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Abstract: We consider warm-started optimized trajectory planning for autonomous surface
vehicles (ASVs) by combining the advantages of two types of planners: an A� implementation
that quickly finds the shortest piecewise linear path, and an optimal control-based trajectory
planner. A nonlinear 3-degree-of-freedom underactuated model of an ASV is considered, along
with an objective functional that promotes energy-efficient and readily observable maneuvers.
The A� algorithm is guaranteed to find the shortest piecewise linear path to the goal position
based on a uniformly decomposed map. Dynamic information is constructed and added to the
A�-generated path, and provides an initial guess for warm starting the optimal control-based
planner. The run time for the optimal control planner is greatly reduced by this initial guess
and outputs a dynamically feasible and locally optimal trajectory.
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1. INTRODUCTION

Motivated by potential for reduced costs, as well as safer
and more environmentally friendly operations, technol-
ogy for autonomous surface vehicles (ASVs) is being de-
veloped at a rapid pace. Several commercial actors are
spearheading the search for solutions for safe, collision-
free and reliable autonomous operations. Rolls-Royce and
Finferries demonstrated the world’s first autonomous car
ferry “Falco” in 2018 (Jallal, 2018), which navigated au-
tonomously between two ports in Finland by combining
advanced sensor technology and collision avoidance algo-
rithms.

A prerequisite for safe and efficient operation is a well-
functioning path or trajectory planning method. Such
a method is responsible for providing the ASV with a
safe trajectory that avoids static obstacles such as land
and shallow waters. Depending on the type of operation,
one might want to optimize the trajectory for various
objectives, such as energy efficiency, speed or trajectory
length.

Numerous path and trajectory planning algorithms have
been researched and are available for marine applications.
One may categorize these planning algorithms as being
roadmap-based or optimization-based. Figure 1 gives an
overview of the categorization of some planning algorithm
types. Roadmap methods are based on exploring points
in the geometric space in order to build a path between
the start and goal positions. There are two subcategories
in roadmap methods. Combinatorial methods decompose
an obstacle map using a preferred strategy, and perform a
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Fig. 1. Categorization of some planning algorithms.

search in the resulting graph. The decomposition strategies
include e.g. uniform grids, Voronoi diagrams and visibility
graphs. The combinatorial methods explore the entire ge-
ometric space. The graph search is often performed using
A�, which is an efficient and well-known search algorithm
widely used to solve path planning problems (Hart et al.,
1968). A� guarantees to find the shortest path when using
an admissible heuristic function. Hybrid A� extends the A�

algorithm by generating dynamic trajectories to connect
nodes, thus adding dynamic information to the search
(Dolgov et al., 2010). As opposed to combinatorial meth-
ods, sampling-based methods randomly explores points in
the map to build a path towards the goal. Probabilistic
roadmap (PRM) is a sampling-based planning method
that draws samples from the configuration space and con-
nects them using a local planner (Kavraki et al., 1996). A
graph search algorithm is applied to find the minimum cost
path from start to goal in the resulting graph. Rapidly-
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exploring random tree (RRT) is another sampling-based
method which calculates input trajectories between ran-
domly sampled points and connects them in a tree until
the start and goal positions are connected (LaValle, 1998).
Although RRT uses a cost function, the method is not
optimal and will lock into the first connection between
start and goal. Various flavors of RRT are developed to
amend this, e.g. RRT� (Karaman and Frazzoli, 2011).
This method continuously performs tree rewiring and has
probabilistic completeness, but converges slowly.

The other group of planning methods contains algorithms
based on optimal control. This group may further be
divided into analytical and approximate methods. Ana-
lytical methods such as Pontryagin’s principle are only
able to find solutions in very simple cases and are gener-
ally unpractical. Approximate methods such as e.g. pseu-
dospectral optimal control (Bitar et al., 2018; Ross and
Karpenko, 2012) are highly sensitive to initial guesses of
the solution and will converge to a local optimum close
to this guess. Without a good initial guess, they also
experience long run times and are sensitive to problem
dimensionality.

Zhang et al. (2018) plan trajectories for parking au-
tonomous cars by combining hybrid A� with an optimal
control-based method. Motivated by the same goals of
exploiting the strengths and mitigate the weaknesses of
optimal control-based algorithms, we here attempt to solve
the long-term trajectory planning problem for ASVs as
a transcribed optimal control problem (OCP), and warm
start the solver using the smoothed solution of an A�

geometric planner. In this three-step pipelined approach,
the A� planner swiftly provides a set of waypoints repre-
senting the shortest path as Step 1. This path is converted
into a full state trajectory by adding artificial and nearly
feasible temporal information as Step 2. Step 3 takes this
trajectory and uses it as the initial guess for an OCP
solver, which finds an optimized trajectory near the glob-
ally shortest path. The structure of this pipelined concept
is illustrated in Figure 2. The method is an off-line global
planner, which assumes that information about the map
and environment is known a priori.

