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Abstract 

 

Major depressive disorder (MDD) is one of the most common mood disorders in the world 

with a life-time prevalence of approximately 17%. MDD is characterized by emotional and 

cognitive disturbances, and is accompanied by volumetric changes of neural areas that likely 

arise from disturbed forms of neuroplasticity. The hippocampus has received a wealth of 

attention in MDD-related research not only because it is a prominent area to study forms of 

neuroplasticity, but also because it is engaged in cognitive as well as in emotional functions. 

In addition, the hippocampus displays a volumetric decrease in MDD. While it has been 

shown that stress associated with the development of MDD modulates forms of synaptic 

plasticity, investigations into the molecular correlates of these plastic changes are negligible. 

The present work investigates the immunolocalization and concentration of synaptic proteins 

involved in synaptic plasticity in the learned helpless model of depression. By means of 

immunogold electron microscopy, the relative concentration of the synaptic proteins 

syntaxin1, the NMDA receptor subunit NR2B, and Arc were examined in different region of 

the synapse. The synaptic regions of interest were the active zone, the postsynaptic density 

(PSD), and the presynaptic and postsynaptic cytoplasm in Schaffer collateral synapses of 

hippocampal area CA1. Comparing the learned helpless group to the wild-type group, I found 

a higher concentration of NR2B in the postsynaptic cytoplasm and in the PSD, as well as a 

higher concentration of Arc in the PSD of the learned helpless group. By contrasting the non-

learned helpless group to the wild-type group, I found a lower concentration of syntaxin1 in 

both the presynaptic cytoplasm and in the PSD, as well as a greater concentration of NR2B in 

the postsynaptic cytoplasm and in the PSD in the non-learned helpless group. In addition, the 

learned helpless group displayed a higher concentration of syntaxin1 in the pre- and 

postsynaptic cytoplasm compared to the non-learned helpless group. The altered relative 

concentrations of these proteins are probably related to changes in synaptic plasticity in the 

learned helpless model of depression. One may speculate that the changed relative 

concentrations of the synaptic proteins contribute to the behavioral changes in the learned 

helpless model, and hence may be related to the pathology of MDD.  
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1. Introduction 

 

1.1  The brain as a substrate for diseases of the mind 

Human beings have a great range of cognitive abilities such as the ability to learn, to make 

decisions or to produce and understand language. All of these functions arise from complex 

communication between cells in the brain. To understand the biological basis of behavior, 

cognition, and emotion, as well as determining the molecular events underlying pathological 

conditions in these human functions is one of today’s greatest scientific challenges. 

Despite the fact that the relationship between rigorous neural activity and the emergence of 

behavior and cognitive states has not been fully understood, the discipline of neuroscience is 

making constant progress in apprehending the working mechanisms of the brain. One of the 

most demanding questions neuroscientists try to find answers to is how consciousness evolves 

in terms of neurobiological processes. The current approach in trying to explain the 

commencement of consciousness focuses on the “neural correlates of consciousness”. These 

neural correlates represent the idea that the firing of neural circuits might eventually terminate 

in conscious awareness. So far, knowledge on the neural mechanisms of consciousness is 

sparse (Chalmers, 1995).  

Much of our current understanding of the brain derives from Santiago Ramon y Cayal’s 

neuroanatomical investigations of the nervous system which lead to the foundation of the 

neuron doctrine (Kandel and Squire, 2000). The neuron doctrine postulates that the brain 

consists of a vast amount of discrete cells, the neurons, which pass on information through 

specialized contact points, the synapses. Neurons and synapses are subjected to constant 

experience-dependent modifications throughout life. These changes in neural pathways and 

synapses are the consequence of our daily experiences and shape our future thinking, feeling 

and behavior. Disturbed neural pathways and molecular processes within the synapse might 

lead to the development of psychiatric disease. 

Given the advance of functional neuroanatomy and our increasing understanding of the 

molecular mechanisms underlying synaptic transmission, neuroscience has been contributing 

immensely to neurology and psychiatry. Though there exist many valuable treatment options 

for persons suffering from psychiatric disorders, it is of utmost importance for neuroscientific 
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Figure 1 

12-month prevalence of selected psychiatric disorders by age 

 

Retrieved from “Kaplan and Sadock’s comprehensive textbook of psychiatry”, Blazer 

(2000): Mood disorders epidemiology. 

 

 

 

 

 

 

 

 

 

 

 

research to further study neural areas whose activity is affected by psychiatric disorders in 

order to implement excellent treatment options (Kandel and Squire, 2000). 

Understanding the neural mechanism underlying behavior and cognition, and hence 

psychiatric disorders, requires the ever increasing advancement in all fields of neuroscience to 

fully reveal an integrative concept about normal and abnormal human behavior. The purpose 

of this work is to examine the involvement of synaptic proteins in psychiatric disease; in this 

MDD. 

 

1.2  Epidemiology of mood disorders 

Mood disorders, such 

as MDD or substance-

induced mood 

disorders are among the 

most prevalent mental 

disorders in the world 

(figure 1). Furthermore, 

persons affected by 

mental illness show a 

high relapse rate. MDD 

is regarded as one of 

the top ten leading 

medical causes of 

disability in the world, 

being second to only ischaemic heart disease (Murray and Lopez, 1997). The lifetime 

prevalence of MDD of experiencing at least one major depressive episode is 17 %. In 

comparison to all psychiatric disorders captured by the DSM-V (Diagnostic and Statistical 

Manual of Mental Disorders, fifth edition), MDD has the highest projected lifetime risk with 

23 % of the population suffering from MDD by the end of their lives. MDD affects all age 

ranges; however, it affects people above the age of sixty to a lesser extent. While MDD is 

equally affecting males and females during childhood, MDD is more common in women than 

in men after puberty (Seedat et al., 2009, Kessler et al., 2005). About 85 % of recovered 

patients relapse at some time in their lives, and only one out of nine persons that experienced 
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one depressive episode will recover for more than 15 years without any relapse (Mueller et 

al., 1999). 

There are many risk factors associated with the development of MDD. However, it is difficult 

to determine whether these risk factors are an association or causation of MDD. Nevertheless, 

studies have consistently demonstrated that there are four risk factors which are associated 

with MDD. These four risk factors are gender, stressful life events, aversive childhood 

experiences, and certain personality traits (Fava and Kendler, 2000).  

 

1.3  Symptoms and classification of major depressive disorder 

Everybody reacts with sadness in response to a painful stimulus because being sad is an 

evolutionary adaptive response forcing us into action. MDD is not necessarily adaptive and 

distinguishes itself from regular sadness by its severity, pervasiveness, duration, and 

symptoms. These symptoms comprise physiological, behavioural as well as cognitive 

disturbances. A depressive episode is marked in most cases by anhedonia (an inability to 

experience pleasure) and depressed mood (guilt, suicidality etc.). Some patients also 

predominantly express anger or irritability (Hyman and Cohen, 2013). 

The International Classification of Diseases (ICD), 10
th

 edition, chapter V:  Mental and 

Behavioural Disorders by the World Health Organization and the Diagnostic and Statistical 

Manual of Mental Disorders (DSM), fifth edition, issued in May 2013 by the American 

Psychiatric Association are commonly applied diagnostic tools to classify abnormal behaviour 

as manifesting itself in a psychiatric disorder. Though there are different forms of depression, 

MDD is the most common type according to the DSM-V. The equivalent of MDD in the ICD-

10 is recurrent depression. 

As shown in figure 2, the classification of MDD by the DSM-V depends on the expression of 

five or more symptoms that must occur within a two-week period. One of the expressed 

symptoms must be anhedonia or depressed mood. The ICD-10 classifies a recurrent 

depression if one or more depressive episodes occur within a two-week time period, and if the 

patient expresses two out of three core symptoms (depressed mood, loss of interest and 

enjoyment, reduced energy leading to fatigability and diminished activity) and at least three 

common symptoms (Hyman and Cohen, 2013). 
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Figure 2 

Criteria for a major depressive episode 

A. Five (or more) of the following symptoms have been present during the same 2-week period and represent a change from previous functioning; at least one of the 

symptoms is either (1) depressed mood or (2) loss of interest or pleasure. Note: Do not include symptoms that are clearly due to a general medical condition, or mood-

incongruent delusions or hallucinations.  

o depressed mood most of the day, nearly every day, as indicated by either subjective report (e.g., feels sad or empty) or observation made by 

others (e.g., appears tearful). Note: In children and adolescents, can be irritable mood. 

o markedly diminished interest or pleasure in all, or almost all, activities most of the day, nearly every day (as indicated by either subjective 

account or observation made by others) 

o significant weight loss when not dieting or weight gain (e.g., a change of more than 5% of body weight in a month), or decrease or increase in 

appetite nearly every day. Note: In children, consider failure to make expected weight gains. 

o insomnia or hypersomnia nearly every day 

o psychomotor agitation or retardation nearly every day (observable by others, not merely subjective feelings of restlessness or being slowed 

down) 

o fatigue or loss of energy nearly every day 

o feelings of worthlessness or excessive or inappropriate guilt (which may be delusional) nearly every day (not merely self-reproach or guilt 

about being sick) 

o diminished ability to think or concentrate, or indecisiveness, nearly every day (either by subjective account or as observed by others) 

o recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation without a specific plan, or a suicide attempt or a specific plan 

for committing suicide 

B. The symptoms do not meet criteria for a Mixed Episode. 

C. The symptoms cause clinically significant distress or impairment in social, occupational, or other important areas of functioning. 

D. The symptoms are not due to the direct physiological effects of a substance (e.g., a drug of abuse, a medication) or a general medical condition (e.g., hypothyroidism). 

E. The symptoms are not better accounted for by Bereavement, i.e., after the loss of a loved one, the symptoms persist for longer than 2 months or are characterized by 

marked functional impairment, morbid preoccupation with worthlessness, suicidal ideation, psychotic symptoms, or psychomotor retardation. 

Retrieved from http://dsm.psychiatryonline.org/content.aspx?bookid=22&sectionid=1890406#2132 

 

 

 

Because MDD (DSM-V) and recurrent depression (ICD-10) are the major types of 

depression, and are largely overlapping, I will refer to MDD throughout the text when writing 

about depression.  

 

To consider the experimental work in a broader context, I will give a brief overview of the 

anatomy of the nervous system, and will specifically highlight those regions which are 

involved in MDD. 

