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Abstract

The fully polarizable QM/MM approach based on fluctuating charges and fluctu-

ating dipoles, named QM/FQFµ (J. Chem. Theory Comput. 2019, 15, 2233-2245),

is extended to the evaluation of nuclear gradients and the calculation of IR spectra

of molecular systems in condensed phase. To this end, analytical equations defining

first and second energy derivatives with respect to nuclear coordinates are derived and

discussed. The potentialities of the approach are shown by applying the model to the

calculation of IR spectra of Methlyoxirane, Glycidol and Gallic Acid in aqueous so-

lution. The results are compared with the continuum QM/PCM and the polarizable

QM/FQ, which is based on Fluctuating Charges only.
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1 Introduction

Vibrational spectroscopy, in particular infrared spectroscopy, is one of the most common

techniques to study structural and dynamical features of molecular systems. Experimental

spectra can be affected by a combination of effects, ranging from anharmonicity to solvent

effects, the latter playing a relevant role because most experiments are conducted in the

condensed phase.1–6 In this work, we especially focus on the development of a method to

account for the mutual interaction between a molecular system and its environment and its

effect on the prediction of IR spectra. In fact, the presence of the environment can alter the

electronic response of the target molecule to the external electric field and the vibrational

frequecies associated with the normal modes. Therefore, approaches able to accurately

describe environmental effects are required to obtain computed spectra directly comparable

with experiments.

In the computational practice, the effects of the environment on a given spectral property

are usually included by resorting to focused models,7–12 which are based on the assumption

that the spectral signal is essentially due to the target molecule (e.g. the solute in case of

solutions) and the environment (e.g. the solvent) only modifies but not determines it.

Besides the commonly used continuum solvation approaches,13,14 the family of QM/MM

methods,7,8,15,16 may be exploited. Their quality is connected to the specific force field

which is exploited to treat the MM portion, and on the approach which is used to define the

QM/MM interaction. The latter can be modeled by means of the basic mechanical embed-

ding approach or by resorting to the so-called electrostatic embedding, where the coupling

between QM and MM portions is described in terms of the Coulomb law, i.e. the electrostatic

interaction between the potential of the QM density and the fixed charges which are placed

at MM atoms. This picture is refined in the so-called polarizable QM/MM approaches, in

which the mutual QM/MM polarization is taken into account; it can be modeled in different

ways, e.g. by resorting to distributed multipoles,17–21 induced dipoles,22–25 Drude oscilla-

tors,26 Fluctuating Charges (FQ)27–29 and the recently developed approach based on both
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Fluctuating Charges and Fluctuating Dipoles (FQFµ).30

In QM/FQFµ the MM portion is described in terms of both fluctuating charges and fluc-

tuating dipoles, which are placed at MM atoms positions and can vary as a response to

the QM electric potential and MM atomic electronegativities (the FQs) and QM electric

field (the Fµs), respectively. Such an approach is a pragmatical extension of the QM/FQ

approach, previously developed by some of the present authors,29,31,31–36 in which the MM

portion is described by means of electric charges which can be polarized by the QM den-

sity and viceversa. As a consequence, QM/FQFµ takes into account both the out-of-plane

and anisotropy contributions to polarization thanks to the inclusion of the electric dipoles

in the MM portion.37 It is worth remarking that similar approaches have been proposed in

other contexts,38–44 however they are not based on a variational formalism and therefore

are not specifically intended to model molecular properties/spectra. Also, to the best of our

knowledge, they have never been extended to the calculation of molecular properties/spectra

determined by the nuclear response to external fields. An additional comparison between

QM/FQFµ and similar approaches can be found in Ref. 30.

The quality of QM/FQFµ at predicting electrostatic interaction energies has been recently

discussed30 and some of the present authors have recently extended this approach to the

calculation of electronic vertical transition energies of organic molecules in solution at the

TD-DFT level.45 In this work, QM/FQFµ is further extended to the calculation of IR spectra,

through its extension to energy nuclear derivatives. Remarkably, other QM/MM approaches

have been extended to the calculation of energy gradients,46–53 however the only previous

polarizable QM/MM approach extended to vibrational spectroscopy is the QM/FQ method

developed by some of us.34–36,54

The manuscript is organized as follows. In the next section the FQFµ force field is briefly

presented and its coupling with a QM wavefunction is specified at the SCF level (QM/FQFµ)

(see Ref. 30 for more details). Equations for analytical first and second energy derivatives are

then presented and discussed. After a brief section discussing on the computational protocol
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which is adopted, numerical results are presented. In particular, QM/FQFµ is challenged

against the description of IR spectra of three organic molecules in aqueous solution, namely

methyloxirane, glycidol and gallic acid. IR spectra are computed by exploiting a hierarchy of

polarizable embedding approaches, namely QM/PCM, QM/FQ and QM/FQFµ. Computed

spectra are compared to their experimental counterparts, which are taken from the litera-

ture.55–57 Also, we will show a comparison between different polarizable approaches (PCM

to QM/FQ and QM/FQFµ fully atomistic approaches), and we will underline the effects

of adding fluctuating dipoles to fluctuating charges in the MM force filed. Some drawn

conclusions and the discussion on future perspectives of this approach end the manuscript.

2 Theoretical Model

2.1 QM/FQFµ Approach

In the FQFµ force field each MM atom is endowed with both a charge q and an atomic

dipole µ, that can vary according to the external electric potential and electric field.