The rest of this paper is organized as follows: Section 2
presents the mathematical model of the ASV used in sim-
ulations and planning. Finding the waypoints describing
the shortest path with A� is described in Section 3, and
Section 4 explains how the A� solution is converted to a
trajectory. Section 5 shows how the OCP is transcribed to
an nonlinear program (NLP), which yields an optimized
trajectory when solved. Simulation scenarios and results
are presented in Section 6, while Section 7 concludes the
paper.

2. ASV MODELING AND OBSTACLES

In (Loe, 2008), a simple nonlinear 3-degree-of-freedom ship
model is identified to approximate the dynamics of the
ASV Viknes 830. Without loss of generality for the method
described in this paper, we use that model to perform
trajectory planning. The model has the form

η̇ = R(ψ)ν (1a)

Mν̇ +C(ν)ν +D(ν)ν = τ (u) . (1b)

The pose vector η = [x, y, ψ]� ∈ R2×S contains the ASV’s
position and heading angle in the Earth-fixed North East
Down (NED) frame. The velocity vector ν = [u, v, r]� ∈
R3 contains the ASV’s body-fixed velocities: surge, sway
and yaw rate, respectively. The rotation matrix R(ψ)
transforms the body-fixed velocities to NED:

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 . (2)

The matrix M ∈ R3×3 represents system inertia, C(ν) ∈
R3×3 Coriolis and centripetal effects, and D(ν) ∈ R3×3

represents damping effects. The ASV is controlled by the
control vector u = [X,N ]� ∈ R2, which contains surge
force and yaw moment. The control vector is mapped to
a force vector τ (u) = [X, 0, N ]�. The ASV’s states are
collected in the vector x = [x, y, ψ, u, v, r]�, and we collect
the dynamic model (1) in the following compact form for
notational ease in the remainder of the paper:

ẋ = f(x,u) =

[
R(ψ)ν

M−1
(
−C(ν)ν −D(ν)ν + τ (u)

)
]
. (3)

3. STEP 1: A� PATH PLANNER

To quickly find the global shortest collision-free path be-
tween a start and goal position, we use an A� implemen-
tation on a uniformly decomposed grid. The A� imple-
mentation is standard, and details may be found in e.g.
(Hart et al., 1968). The search algorithm looks for collision-
free paths between nodes in the uniform grid, and uses
Euclidean distance as cost and heuristic functions.

The decomposition of the map affects the solution space
and the run time for Step 1. Using a uniform grid with grid
size ∆d > 0 too large will take paths going through narrow
passages away from the solution space, and the desired
shortest path may not be found. A smaller grid size will
explore more options, but requires more evaluation, giving
a longer run time. This uniform grid is in our case chosen
for simplicity, however exploring other decompositions
such as Voronoi diagrams or a non-uniform grid might be
desirable for performance reasons.

4. STEP 2: TRAJECTORY GENERATION

In order to use the shortest path generated by Step 1 as
an initial guess for the OCP, we convert it to a trajectory
based on straight segments and circle arcs using a nominal
forward velocity unom > 0. The trajectory generation
consists of three sub-steps: waypoint reduction, waypoint
connection, and adding dynamic information.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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The other group of planning methods contains algorithms
based on optimal control. This group may further be
divided into analytical and approximate methods. Ana-
lytical methods such as Pontryagin’s principle are only
able to find solutions in very simple cases and are gener-
ally unpractical. Approximate methods such as e.g. pseu-
dospectral optimal control (Bitar et al., 2018; Ross and
Karpenko, 2012) are highly sensitive to initial guesses of
the solution and will converge to a local optimum close
to this guess. Without a good initial guess, they also
experience long run times and are sensitive to problem
dimensionality.

Zhang et al. (2018) plan trajectories for parking au-
tonomous cars by combining hybrid A� with an optimal
control-based method. Motivated by the same goals of
exploiting the strengths and mitigate the weaknesses of
optimal control-based algorithms, we here attempt to solve
the long-term trajectory planning problem for ASVs as
a transcribed optimal control problem (OCP), and warm
start the solver using the smoothed solution of an A�

geometric planner. In this three-step pipelined approach,
the A� planner swiftly provides a set of waypoints repre-
senting the shortest path as Step 1. This path is converted
into a full state trajectory by adding artificial and nearly
feasible temporal information as Step 2. Step 3 takes this
trajectory and uses it as the initial guess for an OCP
solver, which finds an optimized trajectory near the glob-
ally shortest path. The structure of this pipelined concept
is illustrated in Figure 2. The method is an off-line global
planner, which assumes that information about the map
and environment is known a priori.

