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Norsk sammendrag 
 

Populasjonskoder i mediale entorhinal korteks 

 

Hjernebarken utfører kontinuerlig et velde av kompliserte funksjoner, hvis mekanismer 

vi kan tjene mye på å forstå. Nevrovitenskap er et relativt nytt fag, men med utrolig 

moment. Mye vites i dag om enkle nevroners egenskaper, men nevral komputering 

foregår i store trekk i interaksjonene mellom celler. Men på dette planet er det mange 

hindere som må overkommes; teknologisk nyvinning og konseptuell modning har ført 

til at nevrovitenskap gjennom de senere år har kunnet tilnærme seg spørsmal som fanger 

mekanismer på systemnivå. Hippokampus, som inneholder stedsselektive celler, utgjør 

et eksperimentelt system som tillater spørsmål om visse kjernemekanismer, slik som 

hukommelsesfunskjon og intern representasjonsdynamikk, uten streng ekpserimentell 

kontroll på innkommende og utgående signaler slik man baserer seg på i for eksempel 

sansenevrovitenskap. I hippokampusforskning er dyrets naturlige adferd en enorm 

ressurs. På grunn av den sterke tilknytningen til rom kan man ved å korrelere nevral 

aktivitet til dyrets adferd etablere svært robuste forhold mellom nevronenes aktivitet og 

funksjon på adferdnivå. Dette har ført til at hippokampusforskning har blitt en 

foregangsfront på innsamling av store datasett i dyr under normal adferd, samt tolkning 

av denne i adferdskontekst. 

 

Et stort skritt mot å forstå hvordan stedsselektiviteten i hippokampus oppstår og brukes 

kom med funnet av gitterceller, celler som er aktive i et gittermønster som dekker hele 

miljøet. Vi vet mye om disse cellenes oppførsel på enkeltcellenivå, men på grunn av 

teknisk krevende innspillingsteknikk har det vært vanskelig å spille inn nok celler til å 

forstå hvordan disse kombinerer til en populasjonskode for rom. Denne hindringen har 

vi nå overkommet, og i første arbeid brukte vi nye teknikker for å spille inn store antall 

gitterceller innen dyr og viser at gittercellekartet er organisert i moduler, hver med sin 

egen kartgeometri. Vi viser hvordan disse modulene er fordelt i vevet, og utviklet nye 

analyser for å beskive modulenes egenskaper. Vi viser at gitterkart i forskjellige 

moduler inad i dyr ikke bare kan innta forskjellig geometriske former, men også utføre 

separate operasjoner samtidig på samme eksperimentelle manipulering. Dette er første 

bevis på slik uavhengig funksjon i gitterkartet, og foreslår hvordan stedsceller kan 

generere høykapasitetslagring av representasjoner for forskjellige miljø. 
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I andre arbeid beskriver vi hvordan en annen funksjonelt definert cellegruppe i 

entorhinal korteks fungerer på populasjonsnivå, denne gangen for celler som koder 

retning til dyret i forhold til miljøet. Vi viser at denne populasjonen har en topografisk 

fordeling langs samme akse i vevet som gitterceller utviser topografi, men at denne er 

kontinuerlig i motsetning til gitterkartets modulære fordeling. 

 

I siste arbeid viser vi at miljøets geometri bestemmer hvordan gitterkartet ankres til det 

eksterne rom. Vi beskriver en universal ankringsstrategi som er optimal for å skape 

størst mulig forskjell mellom populasjonskoder for områder langs rommets grenser. 

Dette brukes kanskje til å forhindre sanseforvirring av gitterkartet i miljø med 

geometrisk ambiguøse segmenter. 

 

Avhandlingen legger frem første beskrivelser av nevrale mekanismer på 

populasjonsnivå i entorhinal korteks, og gir flere innsikter i generell organisering av 

nettverkene som er involvert i stedssans og hukommelse. 
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Summary 
 

Current systems neuroscience has unprecedented momentum, in terms of both 

technological and conceptual development. It is crucial to study systems mechanisms 

and their associated functions with behavior in mind. Hippocampal and 

parahippocampal cortices has proved a highly suitable experimental system because the 

high level functions that are performed here, including episodic memory formation, are 

accessible through the clear readout of spatial behavior. Grid cells in medial entorhinal 

cortex (MEC) have been proposed to account for the spatial selectivity in downstream 

hippocampal place cells. Until now, however, entorhinal grid cells have only been 

studied on single cell– or small local ensemble level. The main reason for population 

studies lagging behind that of hippocampus is the technical difficulties associated with 

entorhinal implantation and recording. 

 

Here we have overcome some of the main technical hurdles, and recorded 

unprecedented number of cells from distinct functional classes in MEC. We show in 

Paper 1 that the entorhinal grid map is organized into sub-maps–or modules–that 

contain grid cells sharing numerous features including spatial pattern scale, orientation, 

deformation and temporal modulation. We also demonstrate that grid modules in the 

same system can operate independently on the same input, raising the possibility that 

hippocampal capacity for encoding distinct spatial representations is enabled by the grid 

input. 

 

We further show in Paper 2 that also head direction cells in entorhinal cortex distribute 

according to a functional topography along the dorsoventral axis. The head direction 

system, however, was not modular in contrast to the grid system.  

 

Finally, Paper 3 details a common grid anchoring strategy shared across animals and 

environments. The grid pattern displayed a striking tendency to align to the cardinal 

axes of the environment, but systematically offset 7.5˚. Through simulations, we show 

that this constitutes an optimal orientation of the grid to maximally decorrelate 

population encoding of environment border segments, providing a possible link to 

border-selective cells in the mechanisms that embeds internal representation of space 

into external frames of reference. 

These findings have implications for our understanding of entorhinal and hippocampal 

computations and add several new venues for further investigation. 
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1 Introduction 

Neuroscience is a relatively new discipline, and much of the brain's workings are still 

terra incognita. There are several interesting reasons for why this is the case. For one, 

the anatomical neuroarchitecture of even the smallest of animals is enormously 

complex. However, even in species that we have mapped every neuron's connections 

and developmental origin (C. Elegans has 302 neurons, the connections between which 

are all mapped out) and can put through rigorous experimental tests, the mechanisms 

behind most computations remain obscure1. We know much about single-neuron 

computations2, and have detailed insights into biochemical and biophysical processes 

that govern the internal operations within neurons3. Still, there is a gap between levels 

of understanding, where such knowledge has limited contributions. A hallmark of brain 

systems is that individual neurons are heavily connected to other neurons. Cortical 

circuits consist mainly of principal cells that have on the order of 10000 inputs, and 

1000 outputs, which in lieu of the number of neurons that exists in brain systems 

becomes an astonishingly interconnected network. Systems with abundant feedback can 

be notoriously unstable or unpredictable. Considerable amounts of feedback in a system 

typically removes the system dynamics from a linear domain where inputs are 'orderly' 

correlated with outputs, into nonlinear domain where even microscopic perturbations 

can amplify and completely change the system's trajectory. With nonlinear dynamics 

comes very rich system behavior, but leaves even the simplest of underlying 

mechanisms often hopelessly shrouded.  

 

1.1. Social anthropology of neurons 

The study of social anthropology considers the interactions between individuals and 

sociocultural dynamics. It is said that the smallest focus, the atom, of social 

anthropology is not the individual, but rather the interaction between two individuals. In 

many ways, this summarizes an experimental focus that is becoming increasingly 

adopted among current neuroscientists. The mind is not in the neuron, but the 

interactions between neurons. As such, many of the brain's computations are embedded 

in population representations and dynamics, and our understanding can benefit from 

investigations on this level. David Marr proclaimed 3 distinct levels of understanding 

that brain systems need to be analyzed within: the computational, the algorithmic and 

the physical levels. With current technical and conceptual momentum perhaps being 

stronger than ever, we are asking questions that have answers spanning these levels.  
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1.3.2. The neural map 

The hippocampus is located deep within the medial temporal lobe and is an 

evolutionarily ancient type of cortex, archicortex, which has a very distinct architecture 

compared to neocortex or allocortex7,8. It does not feature the 6 layers associated with 

neocortex, but instead has 3, only one of which contains principal cells. There are 

subregions, which are characteristically connected. The dentate gyrus provides input to 

the CA3, which provides input to the CA1, which then provides output from 

hippocampus (see figure 2). This connection is referred to as the trisynaptic loop as 

information starts and ends in the same structure outside hippocampus (entorhinal 

cortex), and the information flow is more or less one-directional. This view is of course 

shamefully simplistic (see 9 for a comprehensive review), but it nonetheless highlights 

some features of hippocampal organization that has important bearing on functional 

considerations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Overview of main connections to and from as well as within the hippocampal 

circuit.LEC: lateral entorhinal cortex, MEC: medial entorhinal cortex, PaSub: parasubiculum, 

DG: dentate gyrus, CA3: Cornu Ammonis 3, CA2: Cornu Ammonis 2, CA1: Cornu Ammonis 1; 

SUB: subiculum 
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1.3.3. Going upstream 

In trying to understand which incoming signals could take part in generating place 

responses, both experimental and theoretical suggestions were presented14,31–34. An 

important clue came from Brun et al35 who showed that place cells in CA1 could sustain 

place characteristics even faced with ablation of its assumed critical input CA3. This 

suggested that place responses in CA1 originated from the other major input, medial 

entorhinal cortex (MEC). In pursuing this possibility, it was revealed that neurons in 

MEC were also spatially selective36,37, although typically with several fields. Shortly 

after, when the recording environment was enlarged, the spatial cells in MEC were 

revealed to be spatially selective in a near-perfect hexagonal grid of firing fields 

tessellating the entire environment38. Each grid cell has a slightly different x,y-

coordinate in the environment, so that they cover the entire environment space 

collectively. Dorsally in MEC, grid patterns typically have small fields packed densely 

together, while with increasing distance ventrally, the grid pattern scale increases. 

 

 

  

  
Figure 4. Grid cell firing 

patterns, birds eye view. Action 

potentials (black) superimposed 

on the rat's movement path 

(gray) reveal a tiling spatial 

activity pattern. Shown are grid 

patterns of 4 distinct scales 

recorded within the same 

animal. 
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2 Objectives 

2.1. Functional organization of the entorhinal grid map 

Several models33,39–43 and lines of evidence35,44–46 point to grid cells as prime candidates 

in conferring spatial selectivity to place cells in downstream hippocampus. Models that 

describe possible grid-to-place transforms are dependent on how the grid map is 

organized on several functional levels. Grid spacing distributes with topography along 

the dorsoventral axis of medial entorhinal cortex36,38,47; grid spacing increases with more 

ventral locations. Despite initial reports48, it was unclear if grid scale within animals 

distributed as a scale-continuum or instead progressed in steps. To answer this question, 

it is essential to record large numbers of grid cells from within considerable 

dorsoventral distances within animals, as to sample a sufficient range of grid spacing. It 

is necessary to record with minimal discontinuity in the tissue so that steps in spacing 

are discernable from discontinuous sampling of a smooth topography.  

 

Grid orientation was in initial reports always similar38,49, suggesting there was only one 

shared orientation within the circuit. The existence of orientation configurations across 

scale has implications for grid-to-place transforms, but highlights a more basic question. 

Is the grid map composed of smaller sub-maps, or does it act as one coherent 

representation of space, but with distinct geometric features such as spacing? 