The total energy E associated with a distribution of charges and dipoles can be written

as:30,41,43

E(q,µ) =
∑
i

qiχi +
1

2

∑
i

qiηiqi +
1

2

∑
i

∑
j 6=i

qiT
qq
ij qj +
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qiT
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+
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µ†iT
µµ
ij µj −

1

2

∑
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µ†iα
−1
i µi (1)

where χ is the atomic electronegativity, η the chemical hardness and α the atomic polariz-

ability. Tqq
ij , Tqµ

ij and Tµµ
ij are the charge-charge, charge-dipole and dipole-dipole interaction

kernels, respectively. If charges and dipoles are represented as s-type gaussian distributions,

the functional form of the interaction kernels provided by Mayer41 can be exploited (see also
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Ref. 30).

In order to collect all quadratic terms in the charges, the diagonal elements of Tqq can be

imposed to be equal to the atomic chemical hardness η, so that the width of the charge

gaussian distribution (Rq) is defined without the need of any parametrization.30 The same

holds for the diagonal elements of Tµµ and the dipole gaussian distribution (Rµ), which can

be defined in terms of the atomic polarizabilities (α).30 The definition of the gaussian width

Rqi and Rµi in terms of ηi and αi limits the number of parameters which enter the definition

of FQFµ to electronegativity, chemical hardness and polarizability for each atom type.

In case of a molecular system, Eq. 1 reads:30
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µ†Tµµµ + q†Tqµµ + χ†q + λ†q (2)

where α and β run over molecules, whereas i and j run over the atoms of each molecule.

The lagrangian multipliers λα are meant to preserve the total charge Qα of each molecule.

Therefore, the constrained minimum is found by imposing all derivatives of E with respect

all variables to be equal to zero, thus resulting in the following linear system:30,43,44


Tqq 1λ Tqµ

1†λ 0 0

−Tqµ† 0 Tµµ




q

λ

µ

 =


−χ

Q

0

 ⇒ DLλ = −CQ (3)

where 1λ is a rectangular matrix containing Lagrangian multipliers. CQ is a vector containing

atomic electronegativities and total charge constraints, whereas Lλ is a vector containing
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charges, dipoles and Lagrangian multipliers.

FQFµ can be effectively coupled to a QM SCF wavefunction in a QM/MM framework. The

global QM/MM energy functional for a SCF-like description of the QM portion reads:30

E(P,q,µ,λ) = trhP +
1

2
trPG(P) +

1

2
q†Tqqq +

1

2
µ†Tµµµ + q†Tqµµ + χ†q + λ†q+

+ q†V(P)− µ†E(P) (4)

where h and G are the usual one- and two-electron matrices, and P is the density ma-

trix. q†V(P) and µ†E(P) represent the coupling between charges-QM electric potential and

dipoles-QM electric field, respectively. The effective Fock matrix is defined as the derivative

of the energy with respect to the density matrix:

F̃µν =
∂E
∂Pµν

= hµν +Gµν(P) + V†µνq− E†µνµ (5)

where the interaction of the electron density with both charges and dipoles is included

through the electrostatic coupling terms. Charges and dipoles are obtained by imposing the

global functional to be stationary with respect to charges, dipoles and Lagrangian multipliers.


Tqq 1λ Tqµ

1†λ 0 0

−Tqµ† 0 Tµµ




q

λ

µ

 =


−χ

Qtot

0

+


−V(P)

0

E(P)

 ⇒ DLλ = −CQ−R(P)

(6)

Notice that, with respect to Eq. 3, a new source term, R(P), due to the coupling of both

charges and dipoles with the SCF density, arises. Again, Lλ is a vector containing charges,

dipoles and Lagrangian multipliers. A similar equation, but involving only a non-QM source

of the external electric field, has already been proposed in Ref. 42.
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2.2 Analytical Energy Derivatives

In this section QM/FQFµ analytical first and second energy derivatives with respect to

nuclear coordinates are presented and discussed. The following equations are defined in the

so-called Partial Hessian Vibrational Approach (PHVA),58–60 which has been amply exploited

to treat vibrational phenomena of complex systems.34–36,54 Within such a framework, it is

assumed that the geometrical perturbation only acts on the QM portion of the system,

whereas MM atoms are unaffected. Remarkably, the PHVA is fully consistent with a focused

approach. For the sake of completeness, however, equations for first and second derivatives

of FQFµ MM atoms are given in the Appendix section. The following derivation directly

follows what already reported by some of the present authors in case of QM/FQ.54 This

allows to directly identify the additional terms which depend on the presence of fluctuating

dipoles in the MM portion.

2.2.1 Energy first derivatives

The energy first derivative of Eq. 4 with respect to the x nuclear displacement can be

expressed by means of the chain rule:54,61

Ex(P,q,µ,λ) =
∂E
∂x

+
∂E
∂P

∂P

∂x
+
∂E
∂q

∂q

∂x
+
∂E
∂µ

∂µ

∂x
+
∂E
∂λ

∂λ

∂x

The last three terms vanish because of the stationarity conditions. The first term, which is

the partial derivative of the energy with respect to the position of a QM nucleus, reads:

∂E
∂x

= tr hxP +
1

2
tr G(x)(P)P + q†V(x)(P)− µ†E(x)(P) (7)
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where54

V
(x)
i (P) =

∑
µν

PµνV
x
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=
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|Rζ − ri|2
−
∑
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〈
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∣∣∣∣ δ(r′ − ri)

〉
Pµν (8)

E
(x)
i (P) = ∇riV

(x)
i (P) (9)

The term involving the derivatives of the density matrix can be computed starting from the

idempotency condition:62

−PF̃PSxoo = −W̃Sxoo

where the subscript oo denotes the occupied–occupied block of the matrix in the MO basis,

and W is the energy-weighted density matrix contribution. By collecting all the terms:

Ex(P,q,λ) = tr hxP +
1

2
tr G(x)(P)P + q†V(x)(P)− µ†E(x)(P)− trW̃Sxoo (10)

Notice that the term (q†V(x)(P)) is the same as computed in the QM/FQ approach.54

Therefore, the inclusion of fluctuating dipoles gives rise to the additional term µ†E(x)(P).