The rest of this paper is organized as follows: Section 2
presents the mathematical model of the ASV used in sim-
ulations and planning. Finding the waypoints describing
the shortest path with A� is described in Section 3, and
Section 4 explains how the A� solution is converted to a
trajectory. Section 5 shows how the OCP is transcribed to
an nonlinear program (NLP), which yields an optimized
trajectory when solved. Simulation scenarios and results
are presented in Section 6, while Section 7 concludes the
paper.

2. ASV MODELING AND OBSTACLES

In (Loe, 2008), a simple nonlinear 3-degree-of-freedom ship
model is identified to approximate the dynamics of the
ASV Viknes 830. Without loss of generality for the method
described in this paper, we use that model to perform
trajectory planning. The model has the form

η̇ = R(ψ)ν (1a)

Mν̇ +C(ν)ν +D(ν)ν = τ (u) . (1b)

The pose vector η = [x, y, ψ]� ∈ R2×S contains the ASV’s
position and heading angle in the Earth-fixed North East
Down (NED) frame. The velocity vector ν = [u, v, r]� ∈
R3 contains the ASV’s body-fixed velocities: surge, sway
and yaw rate, respectively. The rotation matrix R(ψ)
transforms the body-fixed velocities to NED:

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 . (2)

The matrix M ∈ R3×3 represents system inertia, C(ν) ∈
R3×3 Coriolis and centripetal effects, and D(ν) ∈ R3×3

represents damping effects. The ASV is controlled by the
control vector u = [X,N ]� ∈ R2, which contains surge
force and yaw moment. The control vector is mapped to
a force vector τ (u) = [X, 0, N ]�. The ASV’s states are
collected in the vector x = [x, y, ψ, u, v, r]�, and we collect
the dynamic model (1) in the following compact form for
notational ease in the remainder of the paper:

ẋ = f(x,u) =

[
R(ψ)ν

M−1
(
−C(ν)ν −D(ν)ν + τ (u)

)
]
. (3)

3. STEP 1: A� PATH PLANNER

To quickly find the global shortest collision-free path be-
tween a start and goal position, we use an A� implemen-
tation on a uniformly decomposed grid. The A� imple-
mentation is standard, and details may be found in e.g.
(Hart et al., 1968). The search algorithm looks for collision-
free paths between nodes in the uniform grid, and uses
Euclidean distance as cost and heuristic functions.

The decomposition of the map affects the solution space
and the run time for Step 1. Using a uniform grid with grid
size ∆d > 0 too large will take paths going through narrow
passages away from the solution space, and the desired
shortest path may not be found. A smaller grid size will
explore more options, but requires more evaluation, giving
a longer run time. This uniform grid is in our case chosen
for simplicity, however exploring other decompositions
such as Voronoi diagrams or a non-uniform grid might be
desirable for performance reasons.

4. STEP 2: TRAJECTORY GENERATION

In order to use the shortest path generated by Step 1 as
an initial guess for the OCP, we convert it to a trajectory
based on straight segments and circle arcs using a nominal
forward velocity unom > 0. The trajectory generation
consists of three sub-steps: waypoint reduction, waypoint
connection, and adding dynamic information.
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4.1 Waypoint reduction

Algorithm 1 is employed to reduce the A� path from
Step 1 to a minimum number of waypoints. The algorithm
outputs a reduced path as an ordered set of waypoints
P =

{
pk ∈ R2 | k = 1, . . . , Nr

}
where Nr is the number

of waypoints. The A� waypoints are denoted p�
k for k =

1, . . . , N�, ordered from start to goal, where N� is the
number of waypoints.

Algorithm 1 Waypoint reduction algorithm.

1: procedure Reduce
2: i ← N�; P ← InitializePath(p�

i )
3: do
4: for j = 1 to i− 1 do
5: if ¬Collision(p�

i ,p
�
j ) then

6: AddPoint(P,p�
j )

7: i ← j
8: break
9: while i > 1

4.2 Waypoint connection

The waypoints in the reduced path pk ∈ P are connected
with straight segments and circle arcs to increase geomet-
ric feasibility. This is done by calculating the parameters
of a circle based on a radius of acceptance Racc > 0. The
result is a path with discontinuous turn rate since the turn
rate of such a curve will experience jumps at the beginning
and end of the circle arcs. However, if the circle arcs have a
turning radius Rturn > 0 larger than the minimum turning
radius of the ASV Rturn,min > 0, the resulting geometry of
the path can be followed tightly. Additional information
about such a path waypoint connection is available in
(Fossen, 2011).

