in 14 of the 18 participants (in 4 participants the procedure
failed due to technical reasons). The stationary periods at the beginning and end
of each trial as well as blinks and saccades were removed from analysis. Saccades
and blinks were identified using a threshold of five times the median-based stan-
dard deviation of velocity (saccades) and pupil aspect ratio (blinks). Median x
and y position was set to zero for both gaze and fixation target. Data were linearly
detrended to remove slow signal drifts and smoothed with a running-average ker-
nel of 200ms to reduce high-frequency noise. As a measure of fixation accuracy
the root-mean-squared error (RMSE) between fixation disc and eye position was
calculated for each condition averaged across trials. To examine di�erences in
fixation accuracy across conditions, a repeated-measures ANOVA was then per-
formed across all conditions involving pursuit.

2.4 Results

Functional responses of visual areas
We aimed to determine which regions di�erentiated between distinct velocities of
objective motion while pursuit-velocity as well as retinal velocity were matched.
The only way the brain could distinguish objective motion velocities was by com-
paring the relative direction of retinal motion with that of pursuit. Retinal motion
with the same direction as pursuit would indicate faster objective motion, while
retinal motion in the opposite direction would indicate slower objective motion.

A whole-brain group analysis of the contrast of Faster compared to Slower con-
ditions revealed activity in the occipital lobe, with its peak centered on area V3A,
and also involving early visual regions (Fig.2.4). Importantly, Faster and Slower
conditions only di�ered in objective motion, not in pursuit or retinal motion ve-
locity. Responses in this contrast hence reflect activity related to objective motion
alone.
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Figure 2.4: Whole-brain group analysis for Faster versus Slower conditions (n=18 partic-
ipants). A) Group responses are shown for illustration purposes with liberal threshold
(p<0.001, uncorrected) to ensure that no major response was overlooked in the ROI analy-
sis. B) Same analysis and statistical thresholding as in (A) but shown overlaid on an inflated
average surface brain viewed from a posteromedial view. Global peak activity was located
at X=14, Y=-88, Z=24 and coincides with coordinates for area V3A (see Table 1).

First we focus on functional responses of the motion responsive regions hMT/V5,
hMST+, V3A, V6, CSv, Pc and VIP. In line with previous evidence [61], areas V3A [t(17) =
8.51, p = 7.8*10-8] and V6 [t(17) = 5.21, p = 3.5*10-5] preferred objective motion faster
than pursuit to objective motion slower than pursuit (Fig.2.5A). In addition, we
found the same response profile in area VIP [t(15) = 4.45, p = 2.3*10-4] and to a lesser
extent in area Pc [t(17) = 3.48, p = 0.0014]. hMT/V5 and hMST+ were not significantly
modulated while CSv reached significance in uncorrected tests. To investigate
these findings in more detail, we then compared Faster and Slower to Matched
conditions. Note that these contrasts include responses to both, objective motion
and to retinal motion. Both areas V3A and V6 preferred Matched to Slower motion
conditions [t(17) = -7.76, p = 2.74*10-7], [t(17)=-3.47, p=0.0015] with V3A showing the
strongest e�ects among all regions tested.

Among the motion responsive regions, areas V3A, V6, VIP and Pc hence signaled
the direction of retinal motion relative to the pursuit direction thus encoded ob-
jective motion velocity during eye movements.
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Figure 2.5: ROI analyses of motion regions (A & B) as well as of retinotopic early visual and
parietal regions (C & D). A,B) ROI responses of the visual motion regions (n=18 participants,
see Table 1) to (A) di�erence between Faster and Slower and (B) responses to Faster and
Slower relative to Matched. C,D) ROI responses of retinotopically defined areas V1-hV4 and
IPS0-IPS4 (n=10 participants, see Table 1) to (C) Faster versus Slower and (D) responses
to Faster and Slower compared to Matched. **p < 0.01 (Bonferroni corrected), *p < 0.05
(Bonferroni corrected), +p < 0.05 (uncorrected). Error bars depict the SEM. ROIs for visual
motion network and retinotopic cortex were defined based on two independent localizer
scans. Bonferroni correction for the visual motion network (A,B) was performed for n = 21
tests (upper panel), for retinotopic cortex (C,D) n = 27 tests (lower panel).

We next examined responses in retinotopically mapped areas V1-hV4 and IPS0-
IPS4. Early visual areas V1 [t(9) = 5.64, p = 1.6*10-4], V2 [t (9) = 9.04, p = 4.1*10-6] and
V3 [t(9) = 6.45, p = 5.9*10-5], but not hV4, preferred objective motion faster than
pursuit to objective motion slower than pursuit (Fig.2.5C). We also found significant
di�erences between Faster and Slower conditions in IPS0 [t(9) = 4.24, p = 0.0011]
and IPS4 [t(8) = 5.29, p = 3.7*10-4]. While areas V2 [t(9) = 4.21, p = 0.0011] and V3
[t(9) = 4.20, p = 0.0012] additionally preferred Faster to Matched, IPS0 preferred
Matched to Slower [t(9) = -4.39, p = 8.75*10-4] (Fig.2.5D).
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Our results indicate that in addition to above mentioned areas of the functional
motion network, also early visual areas V1, V2 and V3 di�erentiated between dis-
tinct objective motion velocities during pursuit.

Spatial localizer control
To ensure that responses in early visual cortex were una�ected by motion energy
originating outside of the stimulation display, we limited the analysis to voxels
of the early visual cortex that responded only to the 4° surrounding the fovea,
but not to the fixation disc or the periphery. Areas V1 [t(9) = 4.06, p = 0.0014], and
V2 [t(9) = 4.92, p = 4.1*10-4] still clearly preferred faster to slower objective motion
during pursuit (Fig.2.6).

Figure 2.6: ROI analysis of early visual regions for entire ROIs and limited to voxels re-
sponding to stimulation surrounding the fovea but not to periphery or the fixation disc. For
the latter, ROIs were intersected with t-maps for the independent spatial localizer contrast
threshold at p < 0.001. **p < 0.01 (Bonferroni corrected for n = 6 tests). Amount of voxels
in entire ROIs: V1: 1110 ± 26, V2: 911 ± 41, V3: 700 ± 41 and ROIs intersected with localizer
contrast: V1: 525 ± 42, V2: 400 ± 29, V3: 372 ± 30. Error bars depict the SEM.

Eye tracking and behavioral performance
We performed repeated-measures ANOVAs across all pursuit conditions for fixa-
tion error and for behavioral measures related the fixation task. Behavioral mea-
sures did not reveal any influence of condition on hit rate [F(5, 85)=1.298, p=0.272],
false alarms rate [F(5, 85)=1.312, p=0.267] or response time [F(5, 85)=0.83, p=0.532].
Fixation accuracy monitored with eye tracking did not reveal di�erences between
conditions (F(5, 65)=1.75, p=0.135). Root mean square errors for fixation accuracy
were as follows: RMSE for 2 deg/s pursuit: Slower: 1.84 ± 0.16, Matched: 1.78 ±
0.15, Faster: 1.83 ± 0.12, and for 3 deg/s pursuit: Slower: 1.85 ± 0.17, Matched: 1.77
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± 0.15, Faster: 2.0 ± 0.22], in line with previous reports from our group using a
similar task [61].

2.5 Discussion

We examined the ability of sixteen visual areas to di�erentiate between distinct
velocities of objective motion. Our paradigm kept retinal motion as well as eye
movement velocity constant while only varying objective motion velocity. Visual
regions could hence distinguish objective velocities only by integrating the di-
rection of retinal motion with that of eye movements. All other factors – visual
and non-visual – were matched. In line with previous evidence, we found the
strongest di�erential responses in higher-level motion areas V3A and V6 [61] and
additionally also in VIP and to a weaker extend in IPS0, IPS4 and area Pc. Impor-
tantly, our results provide clear evidence that in addition also early visual areas
V1-V2 and possibly V3 signal objective motion velocity in the absence of retinal
and pursuit motion biases. It is unclear whether this is related to bottom-up or
feedback related processing. Neither fixation error nor any other measure related
to the fixation task indicated a condition-dependent influence on our results.

Visual motion regions
Among all motion responsive regions, V3A had the strongest response preference
to faster compared to slower objective motion, similar to results obtained before
with fewer participants and fewer ROIs (see expt. 4 in [61]). These results were
consistent across two pursuit eye movement velocities and are compatible with
a high fraction of real-motion [62] and gaze-dependent neurons in area V3A in
monkey [269].

Similarly, the present findings confirm prior results for human V6 [61] and are
consistent with high percentages of real-motion cells in area V6 in monkey [252].
Human V6 has been shown to respond to coherent optic flow, to have receptive
fields extending well into the periphery [24, 253, 270, 271], and to prefer near-field
over far-field stimulation [272]. Together with its connections with grasping related
areas, V6 is well suited to provide other areas with information about movements
of objects in reachable space in context of vision-for-action [64, 252, 266, 267].

Human VIP was localized here according to a prior study relying on multi-modal
cues [273], a known property of monkey VIP [92, 274]. Its strong response to ob-
jective motion demonstrated here is compatible with monkey reports showing
VIP neurons to represent visual space and heading information invariantly in
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head-centered coordinates [50, 275]. Similarly, our findings are compatible with
a great portion of VIP neurons being speed and direction selective [276], and in-
deed changing their preferred direction depending on whether visual motion was
self-induced or not [277].

Moreover, monkey VIP was shown to causally influence heading perception during
eye movements [278]. Even though monkey VIP receives inputs from V5/MT and
especially from MST [275,279], its functional responses to planar objective motion
clearly di�ered from the ones of hMT/V5 and hMST+ in the present experiment.
Areas hMT/V5 and hMST+ did not signal retinal motion direction relative to pursuit.
Our prior study saw only weak objective motion response in hMST+ [61], even
though it contains robust responses at the neural level [48]. Interestingly, for fixed
eye-positions, there is good evidence for spatiotopic coding in human V5/MT [68],
even though it is strongly attention-dependent [38, 70], suggesting that motion-
pursuit-integration di�ers in terms of the neural machinery involved. The stronger
objective motion response in VIP could be explained by pooling, as it is thought
to do for flow [273,275,280], but also through its input from V6 [281]. This contrasts
VIP also to all other intraparietal regions examined here. In fact, even though
IPS0 and IPS4 reached significance, retinal motion generally seemed to attenuate
responses in the IPS during pursuit. Further, we found objective motion responses
in area Pc as well as to a lesser extent (not surviving Bonferroni correction) yet
consistent with previous reports in the cingulate sulcus visual region CSv [65].

Early visual cortex
The current results demonstrate for the first time objective motion responses
in human early visual cortex and reveal early visual speed tuning for objective
motion: faster objective motion led to higher responses than slower objective
motion while retinal motion as well as eye velocity were matched. Prior research
has established both velocity and direction tuned responses in early visual cor-
tex [7, 282, 283], with similar findings in human neuroimaging [284–287]. Electro-
physiological reports have demonstrated the presence of extra-retinal signals in
monkey early visual cortex in the form of real-motion neurons [47,250] as well as
neurons that compensate consequences of ocular counter-rolling in V1 [60]. Fur-
ther, V1 neurons in primates have been shown to di�erentiate between real and
simulated microsaccades [288].

The present result that responses to Faster and Matched di�ered significantly
while responses to Matched and Slower did not can be easily explained by re-
sponses to both, retinal and objective motion: retinal motion positively con-
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tributed not only to Faster but also to Slower conditions, hence counteracting the
positive contribution of objective velocity that increased from Slower, to Matched,
to Faster.

Areas V1 and V2 strongly preferred faster to slower objective motion even when
we limited the analysis to the central 4×4 degree of the visual field excluding the
fixation disc. Since we controlled visual stimulation in at least the central 8×8
visual degrees, e�ects of pursuit-induced retinal motion originating outside of
the stimulus display cannot explain these early visual responses. Statistical tests
for area V3 however did not reach significance in this control analysis, indicating
weaker objective motion sensitivity for the central visual field in human V3 com-
pared to the periphery. This is consistent with real-motion neurons being found
in V1-V2 [47, 250] and V3A [62] but to our knowledge not in V3. Finally, a recent
monkey fMRI study showed a preference to self-induced versus stimulus-induced
motion in central early visual cortex whereas the opposite was true in higher-
level regions [289]. While related to our question, the results cannot directly be
compared as the monkey fMRI results were driven by di�erences in eye move-
ments (whereas they were balanced here), and secondly we used pursuit whereas
the monkey results were related to saccadic processing [289]. It would hence be
interesting to re-examine the present paradigm in context of saccadic eye move-
ments. While area V4 responds to visual motion in a direction-specific manner in
monkey [290], we did not observe any significant modulation of human V4 in any
of the contrasts tested.

Feedback to early visual cortex?
There is evidence that conscious vision is possible without a functioning V1 [291,
292] and that parieto-occipital regions beyond V1 are necessary for perceptually
separating self-induced from objective motion [293]. In fact, early visual motion
responsive neurons are relatively unspecialized, often confusing visual motion
with contrast flicker [294, 295].

In order to respond to objective motion, neurons need to integrate eye movement
commands with visual input, a process that is considered to be implemented at
a higher stage of the visual processing hierarchy. It therefore seems possible
that early visual responses to objective motion observed in this study reflect top-
down feedback rather than bottom-up processes. An abundant amount of studies
demonstrate such feedback from areas like hMT+/hV5+, V6 and V3A to V1 [281,284,
296–300], some even indicating its contribution to visual awareness of motion
[300, 301]. Besides, fMRI is very susceptible to local processing and feedback,
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since BOLD responses mainly reflect synaptic activity rather than actual output
spiking [302, 303]. In the context of predictive coding theory [299], feedback has
been demonstrated to account for signal in early visual cortex in processing of
various features such as color [304], size [305] and shape [306]. In context of
motion, feedback was reasoned to explain early visual preferences to incoherent
to coherent motion as these two motion types di�er in predictability [307, 308].
However, since retinal motion and therefore predictability was matched in faster
and slower conditions, the present results cannot be su�ciently explained in the
same manner. Indeed, there is clear evidence showing that a particular class
of neurons in V1 code visual input in head-centered coordinates to compensate
for a particular type of eye movements, so-called ocular counter-roll [60]. Even
though the mechanisms are likely unrelated to those of pursuit, the evidence
shows, along with reports of real-motion cells [47], that V1 receives extra-retinal
signals related to eye movements.

2.6 Conclusion

We found that early visual cortex signals the direction of retinal motion relative to
the eye movement direction to a similar extent as high-level motion areas V6 and
VIP, yet less so than V3A. In addition, our results show objective motion responses
in areas Pc, a cingulate area which has so far only rarely been included in visual
motion studies as well as in intraparietal areas IPS0 and IPS4. Apart from provid-
ing the first evidence of objective motion responses in human early visual cortex,
the current study gives an overview on objective motion encoding across the vi-
sual system. Our results point to a role of early visual cortex in compensating for
self-induced visual motion and thus to a potential role in the stable perception
of our visual environment.
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2.7 Supplementary material

Figure 2.7: Visual-motion vs. static dots during central fixation. We plot responses to 1°/s
and 3°/s visual-motion relative to static dots for unmasked early visual cortex ROIs (V1 -V3)
andmasked with a spatial localizer (SL) for central visual field only (V1 (SL) -V3 (SL)). In this
contrast, objective motion and retinal motion are equivalent. Barsdepict the mean, error
bars depict the SEMacross n = 10 participants.
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3.1 Abstract

Entorhinal grid cells map the local environment, but their involvement beyond
spatial navigation remains elusive. We examined human functional MRI responses
during a highly controlled visual tracking task and show that entorhinal cortex
exhibited a sixfold rotationally symmetric signal encoding gaze direction. Our re-
sults provide evidence for a grid-like entorhinal code for visual space and suggest
a more general role of the entorhinal grid system in coding information along con-
tinuous dimensions.
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3.2 Introduction

Grid cells in entorhinal cortex (EC) exhibit place-responsive firing patterns that
represent self-location [151, 153, 173, 309]. These firing patterns are sixfold rota-
tionally symmetric (hexadirectional) and are implicated in navigation and the
formation of maps of the local environment. Investigations in nonhuman pri-
mates show that EC neurons further encode eye-movement direction [229] and
visual space [225]. Here grid cells fire as a function of gaze location rather than
self-location, suggesting visuospatial coding in EC that is strikingly di�erent from
retinotopic representations typically found in visual cortex [13]. In humans, func-
tional MRI (fMRI) has demonstrated that EC activity depends on virtual running
direction in a hexadirectional manner, in line with a putative grid cell population
response [158]. However, it is currently unknown whether human EC codes for
visual space and eye movements beyond navigation.

We used fMRI to examine human EC responses during a visual tracking and object
location memory task. Our experiment (Fig.3.1 and Supplementary Figs.3.3 and 3.4)
ensured attentional focus on visuospatial information while balancing directional
sampling of smooth-pursuit and saccadic eye movements. We exposed partici-
pants to a virtual arena from bird’s eye view and presented a fixation target that
moved within the environment in a highly controlled and directionally balanced
fashion. We sampled eye movement directions with 10° angular resolution and
monitored fixation accuracy with a magnetic resonance-compatible eye-tracking
system. To facilitate spatial attention, participants memorized object locations
within the environment (arena shown in two orientations: 0° and 180°) that were
cued only when the fixation target crossed over them.

Imaging data were analyzed using a bootstrapping-based, leave-one-out three-
fold cross-validated symmetry test (see Methods). We fitted a general linear model
to obtain beta estimates for each voxel and eye-movement direction for three
data partitions (run blocks within which directional sampling was balanced) for
every participant. For every EC voxel (Supplementary Fig. 3.4), we then estimated
the phase of the putative six-peaked oscillatory modulation (putative grid ori-
entation) of fMRI activity across directions, based on a normalized average of
two of the data partitions. Using the third, independent, data partition, we then
tested whether directions aligned to the putative grid orientation (0 modulo 60°)
exhibited stronger EC activity than directions misaligned (30 modulo 60°) to it.
This process was iterated until every data partition served as the test set once
and as the training set twice. Using a bootstrapped distribution obtained by
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shu�ing the direction labels of the test set 1,000 times, resulting contrast co-
e�cients were transformed to z-scores, averaged across iterations and EC voxels
and taken to the group level (Supplementary Fig. 3.6). Since the distribution of z-
scores was non-normal (one-sample Kolmogorov-Smirnov goodness-of-fit test for
EC: K=0.367, P=5.2x10-4), z-score we performed nonparametric one-sided Wilcoxon
signed-rank tests to examine whether z-scores for aligned directions were sys-
tematically higher than for misaligned directions.

Figure 3.1: a, Hypothesis. The number of firing fields crossed depends on eye movement
direction (more fields are crossed for directions aligned to grid axes (white lines) compared
to directions misaligned to it). Because grid orientation3 and spatial phase4 cluster across
cells and because conjunctive direction-tuning has been reported to align to the grid axes8,
this relationship translates to hexadirectional biases of putative grid cell population activ-
ity, in turn predicting a stronger fMRI signal for aligned versus misaligned directions. BOLD,
blood oxygen level-dependent contrast. b, Visual tracking task. Experiment consisted of 3
blocks of 3 runs incorporating 9 trials each. Each run tested a di�erent set of 12 directions.
Typical trial: each trial started with the fixation target (black cross) being stationary (1s),
then moving (6-10s; blue arrows) to sample 3-5 eye-movement directions sequentially in
2-s blocks, followed by a waiting period (1s) and finally jumping (black arrow) to a random
position and continuing moving from there. Objects were shown when the fixation target
moved over predefined locations (black circle). c, All trajectories tested in this experiment.
Each run block tested all trajectories (36 directions) equally with 10° angular resolution. Ex-
ternal landmarks: black squares. Objects were cued at four predefined locations, depicted
as black circles.

3.3 Results

Eye-movement directions aligned to the putative grid orientation consistently in-
duced stronger EC activity than misaligned directions (z=2.38, P=8.7x10-3; Fig.3.2a).
To investigate these results in more detail, we aligned each voxel’s beta estimates,
cross-validated before bootstrapping (also see Supplementary Fig. 3.7), to the re-
spective estimated putative grid orientation and found that, across participants,
the six aligned directions generally elicited stronger EC responses than the six
misaligned directions (Fig.3.2c). The hexadirectional e�ect in EC was therefore
not driven by a single direction but rested upon a systematic sixfold rotational
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symmetry in response to eye movement direction. We repeated the main anal-
ysis for several control regions as well as biologically implausible control sym-
metries (Fig.3.2d). Among all symmetries tested, and after Bonferroni correction,
only sixfold symmetry yielded a significant modulation (control symmetries: four-
fold: z=1.04, P=0.150; fivefold: z=0.43, P=0.333; sevenfold: z=1.12, P=0.130; eightfold:
z=0.69, P=0.245). Among all control regions, and again after Bonferroni correction,
only EC showed a significant hexadirectional modulation (control regions: early
visual cortex: z=0.84, P=0.200; motor cortex: z=-0.35, P=0.635; frontal lobe: z=1.08,
P=0.140; parietal cortex: z=1.19, P=0.117). A subpart of the frontal lobe was weakly
hexadirectionally modulated in line with previous studies [] but did not survive
Bonferroni correction (Supplementary Fig. 3.8). To examine whether EC gener-
ally responded to eye movements in our task irrespective of direction, we then
compared responses to eye movements to a visual motion control in which the fix-
ation target remained at the screen center while the arena moved instead, match-
ing retinal motion in the main experiment (see Methods). Among our regions of
interest (Fig.3.2b), only early visual cortex (z=4.55, P=5.3x10-6) and parietal cortex
(z=-2.82, P=4.8x10-3), but not EC (z=1.50, P=0.133), exhibited significant responses in
this contrast (Fig.3.2d). EC hence did not respond to eye movements or to visual
motion per se, but responded to gaze in a highly direction-specific fashion. We
did not find evidence for hexadirectional modulation in the visual motion con-
trol condition (z=-0.39, P=0.651). Next, we estimated one putative grid orientation
per voxel with maximized signal-to-noise ratio (direction-specific beta estimates
averaged across partitions) and quantified how much these orientations varied
across voxels, as well as around the participant’s across-voxel mean orientation
(Fig.3.2e). We found that putative grid orientations were not random across vox-
els but clustered around the participant’s mean orientation (V-test for nonuni-
formity, V=31.80, P=3.46x10-6), with higher coherence within compared to across
hemispheres (t(28)=-3.67, P=0.001, confidence interval [-0.03, -0.01]; Supplemen-
tary Fig. 3.9). More specifically, voxels exhibiting a stronger hexadirectional signal
varied less around the across-voxel mean than those showing a weaker e�ect
(t(28)=-6.67P=1.5x10-7, confidence interval [-∞, -0.19], also true for unsmoothed
data; Supplementary Fig. 3.9). On the one hand, this indicates that not all EC
voxels were engaged in our task (there is noise), but on the other hand it also
indicates that others indeed represent activity with a predominant orientation.
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Figure 3.2: a, EC exhibited higher fMRI activity for aligned vs. misaligned directions
(Bonferroni-corrected one-sided Wilcoxon signed-rank test, z=2.38, *P=8.7×10-3, n=29). Left:
aligned vs. misaligned contrast for single-participant data overlaid on whisker-and-box
plots (center, median; box, 25th to 75th percentiles; whiskers, 1.5×interquartile range) and
mean and s.e.m. across participants. Right: same data depicted as a bar plot, showing
mean and s.e.m. across participants. b, Regions of interest (ROIs) displayed on the T1
template (Montreal Neurological Institute (MNI) coordinates: X=-8, Y=-11, Z=-20). c, To vi-
sualize the e�ect in a in more detail, we plot cross-validated beta estimates for aligned
and misaligned directions, sorted according to putative grid orientation (0°). Each bar
represents an averaged 20° bin of eye-movement directions averaged across the three
iterations and across participants (see Methods). Error bars depict s.e.m. across 29 partic-
ipants. d, Control analyses. Left: aligned vs. misaligned contrast for control symmetries
(four-, five-, seven- and eightfold periodicity). Middle: sixfold symmetry e�ect for control
regions. Right: eye movements vs. visual motion contrast. Activity in early visual cortex
(z=4.55, *P=5.3×10-6) and parietal cortex (z=-2.82, *P=4.8×10-3) was significantly di�erent in
these conditions (Bonferroni-corrected two-sided Wilcoxon signed-rank tests, n=29). As
in a, we plot single-participant data overlaid on whisker-and-box plots. e, Left: circular
distances between putative grid orientation of each voxel and the circular mean across
voxels; radial axes represent percent of voxels. Right: putative grid orientations across
participants for both arena orientations.

