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Abstract

With the emerging applications of artificial intelligence, there is a growing
interest in dedicated hardware accelerators for efficient computing of arti-
ficial neural networks. FPGA’s provide configurable logic gates to create
integrated circuits used for fast and power efficient computing, at little cost
and development time. The development of specialized ASICs are potentially
financially expensive but may provide a ten-fold performance increase and im-
proved energy efficiency. The FPGA-based Bit-Serial Matrix-Multiplication
Overlay [1] (BISMO) architecture utilizes the parallelism of matrix-matrix
multiplications, which is a core computational kernel for convolutional neu-
ral networks, by distributing bit-serial operations on an array of multiple
dot-product units, allowing run-time configurable precision. The mentioned
properties make the architecture usefull for performing inference in neural
networks, making it suitable for AI acceleration. This thesis describes the
investigation of the different approaches required to implement the men-
tioned FPGA architecture in an ASIC. Necessary modifications of the original
FPGA architecture are described, and a new memory scheme for ASIC im-
plementation is suggested. The analysis of the ASIC implementation shows
a theoretical potential for increased throughput, and the steps required for
further investigation are discussed.



Sammendrag

Grunnet den økende interessen for anvendelse av kunstig intelligens har
behovet for dedikerte maskinvare-akseleratorer som utfører effektive bereg-
ninger av kunstige nevrale nettverk økt. FPGAer tilbyr konfigurerbare lo-
giske porter som kan kombineres til å lage integrerte kretser som kan utføre
raske og energieffektive beregninger til en relativt lav kostnad, med en kort
utviklingstid. Utvikling av en spesialisert ASIC kan medføre høyere kost-
nader, men forbedre ytelse og strømforbruk. Den FPGA-baserte arkitekturen
Bit-Serial Matrix-Multiplication Overlay (BISMO) benytter seg av matrise-
multiplikasjoners egenskap til å kunne beregnes samtidig. Matrisemultip-
likasjon er en type beregning som utføres ofte i sammenheng med convo-
lutional neural networks, som er en type kunstig nevralt nettverk. BISMO
fordeler bit-serielle operasjoner over en formasjon med kryss-produktenheter,
som gir muligheten til å definere antall gjeldende siffer under gjennomføring
av en beregning. BISMO arkitekturens egenskaper gjør den egnet til aksel-
erering av evalueringer innenfor kunstig intelligens. Denne oppgaven beskriver
undersøkelsen av de forskjellige tilnærminger som kreves for å integrere BISMO
arkitekturen i en FPGA og en ASIC. Nødvendige modifikasjoner av den op-
prinnelige arkitekturen blir beskrevet, og det blir foreslått et nytt minnesys-
tem for å implementere arkitekturen i en ASIC. Undersøkelser av ASIC-
implementasjoner tyder på et teoretisk potensial for økt utførelseshastighet,
og det diskuteres steg som må tas for å fortsette undersøkelsene.



Abbreviations and Acronyms

AI Artificial Intelligence

ASIC Application-Specific Integrated Circuit

BISMO Bit-Serial Matrix Multiplication Overlay

BNN Binary Neural Network

BRAM Blocked Random-Access Memory

BSMMA Bit Serial Matrix Multiplication Accelerator

CLB Configurable Logic Block

DNN Deep Neural Network

EDA Electronic Design Automation

FIFO First In First Out

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

GTECH General Technology library

HCL Hardware Construction Language

HDL Hardware Definition Language

IC Integrated Circuit

LAB Logic Array Block

LUT Look-Up Table

PS7 Processing System 7

QNN Quantized Neural Network

RTL Register-Transfer Level

SR Shift-Register

SRAM Static Random-Access Memory
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1 | Introduction

Deep learning is a field undergoing intense study due to the recent spike in
interest of Artificial Intelligence (AI). Deep learning is a collection of meth-
ods used in representative learning and applies methods like Deep Neural
Networks (DNNs) for machine learning. The demand for computational per-
formance has resulted in the inclusion of specialized computational units for
neural networks, like the Dual Neural Network Processing Unit included in
the latest Huawei’s Mate 20 [4], or the eight-core Neural Engine included in
Apple’s latest iPhones [5].

Deep Neural Networks are computational models that are inspired by the
interactions between neurons in the biological brain, by using layers of com-
putational functions represented by "cells," that eventually lead to an out-
put. By interpreting the resulting output to improve the configuration of
neurons in the network, the layers of neurons can be "trained" to yield more
accurate output. Inference in the context of deep learning involves evaluat-
ing input using the information gained through training. The interactions
between each layer of neurons typically consist of an abounding number of
operations, making deep learning a computationally heavy model, and it is,
therefore, sensible to make the computations as efficient as possible in terms
of energy and time.

Matrix-matrix multiplication is a core computational kernel in neural net-
works. Matrix-matrix product computations are highly parallelizable, mean-
ing that they can be spread out over many computational units at the same
time, creating a potential for utilizing specialized massively parallel hardware
accelerators to speed up each step of the computation process. There are al-
ready widely adopted techniques for software frameworks to utilize Graphics
Processing Units (GPUs) in the computational process [6]. GPUs contain
many small computational units with low complexity, making them desir-
able for a variety of parallelizable tasks. While GPUs are both powerful
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CHAPTER 1. INTRODUCTION

and flexible, they are not the most efficient computational platform for all
purposes. Handheld and embedded system-on-chip devices are particularly
concerned with energy efficiency and restricted spatial dimensions. In many
cases, training is performed externally in data centers, or "in the cloud."
Inference can also be carried out in the cloud, but this is not desirable from
the standpoint of communication, latency, and privacy. Instead, inference
occurring locally on a device close to the input would be more beneficial [7].