For each straight segment, the turn rate is 0. For the circle
arcs, the turn rate is unom/Rturn,k, where Rturn,k > 0 is the
turning radius for arc k. The tangent angles for the straight
segments are γk ∈ S, and for the circle arcs, the tangent
angles move between γk and γk+1, depending on how far
along the curve it is evaluated.

Using this information, we can concatenate a path con-
sisting of alternations of straights and circle arcs, and
construct a path function parametrized by length with
position

pg : [0, Lpath] → R2 , (4a)

where Lpath > 0 is the total length of the path. Func-
tions for path tangential angle and turn rate are also
constructed:

γg : [0, Lpath] → S , and (4b)

rg : [0, Lpath] → R , (4c)

respectively. These functions are subscripted by (·)g to
indicate that they are based on the path geometry.

4.3 Adding temporal information

After obtaining an arc-length parametrized path we add
temporal information by assuming a constant surge veloc-
ity unom, a sway velocity v of zero, and piecewise constant
yaw rate r. The nominal surge velocity is determined by

unom =
Lpath

tmax
, where tmax > 0 is the tunable time to

complete the trajectory, which is valid on t ∈ [0, tmax]. The
distance traveled will be L(t) = unom ·t, and the states will
then have trajectories[

xw(t) yw(t)
]�

= pg(L(t)) (5a)

ψw(t) = γg(L(t)) (5b)

uw(t) = unom (5c)

vw(t) = 0 (5d)

rw(t) = rg(L(t)) . (5e)

The input trajectory is set to the constant values

τX,w(t) = τX,ss, τN,w(t) = 0 (6)

where τX,ss ∈ R is calculated as the steady-state value
required to maintain nominal forward velocity unom. The
trajectories are subscripted by (·)w to indicate that they
will be used for warm-starting the OCP in Step 3.

The resulting trajectory is not dynamically feasible ac-
cording to (1) but will be used as an initial guess for the
OCP solver, described in the next section. The trajectory
is collected in the following vectors:

xw(t) =




xw(t)
yw(t)
ψw(t)
uw(t)
vw(t)
rw(t)




uw(t) =

[
τX,w(t)
τN,w(t)

]
∀ t ∈ [0, tmax] . (7)

The goal of the method described in this paper is to find
a trajectory of states and inputs that minimizes a cost
functional J(x(·),u(·)):

J(x(·),u(·)) =
∫ tmax

0

F (x(τ),u(τ)) dτ , (8)

which is dependent on a cost-to-go function F (x,u). This
function may be selected to find e.g. the trajectory that
minimizes energy usage. The initial guess for the cost
trajectory Jw(·) at time t is determined by

Jw(t) =

∫ t

0

F (xw(τ),uw(τ)) dτ . (9)

5. STEP 3: OPTIMAL CONTROL

Optimal control is used to make feasible and optimize the
trajectory provided by Step 2. An OCP is formulated as

min
x(·),u(·)

∫ tmax

0

F (x(τ),u(τ)) dτ (10a)

subject to

ẋ(t) = f(x(t),u(t)) ∀t ∈ [0, tmax] (10b)

h(x(t),u(t)) ≤ 0 ∀t ∈ [0, tmax] (10c)

e(x(0),x(tmax)) = 0 . (10d)

The solution of this OCP gives a trajectory of states x(·)
and inputs u(·) that minimizes (8).

5.1 Cost functional

The cost functional described in (8) is dependent on the
cost-to-go function F (x,u). This function may be adjusted
and structured according to the desired sense of optimality.
Our aim is a trajectory which is optimized for energy
usage, as well as performing readily observable maneuvers,
as is required by International Regulations for Preventing

Collisions at Sea (COLREGs) Rule 8. This results in a
two-part cost-to-go function:

F (x,u) = KeFe(x,u) +KtFt(x) , (11)

with tuning parameters Ke,Kt > 0. The first term penal-
izes energy usage and describes work done by the actua-
tors:

Fe(x,u) = |u · τX |+|r · τN | . (12)

The second term is a disproportionate penalization on
turn-rate r, which prefers readily observable turns per-
formed with high turn-rate. The function has the form

Ft(x) =

(
atr

2 + (1− e−
r2

bt )

)
1

Ft,max
, (13)

where

Ft,max = atr
2
max + (1− e−

r2max
bt ) , (14)

and rmax > 0 is the ASV’s maximum yaw rate. The tuning
parameters at > 0 and bt > 0 shape the penalization to
prefer higher or lower turn-rate, which is an idea obtained
from (Eriksen and Breivik, 2017).

