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Abstract

The requirements for recommendation systems have changed. How recommendations are
presented to the users, as well as GDPR, has brought new demands to the recommen-
dations. Explainability is a new requirement which is hard to find in high-performance
black box models. We discuss relevant theory and approaches for current explainability
techniques. Then, we attempt to increase the explainability of a deep learning-based rec-
ommender system by using said theory. This includes inspecting the model by examining
its input and by looking at what the model has learned with a global method. Finally, we
validate the insights gained by removing input data and by using statistical tools. The for-
mer method measures the performance loss when removing the input, which is related to
the explanation. Finally, we summarize our findings of explainable recommender systems
and propose avenues for future work.
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Chapter 1
Introduction

1.1 Motivation

Recommendation algorithms hold the power of relevant and accurate predictions. These
prediction-based systems provide personalization to users, be it either groceries, songs,
movies, articles, clothes, or even other users in dating platforms.

Provided a set of users and their preferences for items, the system should predict the
next top-N items for a given user. Naturally, business metrics related to customer satisfac-
tion or customer retention often depends on the accuracy of these recommendations. The
intense focus on performance metrics alone has left other aspects less charted, e.g., privacy
concerns and ethics. GDPR came into force recently, and one of the aspects it covers is the
what, why, and how concerning the data gathered. Users must be able to see what data is
collected by the service. This data can be explicit actions such as ratings, reviews, or likes.
It can also be implicit actions such as page views, clicks, mouse hovering, time spent on
certain parts of the web page, and other interactions. The use of this data must also be
transparent, i.e., the purpose or the why of the data gathering. Finally, the how is covered
by providing insight into the data presented to the user. In our case, this would be insight
into the predictions that are given to the end user.

Another driving force for explainability besides ethics and laws are the users; human-
computer interaction also has a role in user satisfaction. There is typically a lack of com-
munication between the system itself and the end user. Any recommendations can be
conceived as not trustworthy as there is no basis provided for the decision. I.e., the end
user cannot verify the validity of the prediction. This trust is weakened more when an
incorrect prediction is given. This makes explainability a vital aspect of recommender
systems. As a bonus, explainability can also be used to confirm the inner workings of a
model and its assumptions. It can also uncover issues such as biases.

The how is a difficult task, as many algorithms are considered a black box. Latent Fac-
tor Models [3] for instance, have been integrated into the idea of collaborative filtering to
improve rating predictions. It is, however, difficult to understand the predictions from such
systems since the latent factor models do not possess inherent meanings. Methods based
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on deep learning have similar issues. In short, these black boxes can provide excellent rec-
ommendations, but at the cost of not providing any knowledge about the problem at hand.
One issue with most machine learning approaches, and with deep learning, in particular, is
that the models only learn the dataset it has been trained on, which may not necessarily be
representative of the real world. This complicates the deciphering of the inner workings
further. However, the scientific community has recognized the lack of explainability as an
issue, and there is a slow but steady trend to address this issue. DARPA uses the term XAI,
which is often used for this research area, but explainability and interpretability is often
used interchangeably.

White box models do provide an interpretable model, but these are often simpler and
performs worse than the complex black box models. Linear regression is a typical ex-
ample of this. Even if the model is interpretable, it might not handily provide a layman
explanation of the prediction which should be clear, concise, and human-readable.

This brings us to another issue: evaluating the explanations is a hard task as there is
no basis or ground truth of which one can benchmark against. A labeled dataset would
be domain specific and limited to its scope. A movie recommender system with one ex-
planation component would need a dataset based on that exact system. There have been
some attempts at offline metrics, but online testing or case studies remains the current stan-
dard. It should be noted that this applies when an explanation is defined as a usercentric
justification and not a simple input-bound explanation. Some look for explanations by in-
specting the input, leaving much of the interpretation to humans. This might be a suitable
method for providing the how in layman terms since the input is usually in familiar terms
to the user. Others inspect what the model has learned in general, and provide this as the
interpretation of the model. The model prediction explanations are based on these inter-
pretations. Such methods might appeal to technical stakeholders but might not fare well
with end users as they are often technical. There are other approaches as well, but these
two are enough to show that different stakeholders perceive interpretability and explain-
ability different. During our work, it became apparent that there is no clear consensus on
the definitions of interpretability and explainability. These words cover a wide range of
approaches within AI and ML.

1.2 Problem description

How can we make methods used in black box recommender systems explainable?

Q1 How do current recommender systems provide explanations for their recommenda-
tions, and what limits are imposed on such explanations?

Q2 What techniques exist for explaining deep learning models?

Q3 How can different parts of deep learning-based recommender systems be explained?
How can insight into these components provide better explanations?

Q4 How can we validate explanations?

2



1.3 Scope and limitations
We discuss recommender systems in general, including white box models, and highlight
relevant features of these systems. RQ2-RQ4 is narrowed by inspecting a single recom-
mender system: NARRE [4]. NARRE uses user reviews to estimate user ratings for items
and provides a simple explanation for these ratings by supplying the most contributing
review along with the recommendations. We believe that such explanations leave much to
be desired for the user, which makes the explanation challenging to interpret; the opposite
of how an explanation should be. Our approaches vary from global explanations to local
explanations, by combining the model with recent advances in XAI, and by inspecting the
input data with the help of clustering.

1.4 Thesis structure
Chapter 2 provides theory about classical recommender systems, evaluation methods, deep
learning, machine learning concepts, explainable AI, and finally, the combination of these
topics. A survey of related work is presented in section 3.1, where different works are sum-
marized and discussed regarding explainable recommender systems. Section 3.2 describes
different datasets, which were available at the time. We inspect a deep learning-based rec-
ommender system with different approaches in section 4 along with a technical description
in section 4.2. The results from our approach and the evaluations of these are in chapter 5
with a discussion before chapter 6 concludes the results along with future work.

The theory in chapter 2 partially covers Q1 to Q4. We choose to inspect a single model,
with the results of this in section 5, which then answers Q3 and Q4 more in-depth.

3
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Chapter 2
Background

Recommender systems are within the field of machine learning as supervised algorithms.
They are supervised because the data is said to be annotated or classified. A set of input
parameters or features are provided with an annotation. As an example, a general recom-
mender system could have user interactions as two input parameters, user ID and item ID,
while the response variable, the annotated value, is the degree of likeness. Some systems
focus on returning the top-N items to recommend, rather than having high accuracy for all
users and all items. The trade-off in overall accuracy is offset by the importance of the
recall of the top-N items.

Classical recommender systems are presented in section 2.1. Section 2.2 introduces
general theory for deep learning as well as some theory for natural language processing. A
mix of machine learning theory is gathered in section 2.3: different evaluation methods and
metrics, desiderata of recommendations, the phenomenon curse of dimensionality, out-of-
vocabulary for word embeddings, and clustering. Section 2.4 introduces explanations and
interpretations of machine learning models, while section 2.4.2 dives into XAI for deep
learning-based models. Finally, section 2.5 is a combination of recommender systems,
deep learning, and explainable AI by introducing an algorithm called NARRE.

Feedback types Recommender systems consider user feedback as either explicit or im-
plicit. The former are explicit actions by the user, such as ratings on items: thumbs up or
down, or a scale from 1 to 10.

This feedback type can be problematic in practice since it is challenging to get users
to interact with the system actively. This is not a problem with implicit ratings, where the
behavior of the user is used to infer the preferences of the user. E.g., a user that frequently
visits the same item detail page is likely interested in that item. A drawback of implicit
actions is the difficulty in distinguishing between aversion for the item and indifference.

Some platforms have reviews written by users. These reviews have the potential to ex-
press a more nuanced view of an item from the user, which could improve the predictions.
Hao et al. [5] show that other types of explicit feedback from users are noisy and that
using a model which includes the reviews to predict ratings can lead to better predictions.
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Cold Start and The Long Tail Cold start is the term for a problem affecting both users
and items in a recommendation system.

In the context of users, it refers to the situation where a new user has not given any
feedback to the system. Recommender systems, in general, have trouble providing better
recommendations than random recommendations to these new users. A standard solution
is to recommend relatively popular items, in the hopes that since many people enjoy these
items, a random user will like it too. In the domain of movie recommendations, one can
also recommend new and popular movies, since these might be the reason the user joined
the platform.

The problem is similar in the context of items. When a new item is added, the system
has insufficient data about the item to recommend it to users. While the cold-start problem
for users is a common problem in several domains, this problem affects some systems
more than others.

Related to this problem is the concept of the long tail. Movie revenue distribution,
for instance, follows a power law, where a few blockbusters represent a relatively large
portion of the revenue. These popular movies are generally safe to recommend to both
existing and new users. As a result, popular movies remain popular, while less popular
movies will rarely be recommended. This leads to a paradoxical situation where niche
movies are never recommended because they are not popular but needs more popularity
to be recommended. The system will never become more confident as to when a niche
movie should be recommended. This group of less popular movies, or niche movies, is
called the long tail. Following the power law, the long tail amounts to a more significant
portion of the total revenue than the few blockbusters. This applies to many domains in
recommender systems.

2.1 Classical recommender systems

There are different approaches to providing top-N predictions to users based on explicit
or implicit feedback. The two main approaches are Content-based recommendations and
Collaborative filtering.

2.1.1 Content-based

In Content-based Recommendation, the predictions are based on the properties of the con-
tent the user previously has expressed interest in. In the domain of movies, such properties
can be actors, directors, movie genre, tags, language, and so on. The goal of the system
is to find a movie which is as similar as possible to the movies previously liked by the
user. Formally it is based on a prediction heuristic, sim(di, dj), which measures the sim-
ilarity between two feature vectors. This is used to rank all items against a single user.
This similarity measure between two vectors is often done with cosine distance or Pearson
coefficient, the former shown in equation 2.1.

sim(di, dj) =

∑
k wki · wkj√∑

k wki ·
√∑

k wkj
(2.1)
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This user-user independence makes content-based systems less prone to issues with
recommending movies from the long tail. It can be seen as personalized, fitting to each
user’s specific tastes. The drawback is overspecialization of the user profile. The recom-
mendations will not be novel, but remain safe within proximity of the user profile vector,
i.e., the serendipity remains low. This metric is discussed in section 2.1.3.

It does not suffer from the cold start issue on items since it does not depend on other
users’ ratings. The feature vector for an item can be constructed from the metadata. Such
feature vectors make it possible to recommend both new movies and niche movies. New
users still pose an issue as they do not have any ratings as a basis for their user profile.
The user-user independence is a double-edged sword: It is not dependent on other users’
ratings, but it cannot use the crowd knowledge to its advantage.

Finally, explanations are built into the user profile where each feature has a contributing
weight to each recommendation. It is simple to extract the why of a recommendation in
such systems as the feature weights are easy to interpret. Another advantage is the ability
to correct the user profile quickly. Tweaking the feature weights would be straightforward
and intuitive, trading accuracy for convenience. A drawback of explanations that are based
on a comparison of the feature vectors of movies is that it is difficult to get more detailed
and nuanced information from the system. The same actor may play different roles in
different movies, and the performance and synergy with other elements of the movie will
vary.

2.1.2 Collaborative Filtering

Crowd knowledge is used in collaborative filtering. The predictions are based on implicit
or rating-based latent relationships between users and items. The implementation is not
domain specific as there is no need for feature engineering, unlike content-based methods.
It does suffer from the cold start problem for both users and items since it relies on feed-
back. It is also biased towards more popular items, reducing the diversity of the ratings
[6].