By using reconfigurable logic, it is possible to set up an integrated circuit
to perform specialized computations as an accelerator. Dedicated hardware
restricts acceleration to specific problems, but in return requires less logic and
overhead, leading to efficiency in terms of power consumption and speed.
One special case of neural networks that may utilize specialized hardware
is Quantized Neural Networks (QNNs). Research has shown that the full
precision of floating point numbers is not necessary for performing inference.
It has been demonstrated that the precision of integer operations can be
pruned, in some cases even to a single bit [8]. Most hardware implementations
use a fixed precision which causes a bad mapping between the computational
need and the underlying hardware. Recent research projects have come up
with integrated circuit architectures that can accelerate neural networks at
a bit-wise level. Both the Stripes [9] on an ASIC, and Bit-Serial Matrix
Multiplication Overlay (BISMO) [1] on an Field-Programmable Gate Array
(FPGA) achieve a high number of operations per unit of power. BISMO is
a bit-serial matrix multiplication accelerator which enables the precision to
be defined dynamically at runtime. With BISMO as a core computational
unit for neural networks, it would even be possible to adapt the precision for
individual layers in the network.

The purpose of this project is to investigate the different design flows of the
two types of integrated circuits. To gain knowledge about the two kinds of
technology, an analysis of the BISMO FPGA architecture will be carried out,
exploring the possible benefits and detriments of implementing the architec-
ture in an ASIC using state of the art tools for circuit design.
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2 | Background

2.1 Circuit Design Technologies

Application-Specific Integrated Circuits (ASICs) are designed to meet the
requirements and constraints of a certain application. Electronic Design
Automation (EDA) tools utilize a standard cell library provided by ASIC
vendors, which contains information about the behavior of the cells. Metrics
like delay, noise, and behavior under temperature changes are factors that
need to be considered when designing a circuit. Specific constraints allow
for the synthesis of a highly specialized circuit, in which there is as little
unnecessary logic and overhead as possible, making the circuit able to run
at higher frequencies, be more energy efficient and more compact, i.e., use
less die area, than general purpose circuits. This does, however, come with
a trade-off in terms of time and financial resources, which will be discussed
later in this section.

FPGAs are integrated circuits manufactured for the purpose of allowing cus-
tomers to configure the circuit’s logic after deployment, and for developing
hardware circuits without costly manufacturing in the form of an ASIC. The
chip consists of an array of configurable interconnected logic blocks used to
create reconfigurable logic that is able to replicate the function of virtually
any digital circuit. Part of the array can be seen in figure 2.1, where the
Configurable Logic Blocks (CLBs) are placed around a configurable inter-
connect that activate blocks and transfer data between blocks and off-chip.
These blocks are referred to as CLBs, and Logic Array Blocks (LABs) by
Xilinx and Altera, respectively [2]. Each, using Xilinx’s naming convention,
CLB contains what Xilinx refer to as slices, that contain one or more logic
cells. Each logic cell contains one or more Look-Up Tables (LUTs) that in
combination with multiplexers and flip-flops or latches allow any n-bit in-
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CLB CLB CLB

CLB CLB CLB

CLBCLBCLB

Figure 2.1: Configurable Array of CLBs

put LUT to express any rudimentary n-input boolean functions, by storing
the output values in a truth table format in a small memory. Figure 2.2
shows a simplified overview of a basic CLB slice. Both logic cells contain one
multifaceted LUT, meaning it could also serve the purpose of Static Random-
Access Memory (SRAM) or a Shift-Register (SR). This type of functionality
enables customers to change the behavior of the circuit to accommodate their
specific needs.

In both FPGA and ASIC, memory is divided into off-chip and on-chip mem-
ory. In an ASIC design, on-chip SRAM is expensive and often affects the
overall design. ASIC designers either get the macros from vendors or use
SRAM generators to make arrays of memory cells and necessary connec-
tions which are combined into an “SRAM macro” [10]. The physical size,
heat dissipation, and yield are all reasons why on-chip memory is costly,
there is however a trade-off in moving off-chip on ASIC designs due to the
devastating increase in access latency, and power consumption of off-chip
memory [11]. Memory in an FPGA can be implemented in various ways,
either through utilizing the gate array itself or using dedicated on-chip mem-
ory. A type of dedicated FPGA on-chip memory is Blocked Random-Access
Memory (BRAM), developed by Xilinx, which is designed for large data seg-
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Slice 

Figure 2.2: A basic CLB slice containing two logic cells
Reprinted from "FPGAs: Instant Access" [2]

ments, and supports multi-port and -clock capabilities [12]. Another method
to store data is "distributed RAM", which is using the previously mentioned
multifaceted properties of the FPGA’s own LUTs to store information. This
may be useful for small amounts of data, while it does use resources in the
form of occupied LUTs that otherwise could be used to implement logic [13].

The design flow for FPGAs is similar to that of ASICs, there are however
a few significant differences. FPGAs are, much like ASICs, often defined
in an Hardware Definition Language (HDL) before being synthesized into
an implementation by an EDA tool. With a Register-Transfer Level (RTL)
design defined in Verilog or VHDL, the behavior of the circuit is described
to the synthesis tool. In the case of ASIC implementation, the synthesis
starts with building a netlist configuration with generic components based
on the constraints and RTL design provided to the tool. Constraints may
be a specific clock frequency, area confinement or power consumption. An
equivalency check is performed to see if the configuration behaves like the
RTL design is intended to. The design is then mapped into the real logic
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Design flow ASIC FPGA
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ASIC
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tures depending on
manufacturer
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Clock Tree syn-
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Check design for tim-
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sure all clocking is met
during placement

Verification Sign off to foundry to
test design

Test directly on pre-
made device

Figure 2.3: Design Flow for ASIC and FPGA

gates contained in the standard cell libraries provided by Integrated Circuit
(IC) vendors. These cell libraries contain information about the components
based on statistics gathered through testing [14]. The EDA tools for FPGA
synthesis translates the RTL design, then maps it to the CLB array described
by the characteristics of the targeted FPGA chip [15].

