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Abstract

We look at how time series coordinate movement data can be represented as images
which have the ability to be understood by both a non-technological clinician
and a deep learning architecture, more specific an autoencoder. Autoencoders
are known as good feature extractors, a beneficial quality in order to recognise
fidgety movement patterns made by infants. Fidgety movements are age-specific
movements, and absence of these are strongly related to cerebral palsy. Movement
data is previously extracted using a version of Human Pose Estimation called
CIMA-Pose on the original video recordings of the infants.

The vision of this project is to make a contribution for the InMotion project at
St. Olav’s University Hospital, which aims to develop an automatic computer-
based CP predictor. Our main contributions focus on highlighting the relevant
data features as 2D images and implementing an autoencoder for cerebral palsy
classification.

Findings made during the process include evaluation and insight about the pro-
posed data representation together with a discussion and recommendations for
future work. Autoencoder related findings cannot exclude the autoencoder as a
feature extractor but indicates that more research is required.

This master thesis concludes that the proposed data representation is not ideal,
before recommending future work for the InMotion project, in order for them to
develop an automatic CP prediction model that can give an early and reliable CP
diagnosis.



Sammendrag

Denne masteroppgaven kartlegger hvordan tidsseriedata i form av koordinater kan
representeres som bilder som b̊ade kan forst̊as av ikke-teknologiske klinikere og av
en dyplæringsarkitektur, mer spesifikt en autoencoder. Autoenkodere er kjent for
å være gode til å oppfatte egenskaper ved inputdata, en egenskap som kommer
godt med n̊ar fidgety bevegelser fra spedbarn skal gjenkjennes. Fidgety bevegelser
er aldersbestemte bevegelsesmønstre, og fravær av disse er en sterk indikasjon for
CP. Bevegelsesdataen er generert ved hjelp av en CIMA-Pose tracker som ble brukt
p̊a de originale videoene av spedbarna.

Visjonen til dette prosjektet er å bidra til at InMotion prosjektet ved St. Olavs
Hospital i Trondheim klarer å utvikle en automatisk datamaskinbasert CP predik-
sjon. V̊art hovedbidrag fokuserer p̊a å belyse de relevante dataegenskapene som
2D bilder, og implementere en autoencoder for CP klassifisering.

Funn gjort i løpet av prosessen inkluderer evaluering og innsikt om den foresl̊atte
datarepresentasjonen, samt en diskusjon og forslag til videre arbeid. Erfaringer
knyttet til dyplæringsmetoden indikerer at andre maskinlæringsalgoritmer bør un-
dersøkes nærmere.

Masteroppgaven konkluderer med at den foresl̊atte datarepresentasjonsmetoden
ikke er ideell for en autoencoder, før InMotion prosjektet f̊ar anbefalinger for videre
arbeid i prosessen med å utvikle en automatisk CP prediksjon slik at en tidlig og
p̊alitelig CP diagnose kan gis.
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Chapter 1

Introduction

1.1 Background and Motivation

Cerebral Palsy (CP) is the most common physical disability in childhood [4]. An
article from 2012 describes CP as an umbrella term for conditions that are char-
acterised by a non-progressive, but not unchanging, motor impairment related to
brain injury early in development [5].

Due to technological advances and enhanced medical care the survival rate for
preterm infants with an extremely low birth weight have improved over the last
decades. These infants are at high risk for brain damage [6]. 2% of live-born
infants are afflicted by CP, and for preterm infants this risk increases. The risk of
CP for infants born in week 22 and 23 is 22%, and for infants born in week 24 this
number is 17% [7].

Diagnosing CP is challenging. In Europe there exists training courses for clinicians
to learn the art of recognising specific movement patterns that characterises a
normal infant. An early prediction of CP can be given if a clinician observes a
high-risk infant of 2-4 months for 15 minutes. This observation can be done at
the bedside as well as remotely. Abnormal or absent of the mentioned movement
patterns is a strong indication of CP [5][6][8]. The number of clinicians with the
knowledge to decide if an infant most likely has CP is limited. In order to spread
the knowledge about early CP prediction and make it more available, a larger
research project was initiated at St. Olav’s University Hospital in Trondheim,
Norway. The project, InMotion, aims to develop an automatic computer-based
system to do the same prediction as the one that have successfully completed
formal training in movement assessment. It focuses on an early and more precise
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prediction of CP. Researchers in the InMotion project have been working over 15
years with assessing the possibility of early CP detection. During these years, they
have collected a large dataset of infant videos from hospitals around the world.

An automatic method of predicting CP is advantageous in several ways. The
prediction can help clinicians to determine an early diagnosis which increases the
chances of more efficient treatment. The earlier a patient can begin treatment the
better since the brain is more plastic when the children are around two years and
younger. A plastic brain can adapt to change easier and can learn to compen-
sate for the damaged parts. Earlier diagnosis is also especially important to the
parents, who’s fear of the consequences from the infant’s brain injury can lead to
unnecessary stress and worry over a longer period of time, as well as depression.
Receiving a diagnosis also streamlines appropriate funding and social support. In
2013 the American Academy of Cerebral Palsy and Development Disability ob-
served that children with CP received care dependent on where they lived and
who they saw, rather than by their condition [9].

An automatic method of predicting CP means no need for specially trained clini-
cians and expensive equipment, which in turn results in a more time efficient and
less expensive diagnosis. This again results in a method that that is available to
even more people around the world.

1.2 Problem Statement

1.2.1 Problem Specification

The main goal of the InMotion team is to have an automatic computer-based clas-
sification/prediction system that can with the same or better accuracy as clinicians
predict if an infant likely has CP or not. They have collected video data over many
years, and they have proven that fidgety movements are indications of movement
development so clinicians can, with decent accuracy, tell manually if it is likely
that the infant has CP. Now the challenge is to see if a computer can be able to
do the same. Last year the project achieved a computer vision algorithm where
seven body parts of the infants movements was tracked by using deep learning,
extracting only the position of these body parts. As the next step of this pipeline
we will attempt to build upon this and test if the extracted data can be used as
input to a different deep learning algorithm to make a prediction of CP. Our main
challenge is that a deep learning algorithm is not always intuitive and often is a
black box, meaning that it is not trivial to understand exactly what the algorithm
learns and which biases affects the resulting prediction. This means we need to
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find a suitable model as well as a data representation to represent the movements
in a meaningful way.

1.2.2 Goals and Research Questions

When we first met this master thesis its description was as follows:

1. To identify the cerebral palsy-related movement of infant body segments
(legs, arms, trunk and head) from the database of video recordings using
computer vision and machine learning algorithms.

2. Make this procedure time effective, feasible and available for researchers
within the medical field without any technical or computer vision expertise.

This was a vague description with a wide scope, and in order to make it more
manageable we wrote our own task description:

In this master thesis we want to continue the work of the InMotion project, and
therefore implement a data representation that uses the already extracted data.
A first step of making this CP diagnosis process less black box is to generate a
data representation that is understandable for humans, as well as for the machine
learning algorithms. The basis for the choice of representation was made in the
Autumn of 2018, in our previous work [10].

In order to validate the data representation we want to make and train a Deep
Learning algorithm, more specifically an autoencoder, that can extract the CP-
related movements of infant body segments perform, and further make an accurate
prediction of CP. The autoencoder will be trained and tested on images generated
with our proposed data representation.

This description summarises what this Master thesis aim to achieve. More specif-
ically the goals are addressed in the following research question and subquestions:

RQ: Can a deep learning classification/prediction system recognise fidgety move-
ment patterns represented as human-understandable images, with data extracted
from video recordings, sufficiently to give an accurate prediction of Cerebral Palsy
in an infant?

RQ1: Can time series data of infant movements be represented as a 2D image
in such a way that a deep learning algorithm can recognise healthy movement
patterns, and, in addition, be understandable for the human eye?
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RQ2: Can an autoencoder used as a feature extractor learn to extract the infant
fidgety movements from the above data representation, in such manner that it
becomes a reliable prediction that can compete with toady’s General movement
assessment?

1.2.3 Scope

As part of a much larger system we are not making a complete system but focus
more on a proof-of-concept approach. This means we will not be concerned with
commercialisation issues or the practicality of making a fully functional system in-
cluding performance of the complete system. We are limited by time and resources
in terms of our own methods performance and cannot test all possible alternatives
even if we would like to. This thesis will solely look at

1. data representation in a human understandable manner

2. deep learning methods, specifically convolutional neural networks

and will omit statistical methods or other machine learning methods as they will be
further explored by others within the research team. Among them, fellow student
Marie S. Kristiansen from Department of Engineering Cybernetics study the use
of statistical methods and how they can solve the same task in more details and
we do not wish to overlap her work.

1.3 Research Method

This project started with a literature study to gather information about the state-
of-the-art method related to the problem, but it evolved fast into a wide scoped
study in order to examine what’s done within the field of classification of move-
ment tracking. Based on an evaluation of these methods we propose a 2D data
representation, in which we believe to be as human friendly as it can be. In the
literature study different deep learning methods were also investigated, and in co-
operation with the InMotion research group at St. Olav’s, we hypothesised that
an autoencoder could be used as a feature extractor. Before the network were
implemented, the extracted data are cleaned and represented as images. The ex-
periments are carried out, and results are compared to two baseline models, before
the project ends with a discussion of the findings, and a conclusion are extracted.
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1.4 Context

This project is part of the larger research project, InMotion, at St. Olav’s Uni-
versity Hospital in Trondheim, Norway. InMotion is a cooperation between the
Department of Clinical and Molecular Medicine, and the Department of Neu-
romedicine at St. Olavs Hospital, and the AI-LAB at the Norwegian University of
Science and Technology (NTNU), and consists of both clinicians and researchers.
Our project aims to help in the process of reaching the goal of an automatic
method of predicting CP without the need of specially trained clinicians and ex-
pensive equipment, so that the method becomes available to even more people
around the world.

1.5 Contributions

This master thesis provide valuable insight for the InMotion project in several
ways. First, it evaluates the CIMA-Pose tracker’s quality of the tracked subjects.
This information can contribute in the process of customising the datasets used
for training, validation and testing in further experiments, as well as a guideline
for which subjects that need an extra follow-up in the process of generate a good
data representation. Another valuable learning this project provides is an evalua-
tion about one type of human understandable data representation, the process of
getting there, and suggestions for previous representations. It also provides some
initial testing in using deep learning where the project earlier has primarily used
statistical methods. The use of an autoencoder as feature extractor will be an-
other step in attempting to find a good representation of relevant patterns. This
information is valuable in the future work of InMotion, especially for the next
year’s master students that will continue the process of developing an automatic
computer-based classification/prediction system.

1.6 Thesis Outline

We inform the reader that parts of this master thesis is taken form or adapted
from from our own previous work in autumn 2018 [10]. This is especially true for
chapter 2 and chapter 3.

This thesis is structured as follows:
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• Chapter 1 Introduction introduces the project, its background and its
goals.

• Chapter 2 Theoretical Background presents some theoretical background
and the main concepts that this project is built upon.

• Chapter 3 Previous Work gives an overview of previous work both within
the InMotion project, as well as some recent literature and publications.

• Chapter 4 Method contains the approach of the work methods, as well as
the work done in this project.

• Chapter 5 Results presents the findings from the training of deep learning
methods.

• Chapter 6 Discussion gives a discussion on the results, experiences and
the choices made for this project.

• Chapter 7 Conclusion and Future Work concludes this report and pro-
vides insight into what needs to be done in future work.
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Chapter 2

Theoretical Background

2.1 CP and Infant Spontaneous Movements

2.1.1 Cerebral Palsy

According to Rosenbraum et al Cerebral palsy describes a group of permanent
disorders of the development of movement and posture, causing activity limitation,
that are attributed to nonprogressive disturbances that occurred in the developing
fetal or infant brain. The motor disorders of cerebral palsy are often accompanied
by disturbances of sensation, perception, cognition, communication, and behaviour,
by epilepsy, and by secondary musculoskeletal problems [11].

The human brain is complex, and a damage to it will never have the same outcome.
As a result, every child with CP is different, and each child’s outcome will be
unique. A common CP classifier system is the Gross Motor Classification System,
which categorise CP into 5 levels of severity [9]:

I: independently ambulates
II: independently ambulates with limitations
III: ambulates with walking aids
IV: independently mobilises with powered mobility
V: dependent for all mobility
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2.1.2 General Movements

From early fetal life and until the end of the first half year of life the human nervous
system generates a variety of age-specific, spontaneous movement patterns. One
set of these movement patterns are called general movements (GM).

Normal general movements are at any age characterised by [12]:

• a gradual onset of the movement

• a waxing and waning of movement intensity

• movement of the whole body; each body part moving with variation in du-
ration and timing of the movements

• fluency

• complex movement trajectories

Figure 2.1: Developmental course of general movements

The first movement patterns that starts to emerge begins in the fetus at 9 to 12
weeks post-menstrual age. This is illustrated in the blue box in figure 2.1. The
movements include twitches, stretches, isolated limb movements and breathing
movements. These spontaneous movement patterns continue after birth, indepen-
dent of when birth occurs [13].
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Fidgety Movements

At 6 to 9 weeks post term age, GMs with a writhing character gradually disappear,
and fidgety GMs gradually emerge. These rhythmical, small, circular movements
are in all directions, of moderate speed, and are generated continually when the
infant is awake. They only stop during fussing and crying, or when the baby is
distracted by its surroundings. Fidgety movements are present until intentional
and antigravity movements starts to emerge at the end of the first half a year of
life [13].

2.1.3 General Movement Assessment

Gestalt perception [12] is a method that clinicians use to evaluate and observe the
complexity of GMs. In order to identify fidgety movements, they look at the overall
movement repertoire of the infant body. Clinicians with the right knowledge and
required training are able to recognise if an infant does not show these fidgety
movements.

Abnormal quality or absence of fidgety movements indicates that there is an ab-
normal development in the brain, and is believed to have a strong association with
CP [14]. Prechtl’s assessment of general movements can therefore be used as a
prognostic tool to identify infants with neurodevelopmental disabilities [6] [8].