Both users and movies have a bias. Popular movies tend to have a higher mean rating,
and users also have an individual inherent rating bias. The distributions of the ratings are
normalized by subtracting the bias. This process is performed at the item and user level,
as shown in equation 2.5. Two main models are commonly used in collaborative filtering;
these are discussed below.

Neighborhood models These models can be user-centered (user-user) or item-centered
(item-item). In the user-centered case, the rating of an item for a user is based on similar
users’ explicit rating of that item. Finding similar users is done on the assumption that if
two users have similar ratings on some items, they will have somewhat similar tastes. The
estimated rating for an item and a single user is ideally done by considering a large number
of other users. This increases the robustness of the rankings, making it less sensitive to
small changes in the data. The item-centered case is similar. Predicting the missing rating,
in this case, is based on the users rating of similar items. The similarity between items
for the user is based on the similarity of the ratings made by the user on the items. In an

7



intuitive sense, ratings cluster similar items together.

r̂ui = µi +

∑
j∈Nk

u(i)

sim(i, j) · (ruj − µj)∑
j∈Nk

u(i)

sim(i, j)
(2.2)

Equation 2.2 is a k-NN inspired approximation of the rating of item i on a user. µi is
the mean of all ratings for item i and µu is the mean of all ratings from user u. Nk

u (i) is
the k nearest neighbors of user u which has rated the item i. Explanations are provided
by listing the subset of items or users which are known to the user, sorted by distance
from the recommended item. A typical example would be You might like item-3 since you
liked item-1 and item-2. This explanation can be problematic to rely on since it is not a
complete picture of everything the model based its prediction on. Even if the user had not
liked item-1 and item-2 in the example above, the system might still recommend item-3
since it bases the recommendation on a potentially large number of other items.

Latent factor models These models are similar to the content-based approach. They at-
tempt to model each item along many different dimensions that are, in a sense semantically
clustered factors. The difference from content-based is that the factors are not determined
by human domain experts, but rather by the algorithm itself. This means that the fac-
tors could coincide with some characteristic of the item that is used in a content-based
approach, but the factors would typically be complicated for humans to interpret. This in-
terpretation would be similar to manually identifying clusters in neighborhood models and
interpreting the representations of these. A linear approximation can be done to express
how these hidden factors interact to recommend an item for a single user.

The perceived interests of the user are also mapped to this latent space, and the items
are ranked based on their distance to the user interests. These factors are sometimes re-
ferred to as topics, mainly when they are used to interpret the inner workings of recom-
mendation systems.

Let A be the user-item rating matrix. In this method we assume that A can be decom-
posed into item-factor matrix Q and user-factor matrix P , such that A = Q · PT . The
dimensions of Q and P are dependent on the number of latent factors and are usually less
than the original A matrix. A variant of this matrix factorization is called Singular Value
Decomposition, SVD, with its general form in equation 2.3.

A = UΣV T (2.3)

The estimated rating r̂ui for a user u and item i is given in equation 2.4 and is a
practical extension of SVD [7]. µ is the average rating over all movies. bu and bi is the
user u and item i bias, respectively. This bias is the difference between the users’ average
rating and the average of all ratings. Similarly for bi, which is the difference between the
average rating of a movie compared to the average rating of all movies. qi is a vector that
captures the weights for the latent factors for a given item i. Likewise for pu, but for a
given user u. In equation 2.3, qi corresponds to the the ith row of U and pu is the uth
column of the product ΣV T , often called P .

8



r̂ui = µ+ bu + bi + qTi pu (2.4)

SVD gained much attention [8] since it reduces the dimensionality of the problem. But,
it can not be used directly because of missing values or ratings in A. An approximation is
used instead. This turns the problem into a task of optimization with the help of Stochastic
Gradient Descent or Alternating Least Squares. The optimization problem in the context
of recommendations is shown in equation 2.5. rui and r̂ui is respectively the true rating
and the estimated rating of user u for item i. λ is a regularization constant which aims to
avoid overfitting by adding a cost to the sizes of the latent factors. It uses the L2-norm,
which promotes sparsification and therefore reduces the number of latent factors.

min
q,p

∑
rui∈Rtrain

(rui − r̂ui)2 + λ
(
b2i + b2u + ||qi||2 + ||pu||2

)
(2.5)

A variant of this equation [9] makes it possible to decompose the user factorization,
pu, as a linear combination of the interactions of user i. This is an important detail as it
allows us to create explanations from the latent space. These explanations would be on
the same form as the neighborhood-based models since the user feedback composes the
model. However, the true meaning behind the latent factors would still be unavailable.

2.1.3 Desiderata of recommendations
This subsection introduces the desiderata of recommendations encountered in the litera-
ture.

Novelty Novelty depends on, as implied by the name, novel items in the recommenda-
tions. The implicit action of a user not choosing a specific recommended item could imply
that the recommendation is inaccurate. However, since the user in many contexts only
can choose one item, this metric is not entirely accurate. To find a balance, it is possible
to measure the novelty of the recommended items and use that as part of the evaluation
metric for each item. These metrics can often be classified into different levels depending
on the granularity of the novelty. Kapoor, Kumar, Terveen et al. [10] require novel movies
to be previously unknown by the user. This level of novelty can, however, be hard to mea-
sure by the system, since the information required is outside of the context of the system.
Requiring the item to be utterly unknown to the user is sometimes [11] relaxed so that a
novel movie is one which the user has little knowledge of before the recommendation, but
not that it is entirely unknown. In practice, the degree of how much an item is known to a
user will often depend on the level of interaction between the user and item.

Some authors [12] define novelty as items that have never been recommended to a user
at all, regardless of whether the user has interacted with the item or not. Recommender
systems that consider the novelty of an item must as mentioned, define the level of inter-
action to consider an item to be known to a user. Besides, it can often be useful to consider
the pairwise similarity between the items so the items recommended are not too similar.
Allowing the novelty of one item to be affected by the novelty of another depending on
their degree of similarity is closely related to the granularity of the chosen definition of
novelty in the system.
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A related concept is the desideratum of diversity. Ziegler et al. [13] defines it as the
similarity between two lists of recommended items. They argue that it is crucial that the
recommendations a user receives from a system represent a diverse set of topics the user
finds attractive. This metric is also dependent on a distance measure between each item.

Informativeness Informativeness [14] in the context of supervised learning describes
how much the model explains its output. This measure is closely related to the degree to
which the system is explainable. Kim et al. [15], and Huysmans et al. [16] describes a
setting where the system provides information to the user, and the user makes the decision.
The real task of this system is to provide useful information to the user and to aid the user
in exploring the data, instead of predicting ratings or clicks. It is the opinion of the authors
that this term has been replaced in the literature by the broader acronym XAI. However,
the importance of the concept is still emphasized by researchers.

Serendipity and Unexpectedness Unexpectedness is the idea that users prefer to be
recommended unexpected items instead of the recommendations that are obvious to the
user. Since the set of expected items for each user is difficult to determine, the items
recommended by a primitive recommender is sometimes used as an approximation to this
set [11, 17]. The unexpectedness of a recommender system can then be defined as the rate
of disagreement with the primitive recommender.

Defining a measure for the unexpectedness of an item is also possible without relying
on a primitive recommender. Bridge and Kaminskas [18] uses the Pointwise Mutual In-
formation (PMI) measure [19] to define the unexpectedness of two lists of recommended
items. The PMI of two items is described in equation 2.6. p(i) is the probability that item
i is rated by a user, and p(i, j) is the probability that a user has rated both item i and item
j.

PMI(i, j) = ln(
p(i, j)

p(i) ∗ p(j)
) (2.6)

Bridge and Kaminskas [18] then defines the unexpectedness of an item in relation to a user
to be either the maximum or the average PMI between the item and all the items in the
user profile. Since the probability that a user rates an item can be inferred from the rating
matrix, this measure can be considered more stable than the version that depended on the
primitive recommender.

A critique of unexpectedness is that a system based on maximizing the unexpectedness
of recommended items might be unreasonably biased towards recommending rare items.
A desideratum that expands on unexpectedness is serendipity. Serendipity is defined in
Herlocker et al. [20] as ”a surprisingly interesting item he might not have otherwise dis-
covered”. Measuring how interesting the user considers the recommended item can be a
vague term and is often approximated as the expected utility or rating of the item. Several
contributions to the literature [11, 12, 17] describe serendipity as dependent on being un-
expected, and uses a measure of unexpectedness similar to those described earlier in this
section multiplied by the utility of the item as a measure of serendipity. Using a definition
of serendipity which does not rely on the expected utility of an item can be advantageous
to the system, an idea noted and expanded upon in Herlocker et al. [20]. The system can
then be designed to widen the interest of its users. More suitable evaluation metrics for
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such systems could be Click-through rate and View-through rate, as defined in equations
2.10 and 2.11.

Trust Users decide to watch a movie based on the information they have about it, whether
that is word-of-mouth, trailers, or even movie posters. In order for users to choose to base
their decision on the recommender system, they need to have a certain amount of trust in
the system. A welcome side effect of explainable recommender systems is that it increases
the trust users have in the system. For recommender systems without explanations, the
only offline measure of trust is the accuracy of the system. Alternative measures for trust
could be a survey asking the users about their perceived credibility of the system. A high
return rate of users could also be indicative of trust. Some of the previously mentioned
desiderata could have a short-term detrimental effect on trust. If the system attempts to
maximize the serendipity of its users, it might place an unreasonably high value on unex-
pected movies which could increase the chance of hitting the jackpot at the expense of a
lower average utility. A strategy, which undermines serendipity, is to recommend items
that the user already have seen and rated high. The recommendation will not be useful to
the user, but since the user can recognize it as a high-rated movie, the system might seem
more trustworthy.

2.2 Deep learning

The theory in this section is compiled from [21] and [22].
Considering a supervised learning problem, with input vector x and target y, the net-

work or model is to create a prediction ỹ which matches y as well as possible. The distance
or loss is often measured using RMSE or MAE for regression problems and binary cross
entropy for classification problems. See section 2.3.1 for details on the RMSE and MAE
metrics. The network consists of layers, where each layer is a set of nodes or neurons.
Each node receives input from the previous layer and passes its output to one or several
nodes in the downstream layer. A node performs some operation, such as addition or mul-
tiplication, usually with the input and an internal weight. An addition layer with internal
weights is often referred to as a bias layer.

In classification, the last layer produces a vector of probabilities for each of the target
classes. These probabilities must lie between 0 and 1, hence a sigmoid is often used.
The sigmoid is one of several activation functions, which are functions that determine the
output of a node. Another popular activation is the ReLU. It is commonly used on hidden
nodes in the network, as it does not lead to vanishing gradients as the sigmoid does. The
ReLU can also be used as the output node in a regression setting. These are the main
building blocks of a simple neural network.

The process of passing input to the head and propagating the data throughout the net-
work is called the feed forward phase. The weights of the network are trained by back
propagation. This involves partially differentiating the loss function with respect to all the
weights in all layers. The output of the last layer is partially differentiated w.r.t. the input
from the previous layer. This is repeated until the input values, x are reached. The change
in weights, ∆W , for all layers are multiplied with the learning rate and finally added to

11



the original weights, thus updating them. The feed forward phase and back propagation
phase are repeated for every case in the data set.