 

1.4  The structure of the brain 

 

1.4.1 The nervous system and signal transmission 

The nervous system is subdivided into the central nervous system (CNS) and the peripheral 

nervous system (PNS). The CNS comprises the spinal cord and the brain, which is again 

divided into six parts. These six parts are the medulla, the pons and the midbrain (brain stem), 

the cerebellum, the diencephalon (containing e.g. the thalamus and the hypothalamus), and 

the cerebrum (containing the cerebral hemispheres, the hippocampus, structures of the basal 

ganglia, and the amygdala). 
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Figure 3 

Asymmetric and symmetric synapses

 

 

The cerebral hemispheres comprise the largest part of the brain and are divided into four 

different lobes. These are the frontal, the parietal, the temporal and the occipital lobes, each 

embodying a different set of functions such as the planning of actions, somatic sensation, 

vision or hearing. The CNS does not unite with the overlying bone of the skull. Instead, three 

membranes, the dura mater, the arachnoid membrane and the pia mater (collectively called the 

meninges), cover the CNS. The cavernous interior part of the brain, making up the ventricular 

system, is filled with cerebrospinal fluid (CSF). The PNS is defined as all the parts of the 

nervous system lying outside the brain and spinal 

cord, i.e. consisting of the spinal nerves and 

autonomic nervous system (Kandel and Hudspeth, 

2013).  

Brain tissue is made up by two different main cell 

types which are the neurons and neuroglia. A 

neuronal cell consists of a cell body, dendrites, 

axons and synaptic terminals. The intermediate 

filaments, microtubules and actin filaments lend 

the neuron its shape and stability, and are also 

involved in the delivery of pre- and postsynaptic 

supplies to the synaptic plasma membranes. There 

are about 50 different types of neurons each 

expressing different genes and synthesizing 

different proteins (Schwartz et al., 2013). Glia cells 

(astrocytes, oligodendrocytes, ependymal cells and 

microglia) support neuronal functioning. They are 

for example supplying neurons with nutrients and 

oxygen, or are involved in the recycling of 

neurotransmitters. There seems to be evidence that 

astrocytes also regulate synaptic strength and 

synaptogenesis (Nedergaard et al., 2003). 

The contact point for information exchange is at 

chemical and electrical synapses. While in 

electrical synapses electrical current flows 

A = asymmetric synapse in the 

hippocampus. B = symmetric synapse in 

the hippocampus. Arrows point to the 

presynaptic site of the synapse. Compared 

to the symmetric synapse, the excitatory 

asymmetric synapse has a larger synaptic 

cleft, is located on dendritic shafts, and 

expresses a clearly visible PSD. Retrieved 

from 

http://synapses.clm.utexas.edu/anatomy/ch

emical/synapse.stm 

 

A 

B 
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passively through gap junctions, chemical synapses release neurotransmitters which act as 

messengers communicating between the presynaptic and postsynaptic membrane. There are 

two main types of chemical synapses: Excitatory and inhibitory synapses. These two types of 

synapses differ with respect to the kind of postsynaptic response, neurotransmitter types, and 

morphology (figure 3). The more common excitatory type I (asymmetric) synapse has a large 

synaptic cleft, is located on dendritic shafts, expresses a clearly visible PSD, and releases 

glutamate. The inhibitory type II (symmetric) synapse releases GABA (gamma-aminobutyric 

acid) and has a less pronounced, but more elongated, PSD. Though this so-called functional 

Gray concept is accepted and frequently applied, debate continues about the strict division 

between type I and type II synapses (Klemann and Roubos, 2011). 

The information exchange at chemical synapses is mediated by action potentials arriving at 

the presynaptic terminal thereby depolarizing the presynaptic cell. This leads to the opening 

of voltage-gated Ca
2+

 channels. The increasing amount of [Ca
2+

] into the cell triggers the 

actual exocytic fusion of the vesicle membrane with the presynaptic plasma membrane in 

order to deliver neurotransmitters into the synaptic cleft. A coding system of Rab proteins on 

the surface of the vesicle allows for the initial recognition between the vesicle and the target 

membrane. Once the vesicle is tethered to the target plasma membrane by holding onto the 

vesicles’ Rab proteins, v-SNARE’s (SNARE proteins on the vesicle) bind to complementary 

t-SNAREs (SNARE proteins on the target membrane) that ultimately fuse the vesicle to the 

target membrane through an interplay with SM (Sec1/Munc18-like) proteins (Sudhof and 

Rizo, 2011). 

Neurotransmitters are generally divided into amino acids (such as glutamate or GABA), 

amines (acetylcholine, serotonin or dopamine amongst others) and peptides (for instance 

neuropeptides). Released neurotransmitters diffuse from a local high concentration to a region 

with a lower concentration, and in most cases bind to postsynaptic receptors. Whether 

postsynaptic channels open or close depends on the receptor onto which the neurotransmitters 

bind. The opening or closing of channels determines the postsynaptic current generating either 

an excitatory or inhibitory postsynaptic potential in the cell. Neurotransmitters in the synaptic 

cleft are eventually degraded, taken up by astrocytes or recycled and sent back to the 

presynaptic neuron (Bear, 2007). 
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While the section described above focused on the general anatomy and cell biology, specific 

brain regions are involved in MDD. These brains regions, specifically the hippocampus, will 

be highlighted below. 

1.4.2 Brain areas involved in major depressive disorder 

The first serious discussions and analyses of 

the idea that certain neural areas are involved 

in the pathology of mood disorders emerged 

with Papez’s outline of the system of emotion 

(Papez, 1937). This emotion-processing 

circuit involves the cingulate gyrus, the 

hippocampus, the hypothalamus and the 

anterior thalamic nuclei. Today, major parts 

of this system such as the amygdala or the 

hippocampus are accepted structures 

involved in maintaining emotional stability. 

In addition, the PFC (prefrontal cortex) is 

now a recognized neural area of the emotion-

processing system. As discussed below, 

certain neural areas involved in the 

processing of emotion show a volumetric reduction during MDD (table 1). These volumetric 

changes need to be considered with caution. It is not yet apparent whether (i) these volumetric 

changes are sole reversible neuroplastic abnormalities, and (ii) whether structural changes 

precede MDD or occur over the course of the disease. The amygdala, the PFC, and the 

hippocampus have received major attention in neuroplasticity-related research of MDD. 

The amygdala plays a major role in the regulation of emotion due to its involvement in 

emotional learning as well as in coordinating cortical arousal and neuroendocrine responses. It 

is not agreed upon whether the amygdala increases or decreases in size during MDD. It seems 

that in depressed patients the size of the amygdala increases at first, but with iterative 

depressive episodes decreases in size (Hamilton et al., 2008, Lorenzetti et al., 2009). 

The PFC is located in front of the motor and premotor areas and is involved in integrating 

sensorimotor information with motivation and affect. The PFC is grossly divided into the 

Brain region Volume Antidepressant 

treatment 

VMPFC 
 

 

ACC (?) 
 

(Metabolic 

activity) 

Hippocampus 
    

(Volume) 

Amygdala 
(?)   

(Metabolic 

activity) 

DLPFC 
 

(?) 

 

Table 1 

Structural changes in selected brain areas 

ACC = anterior cingulate cortex, DLPFC = 

dorsolateral prefrontal cortex, VMPFC = ventral 

medial prefrontal cortex. Retrieved from Palazidou 

(2012), Br Med Bull. 
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Figure 4 

The hippocampal formation and its internal 

projections 

 

EC = entorhinal cortex, para = parasubiculum, pre 

= presubiculum, DG = dentate gyrus, 

CA1/CA2/CA3 = CA1/CA2/CA3 regions of the 

hippocampus. Retrieved from «The hippocampus 

book», Amaral & Lavenex (2006): Hippocampal 

neuroanatomy. 

dorsolateral prefrontal cortex (DLPFC), the anterior cingulate cortex (ACC), and the 

orbitofrontal cortex. Each of these subdivisions controls different aspects of emotion 

regulation and processing, and shows a varying degree of neural activity during MDD. This 

varying neural activity seems to be correlated with some of the expressed symptoms of 

depressed persons. For example, decreased neural activity in the DLPFC is associated with 

psychomotor retardation and anhedonia. It has been shown that MDD is accompanied with a 

significant decrease in volume of this brain region (Palazidou, 2012). 

The hippocampus proper is part of the 

hippocampal formation (HF) which in addition 

contains the dentate gyrus (DG), the subiculum, 

the presubiculum, the parasubiculum, and the 

entorhinal cortex (EC) as shown in figure 4. 

The hippocomapus is the most widely studied 

brain region in the field of MDD. The reasons 

for this are because i) it is involved in learning 

and memory that play a role in emotional 

responses, ii) it is enriched with corticosteroid 

receptors and a malfunctioning hypothalamic-

pituitary-adrenal (HPA) axis is a prominent 

feature of MDD, iii) it is one of only two brain 

regions known today that exhibit neurogenesis 

which is disturbed during MDD, and iv) it has strong connections with the amygdala and PFC 

(Palazidou, 2012). A hippocampal volume loss is also a distinct feature of MDD (Lorenzetti 

et al., 2009). 

The hippocampus is divided into different parts and structural layers that will be briefly 

outlined in the next section. 

 

1.4.2 CA1 of the hippocampus 

The hippocampus accommodates three distinct regions which are the Cornu Ammonis Area 1 

(CA1), Cornu Ammonis Area 2 (CA2), and Cornu Ammonis Area 3 (CA3) each consisting of 

several layers. 
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Figure 5 

CA1 pyramidal neuron 

 

Pcl = pyramidal cell layer, sl-m = stratum 

lacunosum-moleculare, so = stratum oriens, sr = 

stratum radiatum, Scale bar = 100 µm. Retrieved 

from «The hippocampus book», Amaral & 

Lavenex (2006): Hippocampal neuroanatomy. 

 

Figure 5 displays a CA1 pyramidal cell. The basal dendrites of the pyramidal cells project 

into the stratum oriens. Superior to the pyramidal cell layer in CA3 lays the stratum lucidum. 

Above the stratum lucidum in CA3 and directly above the pyramidal cells layer in CA1 and 

CA2 is the stratum radiatum. The most superficial layer of the hippocampus above the stratum 

radiatum is the lacunosum-moleculare (van Strien et al., 2009). 

During the experimental part of this work I focus 

on the apical dendrites of pyramidal cells which 

span the stratum radiatum of the CA1. 

Irrespective of their location in CA1, all 

pyramidal cells have approximately the same 

dendritic length (13.5 mm). It is known that 

almost 30000 excitatory and 1700 inhibitory 

neurons connect with a single CA1 pyramidal 

cell. Inhibitory input mainly targets the soma and 

the axon of the pyramidal cell. Excitatory input 

arrives through the dendrites of various external 

inputs. The distal tufts of CA1 pyramidal cell 

dendrites receive their main input from the EC 

through the perforant pathway and the thalamus, 

while more proximal dendrites receive the input 

from CA3 neurons through the Schaffer 

collaterals. The analyses of apical dendrites in 

CA1 during this work focus on spines containing 

Schaffer collateral synapses that constitute the postsynaptic sites of excitatory glutamatergic 

input. There are different morphological types of spines in the hippocampus. The morphology 

is possibly related to the spines’ functions such as increasing the surface of dendrites and 

therefore the amount of synapses, restricting and controlling the diffusion of molecules, or 

regulating the electrical cell properties (Spruston, 2008). 

