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Abstract—This work investigates the Particle Swarm Optimiza-
tion (PSO) algorithm as a tool to tune the control parameters
of a Modular Multilevel Converter (MMC) in a single-terminal
HVdc configuration. More precisely, due to its inherent capacity
of handling system non-linearities, the PSO algorithm is used to
tune a nonlinear control structure based on passivity arguments
capable of ensuring global asymptotic stability of the converter.
This nonlinear control strategy was successfully applied to the
MMC in HVdc configuration in previous efforts, albeit with sub-
optimal tuning, and therefore below par performance. Thus, this
work aims to contribute to the state of the art by proving that
system performance under the nonlinear control structure of
interest can be further improved via PSO-tuning. Finally, to
reduce the computational burden, we propose to apply the PSO
algorithm directly to a recent state-space representation of an
MMC with a constant equilibrium point.

I. INTRODUCTION

Multi-Terminal (MT) High-Voltage Direct-Current (HVdc)
transmission systems are arguably one of the major infrastruc-
ture developments in this day and age, considered the preferred
solution for integrating large volumes of renewable energy
into the existing power grids, over very long distances [1].
Although two-level voltage source converters (2L-VSCs) have
been traditionally used as the main component of MT-HVdc
grids, attention has shifted to Modular Multilevel Converters
(MMCs) [2], as the new preferred solution, mainly due to their
reduced losses, modularity, scalability, low harmonic distortion
and consequently reduced filtering requirements [3].

It is expected that the MMCs forming an MT-HVdc grid
will need to guarantee a certain degree of interoperability
between all the system components and associated controllers.
In other words, stability and performance requirements of the
overall interconnected system will need to be ensured. This
becomes both, particularly important and challenging due to
the expected multi-vendor nature of the system [4], as the
local power converter controllers will usually be subjected
to confidentiality agreements. A straightforward solution to
overcome this problem is indeed relying on local controllers
with plug and play features.

A possible approach for a plug and play stability guaranteed
control design with simple PI controllers for the MMC was

implemented in [5], [6], based on the passivity theory [7]–
[10], and therefore extending to the MMC case the works of
[11], [12] originally applied to 2L-VSCs. Nonetheless, even
if global asymptotic stability was guaranteed, the controller
in [5], [6] had sub-optimal tuning, and therefore below par
performance. Thus, we are interested here in improving the
tuning and consequently the performance of the nonlinear
control applied to the MMC in [5], [6].

Towards this end, in this paper we investigate the potential
of applying the Particle Swarm Optimization (PSO) algorithm
[13], originally proposed in [14], to tune the MMC control
parameters of the nonlinear control structure presented in [5],
[6]. The PSO algorithm has been chosen due to its capability
of handling system nonlinearities, its simple implementation
and relatively low computational cost, compared to other
methods [15], as well as its success in the power system
community [16]. However, its heuristic nature still makes it
computationally intensive. Therefore, it will be of interest
to use a model able to reduce as much as possible the
computational cost of the algorithm. Thus, this work is based
on the steady-state time-invariant (SSTI) representation of the
MMC proposed in [17], [18] which stabilizes at a constant
equilibrium point instead of an oscillatory orbit. Using this
equivalent state-space representation will allow for:

1) The use of efficient variable-step solvers; i.e., once the
constant equilibrium is approached, the solver can use
larger steps, decreasing the computational burden.

2) Initializing the converter variable at a constant equilib-
rium point, which in turns allow to apply the PSO tuning
algorithm under an event of interest (e.g.: reference
change) from the first iteration.

3) Simple inclusion of constant references in the objective
function; as opposed to generating oscillatory references
which are more computationally costly.

It is therefore proposed here as a suitable MMC model for
tuning the control parameters by means of the PSO method-
ology.

The rest of the paper is organized as follows. In section
II, the MMC average modelling conventions, as well as the
equivalent model with time-invariant solutions proposed in
[17] are briefly recalled. Section III gives a brief summary
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Fig. 2: The MMC basic topology and arm average model
representation (phase c).

of the PSO algorithm, while section IV outlines the control
structure of interest applied to the MMC in [5]. In addition,
time-domain simulation results of an MMC in single-terminal
configuration with the control parameters tuned with the PSO
methodology are given in section V.