Hippocampal remapping, the orthogonalization of population encoding of space 

between environments, demonstrates a system with great capacity for distinct 

representations. A grid map with independently functioning sub-maps may produce 

unique population pattern-combinations for every environment, resulting in unique 

input patterns to place cells, and in turn, unique hippocampal output49. A major 

objective was therefore to determine if grid cells within the same grid circuit could 

perform separate operations on the same inputs, which we explore in Paper 1. 

 

2.2. Functional organization of the entorhinal head direction system 

The entorhinal cortex contains a circuit for spatial representation that is not restricted to 

grid cells50,51. Head direction-selective cells are found in intermediate and deeper layers 
51,52 and are believed to contribute to grid and place cell function. Given the functional 

topography of grid cells within the medial entorhinal cortex, and that principal cells in 

this region expresses ion channel gradients53,54, we hypothesized that functional 

topography could be a general feature of entorhinal circuits, and would therefore also be 
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present in the head direction population. In addition, current models describe similar 

mechanisms underlying the two functional classes17,34,55 in which case the similarities of 

underlying dynamics may produce similar functional characteristics on the population 

level. However, multiple upstream areas contain head direction cells52,56 from which 

entorhinal cortex could inherit this representation, in which case population 

characteristics may differ fundamentally from other entorhinal cell classes. To establish 

the presence of a topographic distribution, large data sets are necessary, as well as 

sampling across considerable extents of medial entorhinal cortex, within the 

deep/intermediate layers, which is a challenging technical feat. These ideas, questions 

and issues were the focus of Paper 2. 

 

2.3. Environmental features that control grid anchoring 

There are no hexagonal features in the environment that correspond to the grid pattern 

representation. Grid patterns are believed to arise from local network dynamics but 

driven by self-motion and sensory inputs33,39,41,57,58. For the grid pattern to be useful in 

allocentric representations it must anchor to external context; allocentric representations 

are context-dependent. It is not known how the grid anchors to context. Several 

possibilities exist that involve anchoring to salient sensory cues in the environment, 

such as visual or olfactory cues, or to the features of the environment itself. Cells that 

encode environment borders have been described50,59, providing a possible direct 

cellular link between grid cells and geometric features from the environment. We 

investigate these questions in Paper 3. 
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Paper 1 | The entorhinal grid map is discretized 

Locally, grid cells behave as a coherent ensemble49, but it was unknown if the entire 

grid map functions as a coordinated whole or is fractioned into sub-units that display 

capacity for independent function. By combining novel and established experimental 

approaches we were able to record unprecedented number of grid cells within animals. 

This allowed us to determine that the grid map is a conglomerate of several sub-maps or 

modules. Such modules were composed of cells that all shared several functional 

features.  

 

The gradient in grid pattern scale (grid spacing) along the dorsoventral axis of MEC that 

was established in earlier works36,38,47 was found to progress in clear steps rather than a 

continuum within animals. All cells within a module shared the same grid spacing, and 

modules of increasing scale distributed with increased ventral distance along the 

dorsoventral axis. Cells that shared the same grid spacing within animals also shared 

grid orientation, the relative alignment of the pattern axes to the environment. We 

further found that modules within animals could differ substantially (see also ref 60 for a 

contemporary account); orientation distributed with tightly delineated clusters up to 30˚ 

apart, which, because of six-fold symmetry in the grid pattern, is maximally different. 

We next demonstrated that the grid pattern displayed systematic deformations, which 

were particular to each module. The deformations were detectable as ellipses in the 

distribution of fields in spatial autocorrelograms, and could vary substantially within 

animals, both in terms of direction (ellipse tilt) and amount (ellipse eccentricity).  

 

Grid cells are tuned to the ongoing population activity, manifested as oscillations in the 

local field potentials61,62. Several models implicate the ‘theta’ rhythm in grid function 

(see 63 for review). It was known that cells along the dorsoventral axis oscillate with a 

slower beat frequency than dorsal cells, thought to arise from gradients in the 

expression of specific ion channels53,54,62,64–66. We found that grid cells within 

geometrically defined modules were also modulated by the same frequency. On 

average, modules with greater grid spacing had lower theta frequencies, but within 

animals, modules were not strictly confined to this trend. 
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 The consistency of geometric features within, but not across modules made it possible 

to define module membership for all the cells with an automated multidimensional 

clustering approach (K-means clustering), thus removing experimenter bias from this 

process.  

 

After defining the modules, we could turn to the question of how modules were 

distributed in the tissue. Several signs of anatomical clustering exist within the 

entorhinal system67–69, pointing to anatomical substrates for the functional clustering. 

Modules occupied extensive portions of MEC. We found that on average, a module 

spanned >1mm in the dorsoventral axis. There was extensive module-overlap in the 

tissue such that at any one location, cells from several modules could be present. Grid 

modules were found to cut across layers; cells that were part of one module were found 

in several layers. In contrast to the dorsoventral axis, there was no discernable 

topography along the mediolateral axis. Instead, modules extended across large 

mediolateral distances (~1 mm which was the limit of our recording equipment), 

suggesting modules distribute as mediolateral bands along the dorsoventral axis. With 

this knowledge, combined with the distribution pattern of modules in the dorsoventral 

axis, we could estimate the number of distinct modules within animals to likely be in 

the upper single-digit range. This anatomical distribution of modules does not match 

any known anatomical clustering in the entorhinal cytoarchitecture.  

 

With previous reports having suggested a set relationship between scale steps48, we 

investigated the relationship between module scales within and across animals. Within 

animals, there was considerable variation in the relationship between one module scale 

and the next, suggesting scale is set independently for each module and animal. 

However, when we pooled the scale progressions, a pattern was revealed. On average, 

modules across animals increased by a fixed scale ratio, as a geometric progression. The 

ratio was 1.42, very close to √2. This relationship pointed to underlying genetic or 

circuit-mechanisms playing a role in setting grid scale, yet the geometric individuality 

of modules suggested that modules enjoy a substantial level of autonomy.  

 

In the final set of experiments, we tested if grid modules are also functionally 

independent. Grid cells are known to rescale along with environmental compression48,50. 

When animals were exposed to a relocation of one of the walls in the environment, 

modules rescaled along the compression, but to varying degrees. Cells within a module 

behaved coherently, while individual modules could rescale to completely different 
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extents within animals. This provided the first proof-of-principle for independent 

function within sub-populations in the grid map. 

 

The findings contained in this work have implications for hippocampal coding, which 

occurs one level downstream of grid cells, as well as for models of how the grid pattern 

emerges within the grid circuit. 

 

 

Paper 2 | Topography of head direction cells in medial entorhinal cortex 

Grid cells distribute topographically with increased grid scale at increased ventral 

locations in the medial entorhinal cortex36,38,47. Along the same axis, expression of 

particular protein channels was found to distribute as a gradient with expression 

tapering off towards one end64. This gradient associates with changes in response 

properties of neurons, for example by altering time constants in afterdepolarization- or 

afterhyperpolarization events53,54, and has been shown to impact on properties of the 

grid pattern such as pattern scale65. Within the same circuit, medial entorhinal cortex 

contains cells that are head direction-selective. It is likely that such head direction cells 

also express the gradients of particular ion channels. We sought to determine if head 

direction cells distribute with functional topography, similar to grid cells, along the 

dorsoventral axis of medial entorhinal cortex. Grid modularity may arise from network 

dynamics rather than from direct physiological bases. If head direction tuning was 

topographic, we also asked whether this topography was continuous or modular in 

nature. 

 

Animals were implanted with microdrives carrying tetrodes parallel to intermediate-

deep layers within medial entorhinal cortex. The tetrodes were advanced systematically 

to allow sampling along extensive dorsoventral strips of tissue, gathering large data sets 

within animals.  

 

Head direction cells in layer 3 distributed with clear topography along the dorsoventral 

axis. At dorsal sites, a considerable proportion of cells were strongly tuned such that 

spikes were elicited only when the animal's head was within a very narrow angular 

segment. At more ventral sites, however, tuning was on average broader. This was not 

an effect of decreased head direction cell distribution at more ventral sites; angular 

tuning stability and shuffling procedures were used to verify consistent head direction 

tuning despite broad tuning width. However, head direction tuning varied substantially 
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at all dorsoventral levels, such that the topographic decrease in tuning width was a 

gradual drop-off of sharply tuned cells toward ventral portions of medial entorhinal 

cortex. No topography was present in layers 5-6; head direction tuning was similarly 

distributed at all dorsoventral levels. There was also a distinction between head 

direction cells in layer 3 in medial entorhinal cortex, and in the neighboring 

parasubiculum. Cells in parasubiculum did not show any topographic reduction in 

tuning width with depth, but instead contained sharply tuned cells at all levels. As with 

grid cells, no topography was found in distribution of head direction cells in any layer 

along the mediolateral axis of medial entorhinal cortex. These point to a specific 

functional difference in head direction modulation within entorhinal layer 3.  

 

To determine if the tuning topography generalized across species, mice were implanted 

with tetrodes and head direction cells recorded in medial entorhinal cortex. The head 

direction tuning topography was present also in this species pointing to a general 

organizational feature. Unlike tuning width, tuning directional phase did not distribute 

systematically. Instead, phases were uniformly distributed across recording depths, both 

in rats and mice.  

 

Finally, we investigated if directional tuning topography was continuous or modular. In 

the same animals as we recorded the head direction data sets, grid cells were also 

recorded. These displayed modular features as shown previously, and had high scores 

on a 'discontinuity' measure sensitive to clustered topographical distributions. Across 

animals, head direction topography produced consistently low discontinuity values. 

This smooth nature of the head direction tuning was in stark contrast to grid spacing 

recorded in the same tissue. Lastly, we performed simulations to establish the 

robustness of discontinuity analyses, which supported a legitimate difference in 

modularity between grid and head direction populations. 

 

Head direction cells thus distribute with smooth tuning topography along the 

dorsoventral axis of layer 3 in medial entorhinal cortex. The existence of functional 

topography in several cell classes suggests this may be a general feature in the 

entorhinal space-circuit, but that select sub-populations express modularity. This 

distinction may result from separate network dynamics inherent to entorhinal cortex, or 

from whether the functional tuning is generated within entorhinal cortex itself or 

inherited from upstream areas, a plausible candidate for entorhinal head direction cells 

given the wealth of directionally tuned inputs it receives56. 
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Paper 3 | Geometric features of the environment determine grid orientation 

Grid patterns are thought to emerge from local pattern-generating processes rather than 

by direct extraction from inputs. To achieve spatial constancy, however, such internal 

patterns must anchor to an external reference frame, the mechanisms by which are 

unknown. Several features of the pattern can be involved in this anchoring, including 

spatial phase (offset in the x,y-plane), grid spacing and grid orientation (alignment 

between grid pattern axes and environment features). We demonstrated earlier that grid 

orientation can assume distinct orientations across and within animals, but it was 

unknown whether there is any orderly relationship between grid alignment and 

environment features. 

 

We compared grid orientation from large data sets recorded in two distinct square 

environments enabling rigorous analyses of grid alignment. Grid orientation did not 

distribute randomly across animals. Instead, there was a strong tendency to align to the 

cardinal axes of the environment, and avoid the oblique axes. In one environment, we 

observed clustering around one axis only, while in the other environment around both 

cardinal axes. The strong bias by axes in the box suggested the box geometry itself 

acted as the grid-anchor, not salient extra-environmental visual cues, which were 

deliberately abundant. 