Consistent with previous reports of first-person navigation in nonpolarized en-
vironments8, putative grid orientations were not clustered across participants
(Rayleigh’s tests for nonuniformity, arena orientation 1: z=0.083, P=0.922; orien-
tation 2: z=0.141, P=0.871; see Methods). Participants were able to report all object
locations equally well both from the bird’s eye view (F(3,81)=0.64, P=0.593) and in
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subsequent first-person navigation (F(3,81)=1.9, P=0.136; Supplementary Fig. 3.4).
Eye tracking analysis did not reveal any confounding symmetry in fixation accu-
racy relevant to our imaging results (F(4,92)=1.7, P=0.156), and average eye veloc-
ity matched the one of the fixation targets equally well for all directions (F(35,
805)=1.1, P=0.313; see Methods and Supplementary Fig. 3.10).

3.4 Discussion

Our results provide (to our knowledge) the first evidence of gaze-dependent hexa-
directional signals in human EC and are consistent with reports of eye-movement
direction encoding [229] and visuospatial grid cells [225] in (non-human) primates.
In contrast to the aforementioned studies, our experiment involved both smooth-
pursuit and (low-amplitude) saccadic eye movements; however, it allowed us to
examine eye movements with predominant directions (critical for our analysis),
was highly controlled and had balanced sampling across directions, and reduced
perceptual distortion e�ects known to occur in (high-amplitude) saccades [310].
Gaze location has been shown to drive spatial view cells in monkey hippocam-
pus [221], and primates generally rely strongly on vision as they explore space [213].
While such hippocampal viewing responses have not yet been reported in ro-
dents, the hippocampal formation has been shown to integrate visual informa-
tion [311]. In contrast to retinotopic [13] and spatiotopic [12, 312] representations
typically found in visual cortex, however, our results implicate human EC in encod-
ing visual space with a grid-like code, a representation drastically di�erent from
any found in visual cortex, as well as from visually driven responses [104] and
memory-guided visual processing [313] in other mediotemporal lobe regions. One
alternative explanation for our results could be that participants imagine them-
selves navigating as they track the fixation disc. While hexadirectional signals
have been observed during mental imagery [162], our results are unlikely to be
explained in the same manner because, in contrast to the aforementioned study,
our experiment engaged participants in an active attention task and because EC
was not hexadirectionally modulated in the visual motion control. While saccade-
direction cells [229] exhibiting hexadirectional population activity could provide
a potential nongrid explanation of our results, such asymmetries in saccade-
direction tuning have not yet been observed. However, grid cell population re-
sponses can provide a parsimonious yet substantiated explanation for the signal
we observed (Fig.3.1a). It remains to be shown how eye-movement-invariant vi-
suospatial information reaches EC, as many areas contribute to visual constancy
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during eye movements [312]. However, given its strong involvement in visuospatial
processing in both monkeys and humans [12, 312], and despite not being hexadi-
rectionally modulated in our task, parietal cortex appears to be a prime candidate
for future studies in this context.

Conclusions
Recent reports implicate EC in coding not spatial information per se, but generally
continuous feature dimensions also including sound frequency [237] or abstract
knowledge [168]. The present study supports this notion and further suggests a
domain-general coding regime in EC that is also employed to encode visual space
and potentially contributes to memory-guided viewing behavior orchestrated by
the hippocampal formation [314]. Our results are in line with reports of hexadi-
rectional signals during virtual navigation [158] and mental simulation [162] and
show that eye movement and visual information is processed in human EC. They
further suggest a grid-like code for representing visual space and point toward a
broader role of EC in cognition beyond spatial navigation [168, 237].
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3.5 Methods

Participants
A total of 36 participants (22 female, age range: 18-35, normal or corrected to
normal vision) were recruited for this study via the Radboud University Nijmegen
online recruitment system. Participants were not grouped and hence no sam-
ple randomization or blinding was performed. Two participants were excluded
due to strong head movements, frequently larger than the voxel size of 2mm.
Another 5 participants were excluded because eye tracking revealed low tracking-
task performance (deviating more than one s.d. from the average fixation error
across participants). In total, 29 participants entered the analysis (in line with a
priori G*Power sample size estimation (https://stats.idre.ucla.edu/other/gpower)
at 80% power, alpha=0.05 and assumed medium e�ect size of d=0.5, n=27 par-
ticipants; see the Life Sciences Reporting Summary for more information). The
study was approved by the local ethics committee (CMO Arnhem-Nijmegen, The
Netherlands), all relevant ethical regulations were followed, and participants gave
written consent before the experiment.

Stimulus and experimental procedure
Prior to scanning, participants navigated a circular virtual arena (generated with
Unreal Engine 2, https://www.unrealengine.com) in first-person perspective for 2-
3min (Supplementary Fig. 3.4c). During scanning we then exposed them to the
same virtual arena from bird’s eye view (screen size: 24°×18°, arena diameter: 17°
visual angle, Supplementary Fig. 3.4a) and presented a fixation target that moved
within the environment in a highly controlled yet (to the participant) unknown
fashion (fixation task). In addition, participants memorized object locations within
the environment (object location memory task), for which the arena was shown
in two orientations (0° and 180°) to enhance spatial attention. Stimuli were pre-
sented using Psychophysics Toolbox version 3 (http://psychtoolbox.org/). Arena
orientation alternated across trials of each condition, which were presented in
counterbalanced order. The arena was surrounded by two landmarks (two white
squares matched in brightness, one hollow and one filled, at 0° and 150° relative
to horizontal axis in orientation 1). Landmark identity alternated between the two
locations across participants. The experiment consisted of a total of 9 runs with 9
trials each. To ensure a balanced sampling of directions, the first trial of each run
was discarded. For every run, 4 trials of the main experiment (∼1min each) and 4
trials of visual motion control (∼30s each) were included in the analysis. Condi-
tion sequence was counterbalanced. At the end of the experiment, participants
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navigated the virtual environment in first-person view again (Supplementary Fig.
3.4c) and reported object locations by navigating to them and confirming the lo-
cation via button press (25 trials, 6 trials per object, counterbalanced order, first
trial was discarded).

Fixation task
Participants fixated at a fixation target (black cross on light gray circle, diameter:
0.8° visual angle) moving with a constant speed of 7.5°/s inside the arena, which
was shown from a bird’s eye view (Fig.3.1 and Supplementary Figs. 3.3 and 3.4). The
total trajectory of the fixation target resembled a twelve-pointed star (diameter:
15° visual angle from one point to another) and incorporated 12 directions in
steps of 30°. In every trial, this trajectory, and hence each of the 12 directions,
was tested twice and in blocks of 2s each. To disrupt periodicity of the stimulus,
we split the trajectory of each trial into 6 paths, whose presentation order was
randomized. The path lengths varied from 3 to 5 path segments (movement of
the fixation target from one point to the other and hence a 2-s long block of a
given direction). After every 3-5 path segments, the fixation target stopped for
1s, jumped to another randomly chosen point, paused another 1.5s to facilitate
successful fixation and then continued its movement from there (Fig.3.1b). Across
runs, the trajectory was rotated either -10° or+10° in pseudorandomized fashion
to get a total directional sampling resolution of 10° (Fig.3.1 and Supplementary Fig.
1). After every three runs (one run block), all trajectory rotations were sampled
equally and in a pseudorandomized order (Fig.3.1c and Supplementary Fig. 3.3).
These balanced run blocks served as data partitions for later analysis.

Object location memory task
To focus spatial attention on the virtual environment during the fixation task,
participants additionally memorized locations of objects within the arena. Each
object was a colored circle (green, red, blue or purple) that was visible only when
the fixation target moved across it. After three pseudorandomly chosen trials
per run, participants reported the locations of objects by moving a cursor to the
memorized location via key presses (one object per cueing, uninformed two-back
task, randomly chosen arena orientation), after which the true location was re-
vealed (feedback). Additional feedback about task performance was given in writ-
ten form at the end of each run to enhance motivation. Two of the objects were
positioned at polar coordinates 120° and 300° (0 modulo 60° relative to screen
horizontal) and two other objects were at 30° and 210° (30 modulo 60° relative
to screen horizontal; Fig.3.1c and Supplementary Figs. 3.3 and 3.4). Object posi-
tions were chosen to ensure that the overlap with the trajectory was balanced
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across trajectory rotations. Each two-piece set of objects was hence presented
equally often and long (0.27s/trial) regardless of trajectory rotation and did not
induce hexadirectional biases. In both viewing and navigation tasks, participants
were able to report the locations of the objects (Supplementary Fig. 3.4d), and
there were no di�erences in spatial memory performance (Euclidean distance
between true and memorized location) between objects in either of the tasks
(repeated-measures ANOVA results: viewing task: F(3,81)=0.64, P=0.593; navigation
task: F(3,81)=1.9, P=0.136). To examine whether di�erences in spatial memory be-
tween objects were masked by di�erences in putative grid orientation between
participants, we grouped objects into aligned and misaligned objects according
to their position on each participant’s putative grid pattern for each of the arena
orientations. We then tested whether spatial memory performance di�ered be-
tween aligned and misaligned objects (averaged across arena orientations) but
did not find evidence for it (two-sided t test results: t(27)=0.097, P=0.924). In ad-
dition, the average hexadirectional signal did not correlate with the participants’
average spatial memory performance during subsequent first-person navigation
(r=0.122, P=0. 537). One participant did not finish the final navigation task and was
excluded here.

Visual motion control
To test whether entorhinal cortex generally responded to eye movements in our
task irrespective of direction, we additionally scanned a control condition in which
the fixation target remained in the screen center while the arena moved instead
(visual motion control). If entorhinal cortex responded to eye movements, we
expected to find an increased activation in the main experiment relative to this
control condition since the two conditions only di�ered in eye movements, not
in directional or positional sampling or in otherwise confounding retinal motion.
Pixels leaving the screen on one side entered the screen on the other side, keep-
ing visual motion constant over time (Supplementary Fig. 3.4b) and allowing us
to apply the same motion stimulus to the retina in both presence and absence
of eye movements. To reserve the major part of scanning time for the main ex-
periment, this control condition was tested only for ∼30s per trial (compared to
∼60s for the main experiment; the same directions were tested, but only once
instead of twice). Data was analyzed using a separate first-level general linear
model, modeling all onsets of eye or arena movements irrespective of direction or
arena orientation. The numbers of onsets of eye movements was downsampled to
match the numbers of onsets of the visual motion control. As done for the main
analysis, each run was modeled separately and the same nuisance regressors
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were included. Beta estimates for eye-movement and visual-motion regressors
were contrasted for each participant and tested in an ROI-based analysis using
two-sided Wilcoxon signed-rank tests (EC: z=1.5, P=0.133; early visual cortex: z=4.55,
P=5.3×10-6; motor cortex: z=-0.08, P=0.940; frontal lobe: z=0.96, P=0.336; parietal
cortex: z=-2.82, P=4.8×10-3). If the EC was hexadirectionally modulated in the vi-
sual motion control, we expected to find at least a statistical trend despite shorter
scanning time. However, we did not find any evidence that the EC was hexadirec-
tionally modulated in our visual motion control (one-sided Wilcoxon signed-rank
test results: z=-0.39, P=0.651) and both the mean (mean: -8.5×10-4, sem: 0.023) and
the median (median: -5.2×10-3, 25th percentile: -0.056, 75th percentile: 0.107) of
the aligned versus misaligned contrast were slightly negative.

Data acquisition and preprocessing
Functional T2*-weighted gradient-echo echoplanar images were acquired on a
Magnetom PrismaFit 3 Tesla magnetic resonance tomograph with the following
parameters: repetition time (TR)=1,000ms, echo time (TE)=34ms, multiband accel-
eration factor=6, voxel size=2×2×2mm, flip angle=60°, field of view=210×210mm, 66
slices, base resolution 104×104. In addition, an anatomical scan was recorded us-
ing a T1-weighed MPRAGE sequence with voxel size 1×1×1mm. Functional images
were preprocessed using SPM12. Images were corrected for head movements,
co-registered to the structural T1 image, spatially normalized to MNI space and
smoothed with a 4mm full-width-at-half-maximum Gaussian kernel.

Regions of interest (ROI) definition
Because the mediotemporal lobe is di�cult to image due to magnetic field distor-
tions and susceptibility artifacts, we delineated the EC bilaterally for each individ-
ual participant based on the normalized mean-EPI-image using itk-SNAP (www.-
itksnap.org) and carefully double-checked voxel selection with the structural T1
image. This ensured that only voxels belonging to the EC on the functional im-
ages were included in the analysis (Supplementary Fig. 3.5). On average, EC was
centered at -18/-12/-25 and included 105 voxels in the left hemisphere and cen-
tered at+19/-12/-24 with 106 voxels in the right hemisphere. Hemispheres were
combined to one bilateral entorhinal ROI. As control ROIs we chose early visual
cortex and motor cortex, for which, to our knowledge, no hexadirectional coding
has been reported; the frontal lobe, parts of which exhibit hexadirectional sig-
nals [158]; and the parietal cortex, due to its strong involvement in visuospatial
processing14,15. ROIs were created by co-registering corresponding probability
maps of the SPM anatomy toolbox to the structural scan of each participant and
thresholding them at 50% probability. The resulting binary masks were of follow-
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ing size: visual cortex: 2,731 voxels, motor cortex: 797 voxels, frontal lobe: 2,780
voxels, parietal lobe: 1,165 voxels. Out-of-brain voxels were neglected. To en-
sure that potential hexadirectional signals were not washed out due to bigger
ROI sizes for control regions compared to the EC, we repeated our main analy-
sis with higher probability thresholds for the control regions (Supplementary Fig.
3.8). Here thresholds were chosen so that the resulting ROI masks approximated
the average size of the EC (211 voxels). Note that the higher-threshold masks com-
prised voxels with highest probability for belonging to the respective areas; they
did not, however, capture the actual extent of the control areas we were interested
in. Thresholds and average numbers of voxels were as follows: visual cortex: 76%,
219 voxels; motor cortex: 69%, 202 voxels; frontal lobe: 99%, 283 voxels; parietal
cortex: 84%, 205 voxels. All ROI masks were resliced to match our functional image
dimensions.

First-level analysis
Beta coe�cients for every direction and voxel were estimated using one mass
univariate general linear model per participant. We modeled each movement di-
rection of the fixation target separately for each condition, arena orientation and
run with a separate boxcar regressor. Four additional regressors per run mod-
eled (i) presentation of objects, (ii) cueing, (iii) periods during which the fixation
target/arena remained stationary and (iv) periods during which behavioral re-
sponses were given. Regressors were convolved with the hemodynamic response
function. Realignment parameters (translations of X, Y and Z coordinates; pitch,
roll and yaw) were modeled as nuisance regressors. Slow signal drifts were re-
moved using a high-pass cuto� filter of 100Hz and only voxels in gray matter and
white matter were included in the analysis.

Hexadirectional analysis
We extracted first-level beta estimates for three data partitions (run blocks), rep-
resenting the first three, intermediate three and last three runs of the experiment.
Within each data partition, all directions were sampled equally while condition
sequence (main and control conditions) was counterbalanced, and object pre-
sentations, arena orientations and the temporal sequence of trajectory rotations
across runs were pseudorandomized. We extracted beta estimates for voxels in
the entorhinal cortex, normalized each beta estimate by subtracting the mean
across all beta estimates obtained from the same run (to compensate for poten-
tial di�erences in overall beta-estimate amplitude for task regressors between
runs) and averaged two of the three data partitions to increase the signal to noise
ratio. We then fitted another linear model incorporating two regressors modeling
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sine and cosine across directions (φ) with 60° periodicity (sin(6φ) and cos(6φ))
as well as one regressor for the grand mean to this ‘training set’. The resulting
beta estimates for sine (βsin) and cosine (βcos) of viewing direction were then
used to estimate the putative grid orientation (Φ), or the phase of the oscillatory
modulation across directions, as in Φ=arctan(βsin βcos)/6

The third data partition served as the ’test set’ and was used to contrast directions
aligned (0 modulo 60°) versus misaligned (30 modulo 60°) relative to the esti-
mated putative grid orientation in 20° bins. This process was iterated until each
data partition served as test set once and as training set twice. Since directions
were sampled in steps of 10°, estimated putative grid orientations would always
fall between two actually sampled directions. The 20° bin size was chosen by tak-
ing both directions closest to the estimated putative grid orientation (rounded
up and down to closest sampled directions). The resulting contrast coe�cients
were then transformed to z-scores as follows. In each iteration, we bootstrapped
the null distribution for each voxel and data partition by shu�ing the direction
labels of the test set 1,000 times, each time contrasting aligned versus misaligned
directions as described before. The training set was not shu�ed. We calculated
the mean (χ) and s.d. (σ) of the null distribution and used it to transform the
contrast coe�cient (β) to a z-score (z) as in z=(β-χ)/σ

We then averaged the three resulting z-scores of each voxel across the three test
sets to obtain one threefold cross-validated z-score per voxel (Supplementary Fig.
3.6). By averaging these z-scores across arena orientations and voxels of an ROI,
we obtained one z-score per participant that was taken to group level. The distri-
bution of z-scores was non-normal (one-sample Kolmogorov-Smirnov goodness-
of-fit tests for EC and sixfold rotational symmetry: K=0.367, P=5.2×10-4). To assess
statistical significance, we therefore report Wilcoxon signed-rank tests throughout
the imaging analysis. The putative grid orientation represents one of the direc-
tions for which the fMRI signal is strongest (one of the putative six high peaks
across directions). We then contrasted all directions falling on high peaks against
all directions falling on low peaks of the putative six-peaked modulation (Fig.3.1a).
If there is hexadirectional modulation, this contrast should yield positive values
independently from the absolute putative grid orientation observed. Note that
our main hypothesis is therefore inherently one-sided. We next re-examined the
main e�ect on group level using a nonparametric permutation-based one-sample
t test using 10,000 permutations. For each permutation, the signs of the group-
level means were switched randomly, each time computing the t score of the
permuted data and finally computing the P value for the observed t score based
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on the resulting t score distribution. The test confirmed previous tests in suggest-
ing significant hexadirectional modulation of the EC (t(28)=2.36, P=0.0126). Note
that even though our analysis should be more conservative when performed on z-
scores, it yielded similar results when performed on cross-validated contrast coef-
ficients averaged across voxels before bootstrapping (Fig.3.2c and Supplementary
Fig. 3.7). Even though we did observe clustering of putative grid orientations across
voxels, our analysis does not rely on such clustering. While earlier approaches
tested putative grid orientations on the ROI level [158], we estimated and tested
putative grid orientations for each voxel separately and averaged the resulting z-
scores. This way, we maximized sensitivity and increased robustness compared to
previous approaches investigating hexadirectional modulation [158]. Since pre-
vious studies report stronger hexadirectional signals in right-hemispheric com-
pared to left-hemispheric EC [158, 168], we repeated the main analysis for the EC
on individual hemispheres (Supplementary Fig. 3.8). In line with previous reports,
right-hemispheric EC elicited strong hexadirectional signals (z=2.85, P=2.2×10-3),
while the left-hemispheric EC did not (z=1.06, P=0.145, one-sided Wilcoxon signed-
rank test).

Matched ROI sizes
To ensure that potential hexadirectional signals were not washed out due to big-
ger ROI sizes for control regions compared to the entorhinal cortex, we repeated
the analysis for control regions that were matched in size (see above). Again,
neither early visual cortex (z=-0.39, P=0.651), motor cortex (z=-0.49, P=0.687) nor
parietal cortex (z=1.09, P=0.137) showed any significant modulation. However, we
did observe a weak hexadirectional signal in the frontal lobe (z=1.92, P=0.027),
which did not survive Bonferroni correction (Supplementary Fig. 3.8b). The higher-
threshold mask for frontal lobe contained voxels of the prefrontal cortex (PFC;
Supplementary Fig. 3.8a), in a subset of which hexadirectional modulation has
been observed previously [158,168]. The weak hexadirectional modulation we ob-
serve parallels previous reports of hexadirectional modulation of the PFC.

Examination of putative grid orientations
To see how much orientation estimates varied across voxels in our data, we aver-
aged beta estimates for each direction across the three normalized data partitions
(to increase the signal-to-noise ratio) and estimated one putative grid orientation
for every voxel with 10° resolution in 60° space (36 bins). We then calculated the
circular distance between the orientation estimated for each voxel and the mean
orientation across voxels. If putative grid orientations were random across vox-
els, we would expect a uniform distribution of circular distances around the unit
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circle. However, if there was a within-participant clustering of putative grid orien-
tations, we should also be able to detect it here across participants as the average
putative grid orientation of each participant was set to zero in this test. A V-test
for nonuniformity revealed that circular distances were not random across vox-
els but did indeed cluster around each participant’s mean orientation (V=31.80,
P=3.46×10-6). Next, we examined whether there was a relationship between the
amplitude of the hexadirectional signal of a voxel and the putative grid orienta-
tion that was estimated for it. We calculated the circular variance across putative
grid orientations for two voxel selections, the strongest 10% and weakest 10% of
hexadirectionally modulated voxels of each participant, and found that stronger
voxels had a more similar putative grid orientations (smaller across-voxel vari-
ances in putative grid orientations) than weaker voxels (one-sided t test results:
t(28)=-6.67P=1.5×10-7, CI [-Inf, -0.19]; Supplementary Fig. 3.9). To ensure that this
clustering did not reflect dependencies introduced by data smoothing, we re-
peated the analysis using unsmoothed data. Again, the strongest 10% of voxels
were more similar in putative grid orientation than the weakest 10% (t(28)=-2.74,
P=5.3×10-3, CI [-Inf, -0.02]; Supplementary Fig. 3.9). To examine whether voxels in
one hemisphere were more similar in their putative grid orientation than voxels
in di�erent hemispheres, we then used unsmoothed data to compare the average
absolute angular di�erences between putative grid orientations of each voxel to
all voxels in the same hemisphere and to all voxels in the other hemisphere. We
found that voxels in the same hemisphere had more similar putative grid orien-
tations than voxels in di�erent hemispheres (two-sided t test results: t 28=-3.67,
P=0.001, CI [-0.03, -0.01]). To investigate a potential anchoring of putative grid ori-
entations to perceptual features such as landmarks or screen axes, we then used
the strongest 10% of voxels to compute one average putative grid orientation per
participant, as described above, using smoothed data. Potential clustering was
tested for each arena orientation separately using Rayleigh’s tests for nonuni-
formity, which did not reveal any clustering of putative grid orientations across
participants (arena orientation 1: z=0.083, P=0.922; orientation 2: z=0.141, P=0.871).

