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Abstract: Nonlinear wave interactions and superpositions among the different wave components
and wave groups in a random sea sometimes produce rogue waves with extremely large wave
heights that appear unexpectedly. A good understanding of the generation and evolution of such
extreme wave events is of great importance for the analysis of wave forces on marine structures.
A fully nonlinear potential flow (FNPF) model is proposed in the presented paper to investigate the
different factors that influence the wave focusing location, focusing time and focusing wave height in
a numerical wave tank. Those factors include wave steepness, spectrum bandwidth, wave generation
method, focused wave spectrum, and wave spreading functions. The proposed model solves the
Laplace equation together with the boundary conditions on a σ-coordinate grid using high-order
discretisation schemes on a fully parallel computational framework. The model is validated against
the focused wave experiments and thereafter used to obtain insights into the effects of the different
factors. It is found that the wave steepness contributes to changing the location and time of focus
significantly. Spectrum bandwidth and directional spreading affect the focusing wave height and
profile, for example, a wider bandwidth and a wider directional spread lead to a lower focusing wave
height. A Neumann boundary condition represents the nonlinearity of the wave groups better than a
relaxation method for wave generation.

Keywords: fully nonlinear potential flow; extreme wave; focused wave

1. Introduction

Random seas consist of many incident wave components of different amplitudes, frequencies and
phases. The nonlinear interactions among them may result in extreme waves that are much higher
than that expected from the sea state in the region. Such large and unexpected extreme waves can
exert tremendous forces on offshore structures. Understanding the generation and evolution of such
waves is important for determining the wave loads on marine structures. One of the most renowned
extreme events is the ‘New Year Wave’ recorded at the Draupner platform [1] where a maximum
wave height of nearly 26 m was observed in a sea state with a measured significant wave height of
12 m. Retrospectively, many efforts have been made to generate and reproduce such extreme events in
both physical experiments and numerical wave tanks. Among those efforts, focused wave groups are
considered an efficient method to replicate extreme wave events.

Due to the stochastic nature of the sea state and extreme events, the basis for the generation of
focused waves is the irregular wave theory. Lindgren [2] presented a theoretical explanation for wave
generation through empirically studying the propagation of irregular wave groups. Based on his
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results, Tromans et al. [3] suggested a practical spectrum for focused wave groups. The spectrum
has a shape that is proportional to the auto-correlation function of the underlying random processes.
This type of compact wave spectrum was later named the NewWave model. The NewWave model
is based on the linear wave theory and wave spectra such as the JONSWAP and PM spectrum can
be used to generate the irregular wave components for linear superposition. The NewWave method
has been successfully applied to investigate irregular large waves both in deep [4] and intermediate
water depths [5]. The method has also been used for the study of directional irregular seas and
three-dimensional (3D) wave focusing in spreading seas [4,6,7]. Recently, researchers have further
extended the NewWave theory to coastal applications in the shallow water domain, for example,
wave run-up and flow kinematics at plane beaches [8,9] and focused wave overtopping and forces on
seawalls [10–14]. Another method for extreme wave generation is to use the transient wave packet
approach, which has been validated during an experimental study in a wave flume [15]. The approach
was later improved with increased flexibility, allowing a prediction of the wave train at any instant and
location in a wave tank [16]. It was further optimised to avoid premature breaking by adjusting the
high-frequency components [17]. Compared to the NewWave theory, the spectrum for the wave packet
has a wider bandwidth and consists of more harmonic components of lower amplitudes relative to the
focusing wave height. Consequently, a larger focusing wave height can be achieved and premature
breaking is avoided.

Using different wave focusing theories, researchers have conducted many experiments to
investigate different aspects of the evolution of focusing wave groups. Ning et al. [18] performed an
experiment in a wave flume to study the propagation of transient focusing wave groups with a range
of different steepness. It is shown that the focusing point in time and space changes with varying
wave steepnesses. Clauss and Steinhagen [19] reported an experimental study on the evolution of
a wave packet at the Large Wave Flume (GWK) in Hannover and demonstrated a similar finding.
Sriram et al. [20] investigated the evolution of a focused wave packet in intermediate and deep water
conditions using different paddle displacements for a piston-type wavemaker. The results, using
second-order corrected paddle motion and linear paddle motion, were compared and it was found
that the difference is more prominent for a broadband spectrum. Bai et al. [21] reported an experiment
to generate focused waves in a wave flume and used the measured data for the validation of a
numerical model.

Taylor and Williams [5] analyzed the data set from the WACSIS measurement program [22].
The authors paid special attention to the average shape of large crests and troughs and the vertical
and horizontal asymmetry. It was shown that the NewWave theory fits the average shape of large
waves well when the trough-crest asymmetry is accounted for. Buldakov et al. [23] introduced a
linearized amplitude spectrum methodology following the NewWave theory to produce focused
waves up to weak breaking waves in a physical wave flume. They found that the steepness of the
limiting breaking wave depends strongly on the choice of the wave group spectrum. Focused wave
group interaction with offshore and coastal structures and the impact forces were also investigated in
several experiments [24,25]. In a 3D wave basin, Johannessen and Swan [7] performed a laboratory
study on the influence of directionality on the transient focusing wave groups in a spreading sea.
The experiments prove the effectiveness of the focusing wave theories and provided fundamental
insights into the generation and evolution of focused waves. However, experiments were also limited
by the capability of continuous measurement. Wave focusing is a transient phenomenon with a short
duration, and therefore demands more dense measurements.

Many numerical models have been employed to investigate focusing wave groups.
Ning et al. [18] used the local surface elevation measurements from a physical experiment to drive the
numerical solution in their numerical model using a high-order boundary element method (HOBEM).
Bai and Taylor [26] reported their numerical study on the diffraction of a focusing wave group around
a circular cylinder using a HOBEM model with a mixed Eulerian–Lagrangian approach. A similar
approach has been discussed in detail by Grilli et al. [27] and used for the modeling of different 3D
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focusing wave groups [28]. Other studies on the 3D energy focusing in a spreading sea have also
been performed following the BEM approach [29,30]. However, the BEM approaches generally
involve mathematic expressions that make them less flexible for handling complex boundaries.
Wu and Taylor [31] suggested that a finite element method requires less memory than a BEM method
and is more computationally efficient as a result. Following the suggestions and formulations of Wu
and Taylor [32], Clauss and Steinhagen [19] performed numerical simulations of nonlinear transient
waves using a potential flow solver with a moving boundary finite element method. Good agreements
were achieved in the validation process against their laboratory data.

Boussinesq-type models [33,34] can also be used for extreme sea states, especially for shallow
water regions. With higher order terms for hydrodynamic pressure, Boussinesq-type models can
resolve better dispersion relation in deeper wave condition [35], often with increasing risks of numerical
instabilities due to higher order derivatives. The double-layer approach developed by Chazel et al. [36]
reduces the order of derivatives in comparison to the traditional high-order Boussinesq models and
still shows the ability of modeling deep water waves up to kh = 10. Other numerical methods based
on fast Fourier transforms (FFT) are also explored for a further increase in computational efficiency.
A fully-nonlinear spectral model was applied systematically for simulating the focusing of directionally
spread surface water waves in 3D [6,37,38]. The model is based on a Neumann operator similar to the
G-operator [39] and only the velocity potential at the free surface is needed for the solution. Both the
free surface elevation η and velocity potential Φ are represented by a Fourier series and are advanced in
time. The model is computationally efficient, as necessary spatial derivatives can be calculated rapidly
using the FFT. However, the periodicity assumption is necessary to ensure that the spatial derivatives
can be evaluated rapidly using FFT and this requirement is not necessarily physically realistic.

Similarly, a high-order spectral (HOS) model was described and used in the simulation of 2D
and 3D focused wave groups [40–42]. The spectral based methods are generally effective but also
require certain criteria for the boundary conditions. Another approach is to solve the Laplace equation
directly. Bingham and Zhang [43] used a finite difference scheme for solving the Laplace equation and
recommended using a stretched grid that is clustered towards the free surface in the vertical direction.
Based on the research, Engsig-Karup and Bingham [44] introduced a general purpose fully nonlinear
potential flow model OceanWave3D for wave propagation over varying bottoms with no water depth
limits. The model uses a curvilinear grid in the horizontal plane for irregular boundaries. This approach
requires sophisticated grid treatment when the boundary geometry becomes complicated. Efforts
have been made to combine the usage of finite difference methods and spectral methods. Yates and
Benoit [45] compared a spectral approach with a finite difference approach in the vertical direction
and found that the spectral approach is more accurate and efficient in one-dimensional tests. Based on
that, Raoult et al. [46] and Zhang et al. [47] introduced the model Whisper3D that combines a finite
difference scheme in the horizontal direction with a spectral approach in the vertical with a Chebyshev
polynomial.

Clamond and Grue [48] and Fructus et al. [49] introduced another approach to evaluate the
Dirichlet to Neumann operator, where the global terms of the operator are computed using FFT and
the local terms are evaluated by numerical integration. However, the model also limits itself to periodic
boundary conditions [49] as many others that rely on FFT. The coupled-mode Hamiltonian approach
of Belibassakis and Athanassoulis [50] and Athanassoulis et al. [51] also shows a good representation
of non-linear high waves over varying bottoms in finite depth. For example, Athanassoulis et al. [51]
studied a focused wave evolution over both a constant finite water depth and a sloping bottom.
The model has an efficient treatment of the bottom boundary and is most suitable for shallow to
intermediate water depth simulations. In a recent development, a spectral element method (SEM) is
used for the study of focused wave groups [52]. The aforementioned numerical models are all based on
potential flow theory and represent the free surface with a single-value and therefore cannot represent
overturning breaking waves.
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For an accurate representation of overturning breaking waves, computational fluid dynamic
(CFD) models are usually needed. Efforts to model the steep near-breaking focused wave group
using a finite volume method (FVM) and a volume of fluid (VOF) technique for the free surface
have been reported [21,53,54]. Westphalen et al. [55] compared the focused wave impact forces
modeled by Navier–Stokes solvers with FVM and with a control-volume finite element method
(CV-FE). To accurately capture the overturning breaker, the finite difference CFD model REEF3D
::CFD [56] has been used for extreme wave generation. With this model, focused breaking wave impact
on structures is investigated with transient wave packets [57,58] and the NewWave theory [59,60].
A level-set method is used to capture the free surface and overturning breakers are well represented.
The modeled free surface elevations and impact loads are validated against experimental measurements
and good agreement is achieved. CFD methods generally require high spatial resolution and present
high demands on computational power. To reduce the computational cost associated with the CFD
simulations, a one-way coupling between a CFD model and a fully nonlinear potential flow (FNPF)
solver was presented by Paulsen et al. [61] to study focusing wave groups. In this approach, the wave
propagation is modeled rapidly in the FNPF domain and the breaking wave is resolved in a smaller
CFD domain. However, special attention is needed for the coupling error at the boundaries of
information exchange.