 

Rather than aligning perfectly parallel to the box axes, cells were consistently offset by 

a small amount across environments. In one environment, this offset was to either side 

of one cardinal axis. We demonstrated that these offsets reflected the same general 

alignment strategy, only as mirror-versions reflected around the same environment axis. 

In the second environment, cells were also offset from parallel, but to both cardinal 

axes. We found that these were in fact rotated versions of the same general anchoring 

strategy. Further, the offset was identical across the two environments; cells were 

systematically offset parallel by 7.5˚, yielding four general alignment configurations 

within square environments. We next asked whether the observed distributions were a 

result of pooling all the cells, or if individual grid modules expressed the same 

alignment configurations. Modules from different animals expressed the same few 

configurations; cells were offset parallel by 7.5˚.  

 

We noted that a triangular pattern within a square is maximally asymmetric at 7.5˚ 

rotation in relation to the axes of symmetry in the square, the same as the offset 

observed in the data. We asked whether the consistent offset could confer a particular 
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function in spatial encoding within the square environment. The environment axes are 

primarily available to the animal in the form of borders imposed by environment walls. 

Because border segments have been implicated in spatial coding31,32,70, and as cells exist 

that encode these specifically50,59, we hypothesized that one function performed by grid 

alignment is to create maximally distinct population codes along environment border 

segments. Further, this may be a relevant strategy for encoding an environment in which 

sensory input may be confusing. Grid cells are thought to perform path integration 

(dead-reckoning from integration of distance and angle over time) from self-motion 

cues. Without sensory input, however, small errors will accumulate to some point where 

the representation becomes wholly unreliable. Sensory cues affect grid cells38,71 and are 

thought to provide update signals that recalibrate path integration and reset accumulated 

errors. The symmetry and geometric ambiguity of the square recording environment 

may render such sensory cues less useful because similar relative location in the 

environment may produce similar update signals despite being at distinct absolute 

locations. Therefore, the most distinct population grid representation of border segments 

may contribute to reduced erroneous sensory resets. 

 

By simulating grid population representations of square environments, we could 

systematically vary grid orientation (and spacing) and gauge the effect this had on 

segment encoding. We calculated population vectors for all spatial bins in the simulated 

square maps. We then determined the correlation such population vectors had between 

distinct border segments. The resulting correlation values showed lowest segment 

correlation occurred at 7.5˚ offset parallel, exactly like the observed distributions. The 

simulations also revealed a complex possible relationship imposed by grid spacing on 

the effect of grid orientation on decorrelating border segments. The same relationship 

was present in the experimental data suggesting it captured a fundamental structure 

behind the distribution of grid orientation. 

 

These findings demonstrate that grid anchoring involves highly specific alignment to 

geometric features of the recording environment, universally expressed across animals. 

Simulations suggest that producing maximally distinct border segment encoding may be 

at the heart of this anchoring strategy. 
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Since its discovery with the description of place cells14,15, the cortical circuit for spatial 

representation has revealed a wealth of functional systems, each dedicated to highly 

specific aspects of spatial processing38,50,52,56,59,60,72. The close relationship between 

memory and spatial processing10–12,26,27,29,73,74 allows probing relatively abstract concepts 

such as memory formation and retrieval, consolidation and representational dynamics to 

be explored by very accessible experimental means, often little more than an animal's 

location and movements in space48,75–77. This connection provides an experimental 

system that performs computations at the highest level, yet remains one of the systems 

with best readout for experimental analyses and intervention. By studying core 

mechanisms such as navigation and memory, key concepts and insights into systems 

function and organization are available, and often with considerable generality to other 

cortical systems. As an example, by careful training and manipulation of sensory cues, 

rats could be manipulated to 'teleport' (neurally) between two environments78, 

manifested as abrupt transitions between place cell population representations for the 

two rooms. The study showed such population activity follows competitive attractor 

dynamics at very fast time scales and revealed that single cycles of a local oscillation 

acted as a minimal representation packet. The finding has far-reaching implications for 

network function and our understanding of the dynamics of representations in general. It 

emphasizes the power of the spatial-systems approach, and stresses the need and 

advantages of careful behavioral observation in conjunction with high-yield data-

collection, such as in vivo electrophysiology. These concepts are at the core of the work 

presented in this thesis. After optimizing recording approaches, we could sample 

unprecedented numbers of grid cells and head direction cells within animals, which in 

conjunction with behavioral observation allowed characterization of novel principles 

that govern the organization of populations in MEC. 

 

We showed that the grid map is composed of modules that have distinct grid geometry, 

temporal dynamics and response properties to environmental manipulation. We further 

demonstrated that head direction cells in MEC also distribute with feature topography 

along the dorsoventral axis, but that this was specific to MEC layer 3. Finally, the grid 

map was shown to anchor systematically to geometric features of the environment 

across animals revealing a universal alignment strategy. 
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4 Discussion 



4.1. Grid modularity: implications for downstream computations 
 
4.1.1. Place field generation 

Grid cells have been singled out as a particularly strong candidate for conferring spatial 

selectivity in downstream hippocampal neurons17,35,36,38,41,51. It seems appropriate that the 

interference patterns of cells across spatial scale could sum to produce punctate fields in 

hippocampus, as has been shown theoretically33,40,41,79–82. How the grid map is organized 

in terms of pattern geometry, map anchoring and population behavior can therefore 

inform us about coding strategies or bounds in hippocampus. 

 

A simple but intuitive grid-to-place model40 suggests that place fields originate from the 

summed activity of multiple grid cells with aligned spatial phase (field overlap) across 

scale. Phase-alignment between the grids causes extensive input at a tightly delimited 

spatial location, and while the regularities of the grid pattern may result in regularities 

also in the place cell, a high peak to background ratio could in principle provide 

masking of extra-place-field activity by feed-forward inhibition17,40. This strategy, 

however, is sensitive to geometric distributions in the grid map across scale. For 

optimal peak to background grid summation, grids should not cluster around particular 

orientations, because the overlap of axes across scale results in spokes of high activity. 

Similarly, grid scales with non-integer-scale ratios are favored because integer ratios 

result in periodic field-overlap.  

 

In Paper 1, we show that grid modules assume irregular grid spacing ratios within 

animals. However, on average, when pooled across animals, the module pair 

relationships from within animals clustered around a mean ratio that was the same 

whether the module pair expressed smaller or larger spacing. This common scale ration 

was very close to √2, which results in scale doubling every other module. This 

particular scale arrangement would likely cause considerable regularities from pattern 

overlap outside a place field location, although this could perhaps be ameliorated by 

each spacing having a particular grid orientation allocated. We found in Paper 1 that 

although grid cells can assume widely differing orientations, the norm was to be closely 

aligned across scales (see figure 5). We further showed in Paper 3 that there exists an 

underlying strategy shared across animals to align the grid pattern to one of only four 

general configurations in relation to the environment geometry.  
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Together, this speaks against a grid-to-place transform based on field overlap from grid 

cells with aligned spatial phases across scales. Instead, other models have been 

proposed in which the downstream area plays an important role in distributing place 

characteristics based on non-coordinated inputs79–81. Here, local dynamics, such as 

competitive interactions and learning, delegate the spatial location with which each cell 

is associated, making input regularities less problematic81.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other models exist that take into account different features than grid activity in 

generating place responses70. Cells that encode relationships between the animal and 

environment boundaries exist in entorhinal cortex50, as well as head direction cells51,52. It 

was recently shown that hippocampal place cells not only receive functional input from 

entorhinal grid cells, but also both these classes (and non-spatial cells)45. Place cells 

may very well get their place selectivity from composite contributions that encompass 

multiple cell classes and dynamics. If place cell formation does not necessitate the 

specific geometric features of grid modules, what is their function? We observed 

considerable evidence for independent module operation (see also section 4.1.2). This 

suggests, despite the intermingling of modules in the tissue, that modules are segregated 

connectivity-wise. As such, the translation of module grid patterns in relation to actual 

Figure 5. Spatial autocorrelograms from representative cells belonging to 4 distinct modules 

(left to right) in two different animals (top to bottom). Grid orientation was very similar 

across all modules within (and across) animals. From Paper 1 (supplementary figure 6). 

Extracted grid axes shown on right. 
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movement may be driven by the same signals (e.g. velocity and directionality signals), 

but associate with independent noise. Multiple lines of evidence point to the grid pattern 

arising from local pattern-generating dynamics in which pattern translation from spatial 

translation is driven by amongst other path integration signals57,58,83–85. Such pattern-

formation mechanisms can generate noise (and error accumulation) that is more 

dependent on the local network dynamics than the input signals42,86. Therefore, 

independence of grid ensembles may confer a signal parallelization with signal-to-noise 

improvement, as each module will share the translation signal but not system noise. 

Common noise or error in the driving signals themselves will necessarily not be 

different, and may instead need to be overcome by other means such as sensory resets. 

 

 

 

4.1.2 Place cell remapping: basics 

In a landmark paper, Kubie et al76 described a phenomenon that had great implications 

for our understanding of the relationship between the spatial map in hippocampus, and 

its role in memory formation. For one, they demonstrated that place cells are under the 

control of sensory cues in the environment as rotation of a cue resulted in consistent 

rotation of the place cells' activity. More importantly, they demonstrated that given 

discrepancies of sufficient magnitude between two recording environments, the activity 

of the recorded cells changed drastically; of the cells that were active in the first 

environment and stayed active in the second, the firing locations were completely 

reorganized in space. Further, a large portion of cells active in one environment became 

silent in the next. This functional reorganization was termed 'remapping' and represents 

an orthogonalization in the population encoding between the distinct environments. The 

combinatorial capacity of hippocampal representations, given the number of cells, and 

their possible firing locations, is very large. This capacity for distinct population codes 

may lie at the heart of hippocampal encoding. Wilson et al74, using novel techniques, 

provided the first recordings of large place cell populations recorded simultaneously. 

They demonstrated that population representations are very accurate (<5 cm error from 

~100 cells) and indeed minimally correlated between two environments. When exposed 

to a new environment, the representations of a familiar environment did not change74, 

supporting a coding scheme that allows independent and unique representations for each 

environment. 
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Grid modularity appears to offer very favorable conditions for hippocampal remapping. 