The hippocampus can be regarded as the origin of our knowledge on various types of 

plasticity. Structural and synaptic plasticity have been immensely studied in this neural area 

and revealed many insights on the growth, loss and remodelling of neurons, dendritic spines 

and synapses. It is widely accepted that stress has a negative effect on the rate of neurogenesis 
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or the induction of LTP in the hippocampus. Neuroplastic changes are the consequence of our 

experiences, and are the basis of our future thinking, behaviour, and feeling. Malfunctioning 

forms of plasticity might therefore contribute to the pathology of MDD. Exploring disturbed 

forms of plasticity might reveal explanations why the hippocampus decreases in size during 

MDD. Prominent forms of plasticity will be highlighted below. 

 

1.5  Forms of synaptic plasticity 

Long-term molecular changes of synapses are due to experience-dependent modifications that 

underlie altered neural activity. This process is termed synaptic plasticity. Mechanisms of 

synaptic plasticity are acting at different levels including long-term potentiation (LTP) and 

long-term depression (LTD), as well as structural plasticity or the recently described form of 

homeostatic plasticity. It has recently been shown that plastic changes in the brain as 

measured by region-specific cognitive tasks can be used as a model to test the neuroplasticity 

hypothesis of MDD (Nissen et al., 2010). The neuroplasticity hypothesis assumes that the 

adaptation of neurons and synapses to external and internal stimuli plays a major role in the 

pathology of MDD. The study by Nissen et al. (2010) revealed that synaptic plasticity is 

decreased in the hippocampus and the PFC, and increased in the amygdala as measured by 

cognitive tasks involving one of the later three neural regions. In addition, a study by Hajszan 

et al. (2009) revealed that learned helpless behavior in rats is associated with a loss of 

synapses in the hippocampus. In sum, these studies indicate alterations in long-term synaptic 

plasticity are occurring during MDD. 

1.5.1 Long-term potentiation and long-term depression 

1.5.1.1 Long-term potentiation 

The mechanisms of LTP and LTD demonstrate that individual synapses are capable of long-

lasting experience-dependent modifications. LTP was initially discovered by Timothy Bliss 

and Terje Lømo who found that a high-frequency electrical stimulation (tetanus) of excitatory 

pathways to the hippocampus leads to a long-lasting amplitude increase of the excitatory 

postsynaptic potentials (EPSPs) in dentate granule neurons (Bliss and Collingridge, 1993). 
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Figure 6 

Induction of LTP 

 

During normal synaptic transmission, glutamate (Glu) is released from 

the presynaptic cell and acts on AMPA and NMDA receptors. Na+ flows 

only through the AMPA receptor, because Mg2+ blocks the channel of the 

NMDA receptor. Depolarization of the postsynaptic cell relieves the 

Mg2+ block of the NMDA receptor, allowing Na+ and Ca2+ to flow into 

the dendritic spine. The resultant rise in Ca2+ is the critical trigger of 

LTP. Retrieved from Malenka (1999), Science.  

 

 

 

 

 

Figure 6 shows how LTP is 

induced. The interplay between 

Schaffer collaterals and CA1 

pyramidal neurons relies on 

input-specificity ([Ca
2+

] 

increases only in a certain 

activated dendritic spine) and 

associativity (activation of one 

set of synapses can facilitate 

LTP in another set of synapses 

in the same cell given an 

appropriate time window). The 

release of glutamate from the 

Schaffer collaterals activates 

both AMPARs (α-amino-3-

hydroxy-5-methyl-4-

isoxazolepropanoic acid receptors) and NMDARs (N-Methyl-D-aspartate receptors) in the 

postsynaptic membrane. In contrast to the AMPARs, opening of the NMDARs requires that 

Mg
2+

, which blocks the NMDA channel at the resting stage, is displaced. Removal of the 

Mg
2+

 block is achieved through a concurrent binding of glutamate, and a significant 

depolarization of the postsynaptic cell by means of a Na
+
 influx through the AMPA channel. 

Opening of the NMDARs ultimately allows the conductance of Ca
2+

 into the cell, and 

therefore signals the simultaneous activation of the presynaptic and postsynaptic cell. Due to 

this concurrent activation, NMDARs are said to act as coincidence detectors. The rise of 

[Ca
2+

], the critical trigger of LTP, activates downstream signalling pathways such as the 

protein kinase C (PKC) and calcium calmodulin dependent protein kinase II (CaMKII) (Hu et 

al., 1987). Activation of the kinases leads to an increased effectiveness of the existing 

AMPARs either through enhanced ionic conductance of their channels or by the insertion of 

new AMPARs into the postsynaptic plasma membrane (Song and Huganir, 2002, Bredt and 

Nicoll, 2003). It has also been proposed that retrograde messengers are released in the 

postsynaptic cell, which activate protein kinases in the presynaptic cell leading to an increased 

neurotransmitter release (Malenka and Bear, 2004). 

The development of new synapses during late LTP requires the synthesis of new proteins. 
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This process is mediated by signalling molecules such as PKA (protein kinase A) or CaMKII 

that link the activity of LTP to the nucleus activating transcription factors such as CREB 

(cAMP response element-binding protein) and immediate-early genes (IEG) (Malenka and 

Bear, 2004). The maintenance of LTP eventually leads to structural changes such as an 

increased amount of synapses, growth of dendritic spines, and the remodelling of the 

cytoskeleton (Matsuzaki et al., 2004). 

 

1.5.1.2 Long-term depression 

LTD is induced by prolonged low-frequency stimulation leading to a rise in postsynaptic 

[Ca
2+

]. In contrast to LTP, the lower but longer influx of Ca
2+

 due to the low-frequency 

tetanus leads only to a modest postsynaptic depolarization, and is thus less effective at 

removing the Mg
2+

 blockade of NMDARs. It is assumed that LTD involves the activation of 

NMDARs containing the NR2B subunit (Massey et al., 2004). 

While a high influx of Ca
2+ 

leads to the activation of kinases in LTP, lower but longer influx 

of Ca
2+

 during LTD leads to the activation of the calcium-dependent phosphatase calcineurin 

(CN). This again triggers signalling cascades that activate protein phosphatases 

dephosphorylating the AMPAR subunit GluA1 (Lee et al., 1998) or increased 

phosphorylation of AMPAR subunit GluA2 (Malenka and Bear, 2004). The combinatorial 

effect of the phosphorylation of GluA1 and the dephosphorylation of GluA2 leads to the 

endocytosis of AMPARs in the postsynaptic membrane diminishing the EPSP (Beattie et al., 

2000). Because LTD involves the reduction of AMPARs, place holders, or slot proteins, are 

required to keep signal transmission in balance by substituting the internalized AMPARs. One 

of the slot proteins could be PSD-95. Overexpression of this protein is correlated with a 

reduction of AMPARs while a decrease of PSD-95 is associated with an increased amount of 

AMPARs (Malenka and Bear, 2004). 

Though LTP and LTD are not the only contributors to the development or sustainment of 

volumetric reduction of the neural areas in MDD, there is evidence that these forms of 

synaptic plasticity are involved in MDD. As outlined above, LTP is associated with changes 

in the ultrastructural organization of synapses and spines. Perturbations of LTP in MDD are 

therefore likely to mediate regional volume differences of the brain. For example, rats that 

experienced stress by confining them into restraining tubes showed impaired LTP as 

measured in slices immediately after death (Foy et al., 1987). 
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Figure 7 

Homeostatic synaptic scaling 

 

Unconstrained LTP will lose synapse specificity. Homeostatic 

scaling prevents for instance runaway excitation by reducing the 

strength of other synaptic inputs until the firing rate returns to 

control levels. Retrieved from Turrigiano (2008), Cell. 

 

 

 

 

 

 

The stress-induced negative impact on LTP is modulated by the degree of control the rat 

possesses over the stressor. It has been shown that the rats’ ability to terminate a foot shock 

only diminished LTP slightly, whereas rats who lacked the control to terminate the foot shock 

displayed a significant impairment in the induction of LTP (Shors et al., 1989). This indicates 

that the controllability of aversive stimuli affects synaptic plasticity at the basic level. The 

impairment of LTP is due to the psychological factor of a lack of control and not the shock 

itself. 

It is likely that LTP and LTD are involved in many aspects of the theoretical explanations 

dealing with the pathology of MDD. 

 

1.5.2 Homeostatic plasticity 

Activity-dependent forms of 

plasticity such as LTP and LTD 

tend to destabilize neural network 

activity in the long-run by 

constantly increasing or decreasing 

synaptic strength. Therefore, it has 

been suggested that neurons can 

regulate their activity with respect 

to the global network activity by 

either modulating synaptic activity 

or by changing the properties of ion 

channels (figure 7). This form of 

homeostatic plasticity, or synaptic 

scaling, was initially shown by lowering the inhibition of neurons. At first, inhibition 

increased firing rates of the postsynaptic cell, but later these firing levels fall back to the 

control levels despite not modifying the level of inhibition (Turrigiano et al., 1998). 

It is assumed that neurons have the ability to detect their own firing rates by means of 

calcium-dependent sensors. According to the measured firing rates, the trafficking of 

glutamate receptors leads to a decreased or increased amount of AMPARS and/or NMDARS 

in the postsynaptic membrane (Perez-Otano and Ehlers, 2005). The release probability of 
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Figure 8 

Stages of neurogenesis in the dentate gyrus of the hippocampus 

 

ML = molecular layer, GCL = granule cell layer, SGZ = subgranular 

zone. Retrieved from Mink (2011), Neuron. 

 

 

 

 

neurons demonstrates another homeostatic mechanism, because neurons have the ability to 

release a flexible amount of glutamate thereby regulating postsynaptic activity (Turrigiano, 

2008). 

 

1.5.3 Structural plasticity: Neurogenesis and synaptogenesis 

1.5.3.1 Neurogenesis 

Neurogenesis is the process of generating functional neurons from precursors (Ming and 

Song, 2011). Though it has been thought that this process is restricted to embryonic and 

perinatal stages, there are two “neurogenic” regions, the subgranular zone (SGZ) in the DG 

and the subventricular zone (SVZ) in the lateral ventricles, that generate new neurons 

throughout life. 

Stem cells in the brain are able to perform self-renewal process through cell division and are 

also able to differentiate into specific cell types. One hypothesis assumes that radial glia-like 

cells exhibiting glial fibrillary acidic protein (GFAP) and non-radial cells act as neural stem 

cells leading to the generation of new neurons in the SVZ and the SGZ (Ming and Song, 

2011). 