The presented paper attempts to offer insights into the different numerical configurations and
aspects that influence the generation and evolution of non-breaking focused wave groups in a
comprehensive manner. The work focuses on the time domain analysis and the geometric study of
focusing wave groups. The changes of focusing time, focusing location, wave height and wave profile
of the focused waves due to the effects of the wave generation method, bandwidth, wave nonlinearity,
choice of focusing wave spectrum and wave spreading are investigated in detail. After examining
the existing numerical approaches, a fully nonlinear potential flow model with a flexible boundary
treatment is considered as a reliable and efficient alternative for non-breaking nonlinear steep focusing
waves.

Therefore, the paper proposes a new FNPF model for this investigation. Compared to the
boundary integral method and the spectral-based method, the proposed FNPF model solves the
Laplace equation on a σ-coordinate with a finite difference method. The model is developed as a part
of the open-source hydrodynamic code REEF3D.

The code uses high-order discretization schemes in space and time and provides fully parallel
computation using a message passing interface (MPI). The code has been widely used for various
hydrodynamic studies, for example, wave interactions with surface piercing cylinders [62,63], extreme
wave generation [58], free falling objects into water [64], local scour around a pipeline [65], and new
developments of a non-hydrostatic Navier–Stokes solver [66]. The proposed potential flow model
REEF3D::FNPF inherits the high-order schemes and parallel computation from the REEF3D framework.
In comparison to the CFD solvers, the presented model is much less computationally demanding and
therefore is ideal for the time domain analyses of different factors. For example, in order to obtain
the same accuracy for the simulation of the wave propagation over a submerged bar [67], a CFD
simulation takes 17 h while the FNPF solver takes only 54 s in the work presented by Bihs et al. [68].

The structure for the presented work is arranged as follows: First, the mathematical model and
numerical methods are presented. The model is then validated against the experimental data using
a wave packet input [19]. A detailed time domain analysis is applied to identify the real focusing
point and further studies are performed using different wave steepnesses and wave generation
methods. Next, the model is validated against the experiments performed by Ning et al. [18] using
the NewWave theory input. Similarly, the effect of wave generation method and wave steepness are
investigated. In addition, various bandwidths of the input JONSWAP spectrum are used to obtain a
better understanding of the frequency bandwidth effect. Finally, a 3D focusing wave in a directional
sea is simulated and the effects of the directional spreading function on the focused wave evolution in
the longitudinal and transverse direction are studied. With high efficiency and accuracy, the proposed
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model is able to offer insights into 2D and 3D wave groups and from low steepness wave groups up to
near-breaking. The effects of the different factors are helpful for future configurations of numerical
wave tanks and physical experiments when studying focused wave groups.

2. Numerical Model

2.1. Governing Equations

The governing equation for the proposed fully nonlinear potential flow model is the
Laplace equation:

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0. (1)

Boundary conditions are required in order to solve for the velocity potential φ from this elliptic
equation, especially at the free surface and at the bed. The fluid particles at the free surface should
remain at the surface where the pressure in the fluid should be equal to the atmospheric pressure.
These conditions must be fulfilled at all times and they form the kinematic and dynamic boundary
conditions at the free surface respectively:

∂η

∂t
=− ∂η

∂x
∂φ̃

∂x
− ∂η

∂y
∂φ̃

∂y
+ w̃

(
1 +

(
∂η

∂x

)2
+

(
∂η

∂y

)2
)

, (2)

∂φ̃

∂t
=− 1

2

((
∂φ̃

∂x

)2

+

(
∂φ̃

∂y

)2

− w̃2

(
1 +

(
∂η

∂x

)2
+

(
∂η

∂y

)2
))
− gη (3)

where η is the free surface elevation, φ̃ = φ(x, η, t) is the velocity potential at the free surface, x = (x, y)
represents the location at the horizontal plane, and w̃ is the vertical velocity at the free surface.

At the bottom, the component of the velocity normal to the bottom must be zero at all times since
the fluid particle cannot penetrate the solid boundary. This gives the bottom boundary condition:

∂φ

∂z
+

∂h
∂x

∂φ

∂x
+

∂h
∂y

∂φ

∂y
= 0, z = −h (4)

where h = h(x) is the water depth measured from the still water level to the seabed.
The Laplace equation, together with the boundary conditions are solved with a finite difference

method on a σ-coordinate system. The σ-coordinate system follows the water depth changes and
offers flexibility for irregular boundaries. The transformation from a Cartesian grid to a σ-coordinate
is expressed as follows:

σ =
z + h (x)

η(x, t) + h(x)
. (5)

In the model, the vertical coordinates also follow a stretching function so that the grid becomes
denser close to the free surface:

σi =
sinh (−α)− sinh

(
α
(

i
Nz
− 1
))

sinh (−α)
, (6)

where α is the stretching factor and i and Nz stand for the index of the grid point and the total number
of cells in the vertical direction.
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The velocity potential after the σ-coordinate transformation is denoted as Φ. The boundary
conditions and the governing equation in the σ-coordinate are then written in the following format:

Φ = φ̃, σ = 1; (7)

∂2Φ
∂x2 +

∂2Φ
∂y2 +

(
∂2σ

∂x2 +
∂2σ

∂y2

)
∂Φ
∂σ

+ 2
(

∂σ

∂x
∂

∂x

(
∂Φ
∂σ

)
+

∂σ

∂y
∂

∂y

(
∂Φ
∂σ

))
+

((
∂σ

∂x

)2
+

(
∂σ

∂y

)2
+

(
∂σ

∂z

)2
)

∂2Φ
∂σ2 = 0, 0 ≤ σ < 1;

(8)

(
∂σ

∂z
+

∂h
∂x

∂σ

∂x
+

∂h
∂y

∂σ

∂y

)
∂Φ
∂σ

+
∂h
∂x

∂Φ
∂x

+
∂h
∂y

∂Φ
∂y

= 0, σ = 0. (9)

Once the velocity potential Φ is obtained in the σ-domain, the velocities can be calculated as follows:

u (x, z) =
∂Φ (x, z)

∂x
=

∂Φ (x, σ)

∂x
+

∂σ

∂x
∂Φ (x, σ)

∂σ
, (10)

v (x, z) =
∂Φ (x, z)

∂y
=

∂Φ (x, σ)

∂y
+

∂σ

∂y
∂Φ (x, σ)

∂σ
, (11)

w (x, z) =
∂Φ (x, z)

∂z
=

∂σ

∂z
∂Φ (x, σ)

∂σ
. (12)

The waves are generated at the inlet using a Neumann boundary condition where the spatial
derivatives of the velocity potential are defined. In this way, the velocity potential at the boundary is
calculated using the desired analytical horizontal velocity:

ϕi−1 = −u(x, z, t)4x + ϕi. (13)

where u(x, z, t) is the analytical horizontal velocity.
The numerical beach uses the relaxation method [69] to mitigate wave reflection. The relaxation

function is used in the model:

Γ(x̃) = 1− e(x̃3.5) − 1
e− 1

f or x̃ ∈ [0; 1]. (14)

where x̃ is scaled to the length of the relaxation zone.
The Laplace equation is discretized using second-order central differences and solved using a

parallelized geometric multigrid preconditioned conjugated gradient solver provided by Hypre [70].
Insufficient grid resolution can lead to numerical diffusion which causes unphysical damping

of the waves as a result. In order to achieve the balance between numerical accuracy, stability and
efficiency, the convection terms at the free-surface boundary conditions are discretized with the
five-order Hamilton–Jacobi version of the weighted essentially non-oscillatory (WENO) scheme [71].
The WENO discretization stencil consists of three loca ENO-stencils based on the smoothness indicators.
A large smoothness indicator means a non-smooth solution in a local stencil. The scheme is designed
such that the local stencil with the highest smoothness is assigned the largest weight and therefore
contributes the most significantly. In this way, the scheme is able to handle large gradients up to shock
with good accuracy. For example, let u represent the convective quantities, which include the ∂η/∂x
and ∂Φ̃/∂x terms in the free surface boundary conditions and let U represent the stencils used in the
discretisation. At the cell face i + 1/2, ui+1/2 is reconstructed with the WENO procedure:

U±i+1/2 = ω±1 U1±
i+1/2 + ω±2 U2±

i+1/2 + ω±3 U3±
i+1/2. (15)
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U1, U2 and U3 represent the three possible ENO stencils, and the ± sign indicates the upwind
direction. For the upwind direction in the positive i-direction, they are:

U1−
i+1/2 =

1
3

ui−2 −
7
6

ui−1 +
11
6

ui,

U2−
i+1/2 = −1

6
ui−1 +

5
6

ui +
1
3

ui+1,

U3−
i+1/2 =

1
3

ui +
5
6

ui+1 −
1
6

ui+2.

(16)

For the time treatment, a third-order accurate TVD Runge–Kutta scheme [72] is used. Adaptive
time stepping is used by controlling a constant time factor as an equivalence to the CFL number:

cu =
dx∣∣max(umax, 1.0
√

9.81 ∗ hmax)
∣∣ ,

cv =
dx∣∣max(vmax, 1.0
√

9.81 ∗ hmax)
∣∣ ,

ctot = min(cu, cv),

dt = ctotCFL.

(17)

where umax, vmax are the maximum particle velocities in x and y directions, and hmax is the maximum
water depth.

The model is fully parallelized following the domain decomposition strategy where ghost cells
are used to exchange information between adjacent domains. These ghost cells are updated with the
values from the neighboring processors via a message passing interface (MPI).