Maps from the different modules could reorganize to yield completely novel 

downstream population inputs, and therefore hippocampal place maps. Grid cells 

coherently realign with simultaneously recorded hippocampal place cells49. The 

realignment involved a shift in phase, and reorientation of the pattern relative the 

environment, and was coherent for all grid cells recorded, so that despite the 

realignment, spatial relationships between the grid cells remained49. This does not 

preclude independent realignment of distinct modules, as all the grid cells in this paper 

were recorded at the same dorsoventral location and had similar scale (very likely 

belonging to the same module). The authors of this work also suggest different 

scenarios for what the larger-scale population realignment configurations may be (see 

figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Which features are important in modular realignment for hippocampal remapping? As 

discussed above (section 4.1.1), the geometric features of the grid follow certain 

constraints. As we demonstrate in Paper 3, modules typically assume one of only 4 

distinct alignment configurations relative the environment. This constraint on 

orientation may seem highly disadvantageous fro generating maximally distinct 

Figure 6. Proposal for two mechanisms that may underlie hippocampal remapping based on 

grid inputs. Left: several independent maps realign independently and cause unique 

combinatorial population pattern in hippocampus. Right: The grid map is coherent across 

scales, and remapping occurs from a shift in spatial phase space. From ref 49. 
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hippocampal inputs. However, recently, it was shown theoretically that remapping 

based on grid modules was much more sensitive to the spatial phase offset between the 

modules than the relative orientation and spacing81. Varying grid orientation caused less 

reorganization in hippocampus compared to varying phase (see figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If grid modules are a main source of hippocampal remapping, the level of independence 

between grid modules will affect remapping-based mnemonic capacity. Do grid 

modules display independent operation? We show in Paper 3 that grid modules have 

several geometric traits that suggest autonomy. Grid spacing relationships varied across 

animals, and grid orientation could be completely offset between modules. In attractor 

models of grid cells, a grid network can only support a circuit in which all cells share 

pattern geometry42. Grid modules also differed in the amount and directionality of 

pattern deformation. Grid deformations had perhaps been observed before in the 

absence of environmental manipulation, but there was no telling this was not from 

systematic path integration errors affecting the whole grid map. Deformation, scale and 

orientation changed independently per module during exposure to a novel room (see 

figure 8). Together, these suggest independent geometry between modules. We also 

observed rescaling of grid module maps to compression of the environment48. 

Importantly, these were to distinct levels between modules in the same animals, but 

always consistent within modules. Further, it was always the modules of smallest 

spacing that rescaled minimally (kept the original node locations). It is unlikely that grid 

Figure 7. Efficacy of reorganizing different parameters of grid geometry between modules. 

The strongest remapping occurred from phase shifts, while other features were less 

effective. From ref 81. 
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rescaling was dependent on the wavelength of the grid pattern in relation to the 

environment size per se as there was no absolute threshold for which modules rescaled 

and which did not within animals recorded in the same environment. A caveat with 

more credence is the possibility that rescaling is dependent on wall anchoring rather 

than reflecting genuine coding differences. Absence of rescaling could occur from 

smaller grid cells not anchoring to the wall that is relocated during the environment 

compression, but rather to the opposing wall. This could render the relocated wall 

'invisible' to that module. Conversely, if larger grid cells tend to anchor to both the 

relocated wall and the opposing wall, rescaling would occur. It seems unlikely that this 

is a full explanation, however, as we never saw a smaller module not rescale but move 

along the wall that was relocated. And nonetheless, there is still a functionally distinct 

output from these cells that is likely to cause reorganization downstream in 

hippocampus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effects of such separated rescaling levels may be offered by an influential study on 

the effects of changing the environment geometry on place cells in hippocampus31. 

Place cells were recorded in an environment that could be extended or compressed in 

Figure 8. Modules realigned in response to a novel room and environment shape. Grid scale, 

orientation and ellipse directions all changed independently between modules strongly 

suggesting independent operation. The figure on the right shows data from all three grid-

axes. From Paper 1 (supplementary figure 10). 
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any of the 4 cardinal directions. When the recording box was extended or compressed, 

place fields followed the environment changes, at fixed or relative distance from the 

environment boundaries. Some cells were anchored to one wall or set of walls so that 

they moved along the extension, others to other walls. Some cells were anchored to the 

room instead of the box, and others distended the place field along the room changes or 

even split fields into two. This behavior suggested an underlying input pattern with 

distinct geometric relationship to the walls of the recording box or room. The authors 

proposed a model to explain the results where spatial modulation arose from the sum of 

multiple Gaussian activity bands offset the environment boundaries at different 

distances31. This idea was further developed into the boundary vector model of place 

cells32,70. Although boundary selective cells exist in MEC and do project to hippocampal 

place cells45, this study is also intuitively in line with expectations from the above 

discussed results of grid rescaling. Because of rescaling, place fields can receive input 

that is topologically identical to the original map, only distended or compressed, likely 

resulting in distended or compressed place fields. In the case of two particular module 

inputs to a place cell, and the modules differed greatly in rescaling levels, it seems 

reasonable to assume that their contribution could be separated upon environment 

changes to break the place field into two separate components. 

 

 

4.1.3 Place cell remapping: attractor dynamics 

A study by Lever et al28 used two recording environments that differed in geometry but 

had very similar layouts otherwise. There were very similar ensemble representations of 

these environments that first over time diverged into separate representations. It seems 

likely that the similarities in this study caused generalization, which was with time 

separated into distinct representations. In Paper 1, we recorded different cells from the 

same modules for long periods of time. What can be seen in these data are slow (on the 

order of days and weeks) graded changes in grid features. Moreover, these were distinct 

for each module and also for the individual grid axes (see figure 9). In the smallest 

module in the figure example below, there was a systematic positive relationship 

between recording session and grid orientation. During the same recording sessions, 

cells in the next module also expressed some graded changes, but much less than the 

first module and in opposite direction. Completely separate trends were present in the 

two modules. Such slow changes may underlie the effects seen in the Wills study. 

However, there are sharper and nonlinear transitions seen in hippocampal population 

responses to distinct environments. 
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Place cell ensembles have been shown to exhibit attractor dynamics78,87,88. Attractor 

dynamics involve noise-robust population representations of stimuli or states, in which 

the entirety of the original signal can be reproduced from only a subset of the original 

active cells. Such states are often mutually exclusive and exhibit competitive 

interactions. In Wills et al87, hippocampal place representations underwent a very abrupt 

and coherent transition from one place representation to another during a gradual 

'morphing' from the one environment shape to the other. Leutgeb et al found similarly, 

that neurons in dentate gyrus and CA3 respond with sharp population changes upon 

graded changes in the environment. For grid cells to account for this effect, either it is 

due to rapid attractor kinetics in the upstream grid map, or small changes in the grid 

map that are nonetheless, through associations within hippocampus, enough to shift the 

current hippocampal activity into another attractor state. Upon grid realignment, we 

observed several dissimilarities in grid features across the two rooms, pointing to 

independent remapping. During rescaling to environment compression, however, only 

graded responses were found. It remains to be determined if graded transitions can 

cause similar transitions in grid cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Modules exhibited slow 

feature changes over the course of 

days to weeks. In particular, there 

was no correlation between the 

modules. Left: 3 modules (columns 

of plots) showing grid orientation 

in the 3 grid axes (rows). Right: 

linear regression lines on grid 

orientation in axis 2 from modules 

1 and 2 in left panel are highly 

distinct. Unpublished. 
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4.2. Topography in the parahippocampal systems 

In sensory and motor cortices, there is typically a neat correspondence between 

relationships in the external world and their internal representations in the brain. That is 

to say continuous or discrete variables in the external world are mapped topographically 

into the cortical sheet89. Topography often represents a 'where' component onto which 

other information about stimulus quality can be superimposed7,8. There is an orderly 

correspondence between retinal receptor location and its representation in primary 

visual cortex. Likewise with the somatosensory system. In sensory and motor cortices, 

topographical strictness tends to lessen with increased distance from input/output organs 

(level in the cortical hierarchy). In hippocampus, which is very far removed from the 

senses and motor outputs, there are nonetheless reports of feature topography. What is 

this topography? The 'where' component topography of space may seem obvious to be 

space itself. Neither place cells nor grid cells display topographic representation of 

spatial location, however. In hippocampus, using 2-photon imaging, the activity of an 

entire ensemble of hippocampal place cells could be imaged simultaneously while the 

mouse navigated within a virtual environment90,91. The place cells developed clear place 

fields suggesting the task was not too alienating for the spatial representation system. 

Further, there was no statistical relationship between the location of place cells in the 

hippocampal cellular sheet (>35 μm apart), and the locations of their place fields in 

(virtual) space. Cell pairs <35 μm apart, displayed a significant correlation, but not 

separable from correlations from common neuropil or activity bleed-over in the imaging 

technique90. Grid cells do not show any relationship with the position recorded in the 

tissue and their spatial phase offsets38. Mechanisms by which topography is present 

during development as a teaching signal to set up appropriate circuitry for grid function, 

only to disappear in the adult brain, have been proposed33. It is worth noting that both 

hippocampus and entorhinal cortex are evolutionarily 'old', such that the orderly 

topography seen in typical low level cortex only likely arose after these structures were 

past their phylogenetic 'window of opportunity'8. Accordingly, the olfactory piriform 

cortex is another ancient cortical structure that does not show topographical 

organization even though continuity in stimulus dimensions exists.  

 

 

However, place fields recorded on an 18m linear track formed punctate fields delineated 

within 15-20 cm diameter in dorsal hippocampus, while at the ventral pole the place 

fields could reach several meters across92. See also ref 93. Similarly for grid spacing: 

dorsally, grid fields and their inter-field spacing is strict and on the order of a few tens 
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of cm. Ventrally, on the other hand, inter-field distances can cover several meters47. In 

Paper 2, we show that also head direction cells express topography in terms of the 

sharpness of their directional tuning.  

 

What do these topographies reflect? There is a long literature on distinct features of 

dorsal and ventral portions of hippocampus. For instance, lesions to different 

dorsoventral portions produces markedly different behavioral deficits94. Lesions of a 

small portion of the dorsal pole impairs spatial memory efficiently, while similar 

portions of the ventral pole do not27. Stress responses and emotional behavior are 

affected by lesions to the ventral but not dorsal portions of hippocampus95. Connectivity 

to and from these portions of hippocampus is distinct30,96. Also in spatial cognition in 

humans is there a growing body of literature that suggests functional polarization along 

the human equivalent of the dorsoventral axis30,97. In particular, activity in ventral 

hippocampus (human equivalent) is associated with course global spatial 

representations and route planning and execution, while the dorsal equivalent fine-

grained local representations and navigation strategies (such as number of turns on a 

route)98.  

 

The neural codes used by the parahippocampal spatial system may very well reflect an 

axis of generalization. With increased scale of spatial fields in hippocampus and MEC, 

one coding aspect is that the larger fields do not denote spatial location with equal 

demarcation, so spatial resolution is diminished. However, another coding aspect is that 

for these ventral codes, at any particular point in space, a greater portion of cells will be 

active. This increased representational density may confer better robustness to noise; the 

more cells that can take part in a 'majority' vote, the better the vote will be statistically, 

despite poorer spatial resolution. It is interesting that the same exact argument can be 

made for the head direction gradient (see figure 10). Alternatively, ventral cells (both 

grid, place and head direction cells) code a bigger portion of the environment at any 

moment, so that the population code at any location is more generalized. This may be 

beneficial for associating different content into current spatial contexts. The ventral 

hippocampus is more associated with stress and fear responses, and has stronger 

connections to and from amygdala94,96. For embedding e.g. fear memories into spatial 

context, it may be strategic to impose a higher level of generalization.  In Paper 1, we 

observed a functional dissociation between modules of small and large grid spacing. In 

particular, smaller grid spacing associated with little or no rescaling in response to the 

environment manipulation, while the largest cells always did. This could reflect an 
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underlying topographic distribution of spatial generalization, in line with the above 

suggestions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. A need to develop our understanding of grid spacing  

We demonstrated that grid spacing increases in steps along the dorsoventral axis of 

MEC (see also 48). Which factors determine topographical grid spacing is currently 

unknown. We failed to find a systematic relationship between module scales within 

animals; the scale distributions were tightly delineated but distributed irregularly. 

