
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Katrine Roland

Audio Generation with Random
Boolean Networks

Master’s thesis in Computer Science
Supervisor: Gunnar Tufte

June 2019

Katrine Roland

Audio Generation with Random Boolean
Networks

Master’s thesis in Computer Science
Supervisor: Gunnar Tufte
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary

Complex systems exist in various different forms, both in nature and artificially created
by humans. While these systems can exhibit very complex behavior, this behavior can be
based on very simple rules. In nature such rules may be governed by chemical or physical
properties at different levels, of which examples are reactions, diffusion, surface tension,
molecular interactions or cellular processes. In the artificial domain complex systems are
often modeled by systems with no global control. The behavior emerge from local rules,
which imply local control, and local interactions between basic units.

One such system is Random Boolean Networks, whose behaviors are based on such
simple rules in randomly generated boolean nodes, which are in addition randomly con-
nected. This project explores the properties of the behaviors of Random Boolean Networks
based on different parameters. These networks were explored toward finding networks that
can be used to control parameters of sound in audio generation.

An application that generates Random Boolean Networks based on different parame-
ters, and iterates networks, has been developed, as well as scripts used for analyzing the
iterating networks to detect networks that may be favorable for music generation. Promis-
ing networks are used to control parameters for audio generation. The goal of this is to
generate audio which may sound somewhat musical, while being based on randomness.
To accomplish this, an application which maps the states of the networks to various param-
eters of audio generation was developed. The Random Boolean Networks show behavior
that has a degree of order, while still being random and nondeterministic. This makes
it possible to generate audio which instead of being completely chaotic can possibly be
recognized as something akin to music, without being overly repetitive.

i

ii

Table of Contents

Summary i

Table of Contents iv

List of Tables v

List of Figures viii

1 Introduction 1

2 Background 5
2.1 Random Boolean Networks . 6
2.2 Audio generation . 8

2.2.1 Csound . 12

3 Method and implementation 13
3.1 Random Boolean Network generation 13
3.2 Automated analysis . 14
3.3 Audio generation . 16

4 Experiments and analysis 19
4.1 Networks and their initial states . 19

4.1.1 K=1 . 20
4.1.2 K=2 . 23
4.1.3 K=3 . 26
4.1.4 K=4 . 29

4.2 Audio generation . 32
4.2.1 Pitch . 32
4.2.2 Low pass filter . 33
4.2.3 Pulse width . 34
4.2.4 Combining the different parameters 34

iii

5 Conclusion 37

Bibliography 39

iv

List of Tables

3.1 Trajectory for a generated Random Boolean Network. 15

4.1 K=1 . 20
4.2 K=2 . 23
4.3 K=3 . 26
4.4 K=4 . 29

v

vi

List of Figures

2.1 Iterations of a cellular automaton. Wolfram rule 110. 5
2.2 A simple Random Boolean Network and an example trajectory into an

attractor. 6
2.3 The flow in a very simple subtractive synthesizer. 8
2.4 A saw wave in the time domain. Voltage as a function of time. 8
2.5 A saw wave in the frequency domain. Amplitude as a function of frequency. 9
2.6 A square wave in the time domain. Voltage as a function of time. 9
2.7 A square wave in the frequency domain. Amplitude as a function of fre-

quency. 9
2.8 A pulse wave in the time domain. Voltage as a function of time. 10
2.9 A pulse wave in the frequency domain. Amplitude as a function of frequency. 10
2.10 An unfiltered wave. Amplitude as a function of frequency. 10
2.11 A wave after going through a low pass filter. Amplitude as a function of

frequency. The highest frequencies have a lower amplitude than in figure
2.10. 11

2.12 A wave after going through a low pass filter with resonance. Amplitude as
a function of frequency. The resonance increases the amplitude at around
1kHz. 11

2.13 The path through some simple Csound components. VCO2 is a signal
generator, moogladder is a low pass filter and outs outputs the resulting
audio signal. 12

3.1 Generation of Random Boolean Networks. 14
3.2 A generated Random Boolean Network with N=8 and K=3. 15
3.3 Analyzing network trajectories. 16
3.4 Generation of audio. 17

4.1 A generated Random Boolean Network with N=32 and K=1. 21
4.2 Trajectories for the unbiased K=1 network, the rightmost one being per-

turbed after half the iterations. 22

vii

4.3 A generated Random Boolean Network with N=32 and K=2. 24
4.4 Trajectories for the unbiased K=2 network, the rightmost one being per-

turbed after half the iterations. 25
4.5 A generated Random Boolean Network with N=32 and K=3. 27
4.6 Trajectories for the unbiased K=3 network, the rightmost one being per-

turbed after half the iterations. 28
4.7 A generated Random Boolean Network with N=32 and K=4. 30
4.8 Trajectories for the unbiased K=4 network, the rightmost one being per-

turbed after half the iterations. 31
4.9 Saw wave with changing pitch. 32
4.10 A short slice of the saw wave with changing pitch. 32
4.11 Saw wave with changing pitch which is then perturbed. 32
4.12 A short slice of the saw wave with changing pitch which is then perturbed. 33
4.13 Saw wave affected by a low pass filter. 33
4.14 A short slice of the saw wave affected by a low pass filter. 33
4.15 Saw wave affected by a low pass filter with changing resonance. 34
4.16 A short slice of the saw wave affected by a low pass filter with changing