Overfitting is a problem in neural networks due to the number of parameters that are
tuned. Overfitting occurs when the model has higher accuracy on the dataset than any
other representative set of the domain. This is described further in section 2.3.1. The goal
of training a model is to generalize it to the domain, so this behavior is undesired. There
are several regularization techniques to cope with overfitting. Dropout [23] is the most
notable in our study. A specified percentage of the nodes in a selected layer are clamped
at 0, i.e., some nodes are disabled at random for each forward pass. None of the nodes are
clamped during validation, and their output is multiplied by one minus the percentage of
nodes clamped during training.

Convolutional Neural Networks, CNN A common pattern recognition technique in
computer visualization. Using a 2D black-and-white image as an example: A kernel of
size m × n is convolved over the input image and an output is produced. This is done
by pointwise multiplying the kernel over the input and summing the output. The kernel is
moved over the input with some specified stride, often 1. The kernel output is maximized
when all the input values match their corresponding kernel value. In essence, the output is
a map of how well the kernel fit the input image at different coordinates. For instance, the
kernel [−1/2, 0, 1] would give a high output wherever the input vector changes from high
to low. This particular kernel is used to detect vertical edges in an image.

It could be argued that several fully connected layers or sparsely connected layers can
do the same. However, convolution has the advantage of having far fewer weights to tune.

CNNs are also translation invariant, due to the use of pooling. Pooling techniques
are essentially convolution, but the weights are replaced with a non-linear transformation,
such as max or min.

Max-pooling is the most common pooling variant in this study. It takes the maximum
value from the convolution map within a specific window which is moved across the output
with some specified stride and dimensions.

The equation for a 1D convolution is shown in 2.7. Y is the downstream layer, the
convolution output. The input from the upstream layer is denoted as X . The kernel, w, is
the weights that are multiplied with the input. The kernel width is d, and σ is the point-wise
multiplication iterable.

Y (k) = (X ∗ w)(k) =

d∑
σ=−d

X(k + σ)w(σ) (2.7)

The idea is that a convolution increases the abstraction of the input. A CNN is capa-
ble of hierarchical feature detection, where each convolution creates a new feature map.
Chaining convolutions reduces the input fidelity while identifying increasingly higher or-
der features.

While known mostly for its success in computer visualization, CNNs is performant on
NLP tasks as well [24]. In such tasks, the kernel tensor is of size m× d and is commonly
referred to as a filter, since the input is one dimensional. m is the filter width, how many
words the filter can see at a time, and d is the embedding dimensionality. An example of
the CNN architecture is shown in figure 2.1.
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Figure 2.1: An example model overview of a CNN with with two channels for a sentence [1], with
four filters and two target classes.

Embeddings Words must be encoded before they are passed to a neural network. One-
hot encoding is sometimes used for this; a vector v is initialized. Each element of this
vector is a boolean value, representing the presence of a single word from the input. A
major constraint of this representation is the curse of dimensionality. |v| is equal to the set
of words for the encoder, i.e., the dimensionality is |v|. Because of this and the fact that the
values are boolean, the distance between two different instances of this vector will always
be equal to

√
2. Embeddings is a technique to alleviate this effect. An alternative repre-

sentation for the input is created by using hidden layer activation patterns. This reduces
the dimensionality from |v| to something computationally tractable. Word2vec [25], fast-
text [26], and GloVe [27] are some of the earlier off-the-shelf available word embeddings,
reducing the dimensionality to a range between 50 and 300. These did not embed context
for the words, e.g. Apple in Apple computers would be embedded the same way as fresh
apple. ELMo [28] and BERT [29] are able to capture this context sensitivity and are now
considered SOTA. These embeddings also have out-of-vocabulary mitigation. They also
have generally higher accuracies on a range of NLP problems. E.g., swapping word2vec
with BERT is considered a low-hanging-fruit to improve model accuracy. The dimension-
ality of these are higher, around 1000, but still computationally tractable. This increase in
dimensionality also means that the interpretation or explanations of the embeddings will
be worse, and might completely offset the increase in accuracy with a significant loss of
explainability.

When training the embeddings, two important properties are approximated. The dis-
tance between similar words in the vector space should be close. This means that the
distance is not always

√
2. The word embeddings should also have semantically meaning-

ful vector operations. The textbook example of this is King - Man + Woman = Queen1.
It is important to note that an embedding is a single point in a space, while a word is

a single unit. A dictionary contains only valid words, while an embedding can be a point
in the embedded space with no natural meaning. I.e., a word has an exact embedding,

1A recent paper [30] stirred controversy over word embeddings, discussing similar examples that are biased
and that embeddings, in general, are biased through our language.
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but an embedding does not necessarily have a corresponding word. Another detail is that
the distance measures replaceability, not similarity. For instance, flavored and unflavored
would be very close, even if they are considered opposites by humans.

Embeddings are not restricted to the domain of words. Embeddings can be used to
map arbitrary integers to some latent space. This is useful, for instance, when encoding
categorical values to a vector space which is compatible with the rest of the neural network.

Out-of-vocabulary, OOV Embeddings in NLP maps words or characters to some fea-
ture space. When doing so, only a subset of the input language is considered. Rare words
and spelling mistakes can, therefore, be unknown to a specific embedding. Such words will
typically be ignored by the embedding and skipped in its entirety. A common approach
to this issue is to use character level embedding instead. Newer word embeddings can
dynamically capture the context of unknown words by using the contextual information of
the other words in the sentence.

Attention Attention is a technique which can be used to aggregate dimensions of data as
an alternative to max-pool, average-pool, or a similar operation. It is based on the idea that
humans do not consider every piece of the input equally. Instead, we rather choose where
to direct our attention depending on the task at hand. It can be implemented by having
a, preferably small, neural net in the model to compute weights for a weighted average
of the input. It has been used successfully for several tasks involving sequence modeling
[31–33].

Neural Collaborative Filtering, NCF Inspired by the ability of deep learning to model
complex relations in data, He et al. [34] describes Neural Collaborative Filtering as a
generalization of latent factor models 2.1.2. When using multiple layers in the model with
non-linear activation functions, more complicated relations in the user-item matrix can be
modeled. Figure 2.2 shows a framework for NCF.

Figure 2.2: Neural Collaborative Filtering framework. Figure from He et al. [34].
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2.3 Machine learning

2.3.1 Metrics

Evaluation is a key component in supervised algorithms, both for training a single model,
and for comparing different models. Hypotheses about components of the model can also
be tested by assessing their contributions to the model. Such metrics can be divided into
two categories: offline or online. Offline metrics are performed on a dataset, while online
metrics are extrapolated from the behavior of the users using the system.

Evaluating the performance of recommendation systems is commonly done through
offline metrics such as RMSE,

RMSE =

√∑T
t=1(ŷt − yt)2

T
(2.8)

and MAE:

MAE =

∑n
i=1 |yi − xi|

n
=

∑n
i=1 |ei|
n

. (2.9)

These metrics measure the error, or equivalently, the distance between the predicted
value from the model and the real value.

It is common to split the data into a test set and a training set. The system is trained
on the training set before it is tested on the unseen test set. The test phase aims to estimate
the real world performance of the model. This process is a general strategy in machine
learning that is done to avoid overfitting. Overfitting is discussed later in this section.

One way to split the data is to choose some users and select N ratings from them as
the test set. Another method is to remove some portion of all ratings. A ratio is chosen
as the amount of training and test set, e.g., nine parts training and one part test. K-fold
cross validation is an extension of this, where the data is split into k parts. Model training
is run on k − 1 folds, while the last fold remains excluded as the test set. The process is
repeated k times until each fold has been the test set exactly once. This is done to increase
the accuracy of the test error.

Early stopping in deep learning also uses the validation set. The validation score is
measured between each epoch (a complete pass over the training set) which often has a
U-shaped figure. The training stops early as soon as the validation score starts to increase.

The evaluation can also be seen as a classification problem instead of a regression
problem. This is done by choosing the top-N predicted recommendations and label them
as the positive class. These instances are compared against the actual top-n for that user,
and we can calculate other metrics [35] such as precision, recall, F-measure, MAP, and
MRR.

As mentioned, testing the model accuracy on a separate data set is done to identify
overfitting. This phenomenon occurs when a model is tuned too close to the training data,
resulting in poor generalization on new, unseen data. Such models have low bias on the
training data, but high variability on new data. Underfitting is when the model is too
simplistic and does not capture the general trend. The textbook example of this is a linear
regression of a polynomial. In this case, the model has low variance but high bias: the
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(a) Alt 1 (b) Alt 2

Figure 2.3: Two possible configurations of an AB test for recommender systems

opposite of overfitting. An ideal model would have both low bias and low variance, but a
balance must be struck between the two. This is called the bias-variance tradeoff.

There exists no widely used offline metric for explanations yet. Informally, it is our
impression that XAI articles often use sensitivity analysis on the input data, which is tied
to the explanations they generate. Others measure the performance of the model through
the loss of information when removing features from the input, often by measuring the
loss of accuracy.

A/B Testing This is a measure of the impact of using system A instead of a different
system B. In general, this is done by presenting either system A or system B to different
users in combination with online metrics to measure the performance of each system. The
accuracy of the metrics increases as more and more users are tested.

Recommender systems can have a different approach. Typically, more than one item
is presented. The system can use both model A and model B to recommend items to the
user.

Two ways of presenting this to users in a shelf layout are illustrated in figure 2.3. The
letters represent the items recommended by that model. As an example, Netflix uses the
second approach [8].

Some standard online metrics used as measures in A/B testing include Click-through
rate, equation 2.10, and View-through rate, equation 2.11. Such metrics allow us to eval-
uate the performance of models without the need for explicit feedback. User-facing ex-
planations are often tested with A/B testing since offline metrics are unable to capture
different aspects of HCI such as trust.

CTR =
Number of click-throughs
Number of impressions

× 100(%) (2.10)

VTR =
Number of view-throughs
Number of impressions

× 100(%) (2.11)

2.3.2 Curse of dimensionality
High dimensional data introduces a handful of problems in machine learning. If the num-
ber of data points is lower than the number of dimensions, overfitting will be an issue, as it
is possible to cherry pick the features that match the target variable in the dataset. Another
problem is that distance metrics such as Manhattan or Euclidean distance gets increas-
ingly worse as the dimensionality increases. The data points become uniformly distant
from each other, which makes proximity-based clustering difficult. As mentioned in the
previous section, one-hot-encoding suffers from this phenomenon. Dimension reduction
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techniques attempt to alleviate this effect. Principal component analysis, PCA, transforms
the feature space into an independent orthogonal basis set, which has a lower dimensional-
ity. Autoencoders in deep learning can also reduce the dimensionality, but these can have
nonlinear feature maps, in contrast to PCA, which has linear feature maps.

2.3.3 Clustering
Insight can be gained by grouping unlabeled data points together. In this unsupervised ap-
proach, humans would manually annotate the resulting clusters, e.g., identifying customer
segments. A pairwise distance metric is used to rank the similarity, or dissimilarity, of
data points. Euclidean or Manhattan distance is often used for this. While intuitive for
low dimensions, these distances become inflated if the number of dimensions is high, as
mentioned earlier. The ranking method and its general algorithm are also of interest, as
these make different prior assumptions about the data set. One important factor is the as-
sumption related to the shape or geometry of the clusters. K-NN typically favors globular
clusters, while hierarchical clustering can be used with non-globular data. Another factor
is the tuning parameters, often directly related to how many clusters the data set has. This
is often something that must be known prior to the clustering, but can be estimated by a
measure of the cluster fitness, such as the Silhouette score [36].