Neurogenesis largely resembles 

the sequence of generating new 

neurons during development as 

shown in figure 8. For instance, 

radial glia-like cells in the SGZ 

serve as progenitor cells that lead 

to the development of 

neuroblast. These immature 

neurons then migrate into the 

granule cell layer of the DG where they differentiate into granule cells. Within days, dendrites 

of the new neurons develop towards the molecular layer by projecting axons towards the CA3 

(Ming and Song, 2011). The neurotransmitter GABA (Ge et al., 2006) and glutamatergic 

inputs via NMDARs (Tashiro et al., 2006) ensure the survival of new-born neurons. 

During the maturation phase, newly generated neurons display a greater potential of synaptic 

plasticity (Schmidt-Hieber et al., 2004). This might give new-born neurons an advantage in 
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competing with mature neurons. Enhanced synaptic plasticity might also contribute to the 

stabilization of the afferent and efferent synaptic connections. 

In contrast to LTD and LTD, the occurrence of neurogenesis is restricted to only two brain 

regions. A lack of neurogenesis might not be sufficient to describe the broad spectrum of 

volumetric alterations and associated cognitive disturbances as seen during MDD. 

1.5.3.2 Synaptogenesis 

The generation of new neurons during neurogenesis is naturally accompanied by the 

establishment of new synapses between cells. The process of generating new synapses is 

defined as the process involving the formation and precise alignment of a neurotransmitter 

release site in the presynaptic neuron, and a receptive field at the postsynaptic neuron (Jin, 

2005). Synaptogenesis involves two steps. These are the selection of appropriate molecular 

partners to establish synapses in a certain subcellular compartment (synaptic specificity), and 

the process of forming the presynaptic structure and the postsynaptic signaling-rich 

specialization (synaptic assembly) (Colon-Ramos, 2009). 

Synaptogenesis is not restricted to co-occur with neurogenesis. In fact, synapses within neural 

circuits of the cortex are formed or eliminated throughout life due to activity-dependent 

structural changes (Trachtenberg et al., 2002). It has been shown that the generation of spines 

is linked to the generation of synapses a few days after the spines appeared. In addition, these 

new synapses specifically connect with already existing boutons (Knott et al., 2006). As 

measured by in vivo imaging and serial-section electron microscopy (SSEM), 20 % of spines 

in the cortex generally disappear while 60 % of spines persist for a time period of at least 

eight days. The new spines are particularly responsible for the generation of new synapses 

leading to the experience-dependent rewiring of the adult brain (Trachtenberg et al., 2002). 

It has been shown that transient and persistent spines belong to distinct populations (Holtmaat 

et al., 2005). Spines that persisted for more than eight days continued to persist for at least 

three weeks. Transient spines tended to disappear after a few days. In addition, persistent and 

transient spines displayed a different morphology. It might be possible, however, that 

transient spines that contained the developing synapses stabilize at a later stage and then 

enlarge due to synaptic stimulation into persistent spines. 
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The process of turning transient spines into persistent spines might involve the insertion of 

AMPARs into the postsynaptic membrane (Malinow and Malenka, 2002) and LTP 

(Matsuzaki et al., 2004). Interestingly, LTP leads to the generation of thin small spines which 

tend to be transient. These transient spines might grow into larger persistent spines resembling 

the strengthening of synaptic contacts. With respect to MDD, it has been shown that 

inescapable foot shocks in learned helpless rats eliminates synapses in hippocampal area CA1 

and CA3 as well as in the dentate gyrus (Hajszan et al., 2009). In addition, it has been 

proposed that astrocytes regulate synaptogenesis. When neurons are co-cultured with 

astrocytes, the generation of new synapses is increased (Pfrieger and Barres, 1997). 

Therefore, glial cells induce synapses in the CNS and may contribute to synaptic plasticity. 

Taken together, plasticity mechanisms such as LTP and LTD, homeostatic plasticity, and 

structural plasticity are major mechanisms that lead to long-lasting changes in synaptic 

activity. These forms of plasticity are therefore at the heart of the theories that relate MDD to 

plastic changes in the brain. These theories incorporating MDD-associated neuroplastic 

changes of the brain will be outlined in the next section. 

 

 

1.6  Synaptic plasticity in major depressive disorder  

There is strong evidence that uncontrollable aversive life events in human development are 

central to the aetiology of MDD (Pryce et al., 2011). These uncontrollable aversive life events 

most likely correlate with findings of morphological studies showing that MDD is associated 

with alterations in the shape and number of neurons and glia cells (Palazidou, 2012). Though 

there seems to be a strong link between aversive life events and neuroplastic changes leading 

to the onset of MDD, this relationship needs to be considered with caution. First, the exact 

cause-effect needs to be further elucidated, i.e. is a volumetric change of neural areas the 

cause or the result of the pathology of MDD? Second, hippocampal volume loss also occurs 

in other stress related disorders and in schizophrenia (Bremner et al., 1995, Heckers, 2001).  

The volumetric decrease of the hippocampus is crucial to investigate not at least because this 

structure is involved in cognition and emotion regulation – processes that are severely 

disturbed during MDD. The following hypotheses of the development of MDD will focus on 

the structural alterations in the hippocampus. 

 



17 
 

1.6.1 Neurotrophic hypothesis of major depressive disorder 

The hippocampus displays a large potential of plastic modifications and, as outlined above, 

accommodates one of the two neurogenic niches in the brain. Due to the observed volumetric 

change of this neural area during MDD, the neurotrophic hypothesis of depression postulates 

that the cause of neuronal cell loss is the result of a decrease in neurotrophic factors. While it 

was first assumed that neurotrophic factors only regulate cell growth and differentiation of 

cells during development, they are now also known to be involved in plasticity and survival of 

adult neurons. The most prevalent neurotrophic factor is brain-derived neurotrophic factor 

(BDNF) which regulates neurogenesis and synaptic plasticity (Duman and Monteggia, 2006). 

It is claimed that while stress reduces BDNF-mediated signalling, antidepressant treatment 

enhances BDNF-mediated signalling (Krishnan and Nestler, 2008). Malberg et al. (2000) 

highlight that only chronic antidepressant treatment leads to an improvement in mood. This 

suggests that the time interval between the beginning of antidepressant treatment and the 

improvement mood spans the time range of new-born neurons differentiating and maturing 

into functional neurons. So far, however, there has been little discussion about the 

mechanisms by which new neurons enhance mood. Kempermann (2008) proposed that 

neurogenesis increases neural activity allowing the hippocampus to adapt to new experiences. 

The retraction of spines and the decrease in BDNF concentration during stress is mediated by 

an excessive amount of glucocorticoids. Glucocorticoids modulate transcriptional 

mechanisms controlling the concentration of BDNF. Antidepressant treatment increases 

BDNF concentration and the number of spines possibly through the activation of the 

transcriptional factor CREB. These changes might alleviate depressive symptoms by 

preventing actions of stress to influence the hippocampus (Nestler et al., 2002). The 

relationship between the concentration level of BNDF and corticosteroids has been 

demonstrated in a study by Mirescu et al. (2004), who showed that stress in early life 

suppresses neurogenesis later in life. The authors argued that rats separated from their 

mothers develop a hypersensitivity towards glucocorticoids, because they displayed a normal 

level of glucocorticoids but nevertheless display reduced cell proliferation. 

There is also evidence that MDD cannot be attributed solely to a reduction in BDNF 

concentration. In contrast to the hippocampus, the nucleus accumbens (NAc) shows an 

increase of the BDNF concentration level in MDD, and direct infusion of BDNF into the NAc 

leads to depressive behaviour in rats (Krishnan and Nestler, 2008). 
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Overall, the reduced concentration of BDNF and the smaller size of brain regions in stressed 

rats add evidence to the correlation between stress, reduced concentration of growth factors 

and reduced sizes of brain regions. Nevertheless, the effect of other neurotrophic factors, and 

their influence on the development of MDD or antidepressant related changes, need to be 

examined in the future as well. 

 

1.6.2 Monoamine hypothesis of major depressive disorder 

The monoamine hypothesis most likely has been the most prevalent theory of MDD over the 

last decades. Today, the monoamine hypothesis is being regarded as an oversimplified view 

of the pathology of MDD. The popularity of the monoaminergic system in MDD is owed to 

two chemical compounds. These are imipramine and iproniazid, which display antidepressant 

effects by amplifying serotonin and noradrenaline transmission. The monoamine hypothesis 

postulates that a decreased amount of serotonin (5-HT), norepinephrine (NE) and/or 

dopamine (DA) lead to the development of MDD (Krishnan and Nestler, 2008). Today’s 

prescribed antidepressants either inhibit the uptake (e.g. SSRIs, selective serotonin re-uptake 

inhibitors) or inhibit the degradation of monoamines (MAOIs, monoamine oxidase 

inhibitors). 

However, MDD is not solely caused by a decrease in monoamines. Mood conditions in 

patients only improve after several weeks of treatment while, for example SSRIs, lead to an 

immediate extracellular increase in serotonin in the CNS. It is assumed that antidepressants 

enhance functional plasticity such as LTP (Stewart and Reid, 2000). Stewart and Reid (2000) 

have shown that the administration of SSRIs enhances LTP. This was possibly due to the 

generation of new proteins that alter the responsiveness of neurons, or allow the remodelling 

of connections that assist in alleviating depressive behaviour. It could be speculated that this 

enhanced plasticity is might be due to the new-born cells which exhibit a greater potential of 

synaptic plasticity (Schmidt-Hieber et al., 2004). Electron microscopic analyses at the 

ultrastructural level revealed the formation on new synapses during SSRI treatment (Hajszan 

et al., 2009). 

 

1.6.3 Neuroendocrine functions 

The activity of the HPA axis is controlled by many neural pathways. One of them is the input 
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from the hippocampus that inhibits the release of cortisol by the hypothalamic CRF-

containing neurons. It widely accepted that excessive cortisol impairs cell growth and 

enhances cell death during MDD. 

The HPA axis controls reactions to stress through a mechanism which will be briefly outlined 

below. Corticotropin-releasing factor (CRF) is released from the paraventricular nucleus 

(PVN) of the hypothalamus upon inputs from its anatomical connections with the amygdala or 

the hippocampus. This release of CRF initiates the production of adrenocorticotropin (ACTH) 

from the anterior pituitary. ACTH will then enter the bloodstream and reaches the adrenal 

cortex leading to the release of glucocorticoids (cortisol in humans, corticosterone in 

rodents). In chronically depressed patients, the stress hormone cortisol as well as CRF and 

ACTH are elevated due to the absent feedback inhibition of CRF from the hypothalamus. The 

missing feedback inhibition of CRF from the hypothalamus is a result of absent inhibitory 

input from the hippocampus on hypothalamic CRF-containing neurons. Under normal 

conditions, cortisol enhances the inhibition of the hippocampus and may also enhance 

functioning of the hippocampus during cognitive processes. In at least half of the patients 

suffering from MDD, the HPA axis is resistant to the suppression of excess glucocorticoids 

(Palazidou, 2012). It is assumed that a dysregulation of the HPA axis does not provoke 

depressive episodes itself, but rather is the manifestation of neurobiological abnormalities that 

predispose someone to develop MDD (Pariante and Lightman, 2008). 

