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Abstract—With the rapid usage of location-based services
(LBSs), protection of location privacy has become a significant
concern. Existing dummy-based methods mainly consider gener-
ating dummies in continuous queries, which neglects the fact that
the user would launch queries in a frequent region(e.g., home),
resulting in privacy disclosure in a long-term period (i.e., more
than 30 days). To solve this problem, we propose a method which
generates dummy frequent regions, and make dummies locate in
these dummy regions as far as possible. Compared with other
methods, evaluation based on real-world dataset shows that the
proposed method can reduce the ratio of recognized dummies
and restored trajectory in a long-term situation.

Index Terms—privacy protection, location-based services, k-
anonymity, dummy generation, trajectory privacy

I. INTRODUCTION

With the widespread usage of wireless networks technology
and mobile phones featuring global positioning system (GPS),
more and more location-based services (LBS) have emerged
providing various services for people’s work and daily life
needs. In an LBS, a mobile user sends a request containing
his/her location and interests to a location service provider
(LSP). The LSP returns the point of interests (POIs) near the
user’s current location. For example, visitors can send POI
queries to the LBS servers. By submitting LBS queries, users
can enjoy the convenience provided by LBS.

However, every coin has two sides as such convenience
might come at the price of user’s privacy leakage. The LSP
has the potential to violate the user’s privacy [1]. By collecting
the user’s queries, an untrustworthy LSP can infer personal
information about the user [2], such as his/her location,
preferences and possibly his/her state of health. Even worse,
the LSP could disclose the user’s private information to third
parties for financial or other business advantage. Consequently,
it is essential to pay more attention to protect users’ location
privacy.

To address the location privacy issue, numerous research
efforts [3]–[13] has been attracted over the past several years.
These efforts employ well-known privacy metrics such as
k-anonymity [14] and rely on a trusted third-party server.
Among these efforts, the dummy-based method [15] is one
of the popular solutions. This method works by generating
a group of dummies aside with the real location for each
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user’s request, and all of these locations are then submitted
as the service request. In this way, the user’s real location
cannot be identified. Existing dummy-based method is mainly
concerned with a short period(e.g., a single query or a whole
journey within twenty-four hours). In practice, however, long-
term requests still exist [8], [12]. For example, a user makes
requests at home for up to 30 days. When most of existing
dummy-based methods generate dummy for the user’s home,
the sparsely distributed dummies surround home, which forms
a surrounding’s frequency significantly lower than the home.
Thus, the adversary has a high confidence that the user’s real
location is in the region with high frequency, and the exist-
ing dummy-based methods cannot protect the user’s location
privacy completely in long-term period.

In this paper, based on the existing dummy-based methods, a
frequency-aware dummy-based method (FADBM) is proposed
to achieve long-term k-anonymity for users in LBS. Different
from existing approaches, FADBM carefully selects dummy
locations in consideration of that long-term requests may
be disclosed to adversaries, and make sure that the selected
dummy locations around frequent regions are satisfied with
time reachability. The major contributions of this paper are as
follows:

• Use existing dummy-based methods directly in long-term
requests (more than 30 days), and the correct ratio for
adversary to infer some dummies is more than 25%
by means of hypothetical adversary method based on
frequent regions. This shows that these methods cannot
protect user’s location privacy completely.

• To guard against this hypothetical adversary method, an
FADBM method is proposed to achieve k-anonymity by
carefully choosing dummy locations in frequent regions,
and considers both frequent regions and time reachability
to ensure that the selected dummy regions are reasonable
as far as possible.

• The proposed dummy generation methods is evaluated
by taking real geographical information into account.
Experimental results demonstrate the effectiveness of
protecting the user’s long-term privacy.

The rest of this research paper is organized as follows:
Section II and Section III present related work and motivation
respectively. Section IV provides a general overview of the



hypothetical adversary method. Section V presents details
of the proposed protection method against this hypotheti-
cal adversary method, and an evaluation of the method’s
performance-efficiency is presented clearly in Section VI.
Finally, Section VII concludes this paper.

