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Recent advancements in artificial intelligence (AI) technologies have induced tremendous growth in innovation
and automation. Although these AI technologies offer significant benefits, they can be used maliciously. Highly
targeted and evasive attacks in benign carrier applications, such as DeepLocker, have demonstrated the
intentional use of AI for harmful purposes. Threat actors are constantly changing and improving their attack
strategy with particular emphasis on the application of AI-driven techniques in the attack process, called
AI-based cyber attack, which can be used in conjunction with conventional attack techniques to cause greater
damage. Despite several studies on AI and security, researchers have not summarized AI-based cyber attacks
enough to be able to understand the adversary’s actions and to develop proper defenses against such attacks.
This study aims to explore existing studies of AI-based cyber attacks and to map them onto a proposed
framework, providing insight into new threats. Our framework includes the classification of several aspects
of malicious uses of AI during the cyber attack life cycle and provides a basis for their detection in order to
predict future threats. We also explain how to apply this framework to analyze AI-based cyber attacks in a
hypothetical scenario of a critical smart grid infrastructure.

CCS Concepts: • General and reference→ Surveys and overviews.

Additional KeyWords and Phrases: Cyber security, AI attacks, cyber threat prevention, cyber-physical systems,
smart grid, attack analysis

1 INTRODUCTION
Over the past years, artificial intelligence (AI) technologies have progressed rapidly and their
capabilities have extended into several domains. From smart governance, smart buildings, smart
transportation, smart grids to smart “anything”, AI turns the flood of data into actionable infor-
mation. These AI technologies are useful for the cybersecurity field by collecting large amounts
of data and then quickly filtering them to detect malicious patterns and anomalous behaviors.
Therefore, a lot has been published with a focus on the advancements of AI, but less attention
has been given to the dangers of AI. The malicious use of AI is altering the landscape of potential
threats against a wide range of beneficial applications. Particularly, the threat of malicious use of AI
could threaten more complex systems such as smart cyber-physical systems, which have not been
studied thoroughly before. Smart cyber-physical systems (sCPS) refer to advanced CPS systems,
which are more interconnected through various technologies like the Internet of Things (IoT),
AI, wireless sensor networks (WSN), and cloud computing to provide a wide range of innovative
services and applications [1].
To a large extent, the interconnected nature of sCPS means a single vulnerability like the flap

of a butterfly’s wings can ultimately cause a tornado. Analogous to the “butterfly effect”, when
one part of a system collapses, the whole system will collapse with large effects. Therefore, the
increasing levels of interconnectivity and autonomy have given rise to an increased number of
cyber attacks. The impact of potential cyber threats has been extended from malicious uses of
AI technologies to enable larger-scale and more powerful attacks. Cybercriminals have started
to improve their techniques by including IoT hacks, malware, ransomware, and AI to launch
more powerful attacks. By carrying out these kinds of attacks, everyone is at risk due to the
interconnectivity and intelligence of the attacks. From this perspective, even if the progress of
research on the application of AI to defend against cyber attacks has already started many years

Authors’ address: Nektaria Kaloudi, nektaria.kaloudi@ntnu.no; Jingyue Li, jingyue.li@ntnu.no, Norwegian University of
Science and Technology, Trondheim, Norway.



2 Nektaria Kaloudi and Jingyue Li

ago [12], there is still uncertainty about how to defend against AI being used as a malicious tool.
This work attempts to fill this gap.

The goal of this work is to identify, analyze, and classify novel threats in literature that are
more sophisticated, highly targeted, well-trained, large-scale, and use AI maliciously. In this paper,
we define an emerging class of attacks: AI-based cyber attacks — the application of AI-driven
techniques in the attack process, which can be used in conjunction with conventional attack
techniques to cause greater damage. We developed a framework in order to better understand how
AI is weaponized and can cause large-scale harmful outcomes. The overall goal of this study was to
investigate the extent of this novel threat with the hope of helping the research community identify
suitable defenses against potential future threats. In particular, we focused on the threat of malicious
use of AI as a key concern for sCPS. In order to tackle our goal, we identified research studies
that show the intersection of AI and malicious intents to build the boundaries of AI-based cyber
attacks. We provided a structured approach by developing an AI-based cyber threat framework to
categorize those attacks.

The main contributions of this paper are the following:
• A state-of-the-art survey of current trends of AI-based cyber attacks through intentional
malicious use of AI technologies

• A framework for the classification of AI-based cyber attacks
• An attack scenario powered with AI on a smart grid infrastructure to illustrate how to use
our framework to analyze AI-based cyber attacks

Themain findings produced from our study are as follows:
AI-based cyber attacks: We found 11 case studies and classified them into 5 categories: next-
generation malware, voice synthesis, password-based attacks, social bots, and adversarial training.
AI-based cyber threat framework: We used a well-established model for cyber threat representation
to develop a threat framework to classify the studied attacks.
Scenario: We applied the framework to a hypothetical AI attack scenario on a smart grid infrastruc-
ture with the goal of demonstrating how the malicious use of AI can have a large-scale catastrophic
impact.

Outline. The paper is organized as follows. In Section 2, we provide the background that frames
our research question to set the context of our study. Then, in Section 3, we analyze (i) several
existing literature reviews and surveys, (ii) existing classifications related to malicious AI, and (iii)
existing models on cyber threat representation. Section 4 explains the methodology used for this
study. In Section 5, we review the state-of-the-art research of AI-based cyber attacks, present the
AI-based cyber threat framework, and demonstrate how it can be used in the real-world case of
a smart grid. Finally, in Section 6, we conclude by discussing our contribution, the limitations in
our work, and potential directions for future research towards provisioning AI and security. The
conclusions are presented in Section 7.

2 BACKGROUND
2.1 Malicious AI
The malicious use of AI increases the speed and success rate and augments the capabilities of attacks.
Information and communication technologies (ICTs) and AI expand the opportunities to commit a
crime and form a new threat landscape in which new criminal tactics can take place. In the report
on malicious AI [13], the authors warned about the changing threat landscape by the malicious
uses of AI technologies. The AI field is broadly distinguished between the rule-based techniques
and the machine learning-based techniques, which allow computer systems to learn from a large
amount of data. Cybercriminals learn to use AI technologies-enhanced learning approaches to their
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advantage and weaponize them by automating the attack process. The shift to AI technologies
with learning capability, such as deep learning [35], reinforcement learning [46], support vector
machines [65], and genetic algorithms [21], has potentially unintended consequences, such as
facilitating criminal actions in a more efficient manner. Figure 1 shows the evolution of computer
crime towards the use of ICT and AI technologies. Technological developments introduce new
opportunities to commit crimes due to the “anonymity” of cyber criminal activities, the absence of
geographical boundaries, less pronounced legal restrictions, and the convenience of technologies.
Therefore, awareness of new trends in cyber crime is becoming significantly more important in
order to drive appropriate defensive actions. Based on the way the crime is committed, we can
classify it as a computer crime when it is carried out with the use of a computer and as a cyber
crime when it is carried out with the use of a network. Along with cyber crime, AI can support
cyber criminal activities without human intervention through, for example, automating fraud
and data-based learning. In the context of CPS, recent papers discussed advanced threats against
CPS from a different level of sophistication: an indirect self-learning attack on well-hardened
computing infrastructure by compromising the cyber-physical control systems [16], while another
study [6] presented a framework to build cyber-physical botnets attacking a water distribution
system, but without learning aspects involved in this attack model. Therefore, sCPS is a potentially
fruitful area for committing artificial intelligence crimes (AIC) [49] due to the decision-making and
interconnectivity features.

Fig. 1. Evolution of computer crime towards the use of ICT and AI technologies.1

2.2 Smart Cyber-Physical Systems
Traditional CPS are systems that seamlessly integrate sensing, control, networking, and computa-
tional algorithms into physical components, connecting them to the Internet and to each other [33].
CPS has applications in energy, infrastructure, communication, healthcare, manufacturing, the
military, robotics, physical security, building systems, and transportation [9]. Integrating networked
computational resources with physical systems that control various sensors and actuators impacts
the environment. Advances in connectivity enable the evolution of sCPS. The term sCPS refers to a
new generation of embedded systems, which are increasingly interconnected and their operations
are dependent on software, such as industrial IoT. They are becoming more sophisticated with

1Images from https://pixabay.com/pt/
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increased capabilities, which collect data from various sources to address real-world problems, such
as traffic management.

Authors [15] defined sCPS as: “Smart Cyber-Physical Systems (sCPS) are modern CPS systems that
are engineered to seamlessly integrate a large number of computation and physical components; they
need to control entities in their environment in a smart and collective way to achieve a high degree of
effectiveness and efficiency.”
A key to the “smartness” of those systems is their ability to handle complex tasks through the

features of self-awareness, self-optimization, and self-adaptation [15]. The feature of smartness
becomes apparent from sCPS being highly connected, having cooperative behavior with others
and being able to make effective decisions automatically. Bures et al. [15] said that “most of the
smartness is implemented in software, which makes the software one of the most complex and most
critical constituents of sCPS.” An outcome relates to highly sophisticated capabilities aimed at pro-
viding some degree of automation. Emerging technologies can be used to perform increasingly
sophisticated functions in various sCPS, including smart healthcare systems, smart grids, smart
buildings, autonomous automotive systems, autonomous ships, robots, smart homes, and intelli-
gent transportation systems, with little or no human oversight [47]. They represent the areas of
innovation that are integrated into many CPS components in order to improve the quality of our
lives.

2.3 Security of sCPS
Exponential growth of ubiquitous interconnectivity and automation creates more opportunities for
attacks and increases the risks for potential targets. Attackers can take advantage of the elimination
of the physical distance from their targets, and leave very little evidence of their attacking activities.
The attack surface is becoming larger, which may arise from multiple systems that are cooperating
together, making it difficult to recognize the system’s boundaries, especially when the system is
under attack. Even though the current threat landscape involves a multitude of actors, spaces, and
systems, attackers use different types of vulnerabilities to launch various attacks [26]. These attacks
include the complexity and sophistication in malicious actions in cyberspace, the monetization of
cyber crime, and more advanced persistent threats (APTs).
However, progress on the emerging sCPS can cause new types of abnormal behaviors and

activities in cyberspace, which would not have been possible without the emerging technologies.
Smart CPS are still vulnerable to cyber attacks and several challenges, which are related to both
old and new threats that need to be overcome. We expect attacks to be smarter, more powerful,
and more likely to create scalable impact by causing a high level of cascading damage. As the
authors [50] mentioned, a smart attack can be defined “as an AI-enabled attack in which malicious
actors can use AI technologies to attack smart components inside autonomous systems. The smart attack
is usually executed via a persistent, finely targeted, combined, and multilayered exploitation of multiple
security zones in a camouflaged way.” Bures et al. [15] said that this “smartness typically involves
more complex functionality and more complex interactions, which, in turn, increase the potential attack
surface”, and new vulnerabilities could be created due to the coverage of a larger number of users.

2.4 The need for a survey on AI-based cyber attacks
As outlined in the introduction, there is a lack of systematic understanding on the possible malicious
uses of AI technologies. The problem of controlling AI is big and it has started to be seen as a
serious concern globally [42]. The security industry and community need to understand how AI
can be applied to cyber attacks and where the weak points are, in order to find the best vaccine
for them [59, 61]. In 2016, researchers from the DARPA’s Cyber Grand Challenge [20] showed the
“dark side” of automation by automating the generation of exploits and attack processes. Moreover,
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in a new white paper [27] from ESET, researchers conducted a survey of managers and IT staff
in the most advanced markets in the United States of America, United Kingdom, and Germany
about concerns related to the use of AI in the cybersecurity field. It also provided an overview of
potential future “AI-powered attacks.” Similarly, a research white paper from DarkTrace [19] that
used real-world threats made predictions of how these can be made stronger with AI. In order
to deal with the complex AI-based cyber attacks, it is required to understand the state-of-the-art
nature of AI-based cyber attacks. In this study, we aim to classify the existing research relevant to
the malicious use of AI. Those activities will help us to stay ahead of cybercriminals and develop
appropriate defenses.

3 RELATEDWORK
3.1 Existing literature reviews & surveys
IBM researchers are studying the evolution of technologies and capabilities to identify new varieties
of threats, such as those related to AI-powered attacks [77]. A recent report [13] surveyed potential
threats from the malicious usage of AI within three security domains—physical, digital, and political
security—and proposed high-level recommendations to prevent and mitigate such threats. The
authors [13] proposed some hypothetical scenarios in order to represent the sorts of attacks people
are likely to see in the future. Brundage et al. [13] supported that the growing use of AI capabilities
will show three changes in the current threat landscape: (i) expansion of existing threats, which
deals with labor-intensive cyber attacks to achieve a large set of potential targets and low cost
of attacks; (ii) introduction of new threats, which deals with tasks that would be impractical for
humans; and (iii) change to the typical character of threats, which involves new attributes of finely
targeted, automated, highly efficient, difficult to attribute, and large-scale attacks in the threat
landscape.
The complexity, persistence, and improved capabilities of attacks in the present cyber threat

landscape have resulted in the growth of coordinated cyber crime. The first systematic literature
review in 2018 for the potential threats of AIC [49] reported the potential threats across AIC areas
where AI could be used as an instrument to facilitate criminal activities in the future. King et al. [49]
argued that AI crimes benefit from the advent of AI technologies, since attackers usually have
access to technical means. In the literature [49], the authors provided a discussion on two published
experiments in automating frauds by constructing personalized messages for phishing purposes,
and AI-driven manipulation of simulated markets. These two experiments along with a mapping of
related examples on specific crime areas raise security awareness as a focus for future studies.