2.2. Focused Wave Generation

The focusing irregular wave generation is achieved by a linear superposition of a finite number of
individual regular wave components with different amplitudes, frequencies, and phases. The phase of
each wave component is adjusted so that the wave components focus at the pre-defined focusing time
and focusing location. The first-order free surface η(1) is defined as

η(1) =
N

∑
i=1

Ai cos αi (18)

where Ai is the amplitude of each wave component and αi is the phase of each component, which is
defined as

θi = kix−ωit− εi (19)

where ωi is the angular frequency, ki is the wave number and εi is the phase angle of each component.
For irregular waves, the phases are randomly distributed with a uniform probability distribution
function over the [−π, π] range. In the case of focused waves, εi is designed so that each individual
wave focuses at a specified time tF and location xF:

εi = kixF −ωitF. (20)

In the case of a 3D focusing wave group, the propagation angle is also included in the
phase adjustment:

εi = kixF cos(βi) + kiyF sin(βi)−ωitF. (21)



J. Mar. Sci. Eng. 2019, 7, 375 8 of 28

The amplitude of the individual wave components are calculated based on the different methods
for the focused waves. The wave packet generation uses a dimensionless amplitude spectrum of the
form [73]: ∣∣∣A′(ω)

∣∣∣ = 27
(

ω−ωbeg

)
(ω−ωend)

2

4
(

ωend −ωbeg

)3 . (22)

Here, ω is the angular frequency and the subscripts beg and end define the frequency range for
the Fourier spectrum. The absolute magnitude of the resulting wave amplitude A

′
i does not represent

the given focused wave input at this point, therefore a scaling factor f is calculated:

f =
AF

N

∑
i=1

A′i

. (23)

Then the amplitudes of the harmonic components can be calculated as:

Ai = f A
′
i. (24)

When using the NewWave theory, a JONSWAP spectrum is used to describe the distribution of
the wave energy as a function of the angular frequency ω. The required significant wave height Hs,
the peak angular frequency ωp, and the number of components N are given as input values to the
JONSWAP spectrum [74]:

S (ω) =
5

16
H2

s ω4
pω−5

i exp

(
−5

4

(
ωi
ωp

)−4
)

γ
exp

(
−(ω−ωp)

2

2σ2ω2
p

)
Aγ (25)

where the peak-shape parameter γ = 3.3 and the spectral width parameter σ is 0.07 for ωi ≤ ωp and
0.09 for ωi > ωp. The normalising factor Aγ = 1− 0.287ln(γ).

The Pierson–Neumann–James (PNJ) directional spreading function [75] is used to describe the
directionality in the wave field:

G(β) =

{
2
π cosn(β j − β) , if

∣∣β j − β
∣∣ < π

2
0 , else.

(26)

where β is the principal direction representing the major energy propagation direction, and β j is the
direction of each incident wave component measured counterclockwise from the principal. The shape
parameter n is subject to change in order to study the effect of different angular spreading properties.

By multiplying Equations (25) and (26), the directional spectrum is obtained. An equal
energy method is used to discretize the frequency spectrum and the spreading function to prevent
phase-locking in the directional wave field and ensure ergodicity [76,77]. With the equal energy
method, the amplitude of each wave component can be expressed in terms of the wave spectrum
Si(ω) and the amplitude at the focus point AF:

Ai = AF
Si (ω)4ω

N

∑
i=1

Si (ω)4ω

. (27)

Following the first-order wave theory, the particle velocities u(1), v(1) and w(1) are defined as the
sum of individual wave components
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u(1) =
N

∑
i=1

Aiωi
cosh (ki (z + h))

sinh (kih)
cos θi, (28)

v(1) =
N

∑
i=1

Aiωi
cosh (ki (z + h))

sinh (kih)
sin θi, (29)

w(1) =
N

∑
i=1

Aiωi
sinh (ki (z + h))

sinh (kih)
sin θi. (30)

With increasing wave steepness, it is necessary to take the second-order effects into account. In the
presented study, the second-order component is added to the first-order component of the free surface
elevation, velocity potential and the particle velocities.

η = η(1) + η(2), (31)

φ = φ(1) + φ(2), (32)

u = u(1) + u(2), (33)

w = w(1) + w(2). (34)

In the presented model, the second-order wave components are implemented following the
formulations presented in [18] using second-order irregular wave theory [78].

3. Results and Discussion

The proposed model is first validated against two experiments with a wave packet spectrum
and NewWave theory respectively. The differences between the numerical and experimental data
are analyzed and the advantages of the numerical simulations are discussed. Then, different wave
generation methods, wave steepnesses, frequency bandwidths, and wave spreading are investigated
with the numerical tool.

3.1. Validation of the Focused Wave Group Generation in the Numerical Wave Tank (NWT)

The focused irregular wave group is generated with the wave packet method and the numerical
results are compared with the experimental data measured in the Large Wave Flume (GWK), Hannover,
Germany [19]. The physical wave tank in the experiments is 300 m long with a constant water depth
of h = 4.01 m. A piston-type wavemaker is used to generate the wave packet that focuses at the
designated location at xF = 126.21 m and time at tF = 103 s. Following the experimental setup, a 2D
numerical wave tank (NWT) 250 m long with a water depth of h = 4.01 m is used in the numerical
test. A Neumann boundary is used at the inlet of the NWT to generate the wave packet that focuses
at xF = 126.21 m and tF = 103 s. A 50 m long numerical beach is located at the outlet to absorb
the wave energy. A linear wavemaker theory is used in the experiment [19], therefore a first-order
focused wave theory is used in the numerical wave tank. The free surface elevations are measured
at x = 3.59 m, 90.30 m and 126.21 m in both the physical and the numerical wave tank. The grid
convergence study is shown in Figure 1. The time series at the focusing location and the wave profiles
at the focusing time are nearly identical when a further grid refinement is made from dx = 0.25 m
to dx = 0.167 m in the horizontal direction. Therefore, the grid size of dx = 0.25 m is considered
sufficient for the simulation. A vertical grid convergence study with the σ-coordinate arrangement is
also shown in Figure 2. With more than 10 cells, the focused wave shape, focusing time and focused
wave crest height are nearly identical. It is therefore concluded that 10 cells in the water depth are
sufficient to capture the extreme event accurately. Ning et al. [18] captured the focused wave shape
in their NWT with only 16 frequency components due to the transient nature of the focusing event.
In this study, the free surface time series with different numbers of frequency components are also
compared in Figure 3. At the wave focusing event, 25 wave components appear to be sufficient to
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capture the focusing crest geometry very well as shown in Figure 3a. However, away from the crest,
50 components are needed to achieve convergence in the time domain. With a grid size of 0.25 m in
the horizontal direction, 10 cells in the vertical direction and 50 wave components, a 180 s simulation
takes 553 s on a Mac pro with with two Intel Xeon E5 processors (2.7 GHz). The simulated results are
compared to the experimental observations in Figure 4. A favourable match is achieved at all wave
probes. At the focusing point, the absolute difference between the simulated and measured wave peak
height |HF(sim) − HF(exp)| is divided by the measured wave peak height HF(exp) to quantify the relative
numerical error, which is found to be limited to 4.5%.
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Figure 1. Grid convergence study of the focusing wave group generated using a wave packet
method. (a) Comparison of time series at the designated focusing location with different grid
sizes. The time series are also compared to the measurements. (b) Comparison of wave profiles
at the designated focusing time with different grid sizes. Four grid sizes are investigated:
dx = 0.167 m, 0.25 m, 0.5 m and 1.0 m. 10 vertical cells are used in the study.
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Figure 2. The grid convergence study of the vertical grid resolution in a σ-coordinate arrangement for
the focusing wave group generated using a wave packet method.
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Figure 3. Convergence study for the number of frequency components for the generation of the focused
wave group using the wave packet approach, (a) time series near the focusing event with a different
number of frequency components, (b) time series away from the focusing event with a different number
of frequency components.



J. Mar. Sci. Eng. 2019, 7, 375 11 of 28

Experiment

REEF3D::FNPF

η
[m

]

−0.5

0

0.5

1.0

t [s]

20 40 60 80 100

(a) Wave gauge 1, x=3.59 m

Experiment

REEF3D::FNPF

η
[m

]

−0.5

0

0.5

1.0

t [s]

40 60 80 100 120

(b) Wave gauge 2, x=90.30 m
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(c) Wave gauge 3, x=126.21 m
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(d) Wave gauge 3, x=126.21 m

Figure 4. Comparison of the wave elevation time series at the three wave probes between the numerical
wave tank and the experiment for the wave packet study. (d.) The close-up view of the wave profile
near the focusing region.

The velocity potential, the vertical velocities at the focusing point and the grid are shown in
Figure 5a,b. It is seen that the σ-grid follows the free surface well at the focusing peak with a
sharp curvature. The velocity potential and the velocity field inside the water volume are also
presented and the vertical velocity distribution for the intermediate water depth is demonstrated.
The evolution of the wave packet and its vertical velocities are shown in Figure 6 for the sampled
time frames t = 59.5 s, 103.0 s and 126.0 s. At t = 59.5 s, the wave packet propagates from the wave
generating Neumann boundary with shorter waves leading the wave train and the trailing longer
waves. At t = 103.0 s, all the wave components propagate to the focusing location at the same time,
creating an amplified single peak with high velocities. At t = 126.0 s, the longer wave components
surpass the shorter waves and the single peak decomposes into several smaller components of
different frequencies.
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Figure 5. Flow information and σ-grid near the focusing event, (a) velocity potential in the water
volume, (b) The vertical velocity component in the water volume.
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(c) t=126.0 s

Figure 6. Vertical velocity component during the evolution of the focused wave group generated by
the wave packet method, (a) t = 59.5 s, (b) t = 103.0 s, (c) t = 126.0 s.
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volume, (b) the vertical velocity component in the water volume.
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Figure 6. Vertical velocity component during the evolution of the focused wave group generated by
the wave packet method, (a) t = 59.5 s, (b) t = 103.0 s, (c) t = 126.0 s.
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Figure 6. Vertical velocity component during the evolution of the focused wave group generated by
the wave packet method, (a) t = 59.5 s, (b) t = 103.0 s, (c) t = 126.0 s.