In a study from 2013, the absence of fidgety movements was utilised to predict CP
on 326 children. The study got a sensitivity of 98% and a specificity of 91% [5].
In medical diagnosis, sensitivity is the ability to correctly identify those with CP,
the true positives, as shown in equation 2.1. Specificity is the ability to correctly
identify those without CP, the true negatives, as shown in equation 2.2.

Sensitivity =
True positives

True positives+ False negatives
(2.1)

Specificity =
True negatives

True negatives+ False positives
(2.2)

Although general movement assessment (GMA) is efficient for recognising fidgety
movements, it has its limitations. The need for a trained clinician to observe the
infant is impossible to fulfil in most parts of the world. Also, the technique is
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qualitative which means that the result depends on the clinician’s interpretation
of the movement patterns.

Other factors that make cerebral palsy hard to diagnose is that CP can be hard to
differentiate from other progressive conditions. Also, children develop with various
speed. A normal child learns to walk between 9 and 18 month old, and with normal
development it learns to talk when it is 8 month to 3 years old.

2.2 Time Series Analysis and Representation

A time series is simply defined as a sequence of observations xt, each recorded
at time-step t, which means that a lot of sequential data can be interpreted as
time series. Time series are often used for predictions and simulations based on
historical data, like weather forecasting, trends in the stock market and looking at
patterns over time [15]. This project will focus on the latter, attempting to look
at movement patterns over a given period of time and see if the patterns can be
categorised to give a probable CP diagnosis in the future.

Time series are often divided into two groups, univariate or multivariate data,
based on the number of features present. The univariate data only concerns one
feature at the time. Examples are house pricing, temperature, sensor signals etc.
Multivariate data look at more than one feature and these may have correlations
and important relations between them. Our data is an example of multivariate
data with each body part being one feature.

When working with time series it is common to distinguish between classification
problems or forecasting problems. Forecasting uses historical recordings to predict
the future, like weather forecasting or predicting trends in the stock market. A
classification problem, on the other hand, tries to fit observed data into a finite
number of categories. One example is to look at sign language movements and try
to determine what word or letter that specific movement represents. Likewise, we
will attempt to make a classification based on detected movement patterns where
the categories will be if the model thinks the infant has CP or not. We use both the
terms prediction and classification for our model as we think of our classification
into CP or NotCP as a prediction of CP diagnosis. It is primarily on the basis
of classification that we did our research and we think of this as closer to a time
series classification problem rather than forecasting.

It is also common to do statistical analysis and/or preprocessing of time series
data to look for trends, seasonal components, sudden changes or outliers. This is
especially important with prediction models where such changes and patterns in
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the data can highly influence the outcome of the prediction. A statistical analysis
can also be used to determine what type of representation could fit the data the
most but the representation could also dictate which analysis is possible to perform
depending on what information one seeks to obtain. While we limit our study of
such methods for this project to outlier detection on an image representation, we
are aware that it could be useful or necessary to expand on such analyses in future
work.

2.3 Outlier Detection

Outliers are observations that are considered to be unusually far from the bulk of
data.

The dataset of videos collected by the InMotion project, have been ran through
a tracker, which returns coordinates of motion per time. This coordinate dataset
includes errors from the tracking phase, as illustrated in figure 2.2. Sending images
with outliers into a deep learning network will disturb the training phase, and will
at worst confuse the network to learn connections between outliers and CP. The
outliers therefore have to be handled.

(a) Outliers marked with red circles (b) Outliers shown in an image with lines
that reflect the child’s movement

Figure 2.2: Movement of a child, with errors from the CIMA-tracker, illustrated
in two ways.

There are many statistical tests that are designed to detect outliers. In this thesis
standard score will be applied and evaluated, as well as some clustering algorithms.
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2.3.1 Statistical Methods

Statistical inference consists of those methods by which one makes inferences or
generalisations about a population. In classical methods of estimation a parame-
ter, inferences are based strictly on information obtained from a random sample
selected from the population. Populations are collections of all individuals or in-
dividual items of a particular type [16].

Standard Score

The standard score of an observation is a metric that indicates how many standard
deviations a data point is from the sample’s mean, assuming a Gaussian distribu-
tion [16]. In other words, how many standard deviations is a point outside the
mean. The standard score is calculated as

z =
x− µ
σ

(2.3)

where µ is the population mean (2.4) and σ is the standard deviation of the
population (2.5), both illustrated in figure 2.3:

µ =

∑n
i=1 x

n
(2.4)

σ =

√√√√ n∑
i=1

(xi − µ)2

n
(2.5)
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Figure 2.3: Normal Gaussian Curve

Standard score can be used as a outlier filter. Every motion coordinates/ data
points that are further away from the cluster mean than a given threshold can be
labelled as noise/outlier.

Other mathematical and statistical methods

There are a lot of other statistical and mathematical methods that in some way
could be utilised to detect and fix outliers. An other member of the InMotion
project is looking into this, and therefore this master thesis does not have more of
these methods in focus.

2.3.2 Cluster Analysis

An other way of detecting outliers is cluster analysis. Cluster analysis divides
data into groups (clusters) that are meaningful, useful or both, and have played
an important role in fields like pattern recognition, statistics, and machine learning.
Clustering, an entire collections of clusters, can be used both for understanding
and for utility. The first one plays an important role in how humans analyse and
describe the world, while the latter can describe cluster analysis as the study of
techniques for finding the most representative cluster prototypes, that is, data
objects that are representative of the other objects in the cluster [1].

When grouping data, the goal is that the objects within a group be similar to one
another and different from the objects in other groups. The greater the similarity
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within a group and the greater the difference between groups, the better or more
distinct the clustering [1].

Clustering aims to find useful clusters. There are several types of clustering, and
different notions of a cluster, and the following two boxes aims to give a short
introduction of some of them.

A partial clustering does not assigns every object to a cluster, whereas a complete
clustering does. Partial clustering is beneficial when an object does not belong to
a well-defined group, which often is the case for noise and outliers.

An other type of clustering focuses on whether or not the clustering is nested. A
partitional clustering divides the data points into non-overlapping clusters, whereas
a hierarchical clustering allows clusters to have subclusters.

(a) Center-based clusters. Each point in a
cluster is closer to the center of its cluster
than to any other cluster.

(b) Density-based clusters. Regions of
high density are separated by regions of
low density.

Figure 2.4: Different types of clusters. Illustrations borrowed from [1].

The term prototype-based or center-based cluster is employed where each object is
closer to the prototype that defines the cluster than to the prototype of any other
cluster. The prototype is in this case often the mean of the points in the cluster.
A cluster that is defined by it’s similar density is called density-based (figure 2.4b,
and the term is used when noise and outliers are present [1].

In the following sections some clustering techniques are presented.

K-means

K-means is a prototype based clustering technique, and one of the oldest and
most widely used clustering algorithms. The basic algorithm starts with choosing
K initial centroids, where K is the user-specified numbers of clusters. Every point
is then assigned to the closest centroid. Every collection of points assigned to the
same centroid is a cluster. Based on the assigned points, each centroid for each
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cluster is then updated, and the assignment and updating are repeated until no
points changes clusters. K-means is described in algorithm 1 [1].

Algorithm 1 Basic K-means algorithm

1: Select K points as inital centroids.
2: repeat
3: Form K clusters by assigning each point to its closest centroid.
4: Recompute the centroid of each cluster.
5: until Centroids do not change.

Step 3 in the algorithm states that each point should be assigned to its closest
centroid. There are many similarity measures that can be used, but Euclidean
distance is commonly used if the data contains points in Euclidean space.

Even though K-means is a well known clustering algorithm it does not handle noise
and outliers. DBSCAN, SNN density-based clustering, Chameleon and CURE are
other algorithms that deal with noise and outliers.

DBSCAN

DBSCAN is a density-based clustering algorithm that locates regions of high den-
sity. Points in low-density regions are classified as noise. Here, a center-based
approach are presented for defining density. Thus, density is estimated for a par-
ticular point in the dataset by counting the number of points within a specified
radius, Eps, of that point (including itself) [1].

In DBSCAN all data points are classified as either a core point, a border point, or
a noise point :

• Core points describes points in the interior of a dense region, that is points
that have MinPts number of neighbours within a given neighbourhood, Eps.

• Border points are not core points, but are in the neighbourhood of a core
point.

• Noise points are points in a sparsely occupied region, and are neither a
core point or a border point.

With these three types of points defined, the DBSCAN algorithm works as follows.
First, all points are labelled. Then all core points within Eps distance of another
are assigned to the same cluster, and border points are putted in the same cluster
as its core point. Noisy points are, as described in algorithm 2, eliminated.
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Algorithm 2 DBSCAN algorithm

1: Label all points as core, border, or noise points.
2: Eliminate noise points.
3: Put an edge between all core points that are within Eps of each other.
4: Make each group of connected core points into a separate cluster.
5: Assign each border point to one of the clusters of its associated core points.

Since all noisy point are grouped together with the same label, they can be handled
instead of elimination.

SNN density-based clustering

The SNN algorithm is also a density-based clustering algorithm. For high-dimension
data, Euclidean distance is meaningless, so DBSCAN with its centre-based view
will get in troubles.

Instead of using Euclidean distance a similarity measure like Shared Nearest Neigh-
bour Similarity (SNN Similarity) described in algorithm 3, can be used. SNN is
based on the principle if two points are similar to many of the same points, then
they are similar to one another, even if a direct measurement of similarity does not
indicate this [1]. This addresses the problem of finding clusters of varying density.
Since SNN similarity takes the context of an object into account, it also addresses
the problem where two objects are relatively close, but belongs to different classes.

Algorithm 3 Computing shared nearest neighbour similarity

1: Find the k-nearest neighbours of all points.
2: if two points, x and y are not among the k-nearest neighbours of each other

then
3: similarity(x,y) ←− 0
4: else
5: similarity(x,y) ←− number of shared neighbours
6: end if

SNN density-based clustering is suited for data sets with a wide density variation.
Points in regions with low and high density will have high SNN similarity, while
points between clusters will tend to have low SNN similarity [1]. The algorithm
utilises the advantages from a similarity measure, and combines it with DBSCAN,
as described in algorithm 4.
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Algorithm 4 SNN density-based clustering

1: Compute the SNN similarity graph.
2: Apply DBSCAN with user-specified parameters for Eps and MinPts.

After computing the SNN-similarity graph, DBSCAN labels all data points as
their respective clusters or as outliers. The outliers can then be handled before
the images are sent into the network.

2.4 Colour Image Processing

Using colours in image processing often simplifies object identification and extrac-
tion.

2.4.1 Colour Fundamentals

Colours that humans perceive are determined by the nature of the light reflected
from objects. Light can be characterised by its intensity. Achromatic light, light
that is void of colour, has intensity as its only attribute. Intensity level (or grey
level) refers to a scalar measure that ranges from black, to greys, and to white,
and is therefore often used to denote achromatic light. Chromatic (colour) light
spans in the range of 400 to 700 nm in the electromagnetic energy spectrum [17],
as illustrated in figure 2.5.

Figure 2.5: Linear visible spectrum, figure borrowed from [2].

Chromatic light are mainly described by three quantities: brightness, luminance
and radiance. Radiance and luminance are respectively the total amount of energy
flowing from the source, and a measure of the amount of energy that an observer
perceives from the source. Brightness is a subjective descriptor, and includes the
achromatic notion of intensity [17].
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In the human eyes, cones are responsible for colour vision. The cones are divided
into three principal categories, each sensitive to either red, green or blue light.
Because of this, humans see colours as combinations of the primary colours: red
(R), green (G) and blue (B). When added together, primary colours can produce
secondary light: magenta, cyan and yellow [17].

2.4.2 The RGB Colour Model

A colour model is a specification of

1. a coordinate system, and

2. a subspace within that system, so that each colour can be represented as a
single point within that subspace

and has the purpose of specifying colours in some standard way [17].

One of the most common colour model is the RGB model, where each colour is
described as a combination of red, green and blue. Figure 2.6a illustrates the RGB
model, which is based on a Cartesian coordinate system. Black is at origin, and
white is at the corner farthest from black. The greyscale is the line joining black
and white. Colours in the RGB model are defined by vectors extending from the
origin, and the values of red, green and blue are in the range [0,1] [17]. In digital
images, the colour values are scaled, and R, G and B are represented in the range
[0,255].
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(a) A schematic RGB colour cube.
Illustration borrowed from [18].

(b) RGB colour cube. Illustration
borrowed from [19].

Figure 2.6: The RGB colour cube.

2.4.3 Pseudo Processing

One area of colour image processing is pseudo processing, which focuses on assign-
ing colours to greyscale intensities. It is mainly used for human visualisation and
interpretation of greyscale events in an image, since humans can discern thousands
of colour shades, but less than two dozen shades of grey [17].

Colour Intensity

As mentioned in section 2.4.1 colour intensity is a measure that ranges from black,
to greys and then to white. In the RGB colour cube, see figure 2.6a, intensity is
illustrated by the line joining black and white. From this it can be derived that all
colours on a cross-section normal to the greyscale line will have the same intensity
[17].

2.5 Deep Learning

Within the field of artificial intelligence, there are different approaches as to how
we can make a machine ”intelligent”. One approach that has gained a lot of atten-
tion over the last decades is machine learning. The goal of machine learning is to
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have the algorithm itself extract knowledge from raw data and recognise patterns
without having them predefined by us humans. With the increased availability
in data and computational power, machine learning algorithms have gotten a ma-
jor boost and proven to achieve good results on many applications. Among the
machine learning methods, deep learning and deep neural networks have gotten
increasingly more popular as they have shown new state-of-the-art performance in
a very short amount of time. They have also proven to be good at more complex
learning tasks. Deep learning has been applied to an increasing set of different
problems, and different fields of research are trying out these methods on a wide
range of datasets and applications [20].

The term ”deep” is referring to the many layers utilised in the latest architectures
and was adopted by researches after a breakthrough in 2006 where Hinton [21], and
then later in 2007 Bengio and Ranzato [22][23], showed that it was possible to train
deep multi-layered networks using a strategy called greedy layer-wise pre-training.
There is no formal definition as to how deep or how many layers a network has to
have to be called a deep network. The network is learning features in a hierarchical
manner from simple to more abstract or complex concepts, and in order to do that
one needs multiple layers which correspond to deeper networks, hence the name
of deep learning.