2.2.2 Energy second derivatives

The energy second derivative with respect to nuclear displacements x and y is obtained by

differentiating eq. 10 and by exploiting once again the chain rule:

Exy =
∑
µν

[
hxyµν +

1

2
G(xy)
µν (P) + q†Vxy

µν − µ†Exy
µν

]
Pµν − tr WSxy − tr WySx

+
∑
µν

[
hxµν +G(x)

µν (P) + q†Vx
µν − µ†Ex

µν

]
P y
µν +

∑
µν

Ly†Rx
µνPµν (11)

Thus, the derivatives of the off-diagonal blocks of the density matrix and charges/dipoles need

to be calculated. Density matrix derivatives can be obtained through a Coupled Perturbed
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Hartree–Fock (CPHF) or Kohn-Sham (CPKS) procedure.62

FQFµ charge and dipole derivatives can be calculated by differentiating eq. 6:

DLx = −R(x)(P)−R(Px) (12)

The Fock matrix derivative is defined as:

F̃ x
µν = F̃ (x)

µν +Gµν(P
x)−R†µνD

−1R(Px) (13)

where F̃
(x)
µν , which collects all explicit derivatives of the Fock matrix, reads:

F̃ (x)
µν = hxµν +G(x)

µν (P) + L†Rx
µν + R†µνL

(x)

By rearranging the terms, the CPHF/CPKS equations are obtained (MO basis):

εiP
x
ia − εaP x

ia = −Q̃ia +
∑
jb

[
〈aj||ib〉 −R†iaD

−1Rjb

]
P x
jb

+
∑
jb

[
〈ab||ij〉 −R†iaD

−1Rbj

]
P x
bj (14)

By taking the adjunct equation and introducing the following matrices (we assume orbitals

to be real):

Ãia,jb = (εa − εi)δijδab + 〈aj||ib〉 −R†iaD
−1Rjb (15)

B̃ia,jb = 〈ab||ij〉 −R†iaD
−1Rbj (16)

9



the following equation is obtained:

 Ã B̃

B̃∗ Ã∗


 X

Y

 =

 Q

Q∗

 (17)

where

Ãia,jb = (εa − εi)δijδab + 〈aj||ib〉 −R†iaD
−1Rjb (18)

B̃ia,jb = 〈ab||ij〉 −R†iaD
−1Rbj (19)

Q̃ia = F̃
(x)
ia −Gia(S

x
oo)− F̃Sxia + R†iaD

−1R(Sxoo) (20)

Therefore, the derivatives of the density matrix and FQFµ charge/dipole derivatives with

respect to QM region nuclear positions are obtained by solving Eqs. 17 and 12, respectively.

Notice that such a derivation is coherent with what has been reported for linear response in

the zero-frequency limit.45

To summarize, FQFµ contributions to analytical second derivatives can be grouped into

three categories:

1. explicit terms:

q†V(xy) − µ†E(xy) + L(x)†R(y)

2. contributions to Fock matrix derivatives:

L†Rx
µν + L(x)†Rµν

3. additional terms to the CPHF/CPKS matrix:

−R†iaD
−1Rjb

Notice that only the last term is required in case of electric perturbations.Also, similarly to
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what has already been discussed for energy first derivatives, QM/FQFµ second derivatives

differ from QM/FQ ones because additional terms depending on fluctuating dipoles need to

be included.54

3 Computational Details

The computational protocol exploited for calculating QM/MM IR spectra involves the fol-

lowing steps:36

1. Definition of the system: the model system is composed by the target molecule (solute)

surrounded by a sufficiently large number of solvent molecules, chosen so that both the

dynamics and the subsequent QM/FQ calculations can capture all the relevant solute-

solvent interactions.

2. Classical MD simulations and sampling: this step is required to sample the phase space

of the system. Simulations are run long enough to sample a sufficiently large portion

of the phase-space and such that the simulation parameters correctly reproduce all

possible system configurations and their relative energy (and thus population). From

the MD simulations a number of uncorrelated snapshots are extracted to be used later

in the QM/FQ calculations.

3. Definition of the different regions of the two-layer scheme and their boundaries: for

each snapshot extracted from the dynamics, a sphere centered on the solute is cut,

retaining all solvent molecules within the sphere.

4. Running the QM/FQ calculations on the snapshots: for each of the spherical snapshots

(droplets), IR spectra are calculated, after the geometry of the QM solute is optimized

in each snapshot, by keeping fixed the positions/geometries of all the solvent molecules.

5. Extraction of the average spectra and analysis of the results: the spectra obtained for

each snapshot are extracted and the final IR spectra for the system are obtained as
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the arithmetic mean of the spectra for all the snapshots.

