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Abstract 

The superficial layers of the medial entorhinal cortex (MEC) contain several functionally 

specialized spatial cell types, such as grid cells, head direction cells, border cells and cells 

with conjunctive properties. It is currently not known how the firing patterns of these cell 

populations map onto the architecture of the MEC circuit. Results from recent work suggest 

that there are two largely non-overlapping neuronal populations within superficial layers of 

MEC with different projecting targets. One of them target the hippocampus while the other 

projects extrahippocampally. It has been shown that all funtional MEC cell types project to 

the hippocampus, and a large part of these cells were grid cells. Based on these observations 

we wanted to investigate if there is a difference in funtional cell distribution of MEC cells 

projecting to the contralateral MEC and cells projecting to hippocampus. 

 

Retrogradely transportable recombinant adeno-associated virus expressing Flag-tagged 

channelrhodopsin-2 (ChR2), was injected in left MEC of 6 rats. This introduced optogenetic 

control over MEC neurons with direct projections to the contralateral MEC. Combining 

optogenetic and electrophysiological in vivo recordings, allowed identification of functional 

cell types with direct projection to the contralateral MEC, as these cells showed minimal 

response latencies to laser stimulations in the medial entorhinal cortex. 

We found border cells, head direction cells, non-spatial cells and interneurons with direct 

projection to the MEC, but no grid cells. This distribution is in contrasts with the one found to 

project to the hippocampus, where grid cells are the predominant spatial cell type. More data 

are required to determine if the sparsity of responsive grid cells reflects limited sampling, or if 

the contralaterally-projecting cell population has distinct functional properties. 
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Abbreviations 

 

AAV   Adeno-associated virus 

AMPA   α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid 
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CaMKIIα  α-calcium/calmodulin-dependent protein kinase II 

ChR   Channelrhodopsin 

ER   Endoplasmic reticulum 

EC      Entorhinal cortex 

HR   Halorhodopsin 

HSV   Herpes-simplex virus 

ITR   Inverted terminal repeat 

LEC   Lateral entorhinal cortex 

LED   Light emitting diode 

MEC   Medial entorhinal cortex 
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PBS   Phosphate buffered saline solution 

TRIS   Tris(hydroxymethyl)aminomethane 

WPRE   Virus posttranscriptional regulatory element 
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1. Introduction 

In the 1930’s Edward Tolman proposed the idea that behavior is guided by map-like 

representations and that these representations were an internal cognitive phenomenon (1). He 

studied animal’s ability to navigate through mazes and discovered that no explicit 

reinforcement was needed for the animal to perform well in the maze task. This led him to 

believe that as the animal explores the environment, they are able to discover relationships 

between places and events and gradually develop the cognitive map (2). At the time the 

internal “cognitive map” was only an idea that could not be verified by science, mostly 

because of the lack of tools necessary to investigate the neuronal mechanisms of behavior, but 

the rich repertoire of spatial behaviors characteristic for several species have made researchers 

very keen to identify the neuronal basis for representing external space.  Today, over 50 years 

later, the field of neuroscience has evolved to become a mature discipline and it is currently 

known that there exists brain systems specialized to let the animal know its own location in 

space.  

 

The discovery of place cells in 1971 (3), contributed to the characterization of map-like neural 

representations of the external spatial environment. These cells were found in the 

hippocampus and fired when the animal was located in a particular place in the field (3). 

These place fields kept their firing in the hippocampus when all the intahippocampal signals 

were disrupted, which suggests that the place cells get their input from somewhere else and 

researchers shifted their focus to the entorhinal cortex only one synapse downstream (4). 

Since then, several different cell types, that are likely contributors in making the intrinsic 

spatial map, have been discovered. 

 

In the entorhinal cortex there are a number of different functional cell types that appear to 

make up the basis of neural representation of the external space. These are called head-

direction cells, border cells and grid cells (5). Head-direction cells fire only when the head of 

the animal is facing a specific direction (6). Border cells fires when the animal is close to 

edges and corners in the environment (7). The grid cells form a specific triangular firing 

pattern, when the animal is moving around in an open area, which does not appear to 

represent any specific properties in the external environment (8).  
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Ever since the spatial cells, especially the grid cells, were discovered the spatial representation 

and navigation system has been used as a model to investigate neuronal computation in non-

sensory cortical microcircuits. One example is the characteristic crystal-like firing pattern of 

the grid cells been studied to get insight in the neuronal interactions responsible for pattern 

formation in the brain. The properties of hippocampal and entorhinal cells, and how they are 

connected, has been a research topic of large interest the last decade, this in an attempt to 

establish the mechanisms by which microcircuits in these areas encode, maintain and update 

representations of location as animal moves through the environment. A lot of new and useful 

insight has been discovered about the spatial representation and navigation system that tell us 

something about how the brain works, but there are still a lot we do not know about this 

intriguing system in the brain. 

1.1 Hippocampal region 

The hippocampal region is divided into two different cortical stuctures; the hippocampal 

formation (HF) and the parahippocampal region (PHR). The main difference between these 

structures is the number of cortical layers and the overall principles of connectivity (9).  

 

 

 

Fig. 1. The hippocampal region represented as a schematic. (A) Lateral view. Septotemporal axis is indicated. 

Black arrows showing the rostal/caudal and dorsal/ventral axis. (B) Coronal view. Dorsolateral/ventromedial 

axis indicated. Black arrows showing lateral/medial axis. Colors representing different subregions in the 

hippocampal region are described in Fig. 2. Illustration taken from (10). 
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Fig. 2. The hippocampal region represented by a Nissl-stained 

horizontal cross section. Proximal/distal (prox-dist) axis and 

deep/superficial axis are shown. Different subregions in 

hippocampus and parahippocampal region are shown in different 

colors: dentate gysus (DG, dark brown), CA3 (light brown), CA1 

(orange), subiculum (yellow), presubiculum (PrS, light blue), 

parasubiculum (PaS, dark blue), medial entorhinal cortex (MEA, 

light green), lateral entorhinal cortex (LEA, dark green), 

Brodmann areas 35 (A35, pink) and 36 (A36, purple).  The 

Roman numerals indicate cortical layers, the further abbreviations 

represent: enclosed blade of the DG (encl), exposed blade of the 

DG (exp), granule cell layer (gl), stratum lucidum (luc), molecular 

layer (ml), stratum oriens (or), stratum radiatum (rad), stratum 

lacunosum-moleculare (slm). Illustration taken from (10). 

 

1.1.2  Hippocampal formation 

The hippocampal formation (HF), a c-shaped structure situated in the caudal brain consists of 

the subregions hippocampus proper (consisting of CA3, CA2 and Ca1) the dentate gyrus and 

the subiculum. The hippocampal formation is formed by a three layered cortex where the deep 

layer is made up of afferent and efferent fibers and interneurons, the middle layer consists of 

principal cells and interneurons and the most superficial layer is referred to the as the 

molecular layer (10).  

1.1.3 Parahippocampal region 

Adjacent the HF is the parahippocampal region (PHR) bordering the subuculum. It has six 

layers and consists of the five subregions: the presubiculum, the papasubiculum, the 

entorhinal cortex (EC), the perirhinal cortex (PER) and the postrhinal cortex (POR) (10). 

1.1.4 Entorhinal cortex 

The entorhinal cortex is located in the ventroposterior convexity of the rat cerebral 

hemisphere. It extends ventromedially to border either the parasubiculum medially or the 

piriform cortex. Rostrally it borders the amygdaloid complex and dorsolaterally it extends to 

approach the rhinal fissure. The entorhinal cortex ends just ventral to the rhinal fissure at 

rostral levels and at caudal levels it extends within and slightly above the rhinal fissure. 
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The entorhinal cortex can be divided into two general areas: the lateral entorhinal cortex 

(LEC) and medial entorhinal cortex (MEC). The two areas can be differentiated by for 

example looking at the cells size, distribution of cells and how easy it is to differentiate 

between cell layers (11). The terminations of the projecting fibers are also slightly different. 

The fibers from MEC end up in the proximal part of CA1 and the fibers from LEC terminate 

more distally in the CA1 (9).  

 

The entorhinal cortex contains a substantial system of associational connections. In the data 

available, it looks like the intraentorhinal fibers are mainly directed in a longitudinal direction 

and the connections that link mediolateral regions or transverse regions of the entorhinal 

cortex seem to be few (12,13). The associational connections originate in both deep and 

superficial layers where projections from layer II and III mainly terminate in the superficial 

layers and the projections from deep layers terminate in both deep and superficial layers (11). 

1.2 The brain’s spatial map 

1.2.1 Place cells 

The hippocampal place cells are pyramidal cells that fire when the animal is located in a 

specific position in the environment, but not anywhere else. Different place cells fire at 

different positions, called place fields. Even though the place cells do not show any apparent 

topographic arrangement in the hippocampus, recordings of a large number of cells in a rat 

brain show that the activity of these cell ensembles is unique for every location in the 

environment and therefore it would be possible to reconstruct the accurate position of the rat 

(14). This could indicate that there is a spatial map of the environment that is being formed by 

these cell populations (15). This map might be innate, at least so is suggested by the findings 

showing that place cells are present in rat brains already 15 days after birth, this soon after the 

rat pups open their eyes (16, 17). These cells are not only dependent on visual cues since they 

fire both in light and dark, but probably have some other input they depend on (18).     

 

When animals are moved to different environments, different subsets of neurons are recruited 

in the hippocampus (19), suggesting that the hippocampus contains multiple representations 

that are associated with every space that the animal experiences.  Another feature of the 

hippocampal place cells is that minor alterations in the same experimental environment, such 

as sensory or motivational input, change the firing patterns of the cells. This is referred to as 

remapping (19, 20, 21, 22, 23). When for example the color or the shape of the environment 
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was changed or when the reward contingencies changed, the place cells showed new place 

fields and the old ones disappeared or moved. These observations which implied that the 

hippocampal representation would be very great, lead researchers to think that the 

computation of the position would not be in the hippocampus.  To look for the place where 

the metrics of the spatial map were computed, entorhinal cortex was an obvious candidate 

since this area is only one synapse upstream or downstream of the place cells in the 

hippocampus (24).  

1.2.2 Grid cells 

In the medial entorhinal cortex there has been discovered another class of position-selective 

neurons called grid cells (8, 25). When a rat is running in an open-field arena, the grid cells 

show multiple firing locations that make up a hexagonal pattern over the entire area where the 

rat has been running. About 50% of the principal cells in layer II are grid cells (6). Grid cells 

in the same part of the MEC have grid spacing and grid orientation that are similar to each 

other, but the phase of the grid is non-topographic which means that the firing fields of cells 

that are near each other in the brain, seem to shift randomly (8). From dorsal to ventral 

position in the entorhinal cortex there is an approximately linear increase in the spacing of the 

grid pattern ranging from one field repetition per 30 cm to distances over several meters in the 

rat (8, 25, 26). 

 

The grids of different cells are offset relative to each other. In this way each place in the 

environment can be identified from only a few cells’ activity as long as they have some 

variation in spacing. Convergence of inputs from grid cells that got overlapping fields but 

differ in their spacing can be the origin of individual place field in the hippocampus (27, 28, 

29). The grid cells can be seen as a element of a dynamic and constantly updated map 

showing the animal’s position in the environment, this based on the fact that the position of an 

moving animal can be reconstructed from an assembly of grid cells’ activity (25). Across 

environments the grid map persists in a stereotypic manner, unlike the place cells, this could 

suggest that the map is applied anywhere, but the particular phase and orientation of the grid 

can change across environment which could mean that the grid is strongly determined by 

geometrical features of the environment (30). 

1.2.3 Border cells 

Border cells are cells that fire only along geometrical borders of the environment available to 

the animal. Most of the border cells fire only along one side of the border and maintain their 
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activity when the environment is stretched or when the animal is tested in different rooms and 

enclosures with different sizes and shape. Suggested by the findings that show that these cells 

keep firing when the border is so small that the animal can step over it, and when boundaries 

are made by elevated platform, border cells are active at the presence of a border and not the 

physical features of a wall (30).  Even though the border cells are more sparse than grid and 

head-direction cells (comprises less than 10% of local principal cell population), their role in 

spatial representation could still be significant because they are widely distributed in all layers 

of MEC (15). 

1.2.4 Head-direction cells and conjunctive cells 

Head-direction cells have also been found in the entorhinal cortex and have properties that 

likely are involved in spatial mapping. As previously mentioned, these cells will increase their 

firing rate whenever the head of the animal faces a certain range of directions relative to the 

surrounding landmarks. The head-direction cells are found in layer III to VI of MEC (6).  

 

Conjunctive cells, which are grid cells modulated by head-directionality have been found in 

the layers below layer II of the MEC. These cells increase their firing rate when the animal is 

passing through a grid field and the head turned in a specific direction (6). 

 

All of the functional spatial cell types found in the entorhinal cortex could be part of a metric 

navigation system where the grid cells could be responsible to map distances, head-direction 

cells would be able to map directions and the border cells the position relative to boundaries 

(15). 

1.3 Circuits 

1.3.1 Hippocampal circuit 

 A lot of the neocortical information reaching hippocampal formation go through the 

entorhinal cortex and therefore this structure can be considered the first step in the intrinsic 

hippocampal circuit.   The cells in the superficial layers of entorhinal cortex send information 

to the dentate gyrus via an axon bundle called the perforant path. This pathway is 

unidirectional, which means that the projection goes only from entorhinal cortex to the 

dentate gyrus and not the other way around. The granule cells in the dentate gyrus projects to 

the pyramid cells of the CA3 in the hippocampus via their axons called the mossy fibers. This 

pathway is also unidirectional. Likewise are the axons of the pyramid cells in the CA3 called 

the Schaffer collaterals which forms synapses with cells in the CA1. The cells in the CA1 
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project unidirectionally to the subiculum and the entorhinal cortex. The cells in the subiculum 

send their axons to the presubiculum and the parasubiculum, but the most prominent 

projection goes to the entorhinal cortex. Both the connections from CA1 and subiculum end 

up in the deep layers of entorhinal cortex and close the hippocampal processing loop which 

begins in the superficial layers of entorhinal cortex. (11) 

1.3.2 Entorhinal microcircuit 

The perirhinal cortex and postrhinal cotex are responsible for major cortical inputs to the 

entorhinal cortex. The LEC gets its input preferably from perirhinal cortex and the postrhinal 

cortex projects to the MEC. The fact that the majority of axons terminating in the LEC and 

MEC have their origin in two different areas, has led to the consumption that the MEC 

pathway transmit spatial information and the LEC transmit non-spatial information. The 

entorhinal cortex provides reciprocal connections to the peri- and postrhinal cortices (31). 