5.2 Obstacles

Obstacles are encoded as elliptic inequalities in (10c). The
basis for one elliptic obstacle is(

x− xc

xa

)2

+

(
y − yc
ya

)2

≥ 1 , (15)

where xc and yc describe the ellipse center and xa and ya
describe the sizes of the two elliptic axes. The ellipses are
rotated by α, which is the angle between the global x-axis
and the direction of xa. The resulting inequality becomes

go(x, y, xc, yc, xa, ya, α) =

− log

[(
(x− xc) cosα+ (y − yc) sinα

xa

)2

+

(
−(x− xc) sinα+ (y − yc) cosα

ya

)2

+ ε

]

+ log(1 + ε) ≤ 0 , (16)

where a small value ε > 0 is added to deal with feasibility
issues as x → xc and y → yc, and the logarithmic function
is used to reduce numerical sizes, without changing the
inequality. The same function is used in (Bitar et al., 2019).

5.3 NLP transcription

A multiple-shooting approach is used to transcribe the
OCP into an NLP:

min
w

φ(w) (17a)

subject to

glb ≤ g(w) ≤ gub (17b)

wlb ≤ w ≤ wub . (17c)

The dynamics are discretized into Nocp steps in time, with
step length h = tmax/Nocp. The decision variables w consist
of the state variables xk = x(tk), k = 0, 1, . . . , Nocp, the
accumulated costs Jk = J(tk), k = 0, 1, . . . , Nocp, where

J(t) =

∫ t

0

F (x(τ),u(τ)) dτ , (18)

and the control inputs uk = u(tk), k = 0, 1, . . . , Nocp − 1:

w =
[
z�
0 u�

0 z�
1 . . . u�

Nocp−1 z�
Nocp

]�
, (19)

where zk = [x�
k , Jk]

�.

The cost function (17a) approximates (10a) and is

φ(w) = JNocp
. (20)

The constraints (17b) are used to satisfy shooting con-
straints, as well as the collision avoidance constraints. For
the shooting constraints, we construct a discrete repre-
sentation of the dynamics (10b) as well as the integral
(18) using a RK4 scheme with Kocp steps. We define
the discrete version of (10b) augmented with the time
derivative of (18) as

zk+1 = F (zk,uk) , (21)

and construct the shooting constraints

gs(w) =




z1 − F (z0,u0)
...

zNocp
− F (zNocp−1,uNocp−1)


 , (22)

with associated lower and upper bounds

gs,lb = gs,ub = 0(n+1)·Nocp
. (23)

For obstacles i = 1, 2, . . . , No, we avoid collisions by
satisfying the inequality constraint

go(xk, yk, xc,i, yc,i, ai, bi, αi) ≤ 0 , (24)

where xk = x(tk) and yk = y(tk) for k = 1, 2, . . . , Nocp.
We create a vector for all our obstacles in a single time
step:

ḡo(xk) =


go(xk, yk, xc,1, yc,1, a1, b1, α1)
go(xk, yk, xc,2, yc,2, a2, b2, α2)

...
go(xk, yk, xc,No

, yc,No
, aNo

, bNo
, αNo

)


 .

(25)

Obstacle constraints for all time steps are gathered in

go(w) =




ḡo(x0)
ḡo(x1)

...
ḡo(xNocp−1)


 (26)

with associated lower and upper bounds

go,lb = −∞No·Nocp
and go,ub = 0No·Nocp

. (27)

The nonlinear inequality constraints (17b) are completed
as

glb =

[
gs,lb
go,lb

]
, g(w) =

[
gs(w)
go(w)

]
, gub =

[
gs,ub
go,ub

]
. (28)

The decision variable bounds (17c) are used to satisfy
constant state and input constraints, as well as boundary
conditions (10d). The bounds are

w�
lb =[

z�
s,lb u�

lb z�
lb u�

lb . . . u�
lb z�

f,lb

] (29a)

w�
ub =[

z�
s,ub u�

ub z�
ub u�

ub . . . u�
ub z�

f,ub

]
,

(29b)
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Collisions at Sea (COLREGs) Rule 8. This results in a
two-part cost-to-go function:

F (x,u) = KeFe(x,u) +KtFt(x) , (11)

with tuning parameters Ke,Kt > 0. The first term penal-
izes energy usage and describes work done by the actua-
tors:

Fe(x,u) = |u · τX |+|r · τN | . (12)

The second term is a disproportionate penalization on
turn-rate r, which prefers readily observable turns per-
formed with high turn-rate. The function has the form

Ft(x) =

(
atr

2 + (1− e−
r2

bt )

)
1

Ft,max
, (13)

where

Ft,max = atr
2
max + (1− e−

r2max
bt ) , (14)

and rmax > 0 is the ASV’s maximum yaw rate. The tuning
parameters at > 0 and bt > 0 shape the penalization to
prefer higher or lower turn-rate, which is an idea obtained
from (Eriksen and Breivik, 2017).