R-methyloxirane (MOXY), (S)-Glycidol (GLY) and Gallic Acid (GA) geometries were opti-

mized at the B3LYP/ aug-cc-pVDZ level. Solvent effects on solutes’ geometries were included

through the Polarizable Continuum Model (PCM). MOXY and GLY Molecular Dynamics

(MD) simulations were carried out as detailed in previous works by some of the present

authors36,63 by using GROMACS.64

A 25 ns MD simulation of GA in aqueous solution was performed by using a similar com-

putational protocol. A GA molecule was placed at the center of a cubic box and solvated

with 6025 TIP3P water molecules.65 The parameters used to describe the GA inter-/intra-

molecular interactions were taken from the GAFF force field66 by using the ANTECHAM-

BER package.67 GA molecule was kept fixed during all the steps of the simulation. To model

intermolecular solute-solvent interactions, GA partial charges were computed by relying on

the Hirshfeld population analysis,68 as previously done by some of the present authors.31,69

Partial charges were computed at the B3LYP/6-311++G** level of theory by including sol-

vent effects by means of PCM. Two subsequent 100 ps runs were performed for equilibration

purposes by using NVT and NPT ensembles, respectively. A 25 ns NVT MD simulation was

then performed to sample the configurational space at time steps of 1 fs and by saving coordi-

nates every 10 ps. The system was simulated by using three-dimensional periodic boundary

conditions; non-bonded interactions cutoff was set to 10 Å. A particle mesh Ewald (PME)

correction for the long-range electrostatics was applied and the temperature was maintained

at 300 K by using the velocity rescale algorithm.

A total of 200 uncorrelated snapshots were extracted from the last 20 ns, 50 ns and 25

ns of MD simulations in case of MOXY, GLY and GA, respectively. For each snapshot, a

sphere centered at the solute’s geometric center was cut.A cutting radius of 12 Å was used

for MOXY and GLY, whereas a cutting radius of 15 Å was used for GA.

QM/FQ and QM/FQFµ partial geometry optimization of the solute moiety on each snap-

shot was performed according to the default settings of Gaussian16,70 by keeping all water
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molecules fixed. Finally, infrared (IR) spectra were calculated on each partially optimized

snapshot with the QM/FQ and QM/FQFµmodels at the B3LYP/aug-cc-pVDZ level (MOXY

and GLY) and B3LYP/6-311++G** level (GA), the latter in agreement with Ref. 55. SPC

parameters for water27 were used for FQ calculations. The set of parameters recently de-

veloped by some of us for QM/FQFµ calculations in aqueous solutions were exploited.30 IR

data were averaged to obtain final spectra for the three solutes; peaks were convoluted with

a Lorentzian lineshape, with Full Width at Half Maximum (FWHM) of 4 cm−1. For the sake

of comparison, QM/PCM IR spectra were also computed.

All QM/FQ and QM/FQFµ calculations were performed by using a locally modified version

of the Gaussian 16 package,70 where QM/FQFµ analytical energy first derivatives were

implemented.

4 Numerical Results

In this section, the results obtained by applying QM/FQFµ to the calculation of IR spectra of

MOXY, GLY and GA in aqueous solutions are reported (see Fig. 1, panels a-c for molecular

structures). MOXY is a widely exploited test system for computational models.71–77 GLY,

which bears an additional hydroxil group, has been previously studied both theoretically

and experimentally.36,56 In particular, it has been shown that eight different GLY conformers

exist in aqueous solution, thus its theoretical modeling is challenging.36,56,78 GA is an organic

acid characterized by the presence of three hydroxil groups linked to the aromatic ring. The

modeling of IR spectra of GA in aqueous solution is also challenging, because it has previously

been reported by one of the present authors that the implicit PCM fails at reproducing the

experimental IR spectrum, and that experimental spectral features can be recovered by

adopting a supramolecular approach which includes eight explicit water molecules in the

QM portion.55 Therefore, it appears to be an ideal test-bed for QM/FQFµ.

QM/FQFµ spectra will be compared to QM/FQ, which only considers fluctuating charges
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Figure 1: MOXY (a), GLY (b) and GA (c) molecular structures.

on MM atoms. The reason for such a comparison is twofold: (i) QM/FQFµ is formally an

extension of QM/FQ, and (ii) QM/FQ has been successfully applied to vibrational spec-

tra of molecular systems in aqueous solution.34–36 Thus, the comparison between the two

approaches can directly quantify the relevance of fluctuating dipoles in the description of

vibrational spectra and report on the performance of the novel QM/FQFµ method.

4.1 Methyloxirane in Aqueous Solution

Figure 2 compares QM/FQ (top) and QM/FQFµ (bottom) stick and convoluted spectra for

200 snapshots extracted from the MD simulation. Such a number of snapshots is enough

to reach convergence.34,36 Stick spectra are obtained by plotting raw data extracted from

each frequency calculation. Figure 2 clearly shows that both QM/FQ and QM/FQFµ IR

wavenumbers and dipole strengths depend on the snapshot, i.e. on the arrangement of water

molecules around the solute. As compared to QM/FQ, QM/FQFµ exhibits a larger spread,

in particular in the vibrational wavenumbers. The largest variability of QM/FQFµ sticks

occurs in the region between 1450 and 1500 cm−1, which is associated to methyl and CH

bending modes (see Figures S1 in the Supporting Information (SI) for a pictorial view of the

normal modes for a randomly chosen snapshot).

Clearly, band broadening is automatically considered in both QM/FQ and QM/FQFµ ap-

proaches coupled with the dynamical description given by the MD simulation, which samples
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over the solute-solvent phase-space. Therefore, solvent inhomogeneous broadening (due to

the fluctuations of the solvent molecules) does not need to be artificially considered by impos-

ing a pre-defined (and arbitrary) band-width, which is instead necessary when other static

approaches, such as PCM, are used. The lorentzian convolution obtained by using a FWHM

of 4 cm−1 is plotted for both QM/FQ and QM/FQFµ spectra. Notice that QM/FQ IR

spectrum is identical to what we reported in case of the three layer QM/FQ/PCM approach,

where the PCM is used as third layer and coupled to both QM and FQ portions.Such a

similarity means that water molecules explicitly included in snapshots are able to account

also for water bulk effects.
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Figure 2: Calculated QM/FQ (top) and QM/FQFµ (bottom) stick and convoluted IR spectra
of MOXY in aqueous solution. FWHM = 4 cm−1.