Eye tracking
Left eye position as well as pupil size was monitored at 1,000Hz using a video-
based infrared eye tracker (Eyelink 1000) with MR-compatible long range op-
tics (for five participants eye tracking calibration failed and no eye tracking was
recorded due to technical problems; the imaging main e�ect (Fig.3.2a) remains
significant without these participants: aligned vs. misaligned directions: z=2.16,
P=0.016). Eye tracking data (Supplementary Fig. 3.10) was linearly detrended and
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smoothed with a running average kernel of 100 ms. To additionally compensate
for slow signal drifts, the across-trial median x and y positions were set to zero for
both gaze and the fixation target. Data was downsampled to the monitor refresh
rate of 60Hz. Noise due to lost tracking or blinks was discarded by removing any
samples for which pupil size deviated more than one s.d. from the mean across
the time series. We then calculated the across-trial average Euclidean distance
between fixation target and gaze position for each direction (fixation error). Since
a repeated-measures ANOVA revealed di�erences in fixation error between direc-
tions (F(35), 805=8.57, P=3.5×10-36), we used an approach similar to that used in the
imaging data analysis to test for potential symmetries of this e�ect. We fitted re-
gressors for sine and cosine of eye movement direction for four-, five-, six-, seven-
and eightfold rotational symmetry (plus constant term) to the fixation error across
directions of each participant. We then performed another repeated-measures
ANOVA to test for di�erences in the R 2 statistics of these models and did not find
any di�erence produced by di�erent symmetries (F(4,92)=1.7, P=0.156). Di�erences
in fixation accuracy therefore cannot explain our imaging results. The average
fixation error of each participant di�ered between the main experiment and vi-
sual motion control (two-sided t test results: t(23)=12.65, P=7.6×10-12, CI [0.79, 1.10]),
which was expected given that the fixation target moved in the main experiment
but not in the visual motion control. Participants with higher fixation errors in the
main experiment also showed higher fixation errors in the visual motion control,
which might reflect general di�erences across participants in target tracking abil-
ity, but could also reflect di�erences in eye tracking quality between participants.
For five participants, fixation errors in the main experiment were higher than 1s.d.
from the mean across participants, indicating poor tracking performance. These
participants were excluded from imaging analysis. In addition to fixation error,
we calculated the average eye movement velocity for all 36 directions and tested
for di�erences with repeated-measures ANOVA but did not find any di�erences
(F(35, 805)=1.1, P=0.313). The average eye velocity matched that of the fixation tar-
get (average eye velocity across participants: 7.75±0.183 °/s, constant velocity of
fixation target: 7.5°/s). Taken together, these results are not suggestive of any
hexadirectional biases and show that participants performed the visual tracking
task.
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3.6 Supplementary material

Figure 3.3: Visual tracking task. Typical trial: each trial started with the fixation target
(black cross) being stationary (1s), then moving (6-10s) to sample 3-5 eye movement direc-
tions sequentially (in 2s blocks), followed by a waiting period (1s) and finally jumping to a
random position and continuing moving from there. When the fixation target moved over
predefined locations, objects were shown (represented by black circle). After 3 pseudo-
randomly chosen trials per run, participants reported object locations by moving a cursor
to the remembered position. Typical run: each run consisted of 9 trials, each testing 12
directions twice. Half of the trials tested a visual motion control. Condition sequence was
counterbalanced. Full experiment: the full experiment consisted of 3 blocks with 3 runs
each per participants. Each run tested a di�erent set of 12 directions defined by trajec-
tory rotation (-10°, 0°, 10°). Each run block tested all directions equally with 10° angular
resolution. All trajectories tested in this experiment: The arena was presented in two ori-
entations (0° and 180°) and was surrounded by two external landmarks depicted as black
squares (0° and 150° in arena orientation 0°). Objects were cued at 4 predefined locations
(black circles) that allowed a balanced sampling across trajectory rotations.
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Figure 3.4: Stimuli and spatial memory performance. A) Main paradigm: virtual arena
from bird’s eye view, fixation target was moving. B) Visual motion control: fixation tar-
get remained at the screen center while arena was moving. Objects (colored circles) were
shown only when the fixation target moved across them. C) First-person virtual navigation
task. Participants navigated a virtual arena via button presses and reported object loca-
tions by navigating to them. White arrows indicate movement of either fixation disc (A),
virtual arena (B) or the first-person agent (C) and were not shown during the experiment.
D) Spatial memory performance for objects for both viewing-and first-person virtual navi-
gation task. We plot the average Euclidean distance between memorized and true location
normalized by the total size of the environment in the respective coordinate system (pixels
vs. unreal coordinates) separately for the four objects across individual participants over-
laid on box-whisker-plot (center: median, box: 25thto 75% percentile, whiskers: 1,5xIQR).
No di�erences between objects were observed (repeated measures ANOVA, viewing task:
F(3, 81)=0.64, p=0.593, navigation task: F(3, 81)=1.9, p=0.136, n=28).
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Figure 3.5: Entorhinal cortex. Binary regions of interest-mask for entorhinal cortex over-
laid on single participant normalized mean-EPI image on which the ROI was drawn.
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Figure 3.6: Analysis of hexadirectional activity. For each voxel we extracted beta esti-
mates (β) for each direction for three data partitions within which directional sampling
was balanced. From each beta estimate we subtracted the mean across all beta estimates
obtained from the same run (normalization)and averaged it across two of the three parti-
tions (training set). We then fitted regressors for sine and cosine of viewing direction with
60°-periodicity (and constant-regressor) to the training set and used the resulting beta
estimates (βsin and βcos) to estimate the voxel’s putative grid orientation. All directions
in steps of 60° (0 modulo 60°) are considered aligned directions, those in-between (30
modulo 60°) are misaligned directions. In the third data partition (testing set), we then
contrasted directions aligned to the putative grid orientation versus directions misaligned
to it. This process was iterated until every data partition served as testing set onceand as
training set twice. In each iteration, contrast coe�cients were transformed into z-scores
based on a bootstrapped null-distribution. By averaging across iterations and ROI-voxels
we obtained one three-fold cross-validated z-score per participants that was taken to the
group level.
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Figure 3.7: Visualization of main results when analysis is performed on threefold cross-
validated contrast coe�cients for Aligned versus Misaligned contrast instead of z-scores.
A) Six-fold rotational symmetry in EC. We plot single participant data (n=29) overlaid on
whisker-box-plot (center: median, box: 25thto 75% percentile, whiskers: 1,5xIQR) and mean
and SEM across participants. B) Regions of interest on SPM single participant T1-template
(MNI-coordinates: X=-8, Y=-11, Z=-20). C) Control symmetries for EC and six-fold rotational
symmetry in control regions. We plot single participant data overlaid on whisker-box-plots.
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Figure 3.8: Results for ROIs matched in size to entorhinal cortex. A) Frontal lobe mask
obtained by thresholding the corresponding probability map (SPM anatomy toolbox) at
99% probability to approximate the average size of the entorhinal cortex. Mask shown on
single participant normalized mean-EPI image. B) Aligned versus misaligned contrast for
six-fold rotational symmetryin control regions with sizes approximating the average size of
entorhinal cortex. We plot single participant data overlaid on whisker-box-plots (center:
median, box: 25thto 75 percentile, whiskers: 1,5xIQR). We found a weak hexadirectional
signal in the prefrontal cortex (One-sided Wilcoxon signed rank test, z=1.92, +p=0.027, n=29)
in line with previous reports [158, 168], which did not survive Bonferroni correction.
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Figure 3.9: Putative grid orientation coherence and lateralization. A) Putative grid ori-
entations across voxels and hemispheres. Smoothed (upper left panel) and unsmoothed
data (lower left panel) depicted for all voxels as well as for the 10% strongest and 10%
weakest hexadirectionally modulated voxels. Each plot depicts percentof voxels found for
each possible putative grid orientation (10°-binning in 60°-space). The mean putative grid
orientation of eachsubject was set to zero. The 10% strongest hexadirectionally modulated
voxels had a more similar putative grid orientation (smaller variance) than the 10% weak-
est voxels for both smoothed (one-sided t-test, t(28)=-6.67 p=1.5x10-7, CI [-Inf, -0.19]) and
unsmoothed data (one-sided t-test, t(28)=-2.74, p=5.3x10-3, CI [-Inf, -0.02]). Middle panel:
Across-voxel coherence of putative grid orientations within each hemisphere compared to
across hemispheres. We plot unsmoothed individual participant data overlaid on whisker-
box-plots of the average absolute angular di�erence between putative grid orientations
of each voxel to all voxels in the same hemisphere (within) and to all voxels in the other
hemisphere (across). Voxels in the same hemisphere had a more similar putative grid
orientation than voxels in di�erent hemispheres (two-sided t-test, t(28)=-3.67, p=0.001, CI
[-0.03, -0.01]). B) Main analysis for left and right hemisphere. Hexadirectional modulation
was strong in the right hemisphere (one-sided Wilcoxonsigned rank test, z=2.85, *p=2.2x10-3,
n=29). Whiskerbox-plots show the median on the 25thto 75% percentile, whiskers represent
1,5xIQR.
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Figure 3.10: Gaze-dependent hexadirectional pattern cannot be explained by fixation er-
ror or eye velocity. A) Euclidean distance between fixation target and gaze (fixation error).
Left: fixation error for all 36 directions and 24 participants in degree visual angle (radial
axis). Across-participant mean in petrol green, SEM in black, single participant data in pur-
ple. Middle: R-square statistics for all participants and model symmetries tested. Data for
individual participants (white dots) overlaid onwhisker-box-plot. We fitted linear models
with regressors for sine and cosine of viewing direction with di�erent periodicities (4, 5, 6,
7, 8-fold symmetry) to the fixation error (shown left) of each participant. If fixation accuracy
was symmetrical, corresponding models were expected to produce higher R-square values
andhence a higher goodness of fit. There was no di�erence in R-square statistics between
model symmetries (repeated measures ANOVA, F(4, 92)=1.7, p=0.156). Right: fixation error
for main paradigm and visualmotion control. We plot data for single participants next to
whisker-box-plots (center: median, box: 25thto 75% percentile, whiskers: 1,5xIQR). B) Aver-
age velocity of eye movements in degree per second (radial axis) across all 36 directions.
The fixation target movedwith a constant speed of 7.5°/s, average eye velocity across di-
rections and participants was 7.75 ± 0.183. There was no di�erence in eye velocity across
directions (repeated measures ANOVA, F(35, 805)=1.1, p=0.313). Across-participant mean in
petrol green, SEM in black, single participant data in purple.
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4.1 Abstract

The brain derives cognitive maps from sensory experience to guide memory for-
mation and behavior. Despite extensive e�orts, it still remains unclear how the un-
derlying population activity relates to active behavior and memory performance.
Here, we combined 7T-fMRI with a kernel-based encoding model of virtual navi-
gation to map world-centered directional tuning across the human cortex. First,
we present an in-depth analysis of directional tuning in visual, retrosplenial and
parahippocampal cortices as well as in the hippocampus. Second, we show that
tuning strength, width and topology of the directional code during memory-guided
navigation depend on successful encoding of the environment. Finally, we show
that participants’ locomotory state di�erentially influences this tuning in sensory
and mnemonic regions such as the hippocampus. We demonstrate a direct link
between neural population activity and cognition and show that high-level mem-
ory processing interacts with environmental coding in the service of behavior.
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4.2 Introduction

Human scene processing and navigation regions interface between the lower-
level sensory and higher-level cognitive domain. They gradually construct world-
centered mnemonic representations of the environment, a cognitive mapping
process thought to culminate in the medial temporal lobe (MTL) [96–99, 127, 315,
316]. Areas such as the retrosplenial cortex [96] and the parahippocampal cortex
represent the spatial layout [104] and 3D structure [29] of the currently viewed
scene, as well as its relative openness [105] or its boundaries [106]. Downstream
regions like the entorhinal cortex and the hippocampus use this information to
derive a stable representation of the world and one’s own position, direction and
speed in it [123, 124]. Together, such spatial representations are often referred to
as ‘cognitive map’ and are thought to fundamentally shape our memories and
guide behavior [129]. To understand this process, we believe it is critical to study
the neural population activity of these regions in a naturalistic setting and in the
light of the behavior they support.

A critical challenge the brain needs to solve to map the environment is keeping
track of our own direction as we move. Previous studies revealed directional rep-
resentations and activity related to heading perception in several areas including
the medial parietal lobe and retrosplenial cortex [113, 114, 184, 185], the parahip-
pocampal gyrus [114, 158, 162, 187–189], the entorhinal/subicular region [158, 185,
188, 317, 318], the thalamus [113] and the superior parietal cortex [192, 193]. Also,
hippocampal and parahippocampal activity encodes heading in the horizontal
plane [186]. Most of these studies used dedicated and constrained directional
judgment- and mental imagery tasks and often examined direction in a self-
centered frame of reference. To date, it remains unclear how cognitive mapping is
mediated by the scene processing and navigation network and how active spatial
behavior and memory relate to environmental processing in this pathway.

Here, we used 7T functional magnetic resonance imaging (fMRI) to monitor hu-
man brain activity during naturalistic virtual navigation in a spatial memory task
(Fig.6.1). Inspired by prior successes of encoding models in characterizing fMRI
responses in other domains [32,33], we then developed an iterative kernel-based
encoding model (Fig.6.2) of the participants’ navigation behavior (Supplementary
Fig.4.7) to map directional tuning across the human cortex. Importantly, our model
treats direction in a world-centered frame of reference. We further analyzed the
impact of spatial memory performance and locomotory states on this tuning,
focusing on scene processing and navigation regions due to their proposed in-
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volvement in cognitive mapping and known directional coding [98,99, 315]. These
regions include the early visual and retrosplenial cortex, the parahippocampal
gyrus, the entorhinal cortex as well as the hippocampus.

Our objectives were twofold. First, we aimed to quantify and map directional tun-
ing in the human scene processing and navigation network during active spatial
behavior. Second, we examined how this tuning relates to the participant’s be-
havior and memory.

4.3 Results

During fMRI scanning, participants freely navigated in a circular virtual reality (VR)
arena via key presses while memorizing and reporting object locations within it
(Fig.6.1A). Across di�erent trials, participants indicated the locations of these hid-
den objects by navigating to them. After each trial, they received feedback about
the true object location before the next trial started. We then tracked the im-
provement in memory performance over trials by assessing the ‘memory error’,
i.e. the Euclidean distance between true and remembered location in each trial
(Fig.6.1B, Supplementary Fig.4.8).

Our here developed encoding model analysis comprises multiple individual steps.
We modelled world-centered virtual head direction (vHD) using basis sets of cir-
cul-ar-gaussian vHD-kernels (Fig.6.2A). Next, we estimated voxel-wise weights for
each kernel with ridge regression using a training data set (Fig.6.2B, Supplemen-
tary Fig.4.9A). We then used these weights to predict the time course of each voxel
in an independent test set (Fig.6.2C). We define directional tuning strength as the
model performance, i.e. how well the model predicted the time course of a voxel
or region. Finally, by iterating through multiple basis sets di�ering in the number
and the full-width-at-half-maximum (FWHM) of the directional kernels (Supple-
mentary Fig.4.9B) we also estimated the corresponding tuning width of each voxel.
Tuning width was defined as the FWHM of the kernels leading to the best model
performance. Finally, we examined the relationship between the tuning strength
and width estimated for di�erent regions, the participants’ navigation behavior
itself as well as their performance in the spatial memory task.
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Figure 4.1: Spatial memory task in virtual reality (VR). A) First person and bird’s eye view
of the VR-environment in which participants navigated freely via key presses. The circu-
lar arena was surrounded by 12 landmarks matched in visual features (colored triangles).
Across trials, participants memorized and reported object locations by navigating to them
and pressing a ‘drop’ button followed by feedback. B) Object-location memory. Partic-
ipants’ memory performance improved as indicated by a decrease in memory error (Eu-
clidean distance between drop and true location). The blue line and shaded area represent
the mean and SEM of the memory error across participants. Data were smoothed with a
moving average kernel of 5 trials. The inset depicts the median memory error across trials
for single participants and as whisker-boxplot (center, median; box, 25th to 75th percentiles;
whiskers, 1.5×interquartile range).

Our results are presented in three sections. First, we establish how the vHD-
encoding model works by mapping directional tuning strength and width across
the cortex. Second, we demonstrate that the strength, width and topology of this
tuning depend on the participants’ spatial memory performance. On a behavioral
level, we show evidence that this likely relates to how well the environment has
been encoded. Finally, we show that the tuning in both sensory and high-level
mnemonic regions reflected the behavioral state of our participant’s, i.e. whether
they were moving or not. Notably, our results cannot be explained by biases in
sampling (Supplementary Fig.4.7), model regularization or data quality (Supple-
mentary Fig.4.9).
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Figure 4.2: Analysis logic. A) Virtual head direction (vHD) encoding model. We modeled
vHD using multiple basis sets of circular-gaussian kernels covering the full 360°. Given the
observed vHD, we generated predicted time courses (regressors) for all kernels in each ba-
sis set. The basis sets di�ered in the (full-width-at-half-maximum) kernel width and num-
ber. Spacing and width were always matched to avoid over-representing certain directions.
The resulting regressors were convolved with the hemodynamic response function (SPM12)
to link the kernel activity over time to the fMRI-signal. B) Model training. We estimated
voxel-wise weights for each regressor in a training data set (80% of all data of a partici-
pant or 4 runs, 10 minutes each) using ridge regression. To estimate the L2-regularization
parameter (), we again split the training set into partial training (60% data, 3 runs) and
validation sets (20% data, one run). Weights were estimated in the partial training set, and
then used to predict the time course of the validation set via Pearson correlation. This was
repeated for ten values of (log-spaced between 1-10.000.000) and cross-validated such
that each training partition served as validation set once. We then used the that resulted
in the highest average Pearson’s R to fit the final model weights using the full training set.
C) Model test: We used the final model weights to predict each voxel’s time course in an
independent test set (held-out 20% data, always the run halfway through the experiment)
via Pearson correlation. These Pearson correlations were used to test model performance
on a voxel-by-voxel level (Fig.6.3,6.4). For a regions of interest analysis (Fig.4.5,4.6), we ad-
ditionally converted model performance into Z-scores via bootstrapping, ensuring that the
results reflected e�ects of kernel width and not of number. The null distribution of each
voxel was obtained by weight-shu�ing (k = 500). Both model training and test were re-
peated for all basis sets.

Mapping directional tuning during spatial navigation
Participants navigated in a VR-environment, memorizing and reporting object lo-
cations within it. We used an iterative kernel-based voxel-wise encoding model
of vHD to map directional tuning strength and width across the cortex (Fig.6.2).
The model performance is the Pearson correlation between the voxel time course
predicted by the model and the one observed in the test set. The model pre-
diction builds on weights estimated for each kernel using an independent model
training procedure.
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Figure 4.3: Mapping directional tuning across the human cortex (n = 20). A) Tuning map:
directionally tuned voxels were determined by testing model performance against zero on
group-level using a permutation-based one-sample t-test (Nichols and Holmes, 2002) with
k = 10000 shu�es. We plot pseudo-T-maps thresholded at p<0.05, FDR-corrected for all
basis sets at T1-resolution overlaid on the group average T1-scan. Approximate MNI coordi-
nates were added. Inserts zoom in on the parahippocampal cortex and the medial parietal
cortex. Multiple regions in the occipital lobe, the medial parietal and temporal lobes and
the parahippocampal gyrus were directionally tuned. B) Tuning width: For each direction-
ally tuned voxel, we color coded the median tuning width (full-width-at-half-maximum of
the directional kernels in the optimal basis set) that led to the highest pseudo-T-value
(depicted in A). The tuning width follows a narrow-to-broad topology along the parahip-
pocampal long-axis. Shaded regions fell outside the scanning field of view in at least one
participant.

Our model successfully predicted activity in multiple regions in the ventral oc-
cipital and medial parietal cortex as well as in the MTL (Fig.6.3A). These regions
overlap with known scene processing and navigation regions such as the retros-
plenial cortex [96] and the parahippocampal cortex as well as with the posterior
hippocampal formation [99,315]. Along the parahippocampal long-axis, the tuning
width followed a narrow-to-broad topology: narrow kernels best predicted activ-
ity in more posterior parts, wider kernels in anterior parts of the left-hemispheric
parahippocampus (Fig.6.3B).
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Directional tuning reflects spatial memory performance
After establishing that our vHD-encoding model did indeed predict activity in the
visual-navigation network, we next asked whether the tuning was related to suc-
cessful encoding of the environment and the object locations in it. We hypoth-
esized that the tuning should be stronger in ventral visual stream and medial
temporal regions in participants that performed well in the spatial memory task.
This hypothesis built on the idea that stronger tuning should indicate enhanced
retrieval of directional information from high-level mnemonic systems. To test
this, we repeated the group level analysis depicted in Fig.6.3A, this time splitting
the participants into two groups based on their across-trial median memory error
(median split, Fig.6.1D).

Figure 4.4: Directional tuning topology reflects spatial memory performance. Participants
were split into two groups depending on their across-trial median memory error (2 x n =
10). A) Tuning maps: directionally tuned voxels tuning were determined by testing model
performance against zero on group-level using a permutation-based t-test [319] with 1024
unique random possible shu�es. This procedure results in a minimal possible p-value
of 0.00098, precluding FDR-correction. We therefore plot pseudo-T-maps thresholded at
p<0.001 uncorrected for all basis sets at T1-resolution overlaid on the group-average T1-
scan. Hot colors depict results for the low-memory-error group, cool colors for the high-
memory-error group. Approximate MNI-coordinates added. B) Zoomed in depiction of the
medial parietal lobe/retrosplenial cortex (RSC). There is an anterior-posterior distinction
in directional tuning in RSC as a function of spatial memory performance. Shaded regions
fell outside the scanning field of view in at least one participant.