2.4 Explainable AI
Explainable AI methods are divided into two categories. Model-based and post-hoc. The
former are methods that devise interpretable models; the predictions are explainable by
looking at the model. E.g., a linear model is interpretable by inspecting its intersection
and slope in the units of the axes. Similarly, a reasonably sized decision tree is also in-
terpretable. For recommender systems, content-based systems are usually model-based.
E.g., a user and item profile-based system with a distance metric as a similarity measure
can produce an explanation for a recommendation by comparing the user and item profile.

Many models are not interpretable, and explanations must be approximated to this
black box. These are defined as post-hoc explanation-based systems. Latent factor models,
for instance, do not have intuitive features which makes interpretations difficult. However,
linear models can model some portion of the information captured. Decision trees can also
be used to find post-hoc explanations for model choices.

In addition to dividing the explanation methods into model-based and post-hoc, it is
also useful to consider the difference between local and global explanations. Local expla-
nations are those which explain a single data point, e.g., a specific recommendation for a
user. Local explanations can be true for a specific data point and its neighbors. However,
these explanations may be inconsistent for other neighbors that are considered similar by
users. These explanations can, therefore, lead to a reduction of trust. Global explanations
are based on how the model works in a general sense. I.e., the explanations are true for the
majority of the data points in a class.

Evaluation of explanations is a new and uncharted research area. It is not common
practice to evaluate the explanations produced by explainable recommender systems with
offline measures. The impact of the explanations is instead tested through A/B testing
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or case studies. To our understanding, offline metrics are often tightly coupled to the
explanation algorithm in such a way that the metric is moot from a human interaction
standpoint.

LIME Locally Interpretable Model-agnostic Explanations [37] trains an interpretable
model on the neighborhood around the prediction. The explanation from the system is
based on the interpretable model instead of the original model. The interpretable model is
chosen by weighing its complexity against its ability to find recommendations similar to
the global model in a neighborhood around the prediction. The neighborhood around the
prediction is produced by making small changes to the input parameters of the model and
observing the new predictions by the model.

In a setting with explicit feedback, the rating of an item by a user is altered, and the
predicted rating is observed. A problem when applying this approach to recommender
system is that the recommendations are based on a possibly complex relation between
the ratings, so if any rating is changed, it could produce an ”unrealistic” user to which
the global model gives poor predictions. In this case, the interpretable model could be
similar to the global one, but the explanations it provides may be of poor quality. More
accurate explanations could be obtained by changing multiple ratings simultaneously, but
this quickly becomes computationally intractable. It could be argued that ratings can be
grouped by clustering them in a preprocessing step, e.g., by using topic representations
from Latent Factor models(see chapter 2.1.2). This could improve the performance of
LIME in our case.

In the domain of reviews as user feedback, the reviews can be perturbed either by
perturbing each review of the user, or by perturbing the set of reviews for a user or an
item.

2.4.1 Feature importance plots
One approach to post-hoc explanations is by using feature importance plots. The general
idea behind feature importance plots is to visualize the size of the impact that each feature
has on the target variable. Two common examples of feature importance plots are partial
dependence plots and permutation importance plots. Both of the methods are based on a
matrix of labeled data points and a trained model. The explanations assume that the data
points are along the rows and the features along the columns of the data matrix.

Partial dependence plots The idea behind partial dependence plots [38] is simple. The
range of values for each feature is determined, and a single data point is chosen at random.
Each of the variables then takes different values within their range while the model predic-
tion is calculated. The remaining variables remain fixed. This creates a single plot for the
effect of that variable on the response variable. By repeating this for all variables, we can
plot a local explanation for this data point. The process can also be repeated for all rows,
producing a global explanation.

Permutation importance plots Permutation importance [39] is performed by first choos-
ing a known target variable. The model is used to predict this target variable, and the accu-

18



racy of the model is calculated. Recall that our known data is represented as a matrix with
data points, users, along with the rows and features along the columns. The values of each
feature column are then, in turn, permuted randomly, and the model predicts new target
variables for each user. The feature importance score of this feature is the decrease in the
accuracy of the model. The ordering of the feature column is restored before evaluating
the next feature.

Using either partial dependence or permutation importance plots to explain recom-
mendations from a recommender system is challenging. One of the problems is that the
predicted rating of an item is rarely dependent on a few existing ratings, but rather a com-
bination of several items. This means that a predicted rating might not change when a
variable of its item is changed. If the prediction does change, the difference is most likely
small. This produces a situation where each rating seems to take on a binary value of
either essential or not, and the plots will not reveal much insight. A subset of the ratings
should be evaluated at a time in order to gain more information from the methods, but this
is computationally intractable.

However, in some domains, these methods can be used to provide explanations to the
user. Permutation importance plots might be more informative than a partial dependence
plot since it only finds one number per feature. It is easier to present numbers to users as
these can be aggregated, while the partial dependence plots cannot be aggregated in the
same way.

2.4.2 Deep learning
Deep learning-based models are usually considered black boxes and explained using post-
hoc models. These post-hoc models can, as with other explanations, be divided into global
and local.

Saliency maps A technique to determine and visualize the impact each pixel of an input
image has on the class score function is called saliency maps [40]. A forward pass over
the network with the considered input image is computed to find the class score unless
it is already known. A backward pass over the network back to the input layer is then
performed. The partial derivative that is computed for each input pixel in the input layer
is then the saliency value for that pixel. The value for each pixel can then be used to
create a greyscale image called a saliency map. Since the technique only requires a single
backward pass, it is computationally cheap. The saliency maps themselves often resemble
the shape of the class in the image, which makes them easily understandable for humans.

The Layer-wise Relevance Propagation Layerwise Relevance Propagation [41] is a
technique which finds the relevance or contributions of input features towards a classifi-
cation. The idea is that the target probability is traced back through the neural network
while preserving the total relevance in each layer. This is shown in equation 2.12 with an
illustration in figure 2.4. The output of the last layer, f(x), is computed during the for-
ward pass. R(l+1)

k is defined as the Relevance for the k-th node in the l-th layer. R(l,l+1)
j←k

is defined as the Relevance propagating from the k-th node in the l+1-th layer to the j-th
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node in the l-th layer. The relevance R(l+1)
k is distributed over all its inbound neurons by

multiplying the output with each of the nodes’ contribution. This is measured as a product
of the node weight, wjk, and its activation, aj , divided by the sum of all contributions from
the previous layer:

∑
h ahwhk.

R
(l,l+1)
j←k = R

(l+1)
k

ajwjk∑
h ahwhk

(2.12)

Figure 2.4: The probability, f(x), is distributed over the inbound edges. This is a recursive process
which repeats until reaching the input features. [42]

Testing with CAV, TCAV Been Kim et al. [2] introduces Testing with Concept Activa-
tion Vectors, TCAV, as a method to quantify the impact of user-defined concepts on the
predictions from a neural network model. Concepts are defined as a set of model inputs
where each model input expresses the concept. These concepts do not have to be specified
during the training of the model. Next, one layer of the model under inspection is chosen
as the space where the concept activation vectors are computed. How close this layer is to
the output layer often affects the accuracy of the method, and should be chosen depending
on how abstract the concepts are. The authors of the method evaluate the impact of the
chosen layer further. Concept activation vectors are defined as the vector orthogonal to a
linear classifier which separates the activations from the concept input data and activations
from a random set of input data. The conceptual sensitivity of a class to a concept is the
directional derivative of the prediction w.r.t the concept activation vector. The score of a
concept is then the fraction of examples which had a positive derivative.
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Figure 2.5: The linear classifier and its orthogonal concept activation vector, from [2].

This method is based on user-defined concepts. One of the examples used in the paper
is: How important is the concept stripes to images classified as zebras? This makes the
idea of a concept visualization task somewhat concise, but not well defined in other do-
mains such as NLP. Deciding the kind of concepts to test and which inputs that represents
considered inputs is not trivial for recommender engines. If the recommender system is
only based on ratings, there may not be any meaningful concepts in the input data to test.
However, if the recommendations are based on item reviews as well, concepts found in the
reviews can be considered. As an example, these concepts can be topics the reviews men-
tions. Figure 2.5 illustrates the linear classifier and the corresponding concept activation
vector.

2.5 Explainable AI and recommender systems
The combination of XAI and recommender systems is of our interest. Classical content-
based recommender systems are interpretable by nature, but advances in deep learning
have made complex models with higher performances more popular. Therefore there is a
need for explainable recommender systems with high efficacy. Some of these are surveyed
in section 3. The theory for the model we decided to inspect, NARRE, is presented below.

2.5.1 NARRE
Motivation Neural Attentional Rating Regression with Review-level Explanations [4],
NARRE, is, as the name implies, a review-based recommender model. Ratings and re-
views from the users for items is the basis which the model uses to predict user-item
ratings. The primary motivation is that current review-based models fail to assess the use-
fulness of individual reviews. The authors show that this is indeed a contributing factor to
the performance of the model. This usefulness measures how informative the review is to
the rating predictions.

Architecture In this model, a user component and an item component is computed sep-
arately and combined to find the final rating. The architecture of these two components are
identical. They do not share weights. The network is given several three tuples on the form
(user-ID, item-ID, review text). The user ID is always the same in the user component of
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Figure 2.6: A complete overview of the architecture.

the network, while the item ID is always the same in the item component of the network.
This dual split creates an item profile and a user profile based on the input. An overview
of this is seen in figure 2.6.

A pre-processing step normalizes the review text. All strings are converted to lower-
case. Numbers, symbols, and words not present in the embedding are removed. word2vec
[43] is then used to embed the words. Stopwords are kept, rather than removed. The
embeddings are processed by a CNN consisting of 100 3-width kernels before being max-
pooled. An overview of the CNN architecture is seen in figure 2.7. An attention layer
weighs the output of the CNN and an embedding of the IDs so the network can ignore
reviews from specific users and emphasize reviews which better characterizes items. The
final component is based on neural collaborative filtering, which is described in section
2.2.

Explanations NARRE uses the reviews of the item to explain the prediction. As the
model weighs each review as part of the inference, it can use the attention weight for each
review as a measure of usefulness and present the review with the highest attention to
the user as an explanation for the recommendation. The authors point out that text-based
explanations can be very powerful, and brings up that machine-generated text is not as
convincing as human-written text. This motivates the use of the user-written reviews from
the model input as explanations.
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Figure 2.7: Overview of the CNN component of the architecture

23



24



Chapter 3
Survey

There are several approaches to explaining the recommendations made by a content-based
recommender in the literature. In section 3.1, we will present some of these. In section 3.2
we present some of the datasets considered for implementation purposes.

3.1 Related work
The majority of the contents of paragraph ProPPR, Ripple Net, Explainable matrix
factorization, TriRank and AMF has been copied from our pilot project [44] that led up
to this project.

ProPPR Catherine et al. [45] models items and other entities for the user in a knowledge
graph. Each node in the graph is based on its child nodes, similar to an ontology. Each
movie can then be expressed as a sum of nodes where each node contains an explanation.
The method is based on ProPPR [46], programming with personalized page rank. The
likes and dislikes of a user are fed into the system as weight initialization. These weights
are then propagated through the knowledge graph. The recommendation is then only based
on the preferences of the user, which makes it possible for the user to inspect the data the
system bases the recommendations on, and make adjustments according to the current
mood. All paths connecting the initial preferences with the recommended movie can be
listed as an explanation for the current movie recommendation.