5.2 Obstacles

Obstacles are encoded as elliptic inequalities in (10c). The
basis for one elliptic obstacle is(

x− xc

xa

)2

+

(
y − yc
ya

)2

≥ 1 , (15)

where xc and yc describe the ellipse center and xa and ya
describe the sizes of the two elliptic axes. The ellipses are
rotated by α, which is the angle between the global x-axis
and the direction of xa. The resulting inequality becomes

go(x, y, xc, yc, xa, ya, α) =

− log

[(
(x− xc) cosα+ (y − yc) sinα

xa

)2

+

(
−(x− xc) sinα+ (y − yc) cosα

ya

)2

+ ε

]

+ log(1 + ε) ≤ 0 , (16)

where a small value ε > 0 is added to deal with feasibility
issues as x → xc and y → yc, and the logarithmic function
is used to reduce numerical sizes, without changing the
inequality. The same function is used in (Bitar et al., 2019).

5.3 NLP transcription

A multiple-shooting approach is used to transcribe the
OCP into an NLP:

min
w

φ(w) (17a)

subject to

glb ≤ g(w) ≤ gub (17b)

wlb ≤ w ≤ wub . (17c)

The dynamics are discretized into Nocp steps in time, with
step length h = tmax/Nocp. The decision variables w consist
of the state variables xk = x(tk), k = 0, 1, . . . , Nocp, the
accumulated costs Jk = J(tk), k = 0, 1, . . . , Nocp, where

J(t) =

∫ t

0

F (x(τ),u(τ)) dτ , (18)

and the control inputs uk = u(tk), k = 0, 1, . . . , Nocp − 1:

w =
[
z�
0 u�

0 z�
1 . . . u�

Nocp−1 z�
Nocp

]�
, (19)

where zk = [x�
k , Jk]

�.

The cost function (17a) approximates (10a) and is

φ(w) = JNocp
. (20)

The constraints (17b) are used to satisfy shooting con-
straints, as well as the collision avoidance constraints. For
the shooting constraints, we construct a discrete repre-
sentation of the dynamics (10b) as well as the integral
(18) using a RK4 scheme with Kocp steps. We define
the discrete version of (10b) augmented with the time
derivative of (18) as

zk+1 = F (zk,uk) , (21)

and construct the shooting constraints

gs(w) =




z1 − F (z0,u0)
...

zNocp
− F (zNocp−1,uNocp−1)


 , (22)

with associated lower and upper bounds

gs,lb = gs,ub = 0(n+1)·Nocp
. (23)

For obstacles i = 1, 2, . . . , No, we avoid collisions by
satisfying the inequality constraint

go(xk, yk, xc,i, yc,i, ai, bi, αi) ≤ 0 , (24)

where xk = x(tk) and yk = y(tk) for k = 1, 2, . . . , Nocp.
We create a vector for all our obstacles in a single time
step:

ḡo(xk) =


go(xk, yk, xc,1, yc,1, a1, b1, α1)
go(xk, yk, xc,2, yc,2, a2, b2, α2)

...
go(xk, yk, xc,No

, yc,No
, aNo

, bNo
, αNo

)


 .

(25)

Obstacle constraints for all time steps are gathered in

go(w) =




ḡo(x0)
ḡo(x1)

...
ḡo(xNocp−1)


 (26)

with associated lower and upper bounds

go,lb = −∞No·Nocp
and go,ub = 0No·Nocp

. (27)

The nonlinear inequality constraints (17b) are completed
as

glb =

[
gs,lb
go,lb

]
, g(w) =

[
gs(w)
go(w)

]
, gub =

[
gs,ub
go,ub

]
. (28)

The decision variable bounds (17c) are used to satisfy
constant state and input constraints, as well as boundary
conditions (10d). The bounds are

w�
lb =[

z�
s,lb u�

lb z�
lb u�

lb . . . u�
lb z�

f,lb

] (29a)

w�
ub =[

z�
s,ub u�

ub z�
ub u�

ub . . . u�
ub z�

f,ub

]
,

(29b)
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Table 1. Algorithm step explanation.