However, when all module pair ratios were pooled across animals, a consistent average 

scale ratio was revealed. This consistency across animals implicates a genetic 

component in determining grid spacing. Gradients of specific ion channels, such as the 

hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, exist in entorhinal 

cortex, and have been suggested to account for the grid scale topography53,54,65. 

Figure 10. Head direction representational density increases with ventral position in MEC 

layer 3. Given populations of equal size (cells as rings of the doughnut; dorsal to ventral as left 

to right), and the same direction input, a different proportion (P) of the cell population will be 

active. 
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However, such channels, when genetically knocked out, did not remove grid scaling 

along the dorsoventral axis, but instead changed the baseline spacing66. Other channel-

gradients may contribute to scaling (such as potassium channels54). If scale is 

determined in part from channel gradients, or indeed any genetic expression patterns, it 

seems likely the gradient will provide a smooth topography of any conferred scale 

parameter, instead of modular. How could modular grid scale result from a smooth 

underlying gradient? 

 

One possible scenario is that module grid scale is determined by network dynamics 

acting on an underlying scale parameter gradient. Attractor models of grid cells predict 

that all cells in a circuit must have the same grid spacing (as well as orientation and 

pattern deformation) to generate a stable grid pattern57. Within a grid network 

determined by attractor dynamics, there will likely be a some tolerance to small 

variations in the scale-parameter distribution across cells, so that when the network is 

initiated, the effects of population dynamics dominate individual cells enough to 

coordinate all cells into a common pattern, cancelling out individual variation. In a 

sense, this 'spatial synchronization' acts similarly to synchronization in the temporal 

domain; originally observed by Huygens in 1665, coupled oscillators settle on a mean 

frequency that entrains all the individual oscillators even in the presence of relatively 

large variations in individual frequencies. What would happen if the scale parameter 

distribution had very large spread? The variation becomes too big to entrain all units 

into one coherent pattern, and the pattern may fraction into sub-ensembles that each 

center on a mean frequency that the ensemble can sustain. This way, by having a 

network self-organize from a very wide, continuous scale parameter distribution (such 

as channel expressions along an axis in MEC), several local modules of internal spatial 

consistency could arise from the unstable global pattern.  

 

However, in Paper 1, we observed convincing signs of independence between modules 

within animals, both in terms of pattern geometry and rescaling responses. To 

incorporate this in to the suggested mechanism above, one can suppose that during 

development, learning strengthens connections within spatially synchronized 

ensembles, but weakens connections between spatially desynchronized cells. Spatial 

synchronization will produce a consistent phase-offset between fields of two cells. If 

such cells have similar spatial phase, their coordinated firing in space will cause 

coordinated firing in time, a prerequisite for many forms of long-term potentiation 

(LTP)99. This way, ensembles intermingled in the same tissue could develop, with 
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strong inter-ensemble connectivity and weak cross-ensemble connectivity, in effect 

decoupling the ensembles functionally. A testable prediction from this idea is that very 

young animals, which have yet to achieve complete module decoupling, will display 

grid cells with poor pattern regularity because the network cannot sustain a coherent 

grid pattern on account of cross-ensemble interactions. As the animal explores more 

space, decoupling will at some point become complete enough that the modules can 

self-organize into modules with coherent and regular grid patterns. Such a transition 

may be rapid as it involves a 'tipping point' after which network dynamics kick in to 

entrain the ensemble. In two studies that characterized grid cells in early development in 

rats, grid patterns were indeed not very regular initially100,101. Instead, only after 

considerable time did regular grid firing occur. The transition to this state had rapid 

onset, in line with the above proposal. 

 

Conversely, if the scale parameter is associated with temporal characteristics such as 

intrinsic resonance frequency, as is suggested by several models (see 63,102 for review) 

and experimental findings53,62,66, synchronization in the temporal domain during 

development could result in similar module fractioning and synaptic consolidation to 

cause temporally consistent ensembles. If the scale parameter associated with temporal 

frequency, these temporally synchronized ensembles would also become spatially 

synchronized. By this mechanism, grid modules could develop to fully or close to fully 

mature, functionally decoupled modules at least in part before the animal ever explores 

space. In line with this is our finding, also in Paper 1, that modules are temporally 

consistent. Cells within a module, as defined by pattern geometry, were more 

temporally consistent than cells across ensembles (even at similar recording locations 

and grid scale). The validity of these suggestions can be explored through modeling. 

 

 

4.4. Embedding internal representations into external frames 

The need to anchor internal representations of space to external frames is paramount for 

allocentric function. We demonstrated in Paper 3 that grids align to the environment in a 

very systematic manner. We also suggested that the particular configuration bore 

functional significance beyond grid-to-place transformations. In particular, we 

hypothesized that the alignment of the grid pattern could be used to counteract 

geometric confusion within geometrically ambiguous environments. Simulations 

showed that in square environments, the observed alignment offsets from the cardinal 

axes of the environment were in close register with the offsets that produced minimal 
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correlation between grid population encoding of border regions. Rats tested in spatial 

working memory tasks in rectangular environments make systematic errors in segments 

of the box that have rotationally equivalent geometry, even in the presence of polarizing 

cues103. This suggests geometric confusion is a common issue in spatial representation, 

as is supported by similar effects found in several other species104. We further 

hypothesized that border cells may provide the mechanistic link between the grid map 

and the external environment frame. Despite abundant visual landmarks in the recording 

rooms, modules with few exceptions aligned according to environment geometry. There 

may be a special salience given to environment borders, as opposed to visual cues, 

likely because environment borders are generally more dependable. Biegler et al105 

found that rats only used landmarks within an environment to gauge distances if the 

landmarks were stable within that environment. Several studies have shown similar 

connections to environment geometry18,24,71,106–109, but also highlighted the fact that the 

system's use of landmarks for spatial representation can be changed experimentally 

through learning20,21.  The close match between observed alignment and that for 

optimally decorrelated grid population encoding of environment segments suggested to 

us that there could be a competitive interaction between path integration signals and 

sensory resets. Evidence for this comes from hippocampus, where Gothard et al22, and 

later Redish et al23 described the rapid switching between navigation strategy according 

to path integration or landmarks. Rats started running from a start-box at the end of a 

linear track. As the rat was outbound, the box would be moved closer to the endpoint. 

On the inbound journey, place fields abruptly remapped to accommodate the visually 

apparent change, and switched back to a path integration strategy on the outbound 

journey. They showed signatures of competitive attractor dynamics supporting such an 

interaction between idiothetic and landmark based information22,23. 

 

4.5. Oblique effect in grids? 

Discrimination and detection of visual stimuli are dependent on the relationship of the 

stimulus to the axes of the environment, a well-known effect known as the ‘oblique 

effect’ (Mach 1861110). Stimuli oriented along the cardinal axes yield better 

psychophysical performance compared to obliquely oriented stimuli. In visual cortices, 

both single-neuron responses and population-responses reflect the psychophysical 

anisotropy by increased representational density along the cardinal axes111–113. Several 

studies suggest that the oblique effect originates in higher order cortices114–116, as the 

effect is stronger here compared to early sensory cortex116,117, and the effect in early 

cortex is selectively abolished by temporal inactivation of higher order cortex116. Grid 
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cells were typically aligned–close to–cardinal axes of the environment. Recently, it was 

shown that grid representations are not limited to navigational space; a grid map of 

visual space was demonstrated in the monkey entorhinal cortex118. Although highly 

speculative, it is interesting to ponder the possibilities for similar mechanisms at play in 

embedding internal representations into external reference frames in the visual domain 

as in the spatial domain. Although not very many examples were given in Killian et al, 

there seems to be also here a trend to align with slight offset to cardinal axes (see figure 

1 in ref 118). Further, using optical imaging in area MT (which shows movement and 

orientation selectivity for stimuli) in the visual system, Xu et al show frequency-plots of 

activation over the range of possible stimulus orientations. In these there are quite 

distinct peaks bimodally offset the cardinal axes. And at further inspection, these are 

very close to 7.5˚ offset, which is the exact peak we observed in the alignment offset in 

grid cells (see figure 11). This points to a possible albeit suppositional link between 

visual and spatial encoding in relation to real world axes, a link to be explored through 

future studies. 

 

 

 

  

Figure 11. The oblique effect in 

visual area MT in the owl monkey. 

Histograms are modified from ref 113 

(top panel: figure 3, bottom panels: 

supplementary figure 6). Histograms 

show local activity measured through 

intrinsic optical imaging. Increased 

pixel count (y-axis) corresponds to 

higher activation. The different 

panels are from distinct subareas 

within MT. The red lines show 7.5˚ 

offset calculated from the x-axis of 

the plots. Note the correspondence 

between peak offset and red lines. 
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5 Conclusions 

Hippocampus and associated structures offer a good systems approach to understanding 

basic functions carried out by neural networks within a behavioral context. Our 

understanding of grid cells has been fruitfully developed on the single cell level, but has 

lagged behind the population insights gained from hippocampus. This has been to a 

large extent because of technical challenges given entorhinal cortex location in the 

rodent brain. With overcoming these hurdles, we have defined the first large-scale 

population characteristics of two central spatial encoding populations. The grid map 

was shown to be modular, with separate geometric features and operation. The head 

direction system has a topographic dimension similar to grid and place cells, but the 

head direction is non-modular. We finally showed a universal strategy grid modules use 

to anchor to the environment, implicating this strategy in optimal population encoding 

of ambiguous environment segments. 
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Legal and ethical aspects 
 

All animal experiments described in this thesis were conducted according to the 

Norwegian Animal Welfare Act (Lov om dyrevern, no 73 av 20. desember 1974) and 

the European Convention for the Protection of Vertebrate Animals used for 

Experimentation and Other Scientific Purposes. 

 

The research laboratory is licensed by the national authority for animal research and 

satisfies the requirements for rodent units as recommended by the European 

Convention. The previous inspection of the animal facility was conducted 2012 and is 

valid through 2014.  

 

All experimenters involved were certified through a compulsory course in laboratory 

animal science for researchers (NEVR8003 or equivalent). 

 

All experiments were specifically designed to minimize the number of experimental 

animals used and to maximize the animals' wellbeing through continual inspection by 

the researchers, qualified caretakers, and the laboratory vet. 
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Abstract

Neural circuits in the medial entorhinal cortex (MEC) support translation of the external 
environment to an internal map of space, with grid and head direction neurons providing metrics 
for distance and orientation. We show here that head direction cells in MEC layer III are 
organized topographically. Head direction tuning varies widely at all positions on the dorso-
ventral axis but in layer III there is a gradual dorsal-to-ventral increase in the average width of 
the directional firing field. Highly tuned cells were encountered only at the dorsal end of MEC.
Similar topography was not observed among head direction cells in layers V-VI. At all locations,
in all MEC layers, the preferred firing direction (directional phase) showed a uniform distribution.
The continuity of the dorso-ventral tuning gradient co-existed with discrete topography in the 
spatial scale of simultaneously recorded grid cells. The findings point to dorso-ventral gradients
as a fundamental property of entorhinal circuits, upon which modular organization may be
expressed in selected subpopulations.  