However, there are some problems with this approach in our domain. Most users have
either too little explicit feedback for high-quality recommendations or too much explicit
feedback for intuitive explanations which are easy to act upon. For the users who have
given a large amount of explicit feedback, the influence ratings have on explanations be-
come less intuitive, which makes it harder for the users to update their likes and dislikes
in the system to reflect their current mood. Another issue is that it does not leverage im-
plicit feedback from the user. Ignoring this worsens the quality of the recommendations,
especially for users with a low number of explicit feedback.
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Ripple Net A different solution is proposed by Wang et al. [47]. They present a frame-
work called RippleNet. This framework is based on a knowledge graph, where each node
is an entity and the edges are relations between the entities. For example, two nodes could
be an actor and a movie, with an edge between them if the actor played in the movie.
Implicit feedback from the user is used as a seed in this graph as the starting nodes to
an n-neighborhood algorithm for recommending an item. The information from the im-
plicit feedback ripples through the graph, which can be conceptualized as a preference
propagation.

Explainable matrix factorization Collaborative filtering based on matrix factorization
is common in recommender systems. Adding ad-hoc explanations to such systems can be
a fairly straight-forward task. Abdollahi and Nasraoui [48] propose a CF technique which
computes explainable recommendations. They add a regularizing term based on the ratio
of the nearest neighbors that have rated the item to the total amount of nearest neighbors.

This technique aims to improve the explainability of the returned items. This shows
that explainability can be built into a model by introducing an explainability metric as a
part of the loss function. It has to be combined with a different technique to form a com-
plete recommender system with explanations since it does not produce any explanations
itself.

TriRank He et al. [49] devises an algorithm, TriRank, which produces recommenda-
tions and explanations based on textual reviews and ratings. It relies on a preprocessing
step, a state-of-the-art aspect extraction tool, that reduces review text to aspects. The prod-
uct of this is feature-opinion pairs with an associated binary sentiment, i.e., triplets on
the form (feature, opinion, sentiment). E.g., (service, excellent,
positive). The features are nouns and are interpreted as aspects. An undirected
weighted tripartite graph is constructed initially. The vertices are the union of the set
of users, the set of items to be recommended, and the set of aspects which were extracted
in the earlier step. All the edges are between vertices of different sets since the graph is
tripartite. Interactions are stored as edges from user nodes to item nodes. The weights of
these edges are ratings. The ratings are scaled as part of the algorithm so that they can
be either implicit or explicit. An aspect used by a user in any review is stored as an edge
from that user node to an aspect node. Similarly, the edges between aspects and items
represent aspects that have been used to describe each item. The edge weight between
aspects and users or items are the number of occurrences in reviews from users or about
items, respectively. These weights are normalized.

When a recommendation is requested, the prior preferences of the user is set as initial
weights, or scores, to the user, item, and aspect vertices. The weights of the item vertices
are set to the rating of that user to that item, the same as the edge weights from the cor-
responding user vertex. The weights of the aspect vertices are set to the same as the edge
weights from the user vertex to the aspect vertex. For the other user vertices, social infor-
mation can be incorporated, and a relation score can be set to each vertex, but the authors
do not use such information and set the weight of the user requesting the recommenda-
tion to 1 and the weight of all the other users’ vertices to 0. Then, the TriRank algorithm
updates all the vertex weights in the graph iteratively according to two principles. The
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principle of smoothness states that the weight of connected vertices should not vary too
much. The principle of fitting constraints states that the updated weights should not differ
too much from their initial values. A loss function which is minimized expresses these
principles.

Aspects and unseen items with the most significant weights can be presented as expla-
nations and recommendations, respectively after the algorithm has converged. The algo-
rithm could be reduced to collaborative filtering by removing vertices and edges associated
with aspects. The aspects add information which both improves the recommendations and
functions as explanations. The user can update the weight assigned to an aspect to up-
date the recommendations since the aspects are closely tied to the recommendations. This
makes the recommendations scrutable.

AMF Hou et al. [50] also incorporate reviews into their explainable recommendation
system by extracting aspects from the reviews. Their definition of aspects is different from
how He et al. [49] defined it. Here, aspects are similar to topics as we defined it in our
description of latent factor models in section 2.

Aspect Segmentation Algorithm [51] is an algorithm which maps the words in each
review onto aspects. Based on these aspects they create User Aspect Preference (UAP)
and Item Aspect Quality (IAQ) matrices. Such matrices define the user preference to an
aspect and the review sentiment of an item to an aspect. Predicted ratings are made from
their proposed Aspect-based Matrix Factorization (AMF) model. In addition to assuming
that two latent factor matrices can reconstruct the original rating matrix, it also represents
the latent factor matrices as two different latent factor matrices which map user preference
on aspects and item sentiment information on aspects to latent space. These four latent
factor matrices are trained simultaneously using stochastic gradient descent. The motiva-
tion is that the information extracted from aspects should improve the accuracy of rating
predictions.

Explanations can then be visualized by plotting the row in the UAP matrix corre-
sponding to a user and compare it to the row in the IAQ matrix corresponding to the
recommended item.

The authors tested the algorithm on a hotel review dataset and a video game review
dataset, where the algorithm performed well and produced informative explanations. The
aspects are entirely dependent on the domains. It is fair to assume that even though those
domains are a little different, the algorithm would probably work well on the domain of
movies and TV shows.

CNN filter interpretation The authors of [52] created a method to identify important
features for a CNN in the setting of NLP. They calculated the correlation between all
triplets in the dataset and the target classes. This makes it possible to find a threshold
for each filter for how important triplets must be for them to count as contributing to
the given classification. The importance of a single triplet was measured as its purity of
target classes. Thresholding acts as a regularization technique, refining the input features,
the triplets, to make the explanations more human interpretable. This was done because
embeddings match multiple words, but to different degrees, resulting in many possible
triplet matches.
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The remaining triplets after thresholding were aggregated based on the hamming dis-
tance for the slots in the filter, with a distance of 0, 1, and 2. Each slot is a position in
the filter. This makes it possible to identify filters which has one or two free slots, i.e.,
slots where the filter is indifferent to the input given the non-free slots. Triplets can then
be sorted by contribution based on their contribution score to the target class. Finally, the
triplets were clustered using mean shift clustering on the word embeddings of the triplets.
Mean shift clustering is not dependent on prior knowledge of the number of clusters, which
is useful in this case since the cluster count is unknown.

DARPA DARPA [53] have started an Explainable AI program [54] with two goals. It
aims to create a suite of machine learning techniques that produce more explainable and
high-performing models, and to enable humans to understand, trust, and manage artifi-
cially intelligent partners. DARPA has not yet released any techniques or models from
this program. They explore XAI within, amongst other areas and topics [55]; representa-
tions, methods of learning, architecture, user interactions and decision making, acceptance
testing, question answering systems.

3.2 Data sets
The majority of the contents from this section has been copied from our pilot project [44]
that led up to this project. We considered different datasets for different recommendation
systems. Some of the properties we evaluated were sparsity, quality, type, and license.

Internet Movie Database, or IMDb1, provides metadata which can only be used for
personal and non-commercial usage but offers commercial licenses if necessary. All meta-
data is categorized by type and is available as compressed files from their website. To the
authors’ knowledge, this is by far the most comprehensive metadata set.

The Movie Database, TMDb2, also provides metadata with similar restrictions. This
data is accessible through a REST-API, not as handily compressed files. All metadata
must be scraped from their API, within a specified rate limit restriction. The number of
API-calls necessary to scrape all metadata were unfeasible at the time. Therefore we did
not explore this dataset further.

Opinion mining and sentiment analysis could be used to extract more data about a
movie, such as common words or phrases. Sadly, the IMDb dataset did not contain user-
written reviews. Furthermore, they do not permit any form of scraping of these reviews
from their website. TMDb supplies and permits such usage for its REST-API. We scraped
all movie reviews from TMDb for future purposes. It should be noted that an immediate
issue with this dataset was the sparsity. Around 3600 reviews were scraped from all movies
available. IMDb has in comparison vastly more data, where a single movie can have 3000
reviews.

Tweets can also hold relevant information in a short and concise form. We got a Twitter
developer account approved and explored the API of Twitter 3. One of the problems that

1https://www.imdb.com/
2https://www.themoviedb.org/
3https://twitter.com/
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arose was how to match movies against Tweets. The API must be queried in such a way
that one gets as many relevant Tweets as possible. This could be done by querying on
movie titles, actors, or keywords in general. We quickly discovered that movie titles are
ambiguous, as there is no standard for these titles. Movies can have multiple titles in
different languages. Many movies can also share the same title but have a different release
year. The operation of linking movies from one dataset to another is problematic and
affects the quality of the combined dataset.

The movie title mismatch issue was also encountered when we found an Amazon
movie review dataset4. Although this data is cleaner, movie title ambiguity would still
be an issue affecting precision and recall when joining the datasets. This dataset contained
8× 106 reviews with ratings for movies up until the year 2012. It also contains explicit
feedback on the reviews themselves in the form of helpful and not helpful count.

A promising dataset is Movielens [56]. It is an ongoing project from the GroupLens
Research team [57] and is free to use for non-commercial usage. Movielens provides
movies, users, explicit ratings, and links to both IMDb and TMDb, but no metadata. This
is in contrast to IMDb and TMDb, which has metadata but no ratings. Links between
this dataset and IMDb or TMDb makes it possible to implement some of the algorithms
mentioned earlier and allows the possibility of comparing results against other works.
Grouplens also provides [58] movie tags in the Tag Genome Data Set. Movielens users
have provided tags for many movies, and the project authors have calculated the relevance
of each tag for all movies. See table 3.1 and 3.2 for statistics on the Movielens and Tag
Genome datasets, respectively. Movielens is one of the few datasets which provides ex-
plicit ratings, but sparsity remains an issue.

Netflix5 held a competition called Netflix Prize [59] for recommender systems in 2008-
2009. In short, the competition was to beat Netflix’s algorithm for predictions. They
provided a dataset of 1× 109 ratings from around 5× 105 users on 17× 104 movies. This
makes this dataset far less sparse than the Grouplens dataset. The number of movies was
also comparatively lower than Grouplens. The license was restricted to non-commercial
usage, and it is improbable to get a commercial license for it. Therefore, we decided not
to use it for further work.

The Amazon product data dataset [60–62] on the Movies and TV category in its 5-
core version were used in this project. 5-core means that the data has been reduced to only
include the users and items which has more than five reviews each. The dataset includes
information such as helpfulness votes of reviews, product metadata, and links. In this
project, we used the 5-core and only used user id, item id, rating, and review text. See
table 3.3 for some statistics of this dataset. A sample of this data set can be found in figure
6.1 in appendix A. During training the number of ratings and reviews per user were set to
be maximally 17 and per item maximally 59. Each review was also limited to only contain
409 words. These values were chosen so that 90% of all users, items, and reviews would
not have to be truncated. The result of this truncation and the 5-core variation is that each
user has between 5 and 17 reviews. Each item has between 5 and 59 reviews, and each
review has a maximum length of 409 words.

We also explored datasets from other domains. A collection of datasets for recom-

4https://snap.stanford.edu/data/web-Movies.html
5https://www.netflix.com/browse
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Table 3.1: Movielens dataset

Stat Value

Movies 26× 103

Users 140× 103

Ratings 20× 106

Sparsity 0.9946

Table 3.2: Genome dataset

Stat Value

Distinct tags 1× 103

Labeled tags 12× 106

Stat Value

Movies 5× 104

Users 1.2× 105

Ratings and reviews 1.6× 106

Table 3.3: Amazon movies and TV 5-core

mender systems has been made by the University of California, San Diego [62]. 225× 106

user-book interactions are published from Goodreads [63], a book curation service. 82× 106

explicit ratings and reviews are given in a larger Amazon dataset [60–62] of items such
as movies, electronics, and clothes. LibraryThing [64] has a dataset of 106 book ratings
based on a social context.