II. MMC MODEL IN A TIME-INVARIANT FRAMEWORK

In this section, we briefly introduce the MMC structure with
the adopted modelling conventions, and the steady-state time-
invariant averaged model representation of [17].

A. On the adopted modelling conventions

The basic topology of a three-phase MMC is displayed
in Fig. 1. It is well known that the series connection of N
sub-modules (SMs) with capacitors C constitute one arm of
the converter. The arms are connected to a filter inductor
with inductance Lσ and equivalent resistance Rσ to form the
connection between one of the dc-terminals and the ac-side
output. Two identical arms are connected to the upper and
lower dc-terminals, respectively, to form one leg for each phase
j ∈ {a, b, c}. The ac-side interface is assumed to be a filter
inductor and/or the leakage inductance of a transformer, which
is modeled by an equivalent inductance Lf and resistance
Rf . Assuming that the capacitor voltages of the sub-modules
(SMs) are maintained well balanced within the converter arms,
the series connection of SMs in each arm can be replaced by
a circuit-based average model with vU,LCj

=
∑N
i=1 v

U,L
SMj,i and

Cσ = C/N , (as indicated by the lower arm of phase c in
Fig. 1), corresponding to the average arm model (AAM) of
the converter [19], [20].

The output of the controlled voltage sources of the AAM
are referred to as the modulated voltages vUMj and vLMj ,
respectively related to the equivalent arm capacitor voltages
vUCj and vLCj by means of the equivalent insertion indices

mU
j and mL

j through the relationships vUMj = mU
j v

U
Cj and

vLMj = mL
j v

L
Cj . Finally, iUj and iLj denote the upper and

lower arm currents associated with Lσ , i∆j the ac-grid current
associated to Lf , and v∆

Gj the grid voltage at the ac side point
of common coupling.

B. Average model of the MMC in Σ−∆ representation

It was demonstrated in [17], [21], that it can be beneficial to
adopt a Sum-Difference (Σ-∆) change of coordinates, instead
of using the natural Upper-Lower (U -L) arm notation. Thus,
the following definitions are introduced for a three phase
MMC:

vΣ
Cabc := vUCabc + vLCabc, v∆

Cabc := vUCabc − vLCabc
iΣabc :=

1

2
(iUabc + iLabc), i∆abc := iUabc − iLabc

mΣ
abc := mU

abc +mL
abc, m∆

abc := mU
abc −mL

abc,

with iΣabc the circulating or common-mode currents, i∆abc the
ac-side grid currents; vΣ

abc and v∆
abc respectively the sum

and difference between the upper and lower arm equivalent
capacitor voltages; and mΣ

abc and m∆
abc the sum and difference

between the upper and lower modulation indices. With such
definitions, and by applying Kirchhoff’s voltage and current
laws to the circuit in Fig. 1, it is possible to represent the
average converter dynamics as:

Cσ v̇
Σ
Cabc = mΣ

abc ◦ iΣabc +
1

2
m∆
abc ◦ i∆abc;

Cσ v̇
∆
Cabc = m∆

abc ◦ iΣabc +
1

2
mΣ
abc ◦ i∆abc;

Lσ i̇
Σ
abc =

13vdc
2
−RσiΣabc −

mΣ
abc ◦ vΣ

Cabc +m∆
abc ◦ v∆

Cabc

4
;

Lδ i̇
∆
abc = −Rδi∆abc −

mΣ
abc ◦ v∆

Cabc +m∆
abc ◦ vΣ

Cabc

4
− v∆

Gabc;

(1)
where ◦ denotes the Hadamard product (i.e., the element-wise
multiplication of vectors), 13 ∈ R3 is a vector of ones, and
Rδ , Rf + Rσ/2 and Lδ , Lf + Lσ/2 are the equivalent
ac-side resistance and inductance, respectively.