II. RELATED WORK

Considerable efforts have been achieved to protect users’
location privacy over the past several years. Among these ef-
forts, the dummy-based method is one of the popular solutions.
In some early work, Kido et al. [16] introduced dummies into
location privacy protection. In their scheme, the user utilized
the random walking model to generate a group of dummies
aside with the real location for each request of the user, and all
of these locations are then submitted as the service request. In
this way, the user’s real location cannot be identified. Lu et al.
[17] proposed two dummy location generating schemes called
CirDummy and GridDummy, which achieve k-anonymity for
considering the privacy-area.

However, these above-mentioned methods may not work
well because they ignore that the adversary might have side
information. For example, these methods generate dummies
which are in a lake or a rugged mountains, and these dummies
would be identified by the adversary. Niu et al. [3] pointed
out it, and their method carefully selects dummy locations
considering that side information may be exploited by ad-
versaries. They chose these dummy locations based on the
entropy metric, and then enhanced the algorithm by making
sure that the selected dummy locations are spread far away.
Additionally, to reduce the risk of privacy leakage further, Niu
et al. [7] cached the service data obtained for both the real
location and dummy locations of the current query, and used
the cached data to answer future queries so as to reduce the
queries sent to the LBS server. In this way they reduced the
number of queries sent to the LBS server for protecting users’
privacy.

Gradually, researchers began to think temporal and spatial
continuity between dummies. Liu et al. [4] presented an solu-
tion which firstly adopts the underlying dummy-based schemes
to generate initial candidate dummies, and then analyzed
the spatiotemporal correlation between neighboring location
sets submitted from three aspects, namely time reachability,
direction similarity and indegree/out-degree.

Unfortunately, the existing dummy-based schemes mainly
focus on protecting the user’s location privacy in a single query
or a whole journey within twenty-four hours. Some researchers
have already considered long-term location privacy protection
[8], [12], but these methods may still have some shortcomings
that a region is the user’s high frequency active area, not just
a location. When the user adopts these schemes to protect
his location privacy in consecutive requests, and we utilize
the hypothetical adversary method in Sec IV to attack, some
dummies can be inferred with no less than 25% correct ratio.

III. MOTIVATION

Existing dummy-based method may fail in a new situation.
This situation is that the adversary has the user’s queries data
whose time span is a long period, more one month, instead of
a short period(e.g., a single query or a whole journey within
twenty-four hours). Here are some instructions on why existing
dummy-based method failing.

Considering the user’s mobile pattern, Gonzalez et al. [18]
has indicated that humans follow simple reproducible patterns
in a long period. So the user’s queries are instinctively regular
within a long-period period. That is, regions where user’s
queries were issued are in a high level of similarity. This kind
of region is named as frequent regions. When the user’s queries
are not in frequent regions, the adversary can identify some
dummy with a high confidence.

The problem is described as: When the adversary collects
the user’s long-period queries on consideration of the above
content, frequent regions can be recognized by an adversary
using clustering method. Not only that, if these regions are
stamped with time identification, an adversary can use time
reachability between regions to restore user’s common trajec-
tory. Problems are illustrated in the following scenario.

Above-Mentioned problem is detailed with a concrete ex-
ample. Our 3-anonymity example is constructed by using a
small portion of the processed real trajectory dataset. Fig. 1
shows that adversary can recognize the user’s frequent region
RT during a time period T marked in red with a long-
period period. When the user queries again in RT on T ,
existing dummy-based methods generate two random dummy
locations(orange-coloured triangle). The adversary considers
that the users’ real location is in RT probably, thereby, he/she
can identify some dummies with a high confidence, or even
obtaining the user’s real location directly, as shown in Fig. 1.

dummy location real location

Fig. 1. Real location disclosed by using existing 3-anonymity method

Further than that, when the adversary using cluster-
ing method direct at multiple time period {T1, T2, . . . , Ti},
he/she can recognize the frequent region over different time
periods(e.g.,RTi

,RTi+1
), as shown in Fig. 2. Then, the adver-

sary checks the reachability within time frame ∆T , ∆T =
Ti+1−Ti. The trajectory between RTi

,RTi+1
) can be identified

with a high probability, or even be disclosed, as shown in
Fig. 2.