When the ASIC design is mapped to real-cell logic, it is ready for physical
design in the form of floorplanning, placement, and routing. Floorplanning
and placement consist of placing the modules in a way that conserves the
spatial dimension of modules, and wire-length. The difference between floor-
planning and placement is that in floorplanning the area of each module is
known, but properties like height, width, and position of pins are not fixed.
Floorplanning is commonly performed on larger modules like memories or
larger computational units. Placement optimizes the dimensions and loca-
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tion of the gates inside each module at a lower abstraction level.
Routing is the task of connecting all the pins with wires. The goal of routing
is to minimize delay by using as short wires as possible while arranging the
wires so they don’t cause interference with each other. Interference between
wires is called crosstalk. All the physical design steps are usually performed
with EDA tools, however since the physical design of an ASIC is permanent,
it is paramount to spend time on getting these steps right and they therefore
need attention from field specialists [14].
Finally, there is a final verification process. In FPGAs, this is performed
directly on the FPGA chip, and the results are consequently imminent. On
an ASIC the binary files are sent off in Graphic Database System Mark 2
(GDSII), or equivalent format, to manufacturers for the final sign off. This
cycle is time-consuming and often very expensive.

In figure 2.3, some of the design flow steps are described for both types of
designs. In the case of an ASIC design, thorough timing analysis, floorplan-
ning, and equivalency check is needed in order to sign off the implementation
to a foundry. Many of these steps require significant manual intervention to
assure that the tools perform as expected, depending on the design. A signif-
icant portion of the verification has also already been done at the design time
of the FPGA itself, thus, making this step relatively much simpler. Since the
FPGAs in contrast to fixed function circuits like ASICs allow modification
after the logic is implemented, post-production errors are less costly to fix
and therefore production costs are reduced. Manufacturers of integrated cir-
cuits can utilize this by testing and revising an architecture on an FPGA,
before deploying the technology through foundries [16][17].

2.2 Hardware Construction Language

Chisel is a Hardware Construction Language (HCL) implemented in Scala by
researchers at UC Berkeley. It provides powerful meta-programming tech-
niques, simplifying the process of producing verbose Verilog code. Since the
original Hardware Definition Languages (HDLs) like Verilog and VHDL were
created for the purpose of simulating hardware, many of its constructs do not
synthesize, whereas a HCL like Chisel uses a simple set of construction prim-
itives that are domain specific for RTL design. By embedding the language
into Scala, a multi-paradigm language, developers avoid the need to define a
completely new language, while still being able to define abstract data types
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and parameterized hardware generators [18].

2.3 Quantized Neural Networks

Quantized Neural Networks (QNNs) are special cases of Deep Neural Net-
works (DNNs) where weights, activations or gradients are represented by
integers of a small number of bits. Other types of DNNs may require large
amounts of memory in order to properly represent the model. Despite a
possible degradation in predictive performance, quantization provides a po-
tential solution to greatly reduce the model size and the energy consumption
[19].

Algorithm 1 Bit-serial matrix multiplication on signed integers.
1: Input: m×k l-bit matrix L , k ×n r-bit matrix R
2: Output: P = L · R
3: for i ← 0. . . l −1 do
4: for j ← 0. . .p−1 do
5: sgnL ← (i == l −1?−1 : 1)
6: sgnR ← (j == p−1?−1 : 1)
7: weight = sgnL · sgnR · 2i+j

8: #Binarymatrixmultiplication between L [i ] and R[j ]

9: for r ← 1. . .m do
10: for c← 1. . .n do
11: for d← 1. . .k do
12: Pr c = Pr c +weight · (L [i ]

r d · R
[j ]
dc )

Figure 2.4: Algoritm for Bit-serial GEMM
Reprinted from “BISMO: A Scalable Bit-Serial Matrix Multiplication

Overlay for Reconfigurable Computing"

A special case of a QNN is a Binary Neural Network (BNN) where the weights
and activations of the network are represented by a single bit at runtime. In
addition to drastically reducing memory size and accesses, BNNs make it pos-
sible to replace most arithmetic operations with bit-wise operations, which is
expected to improve power-efficiency [20] substantially. Bit-serial operations
are inherently frugal since they only compute as many bits as specified by
the precision of the operands. The mentioned frugality comes at the cost of
accuracy. Thus, QNNs are required for more advanced applications.

Despite the attractive accuracy and computational properties, there is a chal-
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lenge in reaping the benefits on QNNs on mobile devices with commodity
processors. Three outstanding issues limit the benefits of QNN deployment
on existing mobile CPUs: floating point parameters inside and between quan-
tized layers, lack of native support for efficient few-bit integer matrix multi-
plications, and overhead of bit-masking operations for convolution lowering
on few-bit activations. Thus, a need for mitigating these challenges with
innovative methods occur, in order to utilize the potential of bit-serial com-
putations [21].

Umuroglu and Jahre showed that by expressing a matrix multiplication as a
weighted sum of binary matrix operations they were able to perform matrix-
matrix multiplication with bit-serial computations. They use the specialized
case of Binary General Matrix Multiplication (Binary GEMM), and use this
mathematical kernel (line 9-12 in figure 2.4) to be able to perform few-bit
integer matrix multiplications with a Bit-serial GEMM [8].

An example of bit-serial multiplication by expressing matrices as weighted
sums of binary matrices can be seen in figure 2.5. The two matrices L and
R, are factorized to compositions of powers of two. Using the distributive
property of multiplication, the product of the two matrices can be calculated
using the weighted sum of each binary product. Since the values range from
zero to three, each number may be represented as two bits. In order to make
the same work for numbers ranging zero to seven, another bit would have
to be used, increasing the complexity of the calculation. This property is
a cornerstone in the functionality of the BISMO architecture, elaborated in
section 3.2.