2.5.1 Artificial Neural Networks

Figure 2.7: Example of a simple fully connected network with three hidden layers.
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The basic component for a neural network is the concept of artificial neurons as
computational units in a graph structure. As shown in Figure 2.7 a regular network
can be described as layers of neurons connected in a chain from the input layer,
through one or more hidden layers and to the output layer. Each neuron takes
each incoming input value and multiplies it with an individual weight value, sums
the results of the multiplications and feeds them through an activation function
which outputs a single value based on that. The weights in the network are what
enables the network to learn by updating these during training. The activation
function is often added to provide some non-linearity as well as forcing the output
to be within a given range that is useful for further computation. In-depth details
of common activation functions can be found in Goodfellow’s Deep Learning [20,
6.3].

The field of deep learning can be roughly divided into some main architectures.
These architectures have traditionally been developed for specific areas, although
researchers now study the possibility of using them interchangeably or in combina-
tion with each other. Most networks are feed-forward networks, meaning that the
data only flows from the input through the network to the output with no loops.
It can be compared to a directed acyclic graph (DAG). The most general architec-
ture is the extension of a regular, fully connected neural network with many layers.
Unfortunately, the more layers a network have the more computationally expen-
sive it is to train, and it does not always suit the type of data that is provided.
Therefore, different architectural structures have been developed to fit different
types of problems. For sequential data that needs to maintain a sequential or
temporal ordering, recurrent neural networks were developed. Recurrent neural
networks (RNN) do have loops, meaning that the output is fed back as the input
to the same neuron. For image processing, convolutional layers was introduced
not only to reduce the feature space but these networks worked really well with
features and feature learning. This is similar to how concepts are learned in the
brain, starting from simple to more complex as the depth of the network increases.
Based on our literature review done last autumn we chose to not look further into
RNNs although they are in general the first choice for time series. Instead we
looked at a way to represent the time series i such a way that a convolutional
neural network (CNN) could be easily applied. The argument for this was that a
visual representation corresponded better with the original video data and would
also be more intuitive to clinicians and those without insight into technical details.
More about our choice of data representation will be described in section 4.2.

21



Convolutional Neural Network (CNN)

A regular multi-layer neural network, as explained above, is fully connected or
dense, meaning that output from all neurons is input to every neuron in the next
layer. A disadvantage of this is that these networks don’t scale very well. In
images for example, the higher the resolution, the larger the number of features
(and weights) become. The dimensions of the feature space become so huge it
becomes disproportionate with the data available and the network is unable to
learn properly. In addition, time and resources often put a constraint on how large
a fully connected network can be before it is too costly and practically impossible
to run. Figure 2.8 shows an example of what would be considered a relatively small
network today because it uses convolution. Had the same input picture of 128x128
pixels been used in a regular fully connected structure the number of weights
between the two first layers would be 37748736 given the second layer had half the
number of input nodes. With convolution the number of parameters between the
two layers can be reduced to only 131072 if the numbers of kernels/filters is 8 and
the second layer is a convolution layer, greatly improving memory usage.

Figure 2.8: Example of an arbitrary convolutional network. Courtesy of the visu-
alisation tool by Alexander LeNail [3]

The idea of convolutional networks is largely biologically inspired and one of the
first networks was introduced as early as 1980 when Fukushima [24] presented his
Neocognitron based on studies about the visual cortex and visual fields by Hubel
and Wiesel [25]. It was further popularised by LeCun [26] during the 1990’s and
introduced many of the elements that modern convolutional neural networks are
built upon, like using gradient descent learning and backpropagation. This allowed
for bigger and deeper networks to be trained on larger datasets, leading to the
breakthrough in 2012 when AlexNet won the IILSVRC challenge [27]. In addition
to the biological inspiration from the visual system in the brain, Goodfellow [20]
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lists three main attributes of using convolution that makes convolutional networks
work so well with images: sparse interactions, parameter sharing and equivariant
representation.

To ensure sparsity a convolution layer uses the concept of a perceptive field where
each neuron only looks at a smaller part of the layer underneath. A filter, also
called kernel, is applied to the perceptive field which maps the underlying subset
of the input layer to a feature map based on the filter applied. An example can
be seen in Figure 2.9 where I is the input layer with the current perceptive field
marked in light green on the input (blue), and K is the filter marked in green, a so
called kernel. Marked in darker green is the resulting computation in the output
feature map (red) between the data in the perceptive field and the filter. Multiple
filters can be applied to the same input and they generate multiple feature maps.
This can reduce the number of features and extract higher level concepts than the
previous layer.

Figure 2.9: Illustration of simple convolution where I is the input to the layer, K
is the kernel and the resulting computation of I ∗K results in one specific feature
map for this kernel.

Convolutional neural networks also uses the concept of parameter sharing which
reduces the number of trainable parameters that need to be updated. This not
only improves computational cost but adds a layer of generalisation that one does
not get from a ”regular” layer. Using image as an example again, it means that if
the network detects a shape in one location, it is not limited to only recognising
that shape in that very location. This helps the network achieve equivariance
translation, though it does not solve for all transformations. Convolution layers are
usually followed by a pooling layer and together they are counted as a convolution
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unit. Pooling layers contribute to further reduce the number of features and the
most common types of pooling are max pooling and average pooling. Pooling
also helps the network achieve approximately local translation invariance which
prevents the network from having big changes in the pooled outputs when there
is smaller changes in the translation of input, e.g. when exact position is less
important than whether an feature is present or not. Goodfellow elaborates more
on all these three attributes in detail in [20, Chapter 9]

The AlexNet architecture [27] was the breakthrough for convolutional neural net-
works. Along with the introduction of using GPUs for computation, large image
datasets, like the ImageNet database [28], and improved methods like using ReLU
instead of sigmoid activation function, researchers could finally train deeper net-
works than before. AlexNet, as mentioned won the ILSVRC challenge in 2012,
was the first to apply deep convolutional layers to solve the task of image recog-
nition and achieved state-of-the-art results by a considerable amount. Since then,
CNNs has become the number one choice for computer vision and image analysis.
AlexNet has later been beaten by numerous networks like VGG [29], ResNet [30]
and DenseNet [31], and researchers are still working to improve these or find new
methods to solve even more problems.

2.5.2 Learning

The majority of machine learning algorithms are supervised, meaning that the
dataset contains the true target value, also called label, for each example case.
The algorithm can then compare the output prediction/classification of the model
to the label and adjust the weights thereafter. With unsupervised learning, the
target value is unknown and the algorithm needs other means to assess whether it’s
going in the right direction. It is also possible to have a semi-supervised algorithm
where some example cases have labels and others don’t. We will primarily focus
on supervised learning since our data is labelled but an autoencoder, that we
will attempt to use for feature extraction, is generally considered an unsupervised
method as the label is just the input itself.

In order to be able to learn effectively with supervised learning, the concept of
backpropagation was introduced in 1986 by Rumelhart [32]. Backpropagation
allowed the calculated error between the true target value and the predicted value
from the output layer to propagate back through the network in order to adjust
and update the weights. The error function, or loss, is chosen based on the type
of data and problem to be solved and can be calculated in various ways. We
refer to [20, 6.2] for a detailed discussion of the most common loss function in
use for deep learning today. Most network architectures today uses variations of
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gradient descent as the main heuristic on how to update the weights. The goal
is to minimise the loss or the error of the network, and by using gradient descent
the weights are updated in the direction that minimises the error function with
respect to each individual weight.

2.6 Feature Extraction

Feature extraction is an important factor that influences the performance of a neu-
ral network (or any other machine learning algorithm). Choosing which features
are relevant to represent the desired structure in the data largely decides what
type of network is suitable. The goal is also to reduce the dimension of variables
under consideration. Ideally, the features need to capture both general information
that is common between cases as well as good discriminating features to separate
between samples from different classes in a classification task. There are many
methods for doing this, like Principal Component Analysis, matrix factorisation
and discriminant analysis, just to mention a few. For this project, however, we
benefit from the work that was done last year by Groos and Aurlien [33] where
the entire tracking method works as a feature extractor.

In addition to having already filtered data from the tracker, we want to see if
the feature space can be reduced even more to give a better representation of the
patterns we are looking for. A CNN is very good at extracting features and that’s
why they work so well with images. As discussed in section 2.5.1 the ability to have
?, parameter sharing and equivarians allows the networks learn both general and
specific patterns in the input. By using different filters, multiple feature maps are
generated, each containing different concepts or information that is then passed
on to the next layer. With more layers, more complex concepts can be learned by
combining knowledge from the previous layers. Pooling also helps reduce the sizes
of these feature maps and forces the network to learn the most important features
because of this reduction.

2.6.1 Autoencoders

One way to exploit this ability to reduce the feature space and ensure a limited
number of features is to use an autoencoder. An autoencoder is an unsupervised
method that takes in an input, transforms it into a code layer and then attempts
to reconstruct the input based on the code layer[20, Chapter 14]. The code layer
may be any size but is typically smaller than the input, undercomplete as shown in
figure 2.10, as it then forces the network to chose a limited number of features that
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represents input the best. Traditionally, autoencoders has primarily been used in
dimensionality reduction and feature learning, but the concept of latent variables
has made autoencoders an important part of generative modeling [20]. We will
however focus on the ability of feature reduction and learning.

Figure 2.10: Illustation of an undercomplete autoencoder with a smaller code layer
than input.

One example where this principle is used is in data compression where the code
layer typically is smaller than the input forcing it to only keep those features
that the network assumes represents the data best so that it can regenerate a
copy as close to the original as possible. This can also be used to eliminate noise
or irrelevant information, e.g. a denoising autoencoder [20, Chapter 14.5]. In
our case, since the data is images, using convolution and pooling can reduce the
feature space significantly by determining the size of the kernels, the number of
kernels in each layer and the stride length of the kernels and the pooling layers.
By reducing the image size, the autoencoder has a limited number of pixels to
store the information on and when upsampling and reconstructing the image, it
will preferably be close to the input. A visualisation of the code layer is shown in
section 4.6.1.

In many cases, as with our own, the actual reconstruction is not the main goal.
By training the network as an autoencoder we hope the code layer captures the
most useful properties or patterns in the data that can then be used for further
computation. Because of the great imbalance in the dataset, we hope a pretrained
autoencoder on a selection of the data will extract some features that is defining of
this selection. In addition, an autoencoder does not need much human engineering
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of features like some statistical methods, and can be very specifically trained to
the dataset. There are however some drawbacks of using autoencoders that one
should keep in mind. It can become too specialised, requiring that the input data
is not too diverse or sometimes it only learns as much as possible, not always as
relevant as possible. Finally it adds extra training time and complexity if used
with another model which means added resource usage, hyperparameter tuning
and testing.
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Chapter 3

Previous Work

3.1 InMotion Project

InMotion is an ongoing research project led by Lars Adde and his research group
at St. Olav’s University Hospital in Trondheim, Norway. As stated earlier, fidgety
movements is an indication of a healthy infant, and can be classified by GMA.
In order to make this more available throughout the world, the overall goal of
the InMotion-project is to obtain a system that can automatically detect CP,
solely based on video recording of the patients. The system should also provide
meaningful insights to clinicians, and facilitate the use of intelligent computer-
based solution in medical settings.

The InMotion research group have proved that video recordings can be used for
qualitative and quantitative analyses of fidgety movements [34]. In order to collect
video recordings, the research group have developed a set-up for the recording
process that includes a mattress, video camera, camera stand and a suitcase, as
shown in figure 3.1 [33]. These suitcases were distributed to different hospitals
around the world, and since 2002 the research group have collected videos of both
high-risk (term and preterm) and low-risk infants from various countries.
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(a) Standardised camera stand

(b) Camera view

Figure 3.1: Standardised set-up for video recordings collected in the InMotion
project.

In 2018 Groos and Aurlien developed a model for Computer-based Infant Move-
ment Assessment, called CIMA-Pose [33]. The model uses the raw videos as input
and extracts the movements by tracking seven body parts. The extracted move-
ment data is a series of x- and y- coordinates for each body part. The result can
then be viewed as a set of time series with the position of each body part for each
time step. Their proposed architecture is illustrated in Figure 3.2 [33].

Figure 3.2: The CIMA-Pose architecture

A natural next step in the process of obtaining an automatic CP detector, is to
use output from the CIMA-Pose to analyse the movement patterns and see if a
method for predicting CP can be obtained. Fidgety movement recognition is of
particular interest, as GMA is one of the leading methods for giving an early CP
diagnosis (section 2.1).
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3.2 Deep Learning on Time Series Classification

Traditionally time series analysis has been done within a lot of different fields,
ranging from economy, engineering to medical application. The reason is that
a lot of data that has been collected and recorded have a temporal aspect that
can hold important correlations and information. Most previous research focus
on either forecasting or modelling of data and is thus not relevant to our project
as we aim to do classification on patterns. Additionally, time series have often
been associated with statistical analysis and methods which is excluded from our
study as mentioned earlier. Most methods and work presented in literature on
time series classification have been tested on or compared to baseline testing on
data from the UCR Time Series Classification Archive [35] (Updated version from
2018 [36]) which contains a large collection of different time series data. The data
we have in this project does not compare well to the type of data that is in UCR,
and so it is not used as a baseline for our model but it is the main baseline for
time series classification methods in general.

The following two sections present a selection of some proposed methods from lit-
erature where deep learning has been utilised for time series classification. Some
comments on some data representation approaches that may be of interest is in-
cluded. The literature study was primarily done in our previous report and these
sections are largely taken from or adapted from what was found then[10]. Only
publications and articles that are of recent writing are included here, i.e. from the
last five years or so, and they also has to present methods that explicitly concerns
time series classification with the use of deep learning as the main architecture.