It has been shown that an increased corticosteroid levels in rats leads to the down-regulation 

of BDNF, and possibly is related to the retraction of spines and cell death (Schaaf et al., 

1998). In addition, it has been shown in rats that stressors in early-life attenuate cell 

proliferation and immature neuron production later in life (Mirescu et al., 2004). The study by 

Mirescu et al. (2004) suggests that aversive experiences in early-life inhibit structural 

plasticity later in life due to a hypersensitivity to corticosteroids. This conceals the possible 

link between stress, a malfunctioning HPA axis and neurogenesis. 

  

1.6.4 Epigenetics 

With a risk of 40-50 % MDD is just as heritable as are other diseases such as type II diabetes 

or hypertension that are generally being considered as genetic diseases (Nestler et al., 2002). 

However, until this point no depression vulnerability genes have been found. It appears that 
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genes alone do not cause MDD but interact with developmental and environmental factors 

leading to depressive behaviour. This relationship between genes and the environment is 

evident due to two reasons. First, the temperament of persons determines which situations 

they place themselves into and second, genetic factors might mediate the stress response of 

individuals towards adverse life events. One finding is that environmental experiences are 

able to change gene functions without changing the DNA sequence, also known as epigenetic 

modifications. Epigenetic modifications such as post-translational modifications of histone N-

terminals or DNA methylation are acquainted through experience in development or might 

also be partly inherited (Krishnan and Nestler, 2008).  

Chromatin of the nucleus is either present as heterochromatin inhibiting the transcription of 

genes or as euchromatin allowing gene expression. Modification of histone proteins, proteins 

of the nucleosome repeat unit of chromatin, enables a mechanism that can switch between 

these two states of chromatin by means of acetylation, methylation or phosphorylation. For 

instance, acetylation of histone acetylases (HAT) opens promotor regions of target genes 

which enables RNA polymerase II to bind, and then increase the transcription rate of, e.g., 

BDNF. On the other side, activation of histone deacetylase (HDAC) leads to a lower 

transcription rate. The modification of histone proteins has been shown to slow down 

neurogenesis in a rat model of social defeat. HDAT inhibitors have an antidepressant effects 

(Paslakis et al., 2011). 

The second form of chromatin modulation, DNA methylation, is regulated by environmental 

influences and has an influence on stress responses. For instance, DNA methylation is 

affected by the maternal treatment in rats. Offspring avoided by their mothers expressed a 

higher rate of anxiety and a lower transcription of glucocorticoid receptors in the 

hippocampus than offspring that received maternal care. The greater concentration of anxiety 

and lower transcription of glucocorticoid receptors is due to the increased methylation of the 

glucocorticoid receptor gene promotor repressing gene expression (Szyf et al., 2005). 

Epigenetics is a relatively new field in depression-related research but there seems to be a 

promising link between environmental factors influencing gene functions, neurogenesis and 

the functioning of the HPA axis. 
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1.6.5 Resilience-related research 

In most cases, people react adversely to painful life events. However, some people do not 

necessarily react with depressive behaviour to situations which seem to be uncontrollable for 

others. Resilience-related research informs us about the two different behavioural responses, 

i.e. whether individuals can adapt well to unfortunate life events or whether they react with 

depressive behaviour (Krishnan and Nestler, 2008). 

It has been shown in an animal model of learned helpless that the level of the transcription 

factor ΔFOSB in substance-P neurons in the periaqueductal gray (PAG) is up-regulated in rats 

that are prone to develop depressive behaviour upon shock stimulation (Krishnan and Nestler, 

2008). Plasticity mechanisms such as LTP and LTD are also differently mediated by stress. 

LTP was significantly more decreased in rats that did not have the ability to terminate an 

inescapable foot shock, i.e. have a lack of control, in the learned helpless paradigm (Shors et 

al., 1989). Furthermore, stressed rats display an increased excitability of dopaminergic 

neurons in the ventral tegmental area (VTA) which release BDNF onto neurons in the NAc. 

Resilient rats on the other side show an up-regulation of potassium channels as a homeostatic 

mechanism to restore normal excitability and low levels of BDNF in the NAc (Krishnan et al., 

2007). 

Though findings are scarce until this moment, it seems that resiliency is an active 

neurobiological process of allostasis that needs to be further explored to advance the 

development of successful treatment strategies against MDD. 

 

1.7  Synaptic proteins involved in major depressive disorder 

It is acknowledged that symptoms of MDD originate from long-term changes in various 

neural areas that mediate cognitive-emotional functioning. Morphological changes affect 

various levels from the ultrastructural level of the synapse to the level of an entire neuron. 

Morphological changes might be associated with the established finding of volumetric 

changes in the neural areas during MDD. The next section of this work will briefly discuss the 

role of synaptic proteins involved in synaptic plasticity. Insights on the involvement of these 

proteins in normal and abnormal brain functioning will inform us how ultrastructural changes 

of the synapse might be related to neuroplastic changes in the brain during MDD. Given that 

previous work in our group has revealed an altered concentration of the proteins syntaxin1, 
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the NMDAR2B subunit and Arc in the whole brain as measured by western-blotting 

(Daaland, 2012), I will pay a particular focus on these proteins. 

 

1.7.1 SNARE proteins 

Short- or long-term changes of neurotransmitter release are the underlying mechanism of 

synaptic plasticity. Synaptic plasticity, or the modification of synaptic strength, can be 

induced through (i) an altered neurotransmitter release presynaptically (including changes in 

the protein network that regulates synaptic vesicle exocytosis and endocytosis controlling the 

release of neurotransmitter), or (ii) changes in the amount of receptors postsynaptically that 

sense the release of neurotransmitters. Some of the core proteins that mediate endocytosis and 

exocytosis are the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor) proteins. 

The SNARE complex includes the fusion proteins of syntaxin1, SNAP-25 (synaptosomal-

associated protein 25) and VAMP2 (vesicle-associated membrane protein 2) which is also 

termed synaptobrevin-2. The SNARE motif of syntaxin interacts with motifs of others 

syntaxins and SNAP-25 thereby shaping the target-membrane SNARE (t-SNARE) complex. 

The t-SNARE complex is located at the target membrane which again interacts with the 

vesicle-membrane SNAREs (v-SNAREs) of the vesicle. The target membrane proteins 

syntaxin and SNAP-25 interact with the vesicle-associated synaptobrevin-2 forming the 

alpha-helical trans-SNARE complex which moves the two membranes together leading the 

opening of the fusion pore and the release of neurotransmitter (Sudhof and Rizo, 2011). 

The focus of this work is on the target membrane protein syntaxin with its distinguished forms 

of syntaxin 1A and syntaxin 1B. In approximately 84 % of the cases the two proteins have the 

same amino acids and interact with the membrane trafficking protein synaptotagmin. Syntaxin 

1A, the first identified syntaxin, is composed of 288 amino acids and is most commonly 

found in neurons and neuroendocrine cells making up approximately 1 % of the total amount 

of brain proteins (Lang and Jahn, 2008). It is assumed that syntaxin1 is primarily expressed in 

excitatory synapses (Koh et al., 1993). Though the common assumption is that SNARE 

proteins are expressed primarily in the presynaptic cell, in particular the active zone, SNARE 

concentration is also found postsynaptically (Jurado et al., 2013; personal communication, 

Suleman Hussain, 2013). For instance, synatxin3 and SNAP-47 are expressed in the 
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postsynaptic cell and are involved in the exocytosis of AMPARs during LTP (Jurado et al., 

2013). 

The involvement of some SNARE proteins in the pathology of a few psychiatric disorders, 

such as schizophrenia is known (Honer et al., 2002). However, the action of these proteins in 

MDD is much less determined. The lack of results is driven by two possible shortcomings in 

the study of SNARE proteins. First, it is problematic to pinpoint whether abnormalities of 

SNARE regulation is a cause or consequence of the given disease. Second, while SNARE 

proteins act cooperatively during neurotransmission, each SNARE protein may play an 

independent role in pathology. For instance, chronic restraint stress leads to an increase of 

VAMP2 in the hippocampus, while there is no difference between chronically stressed and 

non-stressed rats with respect to the concentration of SNAP-25 or syntaxin (Gao et al., 2006). 

On the other hand, Muller et al. (2011) have found that chronic stress down-regulates 

synaptobrevin in the hippocampus, while up-regulating VAMP2 mRNA levels. Furthermore, 

Fatemi et al. (2001) found an up-regulation of SNAP-25 in the presubiculum of depressed 

patients. 

The role of syntaxin1 in the aetiology of MDD is largely unknown, but it seems that syntaxin1 

is up-regulated in the brain of learned helpless rats (Daaland, 2012). Fujiwara et al. (2006) 

investigated the role of syntaxin 1A in knock-out mice and demonstrated that the lack of 

syntaxin 1A significantly impairs LTP. Furthermore, syntaxin 1A KO mice showed an 

enhanced LTP induction by increasing the presence of noradrenaline and dopamine. 

Depletion of these catecholamines reduced LTP. This shows that syntaxin1 might be crucial 

for the exocytosis of dense-core vesicles that regulate the catecholaminergic system. 

 

1.7.2 Glutamate receptors 

It is increasingly acknowledged that glutamate signalling mediated by NMDARs is disrupted 

in MDD and might also be involved in morphological changes of the brain. Glutamate 

receptors exist in two different categories: ligand gated ionotropic receptors and G-protein 

coupled metabotropic receptors. There are three different types of ionotropic glutamate 

receptors, which are AMPA, kainate, and NMDA receptors. While all the ionotropic receptors 

are excitatory, the action of metabotropic receptors can either be excitatory or inhibitory 

(Siegelbaum et al., 2013). 
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The NMDARs contain four subunits of several types (NR1, NR2, NR3, or GluN1, GluN2 and 

GluN3) where for instance the subunit NR2 contains another set of subunits (NR2A, NR2B, 

NR2C, NR2D). One receptor contains two obligatory NR1 subunits and two regulatory 

NR2A-D or NR3A-B units. The combination of subunits determines the function of the 

receptor (Cull-Candy and Leszkiewicz, 2004). NMDARs are able to interact with various 

other proteins initiating intracellular signalling cascades by linking NMDARs to downstream 

signalling molecules, kinases, phosphatases and adhesion proteins. 

The functions of NMDARs are twofold. On the one side, these receptors are crucial for 

excitatory signalling, synaptic transmission and synaptic plasticity. On the other side, chronic 

overstimulation brings about the demise of cells. Ca
2+

 influx is essential for synaptogenesis, 

experience-dependent synaptic remodelling and changes in synaptic efficacy on the basis of 

LTP and LTD. In contrast, an excessive amount of glutamate leads to a great influx of 

deleterious Ca
2+

 into the postsynaptic cell. This high level of Ca
2+

 eventually leads to the 

generation of free radicals that again lead to a retraction of spines (Duman, 2009). Therefore 

NMDARs play an important role in psychiatric disorders with underlying perturbations in 

synaptic plasticity. 