In spite of the agreement between the experimental and numerical results, the asymmetry of
the time series at the focusing location indicates that the real focusing event might not happen at the
measured location in the experiment, i.e., not all the wave components superimpose simultaneously at
the designated point. As can be observed in Figure 1a, both the simulated and physically measured
focused wave at the designated focusing location at x = 126.21 m take place slightly ahead of the
designated focusing time t = 103 s. In addition, at the designated focusing time, the waves in the
numerical wave tank focus at x = 127.5 m, 1.29 m after the designated focusing location. These
discrepancies indicate that there is a possibility that the real focusing event is delayed in comparison to
the designated focusing location and time. Since it is challenging to perform a continuous measurement
at very fine spatial intervals in the experiment, it is likely that there are no wave probes located at the
real focusing point in the experiment. With the flexibility of the NWT, the spatial wave profiles along
the longitudinal direction of the wave tank are plotted in one graph with a small interval of 0.06 s near
t = 103.0 s as shown in Figure 7.
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Figure 7. Wave profiles along the longitudinal direction of the wave tank are plotted in one graph at an
interval of 0.06 s near t = 103.0 s. The red dash-dot line indicates the real focusing location in the NWT
at x = 129.38 m. The blue dash-dot line indicates the designated focusing location at x = 126.21 m.

As can be seen from Figure 7, the highest peak appears at the location x = 129.38 m, reaching
0.8845 m, 8.5% higher than the measured peak in the experiment. It indicates that the real focusing
location is x = 129.38 m, 3.17 m after the designated focusing location, and the corresponding focus
time is t = 103.4 s, 0.4 s after the designated focusing time. This finding is also illustrated in the time
domain, as shown in Figure 8.

Experiment 
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Figure 8. The comparison of the time series at the designated focusing location at x = 126.21 m and at
the real focusing location at x = 129.38 m as detected in the numerical simulation. The black dash-dot
curve is the time series measured in the experiment at x = 126.21 m and the vertical black dash-dot
line indicates the measured focusing time at t = 102.825 s. The red solid curve is the time series
at x = 126.21 m in the numerical wave tank (NWT), and the vertical red dashed line indicates the
corresponding numerical focusing time t = 102.7 s. The red dash-dot curve is time series at the real
focusing location x = 129.38 m in the NWT and the vertical red dash-dot line indicates the real focusing
time t = 103.4 s. The vertical black dashed line is the designated focusing time at t = 103 s.

Previous research on focusing waves also found that the focusing time and location is delayed
with increasing nonlinearity [79]. A detailed discussion on the influence of nonlinearity on the focusing
wave group in time and space is presented in Section 3.2.

The input wave packet is a strictly defined wave train with a very specific spectrum. To investigate
a more general wave focusing mechanism, the widely used NewWave theory [2,3] is also implemented
in the proposed model. The numerical results are validated against the experiments performed by
Ning et al. [18]. The experiments were conducted at the Dalian University of Technology in a wave
flume 69 m long and 3 m wide. A constant water depth of 0.5 m is used during the tests. A 4 m region
of foam is located at the outlet of the tank to reduce wave reflections. The experimental setup has been
modified by [60] considering the computational convenience. The equivalence of the modified NWT to
the original experimental setup has been demonstrated in [60]. The current study adopts the modified
configuration of the NWT in a two-dimensional arrangement by removing the transverse dimension.
Two of the physical tests are used for the validation in the study, the input wave conditions are
summarized in Table 1. The Neumann boundary condition is used for the wave generation. The input
wave in case NING 1 has a more linear behaviour, while the input wave in NING3 is expected to show
more nonlinearity with higher steepness. As described by Ning et al. [18], a second-order wave theory
is implemented in the wave generation to account for higher nonlinearity.
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Table 1. The focusing wave inputs and the real focusing properties for the validation cases.

Case No. Tp (s) AF (m) xF (m) tF (s) xFr (m) tFr (s)

NING 1 1.20 0.0313 7.5 10.0 7.5 10.0
NING3 1.25 0.0875 7.2 10.0 8.475 10.7

To begin with, the grid convergence studies in the x-direction are performed for both NING1
and NING3, which are shown in Figures 9 and 10. Since the numerical wave tank length and the
designated focusing location are modified from the original experiment, the experimental time series
are shifted 0.6 s and 0.2 s respectively for the NING1 and NING3 cases to match the numerical focusing
time in the numerical wave tank. These shifts are kept constant in all following comparisons. For both
cases, further refinements of the horizontal grid from dx = 0.05 m to dx = 0.025 m do not improve the
results further and the time series with both grid sizes match well with the experimental measurements.
The location, time and crest height at focusing and the wave group shape adjacent to the focused crest
are almost identical between the experimental and numerical results with the grid size of dx = 0.05 m.
Consequently, the horizontal grid size of dx = 0.05 m is used in all the following simulations. In the
vertical direction, the grid convergence study is shown in Figure 11. As can be seen in these two plots,
the vertical grid resolution has a low influence on the accuracy of the model and a resolution of ten
cells is found to be sufficient for both cases. As reported by Ning et al. [18], 20 frequency components
are seen to be sufficient for all the tested wave conditions. To confirm this finding with the proposed
model, the time series using different numbers of frequency components are compared at the focusing
location in Figure 12. It is seen that 20 components are sufficient to capture the focusing wave group
shape. All the following results are obtained with dx = 0.05 m in the horizontal plane, 10 cells in the
vertical direction and 20 wave components for the irregular wave generation. The simulation time
for the case NING1 is 20 s and it takes 37 s to finish the simulation with two Intel Xeon E5 processors
(2.7 GHz) on a Mac Pro. On the same computer, the 32 s simulation for the case NING3 takes 76 s.
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Figure 9. Grid convergence study in the x-direction for the case NING1, where four grid sizes are
tested dx = 0.025, 0.05, 0.1 and 0.2 m. Ten vertical cells are used in the study. (a) The time series at the
focusing location x = 7.5 m, (b) the spatial wave profiles at the focusing time t = 10.0 s.
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Figure 10. Grid convergence study in the x-direction for the case NING3, where four grid sizes are
tested dx = 0.025, 0.05, 0.1 and 0.2 m. Ten vertical cells are used in the study. (a) The time series at the
focusing location x = 8.475 m, (b) the spatial wave profiles at the focusing location t = 10.7 s.
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Figure 11. Grid convergence study in the z-direction, (a) the time series at the focusing location
x = 7.5 m for case NING1, (b) the time series at the focusing location x = 8.475 m for case NING3.
The tested numbers of grid in the vertical direction are Nz = 5, 10, 20 and 40.
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Figure 12. Convergence study of the number of frequency components, (a) the time series at the
focusing location x = 7.5 m for case NING1, (b) the time series at the focusing location x = 8.475 m for
case NING3. The tested numbers of frequency components are N = 10, 15, 20, 100 and 500.

For the first case NING1, the wave focuses at nearly the exact designated focusing time at t = 10 s
both in the experiment and the numerical simulation, as shown in Figure 9a. Correspondingly,
the focusing location is found to be also nearly as designated at x = 7.5 m, as shown in Figure 9b.
However, with a higher wave steepness and consequently stronger nonlinearity, both the focusing time
and the focusing location are delayed for the case NING3. These observations are again confirmed
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by both the experiment and the simulations. In the case NING3, the wave group actually focuses
at x = 8.475 m instead of focusing at x = 7.2 m, as designated. The numerical wave tank is able to
provide a continuous output of the wave evolution at close time intervals. By plotting the wave profiles
along the tank together at a time interval of 0.06 s near t = 10.7 s in Figure 13, one can clearly observe
the real focusing location marked in red in comparison to the designated focusing location marked in
blue. Similarly, the focusing time is delayed to t = 10.7 s rather than t = 10.0 s. The difference in the
focusing location and time is mainly due to the nonlinear wave-wave interaction in the process of the
wave group evolution. With stronger nonlinearity in NING3 case, the effect becomes more prominent.
To demonstrate the evolution of the two different wave groups, the vertical velocity in the flow field
for the two cases are illustrated in Figure 14. The focusing amplitude is much higher and the wave
profile is much narrower with the steeper wave in NING3 in comparison to NING1. The difference
in the focusing location is also visible when the two simulations are laid side by side. The vertical
velocity magnitude of steeper waves is comparatively higher. This finding of the shifted focusing point
due to nonlinear wave-wave interaction confirms the previous research reported by [6,18,55,79].

3 4 5 6 7 8 9 10 11 12 13
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Figure 13. The wave profiles along the longitudinal direction of the wave tank are plotted in one graph
at an interval of 0.06 s near t = 10.7 s for the simulation case NING3. The red dash-dot line indicates
the real focusing location in the NWT at x = 8.475 m. The blue dash-dot line indicates the designated
focusing location at x = 7.2 m. The red curve is the wave profile at the real focusing time.

3.2. Effects of Nonlinearity

As found in the previous section, nonlinearity has a strong impact on the focused wave group
evolution in time and space. In order to investigate the effect of wave nonlinearity, four wave
groups with varying wave steepness are generated with the wave packet method, as shown in
Table 2. The NWT configurations and designated focusing locations and times are the same as in the
experiment shown in Section 3.1. The wave length Lp is calculated based on linear wave theory with
the corresponding peak period Tp. The wave steepness is then defined as εp = kp AF, where AF is the
input value for the focusing amplitude, and kp = 2π/Lp is the corresponding wave number at the
peak period.

Table 2. The wave inputs and the absolute differences in the focusing points for the wave groups
generated using the wave packet with different wave steepnesses.

Case No. AF (m) Tp (s) Lp (m) εp 4xF (m) 4tF (s)

Case PK1 0.25 4.20 24.32 0.0646 0.00 0.00
Case PK2 0.50 4.20 24.32 0.1292 0.09 0.05
Case PK3 1.00 4.20 24.32 0.2584 0.54 0.15
Case PK4 1.50 4.20 24.32 0.3875 1.29 0.31
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(a)

(b)

Figure 14. The vertical velocity in the wave fields at the focusing time, (a) for the simulation case
NING1 with a less steep input wave, (b) for the simulation case NING3 with a more steep input
wave. The black vertical dashed line in (a) indicates the location of the focused wave crest in the
case NING1, and the red vertical dashed line in (b) indicates the location of the focused wave crest
in the case NING3. The black dashed line in (a) is extended to (b), and the red dashed line in (b) is
extended to (a) so that the horizontal distance between the focused wave crests in the two cases is
straightforwardly observable.

