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Abstract: Structural displacement is an important metric for assessing structural conditions because
it has a direct relationship with the structural stiffness. Many bridge displacement measurement
techniques have been developed, but most methods require fixed reference points in the vicinity of the
target structure that limits the field implementations. A promising alternative is to use reference-free
measurement techniques that indirectly estimate the displacement by using measurements such as
acceleration and strain. This paper proposes novel reference-free bridge displacement estimation
by the fusion of single acceleration with pseudo-static displacement derived from co-located strain
measurements. First, we propose a conversion of the strain at the center of a beam into displacement
based on the geometric relationship between strain and deflection curves with reference-free calibration.
Second, an adaptive Kalman filter is proposed to fuse the displacement generated by strain with
acceleration by recursively estimating the noise covariance of displacement from strain measurements
which is vulnerable to measurement condition. Both numerical and experimental validations are
presented to demonstrate the efficiency and robustness of the proposed approach.

Keywords: structural health monitoring; sensor fusion; adaptive Kalman filter; displacement
estimation; reference-free displacement

1. Introduction

Structural displacement is one of the most important metrics for evaluating the serviceability and
integrity of bridge structures because it is directly related to loadbearing capacity [1–3]. However,
measuring the displacement of bridge structures is a challenging task because of a lack of appropriate
sensors. Conventionally, displacement measurement is carried out using a linear voltage differential
transformer (LVDT) [4,5] or linear doppler velocimeter (LDV). An LVDT is a contact sensor that directly
measures the displacement and provides high precision, but practical implementation on large-scale
structures is limited because one end of an LVDT must be attached to a fixed reference while the other
end is attached to a target structure. Therefore, LVDTs cannot be employed for long-term structural
health monitoring [6]. An LDV is a non-contact sensor with high precision, but it also requires a fixed
reference because it measures relative displacement from the sensor to the structure, which hinders
long-term measurement. Additionally, the high cost of LDVs is a limiting factor for widespread
adoption for ambient displacement monitoring.

As an alternative to traditional measurement methods, acceleration measurements can be used for
reference-free measurement systems. The reference-free displacement estimation using acceleration
can be performed through direct integration in the time or frequency domains [3,7–9]. For practical
applications, researchers have designed finite impulse response (FIR) filters for the numerical integration
of acceleration in the frequency domain while filtering low-frequency components below the first
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dominant frequency of a target structure [10]. FIR filters are computationally inexpensive and easy to
implement in real-world applications. However, only dynamic displacement can be reconstructed
from FIR-filter-based methods to avoid the drift resulting from numerical integration [11–14]. Hybrid
reference free total displacement system is also proposed but methods are limited because of requirement
of finite element model of the structure. [15,16].

In addition to acceleration, reference-free displacement can also be reconstructed from a set
of strain measurements based on strain-displacement relationships, such as modal transformations
and geometric relationships [17–20]. Strain-based displacement methods reconstruct pseudo-static
displacement very well, but the most critical part of transformation is to obtain the unknown location
of a neutral axis that determines the magnitude of the resulting displacement.

To measure the complete displacement with both pseudo-static and dynamic components,
a Kalman filter, which is one of the most widely used filters for sensor fusion, can be adopted.
Kalman filters have been employed to obtain optical estimates of displacement based on the numerical
integration of acceleration and pseudo-static displacement acquired from global positioning systems [21]
or LDVs [22,23]. The Kalman filter has been successfully implemented to displacement fusion between
acceleration and direct displacement where measurement noise (R) and process noise (Q) can be clearly
identified [9]. However, in the case of reference-free displacement estimation where R and Q may not
be determinate, the performance of a Kalman filter is not guaranteed [24–26].

In this paper, structural displacement estimation based on the fusion of acceleration and strain
is proposed. First, strain-based displacement estimation method, and reference-free calibration that
calibrates the scale of strain-based displacement by minimizing the second differential of strain-based
displacement and measured acceleration are proposed. In the second stage, acceleration and
strain-based displacement are integrated using an adaptive Kalman filter to recursively fuse acceleration
with strain-based displacement while updating noise covariance of strain-based displacement data
which is highly affected by environmental condition [27]. The proposed method is numerically and
experimentally validated on simply supported beam structures.

The remainder of this paper is organized as follows. Section 2 describes the proposed approach
for displacement measurement, including strain-displacement relationships, reference-free calibration,
formulation of a state-space model, and the AKF. Section 3 presents numerical validations of the
proposed method on a simply supported beam structure excited by a moving load. Experimental
validation on a simply supported prestressed concrete bridge with moving vehicle loading is
discussed in Section 4. Finally, Section 5 summarizes our conclusions based on the numerical
and experimental results.