We now move to the comparison between computed and experimental spectra (see Fig.

3). Notice that the experimental spectrum was measured for neat liquid MOXY rather

than aqueous solution;57 therefore, some discrepancies with our computed results need to be

expected.

The computed and experimental IR spectra are dominated by an intense band at about

850 cm−1. This signal is given by the symmetric stretching of the C-O bond of the epoxyl
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group. QM/FQFµ band is blueshifted with respect to QM/FQ, thus the inclusion of fluctu-

ating dipoles increases solute-solvent interactions. In fact, an increase in the solute-solvent

interactions is reflected in a decrease in the solute intramolecular bond strengths, therefore,

resulting in a blueshift. Similar considerations apply also to the regions between 900-1100

cm−1, where the normal modes involve vibrations of the MOXY oxygen atom. In the other

regions of the spectra, such a blueshift is not recorded. This can be explained by the fact that

the normal modes do not involve vibrations of the oxygen atom, which is the only MOXY

atom potentially exhibiting an Hydrogen Bond with the solvent molecules.

 1
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Figure 3: Calculated QM/PCM (orange), QM/FQ (blue) and QM/FQFµ (maroon) IR spec-
tra of MOXY in aqueous solution (QM/PCM FWHM = 10 cm−1; QM/MM FWHM =
4cm−1). The experimental spectrum (dashed black) is reproduced from Ref. 57.
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Further differences between QM/FQ and QM/FQFµ are computed for the inhomogeneous

band broadening, which is almost absent in case of QM/FQ, whereas it affects almost all

QM/FQFµ bands. This is not unexpected if the raw data depicted in Fig. 2 are considered.

In fact, as already pointed out, QM/FQFµ generally spreads a larger energy region for each

vibrational normal mode.

The major discrepancies between QM/FQ and FQ/FQFmu and the experiment are reported

in case of the inhomogenous band broadening, which is almost absent in the experiment.

Thus, the main feature added by aqueous solution seems to be a larger broadening of vibra-

tional bands.

4.2 Glycidol in Aqueous Solution

Similarly to MOXY, QM/FQ and QM/FQFµ IR spectra of GLY in aqueous solution were

calculated by averaging over 200 snapshots extracted from the MD simulation.36 QM/FQ

and QM/FQFµ raw data are graphically plotted in Fig. 4, together with their lorentzian

convolution. As stated before, the case of GLY in aqueous solution is far more complicated

than MOXY, because GLY is a flexible molecule, i.e. it exists in different conformations.

This is reflected in the stick spectra depicted in Fig. 4, which show a larger variability both

in intensities and wavenumbers as compared to MOXY (see Fig. 2); this applies to both

QM/FQ and QM/FQFµ calculations with the exception of the region around 1110 cm−1.

There, QM/FQ shows a substantial variation in intensity, whereas QM/FQFµ spreads a

larger wavenumber range. The spreading of the intensities is instead larger for QM/FQFµ

in the region between 1400-1600 cm−1. Despite such discrepancies between QM/FQ and

QM/FQFµ, inhomogeneous broadening is described by both approaches.

QM/PCM, QM/FQ and QM/FQFµ convoluted IR spectra are compared to experiments in

Fig. 5. The experimental IR spectrum is reproduced from Ref. 56. Normal modes for a

randomly chosen snapshot extracted from the MD are depicted in Figure S2 in the SI for

the region 700-1800 cm−1 .
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Figure 4: Calculated QM/FQ (top) and QM/FQFµ (bottom) stick and convoluted IR spectra
of GLY in aqueous solution (FWHM = 4 cm−1).

Computed and experimental IR spectra are dominated by an intense band at about 1050

cm−1, assigned to a diffuse stretching/bending normal mode, involving the hydroxyl group.

QM/FQFµ spectrum is generally blueshifted with respect to both QM/FQ and QM/PCM,

probably due to the fact it predicts larger solute-solvent interactions.

Moving to the comparison with experimental data, both the experimental and computed

spectra are characterized by a two-peak-shaped band between 1200 and 1300 cm−1, which is

assigned to the C-OH and C-CH bending modes (at about 1230 and 1270 cm−1, respectively).

Furthermore, above 1400 cm−1 a three-peak-shaped band can be identified, due to the C-OH

bending (1395 cm−1), a diffuse C-CH bending (1440 cm−1) and a CH2 bending (1465 cm−1).

QM/FQ, QM/FQFµ and the experimental IR spectra are nicely in agreement. In fact,

most of relative intensities and the band broadening are correctly reproduced. In particu-

lar, QM/FQ accurately predicts the two-peak band between 1200 and 1300 cm−1, whereas

QM/FQFµ is able to catch the inhomogeneity of the three-peak-shaped band between 1400

and 1500 cm−1. Some discrepancies are reported in case of the peak at about 1100 cm−1