Yampolskiy and Spellchecker [86] explored past failures connected with AI systems in order to
extend awareness to potential future risks. According to the authors, the probability of AI failures of
intended intelligence will increase in future AI systems, in forms that cannot currently be imagined
that can cause a much more serious problem without a chance for recovery. Additionally, study [64]
mainly focused on intentional malevolence in design, given the need to understand how to design
a malicious intelligent machine in order to fight against it and to avoid the deliberate actions of a
dangerous AI. Incorrect predictions can be harmful and crucial for critical applications, leading
to a surge of interest in the field of AI safety, with a focus on how to ensure safe behavior in
AI systems [3]. Finally, the literature on AI risk [76] summarized the arguments for the global
catastrophic risks connected with artificial general intelligence (AGI) and proposed some safety
measures for responding to such risks andminimizing the possible negative impact. The authors [76]
mainly emphasized the domain of AI safety engineering and its associated needs to create a safe
machine. Table 1 provides a summary of the key contributions of the related literature reviews and
surveys on malicious AI.
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Table 1. Related Work Summary Comparison

Article Year Contribution

The Malicious Use of Artificial Intelligence:
Forecasting, Prevention, and Mitigation [13] 2018

Summary of the findings from workshop and additional
research of possible changes to threats within three
security domains: physical, digital, and political security.

Artificial Intelligence Crime: An
Interdisciplinary Analysis of Foreseeable
Threats and Solutions [49]

2018
Identification of potential areas of AIC where AI can be
used as an instrument to support potential criminal
activities in each crime area.

Artificial Intelligence Safety and
Cybersecurity: a Timeline of AI Failures [86] 2016

Exploration of past examples of AI failures produced by
the intelligence on AI systems and expect that there are
more to come.

Unethical Research: How to Create a
Malevolent Artificial Intelligence [64] 2016

Guidelines for the purposeful creation of malicious AI
system to raise awareness, due to the fact that intentional
malicious design of intelligent machines could be even
more dangerous.

Responses to catastrophic AGI risk: a
survey [76] 2015 Literature review on AI risk, which emphasizes the

domain of AI safety engineering.

As mentioned earlier, existing literature reviews and surveys focus on the intentional or unin-
tentional design of dangerous AI with the goal of creating an unethical AI system, and do not focus
on using AI as an instrument of security attacks. In particular, Yampolskiy and Spellchecker [86]
referred to the concern of controlling intelligent machines and underpinned the failures of today’s
AI, while the studies [64, 76] focused on mapping AI risks when an intelligent system may be
dangerous at different stages in its development. Moreover, King et al. [49] identified potential
threats posed by leveraging AI tactics across areas of potential criminal activities and Brundage et
al. [13] provided information about what sorts of attacks could be expected from the offensive use
of AI capabilities. In terms of the automated actions with some levels of intelligence, no research
work, to our knowledge, has been published on explaining how AI can be misused by attackers in
a systematic way. We will review different attack strategies leveraging AI-driven techniques to
maximize their impact, and mitigation approaches that could be used in defending against AI-based
cyber attacks. Availability of such information would be helpful for advancing our understanding
about the emerging AI-based cyber attacks, and find appropriate countermeasures. In order to
show the new contribution of our survey, we compared the focus of our work with the focuses of
existing literature reviews and surveys, as shown in Table 2.

Table 2. A comparison of our survey focus with focuses of existing surveys in literature

Survey Studying
malicious AI

Studying AI-based
cyber attacks

Mapping of new
attack vectors to
attack stages

Recommending
mitigation
approaches

[13] ✓ ✓ ✓
[49] ✓ ✓ ✓
[86] ✓
[64] ✓
[76] ✓ ✓ ✓
Our Survey ✓ ✓ ✓ ✓

3.2 Existing classifications on malicious AI
Research efforts have been made to identify the new risks associated with AI at various levels of its
development. In 2015, Turchin [81] described a number of undesirable behaviors of an intelligent
system, which might lead to dangerous AI at different stages of its development. The proposed map,
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named “AGI Failures Modes and Levels,” provides a comprehensive list of failures modes in which
an intelligent system may be dangerous. Among his examples, AI can fail in the following ways:

• Before self-improvement of its abilities, it needs a huge number of resources that may have a
negative impact on environment.

• Stages of AI takeoff may use different ways to get away from its initial confinement and
create bad goals that can be extremely dangerous to humanity.

• Unfriendly AI may result in an AI killing people, due to implementation of a malicious goal
system.

• Failures of Friendliness, caused by flaws of friendly features.
• AI may halt due to either technical or philosophical problems.

A similar approach was presented by Turchin and Denkenberger [82], who proposed a classification
of catastrophic risks according to the level of AI’s intelligence. The three proposed levels are: (i)
“Narrow AI” associated with the current AI systems that require human intervention, (ii) “Young AI”
associated with the youngest age of AI where its capabilities are slightly above human level, and
(iii) “Mature AI” associated with the superintelligent level. This classification approach explores
several risks according to the speed of the AI’s evolution and capabilities above the human level,
which could have catastrophic outcomes.

Yampolskiy [85] classified the types of pathways leading to malicious AI system into two
stages: pre-deployment and post-deployment. The proposed taxonomy categorized the AI risks
into potential internal and external causes of dangerous behavior, including effects of poor design,
deliberate actions, and various cases related to the environment that surrounds the system. It
intends to provide a holistic view of different ways an AI system could have dangerous behavior,
from properly benign to completely evil.

3.2.1 Comparative study of the schemes. The main scope of the malicious AI is to leverage machine
learning (ML) techniques to accomplish two main goals that can be distinguished by the following
categories: (i) Adversarial machine learning, in which attackers fight ML-based systems indirectly,
by studying and manually exploiting weak points in ML techniques; and (ii) AI-based cyber attack,
in which attackers apply ML techniques to the attack directly against a security system.

The classifications [81, 82, 85] focus on summarizing possible risks associated with AGI and AI
systems as targets. In particular, most of the risks are related to building intelligent systems with
capabilities beyond our ability to control them. For instance, traditional malicious attacks on AI
systems, called adversarial attacks, occur when an adversary manipulates input data to fool the ML
algorithms, leading to misclassification. Although their works give an overall view of AI risks in
terms of adversarial machine learning, they lack the study of new forms of offenses emerging from
the malicious use of AI. We considered how the current level of AI can cause deliberate actions
that lead any particular system to acquire undesirable properties. The crafted input manipulation
refers to a malicious attack where the AI system is a target and not when it is used as an attack
vector. More precisely, Hansman and Hunt [38] defined attack vector as “the main means by which
the attack reaches its target” and therefore our investigation field focuses on when an adversary
uses AI technologies as a weapon to enhance his attack vector. Moreover, we wanted to go one
step further to identify defensive approaches that are needed to deal with the emerging AI-based
cyber attacks. We summarized the major differences between the study focus of our classification
of malicious AI and the existing classifications in Table 3.

3.3 Existing models on cyber threat representation
Attack development life cycle is a fundamental method to describe the process of conducting cyber
attacks. It is important to know how attackers work in order to figure out how to stop them. There
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Table 3. A comparison of our study focus with existing classifications in literature

Classifications Malicious AI Contribution

Existing
classifications [81, 82, 85]

AI can be attacked
by criminals

The main focus of these classifications is to
summarize possible risks associated with AGI
and AI systems as targets.

Our focus AI can be misused
by criminals

A map on the malicious uses of AI
technologies as a weapon to enhance the
attack vector, and it helps identify mitigation
approaches.

are different cyber attack frameworks used in representing adversarial actions and behaviors. The
most well-established models for cyber threat representation are: (i) Attack Trees [69] introduced
in 1999 by Bruce Schneier for modeling security threats in order to understand all the possible
ways in which a target can be attacked, (ii) Cyber Kill Chain [45] developed in 2011 by Lockheed
Martin analysts for detecting adversarial intrusions across the whole cyber attack life cycle, (iii)
MITRE’s Adversarial Tactics, Techniques and Common Knowledge (ATT&CK) [55], which gives a
comprehensive coverage of pre- and post-compromise techniques, and (iv) Mandiant’s attack life
cycle model [14], which emphasizes the modeling of typical APT intrusions, showing the repeating
nature of attackers to further escalate privileges. All the above models give a knowledge base of
the processes used by attackers, however, the Cyber Kill Chain has been widely adopted as a core
foundation for most existing adversary-focused models.

4 RESEARCH METHOD
4.1 Research motivation
Despite the significant benefits to humans, AI technologies inside of any computer system are
powerful and can cause the opposite results, if we rely on the belief that anything and everything
can be hacked [30]. Attacks can be beyond the ability of human intelligence. It is therefore important
to identify and summarize the adversarial steps throughout the cyber attack life cycle. The method
for this study is to analyze the existing case studies of AI-based cyber attacks, and extract relevant
information to propose a framework based on well-established models to better understand the
different features of each reported AI-based cyber attack.
We want to adopt an existing model for cyber threat representation to analyze the malicious

use of AI as an instrument in supporting malicious activities. Comparing to existing classifications
on malicious AI [81, 82, 85], our study focuses on how to model the phenomena of misusing AI
as an instrument in the attack process, instead of modeling how AI system can be attacked. The
relationship between our scope with existing ones is shown in Figure 2.

4.2 Research design
We utilized the method described by Molleri, Petersen, and Mendes [56] to systematically conduct a
survey-based research. The research process involved defining a research question and designing a
strategy to collect relevant papers, as well as analyzing and reporting the findings. The goal of this
research can be formulated into the following main research question: how will the malicious
use of AI change the cyber threat landscape?

4.2.1 Data collection. In order to retrieve as many relevant studies as possible, we identified the
starting set of papers with a focus on the area of malicious use of AI. The starting set was selected
by manual search on Google Scholar, to avoid bias of any particular publisher. We used manual
search method to retrieve studies due to the immature area and the difficulties in identifying papers
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Fig. 2. The proposed framework against the existing ones.

within our scope. After reading the title and abstract of each paper, we verified the inclusion of
the papers that we were aware of. The candidate papers were divided into three categories: (i)
existing literature reviews and surveys, (ii) existing classifications, and (iii) existing case studies of
AI-based cyber attacks. While the first two categories resulted in quite a small number of 5 studies
as shown in Table 1, and 3 studies as shown in Table 3, the last category returned more than 27
papers. We looked at the whole content of the retrieved articles to ensure that they are related
to the objective of the integration of AI-driven techniques in the attack process to maximize its
impact. At the end of this phase, 21 papers of the third category had been excluded. The reason we
excluded many papers was that only 6 papers addressed the threat of learning to attack with some
level of intelligence, instead of changing the behavior of a system via manual manipulation, such
as the traditional adversarial machine learning.

Then, we complemented the manual search with backward and forward snowballing technique
of the papers that belonged to the three defined categories for a better coverage of related studies,
using the snowballing procedure guidelines [84]. We examined all the remaining 14 papers from
the three categories and identified 5 new case study papers of AI-based cyber attacks, based on
snowballing. Figure 3 represents the three steps carried out in the search process to retrieve relevant
primary papers. During this iterative process, we reviewed the papers and developed the framework.

Fig. 3. Search Process Overview.
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4.2.2 Data analysis. An analysis of the case studies of AI-based cyber attacks collected was
conducted in detail according to the master attack methodology [28] to identify the adversarial
strategies. To extract details of the attacks, we followed a path for the representation of an attack
anatomy based on “what” the attacker’s intent is, “how” it is satisfied by the malicious use of AI,
“when” it is represented in the phasing sequence of the cyber attack life cycle, and “where” the
attack could occur and its associated impact. At the end of each case, we tried to identify some
defensive strategies against the AI-based cyber attacks case studies.

To build the framework from the extracted information of analyzing the existing case studies in
literature, we adopted the Cyber Kill Chain as a core in our framework because it provides a well-
defined sequence of stages in a cyber attack. The Cyber Kill Chain can describe the steps for many
attacks, as Patrick Reidy [68] said “the intrusion kill chain is excellent for attacks, but does not exactly
work for insider threats.” Working with the well-established Cyber Kill Chain, it allows the future
deployment of intelligent defenses by giving the opportunity to disrupt a cyber attack in progress.
The Cyber Kill Chain framework consists of the following stages: “reconnaissance, weaponization,
delivery, exploitation, installation, command and control (C2), and actions on objectives” [45].