Highlights

Head direction cells exhibit topographic organization in medial entorhinal cortex
Entorhinal directional tuning decreases from dorsal to ventral 
The dorsoventral tuning gradient is expressed only in layer III
The directional tuning gradient is gradual and unlike the topography of grid cells
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Introduction

In sensory systems, topographic maps mirror the spatial order of the sensory receptor surfaces.
Different topographies characterize different functional systems, with phenotypes spanning from 
the discrete or modular organization of barrels in the somatosensory cortex[1] and ocular 
dominance columns in the visual cortex [2, 3] to the orderly but continuous organization of
orientation pinwheels superimposed on ocular dominance columns [4, 5].  For all of these 
topographies, the spatial organization of the sensory maps is thought to arise during 
development by the formation of precise connections between sensory receptors and central 
target cells [6-9].

Topographically organized maps have been found also in higher-end non-sensory cortices. One 
example is the map of spatially-responsive grid cells in the MEC [10-13]. The periodic firing 
fields of these cells are arranged topographically by scale, with grid wavelength increasing in 
discrete steps across anatomically overlapping modules along the dorso-ventral MEC axis [13,
14]. A dorso-ventral scale expansion has also been observed in hippocampal place cells [15,
16]. The presence of topographical organization in MEC and hippocampus raises the possibility 
that, in non-sensory cortices, topography is generated not by inputs from sensory areas but by 
processes intrinsic to the circuit.  An intrinsic mechanism for grid maps would be consistent with 
reports of gradients in membrane potential dynamics and synaptic integrative properties along 
the same dorso-ventral MEC axis that shows the expansion in grid scale [17-20].  These 
gradients span across multiple entorhinal layers and several morphologically-defined cell types
[18, 21, 22].  

If the gradient in entorhinal grid scale reflects a global change in the composite intrinsic or 
synaptic properties of the MEC circuit, then similar gradients might also occur in the properties 
of other functionally defined entorhinal cell types, such as the head direction cells of the 
intermediate and deep MEC layers [12].  Head direction cells are cells that increase their firing 
from a low rate to a high rate whenever the animal is facing a particular direction, irrespective of 
position or behavior at the time [23-25]. Different head direction cells have different directional 
preferences (phases). By retaining their directional phase relationships across environments,
head direction cells form a cohesive map of the animal’s orientation [24, 26, 27]. Cells with such 
directional properties have been found in a variety of brain regions [25, 28-31]. In MEC and
adjacent pre- and parasubiculum, head-direction tuning sometimes occurs in conjunction with 
grid fields [12, 32], pointing to head direction cells as a cell type that might potentially express 
topography along the same dorso-ventral axis as the grid cells. The aim of the present study 
was to determine if entorhinal head direction cells express dorso-ventral topography, and if so,
whether this topography is continuous or, as in grid cells, modular. 

Results

Topography of directional tuning

113



 

To examine if entorhinal head direction neurons have properties that mirror the dorso-ventral 
scale expansion in grid cells, we implanted rats with microdrives running parallel to layer III or V-
VI of MEC. Neural activity was then recorded at multiple dorso-ventral MEC locations while the 
rat explored an open arena (n = 22 rats; 11 were part of previous studies [12, 13, 33]).
Recordings started at the dorsal border of MEC and extended up to 4.2 mm further in the 
ventral direction (recording range per animal: 1431 ± 1034 μm, mean ± standard deviation 
(S.D.); Fig. 1AC and 2AC; Fig. S1). We identified a total of 1742 well separated cells in MEC 
layers III and V-VI (597 of which were part of previous studies [12, 13, 33]), in addition to 245 
cells in MEC layer II and 206 cells in pre- and parasubiculum.  Directional firing was estimated 
for each neuron in two ways, by correlating peak firing direction across time blocks (directional 
stability) and by calculating, for the entire trial, the length of the mean vector of firing rate as a 
function of direction (directional tuning). Neurons with directional stability significantly higher 
than the 99th percentile threshold of a shuffled distribution (directional correlation > 0.20) were 
classified as head direction cells (layer III: n = 424; layers V-VI: n = 587; 58 % of all layer III/V-VI
MEC neurons; Fig. S2). Directional tuning was expressed for each of these cells by the length of 
their mean firing rate vector (mean vector length, MVL). Using directional tuning (MVL) to define 
the 99th percentile threshold gave similar results (Fig. S2). 

Directional tuning in layer III head direction cells correlated significantly with the neuron’s 
position along the dorso-ventral MEC axis (r = 0.24, P < 0.001; Fig. 1BC). The dorso-ventral 
gradient was expressed as a gradual decrease in MVL across successive bins of recording 
positions (F(3,418) = 6.88, P < 0.001). In particular, the decrease reflected a loss of sharply-
tuned cells from dorsal to ventral positions (Fig. 1CD). The MVL of the most sharply-tuned cells 
(top 25%) dropped steeply (F(3,102) = 16.38, P < 0.001), in contrast to the most broadly-tuned 
cells (bottom 25%), which also decreased (F(3,102) = 13.0, P < 0.001) but at a slower rate
(Quartile × Dorso-ventral position: F(3, 204) = 21.7, P < 0.001). The decrease in MVL was 
accompanied by a drop in the percentage of neurons defined as head direction cells (0 – 500 
μm = 53 %; 501-1000 μm = 48 %; 1001-1500 μm = 36 % and 1501 – 2000 μm = 27 %). The 
dorso-ventral gradient was not caused by larger cell numbers in dorsal MEC than at more 
ventral MEC positions. Matching the cell numbers by downsampling each bin of recording 
positions to the number of cells in the smallest bin did not abolish the dorso-ventral MVL 
gradient. For 100 downsampling iterations, 84/100 P values were significant at P < 0.05. The 
gradient was accompanied by a reduction from dorsal to ventral in directional information (r =
‒0.14, P < 0.01; F(3,418) = 3.75, P = 0.01). The changes were independent of firing rate and 
directional stability; neither firing rate nor directional stability changed significantly across dorso-
ventral bins in layer III (F(3,418) = 0.30, P = 0.83 and F(3, 418) = 0.58, P = 0.63, respectively). 
The firing rate of many head direction cells correlated significantly with running speed (P < 0.05 
for 133/424 cells; bins of 1 ms). 

The dorso-ventral tuning gradient was layer and region-specific. No gradient was detected 
among head direction cells in MEC layers V-VI. In these layers, the cells remained sharply 
tuned at all dorso-ventral levels (r = 0.03, P = 0.50; F(6,578) = 0.89, P = 0.50; Fig. 2). There was 
a significant difference between layers III and V-VI in the slope of the regression line for dorso-
ventral position versus directional tuning (Fig. 1C vs. 2C; independent-samples t test: t(14) = 

114



 

3.0, P < 0.05, data from all rats with at least 20 cells sampled over at least 500 μm).  Directional 
tuning was also unaltered along the dorso-ventral axis of the adjacent presubiculum (Fig. S3; r = 
0.14, P = 0.35, 46 cells sampled over 2500 μm of the presubicular long axis in 1 animal). 
Sharply-tuned cells were abundant at ventral levels in this brain area, suggesting that, within the 
parahippocampal system, the gradient in directional tuning may be unique to MEC layer III.  

The population of entorhinal head direction cells is functionally diverse. For example, a large 
number of entorhinal head direction cells have conjunctive grid properties, i.e. the cells fire in a 
grid pattern but discharge only when the animal runs in a certain range of directions. We asked 
if the dorso-ventral MEC gradient was expressed specifically in conjunctive or non-conjunctive 
cells. Conjunctive cells were defined as head direction cells with a grid score higher than the 
99th percentile threshold determined from a shuffled distribution (Fig. S4). Using this criterion, 
we found a higher proportion of conjunctive cells in layer III than layers V-VI (31% and 11% of 
the head direction cells, respectively, Z = 7.95, P < 0.001), in agreement with previous reports 
[12, 32], but there was no difference in the slope of the dorso-ventral tuning gradient between 
head direction cells that had conjunctive grid fields and head direction cells that were only 
modulated by direction (Cell group × Dorso-ventral position: F(3,414) = 0.87, P = 0.45), 
suggesting that the tuning gradient is independent of mechanisms for grid scale.  

We next examined how modulation by head direction is organized along the orthogonal medio-
lateral axis of the MEC. Unfolded MEC maps were generated from sagittal brain sections by first 
measuring, for each animal, the total dorso-ventral length of MEC layer II in the section with the 
deepest tetrode track and then projecting the dorso-ventral recording location of each of the 
animal’s cells onto this layer II measurement (Fig. S5A). Measurements for different animals 
(one section per rat) were arranged according to medio-lateral position, covering a total medio-
lateral length of 840 μm in layer III and 960 μm in layers V-VI. The aggregated 2D map showed 
a dorso-ventral directional tuning gradient at all medio-lateral levels of layer III, with a consistent 
dorso-ventral separation of cells with directional tuning in the upper and lower quartiles of the 
group data (all medio-lateral levels; Fig. S5B). There was no significant correlation between 
directional tuning (MVL) and the medio-lateral position of the layer III cells (r = ‒0.06, P = 0.23, 
424 cells, all animals). There was no corresponding separation of upper and lower quartiles in 
layers V-VI (Fig. S5C). Taken together, these data suggest (i) that in layer III, but not in V-VI, 
sharply-tuned head direction cells are skewed towards the dorsal border of the MEC, and (ii) 
that this layer III gradient is expressed across a wide medio-lateral range. 

Finally, to address whether the band-like directional tuning gradient in layer III is a general 
feature of rodent MEC topography, we investigated the distribution of head direction cells in a 
second species.  We examined a population of 720 superficial MEC neurons from 14 mice, 7 of 
which were part of a previous study [34] (Fig. 3).  Layers II and III were combined into a single 
data set in this analysis, as the head direction cell population in mice appears to cross into layer 
II [34, 35].  Using the same stability criterion and the same shuffling procedure as for the rat 
data, we identified 296 head direction neurons.  Just as in rats, we found a significant decrease 
from dorsal to ventral MEC in the average tuning width (MVL) of layer III head direction cells (r = 
0.27, P < 0.001; F(3,292) = 7.9, P < 0.001, ANOVA with 4 bins of 300 μm each). This reflected, 
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like in rats, a gradual loss of sharply-tuned cells and a corresponding increase in broadly-tuned 
cells (Quartile × Dorso-ventral position: F(3, 142) = 6.92, P < 0.001; Fig. 3BC). The directional 
tuning gradient was expressed at all medio-lateral levels of the MEC (~450 μm) (Fig. S5D). 

Directional phase has a non-topographic distribution 

Studies of head direction cells in other brain regions have not observed any topography in the 
distribution of preferred firing direction, or directional phase. We asked if such topography might 
yet be present in layer III of MEC, considering that directional tuning is graded in this layer. For 
each 500 μm bin along the dorso-ventral MEC axis of each animal, we determined the 
distribution of peak firing directions among all head direction neurons recorded in the area. The
directional uniformity of each distribution was estimated by calculating the length of the mean 
vector of the distribution of peak firing directions. Layer III and V-VI cells were examined 
separately. Peak firing directions were widely distributed at all dorso-ventral levels in both cell 
layers (Fig. 4). The average MVL for firing direction was 0.31 ± 0.04 (mean ± S.E.M.). MVL did 
not correlate significantly with bin number along the dorso-ventral axis (F(3,20) = 1.35, P = 
0.29).  Thus, the data speak against large-scale topographical organization of directional firing 
phase, despite the presence of a directional tuning gradient.