The wave profiles in the longitudinal direction at the designated focusing time t = 103 s in the
four cases are compared in Figure 15a. The time series at the designated focusing location x = 126.21 m
in the four cases are compared in Figure 15b. As can be seen from the figure, stronger asymmetries
are observed with steeper waves at the designated focusing time and location, indicating that the
wave is not really focused at this location. As can be seen further in Figure 16a,b, the wave profiles
and time series are more symmetric at their respective real focus locations and time. It is also seen
that the focusing location and focusing time of the simulated waves approach the designed values
for lower wave steepness. For example, the simulated focusing location and time are almost identical
with the designed input at the wave steepness εp = 0.0646, as shown in Figure 17. The spatial and
temporal differences at the designated focusing points are listed in Table 2. The relative differences in
time and space are then defined as δxF = ∆xF/Lp and δtF = ∆tF/Lp. The general trend of increasing
relative differences with increasing wave steepnesses is further demonstrated in Figure 18. The finding
confirms the previous investigations and justifies the differences between the measured and real
focusing point in the experiment of Clauss and Steinhagen [19].
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Figure 15. Comparison of the wave surface elevations at the designated focusing time and location
with four different wave steepnesses, (a) the wave profiles in the longitudinal direction at t = 103 s,
(b) the time series at x = 126.21 m.
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Figure 16. Comparison of the wave surface elevations at the respective real focusing time and location
with four different wave steepnesses, (a) the wave profiles in the longitudinal direction, (b) the time
series at the respective real focusing location.
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Figure 17. The wave profiles along the longitudinal direction of the wave tank with the wave steepness
εp = 0.0646 are plotted in one graph at an interval of 0.06 s near t = 103.0 s. The red dash-dot line
indicates the real focusing location in the NWT at x = 126.21 m, which aligns with the designated
focusing locations.
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Figure 18. The relative spatial differences in focusing location δxF and temporal differences in focusing
time δtF in relation to wave steepness in the simulation with the wave packet.

Similarly, the influence of wave steepness on the focusing location and focusing time is also
investigated with the NewWave theory. The designated input wave parameters are listed in Table 3.
While keeping the same peak period, the focusing wave amplitude increases consistently. The time
series at the respective focusing location and the wave profiles at the respective focusing time are
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plotted in Figure 19. It is seen that the differences between the real and designated focusing location
and focusing time increase monotonically with increasing steepnesses. This finding agrees with the
previous observations with the wave packet in the previous section. The absolute differences of
focusing time and focusing location for each case are also listed in Table 3 and the relative differences
are plotted in Figure 20. It is shown that there are almost no differences in the first two cases with
lower steepnesses. As larger waves evolve, the focusing location and focusing time of the wave group
shift downstream due to the highly nonlinear wave-wave interactions. After a certain threshold,
the differences start to increase dramatically following a near-linear trend.

Table 3. The wave inputs and the absolute differences in the focusing points for the wave groups
generated using the NewWave theory with different wave steepnesses.

Case No. AF (m) Tp (s) Lp (m) εp 4xF (m) 4tF (s)

NS1 0.0391 1.20 2.00 0.1229 0.000 0.000
NS2 0.0470 1.20 2.00 0.1475 0.075 0.015
NS3 0.0626 1.20 2.00 0.1967 0.375 0.165
NS4 0.0783 1.20 2.00 0.2458 1.025 0.520
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Figure 19. Comparison of wave surface elevations at the respective real focusing time and location with
four different wave steepnesses (a) the time series at respective real focusing time, (b) the comparison
of the wave profiles in the longitudinal direction at the respective real focusing locations.
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Figure 20. The relative spatial differences in focusing location δxF and temporal differences in focusing
time δtF in relation to wave steepness in the simulation with the NewWave theory.

3.3. Effects of Frequency Bandwidth

Another factor influencing the properties of the focusing wave group is the frequency bandwidth.
The combined effects of the nonlinearity and bandwidth (randomness) have been investigated
previously by [80–82]. In this study, instead of focusing on the statistical properties, the authors
focus on the geometrical properties and the general shape of the evolving wave train. Since the
frequency range of a wave packet spectrum is strictly defined, the frequency bandwidth effects are
only studied with the NewWave theory. Five different bandwidths are tested with the same peak
frequency. The detailed specifications are listed in Table 4. The input wave height is the same as that
defined in NING1. The focusing wave time series and wave profiles are plotted together in Figure 21.
The focusing wave height decreases as the frequency bandwidth gets wider, the differences between
the focusing wave height in comparison to the designated wave height are also listed in Table 4. It is
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seen that the focusing wave height decreases by 12% with the widest bandwidth in case NB5. However,
it is also noticed that the bandwidth does not have an influence on the focusing location and time.

Table 4. The input wave properties with different bandwidth for the wave spectrum.

Case No. ω Range (rad/s) Bandwidth (rad/s) HF (m) δHF(%)

NB1 [5.02, 6.54] 1.52 0.06191 1.10
NB2 [4.27, 7.04] 2.77 0.06142 1.88
NB3 [3.77, 7.54] 3.77 0.06143 1.87
NB4 [2.77, 9.54] 6.77 0.05690 9.11
NB5 [1.77, 11.04] 9.27 0.05495 12.22
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Figure 21. Comparison of the wave surface elevations with five different frequency bandwidths. (a) the
time series at the designated focusing location x = 7.5 m, (b) the spatial wave profile in the longitudinal
direction at the designated focusing time t = 10 s.

3.4. Effects of Wave Generation Method

The presented waves are generated using a Neumann boundary when the gradient of the velocity
potential changes are defined at the wave generation boundary. Another widely used wave generation
method is the relaxation method [69]. Following the configurations in the experiments, a linear irregular
wave theory and a second-order wave theory are used in the relaxation zones for the simulations using
the wave packet method and the NewWave theory respectively. However, in both theories, only linear
dispersion is represented inside the generation zone, which might result in errors in wave phases and
the location and time of the focusing point. To demonstrate the difference between the two different
wave generation methods, the validation cases presented in Section 3.1 are simulated with a relaxation
wave generation zone and the results are compared to the corresponding results from the Neumann
boundary condition. It is seen that the two wave generation methods show similar results for waves of
relative weaker nonlinearity as in Figures 22 and 23a. However, with increasing wave steepness and
nonlinearity, the wave focusing properties are significantly different between the two wave generation
methods, as shown in Figure 23b. The wave group generated by the relaxation method focuses earlier
and overpredicts the focusing wave crest. In contrast, the waves groups generated with the Neumann
method match the experiments very well.
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Figure 22. Comparison of the time series at the focusing location of 126.21 m generated by a relaxation
method and a Neumann boundary using the wave packet input.
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Figure 23. Comparison of the time series at the focusing location of 7.5 m generated by a relaxation
method and a Neumann boundary, (a) for the simulation case NING1, (b) for the simulation
case NING3.

3.5. Effects of Directional Spreading on 3D Focused Wave Group

Rogue waves are more likely to happen in a crossing sea state [83]. To study the wave-wave
interaction in a 3D sea-state, the JONSWAP spectrum and the PNJ directional spreading function
are used to generate a multi-directional irregular wave field. The NewWave theory is used for wave
focusing. A numerical wave basin 20 m long, 20 m wide with a constant water depth of 0.5 m is used
in the study. Numerical beaches of 2 m width are arranged along the side walls and at the outlet of the
tank. To fully resolve the 3D wave field, an Equal Energy method is used to discretise the frequency
spectrum and spreading function. In this study, 500 frequency components and 20 directions are
used, i.e., 10,000 wave components in total are generated at the boundary. The wave height and peak
period in NING1 are used as the input wave properties in this simulation. The designated focusing
location is (x, y) = (7.5, 10) m and the focusing time is set to be 35 s. The wave profiles along the x-axis
and the y-axis at the designated focusing time together with the free surface elevation time series
are compared with different grid sizes in Figure 24. It is found that a grid size of 0.05 m is sufficient
to achieve convergence. Ten cells are used in the vertical direction, resulting in 1.76 million cells in
total. With 256 processors on NOTUR ’s supercomputer Fram, the 70 s simulation is finished in 5 h.
The wave envelope is shown in Figure 25 by plotting the wave profile along the centre of the tank with
a small time interval around tF = 35 s. It is seen that the highest peak of the wave envelope emerges
at x = 7.5 m, indicating that the wave group focuses at the designated location. The evolution of the
3D focusing wave field is demonstrated in Figure 26 by showing the velocity magnitude in the wave
field at the chosen time frames at t = 30 s, t = 35 s and t = 40 s. The 3D wave train forms several
curved wave fronts asymmetric along the centreline of the tank and approaches the focusing point in a
wedge-shape pattern in the x-y plane. At the focusing location, the wave profile along the x-axis is
similar to the 2D NewWave profile as shown in Figure 24a and the wave profile along the y-axis is a
single crested peak.
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Figure 24. Grid convergence study for the 3D wave focusing simulation with four grid sizes
dx = 0.025, 0.05, 0.1 and 0.2 m, 10 vertical cells are used in the study. (a) Wave profile along the x-axis
at y = 10 m and tF = 35 s , (b) wave profile along the y-axis at x = 7.5 m and tF = 35 s, (c) free surface
elevation time series at (x, y) = (7.5, 10) m.
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Figure 25. Wave profile envelop along the x-axis at y = 10 m, plotted with short time intervals around
tF = 35 s.

Figure 26. Velocity magnitude in the 3D focusing wave field. The time frames are t = 30 s, t = 35 s
and t = 40 s from left to right.
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Different energy spreading conditions are investigated in the study with various values of the
spreading parameter n, as shown in Equation (26). The wave profile along y = 10.0 m and x = 7.5 m are
plotted in Figure 27 with different spreadings. A larger value of n signifies higher energy concentration
and less spreading. It is seen from Figure 27a that the focused wave height slightly decreases with
stronger energy spreading. The two secondary peaks adjacent to the focused peak also follow the same
trend. The directional spreading function tends to redistribute the energy in the horizontal plane more
evenly and leads to smaller waves near the focusing point. Figure 27a shows the wave profile in the
y-direction at the focusing location. The focusing peak is higher and the wave profile is wider with
more energy concentration. In contrast, with stronger directional spreading, the focused peak reduces
and profile becomes narrower. The investigation indicates that different spreading conditions might
lead to different load scenarios for marine structures due to varying peak height and the transverse
dimension of the wavefront.
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Figure 27. Comparison of the wave free surface elevations with four different spreading functions,
(a) comparison of the wave profiles in the longitudinal x-z plane at y = 10 m, (b) comparison of wave
profiles in the transverse y-z plane at x = 7.5 m.