• Reconnaissance includes a preliminary research on identification, selection, and profiling of
potential targets to understand their behavior.

• In theWeaponization stage, a cyber weapon with malicious payload is implemented.
• In the Delivery stage, the cyber weapon is transmitted to the target without being detected.
• During the Exploitation stage, the malicious payload is executed within the target system.
• In the Installation stage, the malware is installed, allowing the adversary to gain remote
access.

• In the C2 stage, the attacker establishes a command channel for remote manipulation of the
target.

• Finally, in the Actions on Objectives stage, the attacker executes the actions on the target to
achieve his objectives.

5 RESULTS
The results are based on analyzing the data collected from the 11 reviewed case studies of AI-based
cyber attacks with our minimal interpretations. We classified the attacks into five categories: next-
generation malware, voice synthesis, password-based attacks, social bots, and adversarial training.
Related to these categories, we proposed an AI-based cyber threat framework based on the Cyber
Kill Chain. The main purpose of using Cyber Kill Chain is to understand multiple attacks, allowing
defenders to align their defensive measures in accordance with the attack stages. Likewise, our
framework can be used similarly to understand and inform mitigation strategies against attacks
using AI as an instrument in supporting malicious activities. We use a hypothetical AI attack
scenario on a smart grid infrastructure to explain how to use our framework to identify AI-based
cyber attacks and their corresponding defense strategies.

5.1 Existing case studies of AI-based cyber attacks
New technologies are rapidly expanding the cyber threat landscape, which opens up to a wide range
of dangerous scenarios with more powerful impacts. The authors [13] warned about the malicious
uses of AI using some hypothetical scenarios within three security domains: physical, digital, and
political security. One scenario showed the possibilities of an automated exploit generation in
the real world. Criminals can use fuzzing techniques to create a next-generation malware that
continuously updates itself with new exploits and affects millions of vulnerable devices. In 2017, an
automated learning technique [67] was presented based on neural networks to predicate promising
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locations in input files for the discovery of unexpected behaviors. It allowed for the creation
of malicious inputs, based on past fuzzing explorations to improve the effectiveness of fuzzing.
Similarly, researchers from Microsoft have developed a neural fuzzing method for augmenting the
procedure of discovering security vulnerabilities [10]. However, this technique can be adopted by
organized cybercriminals to deploy a new type of malware. In today’s research, various studies
have been introduced regarding ways to use AI technologies maliciously, including different attack
goals that could cause enormous damage to the environment and to the human population. Several
existing examples are contributing to the need to understand AI as a weapon to launch attacks,
which are summarized in Table 4.

5.1.1 Next-generation malware. Global attention has been paid to the hypothetical scenario of
small remotely piloted drones with the ability to recognize potential targets and attack them with
explosives [17]. Therefore, this scenario could affect millions of devices and systems without being
detected by malware analysis tools. In a traditional attack, people are infected with malware when
a sophisticated malware uses encryption to hide the attack payload, and obfuscation or a sandbox
to avoid being analyzed by antivirus systems. Moreover, when attackers want to infiltrate targets
with malware, they need to also conceal the trigger conditions as a command either embedded in
the malware or executed remotely. However, malware can be captured and reverse-engineered to
determine how it reached the malicious situation. A representative example [22] is the development
of a new class of evasive and highly targeted malware using deep learning algorithms to perform
malicious tasks, which makes it impossible to be detected using traditional techniques. A similar
attack strategy was proposed by Liu et al. [51] using a low-cost modular methodology to hide
malicious payloads in legitimate neural network models and conduct neural Trojan attacks.

DeepLocker.
What. DeepLocker is a highly targeted and evasive malware, which takes advantage of the weak-
ness in understanding how a black-box AI model reaches its decisions. The goal of this malware is
twofold: (i) concealing its malicious intent, and (ii) activating it only for specific targets.
How. Kirat et al. [22] utilized the same deep neural network (DNN) to achieve the two afore-
mentioned goals: (1) DNN for concealment. The DNN is trained with several attributes for target
identification, including geolocation, and voice and facial recognition. The attacker attempts to send
the trigger condition hidden in the DNN model and convert the concealed trigger condition itself
into a key that is needed to unlock the attack payload. Then, the victim can download the affected
application without it being detected by antivirus. (2) DNN for unlocking. The DNN generates the
key, which unlocks the malicious payload. The derivation of the unlocking key is based on the
target attributes that go as input data to the DNN when it recognizes the right target. For example,
when the victim launches the application, it would feed camera snapshots into the embedded DNN
model and the WannaCry-ransomware (malicious payload) will be secretly executed for the right
person; in all the other cases, it will be inactive.
When. The first goal can be achieved in the “Delivery” phase, where the attacker attempts to
avoid detection and hides its intent until it finds the right victim to unlock the ransomware. The
second goal can be achieved in the “C2 ” phase, where the attacker can control and activate existing
self-destructive mechanisms by unlocking attack conditions when the specific target is identified.
Where. A video conferencing application was the target to conceal the malicious payload, but it
can also happen to other benign carrier applications. The trigger condition and the derivation of an
unlocking key for the attack payload are transformed into a DNN, which is very hard to decipher
or reverse engineer. Therefore, the impact can be the execution of any malicious action on specific
victims without being detected.
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Defense. Defenses have not been implemented yet, but Kirat et al. [22] proposed some measures
such as reducing access to sensors or cyber deception in order to misdirect and deactivate malware
for future work.

Smart Malware.
What. While researchers have extensively considered the security of CPS itself [34, 44], less at-
tention has been paid to the potential indirect cyber attacks on CPS through the surrounding
systems that affect its operation. A recent example [16] shows the construction of a self-learning
malware that can compromise the environmental parameters connected to the cooling of the
computing infrastructure (CI) while the malicious actions masquerade as accidental failures. To
reduce the likelihood of detection, an indirect attack approach learns attack strategies from CPS
measurement data to launch a failure injection attack to the CI. The goal of the malware is twofold:
(i) learning attack strategies from the CPS measurement data to corrupt the cooling capacity, and (ii)
propagating stealthily to the target CI, causing a system-wide outage. Traditionally, the attackers
would randomly infect the values of random parameters, causing high probability of detection due
to its alteration inconsistency. However, authors demonstrated a more sophisticated approach by
carefully crafting attack strategies inferred from CPS measurement data.
How. Chung et al. [16] presented a self-learning malware with learning aspects by exploiting
the dependency of the CI on surrounding systems that manage the environment in which the CI
operates. The operational environment of the CI constitutes many CPS that optimizes the control
of room temperature or the cooling capacity. In this attack, the malware has access to the database
that stores the CPS measurement data, and can automatically infer attack strategies and trigger
the attack by injecting a strategic failure at an optimal time, aiming to maximize the impact of
the exposure. This is how the smart self-learning malware proceeds: (1) Data preparation. Using
k-means clustering method, Chung et al. [16] classified the data to infer characteristics for each
mode of operation. The analysis of CPS operational data is critical to identify potential failures
in control systems that reflect the status of CI. (2) Parameter analysis. While the malware can
inject false values into the parameters leading to the making of wrong decisions, the selection of
target parameters would be extremely critical because it is needed to capture the highly correlated
relationships among the parameters in the cooling facility that can eventually cause failures of
CI. Thus, the proposed correlation-based approach increases the success probability. (3) Inference
of critical condition. Each critical parameter is checked for its abnormal values. The abnormality
detection in failure-related measurements identifies the appropriate attack strategies or failure
scenarios for the CPS-induced CI outages. Therefore, the identified attack strategies include the
critical parameters and their abnormal sequence of values to overwrite that can trigger anomalies
in the CPS and cascade impact to the CI.
When. Taking advantage of the knowledge from the CPS-related failure data, the attacker can
collect useful information about the target, and hence, the strategic analysis and selection of pa-
rameters and values could happen in the “Reconnaissance” phase.
Where. The indirect attack targets the CI as the final target system through targeted intrusion of
environmental control systems. In particular, the authors studied failures of the supercomputer
called Blue Waters at the University of Illinois with dedicated cooling systems. The attack corrupted
the cooling capacity and triggered failure of a well-protected CI, eventually, causing a system-wide
outage. The results indicate that triggering intentional failures to control systems is critical for the
reliable operation of the Blue Waters supercomputer.
Defense. Such advanced threats can be difficult to detect since they indirectly corrupt the func-
tionality of CI without leaving any trace of malicious activity. Chung et al. [16] discussed some
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potential mitigation approaches: (i) intrusion detection system (IDS) in the control network, (ii)
stricter security policies of control CPS with multi-factor authentication, and (iii) system-level
security monitoring to validate the physical aspects of measurements. The first mitigation approach
will use the same steps of the proposed attack strategy for defensive purposes to reinforce the
control logic in order to detect and handle such abnormalities in real time.

5.1.2 Voice synthesis. AI-supported voice synthesis technologies [8] can raise new types of frauds,
by imitating someone’s voice for malicious purposes such as gathering sensitive data for bank-
ing transactions. A recent example [52] is the voice imitation algorithm, called Lyrebird, which
demonstrates the ability to mimic the speech of a real person and create a speechbot that talks in
the same way as the given voice. A similar well-known application is VoCo, an Adobe prototype
software, which enables users to imitate the original speaker’s voice or change some words in
his speech recording without altering the natural characteristics of the original. However, the
use of synthetization of human voices has ethical and legal challenges that should be considered.
AI-supported voice synthesis can imitate someone’s voice patterns, by using the fast classification
and capabilities from AI to create frauds against biometric security processes. Moreover, smart toys
and smart TVs can gather voice recordings, providing lots of opportunities for synthetization. In a
traditional attack, the attacker records the user’s activation voice and then performs the attack by
sending malicious voice commands to Voice Assistant (VA) using the recorded activation voice.
However, the voice commands are played through the smartphone’s speaker and the user may
be aware of it. The traditional way of launching attacks only under certain conditions, as Diao et
al. [23] presented, is not effective because the attack could only be launched at night when the
victim is not using the smartphone.

Stealthy Spyware.
What. Recent work [89] shows that applications such as built-in VAs in smartphones can be used as
a backdoor for attackers to hack into smartphones and gain access to system resources and private
information. The authors proposed an attack framework using AI technologies to record activation
voices stealthily and determine the right time to launch the attack. The goal of this spyware is
twofold: (i) synthesizing activation keywords in a stealthy way, and (ii) sending malicious voice
commands to VA on smartphones and asking them to perform tasks at an optimal attacking time,
thereby hacking into the smartphones and remaining undetectable by users and antivirus tools.
How. Zhang et al. [89] created an attack, by disguising the spyware as a microphone-controlled
game. First, the attacker attempts to fool the user into granting the permissions required to perform
the following malicious actions, without being noticed by the user and the antivirus tools. This is
how this specific stealthy spyware works when the game is launched: (1) Phone call state monitoring.
The module State Monitoring and Voice Recording (SMVR) monitors the smartphone call status.
When the microphone is activated, it starts recording the voice of the user stealthily from incoming
and outgoing calls that the microphone receives. (2) Recording and synthesizing activation command.
The module Activation Voice Manipulation (AVM) processes the recorded voice, and synthesizes the
activation keywords by integrating natural language processing (NLP) techniques. (3) Environment
monitoring. The design of a recognition module, called Intelligent Environment Detection (IED),
determines the optimal time and volume to play the “attacking voice,” without being noticed by
users. It collects ambient data through the built-in smartphone sensors (e.g., microphone to record
ambient sound, ambient light sensor, accelerometer to model movement patterns) based on six
real-world scenarios, which are then fed into a ML-based environment recognizer in order to decide
the right time to launch the attack. More precisely, using a random forest (RF) classifier to make
predictions about the movement intensity of the user relies on built-in smartphone accelerometer,
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which can detect effective attack opportunities. (4)Attacking via speaker. Themodule Voice Assistant
Activation and Control (VAC) plays the activation voice, and attacking commands can be executed
by the VA in a certain volume based on the results from the IED.
When. In the “Weaponization” phase, the attacker can synthesize attacking voice commands by
imitating the legitimate user’s voice. Once the attacker acquires the activation voice, the intelligent
stealthy module IED can decide the suitable time to launch the attack. Therefore, this is an example
of an intelligent way of adapting to the targeting environment and launching attacks by triggering
an attack only under certain conditions.
Where. The VA developed by Google, named Google Assistant, was the target. However, in general,
any speech-based security system could be a potential victim for frauds with wide-ranging impact
from opening doors to obtaining confidential information.
Defense. Defense approaches can be the source identification of the voice commands via the
built-in smartphone speaker to be able to disable them and to discriminate between human and
machine-based voices.