L =

[
2 0
1 3

]
= 21L[1] + 20L[0] = 21

[
1 0
0 1

]
+ 20

[
0 0
1 1

]

R =

[
0 1
1 2

]
= 21R[1] + 20R[0] = 21

[
0 0
0 1

]
+ 20

[
0 1
1 0

]
L ·R = (21L[1] + 20L[0]) · (21R[1] + 20R[0])

= 22(L[1] ·R[1]) + 21(L[1] ·R[0]) + 21(L[0] ·R[1]) + 20(L[0] ·R[0])

Figure 2.5: Expressing a matrix-matrix multiplication as a sum of weighted
binary dot products.
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3 | Modern Applications of DNN
Hardware Acceleration

3.1 Applications in Consumer Electronics

Current technologies for accelerating DNNs have reached popular consumer
devices. Designers of handheld devices have implemented existing applica-
tions of AI to new areas. The flagships of the top mobile phone manufacturers
like Apple, Huawei, and Samsung, include the functionality of unlocking the
device with the owners face. This feature is made possible by facial recogni-
tion software that uses AI methods to identify peoples facial structure. The
nascent Kirin 980 SoC included in the latest range of Huawei products have
utilized a dual Neural Processing Unit(NPU) architecture to process training
and inference at higher throughput than through a traditional architecture
[4]. Apple has its custom made A12-Bionic chip with a built-in eight-core
neural engine, stated to perform at 5 trillion operations per second. Both
of these AI accelerators are examples of the use of ASICs to improve the
throughput of the system [5].

Google has recently introduced another type of AI accelerator. In addition
to their AI cloud training services, they have presented a new portable ASIC
called Edge. The device may be plugged into a computer, and be utilized by
Google’s own machine learning API called TensorFlow. The chip is purported
to provide energy efficient inference through quantization. The Edge Tensor
Processing Unit(TPU) operates with 8/16 bit integers, and use a Complex
Instruction Set Computer (CISC) to control the computations [22]. Since
the TPU is concerned with integers operations only, the computations are
stated to be 83 times better than a CPU, and 29 times better than a GPU,
when measuring performance per watt [23].
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Because general-purpose processors such as CPUs and GPUs must provide
good performance across a wide range of applications, they have evolved myr-
iad sophisticated, performance-oriented mechanisms. As a side effect, the
behavior of those processors can be difficult to predict, which makes it hard
to guarantee a certain latency limit on neural network inference. In contrast,
TPU design is strictly minimal and deterministic as it has to run only one
task at a time: neural network prediction [23].

While the exact architecture of these chips is disclosed information, the con-
cept of using specialized hardware accelerators for specific tasks, known col-
loquially as heterogeneous computing, is making its way to the market.

3.2 BISMO

The BISMO architecture utilizes the previously mentioned frugality of bit
serial operations mentioned in section 2.3, by expressing a matrix multipli-
cation as a weighted sum of binary matrix dot products. Fixed-precision
operations need to support the largest precision number and keep this preci-
sion throughout the execution of an application where the required precision
might vary. The BISMO architecture uses software hardware cooperation,
where the hardware is fed instructions describing the size and precision of
each matrix. The architecture comprises of a three-stage pipeline, where the
matrix data is fetched from memory, executed, and storing the results back in
memory. Between the stages, synchronization is performed by blocking reads
and writes to synchronization First In First Out (FIFO) queues. All stage
operations, including datapath control and synchronization, are controlled
by instructions, which are fetched from instruction queues and executed in
order. The architecture can be seen in figure 3.1.
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Figure 3.1: Overview of BISMO’s’ hardware architecture.
Reprinted from “BISMO: A Scalable Bit-Serial Matrix Multiplication

Overlay for Reconfigurable Computing"

BISMO uses the Bit-serial GEMM algorithm described in figure 2.4, by
buffering matrix computations from main memory and feeding them into
an array of Dot Product Units (DPUs) called the Dot Product Array (DPA).
The BISMO data flow can be seen in figure 3.2. The DPUs compute the
binary dot product partial results by using a multi-bit bit-wise And-gate,
counting the resulting number of 1’s using a PopulationCount unit, and a
Left-Shift unit to include the weighting. The result can then optionally be
negated, before being accumulated in an accumulation dedicated register.
The DPU architecture can be seen in figure 3.3.

BISMOs parameterizable hardware architecture is designed in the HCL Chisel,
with the use of some external Chisel libraries to utilize an Advanced eXtensi-
ble Interface (AXI) bus and BRAM for on-chip memory. The architecture is
synthesized with the Xilinx Vivado software for FPGA design and evaluated
on a PYNQ-Z1 FPGA board. The PYNQ-Z1 device uses a processing system
called Processing System 7 (PS7), which controls the AXI bus and I/O for
the programmable logic. The architecture of the processing system can be
seen in detail in figure 3.4. The BISMO hardware architecture is design-time
configurable, which is a key-feature of implementing the architecture on an
FPGA. There is a finite amount of LUTs and BRAM per FPGA, so the au-
thors have provided a cost model for the number of LUTs and amount of
BRAM required for an overlay with a certain set of dimensions [1].
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4 | Methodology

The first step of the design process for both ASIC and FPGA development is
to create a functional logical design at RTL level. The chisel code provided
with the original FPGA BISMO project creates Verilog code that defines the
RTL-level logic of the BISMO design. The resulting single-file Verilog code
contains information about the wrapper that integrates the Bit Serial Matrix
Multiplication Accelerator (BSMMA) into the PYNQ FPGA device. Info
about the wrapper is otiose to the ASIC project, as the peripherals and bus
organization is specific for the PYNQ device. The RTL design is organized
hierarchically, allowing for the selection of a particular subcomponent in the
design and separate it and its dependencies for independent synthesis and
analysis.

4.1 Previous Work

In the original BISMO project, the chisel code contains parts that are in-
cluded with an FPGA architecture in mind. In a preliminary study leading
up to this project, the DPA part of the architecture was inspected using the
Vivado synthesis tool and mapped into equivalent ASIC cells using Design
Compiler. The results from the DPA synthesis is included in section 5.2.