 

As previously mentioned the entorhinal cortex consists of six cell layers and the laminar 

organization of LEC and MEC do not differ (32). Layer I consists of two different types of 

GABAergic interneurons defined by their morphology: horizontal and multipolar neurons. 

These cells are embedded in a dense plexus of axons which originates from several afferent 

areas. Multipolar cells are often positive for calretinin and projects to principal cells in layer II 

and III. Horizontal cells express multiple other markers and have their axons entering the 

white matter noncollaterizing. Both cells types are almost spineless (32).  

 

In layer II of MEC there are mostly stellate cells (33) and in LEC there are fan cells (34). In 

the deeper part of layer II there are pyramidal-like cells. All of the different cell types found 

in layer II of EC have some different electrophysiological properties, but they all show 

hyperpolarization-activated current (Ih) which is not found in layer III neurons (34).  The 

principal cells in MEC receive excitatory inputs from the presubiculum on their layer I 

dendrites and the inhibitory signals synapse on unidentified GABAergic interneurons inn the 

same layer (35).  A number of the layer II cells’ efferents go toward the angular bundle and 

continues to its main targets in the dentate gyrus and CA2/CA3. This is the first component of 

the perforant path. Although the main targets for these axons are in the hippocampus, the 

axons give off thin collaterals in layer I and II for intrinsic connections (33).  
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Layer III of EC has mainly pyramidal neurons. Axons from the presubiculum provide strong 

excitatory and inhibitory inputs in MEC (35) and excitatory inputs from CA1 and subiculum 

target principal cells throughout the EC (36). Inputs from the postrhinal cortex synapse onto 

principals cells in MEC (37). The pyramidal cells of layer III’s main axons project via the 

angular bundle to the subiculum and CA1. This is the second component of the perforant path 

(32).  

 

Layer IV is referred to as lamina dissecans and contains only a few neurons that can be 

characterized either as layer III or layer V cells in addition to a number of interneurons. The 

neurons in this layer are likely innervated by axons from the medial septum, pre and 

parasubiculum and monoaminergic brainstem inputs. These also distribute across all layers of 

EC (9). 

 

In layer V there are large pyramidal cells located just below the lamina dissecans. Their apical 

dendrites go through the superficial layers and might reach the pial surface and the basal 

dendrites spreads mainly in the deep layers. In the deeper part of layer V there are smaller 

cells which generally are horizontal pyramidal, multipolar or fusiform cells and they tend to 

have dendritic trees confined to layers V and VI, but some of the apical dendrites may cross 

the lamina dissecans into layer III.  The basal dendrites receive input from CA1 and the 

subiculum (36). MEC layer V pyramidal cells’ basal dendrites will likely also get some inputs 

from retrosplenial cortex and medial prefrontal cortex (38). The apical dendrites will get their 

input from presubiculum (39). All principal cells in layer V send a main axon into the white 

matter (40) projecting to multiple cortical and subcortical targets (9). 

 

Layer VI contains mostly of multipolar neurons. They got spiny dendrites which extend 

within layer VI, occasionally reaching the angular bundle and layer V (32). The inputs to 

layer VI are likely the same as in layer V. The axons join the underlying white matter, 

projecting to thalamic midline nuclei (9).  
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Fig. 3. Main neuron types and connections of lateral entorhinal cortex (LEC) and medial entorhinal cortex 

(MEC) represented as a schematic. Inputs and output are color coded and represented in their main layer 

(indicated by the Roman numerals), of origin and termination. Different cell types and their main dendritic and 

axonal connections are coded with a unique color. The big red cell formed as a cross in layer II represents 

stellate cell in MEC and fan cell in LEC.  The smaller pink and purple cross-like cell in layer VI represents layer 

VI principal cell. The green cells formed as a triangle in layer III represent layer III pyramidal cells (light green 

in LEC and dark green in MEC). The blue triangle-shaped cells in layer V represent layer V pyramidal cells 

(light blue in LEC and dark blue in MEC). The small dark yellow colored cells in layer II and III represent 

parvalbumine-positive GABAergic interneuron and the small black cells in layer I, II, III and V represent 

unidentified interneurons. The filled small circles are representing synaptic contacts. Open circles represents 

inferred, but not established synaptic contacts. Illustration taken from (41). 

 

1.3.3 Functional cell type projections from entorhinal cortex to hippocampus 

Even though multiple findings done over the last 10 years indicates that there is some  

connection between the spatial cells found in the entorhinal cortex and the place cells of the 

hippocampus, there have not been determined what functional cell types is responsible for this 

connection. Several discoveries suggest that the cells of MEC do have some effect on how the 

place cells are formed. For example do the areas CA1 and CA3 receive inputs from layer II 

and III of the MEC which both contains grid cells, head-direction cells and border cells (8, 

31). When lesions where done to the intrahippocampal  inputs in CA3 the CA1 place cells 

persisted (4),  and when the lesions was done so that the inputs from MEC layer III to CA1 
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were disrupted the activity of the place cells was impaired (26). These findings suggest that 

the cells of entorhinal cortex probably are important for the place cell activity, but it does not 

tell us which functional cell types project to the hippocampus. A recently published study 

may provide some answers to this question. 

 

 In a recently published study optogenetics along with electrophysiological recording 

equipment were used to identify the functional cell types in the MEC projecting to the 

hippocampus (42). A retrograde transporting virus containing channelrhodopsin-2,  a light 

activated molecule, was injected into the hippocampus and inserted tetrodes (tool to record 

electrophysiological cell activity) and an optical fiber (tool to provide laser light into the 

brain),  into  the MEC of living rats. When shining laser light onto the MEC cells while 

recording their electrophysiological activity, identification of the cells that were responsive to 

the laser by selecting cells with minimal response latency to the flashing laser light, were 

enabled. These cells were considered likely to project to the hippocampus. To identify the 

functional cell type of the responsive cell, the firing pattern recorded while the rat was 

running in a square box, were evaluated.  Responsive grid cells, head-direction cells and 

border cells, but also irregular spatial cells and non-spatial cells, were identified. The grid 

cells were found to be a large contributor to the population with entorhinal-hippocampal 

projection (42).   

1.3.4 Contralateral entorhinal projections 

There are relatively strong commissural connections arising from all portions of the entorhinal 

cortex. They terminate predominantly in layers I and II of the homotopic area (13, 14).   

 

In a previously study, findings suggest that it could be two different cell populations within 

the layer II of entorhinal cortex with different projection targets (43). Reelin and calbindin 

were used to label two major, equally abundant, non-overlapping cell groups: one 

immunoreactive to reelin and the other to calbindin. When the retrograde tracer biotinylated 

dextrane (BDA) were injectd into the ipsilateral dentate gyrus mostly of the cells BDA-

labeled was reelin positive cells. This suggests that that only reelin positive cells project via 

the perforant path to the hippocampus. The calbindin positive cells did not project to the 

dentate gurus. After, injection in the hippocampal commissure/fimbria-fornix region was 

made with the retrograde tracer fluorogold, and the majority of fluorogold-labeled cells were 
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calbindin positive cells in the layer II MEC this could indicate that the calbindin neurons 

project extra-hippocampally.  

 

Based on earlier findings that show an entorhino-entorhinal connection travelling through the 

dorsal hippocampal commissure (44), further led to testing if calbinding-expressing cells in 

the MEC layer II send their axons to the contralateral entorhinal cortex (43). To do so, a 

unilateral injection of retrograde tracers into the MEC, were made. The most of the labeled 

cells in the contralateral MEC were calbindin positive, which suggest that calbindin positive 

cells projects contralaterally to entorhinal cortex. 

 

In the very same paper (43) it is suggested that cholecystoknin and cannabinoid type 1 

receptor expressing basket cells (CCKBCs), which are the major regulator of principal cells in 

the hippocampal networks, do only target calbindin expressing neurons. This means that these 

particular GABAercic cells only synapses on cells that project outside hippocampus. The 

CCKBC avoid the reelin positive cells that project to the dentate gyrus which suggests that 

the GABAergic targets principal neurons depending on their long-distance axonal targets 

(43). 

1.4 Computational models 

Ever since the discovery of place cells (3), researchers have tried to find out how the brain is 

able to make an internal spatial map based on the external environment. Early it was 

suggested that the place cells would not give enough information to be the only component in 

the brain’s navigational system. (14). The discovery of grid cells in the entorhinal cortex (25) 

gave rise to multiple computational models of the grid field formation and how the grid cells 

are involved in generating the place fields in the hippocampus.   

1.4.1 Path integration 

As previously mentioned, the spatial representation of the entorhinal cortex in contrast to the 

hippocampal map, will maintain the intrinsic firing structure of the cell assemblies across 

environments. This suggests that the entorhinal network consists of a single map that can be 

used universally across all environments (45). The map has a rigid structure and it does not 

depend on particular landmarks so the firing positions might be integrated in the grid cells 

from speed and direction signals without referring to the external environment. Studies have 

shown that even though the speed and the direction of the animal changed the grid fields 

stayed in the same positions, even in darkness the firing fields persisted. This suggests that 
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self-motion information probably is responsible for keeping track of the animal’s position in 

the environment (8, 38). This is referred to as path- integration and it may provide a metric 

component to the spatial map (45).   

1.4.2 From grid cells to place cells 

Considering that the majority of principal cells in layers II and III of MEC project to the 

hippocampus the place cells are likely to receive most of their cortical input from grid cells 

(9). It is not currently known exactly how place cells convert the multiple firing fields 

characteristic for grid cells into a single place field, but there are at least two sets of possible 

mechanisms: 

 

A linear combination of signals from grid cells with different grid spacing could generate 

place fields (30). This will also create a periodic pattern, with a peak where most of the 

contributing cells are in phase. The spacing of this periodic pattern would be so large that 

only one field would appear in normal experimental settings. Only a combination of 10-50 

grid cells with different grid spacing and orientation, but the same spatial phase are needed to 

create single fields in models (30).  

 

Another mechanism is based on competitive Hebbian learning processes. The place cells 

receive input from grid cells with variable spacing, orientation and spatial phase (46). The 

single place field is generated by the resulting distribution of activity peaks. Experimental 

findings support only parts of this theory since the place fields develop also when NMDA-

receptors, necessary for long-term potentiating learning mechanisms are blocked (47). 

Competitive learning mechanism may be responsible for formation of new cell assemblies 

when the animals are introduced to a novel environment (48).     

1.4.3 Oscillatory-interference grid cell model  

When the grid cell was discovered, the oscillatory-inference model was used to describe how 

the grid cells work (49). It was suggested that the grid patterns emerge from velocity-

dependent beat frequencies in the membrane potential which are a consequence of 

interference between multiple theta oscillators with different frequencies (50). In the single 

cell model, the soma (cell body) was thought to be the baseline oscillator and the dendrites 

functioned as the other oscillators that interact with the baseline oscillator.  Each dendritic 

oscillator’s frequency is determined by how fast the animal is moving in a specific direction. 

If the preferred directions of the inputs reaching the different dendrites are 60 degrees relative 
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to each other, this will lead to the characteristic triangular grid pattern when the oscillation of 

the dendrites is combined with the soma (51).  

1.4.4 Attractor network model 

The network of neurons that has self-stabilizing activity state is called an attractor network. 

The term is increasingly common amongst neuroscientist, but stems from the mathematics of 

dynamical systems. It describes a system of interacting units (in this case neurons), which, 

when given a fixed input, will evolve over time to a stable state (52).This model can also 

explain how spatial representation can emerge.  

 

The attractor model hypothesize that the grid pattern are a result of “packets” of localized 

excitation on a flat energy landscape provided by recurrent connections. When a certain level 

of global inhibition is added to this network, random patterns of activity will give rise to an 

organized “bump of activity. This bump is centered on mutually connected cells which may 

have the same set of firing vertices (27, 28). The activity bump can move between grid cells 

with different vertices as the animal moves to one place to another in a two-dimensional 

environment. This model is based on path integration mechanism where it is thought that 

changes in the direction and speed modulates the connectivity between the cells (53).  

1.4.5 Modules 

Recent findings suggest that the grid populations are discretized into functionally independent 

subpopulations. As previously mentioned the grid map’s scale increases topographically from 

dorsal to ventral MEC, but it seems that the grid scale do not increase gradually, but rather in 

a step-like matter. More than one grid orientation was found in the same animal and the 

discontinuities in grid orientation coincide with discontinuities in grid scale. When changes 

was made in geometry of environment, cell populations with different grid properties 

responded independently, which indicate that the grid modules can be anchored separately to 

external cues (54). 

1.5 Optogenetics 

Optogenetics are techniques that have emerged recently in the field of neuroscience and the 

interest for the benefits this technique offers has made it a rapid evolving field of technology. 

The technique combines optics, genetics and bioengineering and makes it possible to control 

the activity of specific cell types by either stimulating or inhibit opsins which are light-

sensitive membrane proteins (55, 55, 57, 58). Compared to classical electrical or 

multicomponent manipulation techniques, optical control by microbial opsins has several 



19 
 

advantages. This technique can for instance by genetic targeting stimulate or inhibit specific 

cell types in the brain. Electrical stimulation could not do this and will interfere with all cells 

present, even though they have different genetic or anatomical entity. Because of this, an 

optogenetic approach will often be preferable over electrical stimulation when studying how 

individual elements contribute to brain circuits (59).  

1.5.1 The evolution of optogenetics 

In 1979 Francis Crick pointed out that there would be beneficial for the field of neuroscience 

if there was a way to control only one type of cells and leave the others unaltered. Since 

electrodes could not target specific cells and drugs would work too slowly, an idea that the 

use of light could be used as a control tool was presented, but at the time there was no such 

method available (60).   

 

Even though the idea of using light as a control tool was published in 1979, there were some 

groundbreaking discoveries done earlier that would have a great impact on the development 

of optogenetics. In 1971 it was discovered that bacteriorhodopsin functioned as an ion-pump 

that gets activated by visible light-photons (61). Later, one of the first successive attempts to 

control cell activity using bacteriorhodopsin was made by activating abdominal ganglion cells 

in the sea slug Aplysia (62). Ever since that discovery researchers have tried to improve the 

technique that offers optical control of neuronal activity. 