The general idea of our solution is to generate the dummy
frequent regions, which is illustrated in Sec. V-A.
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Fig. 2. Real trajectory disclosed by using existing 3-anonymity method

IV. HYPOTHETICAL ADVERSARY METHOD

A. Long-period Query Database

An LBS user sends her current location accompanied with
a query asking for her interest, and the LSP returns a set of
points as query result. The query database records are in the
form of (ID,LOC,POILOC), where ID represents a user.
LOC consists of {{loc1, t1}, {loc2, t2}, . . . , {locN , tN}}, and
loc is locations which the query contains, t is the time stamp
of the query.

When this query database contains more than 30 days of
query information, we call this kind of database as long-period
query database.

B. Adversary Model

An adversary is any spiteful third party with whom this
long-period query database is disclosed. We assume that this
adversary has the following background knowledge about a
transport network:

Path Weight: We assume that the adversary will assign a
higher weight to more frequently traveled streets for large
crowds. Generally, main roads are more likely to receive
higher weights.

Maximum Velocity Bound: The adversary may also assume
that there is a maximum velocity with which a user can travel
between two subsequent time stamps, which can be used in
time reachability. The velocity of a user at a given time can
be estimated based on the maximum speed limit of a road.

C. Adversary Algorithm

The adversary can utilize the long-period query database
to recognize the user’s frequent regions by using the cluster-
ing method, and then infer the real location of each user’s
query from frequent regions. Not only that, an adversary can
use background knowledge between regions to restore user’s
common trajectory.

Initially, the clustering method is chosen to recognize the
frequent regions. Due to the irregular shape of the frequent
regions, density-based spatial clustering method is chosen
from the mainstream clustering algorithm. And then, Ordering
Points To Identify the CluStering(OPTICS [19]) is taken into
account because of the difference in query density between the
frequent regions and common regions. One thing to note is that
loc in the query database is the real location in real world,
and calculating the distance between them can not simply

use Euclidean Metric or Manhattan distance. To fit this scene
better, some parameters of the original OPTICS algorithm are
redefined. Actual traffic distance is replace the distance in the
original OPTICS algorithm. That is, the distance between loci
and loci+1 is gained by asking Google Maps API. Note that
the distance used in Algorithm 1 is actual traffic distance.

Secondly, the adversary makes effort to obtain the frequent
regions in a certain period. A day can be divided into multiple
time periods such as T1 = 0 : 00−0 : 15 by the time interval.
Construct the set T = {T1, T2, . . . , TN}. The shorter the time
interval, the more accurate frequent region in Ti which the
adversary obtains. The excessively short time interval may
result in non-existent frequent regions during this period.

Points{loc, t} are extracted from the long-period query
database, whose t is in a certain time periodTi. Then, construct
a new set DTi

= {{loc1, t1}, {loc2, t2}, . . . , {locN , tN}}.
Enhanced-OPTICS requires two parameters:ε, which describes
the maximum distance to consider, and M , describing the
number of points required to form a cluster. d(loci, loci+1)
is the distance between loci and loci+1. Nε(loc) is the points
whose distance to loc is less than or equal to ε. loc is a core
point if at least M points are found within its ε-neighborhood
Nε(loc). The two following concepts are used in the enhanced-
OPTICS:

1) Each point p is assigned a core-distance that describes
the distance to the M -th closest point:

cd(p) =

{
UNDEFINED, if |Nε(p)| < M

d(loc,NM
ε (p)), otherwise

(1)

d(p,NM
ε (p)) describes the M -th smallest distance to p

in Nε(p).
2) The reachability-distance of another point o from a point

p is either the distance between o and p, or the core
distance of p, whichever is bigger:

rd(o, p) =

{
UNDEFINED, if |Nε(p)| < M

max{cd(p), d(o, p)}, otherwise
(2)

{orderlisti}Ni=1 is the ordered array of the DT . {rdi}Ni=1

is the reachability-distance of i-th point, {cdi}Ni=1

is the core-distance of i-th point, i = 1, 2, . . . , N .
{orderlisti}Ni=1, {rdi}Ni=1, {cdi}Ni=1 would be abbreviated as
{orderlisti}, {rdi}, {cdi} without ambiguity. The following
algorithm solve the above-mentioned value. Additionally,
since the optics algorithm is very mature, the idea of the
algorithm is briefly describe, and we focus on some of our
adjustments.