3.2.1 Methods Based on RNN or hybrid methods

Traditionally in deep learning, sequential data and time series have been strongly
associated with methods that are based on RNN architectures. As mentioned in
section 2.5 RNNs have looping structures in the network, feeding information of
the last step to the next and retaining ”memory” in a sequence. Published in 1997,
Long Short-Term Memory[37] (LSTM) is still one of the most popular approaches
today, and variations of LSTM combined with other methods are keeping up with
the state-of-the-art on most of the baseline datasets for time series. Recently,
LSTM has more often been combined with convolutional units, which give an
indication that combining the strengths of the two is a promising idea. CNN finds
important patterns, RNN retains the temporal dynamics and combined they might
form a better network. As we do not focus on RNNs for this project we will not
go into depth here but refer to our original study for more details on approaches
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based on RNN and LSTM.

3.2.2 Methods Based on CNN

There is an increase of researchers in recent literature that looks at the possibility
of letting the CNNs handle the temporal dynamics alone, omitting the recurrent
layers entirely. Zheng et al. [38] presented in 2014 such a method, and showed that
the multi-channel deep CNN achieved higher accuracy than compared methods on
two specific datasets. They later published an updated version in 2016 [39]. What
we found most interesting about their proposed method was the use of multiple
1D channels, one for each feature in the input. The result of these individual
convolutional calculations is then combined into one classification.

Another algorithm based on convolutional networks was presented by Jin and
Dong [40] in 2016. They provide an ensemble approach for bio-medical data where
each individual network is a CNN combined by simple averaging of the results
from each. The authors claim an ensemble approach will solve an important issue
with using a simple convolutional network with bio-medical time series data. The
challenge with convolution, they say, is that the convolutional operation is applied
in both horizontal and vertical direction. With images, this ability to look at both
directions is necessary, but with other data we might not want the network to do
this.

This challenge with pure CNNs is also seen in Hajime et al. [41] even though their
approach and method is quite different. In their work they attempt to represent
the time series data as an image and then feed it through a regular CNN, as
illustrated in Figure 3.3 from their original article. Representing the temporal
aspect of data in an image, because the most successful applications of CNNs is
on image data, is intriguing, yet not without problems. The main problem here
is when there is multivariate data representing multiple features that may not
be strongly correlated but they are to be represented together in one image, the
ordering of the features does matters to the CNN, even if it does not in reality.
That means the network has to see every permutation of the features, something
the authors themselves point out.

31



Figure 3.3: Joint coordinates X,
Y , Z represented as a grey-scale
image with time from left to
right.

Figure 3.4: Motion, joint-joint
distance and joint-joint vectors.

Rostami et al. [42] presents a method that has a similar approach as [41] where
they also represent the time series as images and presents it to a CNN. Instead
of 2D coordinates, as we have, they have 3D coordinates from each joint and uses
this data to create three image encodings. Those encodings are joint-joint vector,
joint-joint distance and motion feature. They then utilises a pre-trained AlexNet
and fine-tune on their encoded images as shown in Figure 3.4. It is unclear if this
method suffers the same issue as [41] due to a different representation of the time
series in the images and not enough implementation details on these encodings.
The similarity to our data, the image representation of the movements and the
use of pre-trained network with transfer learning was what inspired parts of the
method presented in this thesis.

The idea of representing the temporal dynamics of the data as an image stood out
to us because we felt it could be easier understood and explained to those with no
background in our field. This is an important requirement of our system if we want
clinicians and other non-computer scientists to be able to use our work later. We
were also encouraged by our co-supervisors on this as they too saw it as a feasible
way to represent the data. The time series comes from 2D representation, and to
keep it in 2D representation is visually more pleasing and more natural with the
origin of the data and where it is coming from.
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Chapter 4

Method

4.1 Dataset

The raw dataset that our data is extracted from is a set of 378 video recordings
where each video corresponds to one infant. 42 of these did get a CP diagnosis later
on. If we were to use the raw data directly, our time series would be a sequence
of images and we would have an image analysis task. Unfortunately, we know
that these raw images contain much more information than we need, including
background noise and factors that does not contain information related to CP.
Even with a standardised setup there are slight differences between videos that
can cloud the information the computer system ”sees”. By reducing noise and
unnecessary information we increase the chance that the algorithm learns from
the information we want and thus learns what we want it to learn.

Therefore, we use the result from the method presented by Groos and Aurlien last
year as a feature extractor to eliminate the excess information. The remaining
features are the coordinates from the infant body tracking, frames per seconds
in the original video recording, and the target which tells if the recorded infant
had CP or not. The raw video is used as input to the tracking model and it
identifies body parts frame by frame with the use of computer vision and CNNs.
The tracked body parts are right and left wrist, right and left ankle, head, chest
and pelvis. The tracker returns fourteen univariate time series representing the x-
and y-coordinates for each body part or joint per image frame. This gives us a
representation of the movement of each body part over time.

The dataset we obtained from this feature tracking was split into a separate train-
ing, validation and test set. Because of the class imbalance between CP and
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NoCP , we tried to ensure the ratio of CP was approximately the same between
the three sets. Table 4.1 show the distribution of the dataset, and table 4.2 shows
the distribution of images. Images connected to one infant is only present in one
of the sets. Even though the ratio of CP is approximately the same on infant level
it differs more on image level. This is because the video recordings are of different
length, and there will be generated a varying number of images per infant.

Training Validation Test Total
CP 34 (11.2%) 4 (10.8%) 4 (10.8%) 42 (10.9%)

NoCP 270 33 33 336
# subjects 304 37 37 378

Table 4.1: Distribution of subjects into training, validation and test set. Percent-
age is the prevalence of samples belonging to class CP

Training Validation Test Total
CP 1606 (10.0%) 162 (8.2%) 164 (8.5%) 1932 (9.7%)

NoCP 14468 1825 1755 18048
# images 16074 1987 1919 19980

Table 4.2: Distribution of images in the training, validation and test set. Percent-
age is the prevalence of samples belonging to class CP

The CIMA-tracker’s performance vary from video to video. To get an overview
over the accuracy of the tracked infants, a manually evaluation were done by one
of us. The evaluation was done as follows:

1. For each video recording representing one infant, every 10th second of move-
ment coordinated generated by the tracker were plotted in an image.

2. Looked through all images representing one infant and labelled the images
as well tracked or bad tracked, and if none of these categories fitted – no
label was given.

3. Aggregated all labels representing the same infant into one label, listed in
the table below.

A summary of the result of the evaluation is shown in table 4.3, where the integers
indicates the number of subjects in each category, split up in CP and NoCP . The
whole evaluation can be found in appendix 7. Figure 4.4 shows the percentage of
subjects with a CP diagnosis that are well or bad tracked, and figure 4.5 shows
the distribution of bad tracked subjects on training, validating and test set.
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Well tracked Bad tracked Non-labelled
CP 7 9 26

NoCP 109 78 149

Table 4.3: Number of subjects evaluated as well tracked, bad tracked or non-
labelled.

Well tracked Bad tracked
CP 16.7% 21.4%

NoCP 32.4% 23.2%

Table 4.4: Percentage of well and bad tracked subjects.

Training Validation Test
CP 7 (2.3%) 1 (2.7%) 1 (2.7%)

NoCP 60 (19.9%) 10 (27.0%) 8 (21.6%)
# bad tracked subjects 67 (22.0%) 11 (29.7%) 9 (24.7%)

Table 4.5: Distribution of bad tracked videos.

4.2 Data Representation

4.2.1 Outlier Detection and Removal

For the purpose of detecting outliers, one statistical method and some clustering
techniques were studied, and added in different combination. Each outlier detected
is handled by replacing it with the mid value of the previous and next normal
points. This is done independent of detecting method.

Clustering techniques should in theory work well on the given dataset, with data
points mainly separated in groups for each bodypart. When working with cluster
analysis following data characteristics are of interest [1]:

• Size As long as the data set are of small or medium size, most clustering
algorithms work well. When detecting outliers in the dataset described in
section 4.1, only 10 seconds are processed at a time, and the computation is
done on one body part at a time. The fact that most clustering algorithms
are unable to handle lager datasets no longer applies.
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• Noise and Outliers As mentioned earlier, outliers can often degrade the
performance of clustering algorithms, like it does for algorithms like K-means.
Other algorithms, like DBSCAN and SNN density-based clustering can de-
tect noisy points during the clustering process, and they will therefore be
given more focus in the next sectons.

• Sparseness In spare datasets zeros are often of lower importance than the
non-zero values, and similarity measures appropriate for asymmetric at-
tributes are often used. The dataset served by the CIMA-tracker does have
some error points, but their value are never missing, and sparseness does no
longer need to be emphasised.

• Mathematical Properties of the Data Space Some clustering techniques
use mathematical operations that only makes sense in Euclidean space. The
tracked motions of each body part is given in Cartesian coordinates, which
is well suited for mathematical operations like Euclidean distance.

With this characteristics in mind, the following sections describes different ap-
proaches for outlier handling in the data representation.

K-means

As described in section 2.3.2, squared error can be used to compute centroids of
clusters. Outliers are therefore likely to have a huge impact on the clusters that
are found, and the resulting cluster centroids may not be as representative as they
otherwise would be. When working with K-means it is often recommended to
detect and eliminate outliers beforehand [1].

Since the goal of this sub-process is to discover outliers, K-means is not suited for
this operation.

DBSCAN

The DBSCAN algorithm described in algorithm 2 are simple, but not very efficient.
As stated in section 1.2.2, this thesis wants to identify the cerebral palsy-related
movement of infant body segments using computer vision and machine learning
algorithms, and make this procedure time effective, feasible and available for re-
searchers within the medical field without any technical or computer vision exper-
tise. The time complexity for DBSCAN is given by O(m x time to find points in
the Eps-neighbourhood), where m is the number of points. Worst case time com-
plexity is then O(m2). In the process of detecting outliers with DBSCAN, data

36



from only 10 seconds are treated at time. Also, the clustering process is applied on
one bodypart at time, so that points far away from its belonging cluster (outlier)
is treated as a point belonging to another cluster. This results in relatively few
data points, and the time complexity of the algorithm is not that bad.

DBSCAN used to detect outliers on the provided dataset have some weaknesses.
First, the selection of the right values of the parameters Eps and MinPts is
challenging. With great variation in motion from baby to baby and from time
to time, there were almost impossible to find the right combination. Second,
DBSCAN do have some troubles with density if the density of clusters varies
widely. Since the data points from the dataset varies from small clusters with small
movement trajectories, to less dense clusters that represents greater trajectories.

All in all, DBSCAN should in theory work well on the outliers in this dataset. But,
the varying density and the difficulties with setting the right parameters make it
more unstable.

SNN density-based clustering

Trying to handle clusters of varying density, SSN density-based clustering were
implemented. As described in section 2.3.2, SNN density-based clustering calcu-
lates the SNN similarity between all points, and then combines the results with
DBSCAN. This should in theory work well, and there is great chances that outliers
not detected by DBSACN alone will be detected. But, the dataset is of such vary
that there was hard to find the right combination of the parameters Eps, MinPts,
and K (k-numbers of neighbours). This limited the methods too much, and as a
result the focus of outlier detection method moved to other alternatives.

Standard Score

As mentioned in chapter 2.3.1, when working with standard scores, all data points
are described by their relationship to the standard deviation and mean of the pop-
ulation. Each point representing the position of a body part at a given timestamp
get their standard score computed with equation 2.3. The absolute value of this
score represents the distance between each point and the population mean.

While calculating the standard scores the system looks for data points which are
too far from the mean. Points with a score greater than a given threshold, i.e. too
far away from the centre of the cluster, are treated as outliers.
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The standard score, standard deviation and population mean will vary from body
part too body part, and from time range too time range. The size of one standard
deviation for body part clusters with great trajectories will be greater than body
part cluster with almost no movement. While working with a threshold that is
equal to a multiple of σ, there will always be a given number of point that are
fixed. For body part clusters like the pelvis this might not work well. Well tracked
data points are replaced by ”fixed” points.

Combination of DBSCAN and length of vectors

Looking over the images generated with the outlier correction methods above, it
could look like DBSCAN had a small head start on the other methods, even dough
it let some huge data point errors through. Many of these non-detected outliers
had in common that the Euclidean distance to the next data point were great, but
close enough to be within the Eps. A two-step-outlier-detector were implemented,
where DBSCAN was put in combination with a vector length function. First, the
Euclidean distance between all data points are calculated, and all length greater
than 10 x cluster mean were labelled as noisy data, and corrected. Then, DBSCAN
was applied.

Comparing Methods

When comparing the images where standard score, DBSCAN and the two-step-
outlier-detector were used for outlier detection, there were few differences to spot
for the human eye. Independent of detecting method, each outlier detected was
handled by replacing it with the mid value of the previous and next normal points.
So there was no difference to discover in the method used for replacing bad data
points.

In theory both BDSCAN and standard score should work well, and both methods
have their strengths and weaknesses. The method based on standard score work
well on clustered data, and extreme outliers are detected and handled. But, the
method will always try to fix a given number of points, independent of whether
they are labelled as outliers or not. DBSCAN only correct data points labelled as
outliers, but have trouble detecting small errors within a cluster. Both methods
are limited by the difficulties of defining the parameters that fits every body part
for every video recording. One example of the output differences between the two
methods are illustrated in figure 4.1.
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(a) Original
image

(b) Outliers removed with standard score
method.

(c) Outliers removed by applying DBSCAN
twice.

(d) Outliers removed by first applying
vector length method, then DBSCAN.

Figure 4.1: Illustration of how the different outlier removal affects the data points,
where outlier removal with standard score is the weakest.

All images in figure 4.1 represents the same 10 seconds from the same subject.
Image 4.1a shows the original image before any outliers are handled. In image
4.1b standard score is used as outlier filter. Notice that some data points repre-
senting the head are removed. Figure 4.1c and 4.1d looks the same, and the outlier
methods applied are respectively 2 x DBSCAN (image 4.1c), and a combination
of DBSCAN and length of vectors (image 4.1d).
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(a) Original
image

(b) Outliers removed with standard score
method.

(c) Outliers removed by applying DBSCAN
twice.

(d) Outliers removed by first applying
vector length method, then DBSCAN.

Figure 4.2: Illustration of how the different outlier removal affects the data points,
where outlier removal with the combination of vector length and DBSCAN is the
weakest.