 

In 1983, fluoroscent dye and light was used to initiate action potentials in neurons (63). The 

technique of optogenetics developed fast, and in 1994 researchers successfully inhibited cells 

in Drosofolia by combining laser and chromofore (64). Later, the microbial opsins 

halorhodopsin (65) and channelrhodopsin (55), were discovered. 

1.5.2 Opsins  

Throughout history, organisms have evolved different kinds of mechanisms to help them 

harvest light because of survival functions. One of these mechanisms is preformed by a 7-

transmembrane opsin gene family. Because of their simple structure, meaning that light-

sensing and effector domains both are encoded in one single gene, and fast kinetics, microbial 

opsins are tools that is often used in optogenetics.  

 

To enable reaction to light, each opsin protein needs retinal, a vitamin A-related organic 

cofactor that functions like an antenna for photons. This opsin-retinal complex is called 
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rhodopsin. The retinal molecule is fixed in the binding pocket of the 7-transmembrane 

helices, and here it is covalently attached to a conserved lysine residue of helix 7 and forms a 

protonated retinal Schiff base. When the retinal absorbs a photon, it isomerizes, and this will 

lead to a triggering of structural changes which again will lead to channel opening, ion 

transport or signaling transducer proteins will start to interact (66). 

 

By choosing different kinds of opsins you could manipulate cell activity by either activating 

or inhibiting them. There are opsins that are light-activatable cation-conducting channels 

which will depolarize the membrane potential of the cells and might lead to an action 

potential (for example channelrhodopsins). There are also opsins that function by 

hyperpolarizing the membrane potentials via light-activatable chloride and proton pumps (for 

example halorhodopsin and bacteriorhodopsin). Activating these opsins could lead to 

inhibiting an action potential. There are also engineered rhodopsin-G protein-coupled 

receptors (GPCR) chimeras that are able to control intracellular G-protein-coupled signaling 

cascades (for example OptoXRs). They are made by replacing the intracellular domain of 

vertebrate rhodopsin with the intracellular loops from GPCRs (66).   

 

Fig. 4. Types of opsins represented by a schematic. Channelrhodopsins (ChR), are light-activated cation 

channels which conducts sodium (Na+). Halorhodopsins (HR) and bacteriorhodopsins (BR) are light-activated 

chloride (Cl-) and proton pumps (H+, hydron). OptoXRs enable light-activated control of intracellular G-protein-

coupled signaling cascades. Illustration taken from (66). 

 

There are two types of opsin genes, one is microbial opsin (type I) and the other is animal 

opsin (type II) (67). Type I opsins control different functions such as energy storage, 

phototaxis, development and retinal biosynthesis. They are found in algae, fungi and 

prokaryotes (68). Type I opsins encode proteins that use retinal in the all-trans configuration 

which isomerizes to the 13-cis configuration when a photon is absorbed. The activated retinal 
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molecule in type I rhodopsin will not dissociate from its opsin protein, but maintain a covalent 

bond to its protein partner while it reverts to its all-trans state (69). This reaction occurs 

rapidly and this is why when used as optogenetic tools, it allows microbial rhodopsin to 

modulate neuronal activity at high frequencies (70, 71, 72, 73).  

 

Type II opsins are found in higher eukaryotes and are mainly responsible for vision, but can 

also play a role in circadian rhythm and pigment regulation (74, 75). This type of opsin is 

classified as a G-protein-coupled receptor and it uses all the 11-cis isomer of retinal for 

photon absorption. When the light hits the opsin, the 11-cis retinal isomerizes into the all-

trans configuration and initiates protein-protein interaction instead of ion flux. This will 

trigger the visual photo-transduction second messenger cascade. In contrast to opsin type I, 

the retinal in opsin II, will after isomerization dissociate from its opsin partner into the all-

trans configuration and due to  this, a new 11-cis retinal have to be recruited. Because of 

chromophore turn over reactions and requirement for interaction with downstream 

biochemical signal transduction partners, the effect opsin type II has on cellular changes will 

be much slower than the kinetics in opsin type I. 

 

Because opsins have combined sensor and effector in a monocomponent system, they do not 

need exogenous genetic or chemical substitution which makes them suitable for in vivo 

experiments.  Also the fact that light of moderate intensity does not interfere with neuronal 

function and that opsin latency when illuminated is very short, is an advantage of using the 

optogenetic approach because it allows cell type-specific control with millisecond time scale 

and it is fully reversible (59). 

1.5.3 Channelrhodopsins 

One type of the single-component microbial transmembrane ion conductance regulators are 

the channelrhodopsins. There are two types of these as well: channelrhodopsn1 (ChR1) and 

channelrhodopsin2 (ChR2).  ChR1, a light-gated ion channel, was found in Chlamydomonas 

reinhardtii which is a green unicellular alga. First it was thought to be only proton-selective 

(55), but later it became clear that it has a broader cation conductance, including Na+ and K+ 

(76, 77). ChR2 was later discovered in the same organism and this opsin also conducts 

protons, but compared to ChR1 the conductance for Na+ and K+ is twice as great (56, 77). 

The ChRs can be inserted into the plasma membrane of the neurons and make changes in the 

membrane potential by illumination of blue light around 480nm (70, 73). The expression of 
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ChR2 was found to be enough in mammalian neurons that it was possible to achieve precisely 

timed light-driven action potentials (70). ChR2s have fast onset kinetics with time constants 

on the order of milliseconds and are therefore able to transduce high frequencies of 

millisecond-lasting light flashes into reliably evoked action potentials (66).  

 

Even though optogenetics and the use of channelrhodopsins are new developed techniques 

they have already been applied successfully in a number of studies. For instance is 

channelrhodopsin used in brain slice preparations, where either a DPSS laser is used to focus 

light trough an optical fiber positioned in a micromanipulator, or LEDs are utilized. The 

ChR2 must be expressed in excitable cells and activating them in the tissue with the use of 

laser light can be compared to using electrical stimulating electrodes, but here you can select 

specific cell types by genetic targeting (78). An example of optogenetics used in vitero is the 

experiment, where they used channelrhodopsin-2 in thalamocortical slices from mice brains to 

explore the role of thalamocortical and intracortical synaptic cooperatively in driving up-

states in spontaneous slow oscillations. They found that optogenetics improved the study of 

thalamocortical pathways in slices, because the responses in thalamus resemble those 

observed in vivo.  The result indicated that more synaptic cooperatively (caused by either 

thalamocortical or intracortical fast AMPA-receptor excitation), lead to more robust inhibition 

of up-states (79).  

 

Another approach where channerhodopsin has been used, is in vivo recording. The 

components that are surgically implanted in the animal have to be small for minimal impact 

on the behaving animal. It is also possible to thread a fresh optical fiber down an implanted 

guide cannula for each experiment. By using this method it is also possible to infuse drugs 

into the brain structure prior to optical activation (78). An example where optogenetics were 

used in vivo is a study where mice models were used to explore temporal lobe epilepsy. The 

findings suggest that either inhibition of excitatory principal cells (HR) or activation of a 

subpopulation of GABAergic cells (ChR2), stops seizures rapidly upon light application. 

These results show that temporal seizures can be detected and stopped by modulating specific 

cell population in a spatially restricted manner (80). 
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1.6 Delivering tools 

In addition to efficient transcription, expression and safety, optogenetics requires specific in 

vivo targeting of the optogenetic tool. Major categories in targeting and delivering strategies 

are viral promoter targeting, projection targeting, transgenic targeting, and spatiotemporal 

targeting. 

1.6.1 Viral delivering 

Viral vectors are versatile tools that are being used to deliver genetic constructs into neurons. 

This tool offers multiple advantages for optogenetics that includes fast and versatile 

implementation and high potency copy number linked to high gene copy number, and 

capability for multiplexing genetic and anatomical specificity. Viral vectors are for these 

reasons the most used delivering tool at the moment (81). 

 

 The two most used types are lentiviral vectors (LV) (82) and adeno-associated viral vectors 

(AVV) (83), and both of them have successfully been used to introduce opsins into mouse, 

rat, and primate brain (84). The expression levels have been high over long time periods for 

these vectors and there has not been reported any adverse effects. LV could easily be 

produced with traditional laboratory equipment using standard tissue cultures (72, 84), but 

this would be difficult in the case of AAV that can be produced in individual laboratories 

using kits such as Virapur or through core virus production facilities. AVV-based expression 

vectors have some properties that often make it preferred over LVs. For example does AVV 

vector have low immunogenicity that makes the transduced tissue volume lager compared to 

LV. Also the LV is permanently integrated into the genome of targeted cells, which can lead 

to undesired disruption of host genes, while the AVV vector is mainly maintained outside of 

the chromosome (84).     

 

There are different types of AVV vectors, one of them is the recombinant AAV2 (rAAV2) 

vectors. There are also various serotypes packaging systems within this category, for example 

rAAV2/1, rAAV2/2 and rAAV2/5. There are some differences across the different serotypes 

when it comes to expressing when introduced to the nervous system. rAAV2/1 and rAAV2/5 

have higher transduction frequencies in all regions injected in the rat’s CNS than rAAV2/2. 

Also rAAV2/1 and rAAV2/5 was observed in particular areas of the CNS after retrograde 

transport (85).  
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Although the viral delivery method has multiple advantages and is frequently used by 

scientists, its major disadvantage is the limited packaging capacity. AVV can accommodate 

transgene constructs up to 5 kilobases (kb) and LV up to 10 kb. Because of this AVV and LV 

are only used to deliver small promoters from approximately 2 kb-5kb; microbial opsin gene 

plus a fluorescent tag can take up to 2 kb of sequence length. Since some cell-type-specific 

promoters have much longer regulatory elements, using viral delivery methods will limit the 

expression specificity. Another disadvantage by using this particular method is when targeting 

small brain nuclei the spatial precision of stereotaxic injection is limited. Also when large 

regions of brain tissue are targeted multiple injections are required for achieving efficient 

expression (84). 

 

Microbial opsin products can move down dendrites or axons and create light-sensitive 

projections often with help from molecular engineering, such as the addition of cellular 

trafficking motifs (86). In this case the transduction of cell bodies in one brain area, and 

recruiting cells by delivering light to the axonal projection in another, will make it possible to 

define cell populations by virtue of their wiring. This does not require any genetic information 

about downstream target (87, 88). 

 

Another approach for targeting specific neural projection is to use trans-synaptic viral vectors 

or proteins with anterograde or retrograde-transporting properties (89, 90, 91). When these are 

engineered with recombinases they can activate gene expression in subpopulations of neurons 

with cell-type and circuit-specificity. For example, wheat germ agglutin or tetanus toxin 

fragment C that contains Cre, can be expressed in one brain region while the recombinase will 

be transported either presynaptic or post-synaptic to a neuron in another brain region (86). 

Also retrograde- and anteriograde- transporting viral vectors such as rabies virus,  herpes 

simplex virus (HSV) family viruses, vesicular stomatitis virus, pseudotyped LVs or certain 

serotypes of AVVs can be used for delivering recombinases or transgene cassettes trans-

synaptically to neurons (86, 92, 93). With either Cre-dependent transgenic mice or viral 

vectors combined with conditional expression system, it would be possible to allow circuit-

specific gene expression in a variety of animal models (66).  
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1.6.2 Transgenic animal targeting 

One of the challenges of using viral system is the limited packaging capacity, this can be 

overcome by using another strategy; transgenic animals. Cell-type-specific opsin expression 

can be achieved by using local promoter-enhancer regions in mouse transgenic lines that 

directly expresses opsin genes. The development of several transgenic mouse lines that 

express channelrhodopsin and/or halorhodopsin under the pan-neuronal Thy-1 promoter has 

been successful (94, 95).   One disadvantage with this particular method compared to viral 

delivery, is that it is very time consuming to generate and breed transgenic animal lines. Also, 

to avoid undesirable gene interruptions, each transgenic animal line needs to be carefully 

characterized because of the untargeted nature of the transgene insertion.  

1.6.3 Spatiotemporal targeting 

Spatiotemporal targeting is a method where cells can be targeted by virtue of their birthdate or 

proliferation status or location at moment in time.  It is possible to target specific layers of the 

neocortex using this approach (87, 96, 97, 98). In utero electroporation (IUE) con be used to 

target opsins to particular layers of the cortex by incorporating the DNA into neurons 

generated during a specific embryonic stage (96, 97).  

 

1.7 Electrophysiological recordings 

Ever since Galvani discovered that the nervous system was linked to electrical activity for 

more than 200 years ago (99), investigators throughout history have tried to build instruments 

capable of measuring the electrical activity. Today modern electrophysiological tools are 

sensitive and got high temporal resolution, which makes it possible for researchers to study a 

wide variety of nervous system function, from properties of single ion channels to the activity 

of neuronal networks consisting of hundreds of cells (100). 

 

Electrodes made of either metal, glass or silicone are being used to record electrical signals 

which are a consequence of ion fluxes across the neuronal membranes. Electrophysiological 

recordings make it possible to understand how the neurons work and communicate with each 

other at a high signal-to-noise ratio (100). In the vicinity of their somata action potentials 

produce large transmembrane potentials. By placing a conductor near the neuron it is possible 

to measure these voltage differences (101). Because neurons of the same cell class will have 

similar action potential, the electrode tip has to be moved closer to the cell body to be able to 

identify one single neuron from the extracellulary recorded spikes. To make it easier to 
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distinguish the activity from one specific neuron from the activity of the rest, wire tetrodes 

consisting of four spaced wires can be used.  There are numerous advantages by using wire 

tetrodes instead of sharp-tip single electrodes, for example larger yield of units, low-

impedance recording tips and mechanical stability. With this tool there is no need to place the 

recording tip in the immediate vicinity of the neuron and therefore it is possible to do long-

term recordings in behaving animals (102). 

 

    

 

Fig. 5. A tetrode inserted in neural tissue represented by a schematic. Pyramidal cells are represented by blue 

triangles and the red arrows indicated the distance between the visible electrode tips and a single pyramidal cell. 

The inner cylinder has a radius of 50 µm and contains 140 neurons (n=140) with a spike amplitude of 60 µV. 