The adversary gains {orderlisti}, {rdi}, {cdi}, then gen-
erates marked array{mi}. In this process, a parameter ε
needs to be provided to represent the number of containing
points for the different ClusterID, and ε can be adjusted
according to the actual situation. Then, the adversary can get
the points of different ClusterID by using {mi} limited by
ε, SameClusteri = {{loc1, t1}, {loc2, t2}, . . . , {locN , tN}}.
Take SameCluster1 as an example. Utilize loc in
SameCluster1 to calculate the center point of these points,
and then calculate the shortest radius of circle containing these



Algorithm 1 Enhanced-OPTICS
Input: DT , ε,MinPts
Output: {orderlisti}, {rdi}, {cdi}

1: function PREPROCESSING(DT , ε,MinPts)
2: initialization(core points, {cdi})
3: {rdi} = {orderlisti} = ∅
4: for unprocessed point p in core points do
5: N = getNeighbors(p, ε)
6: mark p as processed
7: output p to {orderlisti}
8: if |N | >MinPts then
9: Seeds = φ

10: UPDATE(N, p, Seeds, {cdi}, {rdi})
11: for q in Seeds do
12: N

′
= getNeighbors(q, ε)

13: mark q as processed
14: output q to {orderlisti}
15: if N

′
>MinPts then

16: update(N
′
, q, Seeds, {cdi}, {rdi})

17: return {orderlisti}, {rdi}, {cdi}

points. This circle is the frequent region of T , RTi1
. Then,

the adversary calculates the core point of {t1, t2, . . . , tN},
and makes this core point as the time stamp of RTi1

. The
following function is the description of how generating RTi

=
{{RTi1

, t1}, {RTi2
, t2}, . . . , {RTiN

, tN}}. In this function,
the procedure calculate core() is one of the most popular
clustering algorithms K-Means in which K is 1. Execute the

Algorithm 2 Enhanced-OPTICS
Input: {orderlisti}, {rdi}, {cdi}, ε, range
Output: {{RTi1

, cp1, t1}, . . . , {RTiN
, cpN , tN}}

1: function CLUSTER({orderlisti}, {rdi}, {cdi}, ε)
2: ClusterID = −1
3: k = 1
4: for i = 1, 2, ..., N do
5: j = orderlisti
6: generate ClusterID for each mj

7: for same id points ∈ {mj} do
8: cp = calculate core(locNi=1)
9: radius = max{euclidean dis(cp, {loc}Ni=1)}

10: if radius < range then
11: RT = Circle(cp, radius)
12: t = calculate core({t}Ni=1)

13: return RTi
= {{RTi1

, cp1, t1}, . . . , {RTiN
, cpN , tN}}

above-mentioned Algorithm 1 and Algorithm 2 for each T ∈
DT , and get the frequent regions R = {RT1 , RT2 , . . . , RTi},
RTi

= {{{RTi1
, cp1, tcp1

}, . . . , {RTiN
, cpN , tcpN

}}}.
Finally, after the RT is obtained by the adversary, the pri-

vacy protection expectation of dummy-based method would be
likely to fall. To be special, attacking methods can be divided
into recognizing the dummy locations from the continued
query and restoring the frequent trajectory used by users.

Here’s a look at the adversary how recognizing the

dummy locations. When the user continues to ask a
query {loc, t},loc = {real loc, dummy1, . . . , dummyk−1},
the adversary can find out t belonging to which of the
T (e.g.,T ). Then, judge these points by using the follow-
ing formula:false loc = {point | point /∈ RT ∩ t ∈
T},true loc = loc − false loc. false loc is excluded be-
cause of that the user is more likely to initiate a query in the
frequent regions RT .