resonance. 34
4.17 A pulse wave with changing pulse width. 34
4.18 A short slice of the pulse wave with changing pulse width. 34
4.19 All the above-stated concepts combined. 35
4.20 A short slice of the audio wave with all the above-stated concepts combined. 35
4.21 Which networks affect what while generating the audio. Green arrows

represent the sound signal, blue arrows represent networks being told to
iterate, red arrows represent perturbation and black arrows represent sound
parameters being affected. 35

viii

Chapter 1
Introduction

[Mit09] defines complex systems as ”an interdisciplinary field of research that seeks to
explain how large numbers of relatively simple entities organize themselves, without the
benefit of any central controller, into a collective whole that creates patterns, uses informa-
tion, and, in some cases, evolves and learns”. [Wol02] posits that if science is to be at all
possible, systems must follow rules. But the complexity of the ruleset does not define the
complexity of the system. Systems with simple rules can also show complex behavior. It
seems intuitive that a complex system would need complex rules. This is only true when
we need to predict the behavior of the system, to be able to construct a system to behave in
a certain way. When it isn’t necessary to predict the behavior of the system, we can create
systems based on simple rules that still show complex behavior [Wol02].

The world we live in is full of complex systems, and all it takes is that these sys-
tems behave in the same way as some simple programs that produce great complexity.
For example, take the notion of phases and transitions between phases in matter. [Lan90]
has found that this concept can also be found in computation, and that phases and phase
transitions may be fundamental classes of dynamical behavior. There is also some evi-
dence that other similar analogs may exist. In living cells, phase transitions can be found
everywhere, which may suggest that living beings are the result of the same kind of ”com-
putations” [Lan90]. Living cells are the basic building blocks of everything in nature, and
they contain a lot of complexity which is inherently ordered. The way complexity in living
organisms affect the behavior of cells may be a factor in biological evolution in addition
to natural selection [Kau93].

Nature’s complex systems can produce forms that humans find incredibly beautiful, but
have struggled to replicate [Wol02]. Examples of such patterns are seashells and animal
skins like zebra stripes or leopard spots. [BBC03] have attempted to replicate such pat-
terns. While their results somewhat resembled what they tried to replicate, it wasn’t com-
pletely successful. They also found that with their methods, the behavior of the movement
of patterns were a lot more interesting than the final pattern [BBC03]. A more successful
attempt at replicating complexity from nature was done by [Rey87]. He was able to quite
realistically model the behavior of a flock of birds by giving each individual simulated

1

bird relatively simple behaviors to follow. The aggregation of these behaviors combined
with the laws of physics created movement which intuitively correspond to ”flock-like mo-
tion” [Rey87]. Since nature’s complex systems can behave like simple programs, it can
be possible to create similarly beautiful creations by applying simple rules. Systems in
nature with quite different components can show very similar behavior. The same thing
can be observed with simple programs: programs with quite different rules may show very
similar behavior. This raises the notion that insight into the behavior of complex systems
based on simple programs might at the same time provide insight into complex systems in
nature [Wol02].

An important factor of complex systems is that they are irreducible, and thus the only
way to find their behavior is to actually observe the behavior. This might even explain
how humans, while at the most fundamental level following underlying rules, still can be
unpredictable and show free will [Wol02].

There are many complex systems in the world, and they work despite being based on
simple rules[Mit09]. Disordered and featureless systems might spontaneously organize
themselves [Wol02]. This concept of systems that organize themselves without being con-
trolled centrally, self-organization, will emerge in, among other phenomenons, network
structures that are sufficiently complex [Mit09]. The simple rules of these complex sys-
tems can be applied to completely random initial conditions, but order and organization
will still emerge with time [Wol02]. As previously mentioned, it is difficult to create com-
plex systems from simple rules if it is necessary to predict the behavior. That is because
even though order may emerge in complex systems, they need not be deterministic. Thus,
the resulting behavior or form, will not be absolute [Wol02]. External factors may also
perturb the system, contributing to the lack of determinism [Ger04]. This makes self-
organizing systems, while interesting, unfavorable for critical applications where even a
small failure may result in harmful consequences. However, in applications where non-
determinism and occasional unexpected behavior doesn’t matter, or even is desired, self-
organizing systems may have their place.

Random Boolean Networks is an example of a network structure which can be suf-
ficiently complex for self-organization to emerge [Mit09]. Thus, Random Boolean Net-
works are an interesting topic for exploration. Looking at how Random Boolean Networks
self-organize by reaching attractors, and how resilient various networks are to external per-
turbations may provide interesting results for applications that can handle nondeterminism
and occasional unexpected behavior.

An example of an application where nondeterminism and unexpected behavior does
not cause harmful consequences, is audio. The randomness of Random Boolean Networks
can be used to create audio which is not repetitive, while the order which emerges will give
the generated audio something that is not completely chaotic. Applying different Random
Boolean Networks to different parameters while generating audio may provide results that
might even sound somewhat musical.