C. MMC model with time invariant solution

Finally, the equivalent SSTI representation is derived by
applying the set of Park transformations Pω and P−2ω , re-
spectively at ω, −2ω; as well as a rotational transform T3ω at
3ω to the MMC state variables in a sum (Σ) and difference
(∆) formulation, as sketched in Fig. 3—see [17] for a precise
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Fig. 3: Mapping of the MMC state variables proposed in
[17] for a steady-state time-invariant dynamic equivalent state-
space representation.

justification and detailed derivation. The model then reads:

Cσ v̇
Σ
Cdq = iΣMdq + J2Cσ2ωvΣ

Cdq,

Cσ v̇
Σ
Cz = iΣMz,

Cσ v̇
∆
Cdq = i∆Mdq + J2Cσωv

∆
Cdq,

Cσ v̇
∆
CzDQ = i∆MzDQ + J2Cσ3ωv∆

CzDQ,

Lσ i̇
Σ
dq = −vΣ

Mdq + (J2Lσ2ω −RσI2)iΣdq,

Lσ i̇
Σ
z = −vΣ

Mz −RσiΣz +
1

2
vdc,

Lδ i̇
∆
dq = v∆

Mdq + (J2Lδω −RδI2)i∆dq − v∆
Gdq,

(2)

with iΣMdq , i
Σ
Mz , i∆Mdq , i

∆
MzDQ, vΣ

Mdq , v
Σ
Mz and v∆

Mdq the new
modulated currents and voltages in Σ-∆ representation and
dqz (steady-state time-invariant) coordinates, defined in the
appendix; and

J2 ,

[
0 −1
1 0

]
.

Remark 1. Let the zero sequence of a general ∆ variable be
denoted as x∆

z —examples of such variables include the zero-
sequence of the voltage difference v∆

Cz , the modulated current
i∆Mz and the zero sequence of the insertion indices difference
m∆
z . As detailed in [17], these variables do not reach a constant

value in steady state, but a periodic orbit at 3ω instead. Thus, it
was proposed in [17] to use an auxiliary virtual variable x∆⊥

z ,
90° phase-shifted from x∆

z and define the new pair of steady-
state time-invariant variables x∆

zDQ , T3ωcol(x∆
z , x

∆⊥
z ), as

partly sketched in Fig. 3.
Remark 2. It is worth mentioning that the equivalent MMC

model with time-invariant solutions given in (2) has been
validated against detailed models in [17] under common MMC
controllers, and in [5] under the control structure investigated
in this work.

III. PARTICLE SWARM OPTIMIZATION ALGORITHM

The PSO algorithm, originally proposed in [14], is a simple
and efficient heuristic search method which uses a set of
particles to find the global minimum of an objective function.
The method consists on first initializing the position of the
particles, which are randomly distributed over the state space
of interest. Then, the velocity of each of the particles, is up-
dated at each iteration taking into account both the individual
particles best result so far, as well as the best result of the
whole swarm. Finally, the algorithm will usually come to an
end after a certain number of iterations is reached. Although
several versions of the algorithms have been proposed [13],
this work is based on the implementation in [15], [16], and is
summarized in the following lines.

1) The velocity and position of each particle are randomly
initialized, typically within some bounds.

2) The objective function is evaluated using the current
position of each of the particles.

3) The objective function value is locally compared with
the individual particle’s best result so far, say cl ∈ R.
If the the current value is better than cl, it becomes the
new particle’s local best. In addition, the particle’s best
position ξl ∈ Rp is updated with the current particle
position.

4) The particle with the best cl out of the whole swarm is
identified and compared with the swarm’s global best
result so far, say cg ∈ R. If this current global value is
better than cg , it becomes the swarm’s new global best.
In addition, the swarm best position ξg ∈ Rp is updated
with the associated position.

5) Every particle’s speed is updated according to ψk+1 =
wψk + φ1R1(ξl − ξk) + φ2R2(ξg − ξk), with ψk ∈ Rp
and ξk ∈ Rp respectively the velocity and position
of a particle corresponding to the iteration k, φ1,2 are
acceleration constants, R1,2 ∈ Rp×p are two diagonal
matrices with its entries random numbers belonging to
the set [0, 1], and w the inertia constant.

6) The position corresponding to each particle is updated
according to ξk+1 = ξk + ψk+1.

7) The steps 2) to 6) are repeated until k reaches the
maximum number of iterations specified by the user.