2. Proposed Approach

2.1. Overview

The proposed reference-free vertical displacement measurement method using strain and
acceleration consists of two phases. First, strain-based displacement is reconstructed from the
strain measured at the center of a beam based on the strain-displacement geometric relationships and
reference-free calibration, which calibrates the strain-based displacement by referencing the co-located
acceleration by minimizing the second-order differential of strain and acceleration measurements.
In the second phase, acceleration and strain-based displacement are fused using an AKF (see Figure 1).
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2.2. Strain-Displacement Relationship for a Simple Beam

For a simple beam with a length of L, the derivative equation for the curvature-displacement
relationship at a location x on the beam is written as [28]

κ(x) =
d2u(x)

dx2 (1)

where u(x) and κ(x) are the displacement and curvature at x, respectively, ranging from zero to L.
Similarly, the relationship between curvature and longitudinal strain from Euler–Bernoulli beam theory
is written as

κ(x) = −
εx

hc
(2)

where εx is the strain and hc is the distance from the neutral axis. Based on Equations (1) and (2),
the relationship between displacement and strain can be written as

d2u(x)
dx2 = −

εx

hc
(3)

Using the finite difference method, the second-order differential of the displacement in Equation (3)
can be expressed as a finite difference equation as [28].(

d2u(x)
dx2

)
≈

ui+1 − 2ui + ui−1

∆x2 = −
εx

hc
(4)

where i = [1, 2, 3, . . . , N] is the i-th discrete location on a beam and ∆x is the interval between discrete
locations. For a simply supported beam with strain measured at the center of the beam, the displacement
can be obtained as

us =
ε

2hc
(

L
2
)

2
(5)

with zero-displacement boundary conditions at the supports. However, for an unknown distance from
the neutral axis, the estimated strain-based displacement must be calibrated by a factor of α. Therefore,
the calibrated strain-based displacement is expressed as

ds = αus (6)

where α is the calibration factor that can be obtained through calibration experiments using a reference
displacement sensor. This study used acceleration to calibrate strain-based displacement directly
without any additional experiments based on reference-free calibration, which will be discussed in the
following section.

2.3. Referecnce Free Callibration

For field implementation, calibration using a reference is a required process in existing strain-based
approaches [18]. To estimate the calibration factor α discussed above, reference-free calibration is
formulated in the time domain based on the equivalent neutral axis estimation method proposed
by [29] (see Figure 2).

Reference-free calibration first applies a band pass filter to the acceleration and strain-based
displacement measured at the mid-span point to extract the first-mode motions of acceleration and
displacement. Next, the relationship between the second derivative of strain-based displacement from
Equation (6) and the acceleration at the mid-span point is tuned to satisfy Equation (7).

as =
d2

dt2αus (7)



Sensors 2020, 20, 1109 4 of 13

where as is the second derivative of strain-based displacement measured at the mid-span point and am

is the measured acceleration. The calibration factor α can be calculated by minimizing the difference
between as and am for a time window from T1 to T2 as

min
α

ΠE =
1
2

∫ T2

T1

(as − am)
2dt (8)

For discrete integration, Equation (8) can be approximated using the trapezoidal rule 4

ΠE =
1
2
‖La(as − am)‖

2
2∆t (9)

where ∆t is the time step and La is a diagonal matrix with ones for all diagonal entries except the first
and last entries, which are equal to 1/

√
2. Equation (7) can also be discretized using the central finite

difference as
as =

α

∆t2 Lcus (10)

where Lc is a second-order derivative operator of order (Ns − 2) × (Ns) [11] and Ns is the number of
data points in the time interval from T1 to T2. Substituting Equation (10) into Equation (11) yields the
following minimization problem in the discrete time domain.

min
α

ΠE =
1
2
‖αLaLcus − ∆t2Laam‖

2
2 (11)

The minimization problem expressed in Equation (11) yields a unique solution for α.

α =
(
uT

s LTLus
)−1(

uT
s LTLa∆t2

)
am (12)

where L = LaLc. Given the strain-based displacement and acceleration, a series of calibration factors
can be obtained for each time window defined from T1 to T2, whose sizes can be determined based on
the first natural frequency of the structure as

Ns = fs
Fw

fT
(13)

where Ns is the number of data in the time window from T1 to T2, and fT, Fw, and fs correspond to
the natural frequency, windowing factor, and sampling rate for measurement, respectively. Note that
a windowing factor Fw of three can be used as a standard windowing factor.