The following chapter will provide background information on some complex struc-
tures, namely cellular automata, artificial neural networks and Random Boolean Networks.
Random Boolean Networks will be covered more in-depth than the others. In addition, ba-
sic information on audio generation is covered. Chapter 3 describes how the Random
Boolean Networks were generated and analyzed in this project, and also how they were

2

used to interact with audio generation. Chapter 4 contains descriptions on the different
experiments which were done with the Random Boolean Networks, and what the results
of each were. Chapter 5 presents the conclusion.

3

4

Chapter 2
Background

Network science makes it possible to achieve a greater understanding of complex systems
[Bar16]. Cellular automata, Random Boolean Networks and artificial neural networks are
all networks that are sparsely connected; there are relatively few connections between the
nodes of the networks. A one-dimensional cellular automaton consists of a line of cells
which are all either black or white. Belonging to the cellular automaton is a simple ruleset
that determines a cells color at the next step based on the cell itself and its neighbours. With
these simple rulesets, and with different initial states, both simple and complex patterns
can emerge as a cellular automaton iterates. Figure 2.1 illustrates complex patterns in a
one-dimensional cellular automaton. Cellular automatons can also be multi-dimensional;
they then work in the same way, but the ruleset must support a multi-dimensional neigh-
bourhood [Wol02].

Figure 2.1: Iterations of a cellular automaton. Wolfram rule 110.

5

An artificial neural network is based on the idea of how brains work. The nodes in
an artificial neural network are seen as artificial neurons. The neurons are connected in a
network structure, and each connection has a weight which the incoming signal is multi-
plied by. Then an activation function calculates whether the neuron should activate based
on the inputs. Another function calculates the output of the neuron, which is then an input
of other neurons [Ger03].

Random Boolean Networks are explained more in-depth below. All of these structures
consist of simple components, but the components together in the connected structures
can show complex behavior. This complex behavior from simple components is known as
emergent complexity [BY99].

2.1 Random Boolean Networks

A Random Boolean Network (also called an N - K network) is a collection of N nodes,
with an average of K connections going into each node. At any point in time, each node
has one of two possible values, usually represented by 1 and 0. Whenever a node is
updated, its next value is decided by a boolean function whose inputs are the nodes K
incoming connections. Both the connections and the boolean functions are generated ran-
domly, and they are never changed [Ger04]. While Random Boolean Networks can be
updated asynchronously, and many of the concepts they are used to model really are asyn-
chronous, synchronous Random Boolean Networks usually model the concepts closely
enough [Kau93]. As a Random Boolean Network contains N nodes, there are 2N possible
states for a network. As this is a finite number, the network will at some point reach a
state which it has previously visited. After this has happened, as long as the network is not
affected by any outside forces, it will only reach states it has already visited, and it has thus
reached an attractor. Thus it will never reach any state outside the attractor [Ger04]. With
K incoming connections to each node, there are 22

K

different possible boolean functions
for each node [Kau93]. Depending on the value of K, and if any requirements are imposed
on the nodes boolean functions, the networks will behave in different fashions. A simple
Random Boolean Network with N=3 and K=2 is shown in figure 2.2. Also shown is a
trajectory of states which follow from a random initial state. An attractor is reached very
quickly in this case.

Figure 2.2: A simple Random Boolean Network and an example trajectory into an attractor.

6

With some of the boolean functions, the result can be known based on only one of the
inputs, depending on the value of the input. These are called canalyzing functions. Simple
examples of canalyzing functions are the boolean AND and OR. With AND, if any input
is zero, the output will be zero independent of the value of the other input. With OR, if
any input is one, the output will we one independent of the value of the other input. With a
Random Boolean Network with randomly generated functions for each node, the fraction
of functions which are canalyzing will decrease as K increases [Kau93].

When using randomly generated truth tables as functions, a bias P can be introduced.
P represents the average fraction of the outputs in the truth table that should be ones, the
internal homogeneity of the network. In addition to the value of K, the value of P and
whether functions are canalyzing affects the behavior of a network. Lower values of K,
and the use of canalyzing functions lead networks toward more ordered behavior. Values
of P closer to 0 or 1 lead to more ordered behavior, while when P is equal to 0.5, the
behavior is the most chaotic [Kau93].

The length of attractors will vary depending on the properties of a network. In K=N
networks, the median length is 0.5(2N/2). Thus, attractor lengths increase as N increases.
As this is the median, lengths will vary within one network. With long attractors, the
number of attractors is a lot lower, N/e. For K=2 networks, both the median attractor
length and the number of attractors is

√
N , and for K=1 networks, the attractor lengths

are on the order of
√
2N . Increasing or decreasing P away from 0.5 will create shorter

attractors for K=N, but the attractor lengths will still increase exponentially: 0.5(1√
P
)N .

This exponential increase actually hold for networks of K ≥ 5. Though, with N much
larger than K and sufficiently high internal homogeneity, networks with reasonably small
K can show ordered behavior [Kau93].

The different ways the networks can behave are divided into three phases: ordered,
on the edge of chaos and chaotic. These phases are also called solid, liquid and gas, like
the phases of matter. Though, the liquid phase of a Random Boolean Network does not
appear to be a quite distinct phase as the liquid phase of matter. As with matter, Random
Boolean Networks may move between the different phase through phase-transitions. The
chaotic phase is characterized by very long attractors with constant change at almost all the
nodes, while in the ordered phase all, or almost all nodes stay at the same value. Between
these two phases, at the edge of chaos, different numbers of nodes vary or stay constant.
Varying K, P or the fraction of functions which are canalyzing may cause phase-transitions
in a Random Boolean Network [Kau93].