5.1.3 Password-based attacks. The other two case studies show the emerging next-generation
password-based attacks, which are more efficient and smarter at cracking passwords. The first
case study shows how AI can be trained to generate new potential passwords by self-learning and
constructing the attacking dictionary in a more intelligent way based on patterns derived from
prior passwords. The outcome is a new intelligent and improved dictionary. Similarly, in the second
case study, the authors tried to extend password dictionaries using ML-generated password rules
to determine password properties autonomously. Their idea was to train a generative adversarial
network (GAN) to learn password distribution from real password leaks.

Next-generation password brute-force attack.
What. AI-based password brute-force attacks [80], which change the construction of the attacking
dictionary using self-learning processes, are the next generation of password brute-force attacks.
The goal is to recognize patterns in old passwords and automatically generate new candidate
passwords. Past password execution behavior can guide future mutations with better probability
in guessing correctly. Authors train a recurrent neural network (RNN) model that learns how to
construct password guesses for cracking with better success probability. Traditional password
brute-force attacks are based on a crafted attacking dictionary, a set of likely passwords filled with
prior passwords, or random and meaningful words to compare against user passwords. However,
the speed and efficiency of cracking passwords is closely connected with the construction and
updating of the dictionary.
How. Trieu and Yang [80] used an open-source ML algorithm, called Torch-rnn, for character-level
language modeling to generate new candidate passwords by following a similar pattern based
on prior passwords. The AI-generated passwords were produced as follows: The RNN is trained
by past captured password sequences and will allow attackers to generate new passwords by
predicting one character every time. At each timestamp, the RNN updates its hidden state, by
recognizing patterns over sequences to make a prediction. This is the process of modeling the
probability distribution of the next character in the sequence, given the previous characters. These
neural network’s predictions will allow attackers to invent novel words, which present highly
likely passwords. The character-level language modeling with neural networks learns patterns
from the past and predicts the next character in a sequence, by generating new passwords in a
specific style [36, 53, 78]. As a consequence, the attacking dictionary can be constructed in a more
intelligent way, by self-generating an infinite number of possible passwords and inserting them in
real time.
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When. This action can happen in the “Weaponization” phase, where attackers can create an
automated weaponizer tool for cracking the correct passwords.
Where. Computer systems’ authentication mechanisms, which are based on something the user
knows and require password authentication, are potential targets. Therefore, the impact is a higher
success rate of cracking the correct passwords, and improved attacking performance.
Defense. Some defensive strategies can include combining multi-factor authentication mechanisms
for efficient and secure authentication, and choosing passwords by using random combinations of
characters.

PassGAN.
What. PassGAN [41] is a novel approach to generating high-quality password guesses with no user
intervention. The attack is performed by properly training a GAN. The goal is to learn the distribu-
tion from previous password leaks and extract password properties and structures autonomously
in order to identify highly likely candidate passwords. Traditional password guessing techniques
are based on (i) brute force, which involves exhaustively trying all possible character combinations,
(ii) a dictionary, which involves using a set of likely words and previous password leaks in hopes
of guessing correctly, or (iii) rule-based approaches, which involves defining generation rules for
possible password transformation such as concatenation, or mixed letter case. However, these
traditional techniques can capture only specific subsets of password space that match only with
the available human-generated rules based on intuition about how users select passwords.
How. Hitaj et al. [41] developed an attack that allows for training a GAN properly to generate
targeted samples based on the training set. This is how GAN is being used to generate passwords
automatically: The GAN comprises two DNNs: a generative DNN (G) and a discriminative DNN
(D). There is also a training dataset, which contains a set of leaked passwords called “real password
samples.” The generator G is trained by a noise vector, which represents a random probability
distribution and produces a sequence of vectors, called “fake password samples.” Real and fake
samples are given as input to the discriminator D, and then D learns to distinguish between the fake
and real samples. The whole procedure is called adversarial because G forces D to leak information
to G when trying to learn the original distribution of real password leaks.
When. This action can happen in the “Weaponization” phase, where attacker can create an auto-
mated tool to subsequently generate highly likely candidate passwords.
Where. Computer systems’ authentication mechanisms, which are based on something the user
knows and require password authentication, are potential targets. Therefore, the impact is the
generation of a larger number of high-quality password guesses against the traditional approaches.
Defense. This work forces the development of some defensive strategies such as re-evaluation of
password policies that will help the password-based authentication systems to be more secure, or
the use of two-factor authentication.

5.1.4 Social bots. Advances of cyber attacks in the context of automating attack actions with some
level of intelligence can be applied to a botnet attack scenario. Attackers could leverage ML-based
techniques to build intelligent botnets made of autonomous intelligent bots that could decide on
the fly what should be done according to the context, mission, and targets. The concept of the
intelligent botnets allows the bots to conduct reconnaissance on their surrounding environment
and make decisions on their own, without needing C2 channel. Danziger et al. [18] presented a
theoretical model of an intelligent botnet based on multi-agent systems (MAS). By embedding the
learning process in the intelligent bots, they can have the ability to learn from the experiences in
the environment and decide the more efficient way to accomplish their mission. The impact of
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such attacks can be fast and stealthy propagation on many devices, resulting in the need for new
detection approaches but they have not been implemented yet.
The emergence of AI-powered social bots [2] enabled by sophisticated AI capabilities has two

sides: simplifying data collection and data analysis. These procedures can happen at the same
time to deploy powerful influence campaigns in social media networks. Much more sophisticated
botnets can introduce new forms of malicious activity, because of their ability to influence large
groups, through coordinated information operations and well-coordinated influence campaigns
as Kim et al. [48] presented. Many current natural language processing tasks are performed with
supervised learning on large datasets. New text generation models are also good at mimicking
human writing without any explicit supervision [66]. However, it can be abused by attackers to
create malicious text generators that can automate the phishing attack process by impersonating
others. In this context, we analyzed three case studies in which attackers can reach larger groups
of targets to satisfy their objectives.

SNAP_R.
What. A recent example of the weaponization of social media platforms is the automated spear
phishing framework on Twitter [71]. Similar studies [11, 72] explained this highly sophisticated
method for leveraging Twitter to generate large-scale phishing campaigns. The Social Network
Automated Phishing with Reconnaissance (SNAP_R) system is an automated end-to-end spear
phishing generator using Twitter as target communication channel. The goal is to automate the
spear phishing process in order to create targeted spear-phishing attacks at a much larger scale
with high success rates. In traditional phishing attacks, attackers use an existing framework for
social engineering, called a Social Engineer Toolkit (SET), which contains multiple attack vectors
and allows attackers to make an attack in a fraction of the time. Despite the fact that it can automate
the payload of the phishing process, the phishing message has not yet been tailored to the target.
How. The authors [71] used a RNN to demonstrate the automation of the attack payload in the
phishing process and leveraged data science to target users with personalized phishing messages.
Consequently, the attack learned to tweet phishing posts targeted at only specific users to create
automatic targeted spear-phishing attack. This is how SNAP_R works: (1) Target discovery. Using
k-means clustering method, the authors clustered a list of Twitter accounts into groups based on
their public profiles and their level of social interaction, such as metrics for numbers of retweets
and followers in order to discover the high value targets. (2) Automated spear phishing. When
targets are determined, then the attack automatically spreads tailored, machine-generated posts
with an embedded link-shortened URL. The NLP approach can be utilized to identify topics the
target is interested. Thus, to generate the content of the posts, it employs both Markov models and
Long Short-Term Memory Networks (LSTMs), which learn to predict the next word from previous
context in the posting history of the target. Moreover, features like the frequency of their posting
are extracted for successful phishing results.
When. The selection of high-value targets could happen in the “Reconnaissance” phase, where the
attacker tries to understand and classify the targets based on specific criteria. Then, by training
the model appropriately, it can learn from previous successful spear phishing campaigns and
use relevant topics to embed the malicious payload in order to generate personalized phishing
messages that the targeted victim might respond to. This action can happen in the “Weaponization”
phase, where the attacker can generate tailored machine-generated tweets for large-scale phishing
campaigns.
Where. The impact of social bots, which are enabled by advanced sophisticated AI capabilities,
is that they can deploy more powerful, large-scale disinformation campaigns and coordinated
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automatic social engineering attacks. As a promising target, Seymour and Tully [71] conducted
spear phishing in the Twitter social environment by taking advantage of the bot-friendly API,
which shortened links to conceal the phishing URL and the short posts, and obtained access to
plenty of personal data.
Defense. In general, Twitter can discover the automated spam with phishing links. However,
combined with spear phishing, this can be successful before it is restricted by Twitter. Therefore,
this needs greater awareness to develop suitable defenses.

DeepPhish.
What. DeepPhish [7] is an AI algorithm that produces new synthetic phishing URLs by learning
patterns from the most effective URLs in historical attacks. The goal is to generate more effective
phishing URLs to bypass AI detection systems and to launch better phishing attacks. Traditionally,
attackers used randomly generated segments to generate phishing URLs. However, this automated
process using randomly generated URLs was easily found by reactive methods, e.g., blacklist of
malicious URLs, and proactive methods using ML for URL classification.
How. Bahnsen et al. [7] demonstrated how attackers can enhance the efficiency and success rate of
phishing attacks, by using LSTM model to implement a phishing URL classifier, and to generate
new effective synthetic phishing URLs. This is how DeepPhish works: (1) Phishing DB exploration.
First, they explore a database of phishing URLs used as a phishing attack repository to understand
the creation strategy of different attackers, and measure their effectiveness rate at bypassing the
detection system. (2) DeepPhish creation. The model LSTM receives the effective URLs from histori-
cal attacks as input. The model training is implemented with the classification that is performed by
a sigmoid layer, which classifies URLs as legitimate or malicious for phishing purposes (a phishing
URL classifier). Finally, a random segment from the initial text with the effective URLs is used as
a seed sentence and the algorithm predicts the next character iteratively. Thus, in the learning
process, it first tries to understand patterns within characters’ URL sequence and then generates
the new synthetic URLs with high possibilities of bypassing detection mechanisms.
When. The generation of new synthetic URLs can happen in the “Weaponization” phase. Moreover,
in the “Delivery” phase, the attacker attempts to avoid detection and protect the malicious infras-
tructure when the attack tries to transmit the phishing URL to the target.
Where. Therefore, the weaponization of AI models to bypass AI-based phishing detection systems
can enhance the effectiveness of phishing attacks.
Defense. Bahnsen et al. [7] proposed a potential defense, by incorporating the new synthetic URLs
and automatically retraining the AI phishing detection systems.

Fake reviews attack.
What. In today’s online world, many concerns about the trustworthiness of online information
sources exist due to fake reviews and misinformation. A recent example [88] shows a new attack
powered by AI to replace human workers in order to improve the attack success rates. The attacker’s
goal was to create fake reviews that are highly indistinguishable from the human-written ones. In
similar traditional attacks, called crowdturfing campaigns, attackers pay human writers to perform
illegal actions online, such as writing highly deceptive fake reviews to spread misinformation to
manipulate the crowd’s opinion. Since writers are real humans, they can make reviews appear real
and therefore undetectable by automated detection tools due to user-perceived features. However,
such attacks require significant cost and are not scalable. If an attacker produces a mass flow of
new reviews, it will be detected as a suspicious sign of large-scale opinion manipulation campaigns.
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How. Yao et al. [88] proposed an automated review attack by leveraging a DNN-based language
model to produce realistic content for online reviews, which are indistinguishable from those
created by real humans. This is how an automated review attack works: (1) Generating initial
reviews. First, a generative character-level RNN model, called LSTM, is trained on a real dataset
of reviews about restaurants. After the training process, a set of initial reviews is generated by
obtaining the likelihood distribution that predicts which characters are possible to come next based
on the previous characters. (2) Review customization. A customization component modifies the
RNN-generated initial reviews to capture particular information about the restaurant’s domain.
To achieve this, Yao et al. [88] proposed an automated strategy for noun-level word replacement
to produce the final tailored fake reviews, and this is composed of three steps: (i) choose domain-
specific keywords that identify the context; (ii) identify nouns in domain-related reviews that are
relevant to keywords; and (iii) replace the relevant nouns in the initial review with the replacement
nouns found previously.
When. The generation of tailored fake reviews, which are customized to specific target domains,
could happen in the “Weaponization” phase. Moreover, in the “Delivery” phase, the attacker can
control the review generation rate, which can make the attack undetectable by automated tools.
Where. The target platform was the user-generated review site Yelp for e-commerce services. The
attack specifically targeted the restaurant reviews domain. Therefore, the impact of these advances
can serve as a new type of attacks, which are more powerful, highly scalable and undetectable, due
to their ability to adjust the specific flow and timing of reviews and their quality of writing.
Defense. The proposed defense scheme determines whether a given review is real or fake by
comparing its character-level distribution. Yao et al. [88] explained that “due to the information
loss inherent in the machine-generation process”, the character-level distribution would seem to
diverge from the real reviews. This approach works for character-level RNN, but not for word-level
distributions, which are harder to model afterwards.

5.1.5 Adversarial training. Despite the fact that AI could be applied to malware detection, by
recognizing malicious patterns in a smarter way, two case studies [4, 43] showed its offensive
capabilities through automation of generating adversarial examples against ML-based detection
algorithms. Moreover, another study [63] showed the automation of service tasks in cyber-offense
that reaches out to learn its own malicious tasks.