The following is the adversary how restoring the frequent
trajectory used by users. Each cp of the RTi

queries path to
each cp of the RTi by using GoogleMap API, which is limited
by the time reachability between the time stamp t of cp ∈
RTi

and cp ∈ RTi+1
, and this path is called as PartPath. The

API result is the Latitude and longitude points of this path.
When all PartPath are obtained, permutation and combination
of these paths can be done as candidate paths. To select top k
path from the set of generated candidate paths. A weighting
function is derived to rank the paths based on edge centrality,
and then the top k ranked candidate path is selected as the
path representing the user’s frequent trajectory.

The weighting function counts the weight of each candidate
path. The weight for each candidate path is calculated by the
summation of each PartPath length divided by the length of the
whole candidate path which is then multiplied by the weight
of each PartPath. Note that this weight of each PartPath is
supposed to know by the adversary.

wCandPath =

i=0∑
n

wPartPathWeii ×
PartPathLengthi

totLength
(3)

The weighting function returns the path that contains the
greatest overlap with other paths in the candidate path set.
Therefore, edges that are more commonly used in a set of
candidate paths are favored over edges that are not. Provided
users take fairly direct routes to their destination, this weight-
ing function works well.

D. Attack Effect Metrics

Two metrics are introduced to respectively evaluate the
effectiveness of adversary recognizing the dummy locations
and restoring the frequent trajectory.

To begin with, Rec Dummy is a metric about how many
dummies locations are recognized within the user’s continued
queries. Rec Dummy is calculated by the recognized dummy
locations belonging to dummy loc divided by the all dummy
locations in n queries.

Rec Dummy =
1

n

n∑
i=0

|false loc ∈ dummy loc|
|dummy loc|

(4)

The next is the metric about how accurate the frequent
trajectories are restored. The points of top k ranked candidate
path are encoded as GeoHash. Geohash is a public domain
geocoding system, which encodes a geographic location into
a short string of letters and digits. It is a hierarchical spatial
data structure which subdivides space into buckets of grid
shape. Utilize this GeoHash technique, and the trajectory can



be shaped in a grid.

Res Tra =
1

n

n∑
i=1

k∑
j=1

1

k

|cand pathj ∩ daily pathi|
|daily pathi|

(5)

When we calculate this metric Res Tra, we can calculate
the repetition number of the grid between the top k ranked
candidate path and i-th daily path, |cand pathj∩daily pathi|
which is divided by the grid number of i-th daily path,
|daily pathi|. Do it for each i-th daily path.

V. OUR PROPOSED METHOD

A. Basic Idea

To address the problem in Section III, our basic idea is to
generate dummy region which is similar as frequent regions.
If a query is issued in a frequent region, a dummy location is
generated around a fixed location; if not, a dummy location is
generated to meet accessibility with the last query, otherwise,
this dummy location is as close as possible to the next
frequency region.

dummy location real location

Fig. 3. Dummy locations chosen considering long-period information.

Fig. 3 illustrates our basic idea. When the user queries in
RT on T , our approach is to generate dummy locations around
the flag as illustrated. After using our method, adversary gets
three regions by using clustering methods to recognize user
frequent regions RT . When the user continue to ask a query
in RT on T , two dummy locations are generated in other
two dummy frequent regions. The adversary can not recognize
the real location from three locations by utilizing the frequent
region, thereby, the expectation of 3-anonymity method can
be met.

However, the above-mentioned method only takes into ac-
count the situation within a period of time T . Considering the
continuity of time, our approach can be improved to protect
the user’s real trajectory privacy.

As shown in Fig. 4, when the adversary check time reacha-
bility of the user’s frequent regions(RTi

, RTi+1
), the adversary

can get the path satisfied time reachability.
This path may be the user’s real trajectory which is marked

with red line. When we want to protect the user’s real trajec-
tory privacy, our improved approach is to generate dummy
paths to conflate reality with dummy. When our approach
chooses dummy frequent regions, the time reachability of
these regions should be checked. Wrong demonstration is that
two regions can not be reachable within time frame ∆T ,
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dummy location real location

unreasonable path reasonable path

Fig. 4. Dummy regions chosen by considering time reachability

∆T = Ti+1−Ti. The path of these regions is marked with gray
line in the diagram. Right demonstration is the path marked
with orange-coloured line. In this situation, the adversary is
hesitant about picking out one from two paths which consist
of one dummy trajectory and one real trajectory. However, the
best situation is that two dummy trajectory is satisfied with
time reachability.