Random Boolean Networks also show interesting behavior if at some point in time, the
network is perturbed by inverting the value of a random node in the network. Before the
perturbation, the network will have been in an attractor or a basin of attraction. Depending
on the network and on what nodes value is inverted, the network will either end up some-
where else in the same attractor or basin of attraction, or it will jump to a different one.
For example, for networks with K=2, there is a probability between 80 and 90 percent that
the network will return to the same attractor aftor being perturbed [Kau93].

7

2.2 Audio generation
To generate audio, the shape of a sound wave has to be specified in some way. Synthesizers
are a common tool used to generate audio, often of the musical kind. The most common
type of synthesizer today is the subtractive synthesizer, of which a simple example is
shown in figure 2.3. Subtractive synthesizers start with a (usually) complex waveform,
generated by the left-most box in figure 2.3. Low-pass filters and other filters (middle box
in figure 2.3) are then used to remove a number of frequencies from the waveform and thus
creating many different waveforms. What is actually done here, is to start with a rather
complex waveform and then remove frequencies from the waveform in various ways to
achieve the desired sound. The pitch of a sound is decided by the lowest frequency it
contains, and all the other frequencies are overtones that affect how a tone will sound.

Figure 2.3: The flow in a very simple subtractive synthesizer.

Two common waveforms to use are the saw wave and the square wave. They both get
their names from their shape. The saw wave looks like the teeth of a saw, as can be seen
i figure 2.4, which shows a saw wave in the time domain. The square wave consists of a
lot of squares on either side of zero, as can be seen in figure 2.6, which shows a square
wave in the time domain. While they both look simple when looked at in the time domain,
they both contain many frequencies, as can be seen in figures 2.5 and 2.7 which show the
same waves in the frequency domain. The square wave is a special case of the pulse wave,
where the pulse width is 0.5. Changing the pulse width will make the amount of time the
wave spends above and below zero uneven. Figure 2.8 shows a pulse wave with a pulse
width different from 0.5, and the corresponding frequency spectrum can be seen in figure
2.9. Pulse width modulation is defined as changing the pulse-width over time [Rei99b].

Figure 2.4: A saw wave in the time domain. Voltage as a function of time.

8

Figure 2.5: A saw wave in the frequency domain. Amplitude as a function of frequency.

Figure 2.6: A square wave in the time domain. Voltage as a function of time.

Figure 2.7: A square wave in the frequency domain. Amplitude as a function of frequency.

9

Figure 2.8: A pulse wave in the time domain. Voltage as a function of time.

Figure 2.9: A pulse wave in the frequency domain. Amplitude as a function of frequency.

Figure 2.10: An unfiltered wave. Amplitude as a function of frequency.

10

A common way to remove frequencies from a waveform, is to use a low pass filter.
With a low pass filter, all frequencies above a certain frequency is attenuated. Figures 2.10
and 2.11 show a wave without and with a low pass filter applied. How much each fre-
quency is attenuated depends on the characteristics of the filter. In addition, most low pass
filters have the ability to use resonance to further emphasize the frequencies at and around
the cut-off point [Rei99a]. Exactly which frequencies are emphasized and what happens
to the rest of the frequencies vary depending on the exact characteristics of the filter. Thus
different filters applied to a waveform can give very different sounds when resonance is
applied. The same wave as before is shown with a low pass filter with resonance applied
in figure 2.12.

Figure 2.11: A wave after going through a low pass filter. Amplitude as a function of frequency.
The highest frequencies have a lower amplitude than in figure 2.10.

Figure 2.12: A wave after going through a low pass filter with resonance. Amplitude as a function
of frequency. The resonance increases the amplitude at around 1kHz.

The waveforms and low pass filter presented in this section are examples of compo-
nents commonly used in audio systems. The time and frequency spectrums shown are
common ways of representing audio visually.

11

2.2.1 Csound
Csound is a sound and music computing system which generates audio based on files
written with a specific syntax [Cso19]. In a Csound file, waveforms, various elements that
change the sound in some way, like filters, and the path the signal takes through everything
are specified. Figure 2.13 shows how some simple components from Csound can be put
together to create sound. It is also possible to specify how different parameters should
change at different times. In addition, there is an API which makes it possible to interact
with Csound files from various programming languages. Csound can run in real-time,
making it possible to affect the audio while it is being generated.

Figure 2.13: The path through some simple Csound components. VCO2 is a signal generator,
moogladder is a low pass filter and outs outputs the resulting audio signal.

12

Chapter 3
Method and implementation

Random Boolean Networks are an interesting case to look at for use in controlling audio,
as they are self-organizing, and thus can display ordered behavior even if they are ran-
domly generated. This makes it possible to get somewhat predictable behavior, while still
keeping it random. This can make it possible to generate sound which because of the or-
dered behavior can be somewhat controlled, while the randomness will make sure it is still
nondeterministic. With audio, there will not be any dire consequences if unwanted behav-
ior should occur. The generated sounds may not sound pleasing, but it will not have any
lasting negative effects. Thus, using Random Boolean Networks to control audio exploits
the controlled randomness the networks show in their behavior, while avoiding harmful
consequences should the behavior go in unsuitable directions.