30



Chapter 4
Approach

This section elaborates the approaches chosen in this work.
There are several deep learning-based models for recommender systems. Since we

did not want to spend time reinventing the wheel and implement an existing model, one
criterion when choosing the model was the availability of detailed information about the
model in the form of either a model description or source code. Furthermore, it must be
trained on a publicly available data set. This makes it possible to analyze the input data for
interpretations of both the model and the predictions it makes. The model must be SOTA
or near so. This lead to the choice of NARRE. This model achieves SOTA performance
on recommendations, and the authors provide source code as well. This model depends on
ratings and reviews from users. Hence we used the Amazon 5-core dataset (section 3.2).

As discussed in section 2.5.1, the review explanations from NARRE do not provide
detailed and specific information as to why the item was recommended for a particular
user. We believe that it is difficult to understand the decision process of a system from a
single review. It provides too much information while at the same time being too subjective
since the review, in many cases, only represent one point of view. This is counter-intuitive
of how explanations should be; simple and direct.

We, therefore, examine NARRE with two different approaches. An overview of this
examination scheme is described in figure 4.1.

TCAV is used in different ways to identify global concepts that affect the recommen-
dations. The term concepts from TCAV in recommender systems is vague and we explore
different definitions by applying them to NARRE. NARRE is also decomposed into sepa-
rate parts, rather than looking at the model as a whole. We restrict our research to the first
layers of the model.

Our motivation is also to inspect what the model has learned. Instead of looking at
explainability for a single prediction, we can look at the general knowledge that lies in the
model. This can, in turn, be used to explain predictions.

Section 4.1.1 looks for explanations of the model by using TCAV. This method is
used with different combinations of input data to inspect the effects on recommendations.
Section 4.1.2 looks at the different parts of the model and inspects these individually. A
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short description of implementation is presented in 4.2.

4.1 Overview of the study
An overview of the study is shown in figure 4.1. The input data is passed to the model,
and a prediction is generated. A technique which uses LRP is dependent on the input data
and the output from a specific layer shown as (b). Another technique which uses TCAV
is dependent on the input data, the prediction, and the output from a given layer which is
shown as (c) in the figure. Finally, we inspect the weights of a layer, shown as (a).

NARRE

L1 L2 L3Data Prediction

TCAV

LRP

(c)

(b)

(a)

Figure 4.1: Overview of the architecture. (a) represents the analysis of the weights of layer 1. (b) is
the output from layer 1 which is fed to the LRP analysis. (c) is the internal representation in layer 3
which TCAV uses for further analysis. Note that this diagram represents an arbitrary simpler model
with three layers, w.l.o.g.

4.1.1 TCAV
Since TCAV only requires a set of example inputs to define a concept, we could be quite
creative when experimenting with which variations of concepts we wanted to test. One
limitation is that TCAV considers the activations in a layer during a regular forward pass
of the model. I.e., it requires the same input tensor format. The model relies on user ID
and item ID in addition to review text as input. Therefore we used reviews from the dataset
when defining concepts. The method would likely work somewhat without the IDs, but
we restricted the input to that in the dataset so we would not have to risk performance loss.
This problem could also be partially circumvented by considering the activations in a layer
which do not base its calculations on either user ID or item ID, meaning that the IDs will
intuitively have less impact on the TCAV score. However, this is not a perfect solution
since the TCAV score is also dependent on the prediction, which naturally is dependent on
the entirety of the input.

TCAV computes the scores against a random set of concepts. In all our experiments,
we used a random subset of the data for each random concept. However, we could have
used the inverse, or opposite, of a concept. We did not pursue this idea because TCAV
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should still work well when comparing with random concepts and also because the inverse
of a concept can be ambiguous.

Topics as concepts One approach was to define one word as a concept. The motivation
was that the concepts could then be interpreted as topics. In order to collect inputs for the
different topics, we used TF-IDF to find the reviews which referred to these words often.
TF-IDF [65] is a measure of how often a term appears in a review divided by a measure
of how often the term appears in the whole dataset. Because a review could span several
topics, we also experimented with splitting the reviews into sentences. In order to ensure
that the ”topic sentences” uses similar semantics when discussing the topic, we could use
a paraphrase detection model (see [66]) to further rank the reviews on similarity. This was,
however, deferred to future work because of time constraints.

Movies as concepts A different approach is to consider each movie as a concept. The
concept inputs would then be made up of the reviews written about that movie. The motiva-
tion is that users writing reviews about a particular movie would use a certain language and
that the activations from this language would be an internal representation of the movie.
This approach allowed a form of validation, which is further described in section 4.1.1.
Based on the idea of movies as concepts, we could also use the average TCAV score for
each movie when rating a movie for several users as a similarity measure between movies,
and use this information in a clustering algorithm to find similar movies based on their
reviews. Based on this, TCAV could be used to extend the recommendation engine to also
suggest movies for the user instead of just the rating regression as it does in its current
form. This was deferred to future work.

Sentiments as concepts We explored current uses of the Large Movie Review Dataset
[67]. This dataset contained 25000 reviews with a sentiment rating from 1 to 10, with 1
representing the most negative sentiment and 10 representing the most positive sentiment.
There are several [68, 69] freely available implementations of sentiment analysis based on
this dataset. We could leverage such models by using the classifications to create sets of
input to TCAV. This would produce instances of classes positive and negative.

Positive/negative words as concepts Similar to the tests run with the topic words, we
used a list of positive and negative words from the book Film Studies [70]. We performed
the TF-IDF scoring described earlier in this section on the words. The list of positive
words are in table 4.1 and the negative words are in 4.2.

TCAV validation We test TCAV by considering movies that the user had seen as con-
cepts. The set of inputs for each concept is then the reviews written by other users for that
movie. In order to evaluate the accuracy of the TCAV score given to a movie, we measure
the impact of reviews about the movie on the predictions made by the model on several
other movies for the user under evaluation. Since the TCAV scores are based on how the
model works when predicting ratings, removing the movie reviews from movies with a
high TCAV score should affect the average predicted rating over many movies for one
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insightful clever charming
comical charismatic enjoyable

uproarious original tender
hilarious absorbing sensitive
riveting intriguing powerful

fascinating pleasant surprising
dazzling imaginative legendary

unpretentious

Table 4.1: Positive words

violent moronic flawed
juvenile boring distasteful
ordinary disgusting senseless

static brutal confused
disappointing bloody silly

tired predictable stupid
uninteresting weak trite

uneven outdated dreadful
bland

Table 4.2: Negative words

user by more than the movie reviews from movies with a low TCAV score. This means
that we do not attempt to validate the TCAV scores themselves, but rather whether the
ordering of the TCAV scores correlates with the order of the magnitude of the changes in
the ratings predicted by the model.

This experiment was performed by using the model to predict the ratings of many
movies for a user. Then, we compute the TCAV scores for the movies that this user has
written reviews about. After this, we remove each movie review in turn from this user and
recalculate the predictions of the same movies for the truncated user. The sum of differ-
ences per movie review is used as a measure of how vital that particular movie reviews
were to the predictions of the model. This was done for several users, and the results were
aggregated. We hypothesize that the ”importance” found for each movie would correlate
with the TCAV score for that movie.

We explored whether the data could be more correlated if we removed the least cor-
related users since this is real-world data, and people are known to be quite inconsistent
when rating [5]. The percentage of the number of remaining users compared to the total
amount of users can then be described as the percentage fit of the hypothesis.

4.1.2 Component study
The intuition for decomposing the model into smaller components is that explanations
for upstream layers provide the basis for downstream layers. Any explanations targeted
at the NCF (section 2.2) component of NARRE will be dependent of the input to this

34



component, which is the sum of user/item-embedding and a hidden layer. Both of which
are not trivially interpretable, and must be interpreted as well. The first steps of interpreting
NARRE is, therefore, to interpret the model gradually from head to tail. An attempt to
explain the NCF-component might result in a neighborhood-based explanation and is left
for future work.

The model uses embeddings, CNNs, NCF, and attention layers, but it is not particularly
deep. This makes it simpler to inspect the workings of the individual components. Item
and user embeddings are used to encode item and user IDs into the network. Therefore they
do not provide much information. While the word embedding word2vec is fascinating,
it is also challenging to decode because of the latent space. The CNN could provide
information. Both by interpreting the weights for the filters, but also by investigating the
computation of different words from the input to the output values of the filters. Input such
as words is readily interpretable by humans, unlike vectors of seemingly random numbers.

The attention component is the part of the model which currently decides which re-
views, or explanations, that are provided to users. The authors of NARRE argue that since
the attention layer is trained to determine the usefulness of reviews, the review with the
highest attention score should act as a good explanation of the recommendation. They
also include experiments to prove their point. In our preliminary studies, we found that
a concerning number of recommendations had the highest attention score assigned to an
empty review used to pad the user profile. This could be a symptom that our model was
underfitted, but it could also indicate that the model eventually learns to rely less on the re-
views and more on the ratings when predicting ratings. We did not attempt to define model
fitness based on the ratio of empty reviews supplied as explanations since we considered
this ratio to be an unreliable and unstable metric.

NCF is the final component of the model. It combines the representations of the re-
views from the CNN component weighed by the attention component in one hidden layer
and the ratings in another hidden layer. Then, it combines these layers to predict a rating.
The authors note that more hidden layers could be added to include additional non-linear
transformations. Explanations based on this component could use the weight matrices as
a basis for a distance measure and present an explanation similar to the one described
in section 2.1.2. There are approaches in the literature to increase the explainability of
neighborhood-based system [48], but we did not explore this due to time constraints.

LRP A segment of the network was chosen to limit our scope; we inspected the network
from the input layer up until, but not including, the attention layer. This makes the CNN
the focus of this subtask. We can interpret the 100 filters on a global level, i.e., see what
the model has learned. Investigating the attention layer was left for further work.

We can use these global interpretations to produce local explanations since NARRE
provides a review text along with the recommended item. This recommendation can be
explained further by producing a set of input features with scores that originate from the
review text.

As discussed in chapter 3.1, one method to interpret CNN filter activations is to cal-
culate the correlation between triplets and the target class, set a threshold for importance,
permute triplets according to the hamming distance, and finally, cluster the triplets.

We decided to use Layer-wise Relevance Propagation, LRP, to find the candidate
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triplets, instead of iterating through all possible triplets in the dataset. There would be
no need to permute all possible triplets and find the correlation as LRP would assign a
score, similar to that of the correlation, to each triplet in the input text. This turned the
filter analysis into a regression problem, with the filter activation as the variable being
regressed. The idea is that LRP follows the target variable, i.e., the filter activation, back-
ward through the network to the input features. This means that we do not have to find the
correlation, as these are similar to our relevance scores from LRP. We could then assign
relevance scores on triplets for the different filters.

One of the issues that arose was the lack of a threshold. Each of the 100 filters was
activated in 20% of all documents, which means each document had on average 20 filter
activations. This was partially solved by binning all triplets by relevance score into each
percentile of relevance score. The performance of the model was measured for each of the
percentiles by removing all the text that was not present in that percentile. Our motivation
for this was the ability to choose a percentile with a reasonable trade-off in model RMSE.