IV. CONTROL STRUCTURE UNDER INVESTIGATION

The control structure under investigation is the PI-Passivity-
based Control (PI-PBC) [11], [22], [23] applied to MMCs
in a time-invariant framework, described in [6], [17]. This
nonlinear control strategy based on passivity concepts [7], [10]
with promising plug-and-play features is able to guarantee
global asymptotic stability of the MMC. Although it is based
on linear PI controllers, it is different from standard current
control implementations since the PI is not wrapped around
typical error signals, but instead around a signal called passive
output. Due to its nonlinear nature, tuning methods based on
linearisation and small-signal techniques will not necessarily
guarantee a good performance of the system under large



Calculation of Passive Outputs,
according to [5]

PI

PI

PI

PI

PI

PI

PI

y1

y2

y3

y4

y5

y6

y7

mΣ
d

mΣ
q

mΣ
z

m∆
d

m∆
q

m∆
zD

m∆
zQ

P−1
ω

P−1
−2ω

T−1
3ω

m∆
z

mΣ
abc

m∆
abc

[Σ-∆]−1
mU

abc

mL
abc

MMC

v∆
Gabc

vUCabc

vLCabc

iUabc

iLabc

Σ-∆

P−2ω Pω

T3ω

v∆
Cz P−2ω Pω

vΣ
Cabc v∆

Cabc iΣabc i∆abc vΣ
Cabc

v∆
Cabc

iΣabc

i∆abc

Σ-∆

⊥

PI-PBC

Measurements

Signal Processing

vΣ
Cdq v

Σ
Cz v

∆
Cdq v

∆
CzDQ iΣdq iΣz i∆dq

vΣ?
Cdq v

Σ?
Cz v

∆?
Cdq v

∆?
CzDQ iΣ?

dq iΣ?
z i∆?

dq

vΣref
Cz

+
− PI

vΣ
Cz

Outer-Loop

+ iΣref
z

iΣ∗z
+

iSdc

Fig. 4: Control diagram of an MMC in MT-HVDC configura-
tion under PI-PBC+ vΣ

Cz outer-loop

disturbances. Thus, PSO appears as a good tuning method
candidate for this application as it is able to take into account
the system non-linearities introduced by the converter and its
control.

Since, the MMC model under consideration given in (2) has
seven control inputs; i.e., u = col(mΣ

dq,m
Σ
z ,m

∆
dq,m

∆
zDQ) ∈

R7, it will have seven passive outputs as well, recalled in
the appendix1. Thus, the control structure consists on seven
inner PI controllers, each with their respective KP , and
KI coefficients, wrapped around each of the seven passive
outputs—see Fig. 4. In addition, one outer-loop controller is
introduced for robustness and dynamical improvements, as
detailed in [5]. Thus, the PSO will be looking for the best
PI coefficients of the PI-PBC method; i.e., the swarm’s best
position ξg ∈ Rp=16.

V. SIMULATION RESULTS

This section presents some time-domain simulation results
of a single-terminal MMC HVdc station under the PI-PBC +
outer loop control strategy–depicted in Fig. 4 and summarized
in section IV–and tuned with the PSO algorithm. The simula-
tions have been carried out with the same system parameters
used in [5], [6] and summarized in Table I. As mentioned
earlier, we are interested in evaluating the performance of the
PSO tuning methodology and its potential for coping with the
nonlinearities naturally present in the MMC dynamical model
and the chosen controller. Towards this end, we first investigate
the effect of increasing each particle’s vector dimension.
Second, we examine the impact of using different objective
functions in the PSO algorithm. Last but not least, we explore
the outcome of increasing the PSO time limit, while evaluating
the tuning performance under a large reference step.

1For a full derivation of the passive outputs corresponding to the MMC
model given in (2), the interested reader is referred to [17].

TABLE I: MMC parameters

Sn 1200 [MVA] N 200 [-] Cσ 21.16 [µF]
Uacn 380 [kV] Rf 0.3429 [Ω] Rσ 0.6017 [Ω]
Udcn 620 [kV] Lf 62.9 [mH] Lσ 30.6 [mH]

A. Effect of the increase of the particle vector dimension.

We are interested first in evaluating the effect of the increase
of the particle vector dimension in the performance of the
system. Therefore, the tuning parameters are obtained by
the PSO methodology with different particle vector sizes,
and the system response is evaluated thereafter. The particle
composition and size is described in the following.

• Case A: This is the reference case where no PSO
algorithm was used to tune the PI coefficients. More
precisely, the PI coefficients are the same as those given
in [5], [6].

• Case B: For this case, the PSO algorithm is used only
to tune the PI coefficients of the outer-loop (OL) depicted
in Fig. 4. Therefore, each particle is defined as ξg ∈ R2

with ξg = col(KOL
P ,KOL

I ). 2

• Case C: By contrast, in this case the PSO algorithm
is used to tune all of the 16 PI coefficients present
in the control structure under investigation—see Fig. 4.
Thus each particle is defined ξg ∈ R16 with ξg =
col(KOL

P ,KOL
I ,KP1, . . . ,KP7,KI1, . . . ,KI7, ).