3.1 Random Boolean Network generation

A Random Boolean Network is represented as an array of nodes, where each node con-
tains an index, the current value, its boolean function and information about the nodes
which affect it. See the topmost box in figure 3.1. When a network is newly generated,
each nodes starting value and all links between nodes are chosen using pseudo-random
numbers generated based on the current time. The functions are also generated based
on pseudo-random numbers, but they can be generated in a few different ways. One
option only allows the OR and AND functions (or NOT and its inverse for K=1 net-
works). The other option allows any kind of boolean function, but with the possibility
of specifying a bias which decides the probability that any one entry in the functions
truth table should be a one rather than a zero (this represents the earlier mentioned P).
The implementation only supports networks with up to and including 32 nodes, but more
nodes could easily be supported using larger data types. In this case however, 32 nodes
should be more than enough. There are 22

K

possible boolean functions for each of the
32 nodes, which gives 22

K32

possible combinations of functions. 32K possible combi-
nations of links for each node, gives 32K

32

possible combinations of links between all

13

the nodes. 22
K32

· 32K32

possible networks lead to a very large search space. For exam-
ple, 36147378671465183960948593180219236650897330071700192315947544715042
481028623340798795186188738943961227492678378035156199978199883243404129
619879532632910162314189970978766343329690527906605154864094201329081988
6814068736 or 2736 different networks exist for K=3. Each network also has 232 unique
states.

Figure 3.1: Generation of Random Boolean Networks.

A network is iterated by going through each node and calculating its new value ac-
cording to its function. The new values for all the nodes are stored, and when all the nodes
have been calculated, all the nodes are updated. It is also an option to perturb one or more
random node(s) in a network, inverting its value, during an iteration of a network. See
the middle box in figure 3.1. The states for all the iterations are stored to a file for further
analysis.

Figure 3.2 shows a Random Boolean Network generated by the implementation using
only AND and OR functions, with N=8 and K=3. Each node is labeled by its number,
initial value and function. The network’s states through ten iterations are shown in table
3.1. It can be seen that it reaches a point attractor after five iterations.

3.2 Automated analysis
The main program was written primarily with generating and iterating one network at a
time in mind. Thus it proved simpler to write a script automating the execution of the
program when the task was to run the same network many times. The main functionality

14

Figure 3.2: A generated Random Boolean Network with N=8 and K=3.

0 1 2 3 4 5 6 7
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 1 1 0 0
0 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1

Table 3.1: Trajectory for a generated Random Boolean Network.

of the script is shown in figure 3.3. The script simply calls the main program with the
appropriate arguments and interprets the results. The script tells the program either to
generate a new network or which existing network to use. It supplies the initial state for
the network (the topmost box in figure 3.3), then it iterates the network (the middle box
in figure 3.3) and it tells the program which node in the network to perturb, if any, in
each iteration (the box on the right in figure 3.3). After the iterations are done, the script
goes through the file where the states for the run are stored, and calculates the lengths
of attractors and whether a network returned to the same attractor after perturbation (the
bottom box in figure 3.3).

15

Figure 3.3: Analyzing network trajectories.

3.3 Audio generation
To actually generate audio, Csound was used in conjunction with the program. Various
parameters like pitch, pulse-width modulation and low pass filter cutoff frequency are
specified in a Csound file, and those parameters are accessed from the program. The
program itself starts by loading the specified networks (the topmost box in figure 3.4).
Then the initial states for those networks are set, often randomly (the next box in figure
3.4). After preparing the communication with Csound (the next box in figure 3.4), the
program splits in to three threads. One is used for actually outputting the sound wave (the
middle bottom box in figure 3.4), another is used to iterate the networks (the leftmost box
in figure 3.4) and the last one waits for and handles user input (the two rightmost boxes in
figure 3.4). The networks and their states are global, so all threads can access them.

The varying states of iterating networks are used to specify the values of the Csound
parameters, that is, pitch, filter cutoff, filter resonance, and pulse width. The states are
interpreted as values fitting the parameters in various ways: interpreting the collection of
states as a binary number and take its value modulo an appropriate number, using the same
number as the fractional part of a fraction when a number less than zero is required, and
using the number of ones in a state as a value. When networks reach attractors, these
parameters will cycle through the same values over time, or in the case of point attractors,
the parameters will remain constant.

16

Figure 3.4: Generation of audio.

17

18

Chapter 4
Experiments and analysis

4.1 Networks and their initial states
To be able to look closer at the characteristics of specific networks, twelve networks were
chosen, three each with K=1, K=2, K=3 and K=4. For each K, networks with P=0.25,
P=0.50 and P=0.75 were chosen. The intention was to see how networks generated with
different parameters behave differently, especially with respect to attractors. These net-
works were iterated with 3000 different random initial states each, where an equal amount
of the initial states had 25%, 50% and 75% of the nodes values being one. For each initial
state, the current network was iterated 100 times, and after half the iterations the network
was perturbed by inverting the value of a random node. Then it was checked whether the
network returned to the same attractor after the perturbation, or if it ended up in a differ-
ent attractor. The fractions of runs where each network returns to the same attractor after
perturbation were calculated for each network.