4.2 Current Project

In this project, a complete analysis of the full BSMMA is performed and
mapped into ASIC-equivalent technology. The first step being to inspect the
altered architecture design inside the FPGA wrapper for the PYNQ device.
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CHAPTER 4. METHODOLOGY

The altered design should also be implementable on an FPGA, considering
that the FPGA LUTs are able to represent any logical function as long as
the necessary amount of resources are available.

After confirming that the design works on the FPGA, the next step is to
transfer the RTL-logic to tools intended for ASIC synthesis. For synthesis
into a gate-level design in this project, Design Compiler by Synopsys is used
as it is a popular tool for gate-level synthesis and, according to the company
itself, has the largest market share for EDA design [24]. This project has cus-
tomized and utilized an existing framwork created by Benjamin Bjørnseth,
for ASIC synthesis with Design Compiler. The original project can be found
at https://bitbucket.org/benjambj/energy-model-synthesis. Exam-
ples of the scripts utilized in this project is included in appendix B. The
process was then planned and carried out using the Design Compiler User
Guide [25]. A simplified flow chart from the user manual is shown in figure
4.1.

Define
design environment

Set

design constraints

Synthesize and optimize the design

Analyze and resolve

design problems

Develop HDL files

Specify libraries

Read design

Select

compile strategy

Save 

database

Figure 4.1: Design compiler synthesis flow

The design compiler first performs elaboration of the design with "presto
compilation," which is Synopsys’ term for creating a gate-level netlist of the
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CHAPTER 4. METHODOLOGY

RTL-Verilog code. The resulting netlist comprises of components from a Gen-
eral Technology library (GTECH). The next step is to replace the GTECH
components with a library provided by a company receiving approval from
manufacturers. For the synthesis performed in this project, a 28nm technol-
ogy cell library approved for manufacturing is used. The chosen library is set
to operate under certain conditions, is supplied with a stable 1.0 voltage, and
assumes a steady temperature of 25 degrees Celsius. The cell library avail-
able to the project does not contain information about wire capacitance, and
so the synthesis is performed with a "zero wire load model," meaning that
the synthesis assumes ideal wires.
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5 | Results

5.1 Design Characterization

When the design is synthesized using standard settings with Vivado, it is
possible to inspect the resulting bitfiles that will be implemented on the
FPGA. The notation used to describe the configuration of the BISMO design
overlays in this project is MxKxN, where M and N are dimensions of the DPA,
and K is the bit width of the DPUs.

Figure 5.1 shows how the FPGAs resources are utilized, with the teal colored
parts of the image being LUTs occupied by the design, and the white bars
utilized BRAM components. The orange blocks are part of the Processing
System, controlling DDR-memory I/O and clocks. In figure 5.2, a more
saturated FPGA device is shown. Due to the increase in both DPU bit width
and DPA array dimensions, the 8x256x8 design occupies more LUTs than
the 4x128x4 design. In figure 5.3 a graph shows the utilization of LUTs on a
PYNQZ1 as the dimensions of the DPA are increased. The red bar shows the
maximum number of LUTs available on a PYNQZ1. Design configurations
requiring more LUTs than the maximum amount was, as expected, not able
to be implemented on the FPGA device.
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Figure 5.1: 4x128x4 FPGA overlay design.

Figure 5.2: 8x256x8 FPGA overlay design.

5.2 DPA Synthesis

The results from the mapping of the DPA design to a cell library architecture
provided insights into the scaling of the resource cost and complexity by
increasing the size of the overlay. Although the results in the form of cell
count and design area of the ASIC does not directly translate to the number of
LUTs on the FPGA, they do represent a measure of complexity and resource
usage on the different technologies. The fact that they scale similarly on
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both technologies indicates that the full ASIC implementation might scale
the same way as on the FPGA.

When implementing the BISMO architecture in an ASIC, making use of
peripherals and memory might be more complex in ASIC design due to pe-
ripherals specific for FPGA platforms. Replacing dual-port BRAM with op-
timized SRAM requires the generation of foundry-specific memory macros.
A synthesis and mapping of the DPA to a standard cell library was per-
formed, and even though the metrics between the architectures are not di-
rectly translatable, the DPA showed similar scaling as the scaling on the
FPGA implementation. There is also a theoretical potential for speedup in
the form of about four times higher maximum frequency of the DPA com-
pared to the implementation on an FPGA. The DPA results are included in
appendix A.II.

5.3 BSMMA Synthesis and
Memory Implementation

Through inspection of original chisel code and interpretation of resulting
RTL-Verilog code, some changes were made to the original project to adapt
it to an ASIC architecture. The included Verilog code for Dual port BRAM
could not be compiled into plain generic ASIC components, as FPGA soft-
ware will infer BRAM while ASIC synthesis software will not be able to
interpret the logic into a valid design. An attempt to replace the inferred
BRAM memory with ASIC architecture targeted Verilog code gave insight
into the process of implementing memory in ASIC designs. Instantiating
large memory devices with just flip flops or latches, and multiplexers is an
exhaustive process in terms of virtual memory used by the synthesis software
and total CPU time.

Attempting to replace BRAM on the FPGA with distributed RAM using
the "ram_style" compiler directive resulted in a severe hike in resource use,
and the Vivado software gave warning that the amount of memory in the
design needed to be reduced. By manually reducing the memory used by
each matrix buffer resulted in a synthesizable design, but the number of
LUTs climbed to orders of magnitude higher than the original design, and
no design was implementable on the PYNQZ1 FPGA.
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Figure 5.3: LUTs utilized in Vivado implementation on a PYNQZ1, red line
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The design did synthesize in Design Compiler, but even for a moderate
4x128x4 design with a relaxed 2ns clock constraint, the synthesis took sev-
eral days. This rendered a proper analysis outside of the timeframe for this
project. When the size of the buffers was reduced, the compile time was
consequently also reduced. With the total amount of DPA buffer memory
reduced to 1

64
of the standard amount, the synthesis could be carried out and

the critical path, cell count and cell area is plotted as Reduced Queue ASIC
in figure 5.5, 5.6 and 5.7 respectively.