The amplitude of cells within this cylinder can be separated with available clustering methods.  The outer 

cylinder had a radius of 140 µm and contains 1100 neurons (n=1100) the amplitude of cells within this cylinder 

can also be detected by the tetrode. Illustration taken from (102). 
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2 Aim 

Insights into the underlying computations in the hippocampus and entorhinal cortex can be 

translated to other areas in the brain. Understanding the algorithms for spatial navigation can 

contribute to more knowledge about brain function and can also change the way we are 

treating multiple diseases. For this reason more research on these particular brain areas is 

important because it may contribute better treatment and improved life quality of patients 

suffering from different neurological diseases.  

 

The hippocampal-entorhinal spatial system is also closely related to memory. Not only are we 

able to remember multiple navigational routes important in our lives, but based on our 

experiences in the past we can often remember clear details of events and items that we 

associate with specific places. The same areas in the brain that are involved in guiding 

navigation; the hippocampus and entorhinal cortex are the same that support declarative 

memories (103). It has been speculated that the same networks and algorithms support both 

mental (memory) and physical (navigation) forms of travel (104). It would be beneficial to 

understand the networks and algorithms of the hippocampus and the entorhinal cortex because 

we might learn how the brain is able to form and retrieve memories and maybe in the future 

help people suffering from memory loss etc.  

 

The hippocampal and parahippocampal region is an interconnected and functionally complex 

system and subregions within this region contributes to different functions within a larger 

system. Investigating and understanding the anatomical wiring of a network can contribute to 

gain insights into the function of a system. 

 

The aim of our project is to reveal what functional MEC cell types projects to the contralateral 

entorhinal cortex and it is based on recent findings (43) suggesting that there are two different 

non-overlapping cell populations positive for two different markers in the layer II of the MEC 

that have different projection targets. The findings suggest that one of the populations projects 

to the dentate gyrus and the other projects outside the hippocampus for instance the 

contralateral entorhinal cortex. Several functionally defined cell populations have been found 

in the entorhinal cortex, for example, grid cells, head-direction cells and border cells. 

Understanding the wiring of these cell populations and their projection patterns are important 

in order to understand the information flow within the system. All of the functional cell types 
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mentioned above, plus irregular spatial cells, non-spatial cells and interneurons have been 

reported to project to the hippocampus, but grid cells appeared to be the major contributor to 

this projection (42). We ask if the cells projecting contralaterally from MEC to MEC differed 

in functional cell type distribution compared to the cells projecting to hippocampus.  The aim 

of this project is therefore to identify the functional MEC cell types that projects 

contralaterally to the entorhinal cortex.  
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3 Methods 

Note 

Procedures for virus preparation and surgery were performed by Sheng-Jia Zhang, procedures 

for histology were performed by Juan Wu and Jing Ye and perfusions were performed by 

Ignas Cerniauskas. These procedures are described briefly in the method section since they 

are essential parts in this project and will create a better overview.  

3.1 AAV plasmid constructs 

The light driven cation channel channelrhodopsin- 2 was chosen to induce neuronal activity in 

this experiment. For delivering the opsin’s genetic constructs to the neurons in the entorhinal 

cortex a recombinant adeno-associated viral vector (rAVV) flanked by serotype-2 inverted 

terminal repeats (ITRs), was used. All viral constructs were generated by a polymerase chain 

reaction (PCR)-based amplification and cloning method. In addition to the ChR2 the 

rAAV2/1 vectors contained a woodchuck hepatitis virus posttranscriptional regulatory 

element (WPRE) and a bovine growth hormone (BGH) polyadenylation signal for enhancing 

transgene transcription and expression. For transcriptional regulations all viral expression 

cassettes were regulated by a calcium calmodulin-dependent protein kinase II a (CaMKIIa) 

promoter, which drive transduction of rAAV2/1 in both principal cells and interneurons. 

AFLAG-tag was placed at the C terminus of all opsin genes between a 20 amino acid 

trafficking signal DYKDHDGDYKDHDIDYKDDDDK and an endoplasmic reticulum (ER) 

exporting motif FCYENEV, both of them derived from Kir2.1 potassium channel. All of this 

was done to enhance the trafficking of opsins. 

3.2 rAAV preparation 

The rAAV2/1 was prepared by co-transfection of human embryonic kidney cell line HEK293 

and an adenoviral helper plasmid pHelper. Normal growth medium replaced the DNA/CaCl2 

mixture after 12 h. The transfected cells were collected and subjected to three freeze/thaw 

cycles after 60 h in culture. Then a purification of the clear supernatant was carried out using 

heparin affinity columns (HiTrap Heparin HP, GE Healthcare, Uppsala, Sweden). After that, 

the purified rAAV2/1 was concentrated in an Amicon Ultra-4 centrifugal filter 100K device 

(Millipore, Billerica MA, USA). By using StepOnePlus Real- Time PCR Systems (Applied 

Biosystems, Foster City, CA, USA) and TaqMan Universal Master Mix, viral titres of all 

prepared rAAV2/1 were determined.  At last the viruses were diluted and matched to 1.0 x 

1012 viral genomic particles/ml by 1 x PBS. 
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3.3 Subjects 

6 male Long-Evans rats (2-3 months old, 400-500 g at surgery) were used to extract data from 

neuronal activity recording. When at rest (not during recording), the rats stayed in a 

transparent Plexiglas cage (45 x 30 x 35 cm), one by one in a temperature and humidity 

controlled room approximately 10 m from the recording room. The recordings were executed 

during the dark phase of a 12h dark/ 12h light cycle which was kept in the vivarium. The rats 

were kept at 85-90% free-feeding body weight and water was available ad libitum. 18-24 h 

before training or recording session the rats were food deprived. All experimental protocols 

are in accordance with Forsøksdyrutvalget (http://www.mattilsynet.no/fdu/) regulations. 

3.4 Surgery 

rAAV2/1 (1.0 × 10
12

 viral genomic particles/ml) was injected in the left MEC Injection 

volumes were 0.5-1 μl. During the same surgical procedure animals were implanted with 125 

μm wide optical fibers in hippocampus and tetrode-optical fiber assembly (optrode) in both 

left and right MEC for 4 rats and only in right MEC in 2 rats. Each tetrode bundle consisted of 

four tetrodes cut flat at the same level. Tetrodes in MEC were implanted 0.1-0.5 mm in front 

of the transverse sinus, 4.5-4.7 mm lateral to the midline, 1.6-1.8 mm below dura, and 

oriented at an 8-20 degree angle in the anterior direction in the sagittal plane. Optical fiber tip 

was located 500 μm above the tetrode tips in MEC; what is more, 26G cannula was implanted 

near the optrode in MEC for drug infusion. The tetrodes were made of 17 μm polyimide-

coated platinum-iridium (9:1) wire with platinum-plated electrode tips. 

3.5 Training and recording 

After the surgery the rats were given 3-7 days to recover before the training started. The rats 

were trained to run in a 1 x 1 x 0.5 m square box with black walls and black floor. To make it 

dark during recording, curtains surrounded the box, and to avoid signal noise, the box was 

electrically grounded. A white cue card (21 x 30 cm) was fixed on one of the box’s walls to 

polarize it. To motivate the rats to run in the box, covering the whole space available, crushed 

chocolate cereal was thrown scattering the box.  Behavioral training continued for about a 

week until the running coverage was acceptable. 

 

 There were two typed of data collecting sessions: one running session as described above and 

one laser session. During the laser session the rat was placed on a towel to run freely in a 

flower pot on a pedestal. When the data collecting session started the rat was place in the 

flower pot and connected to the recording equipment (dacqUSB Recording System”;Axona, 

http://www.mattilsynet.no/fdu/
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UK) via AC-coupled unity gain operational amplifiers near the head of the rat. Allowing the 

rat to move freely in the pot and in the box a counterbalanced cable was used. The tetrodes 

were moved in steps of 50 μm per day to go deeper into the brain. This procedure was carried 

out until single neurons could be extracted from the data, then recording session followed.  

After the recordings were done and no changes in the units were shown, the tetrodes were 

lowered yet again.  

3.6 Spike sorting, position data and rate maps 

By using cluster-cutting software (Tetrode Interface (Tint), Axona, UK), spike sorting was 

performed. This program is specialized for the analysis of spatially-specific neural activity. It 

generates scatterplots by pairwise comparisons of the 4 electrodes of a tetrode. The clustering 

of the scatterplots was done manually by hand drawn polygons using two of the parameters 

the software offers:  peak-through amplitude and voltage at time t. 

The rat’s position was based on tracking one of the LEDs on the head stage.   

3.7 Laser stimulation sessions 

To identify ChR2 expressing cells laser stimulation session was carried out. An optical fiber 

(Ø125µm) was coupled to the optical cannula mounted on the animal’s head stage while the 

rat was moving around on the towel in the flower to provide light delivery. Laser light of 473 

nm (473 nm Blue DPSS laser (T3); Shanghai Laser & Optics Century, P. R. China) was used 

for the 2 min. stimulation given at a frequency of 1 Hz.  The light pulses lasted for 3.5 ms and 

the light power at the fiber tip was about 25 mW. If there were cells present in the recorded 

data a 2 min laser stimulation was given in both right and left MEC before the rat was 

decoupled from the laser setup and put in the square enclosure to run for 15 min to provide 

data for cell type identification. 

If a responsive cell was found some laser tests was executed. First a normal session of 2 min 

1Hz and laser power of 25 mW was done, then sessions with laser power of 5mW, 10mW, 

15mW and 20mW all lasting for 2 min and had a pulse frequency of 1 Hz followed. After 

that, a 2 min session of 5 Hz stimulation was done. At last a 20Hz stimulation session lasting 

for 30 seconds. For the two lasts session the light pulses came in trains every 5 seconds. 

3.8 Perfusion 

After some days of turning with no new cell activity and the electrode signal seemed to get 

lower, lowering of the tetrodes was stopped and the tetrode position remained the same until 

the perfusion.  Food restriction for the rats was also stopped and food was available ad 

libitum. The day of the perfusion started with weighing the rat to decide the proper amount of 
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pentobarbital. Then the rat was put in a transparent box (16 cm x 20 cm x 20 cm) along with a 

paper towel with a few drops of isoflurane. This made the rat unconscious after a few minutes 

and then the rat received an overdose of 100 mg/ml pentobarbital solution (3ml for a 600 g 

rat). The pentobarbital was injected intraperitoneally in the abdominal region with a 25G 

needle (Sterican®; Braun Melsungen, Germany). To check the level of anesthesia toe pinch 

reflexes was tested and when the rat was in full surgical anesthesia, it was fixed to the 

perfusion bath by taping the rat’s limbs. To expose the rat’s heart the chest area was cut open 

and a 21G needle with running 0.9% saline solution was inserted into the left ventricle. The 

heart was still beating at the time, and to let the blood run out, a small cut was made in the 

right atrium. The saline solution was running for about 10-15 min until all of the blood was 

washed out, then the running saline was replaced with running 4 % formaldehyde solution 

(pH 7.4) for about 10-15 min. After that the rat’s head was cut off and placed in a glass of 4% 

formaldehyde solution and left for about 1 hour. At last the tetrodes was turned all the way up 

and the brain was extracted from the caudal part of the skull by removing the skull bones. 

When the brain was extracted it was kept in a glass of 4 % formaldehyde solution.  

3.9 Histology and immunohistochemistry 

The brains were stored in the formaldehyde filled glass in the refrigerator for 2 days before it 

was cut into sections. The non-important parts (hindbrain and olfactory bulb) of the brain 

were cut off and the two hemispheres was separated by cutting along the longitudinal cerebral 

fissure using a scalpel. Then one of the hemispheres was mounted onto the microtome holder 

using mounting medium (Neg -50; Richard-Allan Scientific, USA) and sprayed with 

pulverized dry ice (101 Cold Spray; Taerosol, Finland). The brain was then frozen for 20-30 

min at -21°C and then cut (Microm HM505; Midwest Lab Equipment, USA). The sections 

were 30 μm thick and made in the sagittal plane. Every second section around the trace area 

was mounted directly to a 1 % gelatin covered glass slide and the rest of the sections were 

collected into a 6-well plate which contained 1 x PBS solution. 

 

The sections on the glass slides were stained using Nissl (Cresyl violet) staining. First the 

sections were soaked in mQ H2O and then dipped 10 times up and down in glass containers 

with 70 % ethanol, then 80% ethanol and 90 % ethanol and at last three times in containers 

with 100% ethanol. After the sections was placed in a container of clearing agent 100 % 

xylene for 2 min, they were rehydrated (3 x 100%, 90% 80%, 70% ethanol) and soaked in a 

fixing solution (70% ethanol, 0.00% acetic acid) for 5 min. Then the sections were rinsed in 
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water and left in a container with Cresyl violet solution (0.001% Cresyl violet in mQ H2O). 

Excess color was washed away with running water and then the sections were dehydrated yet 

again (70%, 80%, 90%, 3x 100% ethanol) and put in the xylene container for 10 min.     

 

The sections that were collected into the 6-well plate were used for immunostaining. They 

were washed in 1% Triton solution in 1 x PBS three times for 10 min. Then they were stored 

over night in blocking buffer (0.1 Triton X-100, 1% BSA, 5% NGS in 1 x PBS) on a shaker at 

4°C. The first antibody, 2 µl rabbit polyclonal FLAG, was mixed with 2 ml dilution buffer 

(0.1 Triton X-100, 1% BSA, 1% NGS in 1 x PBS). FLAG was used to estimate the location of 

neurons expressing ChR2. The sections were left on the shaker for 2-3 days at 4°C. Next the 

sections were washed for 2 x 15 min and 2 x 30 min in PBST (0.1% Tween-20 in 1 x PBS). 

Then the second antibody (4 µl goat anti-mouse antibody conjugated with Cy3 cyanine dye (1 

mg/ml)) was added along with 2 ml dilution buffer. Cy3 dye has an emission maximum at 

570 nm giving red color to stained sections and its conjugated antibody binds FLAG primary 

antibody. This was left on the shaker at room temperature for 2 h. After the sections were 

washed again with PBST (2 x 15 min, 2 x 30 min), they were mounted on gelatin covered 

glass slides and left to dry over night. The sections were then soaked in Hoechst stain for 2 

min in room temperature and washed 1 x PBS for 2 x 30 s and 1 min in mQ H2O.   At last a 

cover glass was put on the glass slides using Eukitt® mounting medium. 
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4 Results 

4.1 Electrophysiological recordings 

Tetrode-optical fiber assembles were  implanted in MEC of 6 male Long-Evans rats to enable 

in vivo recordings of electrophysiological activity of MEC neurons. Tetrodes were used 

instead of stereotrode or single electrode because it allows isolation of single neurons’ action 

potentials from electrical activity of neuronal ensembles. The amplitude of the recorded action 

potential is a function of distance between the neuron and the electrode and makes the 

isolation of single neurons possible by triangulation of distances. A cluster-cutting software 

was used to isolate units (single cell activity). The program visualized the recorded neuronal 

activity by generating electrode-pair scatterplots. Recorded action potentials were plotted in 

two dimensions according to their distance to two selected electrodes. Single units were 

separated manually by hand drawn polygons. Peak-to-through amplitude and amplitude at 

user-defined time were the two parameters used. Only the clearly separated clusters were 

counted as cells (Fig. 6). 