We found that our model predicted activity in strikingly di�erent networks in these
two participant groups (Fig.6.4A), the direction of these e�ects however was op-
posite of what we had predicted. In participants with low memory error, i.e. good
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memory performance, the model predicted activity in the medial and ventral oc-
cipital lobe. Strikingly, in participants with high memory error, the model predicted
activity in the parahippocampal gyrus and in the MTL. A group-level permutation-
based rank-correlation between memory error and model performance further
indicated that these di�erences build on a systematic relationship between di-
rectional tuning and spatial memory (Supplementary Fig.4.10). In both groups, we
observed bilateral clusters in the medial parietal lobe. These clusters however
barely overlapped between groups (Fig.6.4B). In the low-memory-error group the
model predicted activity in a more anterior part, in the high-memory-error group
in a more posterior part of the medial parietal lobe, akin to previous reports of
an anterior-posterior functional distinction in this region [25, 320].

To further characterize directional tuning explicitly in regions that derive world-
centered representations of the visual environment, we next conducted a regions
of interest (ROI) analysis focusing on the early visual cortex (EVC), the retrosplenial
cortex (RSC), parahippocampal gyrus (PHG), the posteromedial entorhinal cortex
(pmEC) and the hippocampus (HPC) (Fig.4.5A). We tested the pmEC subdivision of
the entorhinal cortex because its rodent homologue region [321, 322] is known to
encode direction [178–180]. We obtained the vHD-model performance for every
voxel in our ROIs and every directional basis set as described before. For the
ROI analysis, we added a bootstrapping procedure to ensure that our results re-
flected an e�ect of kernel width, and not of kernel number. For every basis set,
we converted the Pearson correlations into Z-scores via weight-shu�ing (Fig.6.2C)
and then averaged across the 25% most reliable training voxels in each ROI to
reduce noise (see methods for shu�ing and voxel selection details). The result-
ing Z-scores expressed how well the model predicted the activity relative to the
voxel’s null distribution. For each participant group and ROI, we selected the ba-
sis set that led to the best model performance on average (Fig.4.5B). If a given
region was not directionally tuned, the corresponding Z-scores should be zero.
We tested this on group-level (one-tailed) as well as a di�erence between groups
(two-tailed) using permutation-based t-tests (Fig.4.5C, see methods for details).
We observed that EVC and RSC encoded direction in both participant groups (EVC:
low memory error: t(9) = 2.85, p = 0.014, pFDR = 0.048; high memory error: t(9) =
4.00, p = 0.004, pFDR = 0.027; RSC, low: t(9) = 3.04, p = 0.006, pFDR = 0.041; high:
t(9) = 2.62, p = 0.015, pFDR = 0.040). Importantly, in PHG and pmEC such tuning was
observed only in participants that had a high memory error (PHG, low: t(9) = 0.62,
p = 0.320; high: t(9) = 2.16, p = 0.028, pFDR = 0.040; pmEC, low: t(9) = -0.42, p = 0.661;
high: t(9) = 2.59, p = 0.020, pFDR = 0.040, in line with the voxel-wise group results
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(Fig.6.4). In pmEC, the tuning strength additionally di�ered between groups (t(18) =
2.32, p = 0.036). To again test whether this group di�erence reflected a systematic
relationship between tuning strength and memory error, we conducted a post-hoc
permutation-based rank-correlation between memory error and pmEC model per-
formance on ROI level, which indeed seconded these results (rho = 0.48, p = 0.035,
k = 10000, Supplementary Fig.4.10). Notably, while the rodent homologue of pmEC
is known to encode world-centered direction [178–180], another entorhinal sub-
region, the anterolateral entorhinal cortex (alEC) is not. Consistently, we observed
directional tuning only in pmEC, not in alEC (Supplementary Fig.4.12).

In addition to the tuning strength, our approach also allowed to estimate the tun-
ing width for each ROI. For each individual participant and ROI, we selected the
tuning width that led to the optimal model performance (Supplementary Fig.4.11)
and compared it between groups. Strikingly, while above-mentioned model per-
formance in RSC was matched, the tuning width di�ered between groups (t(18) =
2.04, p = 0.044). Participants with high memory error had a sharper tuning in RSC
than participants with low memory error (Fig.4.5D).

In sum, while EVC, RSC, PHG and pmEC were directionally tuned in at least one
of the participant groups, tuning strength in pmEC as well as tuning width in RSC
strikingly reflected how well participants performed in the spatial memory task.
This is in line with our hypothesis that the tuning should indicate whether the en-
vironment has been successfully encoded or not. However, we had hypothesized
that stronger directional tuning in higher-level visual and MTL regions should be
associated with better spatial memory performance. Our empirical test suggested
the opposite. Why would mnemonic regions be more directionally tuned in par-
ticipants that performed poorly in the spatial memory task?
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Figure 4.5: Regions of interest (ROI) analysis. A) Human scene processing and navi-
gation regions tested in this study: Early visual cortex (EVC), Retrosplenial cortex (RSC),
Parahippocampal gyrus (PHG), posteromedial entorhinal cortex (pmEC) and the hippocam-
pus (HPC). B) Model selection: We plot the model performance (Z-score) on ROI-level for
all basis sets. The black line and the shaded area represent the mean and SEM across
participants. Each dot represents the group-average model performance for one basis set,
with darker colors representing narrow kernels and lighter colors representing wider ker-
nels. The following kernel widths were tested: 10°, 15°, 20°, 24°, 30°, 36°, 45°, 60°. The
black triangles mark the basis set that lead to the optimal model performance. C) Optimal
model performance for the two (high- and low-memory-error) participant groups. We plot
single participant data and group-level whisker-boxplots (center, median; box, 25th to 75th
percentiles; whiskers, 1.5×interquartile range). We observed directional tuning in EVC and
RSC in both groups. In PHG and pmEC this tuning depended on spatial memory perfor-
mance. D) Optimal tuning width. Similar to B,C we plot the tuning width that led to the
highest memory performance selected on individual participant level. Participants with
low memory error had wider tuning than the ones with high memory error. Hence, unlike
tuning strength, the tuning width in RSC reflected spatial memory performance.

One explanation could be the following. Contrary to our initial hypothesis, the
di�erences between groups could reflect the participants’ ongoing e�ort in en-
coding rather than retrieving a map of the environment. If so, this predicted that
participants with high median memory error were still in the process of mapping
the environment and the object locations in it. In turn, they should be improving
more in the spatial memory task than participants with an already low memory
error. To test this post-hoc hypothesis, we analyzed the trial by trial memory error
in more detail (Fig.6.1B, Supplementary Fig.4.8A). Indeed, we found that while both
participant groups approached the same level of memory performance, the low-
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memory-error participants reached ceiling earlier than the high-memory-error
participants (Supplementary Fig.4.8A,B). We also estimated the learning rate for
each participant, i.e. the slope of a linear regression line fit to the memory error
across trials. The high-memory-error participants had steeper slopes (t(18) = 2.65,
p = 0.019, k = 10000, Supplementary Fig.4.8C), again suggesting stronger improve-
ments in memory performance compared to the low-memory-error participants.

Directional tuning reflects the behavioral state
To investigate the relationship between directional tuning and the participants’
behavior further, we repeated above-described ROI-analysis twice, once only mod-
eling periods in which the participants moved, and once in which they stood still.
In both cases, the participants rotated (Supplementary Fig.4.7A,B). We compared
these two scenarios by contrasting the respective model performances (Fig.4.6A),
revealing a positive e�ect of locomotion on tuning strength in EVC and RSC (EVC:
locomotion: t(19) = 4.04, p = 0.0004, pFDR = 0.003; stationary: t(19) = 1.38, p = 0.091;
contrast: t(19) = 2.06, p = 0.049; RSC: locomotion: t(19) = 3.68, p = 0.001, pFDR =
0.004; stationary: t(19) = -0.82, p = 0.79; contrast: t(19) = 2.20, p = 0.043). Con-
versely, the activity in PHG and HPC could be better predicted while participants
stood still (PHG: locomotion: t(19) = -0.91, p = 0.799; stationary: t(19) = 2.37, p =
0.015; contrast: t(19) = -2.35, p = 0.024; HPC: locomotion: t(19) = -3.48, p = 0.999;
stationary: t(19) = 1.77, p = 0.046; contrast: t(19) = -3.18, p = 0.004, pFDR = 0.028,
Fig.4.5C). Our results suggest that the directional tuning in human scene process-
ing and navigation regions reflects not only spatial memory performance, but also
the behavioral state of the participants (i.e. whether they move or not). Notably,
the fact that the di�erences in tuning strength and width were region-specific
(Fig.4.6A), suggest that our results cannot be explained by general di�erences in
statistical power between the two behavioral states.
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Figure 4.6: Behavioral state analysis. The analysis described in Fig.6.2 was repeated, this
time separating periods when participants navigated and when they stood still. A) Model
selection. We plot the di�erence in model performance (Z-score) between locomotion
and stationary periods across tuning widths (grayscale dots represent tuning width: nar-
row:dark, wide:light., also see Fig.4.5). Positive values indicate that voxel time courses in
an ROI could be better predicted when participants locomoted. Negative values indicate
the opposite, with better model performance during stationary periods. Triangles mark the
kernel width leading to the strongest di�erence between models. B) Model comparison.
We plot the di�erence in model performance indicated in (A) as single participant data
and group-level whisker-boxplots (center, median; box, 25th to 75th percentiles; whiskers,
1.5×interquartile range). EVC and RSC tended to be better predicted during locomotion,
PHG and HPC could be better predicted during stationary periods. These results suggest
that the tuning in visual and mnemonic regions depend on the locomotory state.

4.4 Discussion

The present study investigated fMRI-proxies of neural population activity reflect-
ing directional coding during active spatial behavior. We put a focus on human
scene processing and navigation regions due to their proposed involvement in
cognitive mapping: they derive world-centered mnemonic representations of the
environment from sensory experiences. We used 7T-fMRI to monitor brain ac-
tivity of participants navigating in a virtual environment and performing a spatial
memory task. We developed an iterative kernel-based encoding model of the nav-
igation behavior to map directional tuning across the human cortex. In addition,
examine its relationship to behavior and memory in detail. Visual, retrosplenial,
parahippocampal, entorhinal and hippocampal regions showed distinct response
profiles, with a narrow-to-broad tuning width topology along the left-hemispheric
parahippocampal long-axis. Furthermore, we examined the relationship between
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the tuning in each region, the participants’ navigation behavior and the perfor-
mance in the spatial memory task. We found that the tuning in the RSC and pmEC,
and likely in the parahippocampal gyrus, reflected how accurately participants re-
ported the location of objects in the environment. Strikingly, while it was the tun-
ing strength in pmEC and PHG, it was the tuning width and topology in RSC that
depended on memory. The strength, width and topology of directional tuning
were therefore associated with the spatial memory performance of the partici-
pants, which demonstrates a direct link between neural population coding and
cognition. The direction of this e�ect as well as behavioral evidence speaks to
the idea that the underlying mechanism is related to encoding rather than re-
trieval of environmental information. Finally, the tuning in visual, retrosplenial
and parahippocampal regions, but especially in the hippocampus, additionally
signaled the behavioral state of the participants.

Directional representations in the human brain
Our observations emphasize the central role of scene processing and navigation
regions in spatial cognition [96–99, 127,315,316,323] and are consistent with previ-
ous work on directional representations in the human brain [113, 114, 158, 162, 184–
188, 317, 318]. They are also consistent with lesion studies showing that damage
to regions like the RSC can impair the ability to orient oneself relative to land-
marks [116]. Importantly, the present study goes beyond previous reports in sev-
eral aspects. Most studies used dedicated and constrained directional judgment-
and imagery tasks to reveal directional representations in the brain. Here, we ex-
amined directional tuning during active naturalistic navigation (in VR) and addi-
tionally demonstrate that it depends on behavioral factors and on memory. Many
of these studies also examined self-centered directional coding, whereas our ap-
proach examines vHD explicitly in a world-centered frame of reference. Further-
more, using an iterative encoding model we were also able to extract additional
parameters such as the tuning width from fMRI responses. Similar approaches
have been used for example to map the retinotopic [17, 18] and semantic organi-
zation of the cortex [30,324], the 3D-depth tuning of scene processing regions [29],
to identify perceived stimuli from brain activity [325, 326] and to reconstruct the
online content of working memory [31, 327]. Unlike previous work, the encoding
model developed here (Fig.6.2) does not build on information about a stimulus
but importantly is informed by the behavior of our participants directly.
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Visual information and head direction
An open question is whether the tuning observed here reflects processing of vi-
sual information or head direction (HD). Neurons representing world-centered HD,
or HD-cells, are abundant in the brain and have been studied most intensively in
rodents [175], but also in monkeys [181]. HD-cells reference facing direction rela-
tive to known landmarks [176] and are often compared to an ‘internal compass’
mediating our sense of direction [175, 328]. This HD-cell compass plays a central
role in cognitive mapping and is thought to mediate homing, reorientation and
path integration behavior [175,328–333]. We observed that multiple brain areas en-
coded direction, many of which overlap with regions known to contain HD-cells in
rodents and monkey. These regions include the RSC [110–112], the postsubiculum
(part of the hippocampal formation) [177] and the entorhinal cortex (EC) [178–180].
The latter consists of at least two subdivisions in rodents, the medial (MEC) and
the lateral entorhinal cortex (LEC), likely corresponding to the pmEC and alEC in
humans [321, 322]. HD-cells have been observed only in the MEC, not the LEC,
paralleling our observations of world-centered directional tuning in the human
pmEC, not in the alEC (Supplementary Fig.4.12).

We also observed directional tuning in the early visual cortex for which no HD-
cells have been reported to date. This raises the question whether the e�ects re-
ported here are due to lower-level sensory processing, not HD? We believe these
two options are not exclusive and the underlying processes might strongly in-
teract in our naturalistic task. Locomotion [334, 335] and world-centered loca-
tion [336, 337] have for example been shown to modulate EVC activity in rodents.
Here, we observed that locomotion had a positive e�ect on model performance
in EVC and RSC, suggesting stronger directional tuning in these regions during
running (Fig.4.6). Also, in monkeys [47] and humans [247], the EVC can represent
the velocity of motion in a world-centered frame of reference, likely due to feed-
back from higher-level areas. Critically, high-level mnemonic regions such as the
entorhinal cortex are not known to be visually responsive, yet we still observed
a directional code there. Consistent with this are reports of HD-cells in MEC, the
rodent homologue of the pmEC [178–180] as well as its well-connected position
within the HD-circuit [152]. Also, locomotion had a positive e�ect on model perfor-
mance in EVC and a negative e�ect in the hippocampus, again contrasting higher-
level MTL function against early visual processing. Areas such as the PHG code
direction even in the absence of visual experience [162]. In addition, shared infor-
mation and activity covariations between the EVC and the hippocampal formation
suggest that early perceptual processing could well be modulated by higher-level
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cognitive processes [127, 217, 336–340].

Interestingly, the fact that the directional tuning we observed depends on be-
havior is at odds with the activity profile of ‘classical’ HD-cells. First, these cells
provide a directional representation that is continuous (i.e. they always maintain
similar activity on population-level following attractor-dynamics [175,199,329,341].
Second, impairments or even lesions of the HD-cell system only have very moder-
ate e�ects on behavior [329]. However, growing evidence suggests that there are
at least two types of HD-cells in the brain: ‘classical’ continuous HD-cells, as well
as non-continuous sensory HD-cells [329]. The latter have been shown to switch
between active and inactive states, providing a directional representation that is
controlled by visual landmarks instead of attractor-dynamics [178]. Our present
results are in line with the function and the location of these sensory HD-cells
found in the entorhinal and parahippocampal cortex [178] as well as potentially
in the RSC [112]. Some of these cells also alternate between several preferred
directions depending on context, potentially explaining the variation in RSC tun-
ing width we observed (Fig.4.5D). On a population level, directional activity refer-
enced to multiple landmarks would likely be interpreted as having broader tuning
curves than the stable unidirectional counterparts. While classical HD-cells inte-
grate vestibular inputs [175, 341], which were not available in our VR-task, visual
information alone is su�cient to drive HD-cell-like coding in VR [342] and to deter-
mine its alignment to the environment [343]. Behavioral evidence further suggests
that the visual environment, specifically its geometry, influences our sense of di-
rection [344, 345]. In our task, the VR-arena was circular and all landmarks were
carefully matched with respect to their visual appearance (Fig.6.1). In one half of
the arena the triangle-shaped landmarks faced upwards, in the other half down-
wards (Fig.6.1B). The hypothetical axis in between did not contain any landmarks
and did not bias vHD-sampling (Supplementary Fig.4.7).

Taken together, low-level sensory information alone can explain neither the tun-
ing we observed, nor its relationship to behavioral performance. Instead, our
results are well in line with previous work on higher-level spatial representations.
In a naturalistic task such as ours, this necessarily includes sensory experiences.
Our results support the notion that cognitive processes are closely intertwined
with visual processing up to its earliest stages in the brain.
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Influence of gaze direction
One limitation of the current study is that we cannot di�erentiate between vHD
and the direction of gaze. Other studies using eye tracking indeed suggested that
the landmarks capture most of the viewing [163]. Neurons that encode the allo-
centric location of gaze could hence in theory lead to a directionality on popula-
tion level if location and gaze are correlated. Such cells exist in the primate hip-
pocampus and encode allocentric view independent from head direction [216,219]
or together with HD and self-location in a conjunctive code [223]. Computational
models proposed that it is the conjunction between location and direction that
mediates the environmental anchoring of HD in the RSC [109]. In monkeys [229]
and humans [170–172], eye movement direction has also been shown to mod-
ulate activity in the entorhinal cortex in which we also observed a directional
code. However, these studies focused on eye movements in the 2D plane (e.g.
left-right, up-down) and the results are likely a manifestation of another grid-
cell related mechanism [127, 225, 228]. Since gaze direction typically varies more
broadly over time than vHD, estimated tuning curves in visually responsive ar-
eas might broaden. This should have a stronger influence on visual compared
to HD-representations, potentially explaining the relatively broad tuning in EVC
(Fig.4.5) as well as the influence of locomotion (Fig.4.6). If correct, this predicted
that early visual cortex should show a sharper tuning when analyzed as a func-
tion of gaze direction compared to vHD. However, neurons might also represent
information in di�erent reference frames depending on task demand [89]. Future
studies using eye tracking could address these questions directly. Acknowledging
this ambiguity, we here refer to ‘directional tuning’ more generally.

Memory retrieval and learning
We hypothesized that participants with stronger directional tuning in higher-level
visual and mnemonic regions should perform better in the spatial memory task.
We based this prediction on the idea that stronger tuning indicated enhanced
retrieval of directional information from memory. Our empirical test showed the
opposite: participants with stronger tuning in higher-level mnemonic regions per-
formed worse in the spatial memory task. Neither data quality or model param-
eters (Supplementary Fig.4.9), nor directional sampling (Supplementary Fig.4.7)
could explain these results. While the underlying mechanism remains unclear,
we can speculate about its nature. For that, we feel it is important to revisit what
‘tuning’ means in this context. The ‘tuning strength’ describes how well the time
course of a voxel could be predicted. This does not necessarily constitute a net
increase or decrease in activity, but instead how well we could predict the fluctu-
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ations over time. A voxel that weakly but consistently follows a directional mod-
ulation could hence show stronger tuning than one that strongly codes direction
at very few time points.

If the tuning reflected memory encoding instead of retrieval, the tuning should be
stronger in participants that kept improving in the task compared to participants
who already reached ceiling. Accordingly, we tested whether the high-memory-
error group kept improving, and whether the low-memory-error group had already
reached performance ceiling. We tested this post-hoc behaviorally, revealing that
this was indeed the case. Both participant groups approached the same level of
performance and participants with stronger tuning in higher-level regions showed
steeper learning curves than those with weaker tuning (Supplementary Fig.4.8C).
A similar pattern of results has been reported for the hippocampus, whose ac-
tivity tracks the amount of knowledge obtained at a given time rather than the
accumulated absolute knowledge [346].

In the present study, we did not investigate how directional representations de-
velop over time. Yet, our observations are in line with previous work on the emer-
gence of spatial representations in scene processing and navigation regions. For
example, the RSC and PHG were shown to rapidly encode a novel environment by
integrating information across di�erent viewpoints and landmarks. Spatial rep-
resentations emerging in the RSC were associated with a participant’s ability to
identify multiple scenes as belonging to the same or di�erent location [347], as
well as with wayfinding ability by registering landmark permanence [348]. Con-
sistent with the present results, the RSC activity could hence signal whether an
environment has been successfully encoded or not. We observed a broader tuning
in RSC in well compared to poorly performing participants, potentially indicating
that the RSC processed information with a broader field of view. This could aid
the integration of di�erent landmarks and viewpoints [347, 348]. Importantly, the
medial parietal lobe, which comprises the RSC, is known for both its perceptual
and mnemonic capacities [349], which might be topologically distributed. Previous
work revealed an anterior-posterior distinction for scene construction and scene
perception [25, 99, 320]. Our results (Fig.6.4B) are consistent with this observation
in two aspects. First, we also observed an anterior-posterior split on group-level
in bilateral medial parietal lobe as a function of memory performance (Fig.6.4B).
Second, the participant group with more anterior tuning also performed better in
the spatial memory task. Given above-mentioned reports, we speculate that this
topology could indicate enhanced scene construction in participants with good
memory performance. Again, this would also be consistent with the idea that
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these participants have already successfully encoded the environment and the
object locations in it.

Notably, not only the RSC (Fig.4.5C), but also the pmEC tuning (Fig.4.5B) depended
on the participants behavior, suggesting a di�erent but related e�ect in pmEC. In
line with this, rodent reorientation behavior depends on the stability of entorhi-
nal HD-cell firing relative to the environment [333]. This alignment is also tightly
coupled with the one of other spatial codes such as the hippocampal place field
map [350], which in turn predicts goal-oriented navigation behavior [351]. Since
the pmEC is the key mediator of hippocampal-cortical communication [152] and
since the fMRI signal reflects input and local processing rather than output spik-
ing [352], the present e�ects could therefore also reflect a related mechanism or-
chestrated by the hippocampus. This might include a reduction in hippocampal
activity as environments become more familiar [353] or the successful encoding
of object locations relative to the boundary [354]. Finally, the e�ects could also
reflect individual preferences for egocentric versus allocentric navigation strate-
gies [355].

Future studies employing more dynamic model tests such as inverted encoding
modeling (proof of principle in Supplementary Fig.4.13) could address these ques-
tions directly by reconstructing the modeled behavioral features more dynam-
ically [32, 33, 356–359]. In addition, high temporal resolution measures such as
magnetoencephalography (MEG) or intracranial recordings in combination with
VR-tasks [165] could monitor trial by trial changes in tuning as a function of be-
havioral performance.