B. A Frequency-Oblivious Baseline Method

Before our advanced dummy-based method described, we
first introduce a baseline method for comparison purpose.

Entropy-based metrics [20] and distortion-based metrics
[15]. Entropy is an uncertainty of recognize the real location
from all the locations, and it has been widely used in the
literature. We choose the same entropy as Niu et al. [7] ,
the map is divided as N×N cells. Each cell has a probability
of being queried (called query probability) in the past. Let
q denote this probability. Then we have

∑N2

i=1 qi = 1. For
the k locations (i.e,cells) contained in a query which one real
location and k − 1 dummies, each location has a conditional
probability of being the real location. Let pi(i = 1, 2, ..., k)
denote the probability that the i-th location is the real location.
Then pi = qi∑k

j=1 qi
, and obviously

∑k
i=1 pi = 1 The entropy

H of identifying the real location out of the anonymity set is
defined as:

H = −
k∑

i=1

pi · log2Pi (6)

In this method, dummies are selected to maximize the
entropy for the current query only, without considering the
frequent regions’ effect.

C. Frequency-Aware Dummy Selection Method

1) Dummy locations chosen for protecting location privacy:
Similar to the work of the predecessors [21], we also assume
that the anonymity service is managed by some cellular service
provider (absolutely trusted), through which mobile users
have access to wireless communications. The cellular service
provider offers anonymity services as a value-added feature
to their clients, and supplies the initial long-period locations
database ( more one month). The location samples in the
database may be collected from clients’ regular phone calls.
When we have the long-period locations database, the RT

and time stamp t can be owned by using Algorithm 1 and
Algorithm 2.



Our main idea is to select a set of realistic dummy locations
{dum loc1, dum loc2 . . . , dum loci}. Ensure high entropy
for the current query and at the same time provide more
contributions, which possibly satisfies as more as dummy
locations in dummy frequent regions. In order to generate
the dummy frequent regions on T , points are required to
be chosen as core points of dummy frequent regions. The
selection of these core locations core loc is similar to the
selection of the dummy points, which can be referred on
the previous researchers’ work [3]. When the core point has
been chosen, the user should specify customized radius ε and
required privacy level κ() on T . Then, how generating dummy
locations in these dummy frequent regions on T is a problem
that need to be solved.

The user’s real location may be in RT or not, thereby,
the process of choosing dummy locations should consider
two situation. When the user’s real location is in a fre-
quent region RT , the dummy location is also available in
the dummy frequent region. Otherwise, the user’s dummy
location needs to be made further arrangement. In this sit-
uation, our thought is that the dummy locations is generated
around the dummy frequent regions, and the distance between
dum loc and its corresponding core loc is Less than the
d(real loc, cor core loc). At the same time, the equation
(max{H}) should be met.

Algorithm 3 Frequency-Aware Dummy Selection Method
Input: q(each cell’s query probability), cr(real location on T ),

RT (frequent regions on T ), ε(customized radius ),
k(privacy level)

Output: Cdummy

1: function GENERATE DUMMY LOCATIONS(Input)
2: generate dummy frequent regions {RT dummy}ki=1 by

the specifing privacy level k and customized radius ε
3: sort cells based on their query probability q
4: for each RT dummy ∈ {RT dummy}ki=1 do
5: choose k cells (k2 cells are right before core loc

and k
2 cells are right after coreloc in the sorted list)

6: randomly select k
2 cells out of them as the candi-

date set Ĉ
7: compute each locin Ĉ and select loc which satisfies

|d(loc, core loc)− d(cr, core locreal)| 6 ψ
8: add this loc into Cdummy

9: return Cdummy

2) Dummy regions chosen for protection trajectory privacy:
When these regions are stamped with time identification, some
frequent regions are excluded because of no reachable trajec-
tories with other k− 1 common areas and the user’s common
trajectory may be recognized. Therefore, when generating
dummy frequent regions on Ti+1 for the user, we will perform
a time reachability check with RTi