The presence of topography in the distribution of directional phase was investigated also in the 
mouse sample.  As in rats, peak firing directions were widely distributed in all dorso-ventral 
segments (mean MVL: 0.31 ± 0.04; correlation with dorso-ventral recording position: r = 0.25, P 
= 0.42). The data indicate that head direction cells are organized similarly in rats and mice.

The dorso-ventral directional tuning gradient is non-modular

If the topographical changes in head direction and grid properties shared a common cellular 
mechanism, such as a dorso-ventral gradient in an ion-channel conductance [17, 20, 36], they 
might also share a number of functional properties. In a final set of analyses, we asked if head 
direction cells express a modular organization similar to that of grid cells, which are organized in 
clusters with discrete scale and orientation properties [13].

Clustering was observed in grid cells but not head direction cells (Fig. 5A). To quantify 
modularity, we sorted the grid cells of each animal into successive bins of values for grid 
spacing and the head direction cells into successive bins for directional tuning (MVL). Cells in 
each bin were counted (Fig. 5B). Distributions were generated for a range of bin widths. The 
discontinuity of each distribution (the presence of sharp frequency transitions) was then 
estimated by calculating the S.D. of all nearest-neighbor bin-differences. S.D.s for different bin 
widths were finally averaged to yield a single ‘discontinuity’ measure for each animal (Fig. 5C). 
Considering that discrete electrode movements would by necessity impose a certain degree of 
discontinuity on any topographically organized variable, we also calculated, for each grid-
spacing and MVL distribution, the discontinuity of the corresponding sample of recording 
positions (Fig. 5BC). The discontinuity of the direction and spacing distributions were then log
normalized by the discontinuity of the corresponding distribution for recording positions (Fig. 5C-
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E). Discontinuity of recording positions was not different for grid and head direction cells (F(22) 
= 1.4, P > 0.20). Because large cell samples were needed for these intra-animal analyses, the 
analysis was performed only on the rat data (16 rats, 392 grid cells, 939 head direction cells).
For discontinuity analyses of directional tuning, conjunctive and non-conjunctive head direction 
cells (with and without grid properties) were pooled. The number of conjunctive cells was too 
low for separate analyses of this subpopulation.

In 12 out of 16 animals, the discontinuity of the directional tuning distribution was lower than for
the distribution of recording locations (mean ± S.E.M. of log normalized discontinuity: ‒0.23 ±
0.09; Fig. 5E; see Fig. S6 for data from individual animals). Low discontinuity ratios (log ratios 
below 0) were measured in both layer III and layer V-VI head direction cells, irrespective of how 
the data were binned (Fig. 5D). The smooth nature of the MVL distribution was in sharp contrast 
to the distribution of values for grid spacing in grid cells from the same animals. The
discontinuity for grid spacing was always larger than for recording depth (8 out of 8 animals;
mean ± S.E.M. of log normalized discontinuity: 0.64 ± 0.11). Discontinuity was lower for head 
direction cells than grid cells in all 8 animals with both head direction and grid cell populations 
as well as across all data sets (Fig. 5E; F(22) = 15.3, P < 0.001, ANOVA with Tukey-Kramer 
post-hoc test). In head direction cells, log-normalized discontinuity was not significantly different 
from 0 (layer III: t(9) = 1.35, P = 0.21; layer V: t(6) = 2.21, P = 0.07), whereas grid cells had 
positive values (t(7) = 6.05, P < 0.001). The effects were present in both left and right MEC (left 
hemisphere: F(14) = 4.2, P < 0.05; right hemisphere: F(11) = 13.6, P < 0.001). Taken together, 
these observations suggest that entorhinal head direction cells do not share the modular feature 
organization of grid cells. Instead, directional tuning appears to vary on a continuous scale, with 
sharply tuned cells dropping off gradually along the dorso-ventral axis of the MEC.  

Finally, we validated the discontinuity measure by testing how sensitive it is to the modularity of 
a model distribution. Probability density functions were generated as mixtures of varying 
numbers of Gaussian modes with variable spread within a feature space [0,1]. From these 
functions, we drew random samples (n = 120 per simulation) and determined their discontinuity 
following the same procedure as for real data in Fig. 5. Because dorso-ventral recording 
positions tended to be clustered, with more than one cell recorded in most locations, a similar 
simulation was performed for recording positions (Fig 6CD). The discontinuity values from the 
simulated feature distributions were then log normalized to the discontinuity values from the 
simulated position distributions (Fig. 6EF), and the normalized values were summarized across 
combinations of mode number and spread in a matrix (Fig. 6G). Each combination was 
simulated 100 times, and the average value was recorded. From this matrix we calculated the 
zero-contour that separates combinations of mode number and spread that could be detected 
as modular from those that could not (log-normalized discontinuity above and below 0, 
respectively; black contour line in Fig. 6G). Within the simulated feature space, at the lower end 
of simulated mode numbers, clusters were detectable at Gaussian spreads (S.D.) < ~ 0.05 
(feature space/20). As expected, there was a negative relationship between number of modes 
and their Gaussian spread such that distributions drawn from densities with increased numbers 
of modes were detectably clustered only when the Gaussian spreads were narrow (Fig. 6G). 
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To determine which mode-spread combinations were associated with the log-normalized 
discontinuity values obtained in the head direction and grid spacing data, we calculated 
contours in the simulation matrix corresponding to these values (dashed colored lines in Fig. 
6GH). While mode-spread combinations for grid spacing were constrained to < 9 modes and 
narrow Gaussian spreads (S.D. ~ 0.01), head direction modulation, both in layer III and layers
V-VI, were associated with a markedly wider range of mode numbers and broader Gaussian 
spreads, well outside the detection bound for discontinuous distributions (zero-contour, Fig. 6H).
In real data, recorded across extensive portions of the dorso-ventral axis of MEC, no more than 
4-5 grid modules have been detected and the total number, for the entire MEC, has been 
predicted to be within the upper single-digit range [13]. This corresponds well with the grid 
cluster range predicted by our simulations, suggesting that the discontinuity analysis captures 
such structure if it is present in the data. According to these analyses, the mode-spread 
combinations predicted for head direction modulation were far from the modular detection 
bound, strongly implying that head direction modulation distributes with a smooth topography in 
both layer III and V.

Discussion

This study provides evidence for topographical organization in the tuning of a population of head 
direction cells. Previous work has identified head direction cells in a number of brain regions, 
from the dorsal tegmental nucleus to the parahippocampal cortices [25], but within each region 
the directional properties of the cell population have not demonstrated any clear-cut anatomical 
organization. Using a cell sample that is both larger and more widespread than in previous 
work, we find that (i) head direction-modulated cells exist at all levels of the dorso-ventral axis of 
MEC, and (ii) in layer III, these cells are arranged topographically such that, over a wide medio-
lateral range, the most sharply-tuned cells are located near the dorsal border of MEC. As 
distance from the dorsal border increases, less directionally tuned cells become more prevalent.
A similar gradient was not observed in deeper MEC layers. The orientation of the head direction 
fields did not exhibit detectable topography, suggesting that directional phase and directional 
tuning are mechanistically uncoupled. 

The directional tuning gradient in MEC layer III provides an example of topography that may be 
generated within the entorhinal network itself. One possible substrate for the dorsal bias in 
directional tuning is the patch of cytochrome oxidase-active neurons at the border between 
MEC and parasubiculum, in which activity is significantly modulated by head direction [37].
However, this dorsal patch of MEC neurons is anatomically discrete and only a few hundred 
microns wide, whereas the present head direction gradient was continuous and extended over 
at least 2 millimeters, suggesting that additional or alternative substrates are required to 
generate the directional tuning gradient along the dorso-ventral MEC axis.

Both head direction cells and grid cells have been proposed to emerge from continuous 
attractor networks, with one-dimensional continuous ring attractors giving rise to head direction 
cells [38-40] and two-dimensional continuous attractor sheets underlying the formation of grid 
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cells [41-46]. All continuous attractor models proposed so far rely on translation-invariant 
recurrent weight matrices that impose similar tuning widths on all neurons of the network [47].
Variations in the width or shape of the tuning curve are thought to arise from different network 
modules. The discretization of grid scale and grid orientation in MEC is consistent with this type 
of translation-invariant continuous-attractor organization [13]. In contrast, the continuity of the 
directional tuning distribution in layer III would not be expected if head direction cells emerged 
directly from attractor networks in this layer.

Several factors might contribute to the lack of modularity in the directional tuning distribution of 
MEC layer III. First, it is possible that the directional signal originates in attractor networks 
upstream, with continuous tuning curves emerging secondarily in MEC layer III as a result of 
differential and graded convergence along the dorso-ventral axis of this layer. The existence of 
sharply-tuned head direction cells in MEC layer V as well as multiple low-level brain areas [48]
would be consistent with an external origin of the graded head direction signal.   Alternatively,
the continuity of the directional tuning gradient may reflect a graded dorso-ventral organization 
in single-cell properties of layer III cells, resulting from differential expression of ion channel 
genes between dorsal and ventral MEC, possibly expressed on top of inputs from an afferent 
attractor network.  Several studies have reported dorso-ventral gradients in the kinetics and 
density of ion channels in MEC, such as variations in properties of Ih [17, 18, 20] and leak 
potassium currents [20]. Some of these, or other, ion channels may be graded in layer III in a 
manner that matches the dorsal-ventral topography of head direction cells. However, the 
number of layer-specific genes with differential expression along the entorhinal dorso-ventral 
axis is probably large [22]. Whether and how any of these gradients translate to a gradual and 
regionally selective increase in directional tuning remains to be determined. 

The functional implications of the directional tuning gradient remain to be established but the 
fact that the loss of directional tuning along the dorso-ventral axis coincides with an increase in 
the scale of co-localized grid cells raises the possibility that these properties are causally 
related. If grid cells are formed by an attractor mechanism and translation on the neuronal lattice 
reflects a changing speed and direction input [41-45], the speed of the translation might be
reduced in parallel with a decrease in the directional specificity of the velocity vector. Grid scale
should consequently be increased. Until this date, however, attractor models have not
considered the impact of variations in directional tuning. Directional tuning has also not been 
considered in intracellular models of grid formation, although it is conceivable that, in these 
models, reductions in the length of the mean direction vector may dampen the frequency of 
intrinsic theta oscillations, which in turn should increase the spacing of grid fields [49-51].
Finally, it remains possible that wider directional tuning and larger grid scales reflect changes in 
the magnitude of a common velocity input to head direction cells and grid cells.

The observation of a dorso-ventral gradient in directional tuning but not directional phase is 
reminiscent of the scale-phase architecture of the entorhinal grid map and the hippocampal 
place map. In grid cells as well as place cells, firing locations (phase) show no detectable 
relationship to brain anatomy whereas field size and field spacing (scale) increase from dorsal 
to ventral [11, 15, 16]. The broader directional and spatial tuning profiles of ventral cells leads 
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to increased response overlap within the local cell population. This increase in representational 
density may improve the fault-tolerance of the network, although probably at the cost of 
increased ambiguity. The widening of tuning widths at ventral levels may also allow larger parts 
of the environment to be interconnected, consistent with a primary role for dorsal MEC and 
hippocampus regions in fine-grained local representations and for ventral regions in coarser and 
more global representations [16, 52].