Conclusion
Using virtual reality, a novel behavioral encoding model and 7T-fMRI, we exam-
ined world-centered directional tuning during active spatial behavior in humans.
We demonstrated such tuning in visual, retrosplenial and parahippocampal cor-
tices and the hippocampus. By mapping the tuning width across the cortex, we
revealed a narrow-to-broad organization along the parahippocampal long-axis.
Entorhinal and parahippocampal tuning strength as well as retrosplenial tuning
width and topology reflected how well participants performed in a spatial memory
task. We provide evidence that these e�ects likely depend on the encoding of the
environment and the object locations within it. Finally, we show that the tuning
in visual, retrosplenial and parahippocampal cortices as well as the hippocampus
reflects the locomotory state. These results show the e�cacy of encoding models
for studying neural population dynamics during naturalistic navigation in human



104 Directional tuning in the visual-navigation network

fMRI. They demonstrate a direct link between neural population coding and cog-
nition and show that high-level cognitive processes modulate directional tuning
in the service of behavior.

4.5 Extended methods

Participants
We recruited 26 participants for this study (11 females, 19-36 years old). Four sub-
jects were excluded because of excessive head motion, i.e. the number of instan-
taneous movements larger than 0.5mm [360] exceeded the across-participant av-
erage for more than one standard deviation. Another 2 participants were excluded
because they finished fewer than four scanning runs. A total of 20 participants
entered the analysis. The study was approved by the local research ethics com-
mittees (ethics committee University Duisburg-Essen, Germany and CMO region
Arnhem-Nijmegen, NL) and participants gave written consent prior to scanning.

Virtual reality task
Participants performed a self-paced object-location memory task in virtual real-
ity (Fig.6.1A) adapted from Doeller and colleagues [158]. The circular virtual arena
was created using the UnrealEngine2 Runtime software and was surrounded by 12
distinct landmarks positioned in steps of 30° and matched in visual similarity (tri-
angles either tilted up- or downwards, with red, green and blue colored corners).
Participants could freely navigate in this arena via key-presses. The smallest in-
stantaneous rotational movement possible was 10° and translational movement
speed was constant after a 500ms ramp. In the beginning of the experiment,
six everyday objects had to be collected, which were scattered across the arena.
Across di�erent trials and without the objects being present, participants were
prompted to navigate to the location of a previously cued object. After indicating
the remembered location via key press (drop), the respective object appeared at
the correct location to give feedback and participant collected the object again
before the next trial began. After an average of 3 trials (range 2-4), a fixation cross
was presented on a gray background for 4 seconds. An average of 179 trials were
performed (range: 94-253 trials due to the self-paced nature of the task, Supple-
mentary Fig.4.8D) and object locations were randomized across participants. In
order to explain the task and to familiarize participants with it, they performed a
similar task with di�erent objects in a di�erent virtual environment prior to scan-
ning. We tracked the improvement in memory performance over trials by assess-
ing the ‘memory error’, i.e. the Euclidean distance between true and remembered
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location in each trial measured in virtual vertices (arbitrary units).

Behavioral analysis
To ensure that there were no prominent or distinct directional cues that biased
navigation behavior, we ruled out di�erences in the time spent facing into di�er-
ent directions. Supplementary Fig.4.7 depicts the results of these analyses for all
participants and time points, split into locomotion and stationary periods as well
as into high- and low-memory-error participant groups. We accounted for indi-
vidual di�erences in absolute time spent in the experiment by expressing time
spent as percent of the total experimental duration. We binned vHD in steps of
10° and performed a repeated-measure (rm) ANOVA across directions, which did
not reveal any biases in directional sampling (F(35, 665) = 0.77, p = 0.834), also not
when testing the high-memory error group (F(35, 315) = 0.55, p = 0.984) or the low-
memory error group (F(35, 315) = 0.87, p = 0.675) individually. In addition, we did
not observe biases in directional sampling across the experiment when splitting
the data into locomotion (F(35, 665) = 0.79, p = 0.806) and stationary (F(35, 665) =
0.87, p = 0.681) periods (Supplementary Fig.4.7A).

In addition to the directional sampling in the course of the experiment, we ana-
lyzed the distribution of vHD within each TR. We again binned vHD into 10° steps
and converted it into percent of total viewing time. We then circular-shifted each
of the resulting histograms such that the most sampled direction lined up across
TRs (), revealing that participants spent 52% of the time within each TR facing
into a single direction (Fig.6.1B, Supplementary Fig.4.7A). The distribution of vHD
within each TR was therefore non-uniform and centered on one predominant di-
rection. We used a two-tailed permutation-based unpaired t-test to compare the
time spent facing towards this predominant direction within each TR across across
groups, which did not reveal a di�erence (t(18) = -1.26, p = 0.224, k = 10000, Supple-
mentary Fig.4.7C). Using a paired version of this test, we did observed a di�erence
between stationary and locomotion periods (t(19) = 6.12, p = 0.0001, k = 10000).
Importantly, this had a di�erential e�ect for di�erent regions of interests (Fig.4.6),
suggesting that there was no general positive or negative e�ect on model perfor-
mance. During this task, participants spent around 54% of their time navigating,
with shorter time spent rotating during locomotion compared to stationary peri-
ods (two-tailed permutation-based paired ttest: t(38) = 7.95, p = 0.0001, k = 10000).
There were no di�erences in the time spent translating (t(18) = 0.41, p = 0.690, k =
10000) or rotating between participant groups (during locomotion: t(18) = 0.55, p
= 0.625, k = 10000 and during stationary periods: t(18) = 1.00, p = 0.338, k = 10000).
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MRI acquisition
During the object-location memory task in VR we acquired T2*-weighted func-
tional images on a 7T Siemens MAGNETOM scanner using a 3D-EPI pulse sequence
[361], a 32-channel head coil and following parameters: TR = 2756 ms, TE = 20 ms,
flip angle = 14°, voxel size = 0.9 mm x 0.9 mm, slice thickness = 0.92 mm, slice over-
sampling = 8.3%, 96 slices with a 210 mm x 210 mm field of view, phase encoding
acceleration factor = 4, 3D acceleration factor = 2. The first 5 volumes of each
run were discarded. Functional images were acquired across 5 scanning runs of
210 TR’s or approximately 10 minutes each. In addition, we acquired T1-weighted
structural images (MP2RAGE; voxel size: 0.63 mm isotropic) and a B0-field map
(gradient echo; voxel size: 1.8 x 1.8 x 2.2 mm3) for each participant.

Preprocessing
The data used here were used in two previous reports [163, 322]. Data were pre-
processed using the automatic analysis library [362], utilizing functions of several
analysis packages. For each participant, functional images were realigned using
SPM8, followed by independent component analysis (ICA) denoising using FIX ar-
tifact removal implemented in FSL 5.0.4. To improve signal-to-noise ratio, and
with it the ICA-detection of noise components, data were smoothed with a Gaus-
sian full-width-at-half-maximum kernel of 2.5 mm. Images were then non-linearly
normalized to a group-average EPI-template using the Advanced Neuroimaging
Toolbox (ANTs) [363] and high-pass filtered with a 128-s cuto� using FSL. Voxel-
wise variance explained by the six realignment parameters (x,y,z, pitch, roll, yaw)
as well as by spikes (sudden deviations in signal intensity of more than two tem-
poral standard deviations) was removed via nuisance regression. Out-of-brain
voxels were excluded.

Regions of interests (ROIs)
In an ROI analysis we tested human scene processing and navigation regions
(Fig.4.5A) that were previously proposed to support cognitive mapping [97]. The
hippocampal (HPC), anterolateral entorhinal (alEC) and posteromedial entorhi-
nal (pmEC) ROIs were defined manually using ItK-SNAP (www.itksnap.org) based
on the high-resolution group average EPI-template. The entorhinal masks were
based on previous reports [322], in which the entorhinal mask was divided into
anterolateral (alEC) and posteromedial entorhinal cortex (pmEC). The ROIs for the
parahippocampal gyrus (PHG) as well as the retrosplenial cortex (RSC) were based
on the reverse inference meta - analysis for “Retrosplenial cortex” and “Parahip-
pocampal cortex” using Neurosynth [364]. We took the top 5% highest probability
voxels from each respective Neurosynth map and removed isolated voxels from
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the resulting binary masks. This procedure resulted in coherent bilateral clusters
in the medial parietal cortex and parahippocampal gyrus respectively. The early
visual cortex (EVC) ROI was created by thresholding the corresponding probabil-
ity map ‘Visual_hOc1’ of the SPM anatomy toolbox at 50% and co-registering it
non-linearly to our group-average template space. To do so, we used SPM to first
segment the group template and then to ‘normalize’ the ROI into our template-
space using the resulting tissue maps and nearest-neighbor interpolation. The
resulting ROI masks were located at following average MNI coordinates [X,Y,Z] and
were of following size. EVC: left hemisphere [-4, -88, 0], right hemisphere [14, -86,
0], n voxels: 16299, RSC: [-14, -56, 12] and [18, -54, 14], n voxels: 1926, PHG: [-26, -38,
-12] and [26, -34, -16], n voxels: 2392, HPC: [-24, -24, -14] and [28, -22, -14], n voxels:
9781, alEC: [-20, 0, -34] and [22, 0, -34], n voxels: 1693, pmEC: [-20, -10, -28] and [20,
-8, -28], n voxels: 1692.

Analysis overview
Our analysis estimated the directional tuning of a voxel in several steps. First,
we built a vHD-encoding model by incorporating the participant’s navigation be-
havior into basis sets of circular-gaussian von-Mises distributions, which we call
vHD-kernels. Each individual direction was modeled with a di�erent vHD-kernel,
each representing a smooth directional tuning without discretizing the data into
bins. Second, we estimated voxel-wise weights for each of these kernels, together
representing a voxel’s tuning curve. We refer to this step as model training. Third,
we used these weights to predict activity in held out data which constituted the
model test. This way we obtained a measure of model performance for the given
vHD basis set. Finally, by iteratively varying the full-width-at-half-maximum of the
vHD-kernels in the basis set and repeating above mentioned steps, we not only
tested one vHD-basis set, but multiple ones. This approach allowed us to also
estimate the tuning width of each voxel (the kernel width that maximized pre-
diction accuracy). All processing steps mentioned comprised several individual
sub-steps, which are described in detail below.

Building the virtual head direction (vHD) encoding model
We modeled vHD using a basis set of circular-Gaussian von Mises distributions
as implemented in the Circular Statistics Toolbox for Matlab [365]. Each kernel
in this basis set covered the full 360° with an angular resolution of 1°. Across
di�erent iterations of our analysis, we varied the full-width-at-half-maximum of
these kernels, each time testing how well the resulting model weights allowed
to predict activity in held-out data. To balance directional sensitivity across it-
erations, the spacing between kernels always matched the kernel width (i.e. the
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broader each individual kernel, the fewer kernels were used). We tested follow-
ing kernel widths, all representing divisibles of 360°: 10°, 15°, 20°, 24°, 30°, 36°,
45°, 60°. Note that our regions of interest analysis builds on weight-shu�ing to
rule out that the number of kernels influenced model accuracies. For each kernel
and participant, we computed the predicted kernel activities based on the vHD
over time. To give an example, for a given vHD of 30° a kernel centered on 30°
was assigned high activity, a kernel centered on 40° slightly lower activity and a
kernel centered on 200° was assigned very low activity. By doing this for all time
points and kernels, we built regressors representing the predicted activity given
a directional tuning and the specific vHD over time. Since vHD was sampled at
higher temporal resolution than the imaging data, we then computed the within-
TR activity of each kernel as the median activity across all time points within the
TR. Finally, the resulting regressors were scaled from 0 to 1 and convolved with
the hemodynamic response function (HRF) as implemented in SPM12 using de-
fault settings (kernel length: 32s, time to peak: 6s). Each regressor represented a
predicted activity profile over time as modeled by the respective kernel. To follow
the example above, the activity of a voxel encoding the direction 30° should be
more similar to the activity predicted by the kernel centered on 30°, than to the
one predicted by the kernel centered on 200°.

Model training
We estimated voxel-wise weights for all vHD-kernels in the corresponding ba-
sis set using l2-regularized (ridge) regression. To improve the directionality of
this model, we added a covariate modeling movement independent of direction
whose weight was discarded. Because vHD is not independent at two successive
time points, the resulting design was multicollinear. Ridge regression avoids po-
tential biases in the resulting weights by penalizing high coe�cients, which could
otherwise a�ect model accuracies. Since the regularization parameter () cannot
be known a priori, our model training builds on leave-one-out cross-validation
to find the optimal and with it the optimal model weights. As training set, we
used the first two and the last two scanning runs, leaving the third run as the fi-
nal and independent test set. A scan run typically took around 10 minutes. Since
run 3 was acquired in the middle of the experiment, our results are invariant to
the duration of the scanning session. If a participant did not complete all five
runs, we always used the third valid run as a test set and all others as training
set. Within the training set, we used all runs except one to fit voxel-wise weights
for ten di�erent regularization parameters log-spaced between 1 to 10,000,000,
each time testing how well these weights predicted the activity in the left-out
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validation run. To assess prediction performance, we used Pearson correlation
between the real time course of a voxel in the validation set and the time course
predicted by vHD weighted by the estimated model weights. We cross-validated
this prediction such that each run within the training set served as validation set
once. The regularization parameter that led to the best prediction performance
on average was then determined for each voxel. If no clear best-performing could
be determined (i.e. Pearson’s R negatively approximated zero with increasing reg-
ularization), the respective voxel was excluded. We then averaged across voxels
within each participant and used it to estimate the final model weights using the
full training set. These model weights serve as basis for all further model tests
described below.

Model test
All model tests were performed on the held-out and independent test set (one
scan run of around 10 minutes in the middle of the experiment). First, we pre-
dicted voxel-wise activity (similar to the model training) in a univariate ’forward-
model’ approach. For each voxel, we generated a predicted time course by weight-
ing the design matrix of the test run after HRF-convolution by the model weights
obtained for this voxel during model training. The resulting predicted time course
was then compared to the observed time course using Pearson correlation. Please
note that all steps described below were repeated for multiple vHD-basis sets dif-
fering in the number and width of the corresponding vHD kernels.

We mapped directional tuning across the cortex using the statistical non-parametric
mapping (SnPM) toolbox ( [319], http://warwick.ac.uk/snpm). We performed a
permutation-based one-sample t-test of model performance (Pearson correla-
tions) against zero (k = 10000 shu�es, input image and variance smoothing:
7.2mm). To reduce computational costs the preprocessed data were downsampled
from 0.9 mm to 1.8 mm isotropic for this step. This was repeated for each vHD ba-
sis set. We then used the SnPM toolbox to threshold the resulting pseudo-T-maps
at a FDR-corrected p<0.05. For each voxel we then selected the across-participant
median tuning width of the vHD basis set that maximized the pseudo-T. Figure
3 depicts these results for all participants. For visualization we plot the results
overlaid on the group-average T1 template at T1-resolution obtained via nearest-
neighbor interpolation. We repeated this analysis split into high-memory-error
and low-memory error participants (i.e. median-split of memory error, Fig.6.4).
Note that each participant group comprised n = 10 participants, resulting in 1024
possible shu�es and a minimal possible p = 0.000977. Because this precludes
FDR-correction we use uncorrected p = 0.001 to visualize these sub-group e�ects.
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In addition to the voxel-wise group analysis we also conducted a regions of in-
terest analysis for areas involved in scene processing and navigation such as the
early visual cortex, retrosplenial cortex, parahippocampal cortex, the posterome-
dial entorhinal cortex and the hippocampus (Fig.4.5A). We again performed model
training and test, this time focusing specifically on voxels in our ROIs. This greatly
reduced the number of voxels and hence computational cost. To avoid potential
influences of the number of kernels on these ROI results, we instead performed
voxel-wise bootstrapping to convert the Pearson correlations into z-scores. The
necessary null distribution of each voxel was obtained by shu�ing the training
weights 500 times, each time computing Pearson’s R between the predicted and
the observed time course of the test set. All shu�es were unique. Since not all
voxels in our (probabilistic) ROIs were expected to carry vHD-information and to
increase robustness of our e�ects, we performed voxel selection within each ROI,
limiting the model test to voxels with high predictability in the model training (top
25% highest prediction accuracy in the training). If a voxel was not directionally
tuned in the training, we did not expect it to be directionally tuned in the test.
Finally, the z-scores of the remaining voxels were averaged within each ROI. Again,
we iterated this analysis for all basis sets (Fig.4.5B), yielding the tuning strength
(model performance) and the tuning width (the width of the vHD-kernels in the
basis set) of each ROI. Statistical inference was performed for each ROI and partic-
ipant group (high- and low-memory-error participants) using permutation-based
one-sample t-tests on group level (all possible 1024 shu�es, n = 2 x 10) as im-
plemented in the mult4comppermt1 function distributed by Mathworks. To test
for di�erences across participant groups, we used permutation-based unpaired
two-sample two-tailed t-tests (k = 10000) as implemented in statcond distributed
via the EEGLab Matlab toolbox.

In addition to the forward model test, we also inverted the encoding model to re-
construct, or ‘decode’, vHD multivarietly from the population of voxels within each
ROI (Supplementary Fig.4.13). We multiplied the Moore-Penrose pseudoinverse of
all voxel-wise weights in an ROI (m voxels x k weights)-1 with the multivoxel-
pattern at each image acquisition (m voxels) to obtain the estimated vHD-kernel
activities at each for volume (k weights). By doing this for all volumes, we re-
constructed the vHD-kernel activities for the entire test set of each participant.
To assess reconstruction performance, we used 2D correlation between the re-
constructed kernel activities (k weights x n TR’s) and the design matrix of the
test run (also k weights x n TR’s). Since again the number of kernels and hence
reconstructed weights di�ered across iterations and basis sets, we used weight-
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shu�ing to convert the resulting correlations into z-scores. As in the forward
model, we shu�ed the model weights (500 random unique shu�es), each time
going through the full vHD-reconstruction procedure. As expected, the results
obtained by inverting the encoding model (Supplementary Fig.4.13) resemble the
ones obtained by the voxel-wise forward-model procedure (Fig.4.5).

Temporal signal-to-noise ratio (tSNR) and model regularization do not explain
the results
The estimated optimal regularization parameter (Supplementary Fig.4.9A) de-
pended on the basis set (Supplementary Fig.4.9B) (rmANOVA results: F(7, 126) =
11.80, p = 1.7 x 10-11) as expected, but not on participant group (F(1, 18) = 0.0037, p
= 0.952) and there was no interaction between the two (F(7,126) = 0.37, p = 0.920).
There were di�erences in tSNR across ROIs (rmANOVA results: F(5, 90) = 258.29,
p = 9.1 x 10-52), but not across participant groups (F(1, 18) = 0.082, p = 0.777) and
there was no interaction between the two (F(5, 90) = 1.34, p = 0.255) (Supplemen-
tary Fig.4.9C). Neither model performance (Spearman correlation: rho = 0.076, p =
0.409), nor tuning width (rho = -0.059, p = 0.525) correlated with tSNR Supplemen-
tary Fig.4.9D.
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4.6 Supplementary material

Figure 4.7: Navigation behavior (n = 20). A) Directional sampling across all time points
(left), stationary periods only (middle) and locomotion periods only (right). Directional
sampling expresses the time spent facing into each direction in percent of total experiment
time. The bar plots depict the across-participant mean and SEM within each fMRI acquisi-
tion (TR). Data were pooled according to the angular distance to the predominant direction
(, first bar). Within each TR, participants’ faced into one predominant direction for around
50% of the total experimental time. The time spent facing into the predominant direction
di�ered between stationary and locomotion periods (two-tailed permutation-based paired
ttest results: t(19) = 6.12, p = 0.0001, k = 10000). Polar plots depict the directional sampling
across the entire experiment (line: mean, shaded area: SEM). Across the experiment, sam-
pling was matched across directions, showing that there were no asymmetric spatial cues
that biased navigation behavior (rmANOVA results for all time points: F(35, 665) = 0.77 , p =
0.834, while standing still: F(35, 665) = 0.87, p = 0.681 and while locomoting: F(35, 665) = 0.79,
p = 0.806). B) Translations and rotations. Participants locomoted around 50% of the total
experimental time (left panel). While locomoting, participants spent less time rotating than
while standing still (right panel) (two-tailed permutation-based paired ttest results: t(38)
= 7.95, p = 0.0001, k = 10000). We plot single-participant data and group-level whisker-
and-box plots (center, median; box, 25th to 75th percentiles; whiskers, 1.5×interquartile
range). C) Directional sampling across participant groups. There were no di�erences in
directional sampling in neither of the two participant groups across TRs (rmANOVA results:
low-memory-error group: F(35, 315) = 0.87, p = 0.675, high-memory-error group: F(35, 315) =
0.55, p = 0.984). The two participant groups spent equal amount of time locomoting (t(18)
= 0.41, p = 0.690), and rotating (while locomoting: t(18) = 0.55, p = 0.625 and while standing
still: t(18) = 1.00, p = 0.338) and facing towards one predominant direction within each TR
(t(18) = -1.26, p = 0.224, k = 10000).