In figure 4.2 the different outlier removal methods are applied on 10 seconds of
another subject. In this case standard score and DBSCAN work well, and the
combination of DBSCAN and vector length is the weakest, as it cannot handle
the outlier on the right leg. In figure 4.3 DBSCAN is the weakest method. The
movement trajectory for the left arm are corrected too much, and for this subject
standard score and combination of DBSCAN and vector length works better.
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(a) Original
image

(b) Outliers removed with standard score
method.

(c) Outliers removed by applying DBSCAN
twice.

(d) Outliers removed by first applying
vector length method, then DBSCAN.

Figure 4.3: Illustration of how the different outlier removal affects the data points,
where outlier removal with the combination of vector length and DBSCAN is the
weakest.

While looking through all images and comparing them, it is clear that each outlier
removal method has its strengths and its weaknesses. The patterns the human
eyes can observe does not need to be representative for what a deep learning
network sees. In order to make one’s mind about which method that should be
utilised for outlier detection before the images were sent into the autoencoder, a
pretrained VGG16 were used as a baseline for comparing the image sets. The
VGG16 were trained with binary crossentropy loss, class weights and pretrained
imagenet weights. The network were trained with each image set several times,
and the best results from each image set are shown in table 4.6.
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L-Rate Sensitivity Specificity
Original image 1e− 3 0.75 0.727
Standard Score 1e− 3 0.49999 0.8788
DBSCAN 5e− 3 0.999999 0.4242
Combination 1e− 3 0.74999 0.6061

Table 4.6: Results from training the VGG16 with binary crossentropy loss, class
weights and pretrained imagenet weights. The sixteen first layers locked i.e. not
updated further.

There is a big gap between the best and the worst results of the VGG16 testing,
independent of outlier method used. The dataset is unevenly distributed, and this
makes it easy for the VGG to get a relatively high score on either sensitivity or
specificity. What impact this has on the results are further discussed in chapter 6.

There were never an image dataset that resulted in consistent better predictions.
From the results presented in table 4.6 and the visible weak outlier correction
illustrated in figures 4.1-4.3, we cannot tell if one outlier method works better than
the others. Standard score was the first implemented method, and already tested
on the autoencoder when these results were ready. Due to resource restrictions
we therefore continued with the standard score dataset for further training and
testing of the autoencoder.

4.2.2 Colour Model

When working with deep learning it is important to input the right features in the
right format. In order to keep the time aspect of the movements in the image each
timestamp is assigned a unique colour from a colour range where all colours in the
range have the same colour intensity. This to prevent the model from favouring
timestamps with more intense colours.

In section 2.4.3, colours with same intensity are described as colours on a cross-
section normal to the greyscale line. To make sure that the model has a colour
range with unique colours, colours were chosen from the arc of a circle normal to
the greyscale line in the RGB colour cube. This arc is illustrated as the green
dotted line in figure 4.4.
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Figure 4.4: The green dotted line illustrates the arc that gives the equations for
the colour range used for data representation.

The equation representing the green arc is the basis for the RBG values for a given
timestamp, in which is given by:

R = 0.58− 0.35 ∗ cos(t)− 0.2 ∗ sin(t)

G = 0.58 + 0.35 ∗ cos(t)− 0.2 ∗ sin(t)

B = 0.58 + 0.41 ∗ sin(t)

(4.1)

where t ∈ [0, 2π〉.

4.2.3 Final Data Representation

How the data is represented before sent into a deep learning network is important.
Therefore, the development of the data representation have gone through several
steps and transformations, in order to make the selected representation as under-
standable as possible. Early in the process it was decided that each image should
represent 10 seconds of infant movements. From that point the images have step
wise changed, as shown in figures 4.5-4.10.

In the first version the data points were implemented as matplotlib scatter plots, as
in figure 4.5. Each body part were assigned a unique colour, attempting to make
the different movement patterns clearer to the deep learning network.
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Figure 4.5: Each body part assigned a unique colour.

In the next version, each body part were assigned a unique colour range, so that
each time step could get a unique colour. The goal was to visualise the time aspect,
as well as distinguish the body parts. This is illustrated in figure 4.6.

Figure 4.6: Each body part assigned a unique colour range.

Then the project discussed that the movement patterns might become clearer with
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lines between the data points, so in the third version of the data representation,
figure 4.7, the data points were replaced by lines.

Figure 4.7: Data points replaced by lines.

I the attempt to make the images smaller matplotlib could not compress the images
as we wanted. A PILLOW image on 180x320 pixels were implemented with data
points as a guinea pig.

Figure 4.8: A PILLOW image on 180x320.

PILLOW images turned out to work well, and in version five (figure 4.9) lines again
replaced the data points. In an attempt of making the network understand which
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movements that are made at the same time, each body part were assigned the same
colour range. Every colour have the same intensity, in order to be equally evaluated
by the deep learning method. The colour range were generated as described in
section 4.2.2, and each line representing movement at the same time stamp got
the same colour.

Figure 4.9: Every body part’s movement represented by the same colour range.

The final version of the data representation have standard score applied as the out-
lier detection method, so that images sent into the network represent the original
infant movement trajectories as good as possible. The final data representation is
illustrated in 4.10.

Figure 4.10: Final data representation.
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4.3 Baseline Model

To get a better understanding of the usefulness of the model, and to compare its
performance, it is common to choose a baseline that either solve a similar problem
or has become a ”standard” in literature. Because of the specific nature of our
dataset and lack of methods solving similar problems to our knowledge there were
no obvious choice of baseline.

4.3.1 DenseNet

As baseline for the classification model denseNet was

4.4 Prediction Model

Figure 4.11: Complete network structure simplified. Decoder is used for pretrain-
ing the encoder part while the classifier makes the prediction on the probability of
an infant having CP or not.

The proposed model we have tested consists of two parts. The first part is an
encoder part, pretrained as part of an autoencoder. The second part is the clas-
sification itself with the purpose of assigning each sample to either of two classes:
CP or NoCP .
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4.4.1 Autoencoder Part

As described in section 2.6.1, an autoencoder is an algorithm that uses its own in-
put as target, trying to reconstruct the input after extracting features and in most
cases compressing the information into a smaller feature space. Different variants
of autoencoders has been developed, among them sparse encoders, denoising en-
coders and variational encoders. It is also common to have stacked autoencoders.
The focus in this project however will be on building a convolutional autoencoder
and will not look into these variations as that would require a whole another the-
sis. With images, both the convolution layers and pooling layers can reduce the
number of pixels that represents the input image, thus forcing the algorithm to
choose those features it considers best represents the image.

Our autoencoder model is build up of four blocks of convolution layers and batch
normalization with three max pooling layers distibuted between the blocks. This
corresponds to the encoder part of the autoencoder, where the initial image size
of 180x320 pixels is reduced to 15x40 pixels. Following is a mirrored decoder
part that uses upsampling instead of pooling to produce the output image with
the same size as the input. Figure 4.12 shows an overview of the autoencoders
encoder structure only.

Figure 4.12: Encoder part of our autoencoder version 1. The input image is size
180x320 pixels and the output is 128 feature maps of size 15x40 pixels. Each block
A has the same structure as shown below the last block, two convolution layers
followed by batch normalisation (BN) and another convolution layer with ReLU
activation function. Between the blocks is a max pooling layer (MP).

It is not straightforward to assess whether an autoencoder has a good or relevant
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representation in the encoder based on the accuracy of the reconstruction alone.
We did try to visualise the feature maps in the code layer, but it was challenging to
make final conclusions about the actual gain in our particular case. An autoencoder
can achieve high accuracy and almost perfect reconstruction by simply memorising
if the code layer is big enough, and even though we did reduce the number of
features it is not trivial to determine if those features captured the patterns that
the classification needs. We mostly relied on the joint model with the classification
to see if what impact the autoencoder had on the result.

4.4.2 Classification Part

We originally wanted to keep the classification part very simple, leaving most of
the feature extraction to the autoencoder. The classification layers are usually a
limited number of fully connected layers at the end of a bigger network structure
with the purpose to take the extracted features found through the rest of the
network an assign it to one of the classes or categories. Our simple version consists
of two regular fully connected layer and then a final softmax layer to assign each
sample to either of our two classes. To mitigate overfitting we included a dropout
layer between the two dense layers.

The simple model it did not give too promising results however, partially due to
the size of the feature space from the encoder, and we tried to expand the model by
making it deeper and drawing inspiration from the denseNet architecture [31]. As
described in section 4.3.1 denseNet consists of multiple blocks of convolutional lay-
ers with forward connections between the blocks, thus retaining more information
from one block to another and from input to output. Due to memory constraints
and issues with the number of pooling layers it was not trivial to simply run the
predefined keras version of denseNet architecture on our proposed autoencoder,
and so figure 4.13 shows our extended classification model modified to fit within
these constraints. The details of block B and C is shown in figure 4.14a and
4.14b. Block B is a fairly regular convolution block with three units of batch-
normalisation-¿convolution-¿ReLU following each other. Block B is followed by a
max pooling layer and then a concatenation block C. Block C is made up of three
consecutive passes consisting of convolution-¿batch-normalisation-¿convolution in
which the resulting computation is concatenated after each pass. This creates the
forward connections where the result of the previous computations are kept and
forwarded into later computations as can be found in denseNet.

49



Figure 4.13: The extended classification model. Block B and C is illustrated in
figures 4.14a and 4.14b. Final output is 0 or 1 corresponding to classes NoCP or
CP .

(a) Convolution block B (b) Concatenation block C

Figure 4.14: Detailed view of the convolution and concatenation blocks used in
extended classification model.

4.5 Training

4.5.1 Hardware, Software and Computational Resources

This project has utilised Keras[43] with Tensorflow backend[44] as the machine
learning library to create and manage the neural networks. The codebase is written
in Python with libraries matplotlib and Pillow used to create the image data. The
code was developed on either NVIDIA Tesla P100 GPU’s or NVIDIA Tesla V100
GPU’s, depending on which sever or cluster was available at the time. Memory
was usually limited to 16 GB per GPU, again depending on which server. There
was a limit, both by Keras and by the servers that we could only use a maximum
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of two GPU’s at a time, and of course resources was limited by the amount of
traffic by other users.

4.5.2 Pretraining on Fidgety and No-CP Datasets

As mentioned in section 2.6.1 the main purpose of including an autoencoder in this
project was to pretrain it on a selection of the data in the hopes that the patterns
learned would help the algorithm distinguish between the cases of CP and NoCP
better. In the data we got, a clinician had classified each subject with a degree of
fidgety movements recognised from the videos. As the degree of fidgety movements
has been shown to give good indication of whether the infant has CP or not, we
hoped that by pretraining the autoencoder on those with normal degrees of fidgety
movements would help the classification single out those who did not show much
of these movements. It was however children with a CP diagnosis who showed
these fidgety movements and children who did not show much movements but did
not have a diagnosis. Thus we decided it was best to test another selection of
data in which we excluded all subjects with CP altogether and only training on
the majority class of NoCP in the hopes that this would give a better distinction
between the classes.

4.5.3 Class Weights

To accommodate for the imbalance between the classes, Keras does have a func-
tion called class weights that can specify preference or importance to each class.
Because only 10% of our data belonged to subjects with CP we wanted to give
these samples higher importance during training so that the impact of one sample
of CP would equal the impact of ten no-CP samples. Thus we set one sample of
class CP to have equal importance as ten samples of class NoCP .

4.5.4 Callbacks

We used two of Keras built-in callback functions during training. Early stopping
was used to stop the training once the validation loss reached convergence. The
parameter patience determines how many epochs with no update the training
should do before stopping. This can not only reduce training time, but also prevent
overfitting by stopping when no improvements seemingly are made. Experimenting
with different patience in our case did not seem to give much difference. Model
checkpoint is used to save the model to disk during training. A model was saved
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whenever validation loss was improved upon so that only the best model was saved.
An advantage of this is that if a training run crashes for some reason, the last model
can be reloaded and trained further, saving the previous work. A modified version
of model checkpoint had to be applied when multiple GPU’s were used as Keras’s
wrapper multi gpu model makes it difficult to work with the paralleled model later
on.

4.5.5 Configs and Parameters

Hyperparameters is one of the most determining factors when training a neural
network and to find the right combination of said parameters is often a matter
of empirical testing to see what works for the specific network structure and data
at hand. The number of parameters we could test in this project were limited
because of the size of this project, but also because the tests we did gave a decent
indication as to how well the network performed in general and changing a lot of
parameters were unlikely to have noticeable impact on the results. Adam was the
final optimiser used, though stochastic gradient descent was also tested. It proved
to be much too slow compared to Adam, and with multiple tests on different
learning rates, the results seemed to converge to the same using either. We used
both mean squared error and binary crossentropy as loss function when training.
As can be seen from the results in chapter 5 binary crossentropy in general gave a
higher accuracy. Results will be discussed in chapter 6.

4.5.6 Data Augmentation

Data augmentation is the process of increase the size of the training set by adding
extra copies of the training examples that have been modified with transformations
that to not change the class [20]. This includes for example image rotation and
image flipping, and is a very common technique in machine learning to not only
increase the amount of training data, but also to include variation and diversity in
samples. With a small dataset, as we have, utilising augmentation can be vital in
making an algorithm robust and generalise better. We did not think it necessary
to prioritise data augmentation in this project since we already thought that the
data representation was challenging and we did not want to include more noise at
an early stage in the project. Our few tests with data augmentation was done with
Keras’ predefined class ImageDataGenerator and though we do not have enough
testing to give solid conclusions it suggested what we already suspected, that with
data augmentation the algorithm (as it was) would be more confused and not
improve results without other modifications to the model or data.
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4.6 Evaluation

4.6.1 Autoencoder

The goal of the autoencoder on its own is to reconstuct the input image by up-
sampling the features from the code layer. Thus this reconstruction also gives
an indication of how well the autoencoder has learned features that represent the
data. Examples of how the autoencoder reconstructed the images can be seen in
section 5.1.1.

To see that the autoencoder does learn something inside the black box the feature
maps from the code layer is included in figure 4.15. Even though it is not trivial
to interpret these image fully, we see that they highlight slightly diffrent aspects
of the input, which indicate that the autoencoder is learning different features and
multiple features which is something we want.