As an alternative to synthesizing memory, Design Compiler allows specific
modules in the design to be described as "Black box". This means that De-
sign Compiler has no knowledge of the internal functionality of the module,
but can be supplied with the statistical parasitic information of the mod-
ule from a vendor-generated library file. There exists open-source software
that is intended for educational purposes, but in order to get a realistic re-
placement in the design to verify the functionality of the circuit, a library
from a company licensed by the manufacturer is required. To acquire such
a library, specific attributes of the SRAM need to be identified. An analysis
of the BRAM usage provided the total amount of BRAM used by FPGA
designs with represented in a graph in figure 5.4. The red line represents the
maximum amount of BRAM available on the PYNQZ1 device, and the syn-
thesized design overlay configurations requiring more BRAM than the device
could not be implemented. The BRAM is mainly used as buffer FIFO queues
between the Fetch and Execution stage, and a smaller FIFO queue as buffer
for the result stage.

The design was compiled successfully with the memory modules instantiated
as zero-load black boxes. The critical path length, cell count and design area
of the BSMMA in contrast with previous DPA synthesis are graphed and dis-
played in figure 5.5, 5.6 and 5.7 respectively. The size of the DPA dimensions
were incremented by two for each synthesis, and there was also synthesized a
32x128x32 overlay with black box memory, to see if the trajectory continued
with relatively large designs.
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The synthesis was also performed with less constraint on clock frequency,
this could impact the designs cell count/area and power consumption. When
given a clock constraint of 2 ns (500MHz), all of the configurations gave a
critical path of 0.9819 ns (1018MHz). They also had a slightly lower cell
count/area, shown in figure 5.8 and 5.9. The full results from the BSMMA
synthesis is included in appendix A.I.
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6 | Discussion

The results from exploring the BSMMA design in Vivado gave insight into
the structure for utilizing the FPGAs resources. Due to the finite amount
of LUTs and BRAM, the architecture designers had to make certain com-
promises when increasing the dimensions of the DPA, and bit-width of the
DPUs. When taking the maximum number of LUTs on a PYNQZ1 FPGA
device, the largest symmetrical DPA array that may be implemented on a
PYNQZ1 FPGA device for 64-, 128- and 256-bit DPUs are 14x14, 10x10
and 8x8, respectively. At the time the project was carried out, the standard
BISMO project did not allow the implementation of any DPA in other sizes
than the power of 2, on the PYNQZ1. The reason for this is the BRAM
utilization of the design.

When the array’s dimensions are increased, the number of matrix buffers
also increase, but the depth of each buffer stays the same. As the BRAM
utilization chart in figure 5.4 shows, the increase from 4x4 to 6x6 array
resulted in about 50% more BRAM-tiles required, and increase from 10x10
to 12x12 increased by approximately 20%. As the 4x4 design utilizes 129
BRAM tiles, the 50% increase to the 6x6 design leads to 192 BRAM tiles
required. The PYNQZ1 board has exactly 140 BRAM tiles, and as a result,
the implementation fails. An 8x8 design is, however, synthesized just fine.
This is due to the amount of memory per matrix buffer being dimidiated,
in practice by reducing the address space of the attached memory unit by
one bit. In figure 6.1, a simplified scheme for a 4-bit word-size, with a 4-bit
address space (A0-A3) is shown. Increasing the address space with one bit
allows for a total memory size of 24 ∗4 = 64 bits. By adding an extra address
space bit (A0-A4), the number of accessible memory cells doubles in size.
(25 ∗ 4 = 128 bits)

The same step is taken when doubling the DPU width, as it would double the
amount of memory required to buffer the same amount of items. In order to
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properly implement the design on a PYNQZ1 FPGA, the buffer depth would
have to be reduced. This particular property is interesting to consider when
porting the design to an ASIC. In an ASIC, the amount of memory available
is not a problem as the amount is not prefabricated as in an FPGA. There
will still have to be made a decision of what buffer depth to support.

In order to continue the development in an ASIC, the simple black box mem-
ory modules will need to be replaced with macros provided from a manu-
facturer with a process technology that is compatible with the cell library
utilized. The manufacturers would then need information about the organi-
zation of the memory. Two attributes that need to be defined are word size
and number of address bits. This describes the dimensions of the memory.
From the inspection of the design, the result stage queues by default 256 en-
tries in Blocked RAM. The number of entries in the queues that store values
between the fetch-stage and execution stage are determined, assuming the
DPA is symmetric, by the following formula;
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NumberOfEntriesPerBuffer =
64 ∗ 32 ∗ 1024

2 ∗DPADimension ∗DPUBitwidth

The rationalization for this is that each BRAM tile has 36*1024 bits, and
the buffers use 32 of the native 36-bit width due to constraints from the
fetch stage since DRAM buses are typically power of-two-wide and the de-
sign require BRAM read/write widths to be an integer multiple of each
other [1]. Each entry is 64 bits. The total number of bits are divided be-
tween the product of the DPU-Bitwidth and the number of matrix buffers
(2 ∗DPADimension). The take away from this analysis is that the SRAM
macros should be of 64 bits word sizes, with a 2k address size, where k is the
number of address bits desirable for the buffer size. It is possible to reduce
the address space by not allowing access to the full k bits of address space
and reduce the number of memory cell rows but would require additional
logic if to be implemented.