It has been shown that acute stress involving NMDAR activation impairs LTP and enhances 

LTD (Kim et al., 1996). In addition, the concentration of the NMDA subunit NR1 is increased 

(Karolewicz et al., 2009), while the subunit NR2A is decreased in patients of MDD (Beneyto 

et al., 2007, Feyissa et al., 2009). Altering the action of glutamate by means of the NMDAR 

antagonist ketamine leads to antidepressant effects (Zarate et al., 2006). It is believed that 

chronic stress leads to the retraction of spines which is mediated by NMDAR activation, i.e. 

the selective deletion of the NMDARs in the hippocampus does not lead to the retraction of 

spines during stress (Christian et al., 2011). Because the glutamatergic system comprises the 

all excitatory pathways in the brain, variances of this system could be linked to morphological 

changes as seen in the pathology of MDD. 

 

1.7.3 Activity-regulated cytoskeletal gene Arc 

The protein Arc (activity-regulated cytoskeleton-associated protein) is an ideal protein to 

study synaptic changes in MDD. As shown briefly below, this protein is involved in many 

forms of plasticity. In addition, it plays a role in several neurological diseases. However, also 
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the involvement of this protein in MDD has not – according to my best knowledge – been 

explored before. 

Arc, also named Arc/Arg3.1, is an IEG that is rapidly activated upon strong synaptic, 

neurotransmitter or growth factor stimulation and integrates the expression of various genes 

which encode synaptic proteins (Tzingounis and Nicoll, 2006). As revealed by immunogold 

electron microscopy, Arc is mainly present in the PSD of excitatory synapses that recently 

underwent LTP (Moga et al., 2004). The signaling mechanisms of Arc transcription are still 

unknown. It seems that PKA and mitogen-activated protein kinase (MAPK) cascades are 

involved in the induction of Arc (Waltereit et al., 2001). The involvement of Arc in molecular 

aspects of synaptic functions was established when researchers found that Arc regulates 

endophilin 3 and dynamin 2, which are components of the protein network involved in 

endocytosis (Korb and Finkbeiner, 2011). 

As mentioned above, the role of Arc in synaptic plasticity is diverse. First, it has been shown 

that Arc modulates the trafficking and endocytosis of AMPARs (Chowdhury et al., 2006, 

Shepherd and Bear, 2011). Arc either concentrates the endocytic proteins to sites where 

AMPAR endocytosis is possible (Shepherd and Bear, 2011) or it has been suggested that Arc 

indirectly moves AMPARs out of the PSD through an interaction with endophilin and 

dynamin (Chowdhury et al., 2006) thereby mediating forms of plasticity such as LTD (Waung 

et al., 2008). 

Due to its involvement in AMPAR endocytosis it is assumed that Arc has a mediating effect 

on LTP, LTD and homeostatic plasticity. Currently, it is known that Arc has a strong 

influential effect on the late phase of LTP (Guzowski et al., 2000). By applying Arc antisense 

oligonucleotides (AOD) to the dentate gyrus and hippocampal area CA1 the authors were able 

to block the transient increase of Arc mRNA/protein production after high-frequency 

stimulation. The effect of this blockade was not significant during the first 4 hours, but 

decayed LTP to a large extent after 4 hours and decreased to baseline after day five. 

Arc might also be a regulator of homeostatic plasticity fine tuning neuronal activity through 

the endocytosis of AMPARs (Beique et al., 2011). It is accepted that neurons scale up 

AMPARs during low network activity and scale down AMPARs during increased network 

excitability. Similarly, during on-going neural activity AMPARs might be scaled down by an 

increase in Arc and scaled up by a decrease of Arc (Shepherd et al., 2006). 



26 
 

Arc additionally modifies cellular responses by controlling the size and type of spines. A high 

concentration of Arc increases the amount of thin plastic spines while it decreases the amount 

of stable stubby spines (Peebles et al., 2010). Notably, LTP increases the amount of thin 

spines which might be related to the increased concentration of Arc (Holtmaat et al., 2005) 

Whether Arc has a direct effect on synaptic plasticity in MDD is unknown. The main finding 

of Arc’s involvement in mood disorders resolves around the fact that the relative 

concentration level of Arc is mediated by antipsychotic drugs, and an up-regulation of Arc in 

the CA1 due to antidepressant treatment might be one mechanism how long-term changes in 

synaptic function are achieved (Pei et al., 2003). Our group has previously found that the 

concentration level of Arc is up-regulated in brains of learned helpless rats (Daaland, 2012). 

 

1.7.4 Other proteins 

Besides the previously mentioned proteins, various other proteins regulating synaptic 

plasticity play a central role in the pathology of MDD. The concentration levels of 

synaptophysin and synaptotagmin, proteins required for the fusion of the vesicle with the 

plasma membrane, are altered after stress exposure. While chronic and acute stress lead to an 

increase in synapotagmin, synaptophysin is significantly decreased (Thome et al., 2001). 

Further support that MDD might have a presynaptic basis and that malfunctioning of 

synaptotagmin correlates with depressive behavior stems from the finding that synaptotagmin 

KO mice show decreased depressive behavior in a forced swim test. The normal behavior in 

synaptotagmin KO mice is expressed instead of an assumed depressive reaction (Ferguson et 

al., 2004). 

The PSD, a dense complex of proteins to assure the presence of sufficient receptors in the 

postsynaptic membrane once neurotransmitters are released from the active zone, is also 

altered upon exposure to stress. Rats implemented with corticosterone pellets have a reduced 

concentration level of the scaffolding protein PSD-95 and the glutamate subunit NR1 in the 

hippocampus. It is assumed that a reduction of PSD-95 leads to a reduction of the insertion of 

NMDARs and therefore leads to spine mortality (Cohen et al., 2011). However, it has also 

been shown that the scaffolding protein PSD-95 is up-regulated in the amygdala of post-

mortem brain of depressed patients (Karolewicz et al., 2009). The same study also found an 

up-regulation of NMDAR2A subunit in the amygdala, suggesting that glutamate signaling in 
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depression is disrupted. In contrast, western-blot analyses revealed that the NMDAR subunits 

NR2A and NR2B, and PSD-95 levels are reduced in the PFC in post-mortem brains of 

depressed patients (Feyissa et al., 2009). 

It has conclusively been shown that genes associated with synaptic functions are down-

regulated during MDD (Kang et al., 2012). The down-regulation of these synapse-related 

genes most likely occurred due to the exposure to chronic unpredictable stress. This down-

regulated might contribute to depressive behaviour. A microarray analysis revealed that the 

mRNA concentration of GATA1, a transcription factor, is increased in the PFC during MDD 

possible leading to the decreased concentration of synapse-related genes and the atrophy of 

dendritic processes. 

Having established a framework of the neuroplasticity hypothesis of depression and possibly 

involved synaptic proteins, I will now turn to the purpose and aim of this project. 

 

1.8  Purpose and aim 

One reoccurring finding is that certain neural areas decrease in volume during MDD. 

Theoretical explanations describing the origins of MDD have shifted in the last decades from 

solely regarding the cause in a deficiency of monoamines to a more complex, and more 

ambiguous, neuroplasticity hypothesis of MDD. The neuroplasticity hypothesis postulates 

that stress alters mechanisms of synaptic plasticity through neuroendocrine, neurotropic and 

epigenetic factors leading to an alteration in the structure and amount of synapses and 

neurons. However, far too little attention has been paid to the molecular correlates of the 

plastic changes in MDD. A way to shed light on possible interactions between forms of 

plasticity, their molecular basis, and how they relate to the pathology of MDD is to explore 

functionally important synaptic proteins involved in synaptic plasticity. The involvement of 

the SNARE protein syntaxin1, the NMDAR subunit NR2B, and Arc in MDD are for the most 

part unknown, or literature has emerged that offers contradictory findings. However, given 

that we know far more about how these proteins act in synaptic plasticity in normal 

conditions, we may be able to describe general synaptic alterations in MDD by gaining 

insights on how these proteins are involved in MDD. Previous studies in our group have 

revealed an increase in the concentration level of syntaxin and Arc, and a decrease in the 

concentration level of NMDARs in the whole brain (Daaland, 2012). 
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In this work, I will compare animals of the learned helpless model of depression to explore 

the relative concentration of the three functionally important synaptic proteins syntaxin 1, the 

NMDAR2B subunit, and Arc by means of their immunoreactivity in Schaffer collateral 

synapses of the stratum radiatum in hippocampal area CA1. In particular, I compare the 

learned helpless group, the non-learned helpless group and the wild-type group with each 

other to detect differences in the synaptic concentration of the proteins of interest. For each 

group, I investigate the proteins of interest using immunogold electron microscopy. Based on 

previous work in our group (Daaland, 2012) and the involvement of these proteins in 

mechanism of synaptic plasticity as outlined above, I propose the following hypotheses that 

will be explored in the remainder of this work: 

 

 

Hypothesis 1: Synaptic concentrations of syntaxin1 in Schaffer collateral synapses in CA1 

are different between the learned helpless, non-learned helpless and wild-type group. 

Hypothesis 2: Synaptic concentrations of the NMDAR subunit NR2B in Schaffer collateral 

synapses in CA1 are different between the learned helpless, non-learned helpless and wild-

type group. 

Hypothesis 3: Synaptic concentrations of Arc in Schaffer collateral synapses in CA1 are 

different between the learned helpless, non-learned helpless and wild-type group. 
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2. Materials and Methods 

 

2.1  Background of the methods 

 

2.1.1 Learned helpless model 

During this work I made use of the learned helpless model of depression. The initial concept 

of learned helpless was put forward by Seligman and Overmier (Overmier and Seligman, 

1967). The concept of learned helpless assumes that misinterpreting cognitive information as 

being more negative than it is will lead to a feeling of helplessness or loss of control. The 

negative interpretation of information and the uncontrollability of aversive events terminate in 

MDD as mentioned above. The learned helpless model is one of the most valid animal models 

of MDD. It displays construct validity (depressive behavior is caused by the same etiologies 

that cause MDD in humans), face validity (profile of symptoms in the model is akin to 

symptoms seen during MDD) and predictive validity (effects of antidepressant treatment is 

similar in the learned helpless model and in MDD) (Vollmayr et al., 2007). 

The use of animal models, specifically related to the validity of those, is associated with 

limitations as outlined in the discussion part of this work. The term model implies that there 

exist deviations from reality. The study of human psychiatric disease can therefore only be 

regarded as an approximation. MDD is a mental disorder that is not defined by the presence or 

absence of only a single feature. Rather, a complex interplay between behavioral, cognitive 

and physiological functions terminates in MDD. 