MalGAN.
What. A study [43] proposed an algorithm based on GAN, called MalGAN. MalGAN generates
adversarial malware examples in order to bypass ML-based black-box malware detection systems.
The goal is to use adversarial techniques to bypass malware detection systems, which adopt ML-
based malware detection algorithms. Traditionally, ML-based malware detection algorithms use
hand-crafted rules to generate adversarial examples, which can be detectable.
How. Hu and Tan [43] demonstrated a black-box attack using GAN to transform original samples
into adversarial examples, which are more complex and effective at fooling the ML-based malware
detection algorithms. This is how MalGAN works: The generative network G transforms original
malware samples into adversarial malware examples by adding some noise. The substitute detector
is trained by the adversarial malware examples from the G and samples of benign programs to be
able to classify the program as malicious or benign. It is used to fit the black-box malware detector.
Thus, this adversarial training helps to minimize the probability of generated adversarial examples
being detected.
When. The G is trained to minimize the probability of the adversarial examples being detected and
lead the substitute detector to misclassify malicious programs as benign. This action can happen
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in the “Delivery” phase, where the attacker attempts to avoid detection from ML-based malware
detection algorithms, which can be integrated into an antivirus or malware detector even on the
cloud side.
Where. The impact is to decrease the detection rate and effectively bypass the malware detector
systems. The evaluation of results [43] showed high success rates in fooling such types of defensive
methods for malware detection. For example, an attack that classifies software containing malware
as benign bypasses malware detection systems effectively.
Defense. A defensive approach is to retrain the black-box malware detector based on generated
adversarial malware examples. However, even if the detector is updated with retraining of MalGAN,
new adversarial malware examples will be generated and remain undetectable until the next update.

DeepDGA.
What. DeepDGA [4] is an automated method for generating adversarial malware domains using
GAN, which are difficult to detect even with the use of a deep learning (DL)-based detector. The
goal is to optimize the process of generating malware domains in order to remain undetectable
and bypass malware detectors. In traditional attacks, cybercriminals (botnet operators) use domain
generation algorithm (DGA) to create domain names that can be useful to establish C2 connections
in order to communicate with malware-infected machines.
How. The domains are usually produced pseudo-randomly by simpler DGAs. Anderson et al. [4]
proposed a DL-based DGA architecture, which optimizes the pseudo-random generation of adver-
sarial domain names. The domain autoencoder framework is reused for a different purpose into
GAN by taking advantage of its ability to generate domains that cause uncertainty for the detector
model. This is how DeepDGA works: The DGA language model generator is trained with a list
of pseudo-random seed domains and learns to generate new adversarial malware domain names
that seem valid. It is a character-based generator, which tries to mimic the distribution of real
Alexa domain names. The DGA detector learns to distinguish the generator’s adversarial malicious
domains from legitimate ones.
When. The adversarial training produces domains that have lower probabilities of being detected
by a DGA classifier. This action can happen in the “Delivery” phase, where the attacker, by spread-
ing malware domains, attempts to avoid detection from a DGA detector, which tries to detect
human-crafted from machine-generated domain names.
Where. The impact of a GAN-based attack is to use multiple adversarial rounds to increase the
success rate of undetected adversarial malware domains.
Defense. The defender system should obtain a blacklist with all possible domains to prevent the
malicious C2 connection. However, using these adversarial generated domains to augment training
datasets to harden ML algorithms, such as a random forest classifier, can improve the performance
of DGA detector in detecting new malware domains.

DeepHack.
What. DeepHack [63] is an open-source AI-based hacking tool, which learns to break into the
databases of web applications through reinforcement learning (RL) without any prior knowledge
of the system. The goal is to augment existing hacking tools trying to learn how to hack by
taking advantage of the fuzzing logic to automate tasks. Traditionally, the attacker can write some
instructions that perform malicious actions in the source code, programming it to learn how to
hack. Because of the deterministic relationship between the code and the actions, it is possible to
reverse engineer any action in order to figure out how the action was decided.
How. Researchers from Bishop Fox worked with a neural network (NN) used in RL to move beyond
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the traditional way and do hackingwithout programming. It learned how to exploit vulnerabilities in
a bank website with a Structured Query Language (SQL) database behind it. This is how DeepHack
works: The NN takes an incomplete sequence string and decides what the next character in this
sequence is, based on the data that it has seen in the past. The training dataset uses labeled data to
understand the syntax of SQL queries. Every time it sends a request and takes actions, it is rewarded
with a Boolean-based response from the remote server. This can give new knowledge to the model
about the target system, whether the data is correct or not. Being able to ask the server many times
and trying to learn what letter should come next in the sequence until the desired information
is extracted from the database can optimize the taken decisions. The whole process is repeated
iteratively by brute forcing character by character.
When. This action can happen in the “Exploitation” phase, where the attacker can compromise the
system by allowing the algorithm to learn how to exploit multiple kinds of vulnerabilities.
Where. Web applications with SQL databases behind them were the target for the specific tool.
Due to the black-box nature of AI programs, it is difficult to find out why the model made those
decisions. Therefore, the impact can be stealing private information from databases automatically,
when an NN can learn on its own to be good at hacking.
Defense. Defenses have not been implemented yet. However, researchers raised awareness for the
need to defend against these types of AI-based hacking tools.

5.2 AI-Based Cyber Threat Framework
Bruce Schneier recently wrote about the attack and defense balance of AI technologies [70].
Although AI is the most promising technology for cyber security, he pointed out that both attack
and defense will benefit from them. Traditionally, machine superiority excels at scope, speed,
and scale against humans, who are good at thinking and reasoning. The prerequisite to deal
with AI-based cyber attacks is a full understanding of the attackers’ strategies. To improve the
understanding of AI-based cyber attacks, we propose a three-tier cyber threat framework that
allows security engineers to effectively study these threats’ classifications and their impact. Our
proposed framework is an adversary-focused framework, describing the actions from the adversary
perspective.

5.2.1 Structure of the framework. The proposed multi-dimensional framework has a hierarchical
conceptual approach, called the “AI-Based Cyber Threat Framework,” with the goal to reveal the
AI-based attack roadmap. Figure 4 illustrates the general structure of the proposed framework and
shows how the framework classifies the state-of-the-art research examples of AI-based cyber attacks.
We started by formalizing the progression of the cyber attack process. The first tier discovers when
an attacker can achieve his malicious objectives based on the cyber attack life cycle, and represents
what the attacker’s intent is and the type of AI technology used as a malicious tool for conducting
the malicious actions, according to each phase of the cyber attack life cycle. The second tier is an
impact-based classification of the malicious use of AI technologies, which shows its potential impact
depending on which attack stage is applied. Finally, the classification of defensive approaches
is represented in the third tier. A more detailed explanation of the three tiers is provided in the
following three subsections.

5.2.2 Tier 1: Attack stages and their objectives. The highest dimension of structure is the seven
stages of the Cyber Kill Chain [45], which tries to answer the question of when an attacker can
achieve his malicious objectives based on the cyber attack life cycle. This helped us show a graphical
representation of the required steps to launch an AI-based cyber attacks.We divided the seven stages
into three major divisions: (i) planning, (ii) intrusion, and (iii) execution. Planning is composed of
the reconnaissance and weaponization stage, conducting research about the target, and the process
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Table 4. Case studies of AI-based cyber attacks - Summary

Article Year Attack Vector Target Category

DeepLocker – Concealing
Targeted Attacks with AI
Locksmithing [22]

2018
Highly targeted and evasive malware, which
hides its attack payload without being
detected until it reaches a specific target.

Video conferencing
applications

Next-generation
malwareAvailability Attacks on Computing

Systems through Alteration of
Environmental Control: Smart
Malware Approach [16]

2019

Self-learning malware, which is able to induce
indirect malicious attacks that masquerade as
accidental failures on computing
infrastructure by compromising the
environmental control systems.

Computing
infrastructure

Using AI to Hack IA: A New
Stealthy Spyware Against Voice
Assistance Functions in Smart
Phones [89]

2018

Attacking framework to record the activation
voice stealthily by adopting NLP techniques,
and to play the activation voice of user by
designing an IED module.

Voice assistants Voice synthesis

Artificial Intelligence-Based
Password Brute Force Attacks [80] 2018

Next-generation AI-based password brute
force attacks by constructing the attacking
dictionary in a more intelligent way based on
prior passwords.

Computer
authentication systems Password-

based attacks

PassGAN: A Deep Learning
Approach for Password
Guessing [41]

2018
Fully automated password guessing technique
based on GAN, by learning the distribution
from actual password leaks.

Password-based
systems

Weaponizing data science for
social engineering: Automated
E2E spear phishing on Twitter [71]

2016

A highly automated method of end-to-end
spear phishing, by discovering high-value
targets and spreading personalized
machine-generated content automatically.

Twitter

DeepPhish: Simulating Malicious
AI [7] 2018

Weaponization of ML algorithm with the goal
of learning to create better phishing attacks
and making it undetectable from detection
systems.

AI phishing detection
systems Social bots

Automated Crowdturfing Attacks
and Defenses in Online Review
Systems [88]

2017
A new automated review attack for large-scale
users’ opinion manipulation, using
DNN-based fake review generation.

User-generated review
sites

Generating Adversarial Malware
Examples for Black-Box Attacks
Based on GAN [43]

2017

Automated approach based on GAN for
generating adversarial examples to bypass
ML-based black-box malware detection
systems.

ML-based black-box
malware detection
systems

Adversarial
trainingDeepDGA: Adversarially-tuned

domain generation and
detection [4]

2016
An automated generation of malware domains
using GAN that learns to bypass malware
detection mechanisms powered by DNNs.

DGA classifier

Weaponizing Machine Learning:
Humanity was overrated
anyway [63]

2017
A new ML hacking tool “DeepHack,” which
learns to break into web applications using
NNs and reinforcement learning.

Web applications

of weaponizing deliverables. Intrusion describe the process of delivering, exploiting, and installing
the malicious payload in order to gain access to the target. Finally, a successful intrusion moves
to execution, in which the adversary often establishes paths and acts to achieve his objectives. In
addition, each stage describes the capability of an adversary to attack the system by the malicious
use of AI technologies.We highlighted the usage of AI’s advantages in cyber-offense in the following
categories:

• AI-targeted: Sophisticated attacks depend on a well-prepared planning phase. The ability
of AI to understand, interpret, and find patterns in vast amounts of data can be used to
provide in-depth analysis and to create targeted exploration processes by overcoming human
limitations. For example, in the case of SNAP_R [71], the selection of the most valuable
targets to send the phishing messages to was done using the k-means clustering method.
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Fig. 4. AI-Based Cyber Threat Framework.

• AI-aided:Developments in AI can contribute to weaponization by replicating the abilities
of human beings. Studies have shown that it is able to understand human natural language
in order to create personalized messages that contain malicious payload. For instance, in the
case of a fake reviews attack [88], the RNN-generated deceptive fake reviews generate fully
adjusted attack payloads for opinion manipulation campaigns.
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• AI-concealed: Transmission of the malicious payload can utilize more stealthy techniques
to remain undetectable and concealed for long periods. For example, in the case of Deep-
Phish [7], the generation of phishing URLs using LSTM was sufficient enough to remain
undetectable by detection systems.

• AI-automated: After gaining access to the target, the growing use of AI capabilities can
increase the number of attackers who are able to carry out the attack, avoiding the need
for human resources. The use of botnet could comprise autonomous decision-making
bots that can expand the attack at greater length. For example, in the case of DeepHack [63],
another way was found to exploit vulnerabilities using RL, by learning on its own how to do
hacking.

• AI-evolved: The use of an automated self-propagating malware spreads the infection by
repeating the same or similar discovery and exploitation with new hosts, enabling access
across other parts of the network. The malware propagation behavior tries to affect as many
nodes as possible, although direct infection of a few critical control nodes may cause greater
damage.

• AI-multilayered: The need for persistent access for monitoring could be achieved by the
ability of AI to learn independently based on inputs from the environment and there-
fore to control aspects of the targets’ behavior automatically. For example, in the case of
DeepLocker [22], the unlocking of attack conditions was done using DNN when the target
was identified.

• AI-massive: The required actions to successfully achieve the attacker’s objectives can in-
clude data breach, extortion schemes, destruction attacks, disruption attacks, and repurpose
attacks [25]. Massive attacks require coordinated action and the participation of AI in at least
one stage of each of the three major divisions: planning, intrusion, and execution.

5.2.3 Tier 2: Impact classification of malicious AI. From the framework, an impact-based classi-
fication of AI-based attacks is derived as three different levels: Finely-targeted, Automated, and
Large-scale. This analysis is based on three characteristics, namely scope, speed, and scale that
computers traditionally excel at better than humans [70]. The Finely-targeted class refers to the
scope of identification of particular kinds of attack patterns from large datasets. An adversary can
acquire a more accurate target list to adapt his attack strategy. In the Automated class, an adversary
can launch attacks in milliseconds. So here, speed outperforms by defeating other machines faster
than can be done manually by humans. Finally, the Large-scale class comprises both characteristics
from the Finely-targeted and Automated classes in order to automatically infect millions of devices
with the desired features to increase the attack success rate. The classification shown in Figure 5
indicates the potential impact related to which attack stage is affected by the malicious use of AI.