As mentioned, twelve specific networks were chosen, which the following results are
based on. These networks may be outliers in their behavior, and thus these results are not
general for all networks generated with the same parameters.

19

4.1.1 K=1
The fractions of runs where a network with K=1 returned to the same attractor after pertur-
bation are shown in table 4.1. The top row shows the value of P for the generated networks
while the leftmost column shows the fraction of nodes having a value of one in the initial
state. With K as small as one, ordered behavior is expected. In this case, this is very true
for two of the networks, the P=0.25 and P=0.5 networks. They always return to the same
attractor after perturbation. The P=0.75 network behaves differently. This network seems
to return to the same attractor more often than not when the initial state contains few values
of one, and to return to the same attractor less often than not when the initial state contains
few values of zero. When the amount of ones and zeroes are about the same, it returns to
the same attractor about as often as not.

K=1 0.25 0.50 0.75
0.25 1.0 1.0 0.61
0.50 1.0 1.0 0.47
0.75 1.0 1.0 0.38

Table 4.1: K=1

Figure 4.1 shows the unbiased (P=0.5) network with K=1. Each node is labeled by its
number and initial value. Figure 4.2 shows the trajectory for this network with a random
initial state. The white squares represent a value of one, and the black squares represent
a value of zero. One line represents one complete state for the network, with the far left
square representing node 0 and the far right square representing node 31. The leftmost
figure just shows the trajectory for 100 iterations, and it can be seen that an attractor is
reached after few iterations. The rightmost figure shows the state time plot for the same
network with perturbation of a single random node after half the iterations. It can be seen
that in this case, the network returns to the same attractor right away.

20

Figure 4.1: A generated Random Boolean Network with N=32 and K=1.

21

Figure 4.2: Trajectories for the unbiased K=1 network, the rightmost one being perturbed after half
the iterations.

22

4.1.2 K=2
The fractions of runs where a network with K=2 returned to the same attractor after pertur-
bation are shown in table 4.2. The top row shows the value of P for the generated networks
while the leftmost column shows the fraction of nodes having a value of one in the initial
state. K=2 is also a rather low value for K, so quite ordered behavior is still expected.
This is especially the case with the P=0.25 and P=0.75 networks, which show extremely
ordered behavior by always returning to the same attractor, that is, a strong attractor. The
P=0.5 network is, as expected, not showing quite as ordered behavior as the other two; it
returns to the same attractor about half the time.

K=2 0.25 0.50 0.75
0.25 1.0 0.57 1.0
0.50 1.0 0.51 1.0
0.75 1.0 0.53 1.0

Table 4.2: K=2

Figure 4.3 shows the unbiased (P=0.5) network with K=2. Each node is labeled by its
number and initial value. Figure 4.4 shows the trajectory for this network with a random
initial state. The white squares represent a value of one, and the black squares represent
a value of zero, with the far left square representing node 0 and the far right square rep-
resenting node 31. One line represents one complete state for the network. The leftmost
figure just shows the trajectory for 100 iterations, and it can be seen that an attractor is
reached after few iterations. The rightmost figure shows the state time plot for the same
network with perturbation of a single random node after half the iterations. This results in
the network reaching a different attractor after few iterations.

23

Figure 4.3: A generated Random Boolean Network with N=32 and K=2.24

Figure 4.4: Trajectories for the unbiased K=2 network, the rightmost one being perturbed after half
the iterations.

25

4.1.3 K=3
The fractions of runs where a network with K=3 returned to the same attractor after pertur-
bation are shown in table 4.3. The top row shows the value of P for the generated networks
while the leftmost column shows the fraction of nodes having a value of one in the initial
state. With K=3, more chaotic behavior is expected. Here we get the exact opposite. All
three of the networks return to the same attractor more often than not, and the P=0.25
and P=0.75 networks rarely do anything else. This indicates that all of these networks
have strong attractors. The P=0.5 network shows somewhat less ordered behavior than the
other two, which would be expected from the unbiased network.

K=3 0.25 0.50 0.75
0.25 0.96 0.81 0.91
0.50 0.97 0.81 0.94
0.75 0.95 0.80 0.93

Table 4.3: K=3

Figure 4.5 shows the unbiased (P=0.5) network with K=3. Each node is labeled by its
number and initial value. Figure 4.6 shows the trajectory for this network with a random
initial state. The white squares represent a value of one, and the black squares represent
a value of zero, with the far left square representing node 0 and the far right square rep-
resenting node 31. One line represents one complete state for the network. The leftmost
figure just shows the trajectory for 100 iterations. This network does not reach an attractor
within 100 iterations for this particular initial state. The rightmost figure shows the state
time plot for the same network with perturbation of a single random node after half the
iterations. It can be seen that the bottom half of the rightmost figure shows a different
trajectory than the leftmost figure. This shows that this network is capable of quite chaotic
behavior given the right initial state, even though it generally behaves quite orderly, as
previously mentioned.

26

Figure 4.5: A generated Random Boolean Network with N=32 and K=3.

27

Figure 4.6: Trajectories for the unbiased K=3 network, the rightmost one being perturbed after half
the iterations.