Experimental Procedures

Single unit activity was recorded from tetrodes in MEC of 22 male Long-Evans rats and 14 male 
mice (a hybrid 50:50% background of C57BL/6J:129SVEV). In rats, the tetrode bundle was 
implanted 0.2 mm in front of or flush with the transverse sinus, 4.2-4.6 mm from the midline and 
1.8-2.0 mm below the dura, angled 18-24 degrees in the anterior direction in the sagittal plane. 
In mice, the bundle was implanted 0.3-0.5 mm in front of the transverse sinus, 3.1-3.25 mm 
from the midline and 0.8-1.2 mm below the dura, angled 4-8 degrees in the posterior direction in 
the sagittal plane. The rats were trained to forage a 1.5×1.5×0.5 m3 black square box with a 
white cue card. For the mice, the box size was 1.0×1.0×0.5 m3.

The position of the animal was determined from tracking of the LEDs.  Firing fields were 
characterized by sorting the position data into 2.5 × 2.5 cm bins and smoothing the data with a 
21-sample boxcar window filter (400 ms, ten samples of each side).  Maps for number of spikes 
and time were smoothed individually using a quasi-Gaussian kernel over the surrounding 5 × 5 
bin.  Firing rates were determined by dividing the spike number and time for each bin of the two 
smoothed maps. The animal’s head direction was calculated for each tracked sample from the 
projection of the relative position of the two LEDs onto the horizontal plane. The directional 
tuning function for each cell was obtained by plotting the firing rate as a function of the animal’s 
directional heading, divided into bins of 3 degrees and smoothed with a 14.5-degree mean 
window filter (14 bins on each side). Grid cells and head direction cells were identified by 
comparing values for spatial periodicity and head direction tuning with corresponding values 
obtained from distributions of shuffled data (Fig. S2 and Supplementary Experimental 
Procedures). Discontinuities in grid spacing and head direction tuning were estimated by 
comparing distributions of these values with the smoothness of the distribution of recording 
locations along the dorso-ventral MEC axis (Fig. 5 and 6; Supplementary Experimental 
Procedures). 
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Figure Legends

Figure 1: Directional tuning of layer III head direction cells decreases along the dorso-ventral 
axis of MEC.  

(A) Nissl-stained sagittal section for a rat with tetrodes in layer III of MEC. Red arrows mark the 
first (most dorsal) and last (most ventral) location where a head direction cell was recorded. 

(B) Examples of layer III head direction cells from an individual rat (rat 15733).  Polar plots 
indicating firing rate as a function of head direction are shown for the six head direction cells 
with the highest MVL in each of four 500 μm bins along the dorso-ventral MEC axis; sharpest 
tuning on the top and weakest tuning on the bottom. MVL values are indicated above each polar 
plot. Each column represents data from a single bin. 

(C) Directional tuning (MVL) of layer III head direction cells as a function of position along the 
dorso-ventral axis of MEC. Data are from 17 rats.  Left: Scatterplot with purple circles 
corresponding to individual cells. Black circles correspond to individual cells shown in A (6 
sharpest cells of an individual animal). Regression line is indicated. Right: Mean ± S.E.M. for 
bins of 500 μm along the dorso-ventral MEC axis. The sharpest 25% of head direction cells 
(light purple circles) decreased significantly in tuning breadth whereas weakly tuned cells 
(bottom 25%, blue circles) were present at all dorso-ventral levels. Panel A shows examples 
from the upper quartile.

(D) Proportion of sharply-tuned cells (top 25%; light purple) decreases while the proportion of 
broadly-tuned cells (bottom 25%; light blue) increases with distance along the dorso-ventral 
MEC axis.

Figure 2: Head direction tuning at different levels of the dorso-ventral axis of MEC layers V-VI.  
(A)  Nissl-stained sagittal section for a rat with tetrodes in layers V-VI of MEC. Arrows as in Fig. 
1A.

(B) Examples of head direction cells from layers V-VI of rat 15895.  The six head direction cells 
with the highest mean vector lengths in each 500 μm anatomical bin are shown; sharpest tuning 
on the left and weakest tuning on the right.  Mean vector length is indicated above each cell. 

(C) Directional tuning (MVL) of layer V head direction cells as a function of position along the 
dorso-ventral MEC axis (data from 9 rats). Left: Scatterplot with green circles corresponding to 
individual cells. Black circles correspond to individual cells shown in A (sharpest cells of an 
individual animal). Right: Mean ± S.E.M. for bins of 500 μm along the dorso-ventral MEC axis 
(top and bottom quartiles). .

(D) Proportion of sharply-tuned and broadly-tuned head direction cells (top and bottom 25%, 
respectively) at successive dorso-ventral MEC levels.
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Figure 3: The dorso-ventral gradient in layer III directional tuning translates across rodent 
species.  

(A)  Nissl-stained sagittal section for a mouse with tetrodes in layers II and III of MEC. Arrows as 
in Fig. 1A. 

(B) Examples of layer II-III head direction cells from an individual mouse.  Polar plots indicating 
firing rate as a function of head direction are shown as in Fig. 1.  The six head direction cells 
with the highest directional tuning (MVL) in each 300 μm bin are shown.  

(C) Directional tuning (MVL) of layer II-III head direction cells as a function of position along the 
dorso-ventral MEC axis in mice.  Left: Scatterplot showing decrease in directional tuning as a 
function of dorso-ventral recording location (13 mice; one mouse did not have head direction 
cells). Black circles correspond to individual cells shown in B (one animal).  Right: Mean ± 
S.E.M. for bins of 300 μm along the dorso-ventral MEC axis (top and bottom quartiles).

(D) Changes in proportion of sharply and broadly-tuned head direction cells along the dorso-
ventral MEC axis, as in Fig. 1D.

Figure 4: Non-topographic organization of firing direction in MEC head direction cells.  

(A) Circular frequency histograms showing distribution of peak firing directions across layer III
cells in 500 μm anatomical bins spanning the dorsal (top) to ventral (bottom) MEC axis of 
individual rats.  Each column represents a different animal and each row a 500 μm bin. The 
mean vector of the distribution of firing directions is indicated for each sample by a red arrow.
Frequency bins are 20 deg. Frequency scale is given by red numbers.

(B) Directional preference or phase (top) and tuning width (bottom) of all head direction-
modulated layer III cells in a single rat. There was no detectable change in directional firing 
preference along the dorso-ventral axis of this animal, whereas the relationship to tuning was 
highly significant (r = 0.60, P < 0.001). For other animals, the total cell numbers across layer III 
bins (< 3 anatomical bins of 500 μm) were too small for statistical analysis. 

(C-D) Distribution of directional preferences (phase) for each dorso-ventral bin in each rat; (C),
layer III; (D), layers V-VI. Each circle refers to one cell sample (one anatomical bin in one 
animal). Uniformity in firing direction is expressed by the length of the mean vector (MVL). Note 
predominance of low MVLs at all dorso-ventral levels.

Figure 5: Modular organization of grid cells but not head direction cells. 

(A) Scatterplots showing grid spacing in grid cells (top) and directional tuning (MVL) in head 
direction cells as a function of rank-ordered dorso-ventral recording position in individual 
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animals. Layer III and layer V-VI head direction cells are shown separately (middle and bottom, 
respectively). Each dot corresponds to one cell.  Cells are plotted sequentially along the x-axis 
to avoid overlap between cells at similar recording depths. Kernel smoothed density estimates 
(vertical black area) are presented to the right for each data set. Kernel width: [data range]/35. 
Note modular distribution of grid spacing in contrast to directional tuning.  

(B) Frequency distributions showing data from scatterplots in A (black bars). Frequency 
distributions were generated for grid spacing or directional tuning (black bars) as well as dorso-
ventral recording locations (gray bars). The latter were plotted to allow correction for 
discontinuities in cell sampling along the dorso-ventral axis that might cause overestimation of 
discontinuity in the firing data. Discontinuity was then estimated for each of the three 
distributions as the standard deviation of all nearest-neighbor frequency bin count differences 
averaged over bin widths. Discontinuity values were calculated for a range of bin widths. Shown 
here are plots with an intermediate bin width ([data range]/10). 

(C) Discontinuity for grid spacing or directional tuning MVL (black bars) and dorso-ventral 
recording locations (gray bars) calculated for the data in B. Grid spacing showed a more 
discontinuous distribution than expected from discontinuities in the distribution of recording 
locations [13]. Directional tuning, in contrast, was not more discontinuous than the anatomical 
distribution. 

(D) Log normalized discontinuity for grid spacing (red) and head direction tuning (cyan) across a 
range of bin widths in the 8 animals where both grid-cell and head direction-cell populations 
were recorded. For each animal and bin width, discontinuity of grid spacing or directional tuning 
MVL was log normalized to the discontinuity of the corresponding distribution of dorso-ventral 
recording positions. Colored areas show S.E.M. Grid cells had larger discontinuity values than 
head direction cells at all bin widths. Head direction cells had negative values in both layer III 
and layer V-VI. The more negative values of the layer V-VI data reflect the weak topographical 
organization of these cells (in layers V-VI, MVL distributes widely at all dorso-ventral levels such 
that even large steps in dorso-ventral recording location produce a smooth distribution). 

(E) Log normalized discontinuity averaged across bin widths in all 16 animals (means ± S.E.M.). 

Figure 6: Validation of discontinuity measure. 

(A) Simulation showing effect of number and width of modes on the discontinuity of a frequency 
distribution. Histograms (black bars) of simulated feature distributions (n = 120 samples each) 
were drawn randomly from multimodal probability density functions (PDFs; red curves). The 
PDFs featured 3 Gaussian modes (mode locations indicated by red dots above each plot) with 
varying spread (indicated in red text left of each figure). Increased spread caused less clustering 
in the drawn distributions, which in turn was reflected as a decrease in discontinuity (values 
shown above each plot). Frequency and density were normalized to maximum values per plot.

(B) Same as A but for distributions with 8 modes. 
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(C) Frequency plot showing distribution of simulated recording positions. In real data, multiple 
cells tend to be recorded at the same position, resulting in increased clustering. Such clustering 
was incorporated in the simulated position distribution by drawing n = 120 samples from Pun
random uniform positions in dorso-ventral (DV) recording space (defined in the present example 
within [0,1]), where Pu is the average ratio of number of recording positions to number of 
recorded cells per data set. The effect on discontinuity (measured as in Fig. 5) is shown above 
the plot. 

(D) Same as C, but for the 8 mode distributions in B.

(E) Discontinuity from the simulated distributions in A log-normalized to the discontinuity of the 
simulated recording position distribution in C. Bars show log-normalized discontinuity with 
different Gaussian spread (indicated under each bar). Negative values indicate less clustering in 
A than for the simulated recording distribution in C.

(F) Same as E, but for the 8-mode distributions and simulated recording positions in BD. The 
high number of modes caused lower log-normalized discontinuity values. 

(G) Summary matrix showing log-normalized discontinuity across a range of distribution widths 
and numbers of modes. Log-normalized discontinuity is color-coded. For each condition, the 
value represents the mean from 100 simulation trials. The black solid line is the zero-contour 
and denotes the separation between combinations of mode number and widths that are 
identifiable as modular (positive, lighter colors in heat map) and those that are not (negative, 
darker colors in heat map). Plotted in dashed colored lines are the contours corresponding to 
the mean log-normalized discontinuity observed for head-direction modulation (green: layers V-
VI, purple: layer III) and grid cell spacing (red; see Fig. 5). 

(H) Contour map from G, including S.E.M. of the data. Color-coding as in G.
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