Even after selecting a reasonable threshold by this method, we still had too many dis-
tinct words to cluster. We, therefore, selected the top-N words for each slot and attempted
to find clusters of these.

This introduced a non-trivial problem: the sorting method. We sorted all triplets by
the sum of their slot relevance scores, and gradually removed all outstanding triplets from
the corpus and measured the RMSE. The negative relevance score can be negative as well,
indicating that the filter can be averse to some words. Therefore we also sorted the triplets
on the absolute value of the triplet relevance. We also performed max pooling per filter
per document. Multiple triplets in a single document may, after all, activate the same filter.
Therefore we choose the highest scoring one to reduce noise. The performance of the
different sorting methods are presented in figure 5.8.

In figure 5.10, we inspect the RMSE as a function of the percentile remaining of kept
triplets, based on their relevance score. The 100th percentile keeps all triplets, while the
95th percentile removes all triplets that are not in the top 5%.

We also inspected different ways of removing non contributing, or dead, words. The
paper we were inspired by used occlusion; a method where dead words are replaced with
the embedded value of the padding word, e.g., <PAD/>. We discovered that some filters
were activated by this padding word while inspecting the triplets. Therefore, it could be
reasoned that this can impact performance since it generates new triplets. To reduce this
effect, we included one more word on each side of a triplet, creating quintuplets instead.
These quintuplets were then concatenated together. We also looked at the effect of not
including these neighboring words and just concatenating them. This method also has the
effect of generating new triplets. These results are presented in figure 5.9.

Our final method of inspecting the CNN was by multiplying the weights of each filter
in the CNN with the words in the embedding space. The candidate words were found
by sorting the result by the sum of the product. This is similar to how the values would
propagate through the network during the forward pass. While this is interesting, it might
also not provide any useful information since such words could be coincidental.
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4.2 Description of Implementation

4.2.1 TCAV
The computations of TCAV scores are described in section 2.4.2. This was implemented
to the best of our ability based on the Github repository [71] from the authors. The im-
plementation in the repository, as well as in the paper, were based on a model for image
classification. We had to adjust the form of the predictions in the TCAV framework since
NARRE is a regression model.

The authors of NARRE have published an implementation of their model [72], which
we based our implementation on. The model was trained on an Nvidia Tesla P100 GPU
for one day. Further training did not decrease the score on the validation set.

Topics as concepts We used the TF-IDF implementation in scikit-learn [73] to score the
reviews on TF-IDF. For each topic word, we ranked every review based on the TF-IDF
score reported and wrote the 200 reviews with the highest score into a folder. We used a
review-to-id dictionary to find the correct user and item ID for the model. We did not use
individual sentences because we wanted to avoid text that was separated by a period but
would not be considered a sentence. Checking the validity of every review sentence would
be time-consuming.

Movies as concepts For this approach, we wanted each concept folder to represent a
movie. Each movie had a folder containing its reviews. The input tensor we use for con-
cept reviews in TCAV expects reviews authored by one user on several different movies.
However, in this case, it would receive a set of reviews about one movie authored by sev-
eral users. Since every review is from a user to a movie, the CNN should be prepared to
handle the slight variation of the inputs. In addition to this input, the IDs for the user who
had written the review and the movie it was written for had to be flipped.

Sentiments as concepts We were inspired by existing [69] models and trained a Keras1

model on a relevant dataset. This model used GloVe [74] embeddings, followed by a
dropout layer with ρ = 10%, an LSTM [75] of hidden size 64, a 1D global average
pooling, one dense layer of hidden size 32 with ReLU activation and finally a dense layer
of one node and ReLU as activation. We then choose the 200 most positive and 200
most negative reviews. We used a linear classifier as the explainable model component
to identify the most contributing sentences, using LIME as discussed in 2.4.2. The idea
was that individual sentences have varying degrees of contributions to the class, and we
could, therefore, find the sentences with the most positive and negative sentiments. These
sentences were used as concept examples for TCAV.

Positive/negative words as concepts We used each word in the list of positive and neg-
ative words as topic words. Then we did the same TF-IDF scoring as described earlier
in this section to make one folder per word. Then we computed the TCAV score for ev-
ery topic folder for 1600 users and saved the TCAV result per word per user. After this,

1https://keras.io/
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we used matplotlib’s function to produce box-plots of the scores for the positive and the
negative words.

TCAV validation The work required to implement the validation builds on the approach
where we considered movies as concepts. In addition to the TCAV scores, this approach
required a metric which captures the change in rating if a movie review had been removed
from the user profile. This was not difficult to implement using the trained model. We
used the implementation of Linear Regression from scikit-learn for the statistical analysis
of the results. We removed user profiles to increase the accuracy of the trained linear
regression model, as explained in section 4.1.1. The algorithm for removing user profiles
was greedy, and would not necessarily find the optimal collection of users in terms of R2.
Devising a better algorithm was not attempted because we wanted the analysis to be more
predictable and interpretable, and because it would be non-trivial to design an algorithm
which would perform significantly faster than the brute-force approach of searching the
entire collection space. Searching the entire collection space would be a subset problem
with a running time of O∗(2n), where n is the number of users. Searching the entire
collection space is intractable.

4.2.2 Component study
LRP The iNNvestigate [76] library provided implementations of LRP, but relied on
Keras. We, therefore, trained NARRE, which uses Tensorflow2, and created a surrogate
model of the CNN in Keras, which matched the original model as close as possible. Fi-
nally, the weights from NARRE were imported into our ablated Keras model. We con-
firmed that the output matched that of NARRE, before using iNNvestigate on the dataset
for further processing. Scikit-learn provided a set of clustering algorithms which we used
on the word embeddings of the triplets.

2https://www.tensorflow.org/
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Chapter 5
Evaluation

5.1 Results

5.1.1 TCAV

Topics as concepts

Figure 5.1 shows a box plot of the TCAV score of some topic words. The topics are sorted
by the median of their values. See figure 6.2 in appendix B for density plots of the TCAV
scores.

Movies as concepts

Using movies as concepts were explored as part of TCAV validation, described later in
this section.

Sentiments as concepts

The TCAV scores for the positive reviews found from the sentiment analysis are included
in figure 5.1 with the other topic words, to provide context to the values.

Positive/negative words as concepts

Figure 5.2 shows box plots of the distributions of the positive and negative words. The
orange line is the median of the data, the box contains the 25th to the 75th percentile, the
whiskers extend 1.5 times the width of the box past the box, and the circles are outliers.
The rightmost half is the negative words sorted by the median, and the leftmost half is the
positive words also sorted by the median. See figure 6.3 in appendix B for density plots of
the TCAV scores.
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Figure 5.1: Box plot of TCAV score of various topics for several users

TCAV validation

As described in section 4.1.1 we would calculate the TCAV scores for a user per movie and
compare that to the change in rating if the movie were removed from the user. The results
can be seen in figure 5.3. Since we are mostly concerned with the values for each movie
relative to the other movies from the same user, we also normalized the values, shown in
figure 5.4.

In pursuit of better correlation and insight into the data, noisy data points or outliers
were removed prior to the analysis. In order to do this, we held out each user profile, one
by one, from the dataset. The R2 of the remaining dataset was calculated and used to
exclude the user with the highest R2. We repeated this procedure until we had reached a
certain correlation. In order to determine this target correlation, we plotted the correlation
after removing different amounts of users. This plot can be seen in figure 5.5.

We plotted the TCAV score against the change in ratings when the R2 had reached a
value of 0.1 in figure 6.4 and 0.2 in figure 6.5. Both figures are found in appendix B. 38.5%
and 53.8% of the users were removed to achieve a R2 value of 0.1 and 0.2, respectively.

We plotted the position of the movie with the highest TCAV score in the importance
list for several users. This can be seen in figure 5.6. This figure does not include the
movies which either had a TCAV score of zero or which changed the ratings by zero.
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Figure 5.2: Distribution of the TCAV scores for positive and negative words

Figure 5.3: Change in tcav score plotted against change in predicted score

41



Figure 5.4: Normalized change in tcav score plotted against normalized change in predicted score
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Figure 5.5: Correlation when removing a number of users
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Figure 5.6: The position of the highest TCAV rated movie in the list of important movies for changes
in rating
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5.1.2 Component study
LRP

All 1.7 ∗ 106 reviews were processed with LRP on the CNN part of the model. There
were 65 ∗ 106 triplets by the 100 filters on the corpus. 4.8 ∗ 106 of which were distinct
triplets. Max pooling the triplets per filter, per document, reduced the number of triplets
from 4.8 ∗ 106 to 1.5 ∗ 106. Despite our best efforts, we were unable to explain the CNN.
The primary issue was the clustering of the word embeddings. Each of the filters had,
on average, 14580 distinct triplets. Sorting these by activation yielded rare triplets which
likely did not contribute much to the model accuracy. The clustering of these gave, in our
eyes, many seemingly random words. Sorting the triplets by frequency, on the other hand,
often led to triplets which did not belong together. This was evident by the low activation
score the triplets had. Clustering these triplets gave few triplets, but again, these were also
very little concise.

Inspecting the score when multiplying filter slot weights with all word embeddings
gave similar results. Again, some words were ranked very high, but these were either very
infrequent or absent from the data set. This is likely because the vocabulary of the reviews
is a subset of the embedding vocabulary.

As seen in figure 5.7, there is some negative correlation between the first and last slot
in the filters. The inspection of this effect is left for future work. A small sample of the
data during this procedure can be found in table 6.1 in appendix A.

Figure 5.8 shows the RMSE for different ways of sorting and removing triplets from
the input. All methods sort triplets by relevance score and keeps the highest scoring ones.
Relevance is the default sorting method. Relevance scores can be negative; thus, we sort
triplets by the absolute value as well. Finally, we select the highest scoring triplet, per
filter, per document.

Figure 5.9 RMSE as a function of number of unique triplets kept. Occlusion replaces
the words between triplets with the embedding of <PAD/>. Wide occlusion is similar, but
it keeps quintuplets, i.e., including the neighboring words to a triplet, before replacing the
dead space with the pad value. Cut keeps triplets and cuts out the words between triplets,
before concatenating the remaining triplets.

Finally, figure 5.10 shows the RMSE as a function of triplets kept, when removing
triplets by occlusion, sorting by max pool method.
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Figure 5.7: Correlation of triplet features. W1−W3 is the relevance scores for slot 1 - 3.
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Figure 5.8: Change in RMSE for different triplet sorting methods
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Figure 5.9: Change in RMSE for different triplet removal methods
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the input data.
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5.2 Discussion
Our approach is built on NARRE, which makes it dependent on a data set with the same
input features. Reviews are the only interaction between users and items that this system
supports, which is a drawback. Reviews might not be available or applicable to a specific
recommender system and other interactions are not supported.

5.2.1 TCAV

Topics as concepts

We could not discern any meaningful patterns in the topic words we tested. An interesting
property of the TCAV scores for each topic is the spread of the data. A wide spread
indicates that the topic is contrasted, while a narrow spread means that all users are equally
affected by the topic. If a small change in TCAV score results in a significant change in
suspected interest, compared to the rest of the userbase, the measure might not be fit to use
as a basis for explanations. The topics we would be most interested in is, therefore ”cast”,
”positive”, and ”predictable”.

Sentiment as concepts

The positive words found from the manual annotation had an interesting property: a wide
distribution of TCAV scores compared to other topics. We believe that the method with
TF-IDF, which was used for the other topics, captures less relevant information than the
manual annotation. Intuitively this makes sense; the CNN does more than just counting
the words in the reviews.