4. Conclusions

In this paper, an efficient fully-nonlinear potential flow model is introduced. The model solves
the Laplace equation with a finite difference method on a σ-grid. The model employs high-order
discretisation schemes in space and time which allows for larger grid sizes and time steps and ensures
both the computational efficiency and accuracy. Ten vertical grids in the σ-coordinate system are usually
found to be sufficient for surface wave applications. The focusing wave generated by the proposed
model is validated against experiments using both the wave packet input and the NewWave theory.
Favourable agreements are achieved with different wave conditions for both methods. The model is
also used to create a 3D focusing wave group and the wave group focuses at the designated time and
location. Further studies are performed to investigate the change of focusing location, focusing time,
the geometry of the wave group and wave height in relation to the wave steepness, wave generation
method, bandwidth and directional spreading. The focus of the study has been on the time domain
analysis and geometry near the focusing point. The following findings are derived from the studies:

(1) Wave steepness and the nonlinearity affects the wave focusing location and time significantly.
As a steeper wave group evolves, both the focusing location and the focusing time are shifted
downstream due to stronger nonlinear wave-wave interactions.

(2) The close relation between the wave nonlinearity and the downstream shift of the focusing time
and location challenges the physical test arrangement to allocate the wave probe at the exact focusing
point. Instead of repeated attempts in a physical wave tank, a numerical wave model proves to be a
useful tool to predict the exact real focusing time and location due to its flexibility and near-continuous
output capacity.
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(3) The frequency bandwidth does not have an influence on the focusing time and location
but affects the focusing wave crest height. A wider bandwidth tends to reduce the focusing wave
crest height.

(4) The focusing wave evolution is a very nonlinear phenomenon, the wave generation using
a relaxation method does not represent the nonlinearity correctly as the wave steepness increases.
Therefore, a Neumann boundary is recommended for the generation of the focusing wave group in
an NWT.

(5) In a directional sea state, the directional spreading function also influences the 3D focused
wave profile. In a more spreading sea, the focused wave crest height is reduced and the wave profile
in the transversal plane becomes narrower.

In conclusion, the proposed FNPF model is efficient and flexible to investigate the focusing
wave evolution comprehensively. The finding of the study offers insights into the numerical tank
configurations for future studies on focused waves both numerically and experimentally.

Author Contributions: Conceptualization, W.W. and H.B.; methodology, W.W., C.P. and A.K.; software, H.B.;
validation, W.W., A.K. and C.P.; formal analysis, W.W.; investigation, W.W.; resources, C.P.; data curation, A.K.;
writing–original draft preparation, W.W.; writing–review and editing, W.W. and A.K.; visualization, W.W.;
supervision, H.B.; project administration, H.B.; funding acquisition, H.B.

Funding: The research work has been funded by the Norwegian Public Roads Administration through the E39
fjord crossing project (No. 304624).

Acknowledgments: This study has been carried out as part of the E39 fjord crossing project (No. 304624) and
the authors are grateful for the grants provided by the Norwegian Public Roads Administration. This study was
also supported by the computational resources at the Norwegian University of Science and Technology (NTNU)
provided by NOTUR, http://www.notur.no.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Haver, S. A possible freak wave event measured at the Draupner jacket January 1 1995. In Proceedings of
the Rogue Waves 2004, Brest, France, 20–22 October 2004.

2. Lindgren, G. Some Properties of a Normal Process Near a Local Maximum. Ann. Math. Stat. 1970,
41, 1870–1883. [CrossRef]

3. Tromans, P.S.; Anaturk, A.R.; Hagemeijer, P. A New Model for the Kinematics of Large Ocean
Waves-Application as a Design Wave. Int. J. Offshore Polar. 1991, 4, 64–71 .

4. Jonathan, P.; Taylor, P.H. On Irregular, Nonlinear Waves in a Spread Sea. J. Offshore Mech. Arct. Eng. 1997,
119, 37–41. [CrossRef]

5. Taylor, P.H.; Williams, B.A. Wave Statistics for Intermediate Depth Water—NewWaves and Symmetry.
J. Offshore Mech. Arct. Eng. 2004, 126, 54–59. [CrossRef]

6. Bateman, W.; Swan, C.; Taylor, P. On the Efficient Numerical Simulation of Directionally Spread Surface
Water Waves. J. Comput. Phys. 2001, 174, 277–305. [CrossRef]

7. Johannessen, T.B.; Swan, C. A Laboratory Study of the Focusing of Transient and Directionally Spread
Surface Water Waves. Proceedings 2001, 457, 971–1006. [CrossRef]

8. Borthwick, A.G.; Hunt, A.C.; Feng, T.; Taylor, P.H.; Stansby, P.K. Flow kinematics of focused wave groups on
a plane beach in the U.K. Coastal Research Facility. Coast. Eng. 2006, 53, 1033–1044. [CrossRef]

9. Whittaker, C.; Fitzgerald, C.; Raby, A.; Taylor, P.; Orszaghova, J.; Borthwick, A. Optimisation of focused
wave group runup on a plane beach. Coast. Eng. 2017, 121, 44–55. [CrossRef]

10. Hunt, A. Extreme Waves, Overtopping and Flooding at Sea Defences. Ph.D. Thesis, University of Oxford,
Oxford, UK, 2003.

11. Hunt-Raby, A.C.; Borthwick, A.G.; Stansby, P.K.; Taylor, P.H. Experimental measurement of focused wave
group and solitary wave overtopping. J. Hydraul. Res. 2011, 49, 450–464. [CrossRef]

12. Whittaker, C.; Raby, A.; Fitzgerald, C.; Taylor, P. The average shape of large waves in the coastal zone.
Coast. Eng. 2016, 114, 253–264. [CrossRef]

http://www.notur.no
http://dx.doi.org/10.1214/aoms/1177696688
http://dx.doi.org/10.1115/1.2829043
http://dx.doi.org/10.1115/1.1641796
http://dx.doi.org/10.1006/jcph.2001.6906
http://dx.doi.org/10.1098/rspa.2000.0702
http://dx.doi.org/10.1016/j.coastaleng.2006.06.007
http://dx.doi.org/10.1016/j.coastaleng.2016.12.001
http://dx.doi.org/10.1080/00221686.2010.542616
http://dx.doi.org/10.1016/j.coastaleng.2016.04.009


J. Mar. Sci. Eng. 2019, 7, 375 25 of 28

13. Whittaker, C.; Fitzgerald, C.; Raby, A.; Taylor, P.; Borthwick, A. Extreme coastal responses using focused wave
groups: Overtopping and horizontal forces exerted on an inclined seawall. Coast. Eng. 2018, 140, 292–305.
[CrossRef]

14. Hofland, B.; Wenneker, I.; Van Steeg, P. Short test durations for wave overtopping experiments.
In Proceedings of the 5th International Conference on the Application of Physical Modelling to Port and
Coastal Protection, Varna, Bulgaria, 29 September–2 October 2014; pp. 349–358.

15. Clauss, G.F.; Bergmann, J. Gaussian wave packets—A new approach to seakeeping testsof ocean structures.
Appl. Ocean Res. 1986, 8, 190–206. [CrossRef]

16. Clauss, G.F.; Kühhnlein, W.L. Numerical Simulation of Nonlinear Transient Waves and Its Validation
by Laboratory Data. In Proceedings of the 3rd International Conference on Fast Sea Transport,
Luebeck/Travemuende, Germany, 25–27 September 1995; Volume 2, pp. 1193–1204.

17. Clauss, G.F.; Kuhnlein, W.L. A New Tool for Seakeeping Tests—Nonlinear Transient Wave Packets; 1997;
Volume 2, pp. 269–285. Available online: https://www.osti.gov/etdeweb/biblio/634779 (accessed on
20 October 2019).

18. Ning, D.Z.; Zang, J.; Liu, S.X.; Eatock Taylor, R.; Teng, B.; Taylor, P.H. Free-surface evolution and wave
kinematics for nonlinear uni-directional focused wave groups. Ocean Eng. 2009, 36, 1226–1243. [CrossRef]

19. Clauss, G.F.; Steinhagen, U. Numerical Simulation of Nonlinear Transient Waves and Its Validation by
Laboratory Data. In Proceedings of the 9th International Offshore and Polar Engineering Conference, Brest,
France, 30 May–4 June 1999.

20. Sriram, V.; Schlurmann, T.; Schimmels, S. Focused wave evolution using linear and second order wavemaker
theory. Appl. Ocean Res. 2015, 53, 279–296. [CrossRef]

21. Bai, J.; Ma, N.; Gu, X. Numerical Simulation of Focused Wave and Its Uncertainty Analysis. J. Shanghai
Jiaotong Univ. (Sci.) 2018, 23, 475–481. [CrossRef]

22. Forristall, G.Z.; Barstow, S.F.; Krogstad, H.E.; Prevosto, M.; Taylor, P.H.; Tromans, P.S. Wave Crest Sensor
Intercomparison Study: An Overview of WACSIS. J. Offshore Mech. Arct. Eng. 2004, 126, 26–34. [CrossRef]

23. Buldakov, E.; Stagonas, D.; Simons, R. Extreme wave groups in a wave flume: Controlled generation and
breaking onset. Coast. Eng. 2017, 128, 75–83. [CrossRef]

24. Zang, J.; Taylor, P.H.; Tello, M. Steep Wave and Breaking Wave Impact on Offshore Wind Turbine
Foundations—Ringing Re-Visited. In Proceedings of the 25th International Workshop on Water Waves and
Floating Bodies, Harbin, China, 9–12 May 2010.