The buffers are implemented as asymmetrical First In First Outs (FIFOs)
since the read/write speed of the DDR memory and BRAM differ. Conven-
tionally, a dual-port RAM is used when implementing a FIFO memory, which
allows read and write operations to be performed independently within the
RAM. However, one disadvantage of the dual-port RAM is that it is almost
twice the size of a single port RAM having the same capacity. In contrast, a
single port RAM can perform only one operation (read or write) at a time.
It is possible to combine single port SRAMs to create a FIFO with simulta-
neous read/write capabilities [26]. If a dual-port SRAM is not available for
the process technology used to implement the BSMMA, it is still possible to
implement a FIFO.

The results from the synthesis of ASIC BSMMA shows promising potential
for an improved throughput for the architecture when implemented in ASIC
Technology. The maximum frequency at which a circuit can operate is in
relation to the length of the longest critical path. Since the synthesis is
performed in "zero wire-load" mode, the resistance, capacitance, and length
of the wiring are assumed ideal. Therefore the reported critical paths are
only theoretic and will assumably not function in real applications. The
purpose of the synthesis is not to get an accurate estimate for the ASIC’s
specifications, but rather serve as confirmation that the design is able to be
represented by a certain set of cells and motivate for further research and
development.
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Overlay Configuration Max Frequency(MHz)
2x128x2 2574.00
4x128x4 2532.29
6x128x6 2503.13
8x128x8 2402.11
10x128x10 2374.17
12x128x12 2341.37
14x128x14 2351.83
32x128x32 2277.90

Table 6.1: Max Frequency of BSMMA Black Box Overlay Configurations

MAXFREQUENCY (Hz) =
1

LongestCriticalPath(s)

When observing the maximum length of the critical paths as the dimensions
of the DPA was incremented, all the three kinds of synthesis increased at
scale. There were points where the critical path was shorter than with a
smaller configuration. Since the synthesis process is not deterministic, the
synthesis tool might have found some configurations of cells that allowed
for a shorter critical path that was not discovered during the synthesis of a
smaller overlay. The maximum frequencies obtained for the ASIC BSMMA
with black box memory modules are displayed in table 6.1. It is tempt-
ing to compare the results to the previous characterization results of the
FPGA, where the maximum frequency ranges between 400-800MHz, but as
previously mentioned, the metrics are not quite comparable. The process
technology used for the programmable logic in the PYNQ-Z1 device is 28nm
[27], the same generation as the cell library used for synthesis in this project.
Even if the critical paths increase dramatically due to wiring, the zero wire
load synthesis results reveal the possibly great potential for increasing the
throughput using ASIC technology.

The cell count and cell area both scale the same way in both the DPA, the
Black Box BSMMA, and the Reduced Queue ASIC. The difference in cell
count and area of the three kinds of synthesizes also seem to scale linearly
with the dimensions of the DPA, indicating that some additional logic is
required in the stages other than the execution stage when increasing the
dimensions of the DPA. There is a small hike in both cell count and cell area
in the 6x128x6 Reduced Queue ASIC overlay. The probable cause that the
hike occurs in only that particular kind of synthesis and not the other two
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may be explained that it actually synthesizes memory modules in place of
the BRAM. The drop from the 6x128x6 to the 8x128x8 overlay configuration
may be seen in correlation with the drop in BRAM usage seen in figure 5.4

The relaxation of the clock constraint during synthesis showed a hike in
maximum critical path length, with only minor decreases in cell count and
area. It is possible to run synthesis with constraints with respect to power
and area. The takeaway from this is that if resources in the form of spatial
area or number of cells are scarce, it seems to yield greater reductions to
reduce the dimensions of the DPA array than reducing the max clock.
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7 | Conclusion

During the course of the project, the design flow of both FPGAs and ASICs
have been investigated and compared. Both of the design flows include many
of the same steps, but due to the rapid testing environment of the FPGA,
there is more room for error and revising in an FPGA design flow. The ASIC
design flow also includes steps that require human intervention to yield satis-
factory results, while the FPGA’s EDA tools are able to perform these tasks
independent of human intervention due to the prefabricated nature of FP-
GAs. The specialized functionality of ASICs should yield improvements in
terms of energy efficiency, speed, and volume, but are expected to require
more time and resources to develop. The project has been aimed at expos-
ing the possible detriments and modifications required to map the BISMO
architecture to an ASIC.

When implementing the BISMO architecture in an ASIC, making use of
peripherals and memory might be more complex in ASIC design due to pe-
ripherals specific for FPGA platforms provide out-of-the-box processing func-
tionality. Replacing dual-port BRAM with optimized SRAM will require the
generation of foundry-specific memory macros. A synthesis and mapping of
the BISMO architecture to a standard cell library was performed, using both
the black box method for the memory modules and replacing the RAM with
registers. There is a theoretical potential for speedup in the form of about
four times higher maximum frequency of the BSMMA compared to the im-
plementation on an FPGA. This is comparable to previous findings when
comparing FPGAs and ASICs [16].
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Further work

Through analysis of the synthesized hardware, there has been identified a
demand for memory modules with 64-bit word size and an address depth
that ensures a buffer size that does not cause congestion in the form of a
full buffer delaying the read from main memory. When increasing the bit
width of the DPU, the matrix buffer sizes would also have to be increased
to store the same number of entries. If dual-port RAM is not available,
other types of memory supporting a FIFO architecture should suffice. When
a cell library containing wire information and foundry-compatible memory
macros have been acquired, the project can be continued by using the same
framework and proceed with functional verification of the synthesis. When
the functionality of the synthesized design is verified, the "Place & Route"
phase may commence for further analysis and development.
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A | Complete Synthesis Results

A.I ASIC BSMMA Results

The Configuration, symmetric DPA size, critical path(ns), maximum frequency(MHz),
number of cells, and the designs cell area(µm2) are respectively shown in the table columns.

overlay configuration nr crit path max freq cell count cell area
2x128x2 2 0.3885 2574.002574 74062 137197.5072
4x128x4 4 0.3922 2532.286655 121033 191694.0683
6x128x6 6 0.3945 2503.128911 192358 277616.0956
8x128x8 8 0.4027 2402.11386 291071 393834.082
10x128x10 10 0.4053 2374.169041 416135 541445.3841
12x128x12 12 0.4085 2341.372044 565462 718594.0917
14x128x14 14 0.4073 2351.834431 744523 928986.8031
32x128x32 32 0.439 2277.9043 3355057 4104072.41