Positive/negative words as concepts

Generally speaking, the spread of each concept here is wider compared to the spread of the
concepts in the ”Topics as concepts” approach. This could be explained by claiming that
the model tries to find generally positive and negative reviews, but considers the writing
style when doing so. If the language used in a review matches the language used by a user,
the user will be more affected by the sentiment of the review.

Validating TCAV

Quantifying the correlation between the TCAV score and the changes in the ratings were
done by training a linear classifier on the data, and evaluating the coefficient of correlation
(R2). If there had been a perfect correlation, this quantity would be 1. However, we do
not expect a perfect correlation since TCAV is defined differently from merely the change
in ratings. We hypothesize that the TCAV score and the change in ratings would both be
a measure of importance, and as such, should be somewhat correlated. Ideally, what we
would like to see in these plots are many points along the diagonal, which would indicate
that there is a correlation between TCAV scores and changes in ratings. In these plots,
there seems to be very little correlation.
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There does not seem to be any apparent breakpoints in the plot showing the hypothesis
fit at different numbers of users removed.

In the TCAV validation done until now, the focus has been on whether the ordering
of the TCAV scores have correlated with the changes in the ratings if the movie had been
removed. A different perspective is to consider the top TCAV rated movie and investigate
what its importance to the user ratings are. This perspective is more relevant for explana-
tions that are based on a single related movie instead of multiple movies.

We can see that the highest TCAV rated movie tend to be high in the importance list.
This is promising for our hypothesis. Evaluating the TCAV score for a user is a quick way
of estimating the most essential movie a user has seen, and this result hints that it could be
accurate as well.

5.2.2 LRP
Sorting method

Sorting the triplets by relevance score or absolute value of relevance score is very similar,
and we cannot assert the effects, or the lack thereof, of negative relevance scores. This is
seen in figure 5.8. While the blue curve is slightly below the orange, the difference remains
minimal. Reducing the triplets by max pooling, and then sorting the remaining triplets on
their relevance scores, has a relatively low impact on the RMSE. We believe that this is
because the model performs max pooling on the triplets which, in a way, sets a threshold
for triplet relevance score. We choose the latter result for the remaining work.

When inspecting the effects of triplet removal by max pool sort in figure 5.10, we
observe that the slope decreases rapidly until the 50th percentile, after which it tapers off.
The breakpoint at the 50th percentile represents a small trade-off in performance for a
considerable reduction of triplets. It should be noted that the max pooling operation has
already reduced the triplet count by 30%, while still having a good performance before
any thresholding. This is marked as the green X in figure 5.10.

Triplet removal method

The simple cut method has the highest RMSE, as seen in figure 5.9. We believe that new
triplets are produced when doing this operation, which can be considered unnatural. The
same reasoning applies to the wide occlusion method, but to a lesser extent. The occlusion
method has the lowest RMSE, which disproves our theory of a negative impact of the
padding value.

Interpretation

As with MF-based algorithms, the latent space is not necessarily interpretable. Embed-
dings are often latent spaces, which makes them difficult to interpret as well. This is an
issue, as the filters themselves could be traced back to the latent space but little informa-
tion would be gained. Similar words would be close in the latent space, and a filter slot
would generate close values for these words. This also means that a filter slot could be an
average of multiple words, which is counter-intuitive of words having a single definition.
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The dimensionality of the word embeddings was an issue. We attempted to use mean shift
clustering on each of the filter slots, as the original authors did, but the obtained clus-
ters accounted for a meager percentage of triplets that were activated. These words were
considered to be outliers in the data set. Therefore, we tried to assign custom weights to
the words when performing the clustering. Such weights could be a function of relevance
score, total activation count across all filters, and activation count within each filter num-
ber. This conflicts with mean shift, as it operates with its internal weights and is indifferent
to prior assigned weights. The weights can be used with DBSCAN [77], where the weights
would increase or decrease the minimum required points for a cluster to be defined as a
core cluster. However, the results from DBSCAN was inconclusive as well. Some of the
issue was related to the need for a hyperparameter eps which essentially decides how many
clusters there are. The other issue was that the custom weight function must strike a bal-
ance between the importance of word relevance and word occurrence count. There were
multiple clusters, but each cluster only consisted of one word. This could be because the
assigned weight for each triplet was too high, favoring the case where each word appeared
to be separate clusters. On the other hand, reducing the effect of word occurrence count
resulted in similar clustering to that of mean shift.

Another issue was that around 40% of the distinct words for a filter slot were not
present in the embedding. This is likely because of bias layers in the network, which
essentially adds some value to each word. This causes LRP to assign relevance to the
word, even though the word has a zero vector in the embedding space. A solution could be
to pre-process the dataset, prior to the training, by removing all words not present in the
embedding. Another solution would be to use a word embedding with support for out of
vocabulary words, such as ELMo. This requires some work as different word embeddings
employ different pre-processing and hyperparameters. The model would also have to be
retrained.

We manually interpreted the triplets in the filters. This is a time-consuming task and
would require maintenance over time if the model is to be continuously updated. It also
introduces room for human error and biases.

The number of filters also affects interpretability. It is easier to perceive the informa-
tion from a few triplets, rather than many triplets. One would have to choose a stringent
threshold for deciding on how relevant a filter is. This threshold should strike a balance
between ease of perception and accuracy of explanation, as these two are, in our case,
trade-offs between each other.

Another issue is that the max-pooled output of all the filters can be related in the NCF-
component of NARRE. This means that we would not be able to capture such dependen-
cies by examining the CNN-part of NARRE solely. Any further explanations from the
NCF could be neighbor-based, i.e., grouping filters together by inspecting their distances
in the latent space of the NCF. In turn, this could lead to a clustering of filter triplets.
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5.3 Research questions revisited

5.3.1 RQ1
We have seen different classical recommender systems and explanations from these in sec-
tion 2.1. Some use item metadata as explanations. This metadata can be very interpretable
but can be difficult to acquire. Other systems use a subset of user-item interactions as
explanations. These do not rely on metadata, but explanations can be shallow.

We have observed that there is not a clear definition of explanations. Some authors
define it as a justification of a recommendation which is presented to the user in a natural
language. Others define it as interpretations or insights in the model, which are presented
as raw values.

5.3.2 RQ2
With some overlap from RQ1, general interpretation techniques from ML can be applied
in deep learning as well. However, the increasing complexity of neural nets requires new
methods. This includes TCAV, LRP, and custom methods of inspection of different layers.

We have looked at general interpretation techniques of ML models in section 2.4.2.
We divided our research into local and global explanations: the former is deeply rooted in
the input data and its effect on the predictions. The latter is more general and can also be
used to check model bias or correctness.

5.3.3 RQ3
We narrowed down the scope of this question by inspecting a single recommender system,
NARRE, and a subset of its different parts. We applied TCAV to this model, with mixed
results. It is dependent on well-defined concepts, but it shows some promise. Our analysis
of the CNN was not as successful, yielding only insights into the troubles of interpreting
filters and embeddings. We have also discussed the difficulties of interpreting latent spaces,
which many recommender systems use.

5.3.4 RQ4
We use an offline metric to validate the output from our explanations. This metric measures
the response on the prediction quality when removing certain input features. This lets us
test different strategies when explaining or interpreting our results and methods.
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Chapter 6
Conclusion and future work

6.1 Conclusion
We have seen that there are different approaches to explaining recommender systems and
different limitations that must be considered. The theory in section 2.1.3 goes hand-in-
hand with how models can be more (explicitly) interpretable. This literature provides
useful guidance in pursuit of more explainable models. In this thesis, we have focused
on methods which explain the architecture of the model. Instead of treating the model
as a black box, we attempt to open the black box. We also review methods for black
box models, which uses the relation between input and output to infer the behavior of
the model. Ethical and legal issues become more pressing, not to mention the trust users
have in recommender systems; the relevance of having adequately explainable models will
increase.

We see from our work that it is possible to find explanations for methods which his-
torically has been considered black boxes. Our attempts to explain a CNN component
illustrates the difficulties one may face in the quest for interpretability of a deep learn-
ing model. Nevertheless, as the focus of the industry shifts from ”raw” measures such as
RMSE to more user-experience oriented ones, we predict that there eventually will exist
complex architectures that are inherently explainable. We introduce suggestions for con-
cepts in the domain of review, which is a possible avenue to gain insight into recommender
system that considers reviews.
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6.2 Future work
Several things could be interesting to pursue in future work.

6.2.1 Improvements to the core recommender system
Several changes to the core recommender engine could be made to increase the accuracy or
increase its explainability. The analysis in section 5.1.2 forms the basis for experimenting
with different word embeddings. As discussed in section 2.2, replacing word2vec with
BERT or ELMo would increase the accuracy of the model and improve our triplet analysis.

There is also the possibility of incorporating Explainable matrix factorization as de-
scribed by Abdollahi and Nasraoui [48]. It should be noted that EMF does not provide
explanations itself, but aims to increase the quality of neighborhood-based explanations.

We would continue the research of the CNN analysis by investigating the correlation
between the triplet weights. We would approach the CNN more methodically, evaluating
our assumptions and computational methods to ensure that our current results are correct.
Finally, we would replicate the overall method on other deep learning NLP models with
CNNs, to explore how CNNs work in general on NLP problems.

While unsuccessful with our analysis of the CNN, we would attempt to regularize the
CNN. This could be done by inventing a metric which disfavors many distinct triplets or
favors triplets with low semantic distance. This metric would then be included in the loss
function for the network, similar to EMF as mentioned above.

Explaining the NCF component of the model is also something that could be done. It
could build on some of the analysis from the CNN, providing neighborhood explanation
in terms of triplets.

6.2.2 Explanations
Several desired properties of recommender systems were introduced in section 2.1.3 . The
model performance on these properties could benefit from explanations. For example,
increasing the unexpectedness of the system could decrease how much the users trust the
system. The use of convincing explanations can regain this trust. Similarly, there is still
some functionality required by GDPR, which is not yet possible in most recommender
systems. If a user requests to be deleted from the system, the core recommender model
would have to be retrained in order to remove any trace of the user entirely. Exploring this
is an exciting area as well.

Clustering items can facilitate insight into the data. With TCAV, one could calculate a
pair-wise distance metric between movies based on the TCAV score assigned to users to
the movie-concept. This idea is touched upon in section 4.1.1.

The results from the TCAV approach suggests that using TF-IDF may not be an ideal
method to find reviews that relate to the same topic. Alternatives to TF-IDF could be
grouping reviews based on the similarity score given by a paraphrase detection model
[66], or using a generative model to compose reviews on topics.
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Table 6.1: The format of amazon 5-core Movies and TV dataset

Item ID User ID Rating Upvotes Downvotes Words Review

14552 488 5 0 4 52 i ve been a fan of the series
since i was a young boy per-
sonaly i don t consider the
price of the boxset to high
to keep me for me to plac-
ing my preorder i m sure this
boxset will be a great of-
fering from warner brothers
and that i ll spend hours go-
ing through it
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Figure 6.2: Density plots of TCAV score of various topics for several users
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Figure 6.3: Density plots of TCAV score of positive and negative words for several users
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Figure 6.4: Normalized change in predicted score with R2 of 0.1 as a function of normalized change
in TCAV

Figure 6.5: Normalized change in predicted score with R2 of 0.2 as a function of normalized change
in TCAV
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