The simulation event chosen is a reference step change of
the (zero-sequence) of the MMC arm equivalent capacitor
sum vΣ

Cz—from 1.25 pu to 1.35 pu. In addition, it is worth
mentioning that the objective function used is one with the
objective of minimizing the difference between the MMC state
variables x ∈ Rn and their corresponding values in steady-
state, of the form

V (x) =

n∑
i=1

qii||xi − x?i ||2 = (x− x?)>Q(x− x?), (3)

with x? ∈ Rn denoting the equilibrium, and Q = diag(qii) ∈
Rn×n a diagonal matrix collecting the weighting factors qii.

The simulation results for the following three different cases
are shown in Fig. 5, where we have chosen Q to be the
identity matrix for simplicity. Overall, the case where the
PSO algorithm is used to tune all the PI coefficients (Case
C) gives the best performance. In particular, it significantly
improves the transitory peak of most of the variables without
compromising too much on the settling time. The performance
of the PSO algorithm search can be inferred from plotting the
best value of the swarm cg with respect to each iteration. This
is done for Case B and Case C in Fig. 5e and Fig. 5f,
respectively. Although the algorithm is able to improve the
converter performance only by means of the outer-loops, a re-
tuning of all the coefficients clearly provides a significantly
better result.

2We use col(ai) to denote a column vector with entries ai.
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Fig. 5: Simulation results of (a) the voltage between the dc terminals vdc, (b) the zero-sequence arm equivalent capacitor
voltage sum vΣ

Cz , (c) the zero-sequence of the circulating current iΣz and (d) the ac grid side active current i∆d , all under a step
reference change of vΣ?

Cz from 1.25 to 1.35 p.u.. In addition, the best value of the cost function at each iteration by applying
PSO to (e) only the outer-loops (Case B) and (f) all the 16 PI coefficients (Case C).

B. Tuning performance with different PSO cost functions.

We now turn to the evaluation of the effect that different
objective functions in the PSO tuning algorithm have on
the system dynamical behaviour. However, for the sake of
simplicity, we maintain the quadratic in the errors structure
of (3), and vary instead the weighting factors qii. The follow-
ing objective functions are then evaluated, and the resulting
dynamical performance is plotted in Fig. 6, under the same
event detailed in section V-A.

• ref. This case denotes the reference scenario, where the
diagonal weighting factor matrix Q is simply the indentity
matrix.

• min vΣ
Cz . This case gives priority to minimizing the error

between the (zero-sequence) energy sum of the MMC and
its steady-state value, by means of amplifying the effect
of the error by a factor of 10 (i.e., 10 · (vΣ

Cz − vΣ?
Cz)

2).
• min i∆dq . Similarly, this case gives priority to minimizing

the error between the active and reactive ac grid currents
and their desired steady-state value, by means of selecting
a weighting factor of 10 (i.e., 10 · (i∆dq − i∆?dq )2).

The waveform of the voltage sum vΣ
Cz is plotted in Fig. 6b.

Clearly, the case corresponding to “min vΣ
Cz” has the fastest

convergence rate of them all. This comes as no surprise as the
objective function was formulated such that this convergence

should have priority. Interestingly, however, this case under
performs when we look at the other variables in Figs. 6a, 6c
and 6d. More precisely, it causes the largest overshoots in the
zero-sequence of the circulating current iΣz (proportional to the
dc current) as well as in the voltage across the dc terminals of
the converter vdc—see Figs. 6c and 6a. In addition, it causes
the most undamped oscillations in the ac grid active currents,
as observed from Fig. 6d. By contrast, the case referred to as
“min i∆dq”, not only produces the best performance in terms of
the convergence of the active component of the grid current to
its steady state–see Fig. 6d–but it also has good performance
in terms of low overshoot and fast convergence in the variables
vdc and iΣz , depicted in Figs. 6a and 6c, respectively. Finally,
the performance of the PSO algorithm is plotted here as well,
for both objective functions; i.e., case “min vΣ

Cz” in Fig.
6e and case “min i∆dq” in Fig. 6f. The best function values
observed from these figures coincide with the above analysis
in the sense that the case “min i∆dq” gives an overall better
performance.