Table A.1: Clock Constrained ASIC BSMMA Black Box Results
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APPENDIX A. COMPLETE SYNTHESIS RESULTS

overlay configuration nr crit path max freq cell count cell area
2x128x2 2 0.9819 1025.115325 69483 135616.2624
4x128x4 4 0.9819 1025.115325 110847 187159.8827
6x128x6 6 0.9819 1025.115325 176454 268744.2173
8x128x8 8 0.9819 1025.115325 265742 379599.2885
10x128x10 10 0.9819 1025.115325 379426 520785.7332
12x128x12 12 0.9819 1025.115325 517014 691552.3418
14x128x14 14 0.9819 1025.115325 678784 892191.4054

Table A.2: Clock Relaxed ASIC BSMMA Black Box Results

overlay configuration nr crit path max freq cell count cell area
2x128x2 2 0.3895 2567.3940 397854 525236.0264
4x128x4 4 0.3895 2567.3940 441303 578233.9219
6x128x6 6 0.3971 2518.2573 674303 858446.6921
8x128x8 8 0.4037 2477.0869 598362 778189.9925
10x128x10 10 0.4045 2472.1878 800500 1022458.1267
12x128x12 12 0.4033 2479.5437 1030527 1298672.1719
14x128x14 14 0.4142 2414.2926 1278722 1598911.2162

Table A.3: ASIC BSMMA Register Memory Results
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APPENDIX A. COMPLETE SYNTHESIS RESULTS

A.II ASIC DPA Results

conf nr critpath with slack max frequency cellcount area
2x128x2 2 0.3895 2567.394095 12457 14006.8035
4x128x4 4 0.3926 2547.121752 49439 56075.8475
6x128x6 6 0.3935 2541.296061 111272 126400.0346
8x128x8 8 0.3917 2552.974215 196124 223559.8509
10x128x10 10 0.3952 2530.364372 270800 329957.7672
12x128x12 12 0.4072 2455.795678 389952 475139.1847
14x128x14 14 0.4026 2483.854943 530768 646717.2236

Table A.4: ASIC DPA Results

A.III BISMO FPGA Resource Utilzation

The symmetric DPA dimesions, design overlay configuration, number of utilized LUTs,
maximum number of LUTs on the PYNQ-Z1 device, device LUT utilization(%), number
of utilized BRAM tiles, maximum number of BRAM tiles on the PYNQ-Z1 device and
device BRAM utilization(%) are respectively shown in the table columns.

nr conf lut lut max lut util bram bram max bram util
2 2x64x2 3902 53200 7.33 129 140 92.14
4 4x64x4 6676 53200 12.55 129 140 92.14
6 6x64x6 13812 53200 25.96 192 140 137.14
8 8x64x8 19170 53200 36.03 121 140 86.43
10 10x64x10 26075 53200 49.01 150 140 107.14
12 12x64x12 37056 53200 69.65 180 140 128.57
14 14x64x14 46277 53200 86.99 210 140 150
16 16x64x16 59853 53200 112.51 129 140 92.14

Table A.5: BISMO FPGA Resource Utilization 64-bit width

45



APPENDIX A. COMPLETE SYNTHESIS RESULTS

nr conf lut lut max lut util bram bram max bram util
2 2x128x2 4444 53200 8.35 129 140 92.14
4 4x128x4 9593 53200 18.03 121 140 86.43
6 6x128x6 18577 53200 34.92 180 140 128.57
8 8x128x8 27792 53200 52.24 129 140 92.14
10 10x128x10 41059 53200 77.18 160 140 114.29
12 12x128x12 55568 53200 104.45 192 140 137.14
14 14x128x14 75474 53200 141.87 224 140 160

Table A.6: BISMO FPGA Resource Utilization 128-bit width

nr conf lut lut max lut util bram bram max bram util
2 2x256x2 5458 53200 10.26 121 140 86.43
4 4x256x4 13843 53200 26.02 129 140 92.14
6 6x256x6 28121 53200 52.86 192 140 137.14
8 8x256x8 47135 53200 88.6 129 140 92.14
10 10x256x10 68519 53200 128.8 160 140 114.29

Table A.7: BISMO FPGA Resource Utilization 256-bit width
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B | TCL Scripts

#TCL that compiles , stores and reports the design
saif_map -start
set synscriptdir $::env(PROJECTDIR)
set scripts $synscriptdir/scripts
set constraints $scripts/constraints
source ${synscriptdir }/ scripts/read_hdl.tcl
#For a top -down approach only compile BSMMA
#source $scripts/compile_pcu.tcl
#source $scripts/compile_dpu.tcl
#source $scripts/compile_dpa.tcl
source $scripts/compile_BitSerialMatMulAccel.tcl
change_names -rules verilog -hierarchy
write -format verilog -hierarchy -output

BitSerialMatMulAccel.vg
write_sdf BitSerialMatMulAccel.sdf
write_sdc BitSerialMatMulAccel.sdc
write_parasitics -o BitSerialMatMulAccel.spef
saif_map -type ptpx -write_map BitSerialMatMulAccel.map
report_timing -significant_digits 4 > ./ report_timing.txt
report_qor -significant_digits 4 > ./ report_qor.txt
report_power > ./ report_power.txt
exit

Listing B.1: Complete compilation

#Module compiliation TCL
#compile_BitSerialMatMulAccel.tcl
elaborate BitSerialMatMulAccel
source $constraints/BitSerialMatMulAccel.tcl
compile
write -format ddc -hierarchy -output BitSerialMatMulAccel.ddc

Listing B.2: BitSerialMatMulAccel compilation
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