.
When generate frequent regions on T , compute the core

location of each RT on T and get the result cl =
{cl1, cl2, ..., clk}. When we generate dummy frequent re-

gions for the next time period, a directed graph GT+1 =
(VT+1, ET+1) is used to express the rest core locations and
dummy trajectories filtered by the judgment of time reacha-
bility on T + 1. The loc ∈ GT should meet these following
requirements :{
|VT+1| > k

∀cli ∈ {cl}T+1,∃cl
′
∈ {cl}T : ∆t 6 real time{cli, cl

′}
(7)

realtime is the real time from cli to cl
′

by querying
GoogleMap API. ET = {< cli, cl

′
>} is the set of the

movement trajectory between the location sets clT+1 and clT .

Algorithm 4 Frequency-Aware Dummy Selection Method
Input: q(each cell’s query probability),cr(real location

on T ),{RT , t}(frequent regions on T and time
stamps t),{RT+1, t},ε(customized radius),k(privacy
level),CdummyT

Output: CdummyT+1
1: based on the formula (7) to generate dummy frequent

regions {RT+1dummy}ki=1 by the user’s specific privacy
level k and customized radius ε

2: if CdummyT IN RT then
3: if cr ∈ RT+1 then
4: run line 2-8 in Algorithm 3;
5: else
6: sort cells based on their query probability q in the

range of ςd(cr, corelocreal) and τd(cr, corelocreal)
7: run line 2-7 in Algorithm 3
8: based on the formula (7) to check these cells
9: randomly select one and add into CdummyT+1

10: else
11: if cr ∈ RT+1 then
12: run line 2-8 in Algorithm 3
13: else
14: similar to line 6-9 in algorithm 4
15: return CdummyT+1

VI. EVALUATION

A. Experiment Setup

We adopt (Microsoft Research Asia) Geolife project [18],
[22], [23] to pick out a user’s LBS data over the real road
map of Beijing. This Geolife is one of the most popular data
generators utilized in LBS privacy protection researches. We
selected the dataset whose duration lasts more than 75 days
and processed it. The first 30 days as the initial data, the last
35 days as the test data.

The specific method is that pick a data set from this project
that has been recorded for more than 60 days and change his
acquisition frequency and increase the acquisition frequency
from 1 − 5 seconds to 10 minutes. The time period of the
entire data set is in 7 : 00 − 13 : 00. The whole area of road
map covers 10km × 10km, which is split into 40000 equal-
sized grids, where the size of each grid is 0.05km× 0.05km,



and we calculate the grid which each point belongs to. For
simplicity, the path between the two points is simplified to
the square through which their real path passes. At the same
time, we assume that the user has the same privacy protection
requirement in all requests. The next step is that execute the
above-mentioned Algorithm 1 and Algorithm 2 for initial
data, and get the frequent regions R. Then this R is as
a background to our protection method. Additionally, our
experiments are performed on a PC wiht Intel Core i7-8550U,
16GB DDR3-1600 RAM and Microsoft Windows 10-64bit
operating system.

In our following experiments, k is related to k-anonymity,
which means the degree of anonymity, ε is the maximum
distance to consider, and M , describing the number of points
required to form a cluster.

B. An Intuitive Comparison by Using Thermogram
Considering that we are working on frequent areas and

being able to visually demonstrate our results, we use 3D
thermograms to illustrate the effects of long-term protection.
For each input, we performed one test with k = 2. In this
test, queried locations are, respectively, recorded for genuine
location group and each dummy group.

In order to generate a heat map, the heat of each grid needs
to be calculated. Firstly, the number of times t that locations
appear in each grid is counted up. Then, calculating weight of
each grid of li,j is that wm,n = dis((m,n),(i,j))−min(dis)

max(dis)−min(dis)
Based on these statistics, the heat value of each grid is

calculated by following equation:

hi,j =

length∑
m=1

width∑
n=1

(wm,n × ti,j) (8)

After data processing, thermogram were created according
to heat value matrices. Fig. 5 shows two thermogram maps
generated for different methods using the same input and
parameter k = 2. Fig 5(a) is corresponding to the original
data(i.e., the user’s real location) using the baseline method,
while Fig 5(b) is corresponding to 2-anonymity of our method.
In thermogram maps, x and y are location coordinates and z
represents heat.