25. Zang, J.; Gibson, R.; Taylor, P.; Eatock Taylor, R.; Swan, C. Second order wave diffraction around a fixed
ship-shaped body in unidirectional steep waves. J. Offshore Mech. Arct. Eng. 2006, 128, 89–99. [CrossRef]

26. Bai, W.; Taylor, R.E. Numerical simulation of fully nonlinear regular and focused wave diffraction around a
vertical cylinder using domain decomposition. Appl. Ocean Res. 2007, 29, 55–71. [CrossRef]

27. Grilli, S.T.; Guyenne, P.; Dias, F. A fully non-linear model for three-dimensional overturning waves over an
arbitrary bottom. Int. J. Numer. Methods Fluids 2001, 35, 829–867. [CrossRef]

28. Grilli, S.T.; Dias, F.; Guyenne, P.; Fochesato, C.; Enet, F. Progress in Fully Nonlinear Potential Flow Modeling
of 3D Extreme Ocean Waves. In Advances in Numerical Simulation of Nonlinear Water Waves; World Scientific:
Singapore, 2010; Chapter 1, pp. 75–128, [CrossRef]

29. Brandini, C.; Grilli, S.T. Three-Dimensional Wave Focusing in Fully Nonlinear Wave Models. In Ocean Wave
Measurement and Analysis (2001); American Society of Civil Engineers: Reston, VA, USA, 2001; pp. 1102–1111,
[CrossRef]

30. Fochesato, C.; Grilli, S.; Dias, F. Numerical modeling of extreme rogue waves generated by directional
energy focusing. Wave Motion 2007, 44, 395–416. [CrossRef]

31. Wu, G.; Taylor, R.E. Finite element analysis of two-dimensional non-linear transient water waves.
Appl. Ocean Res. 1994, 16, 363–372. [CrossRef]

32. Wu, G.; Taylor, R.E. Time stepping solutions of the two-dimensional nonlinear wave radiation problem.
Ocean Eng. 1995, 22, 785–798. [CrossRef]

33. Madsen, P.A.; Murray, R.; Sørensen, O.R. A new form of the Boussinesq equations with improved linear
dispersion characteristics. Coast. Eng. 1991, 15, 371–388. [CrossRef]

34. Nwogu, O. Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coast.
Ocean Eng. 1993, 119, 618–638. [CrossRef]

http://dx.doi.org/10.1016/j.coastaleng.2018.08.004
http://dx.doi.org/10.1016/S0141-1187(86)80036-0
https://www.osti.gov/etdeweb/biblio/634779
http://dx.doi.org/10.1016/j.oceaneng.2009.07.011
http://dx.doi.org/10.1016/j.apor.2015.09.007
http://dx.doi.org/10.1007/s12204-018-1970-5
http://dx.doi.org/10.1115/1.1641388
http://dx.doi.org/10.1016/j.coastaleng.2017.08.003
http://dx.doi.org/10.1115/1.2185130
http://dx.doi.org/10.1016/j.apor.2007.05.005
http://dx.doi.org/10.1002/1097-0363(20010415)35:7<829::AID-FLD115>3.0.CO;2-2
http://dx.doi.org/10.1142/9789812836502_0003
http://dx.doi.org/10.1061/40604(273)112
http://dx.doi.org/10.1016/j.wavemoti.2007.01.003
http://dx.doi.org/10.1016/0141-1187(94)00029-8
http://dx.doi.org/10.1016/0029-8018(95)00014-C
http://dx.doi.org/10.1016/0378-3839(91)90017-B
http://dx.doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)


J. Mar. Sci. Eng. 2019, 7, 375 26 of 28

35. Madsen, P.A.; Bingham, H.B.; Liu, H. A new Boussinesq method for fully nonlinear waves from shallow to
deep water. J. Fluid Mech. 2002, 462, 1–30. [CrossRef]

36. Chazel, F.; Benoit, M.; Ern, A.; Piperno, S. A double-layer Boussinesq-type model for highly nonlinear and
dispersive waves. Proc. R. Soc. A 2009, 465, 2319–2346. [CrossRef]

37. Bateman, W.; Swan, C.; Taylor, P. On the calculation of the water particle kinematics arising in a directionally
spread wavefield. J. Comput. Phys. 2003, 186, 70–92. [CrossRef]

38. Bateman, W.; Katsardi, V.; Swan, C. Extreme ocean waves. Part I. The practical application of fully nonlinear
wave modelling. Appl. Ocean Res. 2012, 34, 209–224. [CrossRef]

39. Craig, W.; Sulem, C. Numerical Simulation of Gravity Waves. J. Comput. Phys. 1993, 108, 73–83. [CrossRef]
40. Ducrozet, G.; Bonnefoy, F.; Le Touzé, D.; Ferrant, P. A modified High-Order Spectral method for wavemaker

modeling in a numerical wave tank. Eur. J. Mech. B/Fluids 2012, 34. [CrossRef]
41. Bonnefoy, F.; Touzé, D.L.; Ferrant, P. A fully-spectral 3D time-domain model for second-order simulation of

wavetank experiments. Part A: Formulation, implementation and numerical properties. Appl. Ocean Res.
2006, 28, 33–43. [CrossRef]

42. Bonnefoy, F.; Touzé, D.L.; Ferrant, P. A fully-spectral 3D time-domain model for second-order simulation
of wavetank experiments. Part B: Validation, calibration versus experiments and sample applications.
Appl. Ocean Res. 2006, 28, 121–132. [CrossRef]

43. Bingham, H.B.; Zhang, H. On the accuracy of finite-difference solutions for nonlinear water waves.
J. Eng. Math. 2007, 58, 211–228. [CrossRef]

44. Engsig-Karup, A.; Bingham, H. Boundary-fitted solutions for 3D nonlinear water wave-structure interaction.
IWWWFB24, 2009; p. 20.

45. Yates, M.L.; Benoit, M. Accuracy and efficiency of two numerical methods of solving the potential flow
problem for highly nonlinear and dispersive water waves. Int. J. Numer. Methods Fluids 2015, 77, 616–640,
[CrossRef]

46. Raoult, C.; Benoit, M.; Yates, M.L. Validation of a fully nonlinear and dispersive wave model with laboratory
non-breaking experiments. Coast. Eng. 2016, 114, 194–207. [CrossRef]

47. Zhang, J.; Benoit, M.; Kimmoun, O.; Chabchoub, A.; Hsu, H.C. Statistics of Extreme Waves in Coastal Waters:
Large Scale Experiments and Advanced Numerical Simulations. Fluids 2019, 4, 99. [CrossRef]

48. Clamond, D.; Grue, J. A fast method for fully nonlinear water-wave computations. J. Fluid Mech. 2001,
447, 337–355. [CrossRef]

49. Fructus, D.; Clamond, D.; Grue, J.; Øyvind, K. An efficient model for three-dimensional surface wave
simulations: Part I: Free space problems. J. Comput. Phys. 2005, 205, 665–685. [CrossRef]

50. Belibassakis, K.; Athanassoulis, G. A coupled-mode system with application to nonlinear water waves
propagating in finite water depth and in variable bathymetry regions. Coast. Eng. 2011, 58, 337–350.
[CrossRef]

51. Athanassoulis, G.A.; Belibassakis, K.A.; Papoutsellis, C.E. An exact Hamiltonian coupled-mode system with
application to extreme design waves over variable bathymetry. J. Ocean Eng. Mar. Energy 2017, 3, 373–383.
[CrossRef]

52. Engsig-Karup, A.P.; Eskilsson, C. Spectral Element FNPF Simulation of Focused Wave Groups Impacting a
Fixed FPSO. In The 28th International Ocean and Polar Engineering Conference; International Society of Offshore
and Polar Engineers: Sapporo, Japan, 2018; p. 8.

53. Chen, L.F.; Zang, J.; Hillis, A.J.; Morgan, G.C.J.; Plummer, A.R. Numerical investigation of wave–structure
interaction using OpenFOAM. Ocean Eng. 2014, 88, 91–109. [CrossRef]

54. Vyzikas, T.; Stagonas, D.; Buldakov, E.; Greaves, D. The evolution of free and bound waves during dispersive
focusing in a numerical and physical flume. Coast. Eng. 2018, 132, 95–109. [CrossRef]

55. Westphalen, J.; Greaves, D.; Williams, C.; Hunt-Raby, A.; Zang, J. Focused waves and wave–structure
interaction in a numerical wave tank. Ocean Eng. 2012, 45, 9–21. [CrossRef]

56. Bihs, H.; Kamath, A.; Chella, M.A.; Aggarwal, A.; Arntsen, Ø.A. A new level set numerical wave tank
with improved density interpolation for complex wave hydrodynamics. Comput. Fluids 2016, 140, 191–208.
[CrossRef]

57. Bihs, H.; Kamath, A.; Alagan Chella, M.; Arntsen, Ø. Extreme Wave Generation, Breaking and Impact
Simulations With REEF3D. In Proceeding of the 36th International Conference on Ocean, Offshore & Arctic
Engineering, Trondheim, Norway, 25–30 June 2017.

http://dx.doi.org/10.1017/S0022112002008467
http://dx.doi.org/10.1098/rspa.2008.0508
http://dx.doi.org/10.1016/S0021-9991(03)00012-3
http://dx.doi.org/10.1016/j.apor.2011.05.002
http://dx.doi.org/10.1006/jcph.1993.1164
http://dx.doi.org/10.1016/j.euromechflu.2012.01.017
http://dx.doi.org/10.1016/j.apor.2006.05.004
http://dx.doi.org/10.1016/j.apor.2006.05.003
http://dx.doi.org/10.1007/s10665-006-9108-4
http://dx.doi.org/10.1002/fld.3992
http://dx.doi.org/10.1016/j.coastaleng.2016.04.003
http://dx.doi.org/10.3390/fluids4020099
http://dx.doi.org/10.1017/S0022112001006000
http://dx.doi.org/10.1016/j.jcp.2004.11.027
http://dx.doi.org/10.1016/j.coastaleng.2010.11.007
http://dx.doi.org/10.1007/s40722-017-0096-4
http://dx.doi.org/10.1016/j.oceaneng.2014.06.003
http://dx.doi.org/10.1016/j.coastaleng.2017.11.003
http://dx.doi.org/10.1016/j.oceaneng.2011.12.016
http://dx.doi.org/10.1016/j.compfluid.2016.09.012


J. Mar. Sci. Eng. 2019, 7, 375 27 of 28

58. Bihs, H.; Kamath, A.; Alagan Chella, M.; Arntsen, Ø.A. Extreme Wave Generation, Breaking, and Impact
Simulations Using Wave Packets in REEF3D. J. Offshore Mech. Arct. Eng. 2019, 141, 41802–41807. [CrossRef]

59. Bihs, H.; Alagan Chella, M.; Kamath, A.; Arnsten, Ø.A. Wave-Structure Interaction of Focussed Waves with
REEF3D. In Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic
Engineering, Busan, Korea, 19–24 June 2016; number 49934, p. V002T08A027.