Fig. 5. Impact-based classification of malicious AI.
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5.2.4 Tier 3: Classification of proposed defense methods. Defending against AI-based cyber attacks
cannot be done by a simple solution or a single tool. There is a need for an in-depth defensive
approach in the whole cyber attack life cycle to combat the intelligence. Therefore, it is very impor-
tant to research potential offensive AI capabilities used in attacks and establish some theoretical
best practices for defense. Based on our observation on attackers’ objectives, we categorize possible
defense methods of AI-based cyber attacks into three major categories based on the common
objective features of the stages in the phases of planning, intrusion, and execution: (i) interpretation
module, (ii) detection module, and (iii) self-defense module. In each category, we propose some
potential measures that could be considered, as shown in the third tier of Figure 4.

One of the first steps to defending against AI-based cyber attacks is to understand your target and
your enemy. Hence, the interpretation module focuses on behaviors by creating an environmental
map for the standard behavior and an attack surface to establish AI-behavioral attack patterns. The
detection module focuses on autonomously detecting the presence of malicious activity based on
the fingerprint for every application in the previous module. The decision rules are triggered by
the established patterns of malicious behavior to detect deviations from a normal behavior profile.
For instance, the attack botnet detection rate can be improved by applying LSTMs to detect unseen
botnet traffic based on behavioral analysis [79]. After the intrusion, the self-defense module could
develop the ability of self-learning the optimal defense strategy. To address the issue of intelligent
self-learning adversarial behavior, security analysts should consider applying the same strategy
in order to determine defensive actions towards the field of RL, according to the environmental
map and attack surface [57]. Moreover, efforts from the organization OpenC2 [60] to develop
standard-driven orchestration language for machine-to-machine communication to enable faster
attack responses, contribute to the vision of more accurate, automated, and coordinated cyber
defense approaches.
The adversaries are improving their attack strategy through automation, so the only efficient

way to mitigate such attacks at machine speed is with automation. Defenders need to be faster, by
developing defensive options in a time frame that prevents the attacker from accomplishing his
objectives. Therefore, defensive AI is related to rapid response to both detection and remediation
and to self-learning in defending the system, which will increase its potential to work effectively in
the game of AI offense and defense.

5.3 A Smart Grid Scenario
The main purpose of this section is to demonstrate how to generalize our proposed framework with
the goal of identifying new attacks to develop proper defenses. Our framework raises the awareness
that any system can be a potential target of AI-based cyber attacks. Although the current AI-based
cyber attacks do not target sCPS yet, we believe CPS, and especially sCPS, are vulnerable to those
attacks. We hereby use a hypothetical attack scenario on a smart grid infrastructure to explain
how the framework can be used to identify new attacks in terms of the malicious use of AI. The
proposed framework is based on the traditional Cyber Kill Chain, but goes beyond that because
the latter does not consider advanced attacks such as AI-based cyber attacks, and hence cannot
properly identify them in order to develop appropriate defenses. Therefore, having an AI-based
cyber threat classification according to the attack stages can facilitate the design of appropriate
mitigation strategies such as those proposed in our framework based on interpretation, detection,
and self-defense actions.

Smart Grid (SG) is a cornerstone for all critical infrastructures. If power is unavailable for a long
enough time, all other critical functions of the city will also be hit. As defined in [32], “a smart
grid is an electricity network that can cost-efficiently integrate the behavior and actions of all users
connected to it – generators, consumers, and those that are both – to ensure an economically efficient,
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sustainable power system with low losses and high levels of quality and security of supply and safety.”
To realize the SG architecture, the National Institute of Standards and Technology (NIST) provided
a model, as shown in Figure 6, which shows all the possible roles involved in the SG.

Fig. 6. The NIST Conceptual Model for SG [58].

With the integration of ICT in the SG infrastructure, we have more cyber dependency interactions
on critical applications and infrastructures. The state of operation depends on information transmit-
ted through the infrastructure via electronic links. Outputs of one infrastructure are inputs to the
other infrastructure and “the commodity passed among the infrastructure assets is information” [62].
More precisely, in an SG, several smart systems interact with the SG to manage city services
and infrastructures more efficiently by processing all the necessary data to make decisions. The
electrical infrastructure can ensure resilient delivery of energy to supply many functions to other
critical infrastructures and all of them are dependent on its proper operation, as shown in Figure 7.
An attack on the SG infrastructure is liable to have an immediate effect on other infrastructures
such as transportation systems, hospitals, industrial production, and even aviation [54].

Fig. 7. Vulnerable interdependent sectors under cyber-physical attacks on the SG [39].

Therefore, ongoing developments in technologies are continuously discovering new threats to
sCPS and especially critical infrastructures operating via Supervisory Control and Data Acquisition
(SCADA) systems with significant impacts. Sensors extract real-time information from electricity,
water, gas, fuel, communications, and transportation and then send the information through the
controllers deployed in the field to the control center [54]. Data is the fuel of an SG, and AI-driven
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data technologies could operationalize the analysis of data into valuable information. However, the
malicious use of AI means that anyone can compromise nodes and then control these slaves of
automated decisions makers. An adversary could take advantage of the interdependencies across
critical infrastructure systems, particularly the reliance on information technologies, and change
the system’s behavior to a malicious state.
The goal of this hypothetical scenario is to illustrate that an AI-massive cyber attack on an SG

could have cascading effects from interruption of services onto multiple sectors, in order to provide
awareness of new potential threats and help critical supply utilities deploy suitable defenses.

5.3.1 AI Attack Scenario. In our scenario, the adversary demonstrates a variety of capabilities
to perform his malicious activity against the SG as a multi-stage intrusion on multiple critical
infrastructure sectors. To simplify the explanation, we limited our focus to the distribution domain
of the SG and its interaction with the customer domain through smart metering infrastructure.
The advanced metering infrastructure (AMI) is a basic component of an SG and aims to handle
the communication between utility smart meters and the utility company. AMI is a system that
belongs to the distribution domain and consists of data collectors, head-end systems, smart meters,
and meter data management (MDM) systems.
In this scenario, there is a compromised data collector in a wide area network (WAN) that has

bidirectional connections with other data collectors and field smart meters devices for electricity
and information flows. Data collectors are responsible for collecting energy consumption data from
smart meters, and sending it to the control center. Therefore, a compromised data collector with
a worm implanted can “propagate in the network infrastructure to infect other data collectors and
proceed to impact the connected smart meters” [37]. It can aggregate massive data collected and
then control smart meters by sending malicious commands like disconnect requests. The inclusion
of the most critical dependencies and the automation of intrusion could create an AI-massive
attack. Figure 8 shows the application of our proposed framework by illustrating the offensive AI
capabilities through automation of traditionally manual processes, allowing the attacker to conduct
an attack on a larger scale, and some proposed corresponding defenses.

The following analysis provides a high-level overview of threat actors’ activities within the cyber
attack life cycle:
Stage 1: Reconnaissance
An improved target’s reconnaissance could use AI for observing the normal behavior and operations
related to the distribution infrastructure that has interdependecies with other sectors. Here, an
adversary can acquire topological, structural, and operational information about the distribution
network from sensor measurements to identify critical relationships with the intended targets.
In general, sensor measurements are aggregated and processed by distributed data collectors at
different locations in the SG. Investigation of the topology can reveal multiple critical attack schemes.
Then, the attacker is able to determine the most critical lines in a local grid that can influence other
interdependent sectors. In the transmission domain, studies [40, 90] used the heuristic risk graph
methods to transform massive amounts of data into a risk and an influence graph, respectively, that
describe the critical paths revealing cascading failures. Moreover, a data-driven approach based
on RL is proposed to identify the critical attack sequence against sequential topology attacks [87].
Since the connection among different critical infrastructure assets are complex, AI technologies
could help threat actors identify AI-targeted attack patterns in large amounts of data.
Stage 2: Weaponization
The proper timing for attacks that are launched in a sequential manner is critical for achieving
large-scale impacts. For instance, study [83] showed that attacks launched on the nodes with the
highest or lowest loads can have different impacts for network robustness. The attacker can use
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Fig. 8. Application of proposed framework on the SG scenario.

AI to design a recognition module to determine the right time to launch the AI-aided attack on
target nodes to trigger cascading effects as described in Stealthy Spyware [89]. The attacking
commands will be embedded in this adjusted malicious payload that generates unusual behaviors
to disconnect devices from energy utility. The data collector contains its own local web server
and is browser-controlled, making it easy to configure via the Internet [74]. Threat actors can
develop watering holes to embed the malware such as websites related to critical infrastructure
with malicious content that looks as legitimate. Moreover, the threat actors can use advanced
password-cracking techniques as Trieu and Yang et al. [80] described, and PassGAN [41] to obtain
correct passwords.
Stage 3: Delivery
Throughout the spear-phishing email campaign, the threat actor can adapt his abnormal behavior
“on the fly” based on the target environment to compromise other collectors. The malicious payload
is contained in a shortened URL that, when clicked, will trigger malicious commands. To hide
its malicious activity, the payload can be concealed by using AI-concealed techniques to evade
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detection because the identification of malware by reverse-engineering is difficult to perform, as
described in DeepLocker [22].
Stage 4: Exploitation
The adversary can take advantage of the interconnection of millions of smart meters and build
a botnet by compromising high-value target devices to automatically distribute the malicious
payload. When it is injected into the data controller, it can launch an AI-automated attack by
directly sending the attacking commands to harm multiple critical infrastructures. Therefore, these
large-scale distributed sensors are at risk of malicious hackers turning them off all at once [5, 37].
Stage 5: Installation
The attacker may infect as many nodes as possible in favor of the autonomous decisions that
AI-evolved self-propagating malware is able to make.
Stage 6: Command & Control
An attacker commonly tries to establish a channel for further communication. However, by using
AI techniques, no C2 channel will be needed, as described in DeepLocker [22]. Due to the already
inserted target attributes, the malware knows when it will be unlocked across different types
of nodes. Therefore, it is an AI-multilayered attack that can provide access to other system
components automatically and remotely.
Stage 7: Actions on Objectives The successful AI-massive attack in an AMI topology will cause
large-scale disruption throughout an entire city based on the cascading effects to other domains,
indirectly by the energy infrastructure. Energy disconnections can lead to interruption of services,
which will have strong impacts on a city’s stability.

6 DISCUSSION
6.1 Comparison with related work
AI is already being used to defend against cyber attacks in different ways, ranging from malware
classification, finding anomalous network traffic, and botnet traffic identification to phishing
detection. For instance, when classifying malicious binaries, an algorithm can train itself through
known benign and malicious examples to classify new activities as benign or malicious without
requiring prior description of them. However, every invention has a dark side. Adversaries could
take advantage of it. An adversary could combine AI technologies with existing cyber attack
techniques to expand the cyber threat landscape.

This paper aims to provide an overview of the state-of-the-art AI-based cyber attacks for a better
understanding of advanced attack vectors that use AI maliciously throughout the different stages
of the cyber attack life cycle. There is little research related to the ways in which AI can be used as
a malicious tool by adversaries. To the best of our knowledge, this is the first study to provide a full
description of “AI-based cyber attacks” regarding the intersection of AI and malicious intents. It is
the first review of AI methods used for offensive purposes. Our work contributes to an analysis of
intended AI-driven attacks in cyber-offense compared with other similar studies that we explained
in Section 3, which were mainly focused on general AI risks. Floridi [31] argued that AI does not
mean only intelligent machines but also the intelligent way in which machines work. Therefore,
the intelligent behavior of a machine is defined from its outcomes, including self-learning and
autonomous actions. With beneficial AI applications, it is critical to be aware of the “dark side” in
the cases when they are used maliciously.

We presented the first classification that targets deliberate actions in which AI can be used as an
instrument in supporting malicious activities. Our framework raises the awareness to continue
this work by discovering other problems that may lead to malicious AI along with appropriate
solutions to such threats. Existing classifications [81, 82, 85] focused generally on AI risks and
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mostly from the safety point of view. For example, they focus on risks of creating or modifying
an AI system to be dangerous, and not on how to use AI as an adversarial tool to attack more
accurately and efficiently. However, our framework shows that even traditional systems can also
be weaponized by the intentional malicious use of AI. However, the list of attack objectives in the
proposed framework may be incomplete. It is possibly missing other predictions of AI offensive
capabilities.