28

4.1.4 K=4
The fractions of runs where a network with K=4 returned to the same attractor after pertur-
bation are shown in table 4.4. The top row shows the value of P for the generated networks
while the leftmost column shows the fraction of nodes having a value of one in the initial
state. With K=4, quite chaotic behavior is expected. The P=0.25 and P=0.75 networks
behave as expected, by not returning to the same attractor very often. The P=0.5 network,
on the other hand, behaves quite orderly, almost always returning to the same attractor. In
general, the opposite would be expected.

K=4 0.25 0.50 0.75
0.25 0.19 1.0 0.14
0.50 0.16 1.0 0.18
0.75 0.19 1.0 0.19

Table 4.4: K=4

Figure 4.7 shows the unbiased (P=0.5) network with K=4. Each node is labeled by its
number and initial value. Figure 4.8 shows the trajectory for this network with a random
initial state. The white squares represent a value of one, and the black squares represent
a value of zero, with the far left square representing node 0 and the far right square rep-
resenting node 31. One line represents one complete state for the network. The leftmost
figure just shows the trajectory for 100 iterations, and it can be seen that an attractor is
reached, though it is a rather long attractor. The rightmost figure shows the state time plot
for the same network with perturbation of a single random node after half the iterations.
This results in the network reaching a completely different attractor which is much shorter
and thus shows much more ordered behavior. As for the unbiased (P=0.5) network with
K=3, this network can end up in a different, and much more ordered, attractor after per-
turbation, given the right initial state, even though it almost always returns to the same
attractor.

29

Figure 4.7: A generated Random Boolean Network with N=32 and K=4.

30

Figure 4.8: Trajectories for the unbiased K=4 network, the rightmost one being perturbed after half
the iterations.

31

4.2 Audio generation
As described in the previous chapter, the chosen Random Boolean Networks were used
to control various parameters of generated audio. The initial states of the networks were
chosen randomly. Resulting sound files can be found at folk.ntnu.no/katrinro/
rbnsounds.

4.2.1 Pitch
The network with K=2 and P=0.5 was used to control the pitch of a generated sound
based on a saw wave. This network was chosen as it varies whether it returns to the same
attractor or not, thus making it likely that the same pitches will not be repeated over and
over if the network is perturbed. The number of nodes with a value of one were used to
choose between 32 pre-defined pitches at every iteration. The result can be heard in the file
421pitch.wav. Figure 4.9 shows how the sound wave looks, and figure 4.10 shows a short
slice of the sound wave, where the actual shape can be seen. It can be seen after that after
six steps an attractor is reached, and it goes back and forth between the two same pitches.
The file 421pitchperturb.wav and figure 4.11 show the same thing happening, but this time
the network is perturbed after being in the attractor for a while, and it can be seen that it
reaches a different attractor after that, which is also two steps long. Figure 4.12 shows a
short slice of the same sound wave, where the actual shape can be seen.

Figure 4.9: Saw wave with changing pitch.

Figure 4.10: A short slice of the saw wave with changing pitch.

Figure 4.11: Saw wave with changing pitch which is then perturbed.

32

folk.ntnu.no/katrinro/rbnsounds
folk.ntnu.no/katrinro/rbnsounds

Figure 4.12: A short slice of the saw wave with changing pitch which is then perturbed.

4.2.2 Low pass filter

The network with K=3 and P=0.5 was used to control the frequency of a low pass filter.
Since this network quite often returns to the same attractor, it is likely that the cutoff
frequency of the low pass filter mostly will cycle between the same values. The state of the
network is read as a binary number. Modulo 16000 of this number is then used as the cut-
off frequency of the low pass filter, as higher frequencies are mostly outside the spectrum
of human hearing and thus cutoff frequencies higher than this would not make a difference
to what is heard. Also to keep the sound inside the range of human hearing, 200 is added
to the cutoff frequency. Every time the network iterates, a step value is calculated, such
that by changing the cut-ff frequency with the step value every microsecond, the calculated
cutoff frequency will be reached when it is time for the next iteration of the network. This
gradual change of the cut-off frequency can be heard in 422lpfilter.wav and is shown in
figure 4.13. Figure 4.14 shows a short slice of the audio wave shown in figure 4.13, where
the actual shape can be seen.

Then, the K=4 and P=0.5 network was used to control the resonance of the same low
pass filter. As this network almost always returns to the same attractor, the resonance likely
will continue to cycle between the same values, even if the network is perturbed. To get a
value between zero and one for the resonance, the state of the network was interpreted as
a binary number, which was then used as the fractional part of a number between zero and
one. The result of applying resonance to the low pass filter can be heard in 422lpreso.wav.
Figure 4.15 shows how the sound wave looks, and 4.16 shows a short slice of the same
wave, where the actual shape can be seen.

Figure 4.13: Saw wave affected by a low pass filter.

Figure 4.14: A short slice of the saw wave affected by a low pass filter.

33

Figure 4.15: Saw wave affected by a low pass filter with changing resonance.

Figure 4.16: A short slice of the saw wave affected by a low pass filter with changing resonance.

4.2.3 Pulse width
The network with K=4 and P=0.25 was used to control the pulse width of a pulse wave.
This quite chaotic behaving network was chosen so that the pulse width may behave in
many different ways after being perturbed. This was changed gradually in the same way as
the cut-off frequency of the low pass filter. The result of this can be heard in 423pwm.wav
and figure 4.17 shows how the pulse width modulated sound wave looks. Figure 4.18
shows a short slice of the same sound wave, where the actual shape can be seen.