 

2.1.1.1 Induction of the learned helpless state 

Applying uncontrollable and unpredictable aversive stimuli to a rat induces a depressive 

behavioral state in the learned helpless model. In 10-20 % of the rats, a helpless state is 

induced by applying a foot shock of 0.8-mA for a total time of 40 to 60 min thereby exposing 

the animal to a total of 20 min of electric shock. Following this procedure, the rat is placed in 

the same cage 24 hr later, and is exposed to electric foot shocks. However, this time with the 

possibility to terminate the electric shock by pressing a lever. The degree of failure (i.e. not 

terminating the shock) is related to the degree of helplessness. A rat is being regarded as 

helpless if it fails in about 10 out of 15 cases to press the lever and terminate the foot shock, 

while a failure rate of less than 5 out of 15 the animal is regarded as a non-helpless animal. 
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Applying this criterion, 15-20% of the trained Sprague-Dawley rats are identified as learned 

helpless (Vollmayr and Henn, 2003). 

 

2.1.2 Immunocytochemistry 

In order to detect the antigens of the proteins syntaxin1, NR2B, and Arc I made use of the 

immunolabeling technique. An antibody (or immunoglobulin), which consists of two identical 

heavy chains and two identical light chains forming a Y shape, has an antigen binding sit at 

the tip of the Y where it binds to the antigens of the proteins of interest. However, in order to 

quantify these proteins in the synapse they require an attached molecule which is visible in the 

electron microscope. Therefore, I made use of indirect labeling, i.e. I first incubated the tissue 

in the primary antibody which bound to the antigen of the protein and thereafter incubated the 

tissue in a secondary antibody that binds to the primary antibody (figure 9). In case of 

electron microscopic analyses, the secondary antibody has a gold-tag. The gold particles are 

electron-dense (i.e. reflect the electron beam of the microscope) and therefore visualize the 

original protein in the microscope. 

 

2.1.3 Transmission electron microscopy 

Following the labeling procedure, I investigated the presence of the proteins in synapses with 

the transmission electron microscope (TEM). The TEM offers two advantages in comparison 

to the western-blot technique applied previously (Daaland, 2012) when exploring the relative 

concentration level of proteins. First, this microscopic technique allowed me to identify 

changes at the ultrastructural level of an individual synapse. Second, by using the TEM I 

 Figure 9 

Indirect method for antibody labeling 

 
A tissue antigen (species 1, rat) is exposed to a aprimary antibody (second species, rabbit) that has been made to 

bind the antigen. After binding of the primary antibody, a tagged secondary antibody (third species, goat) is exposed 

to the bound antigen-antibody complex. The secondary antibody was produced to react against all IgGs of the 

second species and contains a tag. The result is a two-layered antibody sequence with an attached tag. Retrieved 

from “Electron Microscopy”, Bozzola & Russell (1992), Immunocytochemistry. 
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could target and visualize specific regions of the brain; in this case the stratum radiatum of 

hippocampal area CA1. 

The make-up of a TEM is similar to a light-microscope with the main difference being the 

illumination source. In case of the TEM, the illumination source is an electron gun with a 

tungsten filament. Once the tungsten filament produces heat, an electron cloud is established 

emitting electrons. The beam of emitted electrons is focused by electromagnetic lenses. 

Depending on how many electrons hit the fluorescent screen, it sends out light that is captured 

by an electronic imaging device such as a CCD (charge-coupled device) camera. The whole 

procedure progresses at high-vacuum because air molecules would interfere with the electrons 

and disturb the image-forming process. While the human eye can resolve between two points 

which are located up to 0.1 mm apart, by use of the TEM points as less as 0.127 nm can be 

distinguished. For biological tissue a maximum resolution of 0.344 nm is excellent as the 

conventionally prepared material does not allow for greater resolution. The magnification of a 

conventional TEM reaches up to 200.000x. At normal conditions, the TEM operates at 100-

120 kV, while 80 kV is seen as appropriate for biological tissue because it gives a better 

contrast than at higher kV (Dykstra and Reuss, 2003). 

 

2.2  Materials 

I obtained sample tissue blocks of a rat inbred helpless line established in the laboratory of 

Prof. F. Henn, Cold Spring Harbor Laboratory, United States. This material contained neural 

tissue of four LH, four NLH rats and two WT rats (appendix 1). As seen in table 2, the 

primary antibodies used for immunolabeling were Anti-Syntaxin 1, 1:30 (AN-002, Alamone 

Labs, Jerusalem, Israel), Anti-NMDAR2B, 1:600 (ab65783, Abcam, Cambridge, UK), and 

Anti-Arc, 1:400 (156003, Synaptic Systems, Göttingen, Germany). Table 3 displays the 

secondary antibody goat anti-rabbit (10nm gold) (ab27234, Abcam, Cambridge, UK) that was 

used in this work. Further information about the solutions described in the following 

paragraphs is depicted in appendix 2 and appendix 3. 
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2.3  Perfusion fixation 

The primary goal of perfusion fixation is to eradicate the tissue of the animal, but at the same 

time preserve the fine structure of the tissue for later electron microscopic analyses. The rats 

were deeply anesthetized with sodium pentobarbital and perfused transcardially with 2 % 

dextran in 0.1 M phosphate buffer (pH 7.4). Thereafter they were fixated with a combination 

of 0.1 % glutaraldehyde (GA) and 4 % paraformaldehyde (PA) in the same buffer. The brains 

were stored in situ at 4°C. 

 

2.4  Region of interest 

The region of interest to quantify the concentration level of the proteins of interest was the 

hippocampal area CA1. Having retrieved the brains from the skull 24 hr after perfusion 

fixation, the brain was sliced until structures of the HF were clearly visible. Thereafter, pieces 

with the size of approximately 1.0x0.5 mm were dissected from the slices of the hippocampus 

 

 Table 3 

Secondary antibodies 

  Goat anti-rabbit IgG H&L 

antibody (Abcam) 

Goat anti-rabbit IgG H&L 

antibody (Abcam) 

Current Lot # GR73433 GR104536-1 

Size 10nm 10nm 

Type Polyclonal Polyclonal 

 

Table 2 

Primary antibodies 

  Anti-Syntaxin1 

(Alomone Labs) 

Anti-NMDAR2B 

(Abcam) 

Anti-Arc (Synaptic 

systems) 

Current Lot # AN-002 GR98904 156003/33 

Host Rabbit Rabbit Rabbit 

Type Polyclonal Polyclonal Polyclonal 
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Figure 9 

Regions of interest 

 

 

 

 

 

 

 

 

 

Figure 9 

Regions of interest 

 

 

Red drawing displays the dissected region of interest, hippocampal area CA1. Bar = 1mm. Retrieved from “The 

hippocampus book”, Amaral & Lavenex  (2006), Hippocampal neuroanatomy. 

 

 

 

 

as shown in figure 9A. Parts of the cortex and dentate gyrus were kept attached to the 

dissected piece for later identification of the striatum radiatum in CA1. 

Immunolabeling was performed on sliced sections of the CA1, and the relative concentration 

levels of the proteins of interest were obtained in selected areas (active zone, PSD, 

presynaptic and postsynaptic cytoplasm) of Schaffer collateral synapses in the stratum 

radiatum (figure 9B). 

 

 

2.5  Tissue preparation 

Once the tissue was dissected, cryofixation was performed in order to stabilize the tissue of 

hippocampal CA1 for later ultramicrotomy and electron-microscopic analyses. One subtype 

of cryofixation is the freeze-substitution method. During this procedure, the biological tissue 

is being frozen and the developing ice crystals are replaced by polymerized resin. 

 

The embedding procedure (freeze-substitution method) was carried out by Bjørg 

Riber, University of Oslo. 

The dissected tissue pieces of the CA1 region were cryoprotected by immersing them in 

increasing concentrations of glycerol (10 %, 20 % and 30 %) buffered in sodium phosphate 

buffer. The tissues were immersed for 30 min in concentrations of 10 % and 20 % of glycerol 

and were immersed overnight in the concentration of 30 % at 4°C. The tissue was then moved 

it into a quick-freeze device filled with propane cooled down with liquid nitrogen to -170°C 

A: Red drawing displays the dissected region of interest, hippocampal area CA1. Scale bar = 1mm. Retrieved from 

“The hippocampus  book”, Amaral & Lavenex (2006), Hippocampal neuroanatomy. B: Schematic drawing 

showing regions of interest (bold) of the synapse in immonogold electron microscopical material of hippocampal 

area CA1. 

 

 

B 

 

A
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in a cryfixation unit (Reichert KF80, Vienna, Austria). 

Afterwards, the tissue was transferred to 1.5 % uranyl acetate diluted in anhydrous methanol 

into the pre-cooled chamber (-90°C overnight). This solution was filled into Reichert capsules 

which were placed in a cryosubstitution unit (AFS, Reichert). Following 30 hr in -90°C, the 

temperature was raised with 4°C increments per hour from -90°C to -45°C. Thereafter, the 

samples were washed with anhydrous methanol to remove water and excess uranyl acetate.  

Once this has been performed, the samples were infiltrated to replace the dehydrated fluid 

with lowicryl HM20 resin (Polysciences, Inc., Warrington, PA 18976. Cat#15924). This 

embedding was carried out at a temperature of -45°C while the tissue was placed in different 

concentrations of lowicryl/methanol. The infiltration lasted for 2 hr at a concentration of 

lowicryl/methanol of 1:1, another subsequent 2 hr at a concentration of 2:1, then 2 hr in pure 

lowicryl and once again overnight in pure lowicryl. The Reichert capsules with the specimen 

were then moved to the lowicryl-filled gelatin capsules in the G-chamber. The capsules were 

transferred to another container filled with ethanol. At last, the resin was polymerized with 

UV-light at -45°C for 24 hr, and then increased the temperature by 5°C increments per hour 

until 0°C was reached. At 0°C the resin was polymerized for further 35 hr. 

 

 

2.6  Ultramicrotomy  

I obtained ultra-thin slices of the embedded tissue block for immunolabeling. At first I rough 

trimmed the 44 blocks (4 blocks per animal) removing abundant plastic, and then fine 

trimmed the blocks to achieve a trapezoid form of 1 mm square at the tip of the block. I then 

cut semi-thin sections (500 nm) with a glass knife where the shorter length of the trapezoid 

was in contact with the glass knife first, i.e. was cut first. The semi-thin sections were 

removed from the water basin of the glass knife and put on a drop of distilled water on a glass 

slide. Once the drops were dried up, the semi-thin sections were stained with toluidine blue 

for 90 sec. After the removal of excess stain, I explored the semi-thin sections as exemplified 

in figure 10 with a light microscope to i) determine the quality of fixation procedure for each 

block, ii) the quality of the tissue section, iii) the clarity of the CA1 and the stratum radiatum, 

and iv) to further trim of excess plastic of the block. Given the criteria a-c, I selected 10 

blocks out of the total 44 blocks (one block per animal). I did not consider blocks of animal 

ID-6006 any further, as these were not well fixated. The semi-thin sections were later used as 
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Figure 10 

Semi-thin section of CA1 

 

The semi-thin (500 nm) section was used to localize the 

stratum radiatum in the ultra-thin (90 nm) section. Pcl = 

pyramidal cell layer, sr = stratum radiatum. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 

Semi-thin section of CA1 

 

guidance to find the area of the stratum 

radiatum. 