 

Fig. 6. Isolating single units in cluster-cutting program. (A) Electrode-pair scatterplots showing generated by 

10 min of recorded neuronal activity in MEC. The numbers on top of the image indicate the rat number (18273) 

the date of the recording plus the number of the recording session (130513 – 13. 05. 13, 04 – the forth recording 

session of the day) and the tetrode number (T1). The grey dots in the scatterplot represent recorded signal and is 

plotted accorded to the distance to the four electrodes of the tetrode (1A - 4A). Two single units were separated 

from the rest and clustered into two clusters (blue and green). (B) Recorded action potentials. The blue wave 

curve corresponds to the blue cluster in (A) and the same goes for the green. Each of the four rectangles shows 

the recorded action potential of one single electrode. 
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The recording system (dacqUSB Recording System”;Axona, UK) is sensitive and able to 

detect low frequency electrical activity generated by several cells simultaneously. The use of 

tetrodes enables separations of single neurons’ electrical activity when using a cluster cutting 

software. Even when tetrodes detect activity from multiple cells simultaneously, it is possible 

to isolate single units (electrical activity from a single neuron) (Fig. 7.). 

 

 

Fig. 7. Multiple clusters within one tetrode. 

Electrode-pair scatterplots showing generated by 10 

min of recorded neuronal activity in MEC. (A) The 

grey dots in the scatterplot represent recorded signal 

and is plotted accorded to the distance to the four 

electrodes of the tetrode (1A - 4A). Seven single units 

were separated from the rest and clustered into seven 

clusters, each with different colors (blue, light green, 

red, purple, light blue, dark green and yellow). (B) 

Recorded action potentials. The blue wave curve 

corresponds to the blue cluster in (A) and the same 

goes for the green, red and purple. Each of the four 

rectangles shows the recorded action potential of one 

single electrode. Please note that even though this 

tetrode recorded multiple units representing cells, all 

the clusters was clearly separated making the 

clustering easy. 

 

 

 

 

 

 

 

 

 

 

 

 

Optrode was lowered in steps of 50 μm until neuronal activity was detected.  Recording 

session followed, where the rats ran freely in a square enclosure (1 x 1 m) for 10-15 min. 

Action potentials, along with positional data and tracking of the animal’s head-direction, were 
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recorded and later used to identify functional MEC cell types. After the data were collected at 

the particular depth of the optrode, and the recorded activity seemed stable, the optrode was 

lowered until new neuronal activity was detected. The total number of MEC cells recorded 

was 271. Transcardially perfusion of rats was executed after recordings were finished. The rat 

brains were cut in sagittal section and stained with Nissl staining to determine final tetrode 

position. Nissl stained sections shows tetrodes were located in superficial layers of MEC in all 

6 rats (Fig. 8). 

 

 

 

Fig. 8. Nissl-stained sagital brain sections. The red arrow shows the position where the recording tetrode was at 

its deepest position. The sections is from all of the 6 rats used in the experiment (numbers shows the rat number), 

and from the right hemisphere (the R shows that the section is from the right hemisphere). 

 

4.2 Determining the Functional Identity of MEC Neurons 

To determine the functional cell type recorded path map, rate map, autocorrelogram and head-

directional polar, firing rate and waveform of recorded action potentials map was used. Path 

map shows the rat’s trajectory with spike locations marked. Rate map showing the cell’s 

firing distribution. Autocorrelogram made from the rate map showing cross-correlations with 

itself. A cell was categorized as grid cell if it showed clear triangular firing pattern evident 

from the rate map. Cells categorized as border cells when it showed a clear firing field along 

the wall of the box. Another criterion was that it had to show a new firing field along an 

inserted wall during wall session recording. Cells categorized as head-direction cells when 

polar firing rate map, showing firing rate as a function of the rat’s head direction with peak 

rate indicated, had a clear preferred direction. Irregular spatial cells had to show some spatial 
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modulated firing activity, evident in the rate map, but clearly not qualify the criteria set for 

grid cells and border cells. Cells that did not show any apparent spatial modulation were 

either categorized as non-spatial principal cells or inter neurons. Differentiation of these two 

cell types was based on the results from a previous published paper, showing that 

interneurons have a narrower wave-form than principal cells and that their firing frequencies 

are higher (Fig. 12).  

 

271 cells were recorded 228 cells were counted as putative principal cells and 33 as putative 

interneurons. Of the total number of putative principal cells, 72 cells were classified as grid 

cells (Fig.9), 8 as border cells (Fig. 10), 51 as head-direction cells (Fig.11), 3 as irregular 

spatial cells and 105 as non-spatial cells.  

4.2.1 Grid cells 

72 cells were categorized as grid cells. There were cells with multiple small grid patterns, 

showing multiple small firing fields with small spacing in the rate map (Fig. 9A) and grid 

cells with bigger grid patterns, showing fewer, but larger firing fields with bigger spacing the 

rate map (Fig. 9B). 4 of the 72 grid cells recorded had some head-directionality and were 

considered to be conjunctive grid x head-direction cells (Fig. 9C).  
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Fig. 9. Examples of grid cells recorded in the MEC of rats running in a square enclosure. (A) From left to right: 

the rats running trajectory (black line) with spike locations (red dots); a color-coded rate map showing the same 

cell’s firing distribution where the color is scaled from blue (silent) to red (peak rate); a autocorrelogram 

extracted from the firing rate map with color coded correlation values (blue: low correlation, red: high 

correlation); a polar map showing firing rate as a function of the rat’s head direction with peak rate indicated. 

The figure arrangement in (A) is the same for (B) and (C). Please note that all (A), (B) and (C) have multiple 

firing fields shown in the rate map and six-fold rotational symmetry of the cell’s firing evident in the 

autocorrelogram. (A) has multiple small firing fields and no head-directionality. (B) has bigger and fewer firing 

fields and no head directionality. (C) has also big firing fields and have preferred head directionality in two 

directions.   

4.2.2 Border cells 

8 cells were categorized as border cells. All of these cells showed high firing rate field along 

one of the walls in the box in addition to a second firing field along the inserted wall. Of the 

cells categorized as border cells, there were 2 cells with some head-directionality considered 

to be conjunctive border x head-direction cell (Fig. 10A). 6 of the cells had no clear head-

directionality (Fig.10B). Cells with firing field with some distance from wall, but still showed 

border vector properties, were recorded (Fig. 10C). 
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Fig. 10. Examples of border cells recorded in the MEC of rats running in a square enclosure. (A) From left to 

right: the rats running trajectory (black line) with spike locations (red dots); a color-coded rate map showing the 

same cell’s firing distribution where the color is scaled from blue (silent) to red (peak rate); a autocorrelogram 

extracted from the firing rate map with color coded correlation values (blue: low correlation, red: high 

correlation); a polar map showing firing rate as a function of the rat’s head direction with peak rate indicated. 

The figure arrangement in (A) is the same for (B) and (C). The upper four images is showing the result from a 

normal running session, while the lower four images is showing the results from a wall session, where an extra 

wall was inserted in the square enclosure parallel to the wall, which the cell shows high firing rate along. Please 

note border associated firing evident in the firing rate map for all cells: (A), (B) and (C). Also note that in the 

wall session images a new firing field appears along the inserted wall. (A) has a firing field close to the wall and 

clear head directionality. (B) has a firing field close to the wall and no clear head directionality. (C) has a firing 

field a bit further from the wall and some head-directionality. 

4.2.3. Head-direction cells 

51 cells were categorized as head-direction cells. All of these cells showed a clear preferred 

direction in the polar map. Of the cells recorded there were cells sharply tuned to one specific 

direction (Fig. 11A) and cells with wider tuning (Fig. 11B). In addition there were cells with 

two preferred directions (Fig. 11C). 

 Fig. 11.  Examples of head direction cells recorded in the MEC of rats running in a square enclosure. (A) 

From left to right: the rats running trajectory (black line) with spike locations (red dots); a color-coded rate map 

showing the same cell’s firing distribution where the color is scaled from blue (silent) to red (peak rate); a 

autocorrelogram extracted from the firing rate map with color coded correlation values (blue low correlation, red 

high correlation); a polar map showing firing rate as a function of the rat’s head direction with peak rate 
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indicated. The figure arrangement in (A) is the same for (B) and(C). Please note the directional modulation of 

cell‘s firing seen in the polar map in all (A), (B) and (C).   

4.2.4 Interneurons 

33 cells were categorized as head-direction cells. None of these cells showed any clear spatial 

or directional modulation (Fig. 12A), high firing rate and narrow waveform generated by the 

cell’s action potentials (Fig. 12B).  

 

 

 

 

Fig. 12. Example of an interneuron 

recorded in the MEC of a rat running in a 

square enclosure. (A) From left to right: the 

rats running trajectory (black line) with 

spike locations (red dots); a color-coded rate 

map showing the same cell’s firing 

distribution where the color is scaled from 

blue (silent) to red (peak rate); a 

autocorrelogram extracted from the firing 

rate map with color coded correlation values 

(blue: low correlation, red: high correlation); 

a polar map showing firing rate as a function 

of the rat’s head direction with peak rate 

indicated. Please note the high firing rate 

and that there is no spatial or directional 

modulation.  (B) Recorded action potentials 

for the same cell as in (A). Please note the 

high firing rate and narrow waveform. 
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4.3 Retrograde transduction of entorhino-entorhinal projection neurons 

A retrograde gene delivering approach was applied to target projecting neurons. When a brain 

area injected with a virus carrying an immunohistochemical tag, the transduced neurons can 

later be identified both in the injection area, and by retrograde transduction in the areas that 

have neuron projection to the injection site. AVV viral vectors were used as the gene 

delivering strategy. AVV2 serotype, pseudotyped with AVV1 caspid proteins (AAV2/1), was 

chosen for our research.  rAAV2/1 packed with pAAV-ChR2-FLAG plasmid;  the ChaR2 was 

used for optogenetic control and FLAG is a non-florescent tag. During immunohistochemical 

staining, FLAG tag is bound by primary antibody which in turn is bound by a second 

antibody conjugated with Cy3 fluorescent dye and is used for identifying transduced neurons. 

A CaMKIIα promoter drove the ChR2-FLAG transcription and the construct also contain 

potassium channel Kir2.1 derived from 20 amino acid trafficking signal 

DYKDHDGDYKDHDIDYKDDDDK and ER export motif FCYNENEV (86), to improve 

plasma membrane localization. WPRE and BHG polyadenylation signal was included in the 

vector to enhance transgene transcription end expression. 

 

rAAV2/1-ChR2-FLAG was injected into the rat’s left entorhinal cortex during stereotactic 

surgery. After the experimental recordings were done, the rat was perfused and the brain 

extracted. The brain was cut into sagittal sections and immunostaining was executed to see 

the levels of transgene expression. Immunoflorescent images revealed ChR2-FLAG 

expression around the injection site in the left entorhinal cortex, and in the superficial layers 

of right MEC (Fig. 13).  These results indicate that the that the virus was retrogradely 

transduced from left MEC to right MEC, as the expression is only detectable in the superficial  

layers of the right MEC and not anywhere else, eliminating possible passive diffusion of viral 

injection.   
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Fig. 13. ChR2-FLAG expression in MEC. Immoflourescent images of sagital brain section showing ChR2- 

FLAG expression in the brain. Bright red fluorescence (emission maximum at 570 nm), showing the areas which 

express ChR2-FLAG. The sections have been stained with immunohistochemical staining where a FLAG tag is 

bound by primary FLAG antibody, and then bound by a secondary antibody conjugated with Cy3 fluorescent 

dye. Both of the section is from the same rat: 18135. Left images are sections of the left hemisphere. Showing 

ChR2-FLAG expression where the virus was injected. The upper image shows the complete section. The white 

rectangle the upper image shows framed area in the lower image magnified.  Right images are sections of the 

right hemisphere. Showing the ChR2-FLAG expression retrogradely transported from the injection site in the 

left hemisphere. The white arrow show where the recording tetrode was at its deepest position. Scale is indicated 

in the bottom of images where the white lines represent 2 mm and 0.2 mm. 

 

4.4 Photoexcitation of entorhino-entorhinal projecting cells 

4.4. 1. Identification of light-responsive MEC neurons  

Cells with direct contralateral entorhinal projection were identified by an optogenetic 

approach. As mentioned, the right MEC cells were tagged by rAAV2/1-ChR2-FLAG, injected 

in the left MEC. The viral payload was successfully retrogradely transported to the superficial 

layers of MEC (Fig. 13), which leads to an expected introduction of optogenetic control over 

Chr2-expressing cells. The same cells recorded while the rat ran in the box (this to enable 

functional cell type identification as mentioned previously), was recorded in a laser 

stimulation session in an attempt of ChR2-activation where blue light (473nm) illuminated the 

cell. If the cell responded to the light (minimal firing latency after laser flash), it could be 

considered to have direct contralateral projection or excitatory synaptic connections to a 

ChR2-expressing cell, leading to indirect activation.   
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In the stereotactic surgery procedure, an optrode, an assembly composed of an optical fiber 

and four tetrodes, was implanted in the entorhinal cortex, for two of the rats only in the right 

MEC and four rats, both in left and right MEC. The optical fiber was 500 μm above of the 

tetrode tip which enabled in vivo cell activity recording and light delivery simultaneously.  