(due to the CH scissoring), which is predicted to have a very low intensity by both atom-
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Figure 5: Calculated QM/PCM (orange), QM/FQ (blue) and QM/FQFµ (maroon) IR spec-
tra of GLY in aqueous solution (QM/PCM FWHM = 10 cm−1; QM/MM FWHM = 4cm−1).
The experimental spectrum (dashed black line) is reproduced from Ref. 56.
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istic QM/MM approaches, whereas it is the second most intense peak in the experimental

spectrum. Notice that it has been reported that the relative intensity of this peak can be

correctly reproduced if a supermolecule approach is adopted, i.e. if water molecules are

included in the QM region.56 These findings, together with the results obtained by adopt-

ing our QM/classical modeling, suggest that the inclusion of non-electrostatic interactions,

which are considered in the full QM supermolecule approach, can play a relevant role to

improve the quality of the computed spectrum in this region. Overall, it is worth noticing

that the continuum QM/PCM approach cannot reproduce the experimental spectrum (see

top of Fig. 5), thus remarking once again the huge potentialities of our atomistic QM/FQ

and QM/FQFµ approaches to model vibrational spectra of solutes strongly interacting with

the aqueous environment. This is particularly evident by analyzing integrated intensities,

which have been extracted from the computed and experimental spectra by performing a

spectral deconvolution in terms of lorentzian functions (see Fig. S3 and Tabs. S2-S3 in the

SI). In particular, both QM/FQ and QM/FQFµ overperform QM/PCM, thus confirming

the qualitative findings based on relative intensities.

To end the discussion on the IR spectrum of GLY in aqueous solution, we point out that

the broad band measured between 1600-1700 cm−1 in the experiment is not reproduced by

any of the selected QM/classical approaches. As already reported by some of the present

authors35,36 and in Refs.,56,79,80 such band is due to the OH bending mode of water molecules

linked to GLY; therefore, it cannot be modeled by our approaches, in which the normal

modes/frequencies of the environment are not computed.

4.3 Gallic Acid in Aqueous Solution

4.3.1 MD Analysis

before discussing GA IR spectra (see Fig. 6 for atom labelling), in this section the MD

trajectory is examined in terms of both radial distribution functions (rdfs) and running co-

ordination numbers (RCNs). In particular, in order to obtain a description of the solvent
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Figure 6: Gallic Acid (GA) molecular structure with atom labelling.

local structure and to analyze hydrogen bonding patterns between GA and water molecules,

intermolecular H(GA)· · ·OW and O(GA)· · ·HW rdfs and the corresponding running co-

ordination numbers were calculated and are reported in Figs. 8 and 7 respectively. The

coordination number of a specific site is defined by combining the distance at which the

first/second minimum of rdf occurs with the corresponding distance in the running coordi-

nation number.
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Figure 7: GA radial distribution functions between GA oxygen atoms and water hydrogen
atoms (HW). See Fig. 6 for atom labeling.

The oxygen atoms of the three hydroxyl groups, i.e. O1, O3 and O4 (see Fig. 6), present

a radial distribution function with a similar shape, consisting of a broad peak at about 3.4

Å, which is associated to the second solvation shell. The coordination number of these sites

is equal to 16.7, 12.8 and 12.2, respectively. Remarkably, O3 rdf shows a peak at about

2.0 Å, due to the fact that this is the only one among the hydroxyl groups that can form
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intermolecular HB with water molecules. O1 and O4 are involved in an intramolecular HB.

Moving to the acid group, O5 rdf presents a sharp peak related to the first solvation shell,

with a maximum at 2.0 Å and a coordination number corresponding to 1.6; the plot for O2

is very similar to what has already been discussed in case of O1 and O4.

1 2 3 4 5 6
0.0

0.5

1.0

1.5

g
(r

)

H1···OW

H2···OW

H3···OW

1 2 3 4 5 6
r [Å]

0.0

0.5

1.0

1.5

g
(r

)

H4···OW

H5···OW

H6···OW

1 2 3 4 5 60

2

4

6

8

10

RC
N(
r)

H1···OW
H2···OW
H3···OW

1 2 3 4 5 6
r [Å]

0

2

4

6

8

10

RC
N(
r)

H4···OW
H5···OW
H6···OW

Figure 8: GA radial distribution functions between GA hydrogen atoms and water oxygen
atoms (OW). See Fig. 6 for atom labeling.

The specific arrangement of the hydroxyl groups in the meta and para positions (with respect

to the acid) of GA induces a weak but detectable anisotropy on the rdfs of both hydrogen

and oxygen atoms. In fact, both H4 and H5 rdfs present a similar shape, with a first peak

at about 2.1 and 2.2 Å, respectively. They correspond to coordination numbers of 0.8 and

0.7, respectively. A second peak related to the second solvation shell is placed at 3.68 Å ,

which corresponds to coordination numbers of 7.5 and 6.3, respectively. The H3 and H6,

instead, show a pronounced first narrow peak at about the same distance (1.73 Å), with a

coordination number of 1.0 and a second peak around 3.97 Å with coordination numbers

of 15.2 and 13.8, respectively. Again, the differences between H3 and H4/H5 are due to

the fact that H4 and H5 are involved in the intramolecular HB, whereas H6 is free to form

intermolecular HB with water molecules. Remarkably, the results here discussed are similar

to the findings previously reported by one of the present authors.55

22



4.3.2 IR spectrum of GA in Aqueous Solution

QM/FQ and QM/FQFµ IR spectra of GA were obtained by averaging over 200 snapshots

extracted from the MD run. Similarly to MOXY and GLY, we checked that such a number

of snapshots produce converged spectra. The raw data extracted from the calculations,

i.e. stick spectra are reported in Fig. 9 for the region 1000-1800 cm−1 (i.e. the region of

interest for the experimental investigation, vide infra); lorentzian convolution (FWHM = 4

cm−1) is also depicted. Both QM/FQ and QM/FQFµ stick spectra show a large spreading in

intensities and frequencies. Such a feature is reported for most computed bands, in particular

in the region between 1100-1400 cm−1, in which single bands are not easily detectable (see

for comparison MOXY and GLY raw spectra in Figs. 2 and 4).
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Figure 9: Calculated QM/FQ (top) and QM/FQFµ (bottom) stick and convoluted IR spectra
of GA in aqueous solution (FWHM = 4cm−1).