Figure 4.17: A pulse wave with changing pulse width.

Figure 4.18: A short slice of the pulse wave with changing pulse width.

4.2.4 Combining the different parameters
The rest of the networks were used for deciding how often the networks controlling the
parameters should iterate, and which networks should be perturbed when. Using both
the saw wave and the pulse width modulated pulse wave with different pitches at the
same time and applying the low pass filter on top gives a quite complex result which may
sound somewhat musical. One example of how this ended up sounding can be heard in

34

everything.wav. The sound wave is shown in figure 4.19, and figure 4.20 shows a short
slice of the same sound wave, where the actual shape can be seen.

Figure 4.21 illustrates which networks affect what and the flow of the sound signal
through the application. The green arrows represent the sound signal, the blue arrows
represent networks being told to iterate, the red arrows represent perturbations and the
black arrows show which sound parameters are affected.

Figure 4.19: All the above-stated concepts combined.

Figure 4.20: A short slice of the audio wave with all the above-stated concepts combined.

Figure 4.21: Which networks affect what while generating the audio. Green arrows represent the
sound signal, blue arrows represent networks being told to iterate, red arrows represent perturbation
and black arrows represent sound parameters being affected.

35

36

Chapter 5
Conclusion

Random Boolean Networks and their properties have been explored. Twelve networks
with different parameters were chosen, and their traits were looked at more in depth.
These networks were then used to control parameters of sound in audio generation. Net-
works with different characters of behavior were chosen for the different parameters, so
the parameters would exhibit different behavior based on the underlying networks. This is
interesting, as the resulting audio will be different every time, while still sounding similar,
as long as the same networks are used to control the same parameters. It is possible to gen-
erate new types of audio by changing which parameters are controlled by the networks, or
by generating new networks. All the networks used in this case were between K=1 and
K=4, and using networks with higher K, while likely more chaotic, might produce unfore-
seen and interesting effects. A balance between higher K and different values for P might
also produce networks of a suitable amount of order. Also, as previously mentioned, the
search space for networks with each K is very large, so just using different networks of
the same K may produce interesting effects which have not been seen with the networks
used in this case. In music created by humans, there is usually some amount of repeti-
tion, which may give a feeling of familiarity, while there is also enough variety that the
music keeps being interesting over time. Using networks which exhibit behavior at differ-
ent points along the scale between order and chaos, might make it possible to mimic this
combination of repetition and variety.

An application which integrates the use of Random Boolean Networks with audio
generated by Csound has been developed. This application makes it possible to generate
Random Boolean Networks or load previously generated networks. It includes mappings
between the states of networks and Csound parameters. It is readily possible to expand the
application to control more or other parameters than those mentioned previously.

By using methods based on complex systems, a creative process can be partly con-
trolled. Combining different types of systems based on the desired behavior, automatic
generation of audio, or other applications that can manage nondeterministic behavior, can
be achieved.

37

38

Bibliography

[Bar16] A. Barabasi. Network Science. Cambridge University Press, 2016.

[BBC03] R. Behravan, P. J. Bentley, and R. Carlisle. Exploring reaction-diffusioon and
pattern formation. In First Australian Conference on Artificial Life, London,
England, 2003.

[BY99] Y. Bar-Yam. Dynamics of Complex Systems. CRC Press, 1999.

[Cso19] Csound. Csound. https://www.csound.com, 2019.

[Ger03] C. Gershenson. Artificial neural networks for beginners. 2003.

[Ger04] C. Gershenson. Introduction to random boolean networks. 2004.

[Kau93] S. A. Kauffman. The Origins of Order. Oxford University Press, 1993.

[Lan90] C. G. Langton. Computation at the edge of chaos: Phase transitions and emer-
gent computation. Physica D, 42(1):12–37, 1990.

[Mit09] M. Mitchell. Complexity. Oxford University Press, 2009.

[Rei99a] G. Reid. Of responses & resonance. https://www.soundonsound.
com/techniques/responses-resonance, 1999.

[Rei99b] G. Reid. Synthesizing strings: String machines.
https://www.soundonsound.com/techniques/
synthesizing-strings-string-machines, 1999.

[Rey87] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34, 1987.

[Wol02] S. Wolfram. A New Kind of Science. Wolfram Media, 2002.

39

https://www.csound.com
https://www.soundonsound.com/techniques/responses-resonance
https://www.soundonsound.com/techniques/responses-resonance
https://www.soundonsound.com/techniques/synthesizing-strings-string-machines
https://www.soundonsound.com/techniques/synthesizing-strings-string-machines

40

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Katrine Roland

Audio Generation with Random
Boolean Networks

Master’s thesis in Computer Science
Supervisor: Gunnar Tufte

June 2019

	Summary
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Random Boolean Networks
	Audio generation
	Csound

	Method and implementation
	Random Boolean Network generation
	Automated analysis
	Audio generation

	Experiments and analysis
	Networks and their initial states
	K=1
	K=2
	K=3
	K=4

	Audio generation
	Pitch
	Low pass filter
	Pulse width
	Combining the different parameters

	Conclusion
	Bibliography