C. Tuning performance with different PSO maximum time
limits under a larger reference step.

The objective of this section is twofold. First to investigate
the capabilities of the PSO tuning methodology to cope with
larger reference steps, and to evaluate the effect of increasing
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Fig. 6: Simulation results of (a) the voltage between the dc terminals vdc, (b) the zero-sequence arm equivalent capacitor
voltage sum vΣ

Cz , (c) the zero-sequence of the circulating current iΣz and (d) the ac grid side active current i∆d , all under a step
reference change of vΣ?

Cz from 1.25 to 1.35 p.u. . In addition, the best value of the cost function at each iteration by applying
PSO to (e) the case denoted as “min vΣ

Cz” and (f) the case denoted as “min i∆d ”.

the searching time of the PSO algorithm. The reference step
under consideration is a change of the dc current iSdc–see Fig
4–from 0.78 to −0.42 in p.u., mimicking the event investigated
in [5]. The waveform trends of the MMC variables of interest
are depicted in Fig. 7. More precisely, the waveforms of the
dc voltage vdc, the MMC (zero-sequence) voltage sum vΣ

Cz ,
the (zero-sequence) of the circulating current iΣz and the active
component of the ac grid current i∆d , are respectively depicted
in Figs. 7a, 7b, 7c and 7d. In such figures, the variables
responses without the PSO tuning methodology (but instead
with the tuning parameters used in [5]) are depicted, as well
as their responses under the PSO tuning methodology using
different maximum time limits; i.e., 5, 10 and 20 minutes.

As a first observation, we note that the method is able
to ensure system stability under large reference steps, as the
tuning is performed with the nonlinear model of the system.
In addition, even though the PSO methodology improves the
system behaviour in general, gains in performance do not
significantly increase with the maximum allowed computation
time. This can also be observed in the zoomed-in plots of i∆d
and iΣz , respectively in Figs. 7e and 7f.

VI. CONCLUSIONS

In this paper, we have explored the use of the Particle
Swarm Optimization (PSO) algorithm as a tool for tuning the

control coefficients of a nonlinear control strategy applied to
the Modular Multilevel Converter (MMC) in a single-terminal
HVdc configuration, able to ensure global asymptotic stability
of the MMC.

The PSO methodology is able to cope with the nonlinear
behaviour introduced by the converter and the control method
of interest, as the tuning procedure avoid any linearization
and is based instead on intensive time-domain simulations
of the nonlinear model. Furthermore, in order to reduce the
computational cost of the PSO, we propose to use a recently
proposed equivalent average model of the MMC with time-
invariant solutions–with dqz coordinates–in the PSO tuning
procedure. This allows to speed up the PSO algorithm, since
initialization of the converter becomes possible and more
efficient variable step solvers can be used.

Finally, we show via time-domain simulation results the
positive effect that enlarging the size of the particle vector
dimension has on the converter performance, as well as the
converter response from different tunings in which we have
modified the weighting coefficients in the PSO objective
function.
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Fig. 7: Simulation results of (a) the voltage between the dc terminals vdc, (b) the zero-sequence arm equivalent capacitor
voltage sum vΣ

Cz , (c) the zero-sequence of the circulating current iΣz and (d) the ac grid side active current i∆d , all under a step
change of the dc current iSdc–see Fig 4–from 0.78 to −0.42 in p.u.. In addition, zoomed-in versions of the waveform responses
are given for (e) i∆d and (f) iΣz .

APPENDIX

The modulated currents and voltages appearing in (2) are
defined according to [17], as:

iΣMdqz , P−2ω
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Σ
dqz ◦ P−1

−2ωi
Σ
dqz + P−1

ω m∆
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with iΣMdqz , col(iΣMdq, i
Σ
Mz), i∆Mdqz , col(i∆Mdq, i

∆
Mz) and

vΣ
Mdqz , col(vΣ

Mdq, v
Σ
Mz), v∆

Mdqz , col(v∆
Mdq, v

∆
Mz).

The passive outputs of the MMC are computed according
to [5] as:
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Σ
z

)
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iΣd + îΣ?z v∆

Cd

− v∆?
Cd î
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with the symbol ? denoting the desired steady-state value at
the equilibrium of the state variables. In addtion, îΣz , 2iΣz ,
v̂Σ
Cz , 2vΣ

Cz and î∆dq , i∆dq/2.
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