Figure 4.15: Visualisation of the feature maps in the encoder layer of autoencoder.
The top image is the original input image.

53



4.6.2 Classification

When evaluating the performance of a classification algorithm accuracy is often
the default metric, as it tells us how many samples the algorithm managed to
classify correctly. However, with the type of data and problem we worked with
in this project, accuracy is not always the most informative metric. In medical
practice, it is often more informative to use sensitivity and specificity as described
in 2.1.3 and we will use that as the main metrics beside accuracy and loss.

4.6.3 Classification Per Subject

Because each subject was split into multiple images showing multiple intervals in
time, one image alone would not be representative for the complete movement
pattern of the subject. It was also evident that even if the algorithm managed to
guess a fair amount to have CP, it seldom got many of those correctly. Because a
subject did so many different movements over the course of the time span it was
recorded, we hoped a combination of the predictions on all the images belonging
to the subject would give a better prediction. The final prediction was decided
by majority vote, thus giving a higher level of confidence and presumably a better
result.
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Chapter 5

Results

This chapter is a summary of the testing results done in this project. We do want
to mention that our initial testing got corrupted by copying issues of the data and
is not included here. The results did however guide some of the testing choices
made when re-running the tests on the corrected dataset.

5.1 Autoencoder Results

Tables 5.1 and 5.2 shows the main results from pretraining the autoencoder on
both the fidgety dataset and the No-CP dataset. Table 5.3 shows test with mean
squared error loss on the No-CP dataset, which evidently show less consistent
results and much lower accuracy. Although not thoroughly tested enough, table
5.4 shows training the autoencoder on an augmented dataset.

Epochs L-Rate Loss Accuracy
1 12 1e− 3 0.0156930308 0.988654284
2 41 1e− 4 0.014320508 0.9884202521
3 142 1e− 5 0.0144221634 0.9884303644

Table 5.1: Results from training autoencoder on the fidgety dataset with binary
crossentropy loss.
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Epochs L-Rate Loss Accuracy
1 3 1e− 1 0.1084115927 0.9884963937
2 5 1e− 2 0.0273047154 0.9884963937
3 14 1e− 3 0.0151227199 0.9884351173
4 29 1e− 4 0.0148768301 0.9883657722
5 36 1e− 5 0.0201510189 0.9875198565
6 407 1e− 6 0.0154333055 0.9884886924
7 1394 1e− 7 0.0227307531 0.9883882837
8 123 1e− 8 0.7922884027 0.476975013

Table 5.2: Results from training autoencoder on the No-CP dataset with binary
crossentropy loss.

Epochs L-Rate Loss Accuracy
1 72 1e− 5 0.0033004883 0.0755990821
2 706 1e− 6 0.0030163218 0.1363132378
3 1198 1e− 7 0.0580254665 0.0171052454
4 296 1e− 8 0.143537989 0.5871587355

Table 5.3: Results from training autoencoder on the No-CP dataset with mean
squared error loss.

Epochs L-Rate Loss Accuracy
Version 1 9 1e− 4 0.0327558472 0.9884963937

Table 5.4: Results from training autoencoder with augmented data on the No-CP
dataset with binary crossentropy loss.

5.1.1 Reconstructed Images

Figures 5.1, 5.2 and 5.3 shows some example of how the reconstructed images from
the decoder looked like. We see that the code layer when using mean squared error
results in a very different image than when using binary crossentropy.
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Figure 5.1: Reconstructed image from autoencoder trained on fidgety dataset with
binary crossentropy loss.

Figure 5.2: Reconstructed image from autoencoder trained on No-CP dataset with
binary crossentropy loss.

Figure 5.3: Reconstructed image from autoencoder trained on No-CP dataset with
mean squared error loss.
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5.2 Classification Results

Tables 5.5 and 5.6 shows the result of training the simple classification model
with pretrained autoencoder on the fidgety dataset. Both mean squared error
and binary crossentropy gave similar results. Using the autoencoder pretrained
on the No-CP dataset yielded similar results as seen in table 5.7. The extended
classification model gave more varying results and though table 5.8 shows only the
best runs, most results were similar to the simple classifier.

L-Rate Loss Accuracy Sensitivity Specificity
1 1e− 3 1.4110682914 0.9124544029 0.00 1.00
2 1e− 4 0.3461933402 0.8843147473 0.0714 0.9623
3 1e− 5 0.3301850506 0.8968212606 0.0179 0.9812
4 1e− 6 0.3150812159 0.8994267843 0.00 0.9857
5 1e− 7 0.2839108179 0.9124544029 0.00 1.00
6 1e− 8 0.3163377324 0.9124544029 0.00 1.00

Table 5.5: Results from training the simple classifier on the fidgety dataset with
binary crossentropy loss.

L-Rate Loss Accuracy Sensitivity Specificity
1 1e− 3 0.0875455966 0.9124544029 0.00 1.00
2 1e− 4 0.0875455966 0.9124544029 0.00 1.00
3 1e− 5 0.1723569957 0.7566440855 0.2738 0.803
4 1e− 6 0.0854184205 0.9114121934 0.00 0.9989
5 1e− 7 0.0827173296 0.9114121934 0.00 0.9989

Table 5.6: Results from training the simple classifier on the fidgety dataset with
mean squared error loss.

L-Rate Loss Accuracy Sensitivity Specificity
1 1e− 3 1.4110682914 0.9124544029 0.00 1.00
2 1e− 4 0.3461933402 0.8843147473 0.0714 0.9623
3 1e− 5 0.3301850506 0.8968212606 0.0179 0.9812
4 1e− 6 0.3150812159 0.8994267843 0.00 0.9857
5 1e− 7 0.2839108179 0.9124544029 0.00 1.00
6 1e− 8 0.3163377324 0.9124544029 0.00 1.00

Table 5.7: Results from training the simple classifier on the No-CP dataset with
binary crossentropy loss.
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L-Rate Loss Accuracy Sensitivity Specificity
1 1e− 3 0.8488609509 0.8202188636 0.3333 0.8669
2 1e− 4 2.1360534807 0.3923918706 0.8988 0.3438
3 1e− 5 0.7217357015 0.8478374149 0.1488 0.9149

Table 5.8: Results from training the extended classifier on the No-CP dataset with
binary crossentropy loss.

5.2.1 Classification Per Subject

Table 5.9 shows the result of combining the many image-based classifications of
each subject to one classification from majority vote.

Data Accuracy Predicted Predicted Correctly
1 No-CP 0.89189189 0 0
2 No-CP 0.83783783 4 1
3 Fidgety 0.89189189 0 0
4 DenseNet 0.81081081 5 1

Table 5.9: Results from combining the classifications by majority vote on all images
for each of the 37 subjects in the test set.

5.3 Baseline Models

Table 5.10 shows training a pretrained denseNet classification on our data. Overall,
the accurcay is about the same or lower, but the sensitivity is significantly higher
than most run on our model. Table 5.11 has the fifty first layers locked so that
only the later layers are trained and fine-tuned further on our data. Table 5.12,
5.13 and 5.14 shows the results of testing the data representations with VGG16.
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5.3.1 DenseNet121

L-Rate Loss Accuracy Sensitivity Specificity
1 1e− 3 0.6822078438 0.7910369981 0.2619 0.8418
2 1e− 4 1.4609487767 0.6618030224 0.4048 0.6865
3 1e− 5 0.5374561046 0.8269932256 0.2619 0.8812
4 1e− 6 0.3838673248 0.8650338718 0.2143 0.9275

Table 5.10: Results from training the keras denseNet121 classifier with binary
crossentropy loss and pretrained imagenet weights.

L-Rate Loss Accuracy Sensitivity Specificity
1 1e− 4 2.2106767329 0.4210526315 0.869 0.3781
2 1e− 4 0.3786505868 0.9062011464 0.0119 0.992
3 1e− 4 4.5599589914 0.2318916102 0.9821 0.1599

Table 5.11: Results from training the keras denseNet121 classifier with binary
crossentropy loss and pretrained imagenet weights. The fifty first layers locked i.e.
not updated further.

5.3.2 VGG16

The best results from training the VGG16 network. The non-presented results
suffers for great variation in performance, and indicates that the following results
should be validated critically.

L-Rate Optimizer Loss function
1 1e− 3 Adam Categorical Crossentropy
2 1e− 3 SGD Categorical Crossentropy
3 5e− 3 SGD Categorical Crossentropy
4 1e− 3 Adam Binary Crossentropy
5 1e− 3 SGD Binary Crossentropy

Table 5.12: Parameter setup from training the VGG16 with class weights and
pretrained imagenet weights. The sixteen first layers locked i.e. not updated
further.
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Predicted CP Correct predicted CP Sensitivity Specificity
1 564 76 0.4524 0.7213
2 1919 168 0.9999 0
3 1919 168 0.9999 0
4 909 113 0.6726 0.5454
5 240 36 0.2143 0.8835

Table 5.13: Results from the setup in table 5.12, with classification on image level.
The total number of images labelled with CP was 168.

Predicted CP Correct predicted CP Sensitivity Specificity
1 7 1 0.2500 0.8181
2 37 4 0.9999 0
3 37 4 0.9999 0
4 18 3 0.7500 0.5455
5 1 1 0.2500 0.9999

Table 5.14: Results from the setup in table 5.12, with classification on subject
level. The total number of subjects labelled with CP was 4.
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Chapter 6

Discussion

6.1 Dataset

The dataset used in this master thesis is, as described in section 4.1 a small dataset
when working with deep learning. Deep learning methods are known for their need
of data. Too little training data often results in a poor approximation, and too
little test data results in an optimistic model with high variance estimation. The
dataset provided is also unevenly distributed, representing only 10% infants with a
CP diagnosis. As a result, the model can predict every infant as healthy, and still
reach an accuracy on 90% present. Sensitivity and specificity, described in section
2.1.3, will in this case provide better insight in the models performance, as they
measure how well the model predicts true positives and true negatives. A model
should reach a high specificity and a high sensitivity in order to be called well
working. As presented in chapter 5, almost all classifications reach either a good
sensitivity or a good specificity. A characteristic for the VGG16 is that a high
number of predicted CP more often results in higher sensitivity and specificity.
These numbers will in theory be considered as interesting, but the high number of
false positives makes the prediction unreliable.

Another limitation is that the datapoints generated by the CIMA-tracker only
represents 7 body parts, and not 19, in which would have been a full bio-mechanical
model. How much impact this have on the model is hard to tell, but there is
reasonable to assert that a deep learning network will do it better when provided
more accurate information about the infants movements. When clinicians uses
GMA as a tool for giving a CP diagnosis, they look at movement trajectories
across the whole body (2.1.3), and the small movements are as important as the
big ones. Therefore it is likely to believe that the network has greater possibilities
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for detecting the right patterns, i.e. fidgety movements, when provided a dataset
with more accurate information about the body movements.

The CIMA-tracker provided by Groos and Aurlien [33] has its limitation too. Even
the sightliest error in the tracking will result in noisy data. These small errors are
extremely hard to detect, as they look non-erroneous. As a result, the the CP
prediction model is fed with data points that might not represent the infants
exact movements, and there are chances that the model learns movement patterns
that does not really exists.

The evaluation of the CIMA-tracker’s performance indicates how well the images
represents an infants movements. The evaluation was done manually and will
therefore suffer from a subjective assessment. As shown in table 4.4, there are
almost twice as many healthy subjects (32.4%) that are labelled well tracked as
subjects that later on got a CP diagnosis (16.7%). For bad tracked subjects this
percentage is more equal with respectively 23.2% and 21.4%. For this prediction
task one of the essentials for the network is to learn recognising the fidgety move-
ments healthy infants make (section 2.1.2). Well tracked subjects will results in
more accurate information about the infants movement trajectories and the fidgety
movements. It is an advantage that healthy subjects are well tracked so that the
network have good data to train on and learn from. The number of bad tracked
subjects are also of great interest since images generated from these are adjusted
in the attempt of fixing misleading points. Table 4.5 shows that there are a higher
percentage bad tracked subjects in the validation and test set, than in the train-
ing set. This means that the systems had a larger share of the non-labelled and
well-tracked subjects, which in turn results in training on fewer edited images and
greater opportunities for learning the important fidgety movements.

6.2 Data Representation

Discussion about outlier detection and correction

The CIMA-tracker has two other situations that often results in bad data. The
first one is when there is something in the outskirts of the image that disturbs
the tracker, as shown in figure 6.1a. The other situation is when one of the seven
tracked body parts moves towards one of the other, or is interpreted as one of the
other. In these cases there are two main issues. If the body parts moves toward
each other, they might have some overlapping movements. Since the tracker reads
2D data, it can not follow both the overlapping body parts. This often results in
noisy data. When one body part is interpreted as another, the CIMA-tracker gets
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confused, and as a result it jumps between the two body parts. This is illustrated
in figure 6.1b.

(a) External disturbances. (b) Internal disturbances.

Figure 6.1: The two most common types of errors from the CIMA-tracker.

Working with data that includes both types of tracking errors makes the outlier
detection and removal challenging, especially when using cluster analysis as outlier
detectors. If a cluster representing the motion of a body part have a data point
far from the cluster mean, all other data points will look normal compared to that
point. This is illustrated in 6.1a.

Tracking errors inside a body part cluster are hard to correct. Visualisation of
these errors makes it extremely clear that there is no way a human body can move
that fast. But how is this best corrected? Even a clinician will have trouble with
predicting the next move of an infant, so there is no way the outlier correction will
be 100% right. The challenge is then changed to how one can make the correction
as correct as possible. In this master thesis clustering method were mainly used
for outlier detection and correction. When detected, each outlier is handled by
replacing it with the mid value of the previous and next normal points. Since each
data point represents the movement done in 1/24th or 1/29th second, this data
normalisation will work. But if too many outliers are detected in a row, it will
result in a new straight line of “fixed” points. This line is no more representative
for the infants movement than the original outliers, and the point with outlier
detection is gone.