The comparison between QM/PCM, QM/FQ, QM/FQFµ and the experimental IR spec-

trum81 shows that the latter is dominated by a three-band broad structure between 1200

and 1500 cm−1, which probably involves more than one normal mode. A well-separated peak

is present at 1000 cm−1 and it is associated to the C-OH bending (see Fig. S3 in the SI

for a graphical depiction of the normal modes). Moreover, three small bands of the same
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intensity are reported in the region 1500-1800 cm−1, which are mainly due to composite

C-OH bending modes of the hydroxyl groups and the acidic C=O stretching.
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Figure 10: Calculated QM/PCM (orange), QM/FQ (blue) and QM/FQFµ (maroon) IR
spectra of GA in aqueous solution (QM/PCM FWHM = 10 cm−1; QM/MM FWHM =
4cm−1). The experimental spectrum (dashed black line) is reproduced from Ref. 55.

The QM/PCM spectrum is dominated by two peaks, placed at about 1170 cm−1 and 1750

cm−1, respectively. Such peaks are related to a composite C-OH bending and to the C=O

stretching. A similar spectrum is predicted by adopting the atomistic QM/FQ approach, in

which the most intense peak is predicted in the case of the C=O stretching at about 1750

cm−1, whereas the peaks at about 1200 and 1400 cm−1 have almost the same intensity. It

is worth noticing that in QM/FQ spectra most bands present an inhomogenous broadening
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that is related once again to the dynamical picture given by the sampling of the phase-space

through MD. In addition, similarly to MOXY and GLY, most of the computed QM/FQ bands

are blueshifted with respect to their QM/PCM counterparts, thus reflecting the stronger

solute-solvent interaction.

Most QM/FQFµ bands are blueshifted with respect to QM/PCM, whereas they are red-

shifted with respect to QM/FQ values, thus highlighting the different electrostatic description

given by the two explicit approaches. Remarkably, similarly to GLY in aqueous solution,

vibrational frequencies are not completely in agreement with the experimental ones, that

probably due to the lack of anharmonicity effects and the use of DFT. Moreover, inhomoge-

nous band broadening is correclty repoduced by both atomistic approaches, thus resulting

in a very good agreement with the experiments, in particular for the experimentally most

intense band at about 1350 cm−1.
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Figure 11: Calculated QM/FQFµ (maroon) and QM/QMw/PCM (yellow) reproduced form
Ref. 55. The experimental spectrum (dashed black line) is reproduced from Ref. 55.

By further deepening the analysis of computed spectra, we see that QM/FQFµ IR spectrum

is dominated by three bands at about 1200, 1350 and 1700 cm−1, which are predicted almost

with the same intensity. This is a big improvement with respect to both QM/PCM and

QM/FQ approaches, because the most intense band in the experimental spectrum is correctly

predicted only by QM/FQFµ. It is worth noticing that a correct reproduction of the intensity

of this peak was achieved by some of the present authors by resorting to a supermolecule
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approach (here called QM/QMw/PCM), i.e. by including 8 QM water molecules in the

definition of the QM solute in QM/PCM calculations (see Fig. 11). Such an observation

indeed indicates that an explicit solvation approach is needed to recover the experimental

features in this region. In addition, due to the fact that QM/FQFµ appropriately reproduces

the most intense band of the experimental spectrum, in a similar way as the supermolecule

approach, we can conclude that the electrostatic description of the HB interaction is the

most relevant solute-solvent contribution, and that the electrostatic description given by

QM/FQFµ in this case overcomes that modeled by the QM/FQ. The good reproduction

of the experimental spectrum obtained by both QM/QMw/PCM and QM/FQFµ is also

confirmed by the analysis of integrated intensities, which are obtained by performing a

spectral deconvolution in terms of lorentzian functions (see Fig. S5 and Tabs. S3-S4 in

the SI). The largest discrepancies between QM/FQFµ and QM/QMw/PCM are reported for

normal mode frequencies, which are better reproduced by the supramolecule approach, in

particular in the region between 1200 and 1400 cm−1. Such an improvement can be related

to the fact that the supermolecule accounts for non-electrostatic interactions (in particular

Pauli repulsion) which can therefore play a relevant role in the determination of vibrational

frequencies.

To conclude the discussion on GA, it is worth noticing that all the considered computational

approaches predict very large intensities for the three modes in the 1500-1800 cm−1 region,

even the supramolecule QM/QMw/PCM (see also integrated intensities in Tab. S4 in the

SI). This is probably due to both the lack of vibrational anharmonicity, which has been

reported to affect not only frequencies but also intensities.1–3

5 Summary and Conclusions

In this work, the fully polarizable QM/FQFµ approach, recently developed by some of the

present authors, has been extended to the evaluation of IR spectra, though the development
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of analytical energy first and second derivatives. In QM/FQFµ both a charge and a dipole,

which can vary as a response to the external electric field and potential, are placed on each

atom of the MM portion. Such a model can be viewed as a refinement of the QM/FQ

approach, in which only fluctuating charges are considered. Notice that QM/FQFµ differs

from polarizable QM/MM approaches based on induced dipoles (and fixed charges),22–25

which also, to best of our knowledge, have never been extended to energy second derivatives.