The series of calibration factors obtained for each window include outliers generated by
measurement noise. To remove the outliers and obtain accurate values of α, the calibration factor
estimated in each time-window is filtered with peak power matching (PPM) [8] and the random sample
consensus (RANSAC) method is applied to find the best estimate of α within a predefined number
iterations [29].Sensors 2020, 20, x 4 of 13 
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2.4. State Space Formulation for Displacment Fusion

Given the values for acceleration and strain-based displacement, a continuous state-space model
for displacement fusion can be defined as[ .

x
..
x

]
=

[
0 1
0 0

][
x
.
x

]
+

[
0
1

]
am +

[
0
1

]
ηam (14)

ds = αus =
[

1 0
][ x

.
x

]
+ ηsm (15)

where am is the measured acceleration and ds is the measured displacement. ηsm and ηam are the
measurement noises associated with strain-based displacement and acceleration, respectively, and are
modeled as Gaussian distributions with covariance values of r and q, respectively.

To construct the state-space model, displacement and velocity are defined as state variables and
a state vector is expressed as

x = [ x
.
x ]

T
(16)

The system in Equation (14) and observation in Equation (15) can be expressed as

.
x = Ax + Bam + w (17)

ds = Cx + v (18)

where w ∼ (0, Q), Q =

[
0 0
0 q

]
and v ∼ (0, R) = r. The discrete forms of the state-space

representations in Equations (17) and (18) are expressed in Equations (19) and (20), respectively,
based on the measured acceleration am and displacement ds(k) in a discrete time domain

x(k) = Ax(k− 1) + Bam(k) + w(k− 1) (19)

ds(k) = Cx(k) + v(k) (20)

where A, B, and C are defined as

A =

[
1 ∆t
0 1

]
, B =

[
∆t2/2

∆t

]
, C =

[
1 0

]
(21)

w(k) and v(k) are the discrete measurement noise of acceleration and displacement, respectively.
The discrete noise covariance matrices for Q and R are expressed as

Q =

[
∆t3/3 ∆t2/2
∆t2/2 ∆t

]
q, R = r[∆t−1] (22)

where ∆t is the sampling time for both acceleration and displacement.
To fuse acceleration and strain-displacement to estimate real displacement, a straightforward

solution is to apply a conventional Kalman filter (CKF). However, the stability and robustness of state
estimation heavily depend on the noise covariance values of acceleration q and strain-displacement r.
Although q can be obtained from sensor testing or datasheets, r cannot be determined because strain is
strongly affected by electrical noise.

To address this issue, an AKF was formulated to estimate the measurement noise covariance
recursively at each time step while calculating the best estimate for each state. The formulation of the
AKF is presented in the following section.
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2.5. Adaptive Kalman filter (AKF)

The formulation of the AKF consists of three steps: initialization, prediction, and correction.

In the AKF algorithm, the state vector
^
xk|k ∈ Rn, error covariance Pk|k ∈ Rn×n, and residual sk|k ∈ Rm are

recursively updated at each time step k. For initialization at the initial time step of k = 0, the initial state
is assumed to be a Gaussian vector defined as x(0) ∼ N(x0, P0). Table 1 summarizes the implementation
flow for the AKF.

To update the measurement noise covariance R in the AKF recursively, we adopted the residual
base method proposed by [30]. The residual is defined as the difference between the actual measurement

ds(k) and estimated measurement
^
xk at time step k. A residual sk can be expressed as

sk =
{
ds(k) −Cx̂k

}
(23)

Based on a residual sk, Rk is the discrete form of R updated at each time step and is expressed as

Rk = E
[
sksT

k

]
+ CP−k CT (24)

Akhlaghi et al. [30] proposed a simplified method for calculating Rk by introducing a forgetting
factor β, as shown in Equation (25).

Rk = βRk−1 + (1− β)(sksT
k + CP−k CT) (25)

where 0 < β ≤ 1. The fluctuation in adaptively estimated Rk values depends on the value of β.
The smaller the value of β, the less weight is given to the previous estimated value, allowing the filter
to synchronize with changes after a short delay. In this study, we set β = 0.3 for all analyses.

Table 1. Implementation scheme for the AKF.

Initialization at time step t0 = 0:
^
x0 = x0, P0|0 = P0
Q0 = [Q]q, R0 = [R]r0; r0 > 0

At time tk, for k = 1, 2, 3 . . . , Nt:
Prediction stage for states:

• Evolution of states and prediction of error covariance.

^
x
−

k = A
^
xk−1 + Bam(k) (26a)

P−k = APk−1AT + Q (26b)

Correction step for estimated states:

• Residual calculation and measurement noise covariance at time tk.

sk =
{
ds(k) −Cx̂k

}
(23)

Rk = βRk−1 + (1− β)(sksT
k + CP−k CT) (25)

• Calculation of Kalman gain.