4.6. Supplementary material 113

Figure 4.8: Memory performance during the object-location memory task. A) Memory
error across trials for the two participant groups di�ering in the median memory error. The
memory error is the Euclidean distance between true and remembered object location
expressed in virtual vertices. Data were smoothed using a running average kernel of 5
trials. B) Di�erences in memory error between groups. Zero constitutes no di�erence.
Both groups converge on the same level of performance in the course of the experiment.
C) Learning slopes. Regression slopes of a linear line fitted to the raw memory error scores
across trials of each participant. Participants with higher median memory error showed
steeper slopes (two-tailed permutation-based unpaired ttest results: t(18) = 2.65, p = 0.019),
indicating that the memory error improved faster than in the low-memory-error group. D)
Number of trials. Participants with low memory error performed slightly more trials than
the ones with high memory errors, the di�erence between groups was however small (t(18)
= 1.46, p = 0.137). C,D) We plot single-participant data and group-level whisker-and-box
plots (center, median; box, 25th to 75th percentiles; whiskers, 1.5×interquartile range).
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Figure 4.9: Model parameters and data quality. A) L2-regularization parameters () for all
basis sets and the two participant groups (di�ering in memory error). Each dot repre-
sents of a single participant and basis set averaged across all ROIs (Fig.6.4). Group-level
whisker-boxplots of the same data were added (center, median; box, 25th to 75th per-
centiles; whiskers, 1.5×interquartile range). Lambda depended on the basis set (rmANOVA
results: F(7, 126) = 11.80, p = 1.7 x 10-11) as expected, but not on participant group (F(1, 18)
= 0.0037, p = 0.952). There was no interaction between the two (F(7,126) = 0.37, p = 0.920).
B) Histogram depiction of all basis sets used. Each Gaussian represents one directional
kernel covering the full 360° with 1° resolution. Basis sets di�ered in kernel width and
spacing. Resulting regressors were scaled between 0 and 1. C) Temporal signal-to-noise
ratio (tSNR) across ROIs and participant groups. We plot group-level whisker-boxplots and
single participant data of the average tSNR of each region. There were di�erences in tSNR
across ROIs (rmANOVA results: F(5, 90) = 258.29, p = 9.1 x 10-52), but not across participant
groups (F(1, 18) = 0.082, p = 0.777) and there was no interaction between the two (F(5, 90) =
1.34, p = 0.255). D) Scatter plots for tSNR over model performance (left) and estimated tun-
ing width (right). Dots represent the average tSNR of each region and participant. Neither
model performance (Spearman correlation: rho = 0.076, p = 0.409), nor tuning width (rho =
-0.059, p = 0.525) correlated with tSNR.
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Figure 4.10: Across-participant permutation-based rank-correlation between the model
performance (see Fig.6.3) and across trial median memory error (Fig.6.1). A-F) We plot Spear-
man’s correlation coe�cients (Rho) thresholded at p<0.005 uncorrected for visualization
and overlaid on the group-average T1 template at T1 resolution. We observed a positive
correlation between model performance and memory error in the parahippocampal gyrus
(A,B,D,E) and anterior medial temporal lobe (A,B,C,D,E) including posterior entorhinal cor-
tex (B) and anterior hippocampus (D), as well as in the ventral cerebellum (F). Negative
correlations could be observed in the ventral occipital lobe (A,B,D,E), frontal lobe (D,F), the
medial cingulate cortex (C) and the posterior thalamus (E). G) Scatter plot of posteromedial
entorhinal cortex (pmEC) model performance (Fig.4.5) over across-trial median memory er-
ror (Fig.6.1). Least-square line as well as permutation-based rank and linear-correlation
coe�cients were added. There is a correlation between model performance and memory
error in pmEC.
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Figure 4.11: Optimal model performance expressed in Z-scores (A) and Pearson’s R (B)
selected for each individual participant instead of group level (Fig.4.5B,C). We plot single-
participant data overlaid on group-level whisker-and-box plots (center, median; box,
25th to 75th percentiles; whiskers, 1.5×interquartile range) for low and high-memory-error
groups. B) Y-axis was cut for visualization (dashed line).
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Figure 4.12: Comparison between entorhinal cortex subdivisions. A) Regions of interests:
posteromedial (pmEC) vs. anterolateral entorhinal cortex (alEC). B) Model selection: We
plot the model performance (Z-score) for all basis sets and the two participant groups.
The black line and the shaded area represent the mean and SEM across participants. Each
dot represents the group-average model performance for one basis set, with darker colors
representing narrow kernels and lighter colors representing wider kernels. The following
kernel widths were tested: 10°, 15°, 20°, 24°, 30°, 36°, 45°, 60°. For each ROI on group-
level, we selected the best performing basis set as the optimal model to be tested. Also see
Fig.4.5B. C) Optimal model performance selected in B for the two (high- and low-memory-
error) participant groups. We plot single participant data and group-level whisker-boxplots
(center, median; box, 25th to 75th percentiles; whiskers, 1.5×interquartile range). We ob-
served directional tuning in pmEC in participants with high memory error and a di�erence
between groups (low memory error: t(9) = -0.42, p = 0.661; high memory error: t(9) = 2.59,
p = 0.020, pFDR = 0.040, t(19) = 2.32, p = 0.036). In alEC, neither directional tuning nor the
di�erence between groups could be observed (Low : t(9) = 1.09, p = 0.146; high: t(9) = 1.58, p
= 0.075; contrast: t(19) = 0.44, p = 0.655). Also see Fig.4.5C. D) Optimal tuning width. Similar
to B,C, we plot the tuning width that led to the highest memory performance selected on
individual participant level (see Fig.4.5D). E) Behavioral state analysis. Model performance
during locomotion and stationary periods. Positive values indicate that voxel time courses
in the ROI could be better predicted when participants locomoted. We plot the di�erence
in model performance as single participant data and group-level whisker-boxplots (center,
median; box, 25th to 75th percentiles; whiskers, 1.5×interquartile range). There is no e�ect
of locomotion per se on the tuning in pmEC (and alEC which was not directionally tuned
in our task).
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Figure 4.13: Multivariate inverted encoding model (IEM). A) Analysis logic. We estimated
voxel-wise weights following the same training procedure used for the forward model (see
methods). We then multiplied the Moore-Penrose pseudoinverse of all voxel-wise weights
in an ROI (m voxels x k weights)-1 with the multivoxel-pattern (m voxels) at each image
acquisition (TR) to obtain the estimated vHD-kernel activities at each TR (k weights). We
then used 2D-correlation between the reconstructed kernel activities (k weights x n TR’s)
and the design matrix of the test run (also k weights x n TR’s) to compare reconstructed
and observed vHD. Finally, the resulting correlation coe�cient was converted to a z-score
using the bootstrapped null distribution of each ROI (k = 500 unique shu�es). B) Model
selection: We plot the IEM-model performance (Z-score) for all basis sets. The black line
and the shaded area represent the mean and SEM across participants. Each dot represents
the group-average model performance for one basis set, with darker colors representing
narrow kernels and lighter colors representing wider kernels. The following kernel widths
were tested: 10°, 15°, 20°, 24°, 30°, 36°, 45°, 60°. For each ROI on group-level, we selected
the best performing basis set as the optimal model to be tested. C) Optimal model perfor-
mance selected in B for the two (high- and low-memory-error) participant groups. We plot
single participant data and group-level whisker-boxplots (center, median; box, 25th to 75th
percentiles; whiskers, 1.5×interquartile range).



Chapter 5

General discussion

How does the brain derive stable representations of the world from sensory in-
puts and how do they shape the way we perceive and interact with the world? In
my doctoral work, I addressed these questions by examining the cognitive pro-
cesses underlying a stable visual perception and spatial mapping in the human
brain. I approached this question from multiple angles by focusing on di�erent
computational levels along the cortical hierarchy. I used fMRI to monitor human
brain activity during tightly controlled visual-tracking tasks and naturalistic navi-
gation in virtual reality, and combined it with predictive computational modeling
to study the neural systems underlying human behavior. I focused on viewing and
vision as a model system for exploration behavior in general.

For cognitive maps to be formed, visual information needs to undergo a series of
transformations that ultimately construct non-sensory and world-centered repre-
sentations of the environment (Fig.5.1). First, retinotopic representations of space
are being processed and maintained in visual cortices. Second, these retinotopic
representations are being integrated with self-motion and body position signals
to reconstruct non-retinotopic representations in mid-level and higher-level vi-
sual cortices. This includes the integration of e�erence copies with visual input,
retinotopic updating, modulation of visual activity by gaze-related gain fields, pro-
prioceptive compensation of movements and transsaccadic memory (see Chapter
1). Third, once visual receptive fields are stablized and a stable perception is en-
sured, associations between the location of the receptive fields and environmen-
tal features such as landmarks can be learned. This engages scene processing
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regions such as the retrosplenial and parahippocampal cortex and likely builds
on the conjunctive representation of direction and place. This anchors receptive
fields to these landmarks in a world-centered frame of reference and allows to
track them over time. Finally, these world-centered representations provide input
to attractor networks in the medial temporal lobe, which mediate a non-sensory,
unified and continuous representation of space. These are updated by path inte-
gration mechanisms (e.g. vestibular inputs), but require visual anchoring to avoid
error accumulation. This anchoring is achieved by visual inputs from scene pro-
cessing regions, which reference the intrinsic medial temporal activity dynamics
to the external world.

Figure 5.1: Scheme of how perception and the cognitive map combine. The brain derives
a stable representation of the world from visual inputs using two interconnected mech-
anisms. Retinotopic input is being acquired by our senses and processed in visual areas.
Non-retinotopic (e.g. head-centered) receptive fields are being reconstructed from retino-
topic ones in parietal areas by compensating for self-motion and maintaining memory
traces of the visual field. Once receptive fields are stable, they are associated with visual
features such as landmarks. This generates world-centered (possibly vectorial) visual rep-
resentations of the environment in scene processing regions. In the medial temporal lobe,
intrinsic network activity gives rise to attractor dynamics representing locations and direc-
tions. Path integration mechanisms update the activity state in the attractor network. With
every update however, they accumulate updating errors. Ultimately, the world-centered
representations in scene processing regions are being used to anchor the non-sensory
medial temporal attractor dynamics to the external world (See Fig.1.3 for how this could be
achieved).
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The introduction mainly focused on how cognitive maps are formed. This thesis
however also examined the behavioral and perceptual consequences of this pro-
cess. We discussed many of these implications in our a review article [127], which
is added here as ’Extended discussion’ as Chapter 6.

Review paper 4 [127] reviews the growing body of literature that implicates the
mammalian hippocampal formation in mapping visual space using a non-sensory
representational format. We propose that medial temporal spatial representa-
tions provide the optimal solution to multiple computational challenges that are
shared between navigation and vision. They represent visual space in a world-
centered frame of reference, a mnemonic representation of the visual field that
might modulate activity in upstream sensory and motor areas. By doing so, they
support critical cognitive functions such as behavioral planning and provide a re-
lational metric for memory formation and imagery. Finally, hippocampal remap-
ping might provide the basis for contextual memory retrieval to aid visual search
and recognition memory across di�erent contexts. We propose that vision and
navigation are two expressions of one common medial temporal mechanism sup-
porting exploration in general. Vision is an ideal domain to study lower and higher
cognitive functions simultaneously in the human brain.

Because these (and more) points are discussed in detail in the ’Extended discus-
sion’ Chapter, I will instead elaborate on points that were beyond the scope of
this review in the following. I will begin by summarizing the empirical work pre-
sented here, then discuss why cognitive mapping and world-centered coordinates
are useful, and finally present selected examples that demonstrate how cognitive
maps shape perceptual processing and behavior.

5.1 Synopsis
Paper 1: Real-motion signals in human early visual cortex
Consider following scenario. You are standing at the Trondheim train station,
watching a train that is about to leave. Whenever you move your eyes, the visual
image of the train will change its location on your retina. This in turn induces
visual motion, which will be signaled to the brain. However, if you do not move
your eyes, but the train moves instead, this will also result in visual motion. In
both cases, there will be movements on the retina (retinal motion), yet the en-
vironmental source of that motion is drastically di�erent. How can the brain tell
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whether retinal motion was self-induced or not?

Electrophysiological studies suggested that neurons in the monkey visual system
integrate retinal motion with the motor commands that tell the eyes to move.
The computations these neurons perform seem simple: adding the anticipated
eye velocity to the incoming retinal motion signal reconstructs how fast the train
moved in the outside world. If the eyes move faster than the train, these neurons
perform a subtraction of the two factors. The neurons performing this computa-
tion are called ’real-motion neurons’ [47]. By teasing apart ’real’ from self-induced
motion, these neurons are thought to stabilize visual perception in space. In mon-
keys, real-motion neurons were found in several brain areas including V1 [47],
V2 [250], V3A [62] and V6 [366].

Complementary work in human fMRI showed that similar processes might support
human visual perception [61,65,258]. Using planar-motion dot stimuli during pur-
suit eye movements, they showed that human areas V3A ad V6 signal real-motion
velocity independent from eye movement speed. These earlier reports however
had one shortcoming: the motion conditions used di�ered not only in eye move-
ments and real-motion, but also in retinal-motion. It therefore remained unclear
how much of the observed activity could be attributed to retinal motion, and how
much was due to real-motion as such.

We aimed to answer this question and to provide a detailed overview on real-
motion encoding across the human visual system. To do so, we again used planar-
dot motion stimuli and a visual tracking task similar to earlier work [61] while
monitoring brain activity and eye movements using fMRI and eye tracking. Go-
ing beyond earlier work, we here designed motion conditions that di�ered in eye
movement speed and real-motion, but importantly not in retinal motion. Using in-
dependent stimuli and data, we localized 16 visual areas and revealed that a whole
network of brain regions engaged in this process. In addition to confirming earlier
reports about real-motion selectivity in V3A and V6, our carefully controlled stimu-
lation procedure revealed that even the earliest visual cortices in the human brain
encoded visual motion in a non-retinotopic, potentially world-centered frame of
reference. This parallels reports of real-motion neurons in monkey V1 [47].

This work illustrates how very simple computations enable to reconstruct a non-
retinotopic frame of reference [43, 44]. It also suggests that extra-retinal signals
modulate activity even in the earliest stages of the human visual system to sta-
bilize our perception during self-motion.
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Paper 2: Hexadirectional coding of visual space in human
entorhinal cortex
Seminal work in rodents showed that the brain evolved a world-centered spatial
mapping system mediated by the hippocampal and entorhinal circuits [123, 124].
These spatially tuned cells typically represent position, direction and distance
relative to environmental boundaries or landmarks. Among this ’zoo’ of cells are
entorhinal grid cells, which represent a map of navigable space [151]. They fire as
a function of self-location and tessellate the environment with hexagonally ar-
ranged firing fields. Strikingly, akin to rodent grid cells during navigation, neurons
in the monkey entorhinal cortex represent a grid-like map of visual space [225].

Studies of entorhinal activity during virtual reality suggested that similar grid-cell
mechanisms support navigation in humans [158, 173]. As described in Chapter 1,
the respective fMRI analysis probes ’hexadirectional signals’, a six-fold rotation-
ally symmetric modulation of entorhinal activity as a function of running direc-
tion. Critically, whether the human entorhinal cortex represents a grid-like map
of visual space similar to its monkey homologue remained unknown.

The second study addressed this question and examined hexadirectional signals
during a visual tracking and spatial memory task. Similar to project 1, participants
fixated at a fixation dot that moved within a virtual arena seen from bird’s eye view.
While following the dot, participants memorized object locations within the arena.
We used eye tracking to ensure tight control of our participants’ viewing behavior
and analyzed entorhinal activity as a function of eye movement direction. To
do so, I developed a cross-validated voxel-wise version of the hexadirectional
analysis proposed earlier [158]. If grid cells in the human EC represented visual
space, we expected to see a six-fold rotational modulation of activity as a function
of eye movement direction.

Indeed, we found that EC activity exhibited this predicted six-fold rotational sym-
metry and was hence hexadirectionally modulated in our task. We neither ob-
served such modulation in control regions such as motor cortex, visual cortex
and frontal lobe, nor did the EC activity exhibit any other rotational symmetry but
six-fold. A control condition further excluded the possibility that optic flow could
have influenced our results and ensured that activity in the EC was not generally
modulated by eye movements or visual motion per se.

These results provided the first evidence that the human entorhinal cortex repre-
sents a non-sensory map of visual space using a grid-like code. This suggests that
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the spatial mapping systems for navigation and vision are strongly intertwined
and that entorhinal coding principles play a broad and general role in cognitive
functions beyond navigation. Most beautifully, these results were published to-
gether with additional independent evidence that directly supported the same
conclusions [171, 218].

Paper 3: Behavior-dependent directional tuning in the human
visual-navigation network
To encode and maintain a cognitive map of the environment, the brain needs
to continuously monitor our viewing direction as we move [341]. This engages
a large network of brain regions, spanning from early visual cortex over scene
processing regions to high-level mnemonic areas such as the hippocampal for-
mation [97, 98, 127, 315]. Despite decades of intensive research, the neural under-
pinnings of this process remain poorly understood in humans, especially in the
light of the behavior it supports. This is partly due to methodological constraints
when studying human brain activity during active behavior.

Here, we overcame some of these limitations by developing a predictive behav-
ioral modeling framework to study the neural population tuning underlying cog-
nitive mapping in fMRI. We re-analyzed ultrahigh-field 7T-fMRI data of participants
freely navigating in a virtual reality (VR) arena and performing an object-location
memory task [322]. As a window into cognitive mapping, we examined directional
tuning across key processing stages along the visual cortical hierarchy. This in-
cluded the early visual, retrosplenial, parahippocampal and entorhinal cortices
as well as the hippocampus.

We analyzed these data using a newly developed voxel-wise encoding model of
the navigation behavior, an approach that was heavily inspired by prior successes
of similar techniques in the visual domain [18, 32, 33]. First, we modeled world-
centered virtual head direction using basis sets of directional kernels di�ering
in kernel spacing and width. Using a cross-validated training-test procedure, we
then assessed how well these models predicted the activity of a voxel in indepen-
dent data. By iterating through all basis sets, we obtained the directional tuning
strength and width of each voxel.

Our results presented multiple conceptual and methodological advances. The
model successfully predicted activity in visual, retrosplenial, parahippocampal
and entorhinal cortices, demonstrating directional tuning in the human scene
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processing and navigation network for the first time during active spatial behavior.
Moreover, mapping the tuning width across the brain revealed a narrow-to-broad
tuning width topology in the parahippocampal cortex.

Most interestingly however, analyzing the tuning as a function of spatial mem-
ory performance showed that tuning strength, width and its cortical topology all
depended on how well participants remembered the object locations within the
arena. The direction of these e�ects as well as additional behavioral evidence sug-
gested that these tuning di�erences reflected how well the environment has been
encoded. Finally and following rodent work [335], we analyzed the e�ect of loco-
motion on the present results, showing stronger tuning in visual and retrosplenial
areas during movement, and stronger tuning in hippocampal and parahippocam-
pal regions while standing still. Multiple control analyzes along with the careful
design of the VR-environment ensured that our results could neither be explained
by directional sampling biases, nor by model parametrization or data quality.

In sum, these results suggest that our behavioral and mnemonic state influences
directional tuning in the scene processing and navigation network during active
memory-guided navigation. By doing so, they demonstrate that a high-level cog-
nitive mapping process interacts with network-wide environmental processing
and show the power of encoding models to study human brain activity during
naturalistic behavior. The following section will speculate about reasons why the
brain might have developed cognitive mapping in the first place and why a world-
centered reference frame is a useful representational format.

5.2 Why cognitive mapping & world-centered coordinates?

Following the discovery of place cells in the hippocampus [128], O’Keefe and Nadel
proposed that place cells are the neural implementation of the cognitive map
[129]. By showing that place cells encode locations when rats navigated through a
box, they demonstrated that in this context place cells represented a map of the
environment in a world-centered frame of reference. Since then, multiple other
cell types have been found in the hippocampal-entorhinal circuit that support
similar functions as well [123, 124]. Importantly, Tolman conceptualized the cogni-
tive map as a general organizational principle of how information is represented
in the brain that is not necessarily limited to navigation and the representation
of space [137]. In primates, growing evidence suggests that the same neural sys-
tems that represent a non-sensory map of space during navigation might also
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represent a map of visual space as well [127, 216, 217].

Why is it important to represent space in a map-like format and in a world-
centered reference frame? The critical function of spatial representations in the
hippocampal formation might be to organize information in a way that enables
flexible expression of behavior and knowledge [137]. World-centered coordinates
and cognitive maps might be optimal to support these functions for the following
reasons. First, one practical answer is e�ciency. Representing all spatial relation-
ships exclusively referenced to oneself would require the encoding of an enor-
mous amount of vectorial representations, which needed to be updated perpetu-
ally as we move. Second, a closely related argument is robustness. Because path
integration and spatial updating accumulates errors, this would ultimately lead
to a drift in spatial representations, wich renders them useless for the guidance
of behavior. By anchoring them to the environment, they encode a robust, stable
and reliable map of the environment. Third, world-centered representations al-
low to pre-compute trajectories and hence support the planning of our actions
in space. Pre-computing saccade sequences for example would be di�cult for a
purely retinotopic system, because all vectors will have changed after the exe-
cution of the first saccade. This is not the case if the trajectory is pre-computed
in world-centered coordinates. Intriguingly, empirical evidence suggests that sac-
cade sequences are indeed pre-computed in movement-invariant, possibly world-
centered coordinates [367–369]. Hippocampal-entorhinal codes are optimal to
perform these computations, because they likely allow to generate vectorial rep-
resentations from positional ones when needed [97, 98, 127, 154, 228, 370]. Forth,
map-based encoding of information allows greater flexibility to infer new rela-
tionships between places or events that were not originally experienced together.
For example, this means that shortcuts can be derived from prior knowledge with-
out having to experience these shortcuts before. This enables to respond more
flexibly to new challenges and changes in the environment.

Importantly, the above-mentioned functions depend on one critical aspect of cog-
nitive maps: they maintain information over time. For some functions like plan-
ning saccade trajectories a short-term storage of the spatial scene would su�ce,
others however require long-term storage of information in the form of episodic
memories [371–373]. This likely relies on an interplay between the spatially tuned
cell types discussed above with others encoding temporal relationships or the
presence of objects in environment. Together, these mediate representations of
’where’ and ’when’ a certain event took place and ’what’ exactly happened (re-
cently reviewed by [374]). This allows to encode and later retrieve experiences
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and events and perform mental simulation [97, 98, 373, 374].

Notably, this process again builds on the intrinsic attractor network dynamics
within the hippocampal formation [375]. Time and space are continuous, but
events need to be memorized discretely and independently of each other to avoid
confusion during retrieval. The combination of continuous and discrete attrac-
tor networks might provide the solution to this challenge. They help to memo-
rize events using orthogonalized population codes (pattern separation) while still
providing smooth transitions between states. During retrieval, the same network
dynamics might also help to retrieve an event from memory using partial inputs
only (pattern completion) [375]. From this perspective, place cells might encode
information with high dimensionality in discrete states, with grid cells provid-
ing the e�cient and low dimensional basis set that encodes the state transition
structure [238, 239, 376]. This idea receives growing empirical support in the past
years [168, 169, 237, 377].

In sum, representing information in a map-like, non-sensory and world-centered
format enables e�cient, robust and flexible computations to plan and guide our
actions in space. In addition, it provides the foundation for the formation of mem-
ories by allowing to encode and retrieve experiences independent of our current
location.

5.3 Cortico-hippocampal interactions are bidirectional

The above-discussed computational e�ciency, robustness and flexibility of hippo-
campal-entorhinal coding puts it in a key position to guide our behavior and to
shape perceptual processing in upstream areas. In the following, I will briefly dis-
cuss a few selected examples that demonstrate that hippocampal-cortical inter-
actions are bidirectional and that hippocampal spatial representations do indeed
shape perceptual processing and behavior.

5.3.1 Episodic recall

One important role of the hippocampal-entorhinal attractor networks discussed
in Chapter 1 is pattern completion, the reconstruction of complete stored memory
representations from incomplete inputs [375, 378]. Importantly, ’re-experiencing’
past events from memory engages not only the hippocampus, but the same sensory-
specific cortices that were active during perception [379]. Consolidation models
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propose that memory encoding and retrieval generally depend on hippocampal-
cortical interactions and that the long-term storage of memories lies in corti-
cal networks [380]. Consistently, the vividness of recalled stimuli depends on
how similar sensory cortex activity is compared to when these stimuli where per-
ceived [381]. Potentially, this reflects a code that is common for perception, imag-
ination and episodic recall for which especially the anterior portion of the hip-
pocampus seems critical [382]. Indeed, human fMRI studies showed that the abil-
ity to decode reinstated associative memories from visual cortex correlates with
activity in the hippocampus [338]. Likewise, parahippocampal memory reinstate-
ment as measured by pattern similarity between perception and recall correlates
with hippocampal activity [383]. While such studies show that pattern reactiva-
tions in sensory cortices covary with hippocampal activity, the direction of this link
remains unclear in these studies. In rodents however, inactivations of hippocam-
pal CA1 neurons showed a direct top-down relationship between hippocampal
activity and reinstatement in sensory cortices [384]. In sum, pattern reinstate-
ment in sensory cortices during recall is likely orcestrated by hippocampal pat-
tern completion mechanisms, which are also a fundamental part of the cognitive
map [375]. Furthermore, an important but more implicit memory function is the
retrieval of contextual information. This point will be discussed in detail in the
’Extended discussion’ in the ’Context selectivity’ section.