Step Parametrized
by

Dynamic
feasibility

Optimality

1 Length None, piecewise
linear

Shortest piecewise
linear path

2 Time Discontinuous
yaw rate r

None

3 Time Adheres to (1) Energy and
COLREGs Rule 8

where

zs,lb =
[
xs ys ψlb ur,s 0 0 0

]�
(30a)

zs,ub =
[
xs ys ψub ur,s 0 0 0

]�
(30b)

zf,lb =
[
xf yf ψlb ur,lb 0 0 0

]�
(30c)

zf,ub =
[
xf yf ψub ur,ub 0 0 ∞

]�
(30d)

zlb =
[
xlb ylb ψlb ur,lb vlb rlb 0

]�
(30e)

zub =
[
xub yub ψub ur,ub vub rub ∞

]�
(30f)

ulb =
[
Xlb Nlb

]�
(30g)

uub =
[
Xub Nub

]�
, (30h)

and where values subscripted with (·)s represent initial
conditions, (·)f the final conditions, and (·)lb and (·)ub
represent lower and upper bounds, respectively.

5.4 Initial guess and solver

The trajectories xw(·), uw(·) and Jw(·) from Section 5.4
are used as an initial guess to warm-start the NLP.
These trajectories are sampled at the time steps tk, k =
0, . . . , Nocp using interpolation, and shaped into the form
of the decision vector w (19), providing the initial guess
w0.

The NLP as defined by (17) is solved by the interior-point
method Ipopt (Wächter and Biegler, 2005) using Casadi
(Andersson et al., 2018) for Matlab.

5.5 Algorithm summary

The pipelined algorithm is summarized by the steps in
Table 1, where the properties of each step are highlighted
in terms of parametrization, feasibility according to (1)
and optimality.

While Step 1 gives the shortest piecewise linear path, it is
parametrized by length, and will not be dynamically feasi-
ble for warm-starting the OCP in Step 3. Step 2 connects
the waypoints with circle arcs and adds artificial dynamics,
which moves us closer to a dynamically feasible trajectory.
However, we lose the optimality of the shortest path with
this modification, and the yaw rate is discontinuous, which
is not possible according to (1). This trajectory is usable as
an initial guess for Step 3, which converges to a trajectory
that adheres to (1), and adds optimality according to
(10a).

6. SIMULATION SCENARIOS AND RESULTS

The scenario selected for testing our planning method is
Sjernarøy north of Stavanger, Norway, near 59.25◦N and

Table 2. Parameter values.

Param. Val. Param. Val.

∆d 50 [m] tmax 2200 [s]
Nocp 1000 Kocp 1
Ke 3.5 · 10−4 [J−1] Kt 800
at 112 [s2/rad2] bt 6.25 · 10−5 [rad2/s2]

Racc 10 [m] Rturn,min 24.5 [m]
rmax 40 [◦/s]

Fig. 3. Map showing the scenario used for planning, with
multiple elliptical obstacle boundaries surrounding
the small islands. Trajectories after steps 2 and 3 are
plotted. A cold-started solution is also included.

5.83◦E. A map of this scenario is shown in Figure 3.
The scenario has many possible routes between the start
and goal positions, including routes that go outside the
islands, and the narrow passage between the islands.
The narrow passage is the shortest path, and one could
claim that in the absence of disturbances, this shortest
path is also the most energy efficient. However, since the
problem of finding this path is non-convex and resembles
an integer problem, the OCP alone would struggle to
find the shortest path. We use the algorithm parameters
presented in Table 2.

To benchmark our planning algorithm, we apply it to the
scenario illustrated in Figure 3 in Matlab on a laptop
with an Intel Core i7-7700HQ processor. For comparison,
we also apply the OCP to the same scenario without
an initial guess, i.e. cold starting Step 3. Solutions from
these two methods will be dynamically feasible trajectories
with different routings to reach the goal position. We
use metrics of total cost and run times to compare the
algorithms. These metrics will also be applied to the
trajectory after Step 2. This trajectory is not dynamically
feasible according to (1) but can tell us how the smoothed
A� trajectory performs without optimization.

The resulting trajectories are plotted on top of the scenario
in Figure 3. We see that the initial guess goes through the
narrow passage between the islands and that the warm-

Fig. 4. Cost functional development along both the opti-
mized trajectory and the initial guess. The optimized
trajectory shows the cost split into contributions from
energy optimization and observable maneuvers. Also,
the cost of the cold-started OCP is denoted Jc.

started OCP finds a solution along the same route. As
expected, the cold-started OCP goes outside the passage
and finds a longer solution. A zoomed inset in Figure 3
shows how the OCP is able to produce readily observable
maneuvers by making sharp turns around the obstacle
boundaries. The inset also includes the grid used by Step 1.