60. Bihs, H.; Chella, M.A.; Kamath, A.; Arntsen, Ø.A. Numerical Investigation of Focused Waves and Their
Interaction With a Vertical Cylinder Using REEF3D. J. Offshore Mech. Arct. Eng. 2017, 139, 41101–41108.
[CrossRef]

61. Paulsen, B.T.; Bredmose, H.; Bingham, H. An efficient domain decomposition strategy for wave loads on
surface piercing circular cylinders. Coast. Eng. 2014, 86, 57–76. [CrossRef]

62. Chella, M.A.; Bihs, H.; Myrhaug, D. Wave impact pressure and kinematics due to breaking wave
impingement on a monopile. J. Fluids Struct. 2019, 86, 94–123. [CrossRef]

63. Kamath, A.; Chella, M.A.; Bihs, H.; Arntsen, Ø.A. Evaluating wave forces on groups of three and nine
cylinders using a 3D numerical wave tank. Eng. Appl. Comput. Fluid Mech. 2015, 9, 343–354. [CrossRef]

64. Kamath, A.; Bihs, H.; Arntsen, Ø.A. Study of Water Impact and Entry of a Free Falling Wedge Using
Computational Fluid Dynamics Simulations. J. Offshore Mech. Arct. Eng. 2017, 139, 31802–31806. [CrossRef]

65. Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Numerical modelling of pipeline scour
under the combined action of waves and current with free-surface capturing. Coast. Eng. 2019, 148, 19–35.
[CrossRef]

66. Bihs, H.; Kamath, A.; Aggarwal, A.; Pakozdi, C. Efficient Wave Modeling using Nonhydrostatic Pressure
Distribution and Free Surface Tracking on Fixed Grids. J. Offshore Mech. Arct. Eng. 2019, 141, 41805–41806.
[CrossRef]

67. Beji, S.; Battjes, J.A. Experimental investigation of wave propagation over a bar. Coast. Eng. 1993, 19, 151–162.
[CrossRef]

68. Bihs, H.; Wang, W.; Martin, T.; Kamath, A. REEF3D::FNP—A Flexible Fully Nonlinear Potential Flow Solver.
In Proceeding of the 38th International Conference on Ocean, Offshore & Arctic Engineering, Glasgow,
Scotland, UK, 9–14 June 2019; in press.

69. Mayer, S.; Garapon, A.; Sørensen, L.S. A fractional step method for unsteady free surface flow with
applications to non-linear wave dynamics. Int. J. Numer. Methods Fluids 1998, 28, 293–315. [CrossRef]

70. Van der Vorst, H. BiCGStab: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems. SIAM J. Sci. Comput. 1992, 13, 631–644. [CrossRef]

71. Jiang, G.S.; Shu, C.W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 1996,
126, 202–228. [CrossRef]

72. Shu, C.W.; Osher, S. Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes.
J. Comput. Phys. 1988, 77, 439–471. [CrossRef]

73. Hennig, J. Generation and Analysis of Harsh Wave Environments. Ph.D. Thesis, Technical University Berlin,
Berlin, Germany, 2005.

74. DNV Recommended Practice RP-C205 “Environmental Conditions and Environmental Loads”; Technical Report;
2000. Available online: https://books.google.com.ph/books?hl=en&lr=&id=p6dpDQAAQBAJ&oi=
fnd&pg=PR5&dq=In+Advances+in+Numerical+Simulation+of+Nonlinear+Water+Waves%3B+World+
Scientific:&ots=ACLl5FYHQ0&sig=GJHXXMCd29gQ23p3FTAQD1jHnZk&redir_esc=y#v=onepage&
q=In%20Advances%20in%20Numerical%20Simulation%20of%20Nonlinear%20Water%20Waves%3B%
20World%20Scientific%3A&f=false (accessed on 20 October 2019).

75. Pierson, W.J.; Neumann, G.; James, R.W. Practical Methods for Observing and Forecasting Ocean Waves by Means
of Wave Spectra and Statistics; U.S. Government Printing Office: Washington, DC, USA, 1955.

76. Duarte, T.; Gueydon, S.; Jonkman, J.; Sarmento, A. Computation of Wave Loads under Multidirectional Sea
States for Floating Offshore Wind Turbines. In Proceedings of the 33rd International Conference on Ocean,
Offshore and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014. [CrossRef]

77. Jefferys, E.R. Directional seas should be ergodic. Appl. Ocean Res. 1987. [CrossRef]
78. Schäffer, H.A. Second-Order Wavemaker Theory for Irregular Waves. Ocean Eng. 1996, 23, 47–88. [CrossRef]
79. Baldock, T.E.; Swan, C.; Taylor, P.H. A laboratory study of nonlinear surface waves on water. Philos. Trans.

R. Soc. A 1996. [CrossRef]

http://dx.doi.org/10.1115/1.4042178
http://dx.doi.org/10.1115/1.4036206
http://dx.doi.org/10.1016/j.coastaleng.2014.01.006
http://dx.doi.org/10.1016/j.jfluidstructs.2019.01.016
http://dx.doi.org/10.1080/19942060.2015.1031318
http://dx.doi.org/10.1115/1.4035384
http://dx.doi.org/10.1016/j.coastaleng.2019.02.008
http://dx.doi.org/10.1115/1.4043179
http://dx.doi.org/10.1016/0378-3839(93)90022-Z
http://dx.doi.org/10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1006/jcph.1996.0130
http://dx.doi.org/10.1016/0021-9991(88)90177-5
https://books.google.com.ph/books?hl=en&lr=&id=p6dpDQAAQBAJ&oi=fnd&pg=PR5&dq=In+Advances+in+Numerical+Simulation+of+Nonlinear+Water+Waves%3B+World+Scientific:&ots=ACLl5FYHQ0&sig=GJHXXMCd29gQ23p3FTAQD1jHnZk&redir_esc=y#v=onepage&q=In%20Advances%20in%20Numerical%20Simulation%20of%20Nonlinear%20Water%20Waves%3B%20World%20Scientific%3A&f=false
https://books.google.com.ph/books?hl=en&lr=&id=p6dpDQAAQBAJ&oi=fnd&pg=PR5&dq=In+Advances+in+Numerical+Simulation+of+Nonlinear+Water+Waves%3B+World+Scientific:&ots=ACLl5FYHQ0&sig=GJHXXMCd29gQ23p3FTAQD1jHnZk&redir_esc=y#v=onepage&q=In%20Advances%20in%20Numerical%20Simulation%20of%20Nonlinear%20Water%20Waves%3B%20World%20Scientific%3A&f=false
https://books.google.com.ph/books?hl=en&lr=&id=p6dpDQAAQBAJ&oi=fnd&pg=PR5&dq=In+Advances+in+Numerical+Simulation+of+Nonlinear+Water+Waves%3B+World+Scientific:&ots=ACLl5FYHQ0&sig=GJHXXMCd29gQ23p3FTAQD1jHnZk&redir_esc=y#v=onepage&q=In%20Advances%20in%20Numerical%20Simulation%20of%20Nonlinear%20Water%20Waves%3B%20World%20Scientific%3A&f=false
https://books.google.com.ph/books?hl=en&lr=&id=p6dpDQAAQBAJ&oi=fnd&pg=PR5&dq=In+Advances+in+Numerical+Simulation+of+Nonlinear+Water+Waves%3B+World+Scientific:&ots=ACLl5FYHQ0&sig=GJHXXMCd29gQ23p3FTAQD1jHnZk&redir_esc=y#v=onepage&q=In%20Advances%20in%20Numerical%20Simulation%20of%20Nonlinear%20Water%20Waves%3B%20World%20Scientific%3A&f=false
https://books.google.com.ph/books?hl=en&lr=&id=p6dpDQAAQBAJ&oi=fnd&pg=PR5&dq=In+Advances+in+Numerical+Simulation+of+Nonlinear+Water+Waves%3B+World+Scientific:&ots=ACLl5FYHQ0&sig=GJHXXMCd29gQ23p3FTAQD1jHnZk&redir_esc=y#v=onepage&q=In%20Advances%20in%20Numerical%20Simulation%20of%20Nonlinear%20Water%20Waves%3B%20World%20Scientific%3A&f=false
http://dx.doi.org/10.1115/OMAE2014-24148
http://dx.doi.org/10.1016/0141-1187(87)90001-0
http://dx.doi.org/10.1016/0029-8018(95)00013-B
http://dx.doi.org/10.1098/rsta.1996.0022


J. Mar. Sci. Eng. 2019, 7, 375 28 of 28

80. Alber, I.E.; Stewartson, K. The effects of randomness on the stability of two-dimensional surface wavetrains.
Proc. R. Soc. Lond. A 1978, 363, 525–546. [CrossRef]

81. Socquet-Juglard, H.; Dysthe, K.; Trulsen, K.; Krogstad, H.E.; Liu, J. Probability distributions of surface
gravity waves during spectral changes. J. Fluid Mech. 2005, 542, 195–216. [CrossRef]

82. Dysthe, K.B.; Trulsen, K.; Krogstad, H.E.; Socquet-Juglard, H. Evolution of a narrow-band spectrum of
random surface gravity waves. J. Fluid Mech. 2003, 478, 1–10, [CrossRef]

83. Kharif, C.; Pelinovsky, E.; Slunyaev, A. Rogue Waves in the Ocean. In Advances in Geophysical and
Environmental Mechanics and Mathematics; Springer: Berlin/Heidelberg, Germany, 2009. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1098/rspa.1978.0181
http://dx.doi.org/10.1017/S0022112005006312
http://dx.doi.org/10.1017/S0022112002002616
http://dx.doi.org/10.1007/978-3-540-88419-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Numerical Model
	Governing Equations
	Focused Wave Generation

	Results and Discussion
	Validation of the Focused Wave Group Generation in the Numerical Wave Tank (NWT)
	Effects of Nonlinearity
	Effects of Frequency Bandwidth
	Effects of Wave Generation Method
	Effects of Directional Spreading on 3D Focused Wave Group

	Conclusions
	References