Our proposed AI-based cyber threat framework based on the Cyber Kill Chain offers a structured
way to describe AI attacks and their behaviors. In general, the Cyber Kill Chain provides better
understanding on the offensive actions of a cyber attacker, allowing defenders to develop appropriate
defense strategies against the steps the attacker goes through to execute an attack. Similarly, the
application of our framework can facilitate the understanding of AI offensive capabilities to identify
opportunities to disrupt an AI-based cyber attack in progress. It can be applied for both offensive
and defensive purposes. For instance, in cyber-game exercises, the framework can serve as a way
to build AI attack scenarios for testing the strength of defenses in the target. On the defensive side,
the framework helps better identify possible and more appropriate mitigation strategies that can
compete at a wider scope, at a faster speed and on a larger scale of the AI-based cyber attacks.

So far, AI seems to be one of the most promising technologies for research in information security,
and it plays an important role in cyber crime prevention and detection [24]. Bruce Schneier [70]
said that “both attack and defense will benefit from AI technologies” and as long as computers are
moving into activities that are traditionally done well by humans, it might create new asymmetries
in the attack-defense balance. Our investigation of possible attack schemes using AI maliciously
could serve as an important step to establishing a good combination of cybersecurity, safety, and
resilience properties in a vulnerable system. However, many research examples, which present
these novel attacks, address the need for further research to develop proper defenses.

6.2 Research gaps and recommendations
We have analyzed 11 AI-based cyber attack case studies using AI-driven techniques in their attack
process in literature. We have identified various attack strategies that leverage AI techniques
to maximize their impact, where there is a lack of sufficient mitigation approaches. Most of the
existing solutions focus on enhancing security policies, security control monitoring, andmulti-factor
authentication mechanisms to combat new machine-generated threats, but they are inadequate
to address the increasing speed. Clearly, there are many open problems on how to prevent and
mitigate such advanced threats. In particular, we believe that the most efficient way to fight AI
is using AI in order to compete at scope, speed, and scale. Building autonomous cyber defenses
that learn from experiences during the cyber races between attackers and defenders can reveal the
presence of malicious behavior more efficiently. In this section, we discuss AI-based strategies that
can be used to mitigate AI-based cyber threats.

AI has played an important role in deploying cybersecurity solutions by analyzing activities in
real time to detect and prevent security risks. However, emerging sophisticated threats using AI
maliciously make current defensive approaches inadequate to address the increasing accuracy and
speed. As demonstrated in the AI-based cyber attack case studies, the process of their attack models
integrates learning features, increasing the sophistication level in terms of the advanced planning,
intrusion, and execution strategy. Despite the sophistication of such attacks, the same steps of the
attack strategies can be used for defensive purposes in a supervised manner. This time, the security
engineer has full knowledge of the data collected that flows between several devices and systems.

An important thing that should be taken into consideration is that AI can support the automation
of cyber-defense tasks, such as vulnerability assessment, intrusion detection, incident response,
and threat intelligence processing. Leslie F. Sikos [75], in his book, presented various AI approaches



30 Nektaria Kaloudi and Jingyue Li

to build proactive and reactive defense mechanisms against malicious cyber activities. In terms
of self-adaption and self-learning, AI is utilized to make smarter and more robust cyber defenses
that can anticipate efficiently against attacks. By incorporating reinforcement learning methods, a
system can solve complex and dynamic security problems by learning from its own experiences
through the exploration of its environment. For instance, Nguyen et al. [57] surveyed several deep
reinforcement learning (DRL) methods for autonomous defense strategies, such as autonomous
DRL-based intrusion detection systems and multi-agent DRL-based game theory approaches, to
obtain optimal policies in different attacking scenarios. In particular, Feng and Xu [29] proposed
an optimal DRL-based cyber defense for CPS in the presence of unknown threats. Moreover,
Shamshirband et al. [73] investigated works dealing with computational intelligence approaches in
intrusion detection and prevention systems. To conclude, such potential solutions will not stop the
effectiveness of the AI-based cyber attacks, but will reduce the impact if we identify them on time.

7 CONCLUSION
Threat actors are constantly changing and improving their attack performance with a particular
emphasis on the application of AI-driven techniques in the attack process. This study investigates
the offensive capabilities through automation of traditionally manual processes, allowing attackers
to conduct attacks of a wider scope, at a faster speed, and on a larger scale. In this paper, we
explored research examples of cyber attacks, posed by combining the “dark” side of AI with the
attack techniques. We introduced an analytic framework for modeling those attacks that can
be useful in understanding their context and identified key opportunity areas for the security
community in implementing suitable defenses. Finally, we illustrated a scenario to show that an
sCPS, e.g., smart grid, can be the target of more advanced malicious cyber activity.

ACKNOWLEDGMENTS
We would like to express our gratitude to Associate Professor Michail Maniatakos at New York
University Abu Dhabi, for all his beneficial advice and the discussions we had.

REFERENCES
[1] Horizon 2020 Work Programme 2014-2015. 2015. Leadership in enabling and industrial technologies: Information and

Communication Technologies. Retrieved Nov 25, 2019 from http://ec.europa.eu/research/participants/portal4/doc/
call/h2020/common/1587758-05i._ict_wp_2014-2015_en.pdf

[2] Terrence Adams. 2017. AI-powered social bots. arXiv preprint arXiv:1706.05143 (2017).
[3] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. 2016. Concrete problems

in AI safety. arXiv preprint arXiv:1606.06565 (2016).
[4] Hyrum S Anderson, Jonathan Woodbridge, and Bobby Filar. 2016. DeepDGA: Adversarially-tuned domain generation

and detection. In Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. ACM, 13–21.
[5] Ross Anderson and Shailendra Fuloria. 2010. Who controls the off switch?. In 2010 First IEEE International Conference

on Smart Grid Communications. IEEE, 96–101.
[6] Daniele Antonioli, Giuseppe Bernieri, and Nils Ole Tippenhauer. 2018. Taking control: Design and implementation of

botnets for cyber-physical attacks with cpsbot. arXiv preprint arXiv:1802.00152 (2018).
[7] Alejandro Correa Bahnsen, Ivan Torroledo, David Camacho, and Sergio Villegas. 2018. DeepPhish: Simulating Malicious

AI. In 2018 APWG Symposium on Electronic Crime Research (eCrime). 1–8.
[8] Oliver Bendel. 2019. The synthetization of human voices. AI & SOCIETY 34, 1 (2019), 83–89.
[9] UC Berkeley. 2012. Cyber-Physical Systems – a Concept Map. Retrieved Nov 25, 2019 from https://ptolemy.berkeley.

edu/projects/cps/
[10] William Blum. 2017. Neural fuzzing: applying DNN to software security testing. Retrieved Nov 25, 2019 from

https://www.microsoft.com/en-us/research/blog/neural-fuzzing/
[11] Michael Bossetta. 2018. A simulated cyberattack on Twitter: Assessing partisan vulnerability to spear phishing and

disinformation ahead of the 2018 US midterm elections. arXiv preprint arXiv:1811.05900 (2018).

http://ec.europa.eu/research/participants/portal4/doc/call/h2020/common/1587758-05i._ict_wp_2014-2015_en.pdf
http://ec.europa.eu/research/participants/portal4/doc/call/h2020/common/1587758-05i._ict_wp_2014-2015_en.pdf
https://ptolemy.berkeley.edu/projects/cps/
https://ptolemy.berkeley.edu/projects/cps/
https://www.microsoft.com/en-us/research/blog/neural-fuzzing/


The AI-Based Cyber Threat Landscape: A Survey 31

[12] Susan M Bridges, Rayford B Vaughn, et al. 2000. Fuzzy data mining and genetic algorithms applied to intrusion
detection. In Proceedings of 12th Annual Canadian Information Technology Security Symposium. 109–122.

[13] Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter Eckersley, Ben Garfinkel, Allan Dafoe, Paul Scharre,
Thomas Zeitzoff, Bobby Filar, et al. 2018. The malicious use of artificial intelligence: Forecasting, prevention, and
mitigation. arXiv preprint arXiv:1802.07228 (2018).

[14] Zheng Bu. 2014. Zero-Day Attacks are not the same as Zero-Day Vulnerabilities. Re-
trieved Nov 25, 2019 from https://www.fireeye.com/blog/executive-perspective/2014/04/
zero-day-attacks-are-not-the-same-as-zero-day-vulnerabilities.html

[15] Tomas Bures, Danny Weyns, Bradley Schmer, Eduardo Tovar, Eric Boden, Thomas Gabor, Ilias Gerostathopoulos,
Pragya Gupta, Eunsuk Kang, Alessia Knauss, et al. 2017. Software engineering for smart cyber-physical systems:
challenges and promising solutions. ACM SIGSOFT Software Engineering Notes 42, 2 (2017), 19–24.

[16] Keywhan Chung, Zbigniew T Kalbarczyk, and Ravishankar K Iyer. 2019. Availability attacks on computing systems
through alteration of environmental control: smart malware approach. In Proceedings of the 10th ACM/IEEE International
Conference on Cyber-Physical Systems. ACM, 1–12.

[17] Jessica Cussins. 2017. AI Researchers Create Video to Call for Autonomous Weapons Ban at UN. Retrieved Nov 25,
2019 from https://futureoflife.org/2017/11/14/ai-researchers-create-video-call-autonomous-weapons-ban-un/

[18] Moises Danziger and Marco Aurelio Amaral Henriques. 2017. Attacking and Defending with Intelligent Botnets. XXXV
Simpósio Brasileiro de Telecomunicaç oes e Processamento de Sinais-SBrT 2017 (2017), 457–461.

[19] DarkTrace. 2018. The Next Paradigm Shift: AI-Driven Cyber-Attacks. White Paper. Retrieved Nov 25, 2019 from
https://www.darktrace.com/en/resources/wp-ai-driven-cyber-attacks.pdf

[20] DARPA. 2016. Cyber Grand Challenge (CGC).
[21] Kenneth De Jong. 1988. Learning with genetic algorithms: An overview. Machine learning 3, 2-3 (1988), 121–138.
[22] Marc Ph. Stoecklin Dhilung Kirat, Jiyong Jang. 2018. DeepLocker - Concealing Targeted Attacks with AI Locksmithing.

In Black Hat USA Conference.
[23] Wenrui Diao, Xiangyu Liu, Zhe Zhou, and Kehuan Zhang. 2014. Your voice assistant is mine: How to abuse speakers

to steal information and control your phone. In Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices. ACM, 63–74.

[24] Selma Dilek, Hüseyin Çakır, and Mustafa Aydın. 2015. Applications of artificial intelligence techniques to combating
cyber crimes: A review. arXiv preprint arXiv:1502.03552 (2015).

[25] Peter Eder-Neuhauser, Tanja Zseby, Joachim Fabini, and Gernot Vormayr. 2017. Cyber attack models for smart grid
environments. Sustainable Energy, Grids and Networks 12 (2017), 10–29.

[26] ENISA. 2018. ENISA Threat Landscape Report 2017. Retrieved Nov 25, 2019 from https://www.enisa.europa.eu/
publications/enisa-threat-landscape-report-2017

[27] ESET. 2018. Can Artificial Intelligence Power Future Malware? White Paper. Retrieved Nov 25, 2019 from https:
//www.welivesecurity.com/wp-content/uploads/2018/08/Can_AI_Power_Future_Malware.pdf

[28] Gregory Falco, Arun Viswanathan, Carlos Caldera, and Howard Shrobe. 2018. A Master Attack Methodology for an
AI-Based Automated Attack Planner for Smart Cities. IEEE Access 6 (2018), 48360–48373.

[29] Ming Feng and Hao Xu. 2017. Deep reinforecement learning based optimal defense for cyber-physical system in
presence of unknown cyber-attack. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 1–8.

[30] Brian E. Finch. 2013. Anything and Everything Can Be Hacked. Retrieved Nov 25, 2019 from https://www.huffpost.
com/entry/caveat-cyber-emptor_b_3748602

[31] Luciano Floridi. 2017. Digital’s cleaving power and its consequences. Philosophy & Technology 30, 2 (2017), 123–129.
[32] European Regulators Group for Electricity and Gas. 2010. Position paper on smart grids. Retrieved Nov 25, 2019 from

http://www.cired.net/publications/workshop2010/pdfs/0092.pdf
[33] National Science Foundation. 2015. Cyber-Physical Systems (CPS). Retrieved Nov 25, 2019 from https://www.nsf.gov/

pubs/2015/nsf15541/nsf15541.pdf
[34] Jairo Giraldo, Esha Sarkar, Alvaro A Cardenas, Michail Maniatakos, and Murat Kantarcioglu. 2017. Security and privacy

in cyber-physical systems: A survey of surveys. IEEE Design & Test 34, 4 (2017), 7–17.
[35] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.
[36] Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013).
[37] Aaron Hansen, Jason Staggs, and Sujeet Shenoi. 2017. Security analysis of an advanced metering infrastructure.