Figure 4 shows us the cost functional develops along the
trajectories of the warm-started OCP (Ke ·Je+Kt ·Jt), the
initial guess (Jw) and the cold-started OCP (Jc). Table 3
shows the results at t = tmax for the three methods. We
see the scaled total cost as calculated by (10a) and (11), as
well as the energy cost calculated by (12). An improvement
of 30% is obtained by warm-starting the OCP compared
to cold starting it, explained by the shorter route selection.
The warm-started OCP is also able to improve on the
dynamically infeasible initial guess by 4%.

Table 3 also shows the run times of the three methods.
Since the initial guess alone does not perform any iterative
optimization, it has the lowest run time. The warm-started
method spends 27 s in total to find an optimized solution
to the path planning problem, including 21 s spent solving
the OCP. This is an improvement of 84% compared
to the cold-started OCP which spends approximately
three minutes. The run-time cost of obtaining a feasible
trajectory via optimal control is significant compared to
performing A� and dynamic generation alone.

The state trajectories for the initial guess and warm-
started OCP are shown in Figure 5. From the heading
angle plot, we see that ψ performs jumps of more than
30◦, which is a clear indication of intent to other vessels,
even in situations with restricted visibility (Cockcroft and
Lameijer, 2004). This is further observed in the yaw rate
state r, where instead of having long turns with low yaw
rate magnitude, we have abrupt turns with high-valued r.
This is shown more clearly in Figure 6, which zooms in on
a selected time interval.

7. CONCLUSION

We have developed and demonstrated a pipelined tra-
jectory planning algorithm that exploits the speed and
global properties of an A� search with the optimality of an
OCP solver. The results from Section 6 show that using
the initial guess provided by a smoothed A� path in an
OCP significantly improves both run time and optimal-
ity compared to a cold-started OCP alone. Performing

Table 3. Scenario results.

Warm started
Step 3

Cold started
Step 3

Step 2

Feasible Yes Yes No
Scaled total cost
(J)

1.08 · 104 1.54 · 104 1.13 · 104

Unscaled energy
cost (Je)

2.74 · 107 [J] 3.94 · 107 [J] 2.84 · 107 [J]

Total run time 26.7 [s] 174 [s] 5.7 [s]
Step 1 run time 3.4 [s] - 3.4 [s]
Step 2 run time 2.2 [s] - 2.2 [s]
Step 3 run time 21.1 [s] 174 [s] -
Step 3 iterations 58 549 -

Fig. 5. State values for heading, velocities and yaw rate for
both the optimized trajectory and the initial guess.

Fig. 6. Zoomed-in section of Figure 5.

optimization on the A� path significantly increases run
time but will find a feasible locally optimal trajectory, as
opposed to A� alone.

Qualitatively, the developed method is complete in terms
of the shortest path, since this is the geometric objective
of the A� implementation. This is dependent on the dis-
cretization of the map, since using larger grid spacing to
reduce run time removes narrow passages from the solu-
tion space. Using a different discretization scheme such as
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opposed to A� alone.
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of the shortest path, since this is the geometric objective
of the A� implementation. This is dependent on the dis-
cretization of the map, since using larger grid spacing to
reduce run time removes narrow passages from the solu-
tion space. Using a different discretization scheme such as
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e.g. Voronoi diagrams may guarantee a complete solution
space. The developed method is also locally optimal in the
sense of the provided objective, which is a combination of
energy consumption and readily observable maneuvers in
our case. The optimality is provided by the implemented
OCP which alone is not able to find the global optimum,
demonstrated by the cold-started result in Figure 3. How-
ever, the OCP warm-started by the shortest path found
by the A� method is at least locally optimal and may
be close to the global optimum, since, in the absence of
disturbances, the shortest path is also the one that requires
the least energy. In addition to improving optimality of
the A� result, the OCP adds feasibility, unlike the A�

consideration which is purely geometric. Using this warm-
starting scheme is that the OCP will lock into one routing
alternative. Depending on the desired sense of optimality,
this may not be the desired solution, which is a disadvan-
tage to some use cases.

The algorithm presented here has been used in a hybrid
collision avoidance architecture in (Eriksen et al., 2019),
where it is extended to include disturbances in the form of
ocean currents.

Further work on this topic includes:

• Implementing a more general obstacle representation
to handle a wider range of map representations.
E.g. the obstacle representation in (Zhang et al.,
2018) handles convex polygons as smooth inequality
conditions.

• Improvements on the map discretization scheme are
also desirable to reduce computational time of the
A� algorithm while preserving completeness of the
solution space.

• Additionally, an OCP representation that is paramet-
rized by straight lines between waypoints in combi-
nation with full-state dynamics may be advantageous
to inherently produce COLREGs-compliant trajecto-
ries.
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