After running session, a laser stimulation session followed. The session took place while the 

rat was placed in a towel covered flower pot. Optical fibers were connected to the rats head 

stage for light delivery. The following recording session lasted for 2 minutes while the laser 

delivered 473 nm light pulses of 3.5 ms at 1Hz frequency with a power of ~25 mW (measured 

from the tip of the fiber). The cells recorded in the running session and laser stimulation 

session were considered to be the same if the isolated cluster in the scatterplot was in 

approximately the same position and the spike waveform shape appeared similar (Fig 14). 
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Fig. 14. The clusters and waveforms of a single recorded neuron before and during laser session.  (A) Left: 

Electrode-pair scatterplots of neuron, before laser stimulation session. Right: Recorded action potentials from the 

same cell as in left. The image arrangement is the same for (B). The recording lasted for 15 min while the rat 

was running in the square enclosure. (B) Recorded cell during laser stimulation session. The session lasted 2 min 

with the rat being in the large flower pot. Please not that the clusters location looks as if it is in the same position 

in (A) and (B) and the waveforms look approximately the same for (A) and (B), therefore the cell recorded is 

considered to be the same in (A) and (B). 

 

Spike raster and spike histograms were generated and used to determine if the neurons were 

light-responsive. Spike raster is showing the distribution of spikes (action potential) before 

and after laser stimulation. The x-axsis shows the time from the light onset (given at point 0) 

and the y-axsis show the number of trial, where each row represents 1 s stimulation period. A 

2 min stimulation session of 1Hz stimulation will give 120 trials. If spikes are generated 

directly by the light activation, they will likely have the same firing latency for every laser 

flash. In the spike raster this will generate a vertical line of dots (each dot representing a 

spike) after point 0.   Spike histogram showing the number of spikes plotted in accordance to 

their firing latency. The x-axis shows the time from light onset and ranges from – 50 to 100 

milliseconds. The y-axis shows the number of spikes. If spikes are generated by the light 

activation, the columns in the histogram would be tallest right after point 0. Only the cells 

with a clear dotted line in the spike raster and clear peaks in the histogram were considered to 

be light-activated cells (Figs. 15-19).  

 

32 cells were listed as responsive. Combined with an evaluation of data from the running 

session, identification of the functional cell type of the responsive cells was done (see 

paragraph: 4.2 Determining the functional identity of MEC neurons). 1 grid cell, 2 border 

cells, 4 head-direction cells, 7 non-spatial cells and 18 interneurons were counted as light 

responsive cells (Figs. 15-19).  

 

These results suggest that combined optogenetic-electrophysiological approach can be used 

for determining functional identity of entorhino-entorhinal projecting MEC cell, though they 

do not eliminate the possibility that the light responsiveness are due to indirect stimulation of 

MEC neurons. Light responsiveness could arise from stimulation of ChR2 expressing MEC 

neurons with excitatory synapse with the cell recorded. To differentiate between direct and 

indirect light activated cells, the length of response latency was evaluated. The cells directly 

light activated should possess minimal response latencies compared to indirectly activation. 
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Neurons with ChR2 expression in plasma membrane will show a fast response to the laser 

flash, by activating ChR2 channels, whereas the synaptic activation due to light response of 

neighboring neurons, would take additional time.   

 

Light responsive cells with firing latencies ~10 ms were considered to be directly activated 

cells. Cells with longer latencies were considered to be indirectly activated cells. These 

criteria for determining whether a cell is directly activated or indirectly activated, has been 

used in a recently published paper (42) where the same optogenetic-electrophysiological 

technique was used.  

4.4.2 Light activated grid cell 

1 light activated cell was categorized as grid cell. It had a clear grid pattern and the spike 

raster and spike histogram show a clear peak after point 0 (representing time of laser flash). 

The peaks in the two plots show longer response latency, indicating indirect activation (Fig. 

15).  

 

 

Fig. 15. Firing pattern of a light responsive grid cell recorded in MEC. The upper four images from left to right: 

the rats running trajectory (black line) with spike locations (red dots); a color-coded rate map showing the same 

cell’s firing distribution where the color is scaled from blue (silent) to red (peak rate); an autocorrelogram 

extracted from the firing rate map with color coded correlation values (blue: low correlation, red: high 

correlation); a polar map showing firing rate as a function of the rat’s head direction with peak rate indicated. 

The lower left image: spike raster showing spike distribution before and after laser stimulation (given at point 0 

in the x-axis). The blue dots represent a recorded action potential from the cluster chosen. The x-axis shows the 

time from light onset from -50 to 100 milliseconds. The y-axis shows the trial number when the action potential 
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was recorded (ranging from 0 to 120 where each row represent 1 s stimulation period. 2 min stimulation session 

of 1Hz stimulation will give 120 trials). The lower right image: spike histogram where the number of spikes is 

plotted in accordance to their firing latency around the moment of stimulation (given at point 0 in the x-axis). 

The x-axis shows the time from light onset and ranges from – 50 to 100 milliseconds. The y-axis shows the 

number of spikes.  

4.4.3 Light activated border cells 

2 light activated cells were categorized as border cells. They had clear firing fields along the 

box wall (Fig. 16A) and the spike raster and spike histogram show clear peaks after point 0 

(representing time of laser flash). The peaks in the two plots show a short latency of ~10 ms, 

indicating direct activation (Fig. 16). 

 

Fig. 16.  Firing pattern of two laser-responsive border cells recorded in MEC. (A): The upper four images from 

left to right: the rats running trajectory (black line) with spike locations (red dots); a color-coded rate map 

showing the same cell’s firing distribution where the color is scaled from blue (silent) to red (peak rate); an 
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autocorrelogram extracted from the firing rate map with color coded correlation values (blue: low correlation, 

red: high correlation); a polar map showing firing rate as a function of the rat’s head direction with peak rate 

indicated. The lower left image: spike raster showing spike distribution before and after laser stimulation (given 

at point 0 in the x-axis). The blue dots represent a recorded action potential from the cluster chosen. The x-axis 

shows the time from light onset from -50 to 100 milliseconds. The y-axis shows the trial number when the action 

potential was recorded (ranging from 0 to 120 where each row represent 1 s stimulation period. 2 min 

stimulation session of 1Hz stimulation will give 120 trials). The lower right image: spike histogram where the 

number of spikes is plotted in accordance to their firing latency around the moment of stimulation (given at point 

0 in the x-axis). The x-axis shows the time from light onset and ranges from – 50 to 100 milliseconds. The y-axis 

shows the number of spikes. The image arrangement is the same for (B).   

 

4.4.4 Light activated head-direction cells 

4 light activated cells were categorized as head-direction cells. They had a clear directional 

modulation (Fig. 17A) and the spike raster and spike histogram show clear peaks after point 0 

(representing time of laser flash). The peaks in the two plots show a short latency of ~10 ms, 

for the 3 first cells presented (from top to bottom) in Fig. 17, indicating direct activation, and 

a longer latency for the last cell presented, indicating indirect activation (Fig. 17).  
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Fig 17. Firing pattern of four laser-responsive head-direction cells recorded in MEC. (A) Example of 

laser responsive head direction cell. The upper four images from left to right: the rats running 

trajectory (black line) with spike locations (red dots); a color-coded rate map showing the same cell’s 

firing distribution where the color is scaled from blue (silent) to red (peak rate); an autocorrelogram 

extracted from the firing rate map with color coded correlation values (blue: low correlation, red: high 

correlation); a polar map showing firing rate as a function of the rat’s head direction with peak rate 

indicated. The lower left image: spike raster showing spike distribution before and after laser 

stimulation (given at point 0 in the x-axis). The blue dots represent a recorded action potential from 

the cluster chosen. The x-axis shows the time from light onset from -50 to 100 milliseconds. The y-

axis shows the trial number when the action potential was recorded (ranging from 0 to 120 where each 

row represent 1 s stimulation period. 2 min stimulation session of 1Hz stimulation will give 120 trials). 

The lower right image: spike histogram where the number of spikes is plotted in accordance to their 

firing latency around the moment of stimulation (given at point 0 in the x-axis). The x-axis shows the 

time from light onset and ranges from – 50 to 100 milliseconds. The y-axis shows the number of 

spikes. (B) Spike raster (same as in (A) lower left) and spike histogram (same as in (A) lower right) 

for laser responsive head-direction cells. 

 

4.4.5 Light activated non-spatial cells 

7 light activated cells were categorized as non-spatial cells. They had no clear spatial or directional 

modulation and the spike raster and spike histogram show clear peaks after point 0 (representing time 

of laser flash) (Fig. 18A). The peaks in the two plots show a short latency of ~10 ms, for the 5 first 

cells presented (from top to bottom) in Fig. 18, indicating direct activation, and a longer latency for the 

2 last cells presented, indicating indirect activation (Fig. 18). 



51 
 

 



52 
 

 

Fig. 18. Firing pattern of seven laser-responsive non-spatial cells recorded in MEC. (A): The upper four 

images from left to right: the rats running trajectory (black line) with spike locations (red dots); a color-coded 

rate map showing the same cell’s firing distribution where the color is scaled from blue (silent) to red (peak 

rate); an autocorrelogram extracted from the firing rate map with color coded correlation values (blue: low 

correlation, red: high correlation); a polar map showing firing rate as a function of the rat’s head direction with 

peak rate indicated. The lower left image: spike raster showing spike distribution before and after laser 

stimulation (given at point 0 in the x-axis). The blue dots represent a recorded action potential from the cluster 

chosen. The x-axis shows the time from light onset from -50 to 100 milliseconds. The y-axis shows the trial 

number when the action potential was recorded (ranging from 0 to 120 where each row represent 1 s stimulation 

period. 2 min stimulation session of 1Hz stimulation will give 120 trials). The lower right image: spike 

histogram where the number of spikes is plotted in accordance to their firing latency around the moment of 

stimulation (given at point 0 in the x-axis). The x-axis shows the time from light onset and ranges from – 50 to 

100 milliseconds. The y-axis shows the number of spikes. (B) Spike raster (same as in (A) lower left) and spike 

histogram (same as in (A) lower right) for laser responsive non-spatial cells. 
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4.4.6 Light activated interneurons 

18 light activated cells were categorized as interneurons. They had no clear spatial or 

directional modulation (Fig 19A) in addition to high firing rate and narrow waveform. The 

spike raster and spike histogram show clear peaks after point 0 (representing time of laser 

flash). The peaks in the two plots show a short latency of ~10 ms, for the 5 first cells 

presented (from top to bottom) in Fig. 19, indicating direct activation, and a longer latency for 

the 13 last cell presented of, indicating indirect activation. 
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Fig. 19. Firing pattern of 18 laser-responsive interneurons cells recorded in MEC. (A) The upper four images 

from left to right: the rats running trajectory (black line) with spike locations (red dots); a color-coded rate map 

showing the same cell’s firing distribution where the color is scaled from blue (silent) to red (peak rate); an 

autocorrelogram extracted from the firing rate map with color coded correlation values (blue: low correlation, 

red: high correlation); a polar map showing firing rate as a function of the rat’s head direction with peak rate 

indicated. The lower left image: spike raster showing spike distribution before and after laser stimulation (given 

at point 0 in the x-axis). The blue dots represent a recorded action potential from the cluster chosen. The x-axis 

shows the time from light onset from -50 to 100 milliseconds. The y-axis shows the trial number when the action 

potential was recorded (ranging from 0 to 120 where each row represent 1 s stimulation period. 2 min 
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stimulation session of 1Hz stimulation will give 120 trials). The lower right image: spike histogram where the 

number of spikes is plotted in accordance to their firing latency around the moment of stimulation (given at point 

0 in the x-axis). The x-axis shows the time from light onset and ranges from – 50 to 100 milliseconds. The y-axis 

shows the number of spikes. (B) Spike raster (same as in (A) lower left) and spike histogram (same as in (A) 

lower right) for laser responsive interneurons. 

4.4.7 Latency of light activated principal cells and interneurons 

The light responsive cells were grouped into putative principal cells and putative 

interneurons. There were in total 14 light responsive principal and 18 light responsive 

interneurons. The response latencies of principal cells in different sessions or animals, appear 

to be with minimal variation compared to response latencies of interneurons, which appear to 

have large variation (Fig. 20), this is in accordance to previously findings (42). It becomes 

clear when looking at the latency plot for principal cells (Fig. 20 left) that there are two 

groupings of response latencies, the largest one with short latency of about 10 ms and a 

smaller group with longer latency. For the interneurons (Fig. 20 right) there are only a small 

fraction of cells with short latency (~10ms), and the rest of the cells have longer latencies with 

large variations. Only the cells with latencies of ~10 ms were counted as directly light 

responsive cells. Cells with longer latencies were counted as indirectly activated cells. Of the 

cells counted as principal cells, there were 10 directly light activated cells and 4 with indirect 

light activation. For the cells counted as interneurons, there were 5 cells with direct light 

activation and 13 cells with indirect light activation. Of the principal directly light activated 

there were 2 border cells, 3 head-direction cells and 5 non-spatial cells. 

 

As previously mentioned directly light activated cells suggest direct projection to the 

contralateral MEC. Results in this project thus indicate that border cells, head-direction cells 

and non-spatial cells of MEC innervate contralateral MEC by direct projections. 
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Fig. 20. Distribution of firing latencies of all light responsive principal cells and interneurons recorded in 

MEC. Color-coded spike rasters of MEC recorded light-responsive neurons. Spike rasters show color-coded 

firing rates of particular cells as a function of time after the laser stimulation. Each row in a spike raster 

corresponds to one cell and all the cells in one spike raster are ordered according to increasing peak response 

latencies; response latencies are divided into 0.5 ms time bins. Firing rates are normalized to a peak firing rate 

and color scale is shown on the right. Left image: Color-coded spike raster of MEC recorded light-responsive 

principal cells. Right image: Color-coded spike raster of MEC recorded light-responsive interneurons. 
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5 Discussion 

5.1 Methodological considerations 

In this study we chose an optogenetic combined with an electrophysiological tool to find 

which functional MEC neurons project to the contralateral entorhinal cortex.  This approach is 

quite unique and can give us detailed information about neuronal connectivity. Not only will 

this approach enable us to target specific cells and give these cells properties so that we can 

control their activity by shining light on them, but we can also achieve information about their 

projecting pattern by using retrograde viral transduction method. We can also learn about 

their electrophysiological properties and determine their functional identity.  Even though 

optogenetic-electrophysiological approach has not been used by many researchers, it has been 

applied with great success in a study to determine the functional MEC cell types that project 

to the hippocampus where the method used is exactly the same as in the project. 