Kk = P−k CT(CP−k CT + Rk)
−1

(27a)

• Correction of predicted state using updated observation.

^
xk =

^
x
−

k + Kk(ds(k) −C
^
x
−

k ) (27b)

Pk = (1−KkC)P−k (27c)
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3. Numerical Validation

3.1. Numerical Setup

Numerical analysis was carried out by exciting the beam by a vertical moving load P with
a velocity vp of 0.2 m/s, as shown in Figure 3. The material properties and dimensions of the beam are
summarized in Table 2. The moving load P consists of a static load of 8 N and a zero-mean gaussian
random component with a standard deviation of 3 N. The boundary conditions of beam is fixed.
Simulations were conducted using MATLAB Simulink to generate strain and acceleration responses in
the time domain at N8 (i.e., mid-span point of the beam model). Additionally, 10% root-mean-squared
(RMS) noise was added to the acceleration, and four cases of 5%, 10%, 15%, and 20% RMS noise were
considered for strain responses.Sensors 2020, 20, x 7 of 13 
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Table 2. Material properties and dimensions of the beam model.

Properties Values

Length 50 m
Depth 2 m
Width 5 m

Mass Density 7850 kg/m3

Elastic Modulus 200 Gpa

3.2. Results and Discussion

Figure 4 presents the acceleration and strain measured at the mid-span point. The strain was
converted into displacement using geometric relationship in Equation (7) combined with reference-free
calibration. The calibration factor α was calculated to be 0.334 m for scaling the strain-based
displacement. For calibration, the size of the time window Ns was set based on a standard windowing
factor Fw of three and a target frequency for the first natural mode of the structure of 1.986 Hz.
To eliminate outliers and identify the best values of α, the calibration factors were first filtered with
an upper and lower limit of 0.8 and 1.2 times the PPM value [29], respectively, and RANSAC was
performed with the data points and threshold for residuals set to Ns/6 and 0.001, respectively. A total
of 10,000 iterations were calculated.

An AKF was applied to fuse the acceleration with strain-based displacement data. The displacement
calculated by the proposed method, acceleration-based displacement, and reference displacement are
compared in Figure 5 in both the time and frequency domains. It should be noted that the vertical
displacement at N8 was extracted numerically for the reference displacement and the acceleration-based
displacement was obtained using the FIR filter proposed by Lee et al. [11].

The displacement calculated by the proposed method and the reference displacement show
good agreement in both the time and frequency domains. In time domain, the peak displacements
from the proposed method and reference displacement were −5.18 mm and −4.929 mm, respectively,
representing a discrepancy of only 4.84%. The acceleration-based displacement was only −2.06 mm
based on the lack of a pseudo-static component in the displacement. In the frequency domain, the three
dynamic displacements show good agreement with peaks at two natural frequencies. Pseudo-static
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displacement is clearly reconstructed in the results of the proposed method as shown in the zoom view
of the Figure 5a,b.
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Figure 5. Numerical validation: (a) estimated displacement and (b) frequency response.
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To evaluate the estimation accuracy quantitatively, we utilized the error index defined in
Equation (28).

Err = E

∣∣∣∣∣∣max(uest) −max(ure f )

max(ure f )

∣∣∣∣∣∣ (28)

where uref and uest are the reference and estimated displacements, respectively, and E[.] is the mean
value from 50 simulations of each noise scenario. Note that 50 simulations were conducted to account
for the effects of randomness in the measurements and excitations. Table 3 summarizes the accuracy of
the proposed method under all four noise scenarios. The proposed method successfully estimated the
vertical displacement with an error of 8% under the extreme condition of 20% RMS noise. The results
in Table 3 indicate that the proposed method can generally estimate vertical displacement with an error
of 5% and can be applied to strain data with an extreme noise level of 20% without adjusting the
measurement noise covariance of R.

Table 3. Error comparisons for measured displacement in different noise cases.

Strain Noise Percentage Case 1: 5% Case 2: 10% Case 3: 15% Case 4: 20%

Error 0.0464 0.0659 0.0742 0.0806

3.3. Validation of Robustness of Proposed Method

To evaluate the robustness of the proposed method, numerical simulations were carried out to
investigate the effects Rk on the accuracy of displacement estimation. A conventional Kalman filter
(CKF) that does not update R and the proposed method were compared.