Our approach has been tested against the reproduction of IR spectra of three systems in

aqueous solution, namely methyloxirane, glycidol and gallic acid. The selected molecules

can interact with water through strong solute-solvent interactions; this is reflected in the

computed IR spectra by the fact that the atomistic QM/FQ and QM/FQFµ generally over-

perform the implicit QM/PCM. In particular, and as expected, the bands which are mostly

affected by the atomistic description of the environment, are those involving the polar moi-

eties of the investigated molecular systems.

In case of both methyloxirane and glycidol in aqueous solution, QM/FQFµ predicts similar

spectra with respect to QM/FQ, whereas for gallic Acid the inclusion of anisotropic terms in

the MM modeling, i.e. the inclusion of fluctuating dipoles, permits to obtain a better agree-

ment with the experimental data. In the latter case, we also noticed that some bands can

probably be affected by anharmonicity82 and non-electrostatic solute-solvent interactions.

The extension of QM/FQFµ so to include anharmonicity and non-electrostatic interactions,

for instance by extending the method already developed by some of the present authors,83–85

might be beneficial and will be the subject of future communications.

It is worth pointing out that our approach does not include local field effects, i.e. the

modulation of the external electric field due to the presence of the environment around the

solute. Such terms can be included by exploiting the machinery developed in the context of

QM/PCM1,86–91 and other kind of polarizable QM/MM models.92

Moreover, it is worth pointing out that the development and implementation of analytical

first energy derivatives, i.e. energy gradients, is not only the basic ingredient for computing
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vibrational spectra, but it also allows for a further extension of the model to QM/MM MD,

as already reported for other kinds of polarizable QM/MM approaches.50–53
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6 Appendix

6.1 FQFµ Energy First Derivatives with respect to MM coordi-

nates

The derivative of the energy with respect to the position of an MM atom, which we will denote

with the superscript ξ, can be obtained by using the chain rule. Only explicit contributions

arise, as the overlap matrix does not depend on MM atom positions. In fact,

Eξ =
1

2
q†Tξ

qqq +
1

2
µ†Tξ

µµµ + q†Tξ
qµµ + q†Vξ(P)− µ†Eξ(P) (21)

where the derivative of the QM/MM interaction potential is equal to the electric field pro-

duced by the QM density acting on the charges, whereas the derivative of the QM/MM

interaction field is the electric field gradient acting on the dipoles.

The derivatives of the interaction kernels Tξ
qq, Tξ

qµ and Tξ
µµ can be obtained by differentiating

Eqs. 3, 6 and 7 of Ref. 30.

Tξ
qq,ij = −Tqµ

ij (22)

Tξ
qµ,ij = −Tµµ

ij (23)
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where K = ri,j ⊗ ri,j and K(xi) is the derivative of K with respect to the x component of the

i-th element. For the sake of clarity, in Eq. 24 Rµi−µj was substituted by R.

6.2 FQFµ Energy Second Derivatives with respect to MM coor-

dinates

For the sake of completeness, in this appendix the formulas for the full Hessian matrix, i.e.

including also the QM/MM and MM/MM blocks, are given. Derivatives with respect to

MM atom coordinates will be denoted by the superscripts ξ, η. The QM-MM block of the

Hessian can be obtained by differentiating once the forces on the MM portion with respect

to the position of a QM nucleus:

E (xξ)(P,q,µ,λ) =
∂Eξ

∂x
+
∂Eξ

∂P

∂P

∂x
+
∂Eξ

∂q

∂q

∂x
+
∂Eξ

∂µ

∂µ

∂x
+
∂Eξ

∂λ

∂λ

∂x
(25)

where the last term vanishes. Substituting Eξ with Eq 21:

E (xξ) = q†Vxξ(P) + q†Vξ(Px)− µ†Exξ(P)− µ†Eξ(Px)+

+
(
Tξ
qqq + Tξ

qµµ + Vξ(P)
)†

qx +
(
Tξ
µµµ + q†Tξ

qµ − Eξ(P)
)†
µx (26)

The derivatives of the density matrix and of the FQs can be obtained by solving the CPHF

equations described in Section 2.2.2: therefore, there is no need to enlarge the CPHF system

of equations to calculate the derivatives of the density matrix with respect to the positions

of the MM atoms. This is, however, unavoidable when the MM-MM block of the Hessian

has to be calculated. By differentiating Eq. 21 with respect to the position of MM atoms:

E (ξη)(P,q,µ,λ) =
∂Eξ

∂η
+
∂Eξ

∂P

∂P

∂η
+
∂Eξ

∂q

∂q

∂η
+
∂Eξ

∂µ

∂µ

∂η
+
∂Eξ

∂λ

∂λ

∂η
(27)

where the last term vanishes. To calculate the derivatives of the charges and the density,
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a new set of CPHF equations needs to be solved. By differentiating Liouville equation and

projecting onto the o-v block:

FPξ
ov −Pξ

ovF = Fξ
ov (28)

The Fock matrix derivatives have no contributions arising from the one- and two-electron

matrices, but only from the density and FQFµ derivatives:

F ξ
ia = Gia(P

ξ) + qξ†Via + q†Vξ
ia − µξ†Eia − µ†Eξ

ia (29)

By differentiating the FQFµ equations we obtain:

DξL + DLξ = −Rξ(P)−R(Pξ) (30)

By putting everything together, a Casida-like system of equations is obtained, where the

matrices are defined in Eqs. 18 and 19 and the right-hand side reads:

Qη
ia = −L†Rξ

ia + R†iaD
−1(DξL + Rξ(P)) (31)

7 Supporting Information

Graphical depiction of normal modes of MOXY, GLY and GA in aqueous solution. Lorentzian

deconvolution of GLY and GA computed and experimental spectra.
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