5.3.2 Predictions

By allowing to form memories and to learn from past experiences the hippocam-
pal formation is a critical component of the ‘prediction machine’ that arguably
forms the most essential cognitive function of all [385]. Learning from past ex-
periences is useful only if one can form expectations about future events and
adapt one’s behavior accordingly. In fact, this predictive principle has been pro-
posed as a general framework to understand brain function, in which the brain is
considered to be a hierarchical and recursive generative network that constantly
tries to match top-down expectations to sensory signals to minimize prediction
errors [385]. This relies on a constant bidirectional cascade of both bottom-up
inputs and top-down feedback [299] that modulates sensory processing on a
large scale (recently reviewed by [386]). While not all predictions are necessarily
hippocampus-dependent, a growing number of studies shows that the hippocam-
pal formation is indeed involved in predictive processing. In rodents for example,
evidence for this has been observed in the form of phase precession [387]. Here,
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place cells fire in progressively earlier theta phases of the local field potential as
the animal approaches the neuron’s receptive field. Phase precession can be in-
terpreted as the prediction of the sequence of upcoming positions or events [388].
Similar coding has been observed in grid cells [389], and strikingly also in V1 neu-
rons [336], which are modulated by position [337]. These spatial representations in
V1 are correlated with the ones in the hippocampus even in the absence of visual
cues [336], suggesting that predictive positional signals might permeate from the
hippocampus all the way to V1. In humans, fMRI studies using sequence-learning
paradigms showed that the medial temporal lobe is involved in learning statistical
regularities [390] and that the ability to decode stimuli from V1 activity correlates
with the ability to decode the stimulus sequence from the hippocampus [339].
Similarly, after participants learned to predict visual stimuli based on auditory
cues, the shape of the predicted stimulus can be reconstructed from hippocam-
pal activity [340]. While the exact role of the hippocampus in this process might
change over time, along with its background connectivity to sensory regions [391],
such reports show that it does contribute actively to forming predictions.

Notably, the mnemonic, predictive and spatial functions of the entorhinal cor-
tex were recently incorporated into a computational model of recognition mem-
ory. Here, putative visual grid cells encode the location of visual features in the
scene and guide the oculomotor systems to test predictions about stimulus iden-
tity [228]. Importantly, my doctoral work presented in this thesis provided the
first evidence for visual grid cell activity in the human entorhinal cortex [170]. To-
gether, such findings and models suggest that the hippocampal formation likely
contributes greatly to the generation of predictions, which then also modulate
processing in sensory regions.

5.3.3 Attention

Processing in sensory and motor regions is strongly modulated by attention in
various ways [392]. One possible influence is the sharpening of the representa-
tions of attended stimuli, which are then also transmitted more strongly to down-
stream regions such as the hippocampal formation. Attention is controlled by a
fronto-parietal brain network in which neural processing is dominated by a theta
rhythm [393, 394], which can also be observed on a perceptual level [395]. This
has led to the proposal that ’the attentional spotlight blinks’ [396,397] to organize
perceptual and motor functions in time [397, 398]. Interestingly, the hippocampal
formation is driven by similar theta rhythmicity [370, 399–401], which is phase-
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reset at the time of gaze fixations [402, 403]. This phase reset has been proposed
to provide the time window for new sensory information to enter the hippocam-
pus [404]. While it remains unclear whether these processes are related, one can
speculate about potential interactions. As discussed above, attractor dynamics in
the hippocampal-entorhinal circuit tend to drift and need to be anchored to the
external world using visual information. Potentially, the hippocampal formation
strengthens the recruitment of visual inputs via an attentional mechanism for
example during reorientation. This could also explain why non-retinotopic repre-
sentations are modulated by attention [38,70] and need time to build up [75]. They
might be recruited by attention and forwarded to downstream regions such as the
hippocampal formation whenever needed. This would predict that hippocampal
activity is modulated by attention specifically when the required information is
spatial, which is indeed the case [405, 406]. The hippocampus contributes to at-
tention to spatial layout and relational information, but not to feature based at-
tention [407, 408]. Consistently, visual grid cell representations in the entorhinal
cortex reflects the locus of attention independent of gaze position [227]. While the
here proposed relationships remain speculative, these examples demonstrate a
close link between hippocampal-entorhinal processing and attention and point
towards the possibility that this link is bidirectional [406].

5.3.4 Oculomotor control

Controlling our viewing behavior is related to all three points mentioned above.
Eye movements support memory retrieval [409] and where we look and attend can
be an expression of our predictions about the environment [410]. While oculomo-
tor behavior and memory processing are known to depend on each other [314,411],
the direction of this relationship is often less clear. Does our gaze behavior de-
termine subsequent memory encoding or is the former a direct expression of the
latter? The extended discussion section in Chapter 6 will elaborate on related
points in detail. Here, I will instead focus on a phenomenon called ’mnemonic
gaze reinstatement’, which shows a clear top-down relationship between mem-
ory and oculomotor output (recently reviewed by [409]). Tracking the eyes during
picture viewing and subsequent recall showed that gaze movements during en-
coding are partially reinstated during retrieval and that preventing these move-
ments leads to less accurate memory [412, 413]. This suggests a direct functional
contribution of the oculomotor system in memory retrieval. Gaze reinstatement
depends on hippocampal function [414], which is also in line with the observa-
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tion that hippocampal activity predicts how indicative eye movements are of re-
lational memory [415]. Spatial representations in the medial temporal lobe might
be critical in this process as an interface between the mnemonic and sensorymo-
tor domains [127, 217, 228]. We proposed that grid cells compute vectors between
visual locations similar to their proposed role in navigation [127]. These vectors
could guide our gaze movements to currently relevant aspects in the visual scene,
which might hold true also during memory retrieval.

5.3.5 Medial temporal lesions: a counter-argument

The work presented in this thesis proposes that the human hippocampal forma-
tion mediates a non-sensory representation of space that shapes network-wide
perceptual processing and guides viewing behavior. Is there empirical evidence
that speaks against this idea? One counterargument could be the lack of strong vi-
sual and behavioral deficits following hippocampal damage [329]. Lesions do im-
pair performance in recognition memory [416,417] and working-memory tasks [418],
the mechanistic origin of these deficits however is often unclear. A big challenge
for empirical tests is di�erentiating perceptual and behavioral deficits from the
ones explained by general memory deficits in such tasks. An optimal experiment
would hence test all of these factors independent from the others. This however
remains challenging. Importantly, the fact that perception remains una�ected by
hippocampal lesions is not at odds with the present proposal. The hippocampal
formation is not a perceptual area per se (see Box 1 in Chapter 6). Damaging it
would impair the non-sensory representations mediated by the hippocampal for-
mation, but not all world-centered representations in the brain in general. Many
here discussed perceptual and behavioral functions benefit from cognitive map-
ping, but could also be achieved with more e�ort by other cortical systems and
even in retinotopic or head-centered reference frames. One example for such a
systems-level re-weighting has been observed in participants with reduced grid-
cell like coding in the entorhinal cortex, who tend to show stronger hippocampal
activity [164].

Which behavioral or perceptual deficits would one expect following hippocampal-
entorhinal damage? It might lead to impairments in transsaccadic integration [79],
because the stable and mnemonic hippocampal representation of the visual field
is missing. This should lead to a stronger accumulation of retinotopic updating er-
rors in participants with hippocampal damage even though visual constancy can
still be achieved. Interestingly, such patients are impaired in attending to spatial
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relations (e.g. the spatial layout of the visual stimulus) [408], but are still capable
of learning statistical regularities of visual stimuli and to control feature-based
attention [407]. Consistently, the expected impairments in transsaccadic integra-
tion should be stronger for spatial than for feature information. Future studies
could test this proposal empirically.

5.3.6 Concluding remarks

Collectively, the work presented in my doctoral thesis bridges across multiple
long-standing lines of research. It ranges from the fields of vision science to navi-
gation and memory research and aims to provide a holistic perspective of the pro-
cesses involved. The empirical work presented here improves our understanding
of spatial perception and cognitive mapping in the human brain and highlights
the domain-general nature of our brain’s spatial mapping system. It is comple-
mented by a theoretical framework proposing that our visual and navigational
mapping systems are strongly intertwined and that vision is an optimal domain
to study human cognition on all levels. By demonstrating that the computations
along the cortical hierarchy are interdependent, this work also emphasizes the
importance of studying human cognition with a broad network-level perspective
and in the light of the behavior it supports.
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6.1 Abstract
We explore the environment not only by navigating, but also by viewing our sur-
roundings with our eyes. Here we review growing evidence that the mammalian
hippocampal formation, extensively studied in the context of navigation and mem-
ory, mediates a representation of visual space that is stably anchored to the exter-
nal world. This visual representation puts the hippocampal formation in a central
position to guide viewing behavior and to modulate visual processing beyond the
medial temporal lobe (MTL). We suggest that vision and navigation share sev-
eral key computational challenges that are solved by overlapping and potentially
common neural systems, making vision an optimal domain to explore whether
and how the MTL supports cognitive operations beyond navigation.
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6.2 All eyes on the hippocampal formation

Navigation and vision are two fundamental strategies used to explore the world,
and how we use one often directly a�ects how we use the other [419, 420]. Like
navigation—defined here as physical body-based movement through the envi-
ronment—, eye movements make it possible to acquire new information rapidly.
However, they also introduce a critical problem that the brain must solve: each
time the eyes move, all features in the visual scene change their position relative
to the retina (self-centered reference, see Glossary), and yet our subjective expe-
rience is that their location remains stably defined in external world-based coor-
dinates (world-centered reference). Such world-centered coordinates are useful;
they not only stabilize perception, but also are critical to e�ciently accomplish
many actions, such as visual search or reaching. Despite decades of research re-
vealing several interconnected mechanisms, how the brain generates and main-
tains world-centered representations of visual space remains unclear. Here we
suggest a possible solution to this problem, based on how the brain solves a par-
allel problem in the navigational domain.

There are two primary ways navigators keep track of their position as they move.
First, navigators can use path integration to keep track of their displacement, a
process that involves the use of internal self-motion cues (e.g., vestibular or pro-
prioceptive signals) without reference to the external world [421,422]. A limitation
of this strategy, however, is that tracking errors inevitably accumulate over time.
Thus, an alternate strategy is world-centered navigation, which involves the use
of external sensory cues to maintain a representation of navigable space that
is invariant to one’s own movements [423]. A key mediator of world-centered
coding during navigation is the hippocampal formation (HF) [123, 315]. Here we
review growing evidence that the HF not only supports world-centered naviga-
tion, but also represents world-centered visual space as well. This observation
implies that this article’s very own title is somewhat misleading. Referring to the
HF as ‘the brain’s navigation system’ does not capture the full range of cognitive
functions it supports. Visual exploration and navigation might in fact not be two
parallel operations, but may rather be two expressions of a common mechanism
for exploring the world.
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6.3 Medial temporal codes support navigation and vision

The hippocampus contains place cells that fire whenever a navigator occupies
particular environmental locations [128]. Di�erent place cells fire in di�erent lo-
cations and thus, as a population, represent a world-centered map of navigable
space. Place cells use self-motion information to maintain spatial representa-
tions in darkness for a short time, but eventually accumulate errors over longer
timescales that are corrected using external sensory cues [140, 424]. Intriguingly,
place cells also have an entirely visual analogue. Specifically, the primate hip-
pocampus contains neurons that increase firing rate when specific environmen-
tal locations are viewed, irrespective of the location of the body, eye position in
the orbit, or facing direction (Figure 6.1A, Key Figure) [220, 221]. These spatial view
cells are updated based on eye movements when the preferred view is hidden
in darkness or obscured, but tend to drift and become less sharply tuned [222].
Therefore, spatial view cells have similar properties as place cells, except tuned
to world-centered gaze location instead of self-location. Place cells are not topo-
graphically organized in the rodent hippocampus [425] (i.e., cells tuned to nearby
environmental locations are not more anatomically proximal than cells tuned to
far apart locations), which may explain why previous studies did not observe a to-
pographically organized representation of visual space in the hippocampus [87].
Notably, the presence of a world-centered map of visual space in the hippocam-
pus does not necessarily imply that the hippocampus is involved in visual per-
ception per se beyond providing a coordinate system (see Box 1 for further dis-
cussion).

One of the primary inputs to the hippocampus is the entorhinal cortex (EC). During
navigation, entorhinal grid cells fire in a regular hexagonal lattice of locations
that tile the floor of the environment [151]. Grid cells are thought to combine self-
motion and environmental information to provide a stable metric for the place cell
map [157]. Similar to grid cells, recordings of EC neurons in head-fixed monkeys
revealed strikingly similar hexagonal firing patterns encoding the location of gaze
during free viewing of visual scenes (Figure 6.1B) [225]. A proportion of these visual
grid cells shift their firing fields in concert with translation of the visual scene,
showing that some represent visual space in world-centered coordinates (Figure
6.1C) [226]. In two recent studies, we extended these findings by showing that
also human EC supports a world-centered grid-like representation of visual space
[170, 171].
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Figure 6.1: Key Figure: Spatial Codes in Vision and Navigation. (A) Place cells and spatial
view cells in hippocampus. Left: rodent place cells encode self-location in the world (firing
rate color-coded). Right: monkey spatial view cells encode world-centered gaze location
(firing rate in dark color); example cell from [220]. (B) Grid cells and visual grid cells in
entorhinal cortex (EC). Left: grid cells fire at several locations arranged in hexagonal lattice
tiling the environment. Right: monkey visual grid cells show the same hexagonal firing but
encode gaze position in the visual scene (adapted from [225]). (C) Grid pattern anchors
to boundary. Firing pattern of some visual grid cells shifts (yellow arrow) in concert with
shifts in the stimulus (adapted from [226])). (D) Human fMRI-grid signature. Left: visual grid
cell model predicts higher activity for gaze directions parallel to the grid axes ( and steps
of 60°, white lines) than for directions in between. Right: fMRI activity in EC depends on
gaze direction showing predicted sixfold rotational symmetry. (E) Visual boundary anchor-
ing of human fMRI-grid signature. When search display rotates during visual search, fMRI
grid signature in most voxels changes orientation, mirroring the search display rotation.
(F) Border cells and visual border cells in EC. Left: rodent border cells encode proximity
to navigational boundaries. Right: visual border cells encode proximity of the monkey’s
gaze to the edges of a visual stimulus (example cell from [225]). (G) Head direction cells
and saccade direction cells in EC. Left: rodent head direction cells encode facing direc-
tion. Right: monkey saccade direction cells encode direction of future and past saccades
(adapted from [229]).

Participants had their gaze position monitored while they performed an object
tracking or visual search task. fMRI responses in EC exhibited a sixfold symmetry
as a function of gaze movement direction, which is indicative of grid cell activ-
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ity (Figure 6.1D) and akin to the fMRI grid-signature found during navigation [158].
This visual grid representation was absent when participants fixated but the visual
scene was moved instead, suggesting that active movements of gaze or attention
are required to drive visual grid cells. Passive transport likewise abolishes grid
coding of navigable space in mice [426]. Critically, we also found that the EC vi-
sual grid signal is anchored to the visual scene in the same way as rodent grid
cells representing navigable spaces [427,428], adopting reliable alignments to the
borders of the visual stimulus and rotating in concert with rotation of these bor-
ders (Figure 6.1E).

Place and grid cell firing fields are likely anchored to the external world [351, 429]
by border cells in the EC and the subiculum that fire when navigators are a partic-
ular distance and direction from spatial boundaries [194,196,430]. Border cells are
tuned not only to navigational obstacles like walls, but also to vertical cli�s, rais-
ing the possibility that such cells represent the edges of the local environment
broadly [196]. Akin to border cells, monkey EC contains neurons that increase
their firing rates when gaze is close to one or more of the borders of a visual
stimulus [225] (Figure 6.1F). Visual border cells respond to the outer edges of a
visual stimulus irrespective of the stimulus content. The borders of visual space
have long been known to influence search e�ciency in visual search tasks [431].
Importantly, unlike neurons in primary visual cortex tuned to orientated edges in
retinotopic coordinates, visual border cells do not respond to edges within the
visual stimulus itself.

Another critical component of the world-centered navigation system are head
direction (HD) cells found in several subcortical and cortical structures, includ-
ing EC [341]. HD cells fire based on the orientation of the head in the naviga-
tional plane, independent of body location, and are updated by a combination
of vestibular and external sensory inputs, including visual information that ref-
erences the HD signal to the environment [109]. Di�erent HD cells have di�er-
ent preferred orientations and thus, as a population, are akin to a neural com-
pass [341], likely acting in concert with border cells to orient place and grid cell
firing fields relative to the external world. Similar to HD cells, neurons selective
for eye movement direction were recently observed in monkey EC [229]. These
saccade direction (SD) cells are tuned to the direction of an upcoming saccade or
a previously completed saccade, or both, independent of the position the monkey
is currently looking at in visual space (Figure 6.1G). Whether SD cells code direc-
tion in world-centered coordinates is unknown, but one possibility is that they
represent SD relative to an axis defined by gravity.



6.3. Medial temporal codes support navigation and vision 139

Box 1. Is the hippocampal formation involved in visual perception?
Perceptual impairments following MTL damage, and MTL activation to visual stimuli,
have raised the question whether the HF is involved in visual perception, indepen-
dent of memory [382,432, 433]. Some of the strongest evidence for this idea comes
from studies examining hippocampal involvement in perception of visual scenes.
In fMRI studies, hippocampal responses are stronger for visual scenes than for ob-
jects, even if no explicit task was performed [434], and several studies found that
the ability to di�erentiate visual scenes depends on healthy hippocampal func-
tion [416–418, 435]. Such results have led to the proposal that the hippocampus is
an integral part of the visual scene perception network [436].

An alternate possibility is that hippocampal responses to visual stimuli reflect the
extent to which perception requires coding of relational information. Visual scenes
are defined not only by their local features, but also by the specific global arrange-
ment of those features. Such global feature arrangements engage the HF more
strongly than details in a visual scene [405], and increasing overlap between im-
ages interferes with recognition to a greater extent in individuals with MTL damage
compared with healthy controls [416, 417]. While the implications of such findings
are still debated (e.g., [432, 437]), they suggest that the role of the HF in visual per-
ception may be the processing of relational information, rather than perception
of visual content per se, a process not restricted solely to perception or memory.
This also resonates well with reports that hippocampal patients are impaired at
imagining scenes with high spatial coherence [438].

Such results may explain why MTL perceptual e�ects are most pronounced for vi-
sual scenes defined not only by specific features (e.g., vase and table), but also by
the spatial arrangement of those scene features (e.g., the vase stands on the table
versus the vase stands under the table). Relational coding requires a coordinate
system relative to which the locations of visual features can be specified. The MTL
might provide just such a world-centered coordinate system that is invariant to the
specific content of the scene. This implicates the HF in visual perception insofar as
relational processing is required. In addition, as we discuss in the Recall and Plan-
ning section, the MTL likely also plays a role in perception by guiding overt [225]
and covert [227] perceptual sampling, possibly by forming predictions [376] that
also modulate visual processing [339].

In support of this idea, the orientation of the head relative to the gravity axis
a�ects perception of the orientation of visual stimuli [439, 440]. The monkey an-
terior thalamus contains neurons that carry a gravity-anchored head orientation
signal that could provide input to SD cells [441], similar to how thalamic HD cells
serve as input to parahippocampal HD neurons in rodents [341]. These functional
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and structural similarities suggest that primate SD cells may have an evolutionary
origin similar to the rodent HD circuit [229].

In sum, each of the key neural mechanisms that represent a world-centered map
(place cells, grid cells, border cells) and compass (HD cells) for navigation have
purely visual analogues that encode a world-centered map of visual space (spa-
tial view cells, visual grid cells, visual border cells) and the direction of eye move-
ments (SD cells). The HF thus represents world-centered visual space using similar
mechanisms as it does to encode world-centered navigable space, putting it at a
key position to support computations in both domains. We suggest that the HF
may provide the optimal solution to three key computational challenges shared
by navigation and vision: reference frame transformations, recall and planning,
and context specificity (which we will discuss below).

6.4 Reference frame transformations

All sensory information is self-centered, and yet our perceptual experience of the
world is stable during movements. This remarkable phenomenon requires the
brain to reconstruct self-motion invariant coordinates from noisy self-centered
inputs [309], a computation critical for both navigation and vision. How we ex-
perience the world as stable despite variability in retinal input across eye move-
ments (i.e., how the brain performs this transformation between reference frames)
continues to be a matter of debate [40, 41, 442]. Consideration of the neural ba-
sis of such reference frame transformations during navigation suggests a possi-
ble solution by which self-centered visual representations are transformed into
world-centered ones as well.

During navigation, self-centered coordinates are transformed into world-centered
ones by a brain network consisting of the posterior parietal cortex (PPC), the
medial parietal retrosplenial complex (RSC) that includes the retrosplenial and
posterior cingulate cortices, and the HF [93, 97, 316] (Box 2). Each stage of this
network contributes di�erentially to the two reference frames, with PPC mainly
processing self-centered (often body-based) information, the HF encoding world-
centered information, and RSC serving as the key transformation stage between
the two [96,97, 316]. This model suggests that the HF receives self-centered input
from neocortex, and in turn projects world-centered coordinates back to guide
navigational behavior [93, 97]. Coordinates are likely converted between the two
reference frames by integrating external sensory information with proprioceptive
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and vestibular signals related to self-motion and path integration [443].

Retinotopic representations of the visual field [13] are also likely transformed to
world-centered ones by the PPC-RSC-MTL pathway. In PPC, some visual receptive
fields are invariant to eye movements [50] (Figure 6.2A) and retinotopic repre-
sentations are updated to compensate for eye displacement before eye move-
ments are executed [51] (Figure 6.2B). This coordinate transformation is driven by
integration of visual inputs with corollary discharges about impending eye move-
ments [40], a process known as retinotopic updating [41,444]. Retinotopic updating
is also observed in a number of other brain regions [41] and similar mechanisms
support non-retinotopic encoding of visual motion in several monkey [64] and hu-
man [38,247] brain areas as well. It is often unclear which extra-retinal coordinate
system these regions use to represent visual space, but head- and body-based co-
ordinates have been observed. Moreover, some PPC neurons dynamically switch
between reference frames depending on whether the direction of gaze is fixed
relative to the head or body [89]. By integrating retinal information with self-
motion signals, these regions compensate for self-induced changes to the visual
scene and anticipate the consequences of future saccades [51, 444, 445]. However,
retinotopic updating alone cannot account for a range of findings related to vi-
sual memory, such as head-centered (possibly world-centered) memory traces
in retinotopic receptive fields [78] (Figure 6.2C). Moreover, like path integration,
retinotopic updating is prone to error accumulation over time [446], as it requires
constant updating of locations in the visual field, and thus a further corrective
and stabilizing mechanism is needed.