International Journal of Critical Infrastructure Protection 18 (2017), 3–19.
[38] Simon Hansman and Ray Hunt. 2005. A taxonomy of network and computer attacks. Computers & Security 24, 1

(2005), 31–43.
[39] Haibo He and Jun Yan. 2016. Cyber-physical attacks and defences in the smart grid: a survey. IET Cyber-Physical

Systems: Theory & Applications 1, 1 (2016), 13–27.

https://www.fireeye.com/blog/executive-perspective/2014/04/zero-day-attacks-are-not-the-same-as-zero-day-vulnerabilities.html
https://www.fireeye.com/blog/executive-perspective/2014/04/zero-day-attacks-are-not-the-same-as-zero-day-vulnerabilities.html
https://futureoflife.org/2017/11/14/ai-researchers-create-video-call-autonomous-weapons-ban-un/
https://www.darktrace.com/en/resources/wp-ai-driven-cyber-attacks.pdf
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2017
https://www.welivesecurity.com/wp-content/uploads/2018/08/Can_AI_Power_Future_Malware.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/08/Can_AI_Power_Future_Malware.pdf
https://www.huffpost.com/entry/caveat-cyber-emptor_b_3748602
https://www.huffpost.com/entry/caveat-cyber-emptor_b_3748602
http://www.cired.net/publications/workshop2010/pdfs/0092.pdf
https://www.nsf.gov/pubs/2015/nsf15541/nsf15541.pdf
https://www.nsf.gov/pubs/2015/nsf15541/nsf15541.pdf


32 Nektaria Kaloudi and Jingyue Li

[40] Paul DH Hines, Ian Dobson, and Pooya Rezaei. 2017. Cascading power outages propagate locally in an influence graph
that is not the actual grid topology. IEEE Transactions on Power Systems 32, 2 (2017), 958–967.

[41] Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Passgan: A deep learning approach for
password guessing. arXiv preprint arXiv:1709.00440 (2017).

[42] White House. 2016. Artificial intelligence, automation, and the economy. Executive office of the President.
https://obamawhitehouse. archives. gov/sites/whitehouse. gov/files/documents/Artificial-Intelligence-Automation-Economy.
PDF (2016).

[43] Weiwei Hu and Ying Tan. 2017. Generating adversarial malware examples for black-box attacks based on GAN. arXiv
preprint arXiv:1702.05983 (2017).

[44] Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo. 2017. Cyber-physical systems security—A survey. IEEE
Internet of Things Journal 4, 6 (2017), 1802–1831.

[45] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. 2011. Intelligence-driven computer network defense
informed by analysis of adversary campaigns and intrusion kill chains. Leading Issues in Information Warfare & Security
Research 1, 1 (2011), 80.

[46] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Reinforcement learning: A survey. Journal of
artificial intelligence research 4 (1996), 237–285.

[47] Rida Khatoun and Sherali Zeadally. 2017. Cybersecurity and privacy solutions in smart cities. IEEE Communications
Magazine 55, 3 (2017), 51–59.

[48] Young Mie Kim, Jordan Hsu, David Neiman, Colin Kou, Levi Bankston, Soo Yun Kim, Richard Heinrich, Robyn
Baragwanath, and Garvesh Raskutti. 2018. The stealth media? Groups and targets behind divisive issue campaigns on
Facebook. Political Communication 35, 4 (2018), 515–541.

[49] Thomas C King, Nikita Aggarwal, Mariarosaria Taddeo, and Luciano Floridi. 2019. Artificial Intelligence Crime: An
Interdisciplinary Analysis of Foreseeable Threats and Solutions. Science and engineering ethics (2019), 1–32.

[50] Jingyue Li, Jin Zhang, and Nektaria Kaloudi. 2018. Could We Issue Driving Licenses to Autonomous Vehicles?. In
International Conference on Computer Safety, Reliability, and Security. Springer, 473–480.

[51] Tao Liu, Wujie Wen, and Yier Jin. 2018. SIN 2: Stealth infection on neural network—A low-cost agile neural Trojan
attack methodology. In 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
227–230.

[52] Natasha Lomas. 2017. Lyrebird is a voice mimic for the fake news era. Retrieved Nov 25, 2019 from https:
//techcrunch.com/2017/04/25/lyrebird-is-a-voice-mimic-for-the-fake-news-era/

[53] William Melicher, Blase Ur, Sean M Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.
2016. Fast, lean, and accurate: Modeling password guessability using neural networks. In 25th {USENIX} Security
Symposium ({USENIX} Security 16). 175–191.

[54] Harel Menashri and Gil Baram. 2015. Critical infrastructures and their interdependence in a cyber attack–the case of
the US. Military and Strategic Affairs 7, 1 (2015), 22.

[55] MITRE. 2017. ATT&CKMatrix for Enterprise. Retrieved Nov 25, 2019 from https://attack.mitre.org/matrices/enterprise/
[56] Jefferson Seide Molléri, Kai Petersen, and Emilia Mendes. 2016. Survey guidelines in software engineering: An

annotated review. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM, 58.

[57] Thanh Thi Nguyen and Vijay Janapa Reddi. 2019. Deep Reinforcement Learning for Cyber Security. arXiv preprint
arXiv:1906.05799 (2019).

[58] NIST. 2018. NIST framework and roadmap for smart grid interoperability standards, release 4.0 – DRAFT. Retrieved
Nov 25, 2019 from https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-framework

[59] Ivan Novikov. 2018. How AI can be applied to cyberattacks. Retrieved Nov 25, 2019 from https://www.forbes.com/
sites/forbestechcouncil/2018/03/22/how-ai-can-be-applied-to-cyberattacks/

[60] OASIS. 2017. Open Command and Control (OpenC2). Retrieved Nov 25, 2019 from https://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=openc2

[61] Dan Patterson. 2018. How weaponized AI created a new breed of cyber-attacks. Retrieved Nov 25, 2019 from
https://www.techrepublic.com/article/how-weaponized-ai-creates-a-new-breed-of-cyber-attacks/

[62] Frederic Petit, Duane Verner, David Brannegan, William Buehring, David Dickinson, Karen Guziel, Rebecca Haffenden,
Julia Phillips, and James Peerenboom. 2015. Analysis of critical infrastructure dependencies and interdependencies.
Technical Report. Argonne National Lab.(ANL), Argonne, IL (United States).

[63] D. Petro and B. Morris. 2017. Weaponizing Machine Learning: Humanity was Overrated Anyway. In DEF CON.
[64] Federico Pistono and Roman V Yampolskiy. 2016. Unethical research: how to create a malevolent artificial intelligence.

arXiv preprint arXiv:1605.02817 (2016).
[65] Ashis Pradhan. 2012. Support vector machine-A survey. International Journal of Emerging Technology and Advanced

Engineering 2, 8 (2012), 82–85.

https://techcrunch.com/2017/04/25/lyrebird-is-a-voice-mimic-for-the-fake-news-era/
https://techcrunch.com/2017/04/25/lyrebird-is-a-voice-mimic-for-the-fake-news-era/
https://attack.mitre.org/matrices/enterprise/
https://www.nist.gov/engineering-laboratory/smart-grid/smart-grid-framework
https://www.forbes.com/sites/forbestechcouncil/2018/03/22/how-ai-can-be-applied-to-cyberattacks/
https://www.forbes.com/sites/forbestechcouncil/2018/03/22/how-ai-can-be-applied-to-cyberattacks/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=openc2
https://www.techrepublic.com/article/how-weaponized-ai-creates-a-new-breed-of-cyber-attacks/


The AI-Based Cyber Threat Landscape: A Survey 33

[66] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are
unsupervised multitask learners. URL https://openai. com/blog/better-language-models (2019).

[67] Mohit Rajpal, William Blum, and Rishabh Singh. 2017. Not all bytes are equal: Neural byte sieve for fuzzing. arXiv
preprint arXiv:1711.04596 (2017).

[68] Patrick Reidy and K Randal. 2013. Combating the insider threat at the FBI: real world lessons learned. In RSA Conference,
San Francisco CA.

[69] Bruce Schneier. 1999. Attack trees. Dr. Dobb’s journal 24, 12 (1999), 21–29.
[70] Bruce Schneier. 2018. Artificial intelligence and the attack/defense balance. IEEE Security & Privacy 2 (2018), 96–96.
[71] John Seymour and Philip Tully. 2016. Weaponizing data science for social engineering: Automated E2E spear phishing

on Twitter. Black Hat USA 37 (2016).
[72] John Seymour and Philip Tully. 2018. Generative Models for Spear Phishing Posts on Social Media. arXiv preprint

arXiv:1802.05196 (2018).
[73] Shahaboddin Shamshirband, Nor Badrul Anuar, Miss Laiha Mat Kiah, and Ahmed Patel. 2013. An appraisal and

design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique.
Engineering Applications of Artificial Intelligence 26, 9 (2013), 2105–2127.

[74] Manish Shrestha, Christian Johansen, and Josef Noll. 2017. Security Classification for Smart Grid Infra structures (long
version). (2017).

[75] Leslie F Sikos. 2018. AI in Cybersecurity. Vol. 151. Springer.
[76] Kaj Sotala and Roman V Yampolskiy. 2014. Responses to catastrophic AGI risk: a survey. Physica Scripta 90, 1 (2014),

018001.
[77] Marc Ph. Stoecklin. 2018. DeepLocker: How AI Can Power a Stealthy New Breed of Malware. Retrieved Nov 25, 2019

from https://securityintelligence.com/deeplocker-how-ai-can-power-a-stealthy-new-breed-of-malware/
[78] Ilya Sutskever, James Martens, and Geoffrey E Hinton. 2011. Generating text with recurrent neural networks. In

Proceedings of the 28th International Conference on Machine Learning (ICML-11). 1017–1024.
[79] Pablo Torres, Carlos Catania, Sebastian Garcia, and Carlos Garcia Garino. 2016. An analysis of recurrent neural

networks for botnet detection behavior. In 2016 IEEE biennial congress of Argentina (ARGENCON). IEEE, 1–6.
[80] Khoa Trieu and Yi Yang. 2018. Artificial Intelligence-Based Password Brute Force Attacks. (2018).
[81] Alexey Turchin. 2015. A Map: AGI Failures Modes and Levels. Retrieved Nov 25, 2019 from https://www.lesswrong.

com/posts/hMQ5iFiHkChqgrHiH/
[82] Alexey Turchin and David Denkenberger. 2018. Classification of global catastrophic risks connected with artificial

intelligence. AI & SOCIETY (2018), 1–17.
[83] Jian-Wei Wang and Li-Li Rong. 2009. Cascade-based attack vulnerability on the US power grid. Safety science 47, 10

(2009), 1332–1336.
[84] ClaesWohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering.

In Proceedings of the 18th international conference on evaluation and assessment in software engineering. Citeseer, 38.
[85] Roman V Yampolskiy. 2016. Taxonomy of pathways to dangerous artificial intelligence. In Workshops at the Thirtieth

AAAI Conference on Artificial Intelligence.
[86] Roman V Yampolskiy and MS Spellchecker. 2016. Artificial intelligence safety and cybersecurity: A timeline of AI

failures. arXiv preprint arXiv:1610.07997 (2016).
[87] Jun Yan, Haibo He, Xiangnan Zhong, and Yufei Tang. 2017. Q-learning-based vulnerability analysis of smart grid

against sequential topology attacks. IEEE Transactions on Information Forensics and Security 12, 1 (2017), 200–210.
[88] Yuanshun Yao, Bimal Viswanath, Jenna Cryan, Haitao Zheng, and Ben Y Zhao. 2017. Automated crowdturfing

attacks and defenses in online review systems. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1143–1158.

[89] Rongjunchen Zhang, Xiao Chen, Jianchao Lu, Sheng Wen, Surya Nepal, and Yang Xiang. 2018. Using AI to Hack IA: A
New Stealthy Spyware Against Voice Assistance Functions in Smart Phones. arXiv preprint arXiv:1805.06187 (2018).

[90] Yihai Zhu, Jun Yan, Yan Lindsay Sun, and Haibo He. 2014. Revealing cascading failure vulnerability in power grids
using risk-graph. IEEE Transactions on Parallel and Distributed Systems 25, 12 (2014), 3274–3284.

https://securityintelligence.com/deeplocker-how-ai-can-power-a-stealthy-new-breed-of-malware/
https://www.lesswrong.com/posts/hMQ5iFiHkChqgrHiH/
https://www.lesswrong.com/posts/hMQ5iFiHkChqgrHiH/

	Abstract
	1 Introduction
	2 Background
	2.1 Malicious AI
	2.2 Smart Cyber-Physical Systems
	2.3 Security of sCPS
	2.4 The need for a survey on AI-based cyber attacks

	3 Related Work
	3.1 Existing literature reviews & surveys
	3.2 Existing classifications on malicious AI
	3.3 Existing models on cyber threat representation

	4 Research Method
	4.1 Research motivation
	4.2 Research design

	5 Results
	5.1 Existing case studies of AI-based cyber attacks
	5.2 AI-Based Cyber Threat Framework
	5.3 A Smart Grid Scenario

	6 Discussion
	6.1 Comparison with related work
	6.2 Research gaps and recommendations

	7 Conclusion
	Acknowledgments
	References