As we can see, there are three high peaks in the data using
baseline method in Fig 5(a), and which means that the user
may have a higher possibility of appearing there. When the
user initiates the continued request, the adversary can have
a high confidence that the user is in the region which has a
high peak, thereby, dummy locations generated for the user
could be invalid. When using our method, more dummy areas
are generated for the user, and these regions also have high
peaks, as shown in Fig 5(b). Adversaries cannot distinguish
the genuine one from others because they all look similar to
each other intuitively.

Results in Fig 5 indicate that the dummy-based baseline
method cannot protect the user’s location privacy completely.

C. Quantifiable results
In this group of experiments, we compared our proposed

FADBM with three existing methods, SCADB which rep-
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Fig. 5. Comparison of effects after using our method

resents the dummy selection method [4], and LODS [8].
Additionally, these two methods cannot be applied to our data
directly, thereby, we keep the core ideas of these methods
while some changes were made to accommodate our data.
The baseline method described in Sec. V-B is also compared
to better understand our method. These five methods are
processing in the test data. Then, they are attacked by the
hypothetical adversary method mentioned in the Sec. IV, and
we used the corresponding indicators for evaluation. ε = 7,
and M = Days

1.5 .
1) Recognized Dummy: Recognized Dummy is a metric

about how many dummy locations are recognized within
the user’s continued queries. Rec Dummy is calculated by
the recognized dummy locations belonging to dummy loc
divided by the all dummy locations in n queries. Specific
calculation method is in Sec. IV-D. This metric is considered
from two aspects, the change of Days and k. Fig. 6 shows
the effects of Days and k on the value of Rec Dummy.
In Fig. 6(a), we chose to change Days and remain k = 8.
There is a a considerable increase occurred from Days = 7
to Days = 25, and the rate of increase slow down form from
Days = 25 to Days = 35. The curve eventually flattens out.
The maximal values of Rec dummy in SCADB and baseline
are at the top of the figure since they do not consider frequent
regions at all. LODS performs better than SCADB due to
part of using frequent regions, more precisely, this method
is thinking about a location, not an region. Our FADBM
performs much better than all of them and their maximal
values are 0.16 and 0.13. The reason is that it carefully selects
the dummy which have higher contribution to generate dummy
frequent regions. The results can be explained in Fig. 6(b)
using the same reason. These results show that our method
makes a good utilization of background knowledge R and
thus decrease Rec Dummy.
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Fig. 6. Metric of recognized dummy

2) Restored Trajectory: The restored trajectory is about how
accurate the frequent trajectories are restored. This metric can
be analyzed in two parts, the Days and k. To better understand



these methods, all values of other methods are compared to
the baseline’s value. Fig. 7(a) shows the effects of Days
on the restored trajectory. Obviously, the privacy degree of
LODS is the worst since it does not use time reachability.
SCADB performs better since it checks time accessibility
for adjacent points. However, it does not take accessibility
between frequent areas over time into account. Our FADBM
has much higher privacy degree than all those methods due to
our more advanced design of frequent-aware dummy selection.
In particular, FADBM performs better than others due to
consideration of accessibility between frequent areas over time
in selecting dummy locations. Fig. 7(b) further explains how k
affects Res Traj. LODS [11] does not consider caching, and
hence its effect of protecting trajectory is not satisfactory and
around 43%. Since SCADB considers short-term accessibility,
its Res Traj stays at a lower level around 35%. While in
our methods, dummy selection optimizes protecting trajectory
as one objective, and such frequent-aware dummy selection
achieves a much lower restored trajectory than other methods.
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VII. CONCLUSION

In this paper, we proposed frequency-aware dummy-based
method to protect user’s location privacy against hypothetical
adversary method. The method achieves k-anonymity effec-
tively by selecting dummy locations considering frequent re-
gions and time reachability to ensure that the selected dummy
locations are reasonable as far as possible. Evaluation results
indicate that the proposed methods can significantly improve
the privacy level.
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