As mentioned in section 4.2.1, the provided dataset includes data with varying
density, in which make choice of parameters for the outlier detection algorithms
difficult. The data sent into the deep learning network will still include some
outliers, both due to outliers that are not detected by the algorithm, but also due
to wrong correction in the reprocessing. This might have an impact on the network,
which in turn might learns features that does never really were done by the infants.
In section 2.3.1 we mentioned that there is another member of the InMotion project
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that has been looking into mathematical and statistical methods for fixing outliers.
Her methods have been applied to the data points representing, with time along
the x-axis, and it would be interesting to use this as prepossessing before turning
data into images. With such methods one eliminates the problem with datapoints
compared to the cluster mean, and both datapoint with an Euclidean distance far
from the cluster mean and closer points can be handled.

Evaluation of representation

Another aspect of the data representation is whether the representation suits its
purpose. The proposed data representation, with movement trajectories of 10 sec-
onds in one image, is easy to understand for humans, and was the main reason for
the choice. For clinicians, that are going to be the end users of the CP prediction
application, it is important that the proposed method is somewhat understand-
able. A prediction that comes from an application feels more reliable when the
process is explainable, which this data representation is. The InMotion-project
were also a part of the decision, as they already had this data representation
as something they wanted tested. In our Specialisation Project [10][p.18-19] we
concluded that we waned to look more into 2D-representation, as we found some
appealing convolution methods during our literature study.

The results of the different classifications tested in this thesis indicate that the
proposed data representation is hard to interpret for our autoencoders as well as
for the baseline method VGG and a tweaked DenseNet. Our literature study [10]
revealed two methods where time series are represented as images, as discussed in
section 3.2.2. These methods are too complex for humans to understand, but they
might provide useful information for a deep learning network.

6.3 Autoencoder and Pretraining

The results of the autoencoder do show some promising reconstructions and high
accuracy but the results of the classification afterwards is not equally promising.
It is hard to make a firm conclusion on whether using an autoencoder does not
work at all but in this case we think that it is the data and the representation
of data that makes it challenging for the autoencoder to pull out a good set of
features that represents movement patterns separating the instance of having CP
or not having CP.

There was not a huge difference in pretraining on degree of fidgety or on simply
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not having CP but in general No-CP was slightly better. We think with the great
imbalance, it is more intuitive and accurate to pretrain on No-CP. It is a better
representation of the full span of movements that healthy infants show, especially
when dividing into time intervals. We do not know which interval is showing the
relevant movements, and the subjects are not necessarily doing fidgety movements
constantly throughout the recording.

We do not want to eliminate the possibility of an autoencoder that may serve as
a good feature extrator, but we believe it requires more research and dedicated
time. The autoencoder we proposed here did take a great deal longer to train
than the complete classification and it requires it’s own tuning and searching of
hyperparameters. It is also likely that with more data and another data represen-
tation the autoencoder may get more fruitful results. The autoencoder might also
benefit from reducing the feature space even more, and we theorise that experi-
menting more with stride lengths and diluted convolution might help in reducing
the feature space without increasing the depth unnecessary.

6.4 Classifier Model and Prediction

We saw that the simple classifier did not perform well on the results from the
autoencoder simply because it was too shallow. Flattening the features from the
encoder resulted in a number of features that were still too big and the features
from the autoencoder were not discriminating enough to divide between the classes.
It required a deeper network with more pooling to reduce the feature space. The
extended classification model was an attempt at that, and though it seemed to
improve a little, the results were practically the same. Because we could not run
denseNet directly on top of the autoencoder, we attempted a reduced version that
would fit with the memory constraint and the feature reduction that we thought
was required.

It is worth noticing that even though using mean squared error in general gave
very similar accuracy, it also often gave a slightly higher sensitivity value because
it predicted more samples to have CP. The same tendensies is what happened with
denseNet. It guessed more samples to have CP so even when accuracy was lower
the sensitivity was higher. Unfortunately it meant the specificity decreased, be-
cause the overall number of correctly classified samples did not change remarkably.

We also did some test with the extended classifier without an autoencoder, and
though we did not include the results her, it was interessting to see that it made
less of a difference than we thought. The autoencoder did improve the results a
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little but not enough to exclude the possibility that if the classification algorithm
is improved upon then the autoencoder might be excessive.

Our baseline denseNet did perform better than our proposed model, but not nearly
as good as it would on a ”standard” classification task, which only proves how im-
portant the training data is. We did not attempt to make the denseNet architecture
into an autoencoder and pretrain that on the fidgety or No-CP datasets, but we
imagine it could be a possibility, if not only to see if the structure of the autoen-
coder should be different. Even though the pretrained weights from imagenet is
generally improving the performance of denseNet, in our case it did not make a big
difference whether denseNet used the pretrained weights or random initialisation.

Even though we called this a classification task, it is not an easy classification
because of the imbalance and the few samples that actually have CP. It can be
debated whether it is closer to an anomaly detection task were the CP class is
counted as anomalies, but anomalies are more often than not detected over a time
period and our data does not have a label in time, meaning we do not know at
which time step the movement patterns that indicate CP is. We do not have the
knowledge to conclude whether anomaly detection methods would work or not
but it might be something to investigate. Alternatively, it might be useful to look
at ways to train the classification with a more symmetric distribution of the two
classes, thus balancing out huge difference and maybe mitigate some of the issues
that this brings.
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Chapter 7

Conclusion and Future Work

We considered to test out the representation from [41] but as the authors point
out, the ordering of the features matters with this approach, and that is something
we wanted to avoid. For our purpose, it does not matter if the one specific body
part is on the top line of the image or not, the movement of one body part does
not necessarily have a connection with the movement in another body part. Doing
all the permutations of body parts with both x and y coordinates was too time-
consuming for this project now and might be even more so if the tracking model
is being extended to include more body parts or joints in the future. The repre-
sentation of motion and joint-joint representation in [42] could be more promising
regarding the movement from time step to time step, but as they were less detailed
with their implementation of the image encoding we cannot be certain whether
the same issue with the ordering is present or not.

Another suggestion is to combine more statistical methods as preprocessing. The
data from the tracking is not perfect and by ”cleaning up” some of the mistakes
in more ways than we have in this report might help improving the data repre-
sentation. We also think it might be worth treating the data as 1D channels and
either do 1D convolution on each, or do try using RNN since it is still the most
used architecture with sequential data.

We also think it could be valuable to have the temporal aspect more prominent.
When putting all the time steps into one image, the overlap of point makes it
impossible to keep the temporal dynamics completely. One way would be to make
one image per timestep, resulting in a 3D representation that keeps the temporal
aspect and the positions.

It is also possible to train on each body part individually and combine them into a
joint model. The advantage of this is that it would be easier to do preprocessing on
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each individual cluster as there are a significant difference in movements between
for example the arms and leg which can have very varying clusters versus torso
which in general has a denser cluster.
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Appendix 1

Analysis of the results of the CIMA-tracker
Method:
1) For each video recording representing one infant, every 10th second of movement coordinated generated by the tracker were plotted in an 
image.
2) Looked through all images representing one infant and labelled the images as well tracked or bad tracked, and if none of these categories 
fitted – no label was given. 
3) Aggregated all labels representing the same infant into one label, listed in the table below. 

Additional comment: Infants with ID number between 001-1-1 and 099-1-1 are only labelled as bad tracked or no labelled.

FM Fidgety Movements
0 Absent
1 Sporadic
2 Intermittent
3 Continual
4 Exaggerated
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ID nummer CP score FM MOS CP utkom Well tracked Bad tracked
001-1-1 -0.4974603175 2 16 0
002-1-1 -0.1334814815 3 16 0
003-1-1 0.2410493827 2 14 0
004-1-1 -0.3437654321 2 14 0 x
005-1-2 0.493037037 2 16 0
007-1-1 -0.2988888889 2 16 0
009-1-1 -0.2287654321 2 14 0
010-1-1 -0.5501234568 2 14 0
011-1-1 0.1062962963 2 14 0 x
012-3-1 0.4879012346 1 14 0 x
013-2-1 -0.9611111111 2 14 0
014-1-1 -0.6325185185 0 6 1
015-1-1 -0.2138888889 1 14 0
016-1-1 -0.9079765131 0 5 1 x
017-2-1 -0.5772839506 2 14 0
018-1-1 -0.8233333333 1 14 0 x
019-1-1 -0.9543809524 0 6 1
020-1-1 0.2635802469 3 14 0 x
021-2-1 -0.6276190476 0 11 1
022-1-1 -0.7788888889 0 10 1
023-2-1 0.6004938272 3 14 0 x
024-2-1 -0.2187513228 1 14 1
025-1-1 0.05654320988 2 14 0 x
026-1-1 -0.0350617284 2 16 0
027-1-1 -0.4482716049 2 16 0
028-1-1 -0.7248994709 0 9 1
029-2-1 -0.2968994709 0 7 1
030-2-1 0.4301234568 2 14 0 x
031-2-2 -0.2411111111 0 5 1
032-1-1 -0.1546984127 2 16 1
033-1-1 0.7216049383 2 16 0 x
034-2-1 0.200308642 3 16 0 x
035-1-1 -0.9094789705 0 10 1
036-1-1 0.7714197531 2 14 0
037-1-1 0.1620987654 2 14 0
038-1-1 -0.3749074074 2 16 0
039-1-1 0.1460493827 2 16 0
040-2-1 0.4667901235 3 16 0 x
041-2-1 -0.487962963 2 16 0
042-1-1 0.510308642 2 14 0
043-2-2 0.8446296296 2 13 0 x
044-1-1 -0.7449470899 0 6 1
045-2-1 0.3037654321 2 14 0
046-1-1 0.6171604938 2 16 0 x
047-1-1 -0.1276296296 0 5 1
048-2-1 0.1449382716 1 14 0 x
049-1-1 0.4785185185 2 14 0
050-1-1 0.5952777778 1 14 0
051-1-1 0.8373148148 2 16 0
052-2-3 0.7783333333 2 16 0
053-1-2 0.3267283951 1 14 0
056-2-1 0.5495061728 0 14 0
057-2-1 0.01324074074 2 16 0



058-1-1 0.6774691358 2 16 0
060-3-1 0.447037037 0 7 0
062-1-1 0.1750617284 2 11 0 x
064-1-1 -0.4663809524 2 16 0
065-1-1 -0.502345679 0 14 0
066-1-1 -0.2358024691 2 14 0
067-1-1 -0.7542222222 0 6 1
068-2-1 0.4162962963 2 14 0
069-2-1 -0.1308024691 2 14 0
071-1-1 -0.1728395062 2 16 0 x
072-1-1 -0.06259259259 2 16 0
073-1-1 missing data 0 x
075-2-1 -0.6688395062 2 16 1
077-1-1 0.4145061728 0 9 0
078-1-1 0.5235802469 0 11 0
079-1-1 0.9989506173 3 14 0
080-1-1 0.4991358025 1 14 0
081-1-1 0.1417901235 2 16 0 x
082-1-1 0.7701851852 3 14 0
083-2-1 0.1530864198 2 16 0
084-1-1 0.3037777778 2 16 0
087-1-2 0.6249382716 2 16 0 x
088-1-1 0.3814814815 2 14 0
089-1-1 0.001172839506 2 16 0
090-2-1 0.6471604938 3 16 0
091-2-1 0.5327777778 3 16 0
092-1-1 0.03968339307 2 14 1
093-1-1 0.4710582011 2 16 0
094-1-1 0.517654321 2 14 0
095-2-1 0.6787037037 2 14 0
096-1-1 0.5664550265 2 16 0 x
097-1-1 0.7384126984 0 9 0
099-1-1 0.00538647343 1 16 1 x
100-1-1 0.4917901235 2 14 0 x
101-1-1 0.8502469136 4 14 0 x
102-1-1 0.7717901235 2 16 0
103-1-1 -0.3154938272 2 16 0 x
104-2-1 0.5575132275 2 16 0 x
105-2-1 0.3932716049 0 14 0 x
106-1-1 -0.1583068783 2 14 0 x
107-1-1 0.7184567901 0 14 0
108-2-1 -0.6775132275 0 11 1
109-2-1 0.07833333333 2 14 0
110-2-1 -0.08100529101 2 16 0
111-1-1 -0.5904360812 0 14 1
114-1-1 0.1779541446 2 16 1 x
115-2-1 0.427037037 2 14 0 x
116-1-1 0.6166049383 2 11 0
117-1-1 -0.3061375661 1 14 0 x
119-1-1 0.3872839506 2 14 0 x
120-2-1 0.8393333333 2 16 0 x
121-2-1 -0.212037037 2 14 0
122-1-1 0.8144444444 3 16 0
123-1-1 0.2782222222 4 12 0



124-2-1 0.702962963 2 14 0
125-1-1 0.6752469136 2 16 0
126-2-1 0.4151851852 2 14 0
127-2-1 -0.3425507766 0 7 1
128-1-1 -0.2764197531 1 14 0 x
130-1-1 -0.6575090777 0 12 1
131-1-1 0.5063703704 0 14 0
132-1-1 0.3856613757 2 14 0 x
133-1-1 0.02918518519 2 14 0 x
134-1-1 -0.2870840682 2 14 1 x
135-2-1 -0.2138518519 1 14 0 x
136-1-1 0.8277160494 2 14 0
137-1-1 0.847345679 4 14 0
138-1-1 0.3104938272 2 14 0 x
139-2-1 0.7494179894 2 14 0 x
140-1-1 0.9449382716 3 16 0
141-2-1 0.6825925926 2 14 0 x
142-2-1 0.8926455026 2 16 0
143-1-1 0.5335555556 2 14 0 x
144-2-1 0.6545185185 2 16 0
145-1-1 0.2891975309 2 16 0 x
146-1-1 -0.1375185185 2 16 1 x
147-1-1 0.7225925926 0 14 0
149-2-1 0.1375308642 2 16 0 x
151-1-1 0.7884567901 2 16 0 x
152-1-1 0.7017989418 2 12 0
153-1-1 0.1062962963 2 16 0 x
154-1-1 0.5875925926 3 14 0 x
155-2-1 0.7791851852 2 16 0 x
156-2-1 0.2808465608 2 14 0
157-1-1 0.7174074074 2 14 0 x
158-1-1 0.5759876543 3 16 0 x
159-1-2 0.6840740741 3 16 0
160-1-1 0.6144444444 2 11 0 x
161-1-1 0.5668518519 2 12 0
162-1-2 0.6255555556 2 16 0
163-1-1 0.7132804233 3 16 0 x
164-1-1 -0.3258641975 2 12 0 x
165-1-1 0.9435185185 3 16 0
166-2-2 0.6101851852 2 16 0 x
167-1-1 0.2675925926 2 16 0 x
168-1-1 -0.02080246914 1 14 0
300-1-1 0.6369135802 2 14 0 x
302-1-1 0.7745679012 2 16 0
303-1-1 0.4789506173 2 12 0
304-1-1 0.2757407407 2 16 0 x
305-1-1 0.7682407407 2 16 0
307-1-1 0.6849382716 2 16 0 x
LCH_001-1-1 0.197968254 0 14 1 x
LCH_003-1-1 0.3650358423 1 14 1 x
LCH_004-1-1 0.1063580247 2 16 0 x
LCH_005-1-1 0.01043209877 0 12 0 x
LCH_006-1-1 0.3869753086 2 16 0 x
LCH_007-1-1 0.3022222222 2 12 0 x