 

It would be possible to use a different methodological approach to reveal the functional cell 

types with entorhino-entorhinal projection; for example an electrical approach with 

antidromic stimulation in entorhinal cortex in one hemisphere and recording in the other. 

However, this method would probably not affect a large enough assembly of cells necessary 

to determine the functional identity of MEC cell projecting contralaterally, as only the cells 

with axons projecting close to the stimulation electrode would show an effect. Since all 

neurons of superficial layers MEC with contralateral projections were of interest in our 

project, an optogenetic approach was a better choice, since it probably would affect a larger 

population of neurons. This is evident in the immunoflourescent images showing the CHR2-

FLAG transduced cells in the right hemisphere of the MEC (see Fig. 7B). A relatively large 

area, concentrated in the superficial layers of the MEC, showed ChR2-FLAG expression 

which indicate that our purpose of targeting a large number of cells in the superficial of this 

exact area was fulfilled. 

 

A viral delivering tool was chosen because it leads to a fast and versatile implementation and 

high potency copy number linked to high gene copy number (81). An AVV vector was used 

because of its low toxicity, high infectivity and long-term gene expression (85), which both 

are properties desirable for our in vivo study. Compared to lentivirus the AVV vectors are 

known to have low immunogenicity which makes the transduced tissue volume lager which 

was a desired effect in our project. AVV is also preferred over LV in this experiment because 
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LV is permanently integrated into the genome of targeted cells (84) which could have lead to 

undesired disruption of the genes in our rats and may have interfered with the result and/or the 

rats’ health. We chose recombinant AVV2 serotype pseudotyped with AVV1 caspid proteins, 

to produce AVV2/1 for our research. rAAV2/1 has shown  high transduction frequencies in 

the CNS of the rat and has also successfully been transported retrograde in a previous study 

(85)   

 

ChR2 was the opsin of chose for identifying infected neurons and it was packed along with a 

FLAG tag into the rAAV2/1 viral vector. Additional modifications were done (see method 

section) to improve transgene transcription, expression, and plasma membrane localization. 

After the stereotactic surgery where the virus was injected in the left MEC of 6 rats, 

experimental recordings followed and thereafter the rats were perfused. The brains were 

extracted and sliced. Some of the brain sections were Nissl stained to see the trace of the 

tetrodes so we could decide if the position of the recording was in the desired place 

(superficial layers of MEC). These sections showed that the tetrode trace were in the 

superficial layers of MEC, which indicated that the recorded cell activity were generated by 

cells in the superficial layers of MEC (see Fig. 8).  

 

Due to limited time there was no time to do statistical analysis on the data collected. 

Statistical analysis applied for identification of functional cell type would increase the 

likelihood of correct classification of the recorded cell. Instead the cells were classified by 

looking at the firing distributions recorded in the running session. Whether a cell was light 

responsive or not was determined qualitatively. Due to time limits, statistical analysis was not 

performed to verify this, causing a decrease in the certainty that the cells were responsive. 

5.2 All functional MEC cell types identified 

In total we found about 271 cells. We classified these cells in two main categories: putative 

principle cells and putative interneurons. These cells were sorted by looking at the waveform, 

firing frequencies and firing fields. 328 cells were defined as putative principal cells and 33 as 

putative interneurons. 

 

The principal cells were classified into different kinds of functional cell types based on their 

firing patterns. We found 72 grid cells (Fig. 11), 4 of them with head-direction modulation, 

known as conjunctive grid x head direction cells. We found 8 border cells (Fig. 12), two of 
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them were conjunctive border x head direction cells, and 51 head-direction cells (Fig. 13). A 

few cells had some spatial firing tendencies, but did not have the characteristic firing pattern 

of grid cells or border cells. These cells were classified as irregular spatial cells and we found 

3 of these cells. 2 of these had only one firing field, much like the place cells of the 

hippocampus and have been identified in studies done by others (6, 7). In addition we found 4 

cells that we counted as head direction cells, but also showed one firing field. These can be 

considered conjunctive head- direction x one-field cells. Also, we found cells with no spatial 

firing patterns, but could not be identified as interneurons as they did not have the 

characteristic narrow waveform or frequently firing. We categorized these cells as non-spatial 

cells and there were 105 of them (19A). 

 

Previously studies have shown that interneurons have a narrower wave-form than principal 

cells and that their firing frequencies are higher (105). We looked also at the spatial 

information of all cells. Interneurons do not show any spatial information or head-direction 

modulation and the firing pattern is scattered evenly through the whole environment available 

to the rat. We found 33 cells that we categorized as interneurons based on these criteria. 

 

The grid cells identified, had different sizes and spacing (Fig. 11). These different scaled grid 

cells can be regarded as cells belonging to different modules as described by recently 

published findings (54).  

5.3 Functional cell type projecting to contralateral MEC 

The findings from a recent published paper suggest that there are two different cell 

populations in layer II of MEC where one projects to the hippocampus and the other projects 

extrahippocampally (43). This led us to ask the question if the two cell populations consisted 

of different distributions of functional cell types. It has been shown that the population of 

MEC cells projecting to the hippocampus consist of all MEC functional cell types, but the 

major contributor is grid cells. We wanted to investigate if the distribution of functional cell 

types in the two subpopulations differ, and chose the contralateral MEC as termination target 

area based on findings suggesting strong commissural projections from MEC to MEC (13, 

14). In this project the aim was to find what functional MEC cell type project to the 

contralateral entorhinal cortex.  
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In our research we found in total 32 responsive cells. 14 of them were classified as putative 

principal cells and 18 as putative interneurons (Fig. 20). Of the responsive putative principal 

cells, 1 was classified as a grid cell (see Fig. 16), 2 border cells (see Fig. 17), 4 head-direction 

cells (Fig.18) and 7 non-spatial cells (Fig. 19). 

 

By looking at the spike raster and spike histogram it is evident that the different responsive 

cells have some variation in the response latency. 10 of the principal cells and 5 of the 

interneurons had short response latency of ~10 ms.  These cells could be considered directly 

activated by the laser. 4 of the principal neurons and 13 of the interneurons had longer 

response latencies. Cells with long latency response are probably activated indirectly by the 

laser stimulation, meaning that the laser actually activates another cell with connection to the 

cell being recorded. The illumination of ChR2 expressing cell will lead to a depolarization of 

the cell which could create an action potential (spike) if this cell has an excitatory synapse 

with the cell recorded it would lead to a depolarization of this cell also, likely creation an 

action potential (spike). The response latency of the indirectly activated cells varies a lot, 

from about 16 ms to 40 ms, this could mean that the activation goes through more than one 

synapse, and that several cells could be involved, creating a polysynaptic activation. This 

could explain the large span between the response latency in the indirectly activated cells we 

found.  

 

Of the directly laser activated cells we found 2 border cells,(Fig. 17), 3 head-direction cells 

(Fig. 18A-C), 5 non-spatial cells (Fig. 19A-E) and 5 interneurons all with latencies of ~10 ms 

(Fig. 20A-E). Directly light activated cells indicate expression of ChR2 in the cell membrane. 

All of these cells were recorded in the right MEC, whereas the virus containing the ChR2 was 

injected in the left MEC which suggests that the virus containing ChR2 has travelled through 

the contralateral projection retrogradely from the left MEC to the right MEC. Based on this, 

we can assume that all the directly laser activated cells we found do have entorhinal-

entorhinal projections.  

 

As mentioned previously, recorded cells with direct laser activation, likely to have 

contralateral projection, represented different functional cell type groups. We found border 

cells, head-direction cells, non-spatial cells and interneurons with direct laser activation, but 

no irregular spatial cells and no grid cells with short latency stimulation response. We did not 

find any responsive cells categorized as irregular spatial cells. This might be caused by a low 
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number of irregular cells recorded, which could lead to sampling bias. We did only collected 

data from 3 irregular spatial cells, which is only 1,3 % of all cells recorded.  

 

What is more interesting is the fact that we did not find any grid cells with direct laser 

activation. We found only one light activated grid cell, but this with indirect activation (Fig. 

16). In contrast to the low number of irregular spatial cells found, the number of grid cells 

was quite high. We found 72 grid cells, which is 31.5% of all cells recorded and none of them 

were considered to have contralateral projection. This could also be caused by limited 

sampling (only form 6 rats and only 270 cells). To draw the conclusions that grid cells in the 

superficial layers of MEC do not project to the contralateral MEC, all neurons of this 

particular population need to be investigated. With the research tools available today, this 

could be quite challenging. In spite of this, based on the number of grid cells found and the 

fact that we were able to find cells from other functional cell type groups with direct light 

activation, it could be speculated that all functional MEC cell types, projects contralaterally to 

the MEC, except the grid cells. This distribution of functional cell types would be in contrast 

to the distribution of functional cell types shown to project to the hippocampus (42). To 

investigate whether the sparsity of light responsive grid cells are due to limited sampling or if 

it indicates a different distribution of functional cell types in the cell population projecting 

contralaterally vs. the hippocampus, further research is needed.  
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6. Conclusion 

This thesis sheds light on the functional cell type distribution in superficial layers of MEC 

projecting contralaterally to the MEC. By using a retrograde gene delivery strategy, 

entorhino-entorhinal projecting MEC cells were tagged. A combined optogenetic-

electrophysiological approach allowed us to determine the functional identity of these cells. 

The results indicate the presence of at least four different functional MEC cell types with the 

contralateral MEC as their projection target. Border cells, head-direction cells, non-spatial 

cells and interneurons were all found to have this particular projection.  

 

It has been shown that the functional cell types of superficial layers of MEC with projection 

to the hippocampus in a large part consist of grid cells. Although multiple grid cells were 

identified in our project, none of them satisfied the criteria set to be considered to have direct 

projection to the contralateral MEC. This is in contrast to the distribution of functional MEC 

cell types projecting to the hippocampus. Whether these results are caused by limited 

sampling, or if they suggest that the contralaterally projecting cell population and the cell 

population projecting to the hippocampus has distinct functional properties, remains 

unknown. To answer this question further research is acquired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

References 

1. E. C. Tolman, Cognitive maps in rats and men. Psychol. Rev. 55, 189 (1948). 

 

2. E.C. Tolman, B.F. Ritchie, D. Kalish, Studies in spatial learning: Orientation and the short-cut 

J. Exp. Psychol. 36, 13 (1946). 

 

3. J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit 

activity in the freely-moving rat. Brain Res. 34, 171 (1971). 

 

4. V. H. Brun et al., Place cells and place recognition maintained by direct entorhinal-

hippocampal circuitry. Science 296, 2243 (2002). 

 

5. E. I. Moser, M.-B Moser, A metric for space. Hippocampus 18, 1142 (2008). 

 

6. F. Sargolini et al., Conjunctive representation of position, direction, and velocity in entorhinal 

cortex. Science 312, 758 (2006). 

 

7. F. Savelli, D. Yoganarasimha, J. J. Knierim, Influence of boundary removal on the spatial 

representations of the medial entorhinal cortex. Hippocampus 18, 1270 (2008). 

 

8. T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, E. I. Moser, Microstructure of a spatial map in 

the entorhinal cortex. Nature 436, 801 (2005). 

 

9.  M. P. Witter, D. Amaral, in Hippocampal Formation. The Rat Nervous System. (G. 

Paxinos. Amsterdam, 2004) pp. 635-704. 

 

10. N. M. van Strien, N. L. M. Cappaert, M. P. Witter, The anatomy of memory: an interactive 

overview of the parahippocampal-hippocampal network. Nat. Rev. Neurosci. 10, 272 (2009). 

 

11. D.G. Amaral, P. Lavenex, in Hippocampal Neuroanatomy. The Hippocampus Book. 

(Oxford University Press. Oxford, 2004) pp. 37-131. 

 

12. C. Köler, Intrinsic connections of the retrohippocampal region in the rat brain II. The medial 

entorhinal area. J. Comp. Neurol. 246, 149 (1986). 

 

13. C. Köler, Intrinsic connections of the retrohippocampal region in the rat brain III. The medial 

entorhinal area. J. Comp. Neurol. 271, 208 (1988). 

 

14. J. O’Keefe, L. Nadel, in The hippocampus as a cognitive map. (Clarendon Press, 

Oxford,1978).   

 

15. D. Derdikman, E. I. Moser, A manifold of spatial maps in the brain. Trends in Cognitive 

Sciences 14, 561 (2010). 

 

16. R. F. Langston, et al., Development of the spatial representation system in the rat. Science 

328, 1576 (2010). 

 

17. T. J. Wills, F. Cacucci, N. Burgess, J. O'Keefe, Development of the hippocampal cognitive 

map in preweanling rats. Science 328, 1573 (2010). 



67 
 

 

18. G. J. Quirk, et al., The firing of hippocampal place cells in the dark depends on the rats recent 

experience. J. Neurosci. 10, 2008 (1990). 

 

19. R. U Muller, J. L Kubie, E. M. Bostock, J. S. Taube, G. J. Quirk, in Spatial firing correlates 

of neurons in the hippocampal formation of freely moving rats. (Oxford University Press, 

New York, 1991) pp 296–333. 

 

20. R. Muller, J. Kubie, The effects of changes in the environment on the spatial firing of 

hippocampal complex-spike cells. J. Neurosci.7, 1951 (1987). 

 

21. E. Bostock , R. U. Muller,  J. L. Kubie, Experience-dependent modifications of hippocampal 

place cell firing. Hippocampus 1, 193 (1991). 

 

22. E. J. Markus, Y. L. Qin, B. Leonard, W. E. Skaggs, B. L. McNaughton, C. A. Barnes, 

Interactions between location and task affect the spatial and directional firing of hippocampal 

neurons. J. Neurosci. 15, 7079 (1995). 

 

23. L. L. Colgin, E. I. Moser, M.-B. Moser, Understanding memory through hippocampal 

remapping. Trends Neurosci. 31, 469 (2008). 

 

24. D. S. Touretzky, A. D. Redish, Theory of rodent navigation based on interacting 

representations of space. Hippocampus 6, 247 (1992). 

 

25. M. Fyhn, S. Molden, M. P. Witter, E. I. Moser, M.-B. Moser, Spatial Representation in the 

Entorhinal Cortex. Science 305, 1258 (2004). 

 

26. V. H. Brun et al., Impaired Spatial Representation in CA1 after Lesion of Direct Input from 

Entorhinal Cortex. Neuron 57, 290 (2008). 