The measurement noise at time tk, Rk was set by scaling Rtrue (i.e., true value of measurement
noise covariance) by a factor of γ ranging from 10−5 to 105. Note that process noise covariance Q can
be computed using noise covariance of the acceleration. A total of 50 simulations were conducted
with RMS noise of 10% for both acceleration and strain. The robustness of the proposed method was
analyzed quantitatively using the error defined in Equation (29).

Er = E

∣∣∣∣∣∣σ(uest − ure f )

σ(ure f )

∣∣∣∣∣∣ (29)

where σ[.] is the standard deviation. Figure 6 reveals the stability of the proposed method compared to
a CKF in terms of the noise covariance factor. The accuracy of displacement estimation is strongly
affected by the choice of R for the CKF, but the displacement estimates generated by the proposed
method show consistent error values over a wide range of γ values.
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Note that when γ is equal to one, the errors of the proposed method and CKF are identical.
The findings of our numerical validation can be summarized as follows:

• The proposed method can estimate the vertical displacement of a simply supported beam using
a single strain and acceleration measurement at the mid-span point.

• The proposed method reliably estimates vertical displacement, regardless of the noise in strain
measurement, by using adaptive filtering

4. Experimental Validation

4.1. Expereimental Setup

For the validation of field applicability, the proposed method was tested on a pre-stressed concrete
bridge located at the test site of the Korean Institute of Construction Technology on the Andong River.
A 28.63-ton truck was used for testing two experimental loading cases at speeds of 5 km/h and 15 km/h
(see Figure 7).
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Figure 7. Experimental setup for field validation.

Sensors for measuring the bridge response were installed at the locations indicated in Figure 7.
The strain gauge is installed at the mid-span point under the bridge and the accelerometer is installed
in the same location. Note that the location of the mid-span point is 5.63 m from the left end of the
bridge. To collect reference signals, a laser displacement sensor is also installed at the mid-span point
of the bridge. The complete configuration is presented in Figure 7.

4.2. Results

The proposed method was used to estimate the displacement at the mid-span point of the bridge.
The calibration factor for the strain displacement relationship was computed to be 0.0373 m using
the relationship discussed in Section 2.2. The forgetting factor for the AKF was set to 0.4 and the
measurement covariance noise was initialized to a value of one. The estimated results were compared
to the reference values measured by the laser displacement sensor for two different loading cases,
as shown in Figure 8.

The reference displacement values, and the values calculated by the proposed method agree
well in terms of overall trends in the time domain. When comparing maximum peak displacement
values, the reference peak is 3.568 mm and peak calculated by the proposed method is 3.786 mm for
the loading case at a speed of 5 km/h. For quantitative estimation, error was computed using Equation
(29) for both the loading cases. Table 4 summarizes the errors and maximum deflections calculated by
the proposed method relative to the reference.
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Table 4. Comparison of errors.

Loading Case Reference Proposed Method Error

5 km/h 3.568 mm 3.786 mm 0.061
15 km/h 3.638 mm 3.701 mm 0.017

From Table 4, the errors computed for the two-loading case are 6.1% and 1.73%, demonstrating that
the proposed estimation approach successfully estimate structural displacement using only a single
acceleration and strain measurement.

5. Conclusions

This paper proposes a bridge displacement measurement method using a co-located acceleration
and strain. The proposed method obtains strain-based displacement using the geometric relationship
between strain and displacement combined with reference-free calibration that identifies an optimal
calibration factor for the strain and acceleration measurements. The obtained strain-based displacement
is fused with acceleration data by using an AKF to recursively update the noise covariance of
strain-based displacement. The proposed method was validated numerically and experimentally on
simple beam structures.

The main findings of this study can be summarized as follows:

• A reference-free displacement estimation method using strain and co-located acceleration
measurements is developed.

• Numerical simulations were conducted on a simple beam structure under four different cases of
RMS noise for strain measurement (i.e., 5%, 10%, 15%, and 20%). The resulting errors were only
4.64, 6.59, 7.42, and 8.06%, respectively, demonstrating the robustness of the proposed method to
strain noise.

• The proposed method provides stable responses, regardless of the initial value of strain
noise covariance.

• A field applicability test was conducted on a concrete bridge with a truck travelling across it at two
different speeds (i.e., 5 km/h and 15 km/h); the proposed method estimated the peak deflection of
the bridge with errors of 6.1% and 1.73% for the two speeds, respectively, demonstrating good
performance for full-scale bridge displacement measurement.

In conclusion, the ability to perform displacement estimation using only a single strain and
acceleration measurement is the most significant advantage of the proposed method compared to
the existing techniques. Additionally, the proposed method can be used in cases where conventional
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displacement sensors are difficult to install. Future study is underway to implement the proposed
method on a wireless sensor for long-term autonomous structural assessment.
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