LCH_008-1-1 0.2344444444 2 14 0 x
LCH_009-1-1 0.8727777778 3 16 0 x
LCH_011-1-1 0.07953703704 2 14 0 x
LCH_012-1-1 -0.2125925926 1 14 0 x
LCH_015-1-1 0.08703703704 2 14 0
LCH_016-1-2 0.3530864198 4 14 0
LCH_017-1-1 -0.01597371565 0 14 1 x
LCH_018-1-1 0.4217283951 2 14 0
LCH_019-1-1 0.1434259259 0 14 0 x
LCH_020-1-2 0.0249382716 2 14 0 x
LCH_021-1-1 -0.1366666667 2 16 0 x
LCH_024-1-1 0.1616049383 2 14 0 x
LCH_025-1-1 0.2156790123 2 16 0 x
LCH_027-1-1 0.5592592593 1 14 0 x
LCH_028-1-1 0.7292592593 3 16 0 x
LCH_029-1-1 -0.1661481481 2 14 0 x
LCH_030-1-1 -0.2983273596 0 14 1
LCH_031-1-1 0.5981481481 2 16 0
LCH_032-1-1 0.06672839506 0 14 0 x
LCH_033-1-1 0.7300925926 2 14 0
LCH_034-1-1 0.467037037 2 11 0
LCH_035-1-2 0.5755555556 2 16 0 x
LCH_036-1-1 0.347654321 0 14 0 x
LCH_038-1-1 0.3375925926 3 14 0 x
LCH_040-1-1 0.1098765432 2 14 0 x
LCH_043-1-1 0.7381481481 3 16 0
LCH_044-1-1 0.6884444444 3 14 0 x
LCH_045-1-1 -0.3695679012 2 14 0
LCH_046-1-1 -0.2332098765 1 14 0 x
LCH_047-1-1 0.3992592593 0 14 0
LCH_051-1-1 0.6965185185 3 16 0
LCH_052-1-1 0.1369135802 2 16 0 x
LCH_053-1-1 0.9206481481 4 7 0
LCH_054-1-1 -0.6071604938 1 14 0 x
LCH_055-1-1 0.2490123457 2 14 0 x
LCH_056-1-2 0.3563580247 2 12 0 x
LCH_057-1-1 0.5253333333 2 14 0 x
LCH_058-1-1 0.9145679012 3 16 0 x
LCH_059-1-1 -0.379691358 2 16 0
LCH_061-1-1 0.1882098765 2 16 0 x
LCH_062-1-1 0.0312345679 2 16 0 x
LCH_063-1-1 0.5185802469 2 16 0
LCH_064-1-1 0.4666666667 2 16 0 x
LCH_065-1-1 -0.3785802469 0 12 0 x
LCH_066-1-1 0.3428395062 2 16 0 x
LCH_067-1-1 0.8911111111 1 12 0 x
LCH_068-1-1 0.8451234568 4 14 0 x
LCH_069-1-1 0.4519444444 2 16 0
LCH_070-1-2 -0.7737037037 2 14 0 x
LCH_072-1-2 0.7164197531 1 12 0
LCH_073-1-1 -0.7450358423 0 4 1
LCH_075-1-1 0.3734259259 2 12 0
LCH_076-1-1 0.7548148148 2 16 0 x
LCH_077-1-1 0.6382098765 2 12 0 x



LCH_078-1-1 -0.6065791246 0 5 1
LCH_079-1-1 0.7180246914 0 12 0 x
LCH_080-1-1 -0.2646723647 2 14 1
LCH_081-1-1 0.6074691358 1 14 0 x
LCH_082-1-1 0.4662345679 2 16 0
LCH_084-1-1 0.6563580247 3 16 0 x
LCH_085-1-1 0.4425308642 2 14 0
LCH_087-2-1 -0.4899223417 2 12 1 x
LCH_088-1-1 0.4934567901 2 16 0 x
LCH_091-1-1 0.1951851852 2 16 0 x
LCH_092-1-1 0.5547530864 1 14 0 x
LCH_093-1-1 0.3392592593 2 16 0 x
LCH_094-1-1 0.6627777778 2 16 0 x
LCH_095-1-1 0.7517777778 4 14 0
LCH_096-1-1 0.4680246914 0 14 0 x
LCH_097-1-1 0.7871604938 3 16 0 x
LCH_098-1-1 -0.2885802469 2 14 0 x
LCH_099-1-1 0.1697530864 2 12 0 x
LCH_100-1-1 0.3453703704 2 16 0
LCH_101-1-1 0.8315740741 2 14 0 x
LCH_102-1-1 0.03364197531 2 16 0
LCH_106-1-1 0.3044444444 2 16 0
LCH_110-1-1 0.7951111111 2 16 0 x
LCH_111-1-1 0.7823703704 2 14 0
LCH_114-1-1 0.4375308642 2 16 0
LCH_117-1-1 -0.3108641975 2 16 0
LCH_119-1-1 0.395 2 16 0 x
LCH_121-1-1 0.5811111111 2 14 0 x
LCH_122-1-1 0.8418518519 3 12 0 x
LCH_124-1-1 0.1722839506 2 16 0 x
LCH_126-1-1 -0.07302469136 2 16 0 x
LCH_129-1-1 0.7820740741 2 16 0 x
LCH_132-2-1 0.3016049383 2 14 0 x
LCH_136-1-1 0.1203703704 2 16 0 x
LCH_137-1-1 -0.282654321 2 14 0
LCH_138-1-1 0.2250617284 2 16 0 x
LCH_139-1-1 0.5297037037 2 16 0 x
LCH_140-1-1 -0.102 2 16 0
LCH_141-1-1 -0.04827160494 2 16 0 x
LCH_142-1-1 0.06303703704 2 14 0
LCH_143-1-1 0.8712962963 2 16 0 x
LCH_144-1-1 0.4836419753 3 16 0 x
LCH_145-1-1 0.2082716049 2 14 0 x
LCH_148-1-1 0.9985185185 3 16 0 x
LCH_149-1-1 0.6759259259 2 14 0
LCH_150-1-2 0.4300617284 2 14 0
LCH_152-1-1 -0.2167144564 0 12 1 x
LCH_153-1-1 0.1267283951 2 14 0 x
LCH_154-1-1 0.08111111111 3 16 0 x
LCH_155-1-1 0.2908641975 2 16 0 x
LCH_157-1-1 1 2 12 0
LCH_159-1-1 0.739382716 2 16 0
LCH_160-1-1 0.7940740741 3 16 0
LCH_162-1-1 0.4819135802 2 16 0 x



LCH_167-1-2 -0.4392894936 0 10 1 x
LCH_171-1-1 -0.193948626 2 12 1
LCH_174-1-1 0.590308642 2 14 0 x
LCH_175-1-1 0.03141975309 2 16 0 x
LCH_176-1-1 0.7662962963 2 14 0 x
LCH_179-1-1 0.2955555556 2 16 0
LCH_180-1-1 0.5574814815 2 16 0
LCH_181-1-1 -0.4984156379 0 6 1 x
LCH_182-1-1 -0.3219883041 0 6 1 x
LCH_184-1-1 -0.3325925926 2 14 0 x
UoC_001_1_1 0.437037037 3 16 0 x
UoC_002_1_1 0.05385185185 0 12 0 x
UoC_005_1_1 0.5586666667 0 14 0
UoC_006_1_1 -0.138863779 0 8 1 x
UoC_007_1_1 0.1362345679 0 14 0
UoC_008_1_1 0.2764197531 2 16 0
UoC_009_1_1 0.3490123457 0 14 0 x
UoC_012_1_1 0.715037037 2 14 0 x
UoC_014_1_1 -0.410962963 0 7 0 x
UoC_015_1_1 0.5840740741 2 14 0 x
UoC_016_1_1 0.6443209877 2 16 0
UoC_017_1_1 0.02435185185 0 14 0 x
UoC_018_1_1 0.3638888889 1 12 0
UoC_019_1_1 -0.8433333333 0 9 1 x?
UoC_020_1_1 0.1432716049 2 14 0 x
UoC_021_1_1 -0.06932098765 1 14 0 x
UoC_023_1_1 0.4109876543 2 16 0 x
UoC_024_1_1 0.7856296296 2 16 0
UoC_025_1_1 0.5321604938 2 11 0 x
UoC_026_1_1 0.8509259259 2 16 0
UoC_028_1_1 0.5830246914 2 14 0 x
UoC_029_1_6 0.3288888889 1 14 0 x
UoC_031_1_1 0.03197530864 2 14 0 x?
UoC_032_1_1 0.1974074074 1 14 0 x
UoC_033_1_1 0.9266666667 2 14 0 x?
UoC_034_1_1 0.2525 2 16 0
UoC_035_2_1 0.8645679012 2 16 0 x
UoC_036_2_1 0.5094444444 2 14 0 x
UoC_038_1_1 0.1372222222 0 12 0
UoC_040_1_3 -0.8640448343 0 5 1
UoC_041_1_1 0.7695679012 2 16 0 x
UoC_042_1_1 0.7416666667 2 16 0 x
UoC_043_1_1 0.3874074074 2 16 0 x
UoC_044_1_2 0.9679012346 2 16 0
UoC_045_1_1 0.5298148148 3 16 0 x
UoC_047_1_1 0.1582716049 1 14 0 x
UoC_049_1_1 0.8351851852 2 14 0
UoC_050_1_2 0.6866666667 2 14 0 x
UoC_054_1_3 0.3078395062 2 16 0 x
UoC_055_1_1 0.875037037 3 16 0 x
UoC_057_1_1 0.8443209877 3 16 0
UoC_059_1_1 0.5656790123 1 14 0
UoC_060_1_1 0.01222222222 2 16 0 x
UoC_061_1_1 0.6372839506 3 16 0



UoC_062_1_1 0.9337037037 3 16 0 x
UoC_063_1_1 0.5011728395 3 16 0
UoC_064_1_1 0.5851851852 3 16 0
UoC_066_1_1 0.7648148148 2 16 0 x
UoC_067_1_1 0.5230555556 3 16 0 x
UoC_068_1_1 0.7718518519 2 16 0
UoC_069_1_1 0.5866666667 3 16 0 x
UoC_071_1_1 0.6231481481 0 9 0
UoC_072_1_1 0.8486419753 3 16 0 x
UoC_073_1_1 0.4093518519 0 11 0 x
UoC_074_1_1 -0.01734567901 2 16 0
UoC_075_1_1 0.6231481481 2 16 0
UoC_076_1_1 0.4425308642 2 14 0
UoC_077_1_1 0.1051234568 2 16 0
UoC_078_1_1 0.05617283951 2 16 0 x
UoC_079_1_1 0.7941975309 2 16 0
UoC_080_1_1 0.4124074074 2 16 0 x
UoC_082_1_1 0.7647407407 3 16 0 x
UoC_083_1_1 0.07395061728 2 16 0
UoC_084_1_1 0.7717283951 2 14 0 x
UoC_085_1_1 -0.2940123457 0 12 0 x
UoC_086_1_1 0.6769907407 2 11 0
UoC_087_1_1 0.7714814815 2 14 0
UoC_088_1_1 0.6674074074 2 16 0 x
UoC_089_1_1 0.1617901235 2 16 0 x
UoC_090_1_1 0.647962963 2 16 0
UoC_091_1_1 -0.2225925926 2 12 0
UoC_093_1_1 0.6283333333 2 14 0 x
UoC_094_1_1 0.597654321 2 16 0
UoC_096_1_1 0.4746666667 2 16 0 x
UoC_097_1_1 0.2636419753 1 14 0 x
UoC_098_1_1 0.0362962963 2 16 0 x
UoC_099_1_1 0.3347530864 2 16 0
UoC_100_1_1 0.03104938272 2 16 0 x
UoC_101_1_1 0.7890740741 3 16 0 x
UoC_102_1_1 0.5712345679 3 16 0 x?
UoC_104_2_1 0.1651234568 2 11 0
UoC_106_1_1 0.1738888889 2 11 0
UoC_107_1_1 -0.1107407407 2 16 0 x
UoC_108_2_1 -0.03191358025 2 16 0
UoC_109_1_1 -0.3331959379 0 14 1 x
UoC_110_1_1 0.1885802469 2 16 0
UoC_111_1_1 -0.07543209877 2 14 0 x
UoC_112_1_1 0.5667283951 3 16 0 x
UoC_113_1_1 -0.08625 2 12 0
UoC_114_1_1 -0.2116666667 2 12 0 x
UoC_115_1_1 0.7566666667 3 16 0 x
UoC_116_1_1 0.8125925926 3 16 0 x
UoC_117_1_1 0.02518518519 2 16 0
UoC_118_1_1 0.734962963 3 16 0 x
UoC_119_1_1 0.6167592593 2 16 0 x
UoC_120_1_2 0.4922839506 2 16 0
UoC_121_1_1 0.4438888889 2 16 0 x
UoC_122_1_1 0.3034567901 3 16 0 x



UoC_123_1_1 0.0362962963 2 16 0
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