One possibility is that visual representations in PPC, transformed to non-retinotopic
coordinates by retinotopic updating and self-motion integration [40,51,447], serve
as input to the HF, which then forms a robust world-centered map of visual space
through predictive statistical learning [376]. The PPC-RSC pathway is well posi-
tioned for this signal transmission to the MTL [448] (Box 2). During navigation, RSC
neurons in rodents encode turn direction, path position, and direction-dependent
locations in route-based coordinates, as well as body orientation and location in
multiple world-centered reference frames [112, 449–451] (Figure 6.2D), in line with
human imaging results [113, 114]. Analogously, the posterior portion of RSC rep-
resents visual space in retinotopic coordinates [25], and the posterior cingulate
represents visual space in world-centered coordinates [452] (Figure 6.2E). Rodent
RSC also signals head movement information directly to early visual regions, refer-
encing visual motion processing to the current status of the observer’s head [453].
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Figure 6.2: Reference Frame Trans-
formation. (A) Non-retinotopic re-
ceptive fields (RF) in monkey pari-
etal cortex. Single-cell rate map of
the visual field for three gaze loca-
tions (white crosses). RF remains at
the same location independent from
gaze location (adapted from [50]). (B)
Retinotopic updating. Retinotopic RF
moves to postsaccadic visual field lo-
cation before saccade is executed.
Adapted from [51]. (C) Non-retinotopic
memory signal in retinotopic neu-
rons in monkey parietal cortex. Trial-
averaged single-cell response for tri-
als in which a saccade brings stim-
ulus location into RF (green & red).
Neuron responds also when stimu-
lus is not shown in the particular
trial (pink). Horizontal (H) and ver-
tical (V) gaze movements depicted.
Adapted from [78]. (D) Mixed ref-
erence frames in rodent retrosple-
nial cortex. Polar plots of firing rate
versus head direction (HD) in di�er-
ent rooms for exemplary bidirectional
(BD) and HD cells. Adapted from
[112]. (E) Single-cell responses to vi-
sual stimuli (grey dots, upper right
panel) at three gaze locations (color-
coded). Responses plotted in retino-
topic (left panel) and non-retinotopic
locations (right panel). Adapted from
[452].

The PPC-RSC-MTL pathway is bidirectional, suggesting that the MTL also commu-
nicates its world-centered visual representation back to neocortical areas. These
top-down signals might modulate neocortical processing and contribute to eye-
movement invariant receptive fields and visual stability. One possibility is that
the MTL provides gaze controlling areas with spatial information about the visual
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field before saccades are executed, helping to guide the shift of receptive fields
during retinotopic updating [40, 51]. If so, the MTL could act in concert with other
brain areas, such as the superior colliculus, which are known to send saccadic
corollary discharge signals to cortical regions via the thalamus [40,444]. However,
deficits in visual stability following MTL lesions have not been previously reported,
suggesting that the MTL is unlikely to participate in retinotopic updating directly.

Alternatively (or in addition), the MTL may play an important role in transsaccadic
memory, an idea at the center of a longstanding debate [80,454,455] in which the
MTL has been largely overlooked. Specifically, the MTL could give rise to a world-
centered memory signal that modulates retinotopic neurons [78,456] (Figure 6.2C)
even after a saccade landed (see e.g., [78,80,454,455] for related discussion). Unlike
presaccadic retinotopic updating, this MTL world-centered memory trace could
be integrated with postsaccadic visual input, providing an e�cient (i.e., no ac-
tive compensation for self-motion required) and noise-resilient (i.e., externally
anchored and robust to error accumulation) recalibrating mechanism that could
be employed as needed. Areas such as PPC [78] or frontal eye fields [456] could
match postsaccadic visual input to the eye-movement invariant visual field rep-
resentation maintained in the MTL. For example, for each new fixation onset, the
self-centered location at which salient visual information occurs could be com-
pared with the MTL’s world-centered map of visual space. Once a correspondence
between the self- and world-centered locations is found, the vector that encodes
the receptive field shift required to recalibrate the self-centered representation
could be fed back to the cortex. The entorhinal grid system has been implicated
in this type of vector computation [154, 457]. This proposal does not predict that
individuals with MTL lesions have visual stability deficits, since retinotopic up-
dating remains intact, but rather predicts that such individuals should have an
increased sensitivity to visual localization error accumulation across saccades. To
be useful for such a recalibration process, a maplike memory of the visual field
must be maintained in the MTL for at least the time intervals relevant for working
memory, a time scale on which the HF does indeed maintain visual memory, as
demonstrated by several hippocampal lesion studies (e.g., [432, 458–460]).
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Box 2. Anatomy of neocortical–hippocampal interactions in vision
A concept guiding vision science for several decades is the dichotomous organi-
zation of the visual system into two major multisynaptic pathways, the dorsal and
ventral visual stream. Here, we want to emphasize that these pathways, thought
to mediate di�erent aspects of vision, both converge on the MTL in the primate
brain [12].

A key processing and relay station of the dorsal occipitoparietal stream is the in-
ferior parietal lobule [12]. It connects not only many parietal, temporal, and oc-
cipital regions involved in visuospatial processing, sensory-motor integration, and
action planning (e.g., lateral and ventral intraparietal areas, areas V6 and V6A, and
the MT+ motion complex [64], but also projects to the gaze-controlling frontal eye
fields (FEF) [461] as well as directly and via RSC [122] to CA1 [95] and subicular [462],
parahippocampal, and entorhinal cortices [152, 463]. Parietal cortex is involved in
integrating visual input with gaze movements [50, 51] in concert with the FEF [461]
and is directly, as well as via FEF and the thalamus, connected to the superior col-
liculus [40], which is thought to be the prime source or relay station for gaze-related
e�erence copies [40, 444]. Thus, this dorsal pathway is most suited to provide the
MTL with gaze- and self-motion information.

By contrast, ventral visual areas support visual representations that are invariant to
eye movements [11]. The ventral visual stream is a strongly recursively connected
network, spanning from early visual cortex via areas V4 and the MT+ [464], infer-
otemporal areas TEO and TE [465], and RSC [122] to the most anterior parts of the
inferior temporal lobe and the HF [466]. It processes information predominantly
related to object quality and is thought to extract perceptually relevant features
from visual scenes [467], irrespective of their location. However, recent work has
found information about locations of visual objects in higher-order ventral visual
regions [468], raising the possibility that the ventral pathway provides visual posi-
tional information to the MTL as well.

The MTL is hence a convergence zone for visual information in the brain. How
might the MTL in turn shape neocortical processing and guide behavior? The key
mediator of cortico-hippocampal interactions is the EC [152, 463], receiving strong
hippocampal input via subicular cortices [462] and projecting to many regions on
frontal, temporal, and parietal cortices [469], as well as the RSC [121,122]. The latter
is a likely mediator between visual and mediotemporal processing given its strong
connectivity to the neocortex. In sum, connectivity suggests strong interactions
between visual and mediotemporal systems, putting the hippocampal formation
at a key position to shape vision.
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6.5 Recall and planning

Like navigation, a key function of visual exploration is to acquire new informa-
tion about the world. The relationship between viewing and memory (reviewed
by [217, 314, 411]) is typically examined in image recognition tasks, in which se-
quences of pictures are presented while humans or monkeys indicate whether
they have or have not seen these pictures before. Viewing behavior di�ers be-
tween later remembered and forgotten images, with the number [470,471] and du-
ration [470] of fixations linked to successful memory encoding. Hippocampal ac-
tivity directly depends on and predicts visual sampling, even for images that were
not consciously remembered [415, 472] (Figure 6.3A), suggesting that the timing of
hippocampal mnemonic processing is tightly linked to visual exploration. Indeed,
the timing of saccades themselves is not random but phase-locked to neural os-
cillations in visual and MTL areas during successful memory encoding [473] (Figure
6.3B).

Gaze movements interrupt the flow of incoming visual information, prompting
the HF to switch between active and inactive encoding states around the time of
saccades. The switch between encoding states may be driven by a phase-reset
of the hippocampal theta rhythm [402,403] (Figure 6.3C), anticipating new incom-
ing sensory information whose encoding depends on a precise interplay between
hippocampal spikes and theta phase [401]. Theta rhythms are also critical for grid
cell activity during navigation, which lose spatial periodicity when theta is inhib-
ited [399,400], and for place cells during navigation that fire at specific phases of
a theta cycle [370]. While the precise functional role of neural oscillations in the
MTL is not yet fully understood [474], they clearly play a critical role in both visual
and navigational domains.

Importantly, the relationship between viewing and memory is not unidirectional;
what we remember also directly influences how we explore the world (for review
see e.g., [411]). Once an image has been memorized, it is less visually explored
when it is repeated than when it is novel [225, 475, 476], a change in viewing be-
havior that depends on the hippocampus [475, 477]. Further, when participants
were asked to recall images they had seen before, their eyes re-enacted the same
movements they showed during encoding, an e�ect causally connected to the
quality of the recalled memory [412].
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Figure 6.3: Memory-Guided Planning.
(A) Visual sampling of novel images
predicts human hippocampal activ-
ity. Left: linear parametric modula-
tion (LPM) of number of fixations (t-
map threshold P = 0.005, 10-voxel ex-
tension, uncorrected). Right: LPM is
stronger for novel versus repeated im-
ages in left (LH) and right (RH) hemi-
spheric hippocampus. Adapted from
[472]. (B) Saccades are phase locked
to alpha oscillations during success-
ful memory encoding. Phase locking
index [across-trial local field poten-
tial (LFP), phase-locking index (PLI)]
di�ers significantly between later-
remembered and later-forgotten im-
ages in human medial temporal lobe.
Adapted from [473]. (C) Saccades re-
set theta phase in monkey hippocam-
pus. Left panel: increase in LFP phase
coherence after saccade is higher for
high versus low recognition trials.
Right panel: theta power increases
significantly after saccade. Adapted
from [402]. (D) Non-retinotopic carry-
over e�ects in saccade sequences in
humans. Second saccade (green ar-
row in task insets) curves away from
first fixation location (adapted from
[369]). (E) Navigational route plan-
ning in human hippocampus. Decoder
trained on goal location and tested on
prenavigation planning periods favors
subgoals on taken path over those on
alternative path. Adapted from [478].
(F) Sharp wave ripples (SWR) during
visual exploration in monkey. Left
panel: SWR rate increases over time
after trial onset. Right panel: SWRs oc-
cur more frequently in successful ver-
sus unsuccessful visual search trials.
Figures adapted from [479].
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Such memory-guided viewing has been intensively studied using the ‘inhibition of
return’ (IOR) phenomenon, which broadly refers to the fact that after attending to
a given visual location, reaction times for returning gaze to that location increase.
IOR has been proposed as a novelty-seeking mechanism that maximizes e�ciency
when exploring a visual scene (for review see [480]). IOR for example has been
shown to rely on non-retinotopic visual coordinates [76]. Moreover, when two sac-
cades are performed in a sequence, the non-retinotopic (possibly world-centered)
location of the first fixation spot influences the curvature of the subsequent sac-
cade [369] (Figure 6.3D), suggesting that a top-down non-retinotopic signal influ-
ences saccade execution or planning. Such saccade sequences also often have
latencies too short to plan and initiate each saccade separately [367,368], requir-
ing the sequence to be preplanned in coordinates invariant to eye movements
because all precomputed SDs will have changed after the first saccade [217]. Thus,
planning and controlling oculomotor behavior likely requires coordinates refer-
enced to the external world. Since the MTL contributes to goal detection during
visual search [481] and contains both a world-centered visual map and SD cells, it
is well positioned to perform such computations. In fact, the required computa-
tions are similar to those of goal-directed navigational route planning for which
the HF is critical [478] (Figure 6.3E). In rodents, memory-guided route planning dur-
ing navigation has further been linked to hippocampal sharp-wave ripples [482],
which have also been observed in monkeys during visual exploration [479] (Figure
6.3F), especially when the presented images are repeated [483]. Growing evidence
also shows that the same MTL mechanisms guide (or are guided by) the position
of visual attention independent of gaze [227,406]. Together, these results suggest
that the MTL drives viewing behavior to e�ciently acquire new information about
the visual environment [484], in line with the idea that gaze is a behavioral ex-
pression of visual predictions [410] generated by the HF [376].

6.6 Context specificity

In addition to encoding a map of the local spatial environment, the hippocam-
pus stores multiple world-centered maps of navigable space (in the ‘cognitive
atlas’), allowing it to represent locations in multiple navigational contexts [142].
The ability of the hippocampus to distinguish between contexts during navigation
is indexed by remapping, in which contextual changes cause all simultaneously
recorded neurons to shift place fields to new locations or stop firing altogether,
quickly resulting in a new and distinct spatial representation [141,485] (Figure 6.4A).
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The emergence of remapping depends on several factors, including a navigator’s
experience with a context [143,486], and can be eliminated by inhibiting hippocam-
pal plasticity [487]. These mnemonic components indicate that remapping facili-
tates contextual memory during navigation, rather than perceptual processing.

Context also plays an important role in visual tasks by guiding visual search and
recognition. In a now standard demonstration of this idea [488], the spatial config-
uration of an array of distractors in a visual search display provides a unique con-
text that reliably determines the location of a search target. Participants typically
find the visual search target faster when they have had prior exposure to the visual
context, an e�ect referred to as ‘contextual cueing’ [489]. Hippocampal remapping
may provide a critical mechanism underlying such visual context e�ects, by stor-
ing multiple maps of visual space (in a ‘cognitive picture book’) for multiple visual
contexts. fMRI studies have shown that contextual cueing is mediated by the hip-
pocampus [490, 491] (Figure 6.4B), and patients with MTL damage do not show a
search benefit for repeated arrays [492–494]. Hippocampal volume correlates with
the magnitude of contextual cueing in typical older adults and adults diagnosed
with mild cognitive impairment associated with MTL atrophy [495] (Figure 6.4C).
The strength of contextual cueing is modulated by a viewer’s experience with the
visual context [496,497], similar to the dependence of remapping on navigational
experience [143, 486]. Notably, visual context also modulates fMRI activity in PPC
and RSC during search tasks, suggesting that not only world-centered coordinates
as reviewed above but also hippocampal context representations may feedback
to the broader visuospatial mapping network to guide context-dependent viewing
behavior [498].
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Figure 6.4: Context Specificity. (A) Hippocampal remapping. Recruitment of a new place
cell maps specifically to each navigational context, such as di�erent rooms (adapted from
[485]). (B) The hippocampus mediates visual context. Left: participants performed a visual
search task during fMRI. Target location was cued either via specific distractor arrange-
ment [contextual cueing (CC)] or probabilistically by stimulus color [stimulus response
(SR)]. Right: hippocampus predicted search benefits in CC, the striatum in SR conditions
(adapted from [491]). (C) Hippocampal volume correlates with the magnitude of visual
contextual cueing (mean response time on novel minus repeated search configurations)
in typical humans and patients with mild cognitive impairment (MCI) (adapted from [495]).
(D) Three possible hippocampal codes for vision and navigation. Left: same population,
di�erent population code. Example: place cells in flying bats remap depending on whether
they use vision or echolocation to navigate in the same context (xz is horizontal plane,
yz is vertical plane; cell adapted from [499]). Middle: conjunctive coding. Example: mon-
key hippocampal neurons conjunctively represent gaze- and self-location (example cell
adapted from [223, 500]). Right: same population, di�erent time. Example: after one navi-
gational context is rapidly switched to another, rodent hippocampal place cell population
spontaneously flickers back-and-forth between representations of the two contexts (map
similarity is the correlation between the current population response vector and the aver-
age population response vector in context A and B, respectively; adapted from [501]).
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The existence of multiple maplike representations in the hippocampus raises
three alternatives for how the hippocampus supports maps of both navigational
and visual spaces (Figure 6.4D). First, separate hippocampal populations may me-
diate representations for the two domains and remap between them depending
on their behavioral relevance. In the bat hippocampus, place fields remap de-
pending on whether bats employ vision in light or echolocation in darkness to
navigate [499], indicating that, in this case at least, space perceived using di�er-
ent sensory modalities is mapped using separable neural representations. Sec-
ond, some neurons in the monkey and human hippocampus are sensitive to both
body and view location during navigation [135, 223]. Thus, the same hippocampal
populations may conjunctively represent navigational and visual spaces. Finally,
the same neuronal population may represent both navigational and visual spaces,
but at di�erent times, and alternate between visual and navigational maps dur-
ing simultaneous eye- and body-based movements. Consistent with this idea, the
hippocampus ‘flickers’ between representations of two distinct navigational con-
texts at di�erent theta cycles when there are abrupt shifts in context [501]. Future
research using behavioral tasks that require simultaneous monitoring of locations
in both visual and navigational spaces are needed to dissociate these alternatives.

6.7 Concluding remarks

It has long been known that vision is important for navigation [213]. However, the
converse is less well appreciated. Here we have reviewed mechanisms in the HF
that provide the fundamental resource to support several critical computations
shared by navigation and vision. We have proposed that the HF, traditionally be-
lieved to support navigation, also mediates a world-centered representation of
visual space and guides viewing behavior. Since primates are particularly visual
creatures, the neural mechanisms that evolved to support navigation in rodents
may have been co-opted to support visual exploration as well, leading to strongly
intertwined navigational and visual mapping systems. In support of this view, we
have drawn on data from both primates and rodents; hence, an important caveat
is that we may have elided relevant species di�erences. The rodent HF medi-
ates representations of non-navigational spaces, such as spaces defined purely
by auditory information [237], but whether it mediates a map of visual space is
unknown. In primates, visual and navigational mapping systems overlap on a
systems level, but whether the two domains are supported by the same neurons
remains as yet unknown (see Outstanding Questions).
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As a coda, we wish to note our belief that the MTL computations reviewed here
likely have broad applications beyond both navigation and vision. The idea that
the HF performs domain general computations is not new. Indeed, Tolman origi-
nally conceptualized the cognitive map as a heuristic for flexibly guiding behav-
ior in general [137]. Yet, it is only recently that empirical research has begun
to take this idea beyond metaphor. We encourage researchers of cognitive do-
mains other than navigation and memory to ‘look at’ the HF, and further suggest
that vision may prove to be the ideal domain for future explorations of how MTL
computations support cognition broadly, because visual representations can be
characterized concretely in terms of distances and directions in the same way as
navigational spaces. By testing whether the same principles govern spatial rep-
resentations for vision and navigation, and whether the MTL plays the same role
in solving analogous problems in both domains, we will have made a key step
toward illuminating the function of the MTL in general.
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Box 3. Outstanding questions

How, and to what environmental features, are world-centered maps of visual space
anchored in a dynamically changing world (e.g., during real-world navigation)?

Do head direction and saccade direction cells play analogous orienting roles in
navigation and vision, respectively?

Since visual space does not contain eye movement obstacles in the same way as
navigational space, what information drives visual border cells?

Do spatial view and visual grid cells code visual space in depth (e.g., along the
ground plane), or only in the two-dimensional visual plane?

Does the MTL world-centered map of visual space support visual constancy (by
guiding retinotopic updating or by mediating memory traces of the visual field)?

Is contextual cueing mediated by hippocampal remapping?

Do MTL visual representations drive or are they driven by shifts in visual attention?

Do the same MTL neural populations mediate world-centered representations
of visual and navigational spaces (Figure 6.4C) and how do they interact during
navigation?

Do MTL world-centered visual representations emerge in typical development at
the same time as world-centered representations of navigational space? Relatedly,
do visual representations in the MTL break down along similar trajectories in typical
aging and disease as the coding of navigational spaces?
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Glossary 1

Border cell: entorhinal or subicular neuron that is active when the animal
occupies locations along navigational boundaries, such as walls or cli�s.

Cognitive map: first proposed as mental representation of locations and the
relationship between them, cognitive maps are discussed as general map-based
coding principle for information in the brain.

Context: spatial, temporal, and situational setting associated with particular
behavioral or mnemonic outputs.

Corollary discharge: also known as ‘e�erence copy’, it is a copy of a motor
command that is sent to the muscles to produce a movement. Sensory areas use
corollary discharges to anticipate self-motion related sensory change.

Grid cell: entorhinal neuron that is active when the animal occupies certain
locations arranged in a hexagonal lattice, tessellating the environment. Grid cells
encode self-location during navigation.

Head direction (HD) cell: neuron that is active when the animal faces into a
certain direction in the environment. Head direction cells were found in several
brain areas, including the hippocampal formation.

Hippocampal formation: compound of brain regions in the temporal lobe,
including the hippocampus proper with its subfields CA1, CA2, and CA3; the dentate
gyrus; subicular cortices; as well as the entorhinal cortex.

Non-retinotopic: umbrella term describing representations of visual space that
are not retinotopic (see definition ‘Retinotopic’). Includes all movement-invariant
reference frames, such as world-centered (spatiotopic) and head-centered (cran-
iotopic) reference.

Place cell: hippocampal neuron that is active when an animal occupies a certain
location in the environment. Place cells encode self-location during navigation.

Proprioceptive signal: neural representation of mechanoreceptive information
about tendon status and muscle tone. Together with vestibular signals (see def-
inition ‘Vestibular signal’), proprioception provides information about position of
body parts and movements.
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Glossary 2

Retinotopic: retinotopy is the mapping of visual space from the retina to neurons
in visual cortex. Here, neighboring visual locations drive neighboring cells.
Retinotopic maps are self-centered (see definition ‘Self-centered reference’).

Saccade direction (SD) cell: saccade direction cell; neuron that is active when the
eyes move into a certain direction.

Self-centered reference: coordinate system referenced to one’s own body, or
parts of it, such as the eye (see definition ‘Retinotopy’). Also known as ‘egocentric’.

Spatial view cell: hippocampal neuron that is active when an animal looks at
a certain location in the environment. Spatial view cells encode gaze location
during visual exploration.

Transsaccadic memory: visual short-term memory representation of the presac-
cadic visual field that influences postsaccadic processing. Transsaccadic memory
is discussed as one of multiple mechanisms mediating perceptual stability.

Vestibular signal: neural representation of sensory information about head/body
movements relative to the axis of gravity. Vestibular information constitutes an
important cue about self-motion and body position in space.

Visual border cells: entorhinal neuron that is active when the animal looks at
locations close to the edge of a visual stimulus display. Does not respond to edges
within the display.

Visual grid cell: entorhinal neuron that is active when the animal looks at or
attends to certain locations in the visual scene. Its receptive fields are arranged
in a hexagonal lattice, tessellating visual space. Visual grid cells encode gaze
location during visual exploration.

Visual exploration: behavioral strategy to explore the environment by means
of eye movements and viewing without the need of navigating, hence without
physically moving through the environment.

World-centered reference: self-motion invariant coordinates referenced to exter-
nal cues such as landmarks or visual features in a scene. Also known as ‘allocentric’.
Also see the definition of ‘Non-retinotopic’.
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