 

27. M. C. Fuhs, D. S. Touretzky, A spin glass model of path integration in rat medial entorhinal 

cortex. J. Neurosci. 26, 4266 (2006). 

 

28. B. L. McNaughton, F. P. Battaglia, O. Jensen, E. I. Moser, M.-B. Moser, Path integration and 

the neural basis of the 'cognitive map'. Nat. Rev. Neurosci. 7, 663 (2006). 

 

29. T. Solstad, E. I. Moser, G. T. Einevoll, From grid cells to place cells: A mathematical model. 

Hippocampus 16, 1026 (2006). 

 

30. T. Solstad, C. N. Boccara, E. Kropff, M.-B. Moser, E. I. Moser, Representation of Geometric 

Borders in the Entorhinal Cortex. Science 322, 1865 (2008). 

 

31. P. A. Naber, M. Caballero-Bleda, B. Jorritsma-Byham, M. P. Witter, Parallel input to the 

hippocampal memory system through peri- and postrhinal cortices. NeuroReport 8, 2617 

(1997). 

 

32. C. B. Canto, F. G. Wouterlood, M. P. Witter, What Does the Anatomical Organization of the 

Entorhinal Cortex Tell Us? Neural Plasticity 2008, Article ID 381243 (2008). 

 

 



68 
 

33. R. Klink, A. Alonso, Morphological characteristics of layer II projecton neurons in the rat 

medial entorhinal cortex. Hippocampus 7, 571 (1997). 

 

 

34. B. Tahvildari , A. Alonso, Morphological and electrophysiological properties of lateral 

entorhinal cortex layers II and III principal neurons. J. Comp. Neurol. 491, 123 (2005). 

 

35.  T. van Haeften, F. G. Wouterlood, B. Jorrisma-Byham, M. P. Witter, GABAergic 

presubicular projections to the medial entorhinal cortex of the rat. J. Neurosci. 17, 862 (1997)  

 

36. T. van Haeften, B. Jorritsma-Byham, M. P. Witter, Quantitative morphological analysis of 

subicular terminals in the rat entorhinal cortex. Hippocampus 5, 452 (1995). 

 

37. A. Pinto, C. Fuentes, D. Paré, Feedforward inhibition regulates perirhinal transmission of 

neurocortical inputs to the entorhinal cortex: ultrastructural study in guinea pigs. J. Comp. 

Neurol. 495, 722 (2006). 

 

38. B. F. Jones, M. P. Witter, Cingulate cortex projections to the parahippocampal region and 

hippocampal formation in the rat. Hippocampus 17, 957 (2007). 

 

39. E. A. Tolner, F. Kloosterman, E. A. van Vliet, M. P. Witter. F H. Silva, J. A. Gorter, 

Presubiculum stimulation in vivo evokes distinct oscillations in superficial and deep 

entorhinal cortex layers in chronic epileptic rats. J. Neurosci. 25, 8755 (2005). 

 

40. B. N. Hamam, T. E.  Kennedy, A. Alonso, D. G. Amaral, Morphological and 

electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. J. 

comp. Neurol. 418, 457 (2000). 

 

41. E. I. Moser, M. –B. Moser, in Handbook of Brain Microcircuits, G. Shepherd, S. Grillner, 

Eds. (Oxford University Press, USA, 2010) pp. 175-186 

 

42. S.–J. Zhang et al., Optogenetic dissection of entorhinal-hippocampal functional connectivity. 

Science 340, Article ID 1232627 (2013). 

 

43. C. Varga, S. Y. Lee, I. Soltesz, Target-selective GABAergic control of entorhinal cortex 

output. Nat. Neurosci. 13, 822 (2010). 

 

44. G. Adelmann, T.  Deller, M.  Frotscher, Organization of identified fiber tracts in the rat 

fimbria-fornix: an anterograde tracing and electron microscopic study. Anat. Embryol. 193, 

481 (1996). 

 

45. L. M. Giocomo, M. –B. Moser, E. I. Moser, Computational models of grid cells. Neuron 71, 

589 (2011). 

 

46. E. T. Rolls, S. M. Stringer, T. Elliot, Entorhinal cortex grid cells can map to hippocampal 

place cells by competitive learning. Network 17, 447 (2006). 

 

47. T. J McHugh, K. I. Blum, J Z Tsien, S. Tonegawa, M. A. Wilson, Impaired hippocampal 

representation of space in CA1-specific NMDAR1 knockout mice. Cell 87, 1339 (1996). 

 



69 
 

48. S. Leutgeb, J. K.  Leutgeb, A.Treves, M. –B. Moser, E. I. Moser, Distinct ensemble codes in 

hippocampal areas CA3 and CA1. Science 305, 1295 (2004). 

 

49. J. O'Keefe, N. Burgess, Dual phase and rate coding in hippocampal place cells: Theoretical 

significance and relationship to entorhinal grid cells. Hippocampus 15, 853 (2005). 

 

50.  N. Burgess, C. Barry, J. O’Keefe, An oscillatory interference model of grid cell firing. 

Hippocampus 17, 801 (2007). 

 

51. L. M. Giocomo, E. A.  Zilli, E. Fransén, M. E.  Hasselmo, Temporal frequency of 

subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315, 1719 

(2007). 

 

52. X. –J. Wang, in Encyclopedia of Neuroscience, volume 1, 667-679. (Academic Press, Oxford, 

2010) pp .667-679. 

 

53. K. Zhang,Representation of spatial orientation by the intrinsic dynamics of the head-direction 

cell ensemble: a theory. J. Neurosci. 16, 2112 (1996). 

 

54. H. Stensola et al., The entorhinal grid map is discretized. Nature 492, 72 (2012). 

 

55. G. Nagel et al., Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 

2395 (2002). 

 

56. G. Nagel et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane 

channel. Proc. Natl. Acad. Sci. 100, 13940 (2003). 

 

57. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, 

genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263 (2005). 

 

58. K. Deisseroth, G. Feng , A. K. Majewska, G. Miesenbock, A. Ting, M. J. Schnitzer, Next-

generation optical technologies for illuminating genetically targeted brain circuits. J. 

Neurosci. 26, 10380 (2006). 

 

59. M. Rein, J. Deussing, The optogenetic (r)evolution. Mol. Genets. Genomics 287, 95 (2012). 

 

60. F. H. Crick, Thinking about the brain. Sci. Am. 241, 219 (1979). 

 

61. D. Oesterhelt, W. Stoeckenius, Rhodopsin-like protein from the purple membrane of 

Halobacterium halobium. Nat. New Biol. 233: 149 (1971). 

 

62. R. L. Fork, Laser stimulation of nerve cells in Aplysia. Science 171, 907 (1971). 

 

63. A. Grinvald , A.  Fine A, I. C.  Farber, R. Hildesheim . Fluorescence monitoring of electrical 

responses from small neurons and their processes. Biophys. J. 42, 195 (1983). 

 

64. D. Shmucker, A. L Su, A. Beermann, H Jäkle, D. G. Jay, Chromophore-assisted laser 

inactivation of patched protein switches cell fate in the larval visual system of Drosophila. 

Proc. Natl. Acad. Sci. 91, 2664 (1994). 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Channelrhodopsin-2%2C+a+directly+light-gated+cation-selective+membrane+channel.+Proceedings+of+the+National


70 
 

65. A. Matsuno-Yagi, Y. Mukohata, Two possible roles of bacteriorhodopsin; a comparative 

study of strains of Halobacterium halobium differing in pigmentation. Biochem. Biophys. Res. 

Commun. 78, 237 (1977). 

 

66. Y. Mei, F. Zhang, Molecular Tools and Approaches for Optogenetics. Biol. Psychiatry 71, 

1033 (2012). 

 

67. J. L. Spudich, C.-S. Yang, K.-H. Jung, E. N. Spudich, Retinylidene proteins: structures and 

functions from archaea to humans. Annu. Rev. Cell Biol. 16, 365 (2000). 

 

68. J. L. Spudich, The multitalented microbial sensory rhodopsins. Trends Microbiol. 14, 480 

(2006). 

 

69. U. Haupts, J. Tittor, E. Bamberg, D. Oesterhelt, General concept for ion translocation by 

halobacterial retinal proteins: The isomerization/switch/transfer (IST) model. Biochemistry 

36, 2 (1997). 

 

70. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, 

genetically targeted optical control of neural activity. Nat Neurosci 8, 1263 (2005). 

 

71. F. Zhang, L. P. Wang, E. S. Boyden, K. Deisseroth, Channelrhodopsin-2 and optical control 

of excitable cells. Nat. Methods 3, 785 (2006). 

 

72. F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, K. Deisseroth, Circuit-breakers: 

optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577 

(2007). 

 

73. T. Ishizuka, M. Kakuda, R. Araki, H. Yawo, Kinetic evaluation of photosensitivity in 

genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 

54, 85 (2006). 

 

74. T. P. Sakmar, Structure of rhodopsin and the superfamily of sevenhelical receptors: the same 

and not the same. Curr. Opin. Cell Biol. 14, 189 (2002). 

 

75. Y. Shichida, T. Yamashita, Diversity of visual pigments from the viewpoint of G protein 

activation—comparison with other G protein-coupled receptors. Photochem. Photobiol. Sci. 

2, 1237 (2003). 

 

76. J. Y. Lin, M. Z. Lin, P. Steinbach, R. Y. Tsien, Characterization of engineered 

channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803 (2009). 

 

77. S. P. Tsunoda, P. Hegemann, Glu 87 of channelrhodopsin-1 causes pH-dependent color 

tuning and fast photocurrent inactivation. Photochem. Photobiol. 85, 564 (2009). 

 

78. J. P. Britt, R. A. McDevitt, A Bonci, Use of channelrhodopsin for activation of CNS neurons. 

Curr. Protoc. Neurosc . Ch. 2:Unit2.16 (2012) 

. 

79. M. Favero, Synaptic cooperativity regulates persistent network activity in neocortex. J. 

Neurosci. 33, 3151 (2013). 

 



71 
 

80. E. Krook-Magnuson, C. Armastrong, C Oijala, I. Soltez, On-demand optogenetic control of 

spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013). 

 

81. O. Yizhar et al., Neocortical excitation/inhibition balance in information processing and 

social dysfunction. Nature 477, 171 (2011). 

 

82. T Dittgen et al., Lentivirus-based genetic manipulations of cortical neurons and their optical 

and electrophysiological monitoring in vivo. Proc. Natl. Acad. Sci. 28, 101 (2004). 

 

83. P. E. Monahan, R. J. Samulski, Adeno-associated virus vectors for gene therapy: more pros 

than cons? Mol. Med. Today 6, 433 (2000). 

 

84. F. Zhang, et al., Optogenetic interrogation of neural circuits: technology for probing 

mammalian brain structures. Nat. Protoc. 5,439 (2010). 

 

85. C. Burger et al., Recombinant AAV Viral Vectors Pseudotyped with Viral Capsids from 

Serotypes 1, 2, and 5 Display Differential Efficiency and Cell Tropism after Delivery to 

Different Regions of the Central Nervous System. Mol. Ther. 10, 302 (2004). 

 

86. V. Gradinaru et al., Molecular and Cellular Approaches for Diversifying and Extending 

Optogenetics. Cell 141, 154 (2010). 

 

87. V. Gradinaru, et al., Targeting and readout strategies for fast optical neural control in vitro 

and in vivo. J. Neurosci. 27,14231 (2007). 

 

88. V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, K. Deisseroth, Optical 

deconstruction of parkinsonian neural circuitry. Science 324, 354 (2009). 

 

89. I. R. Wickersham, et al., Monosynaptic restriction of transsynaptic tracing from single, 

genetically targeted neurons. Neuron 53, 639 (2007). 

 

90. U. Maskos, K.  Kissa, C. St Cloment, P. Brûlet, Retrograde transsynaptic transfer of green 

fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice. Proc 

Natl. Acad. Sci. 99, 10120 (2002). 

 

91. M. Sugita, Y. Shiba, Genetic tracing shows segregation of taste neuronal circuitries for bitter 

and sweet. Science 309, 781 (2005). 

 

92. E. M. Callaway, Transneuronal circuit tracing with neurotropic viruses. Neurons with 

vesicular stomatitis virus vectors. Proc. Natl. Acad. Sci. 108, 15414 (2008). 

 

93. K. T. Beier, et al., Anterograde or retrograde transsynaptic labeling of CNS neurons with 

vesicular stomatitis virus vectors. Proc. Natl. Acad. Sci. 108, 15414 (2011). 

 

94. B. R. Arenkiel, et al., In vivo light-induced activation of neural circuitry in transgenic mice 

expressing channelrhodopsin-2. Neuron 54, 205 (2010). 

 

95. S. Zhao, et al., Celltype-specific channelrhodopsin-2 transgenic mice for optogenetic 

dissection of neural circuitry function. Nat. Methods 8, 745 (2011). 

 



72 
 

  

96. L. Petreanu, D. Huber, A. Sobczyk, K. Svoboda, Channelrhodopsin- 2-assisted circuit 

mapping of long-range callosal projections. Nat. Neurosci. 10, 663 (2007). 

 

97. L. Petreanu, T. Mao, S. M. Sternson, K. Svoboda, The subcellular organization of neocortical 

excitatory connections. Nature 457, 1142 (2009). 

 

98. H. Adesnik, M. Scanziani, Lateral competition for cortical space by layer-specific horizontal 

circuits. Nature 464, 1155 (2010). 

 

99. L. Galvani, De viribus electricitatis in motu musculari, commentarius. Bonon Sci. Art Inst. 

Acad. 7, 364 (1791). 

 

100. M. Scanziani, M. Häusser, Electrophysiology in the age of light. Nature 461, 930 

(2009). 

 

101. D. H. Hubel, Tungsten microelectrodes for recording single units. Science 125, 549 

(1957). 

 

102. G. Buzsáki, Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446 

(2004). 

 

103. W. B. Scoville, B. Milner, Loss of recent memory after bilateral hippocampal lesions. 

J. Neuro. Neurosurg. Psychiatry 20, 11 (1957). 

 

 

104. G.  Buzsáki, E. I. Moser, Memory, navigation and theta rhythm in the hippocampal-

entorhinal system. Nat. Neurosci. 16, 130 (2012). 

 

105. L. M. Frank, E. N. Brown, M. A. Wilson, A comparison of the firing properties of 

putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. J. 

Neurophysiol. 86, 2029 (2001). 

 

 