After obtaining semi-thin sections, I cut ultra-

thin sections (90 nm) with an ultratome 

diamond knife (Diatome, ultra 45°) of each 

block. I selected optimal sections free of gaps 

and fractures and placed them on 300 lines 

nickel mesh grids (Electron microscopy 

sciences, G300-Ni) which were mounted with 

a grid coating pen beforehand (Coat-Quick 

“G”). I collected 20 ultra-thin sections of 

each animal (a total of 200 sections). 

 

 

2.7  Immunolabeling 

In order to localize the proteins in the ultra-thin sections with the TEM, I made use of 

postembedding immunogold labeling. In the postembedding procedure, each antigen molecule 

at the surface has the same chance of being immunodetected which is of great importance for 

the quantification of proteins. The relative labeling intensity (number of gold particles/number 

of antigen molecules) is always below 100% in this procedure. The labeling efficacy needs to 

be determined by modifying the labeling protocol for each antibody detecting the protein of 

interest. 

 I followed the postembedding procedure of van Lookeren Campagne et al. (1991) with some 

modifications. Table 4 displays the modified protocol I followed for the various proteins. 

Appendix 4 shows entire protocol by van Lookeren Campagne et al. (1991). 
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All sections were labeled blinded on a grid support plate at room temperature if not otherwise 

specified. First, free aldehyde groups were neutralized by incubating the tissue in TBST (Tris 

buffered saline with Tween 20) buffer containing 50 mM of glycine for 10 min. Afterwards I 

incubated the tissue in TBST containing 2 % human serum albumin (HSA) for 10 min in 

order to block nonspecific antibody binding sites before incubation with the primary antibody. 

In the next step, I incubated the tissue in drops of TBST containing 2 % HSA and the primary 

antibody with respect to its optimal concentration and incubation time as shown in table 4.  

After incubating with the primary antibody, the tissue was rotationally rinsed and immersed in 

TBST, before it was incubated in colloidal gold-secondary antibody for 90 min. The TBST 

containing the secondary antibody included PEG (polyethelyne glycol-electrolyte) solution to 

avoid clustering of gold particles on the tissue section. After incubation of 90 min in the 

secondary antibody, I rinsed the sections with distilled water and post-stained them with 2 % 

uranyl acetate and 0.3 % lead citrate staining (90 sec each) to enhance tissue contrast. Uranyl 

acetate and lead citrate were removed with distilled water, and sections were left to dry 

completely before use in the electron microscope. 

During the optimization processes in which I determined the correct concentration of 

antibodies and solutions, I applied controls such as leaving out the secondary antibody to 

determine if there exists non-specific binding (negative control), and using an antibody that I 

trust to work to ascertain that the labeling protocol is working properly (positive control). 

 

Table 4 

Protocol immunoincubation 

 Anti-Syntaxin 1 Anti-NMDAR2B Anti-Arc 

Concentration of 

primary antibody 

1:30 1:400 1:600 

Concentration NaCl 0.5% 0.3% 0.3% 

Concentration Triton 0.01% 0.1% 0.1% 

Incubation time primary 

antibody 

30mins in 37.5 degrees 4hrs Overnight 

Secondary antibody 

(10nm) LOT# 

GR73433 GR104536-1 GR104536-1 

Concentration 

secondary antibody 

1:20 1:20 1:20 

Incubation time 

secondary antibody 

90mins 90mins 90mins 
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2.8  Picture acquisition 

I acquired the pictures of Schaffer collateral synapses in the stratum radiatum of the CA1 

using a TEM (Tecnai G
2
 Spirit, TWIN/BioTWIN, FEI Company, Hillsboro, U.S.) operating at 

high tension (80kV) with a magnification of 43 000x. For each group (WT = 2 animals, LH = 

4 animals, NLH = 4 animals) I took a total of 180 pictures (WT N = 180, LH N = 180, NLH N 

= 180) of excitatory synapses. I identified excitatory (asymmetric) synapses by their specific 

morphology. I obtained a total of 540 pictures for each antibody. 

I localized the regions of interests by comparing the structure of the ultra-thin slice under the 

TEM with the outline of the identical semi-thin section under the light microscope. In order to 

avoid collecting the identical synapse twofold and to assure that the pictures were taken from 

a large spread of the given area, pictures were acquired in a top-down/left-right fashion. 

 

 

2.9  Quantification IMGAP and resolution 

Following the acquisition of the pictures, I quantified the gold particles (and therefore the 

relative concentration each protein) of each section with the tailor made program IMGAP 

(IMmumo-Gold-Analysis-Program) (Haug et al., 1994). The regions of interest for 

quantification were the active zone, the PSD, the presynaptic cytoplasm, and the postsynaptic 

cytoplasm. I outlined freehand each region of interest in the cell and gold particles were 

counted either automatically, or manually in case a type-I or type-II error occurred, in the 

regions of interest of each section. 

In order to distinguish the presynaptic and postsynaptic membranes and whether particles 

more likely attach to one membrane or the other, I determined the resolution of the post-

 

 

 

Figure 11 

Two-step postembedding procedure and resolution 

Triangles represent the antigen against which the 

primary antibody (A) was raised. The secondary 

antibody (B) is coupled to a colloidal gold particle (Au). 

The radius (r) of the gold particle is 5 nm. This adds up 

to a maximum distance of 21 nm between the epitope 

and the centre of the gold particle. Retrieved from 

Mathiisen (2005), Molecules, neurons, systems. 
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embedding technique and adjusted it in the analysis program. As depicted in figure 11, the 

resolution of the post-embedding immunogold technique is theoretically described as the 

distance between the epitope of the antigen and the centre of the gold particle. This equals the 

radius of the gold particle and the total diameter of the antibodies. In practice, however, many 

gold particles are located closer to the epitope of the antigen than as described by the 

theoretical distance (Mathiisen et al., 2005). The resolution (length of antibody bridge and the 

dimension of the colloidal particle) was accounted to be 21 nm (10 nm gold particles with a 

radius of 5 nm, primary and secondary antibody each with a diameter of 8 nm, in sum 21 nm). 

 

 

2.10 Statistical analysis 

I analyzed the data using the statistical software package SPSS (Statistical Product and 

Service Solution) (IBM Corp., Armonk NY). The obtained data of this work are presented as 

mean values with standard errors. A natural log-transformation was applied to non-normal 

data if possible and rendered a good Gaussian distribution. I performed a one-way ANOVA 

(analysis of variance) for independent samples with subsequent multiple comparison post-hoc 

testing for normally distributed data. If the data did not meet the assumption of normality I 

used the non-parametric Kruskal-Wallis test for independent samples, and in case an overall 

effect was found between the groups, I performed subsequent Mann-Whitney U post-hoc 

tests. Though there is no objective way to remove outliers from the data, I removed outliers 

which were further than three interquartile ranges (IQR) away from the end of a boxplot. 

These observations most likely have been caused by chance, or a different mechanism which 

does not reflect the true antigen-antibody binding. While data values being 1.5 IQRs away 

from a boxplot are generally considered as outliers, I kept them in the data, as I had no real 

evidence that these are erroneous values. 
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3. Results 

 

I adopted a criterion for statistical confidence of p < .05. Only the test statistics of significant 

results are reported below. Therefore, not all regions of interest for each protein are 

mentioned. The dependent variables were linear density of gold particles per µm and density 

of gold particles per µm
2
. The dependent variable linear density (µm) was measured in 

response to the independent variable group belonging (WT=wild-type, LH=learned helpless, 

NLH=non-learned helpless) in the regions interest of the synapse (active zone and PSD) 

(figure 9B). The dependent variable density (µm
2
) was measured in response to the 

independent variable group belonging (WT, LH, NLH) in the regions interest of the synapse 

(presynaptic cytoplasm and postsynaptic cytoplasm) (figure 9B). If suitable, I applied a log-

transformation in case the assumption of normality was violated. I performed a one-way 

ANOVA for data that followed a good Gaussian distribution. I used the non-parametric 

Kruskal-Wallis test if a transformation was not appropriate for the given data values. I applied 

a Bonferroni adjustment by multiplying the p-value by the number of groups (x3) for all the 

multiple comparisons I performed following an overall effect of the Kruskal-Wallis test. Table 

5 displays a summary of the significant findings between each group. 

 Table 5 

Significant findings of between-group comparisons 

Comparison 

between groups 

Protein Region of 

interest 

Finding Two-tailed p-

value 

LH vs. WT NR2B PostCy LH > WT .012 

 NR2B PSD LH > WT .000 

 Arc PSD LH > WT .048 

NLH vs. WT Syntaxin1 PreCy NLH < WT .002 

 Syntaxin1 PSD NLH < WT .024 

 NR2B PostCy NLH > WT .000 

 NR2B PSD NLH > WT .003 

LH vs. NLH Syntaxin1 PreCy LH > NLH .001 

 Syntaxin1 PostCy LH > NLH .001 

 
LH = learned helpless, NLH = non-learned helpless, WT = wild-type, PreCy = presynaptic cytoplasm, PostCy = 

postsynaptic cytoplasm. 
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3.1  Synaptic concentration of syntaxin1 

I tested the hypothesis that there is a significant difference in the synaptic concentration of 

syntaxin1 in Schaffer collateral synapses in CA1 between the learned helpless, the non-

learned helpless and the wild-type groups. Because the localization of syntaxin1 is likely to 

occur in all regions of the presynaptic and postsynaptic synapse, values of zero, i.e. no 

presence of syntaxin1, were removed from the analysis. 

I was interested in the regions of the synapse beforehand, and therefore I split the file 

according to the region of interest and then compared the groups. The assumptions of the 

ANOVA test, i.e. data values are independent from each other, display homogeneity and are 

normally distributed, were checked. I performed a log (x+1) transformation because a 

Shapiro-Wilk test revealed that the data does not follow normality (p < 0.00). The data 

followed a Gaussian distribution after the transformation. I made use of a one-way ANOVA to 

investigate the concentration of syntaxin1 in various regions of the synapse with respect to the 

dependent variable (linear density µm, density µm
2
) and the independent variable group 

belonging (WT, LH, NLH). 

3.1.1 Presynaptic and postsynaptic cytoplasm 

An ANOVA with the dependent variable density (µm
2
) and the independent variable group 

belonging (WT, LH, NLH) revealed an overall effect for the presynaptic cytoplasm (F2,483 = 

7.56, p = 0.001). A Tukey post-hoc test revealed a significant difference between the learned 

helpless and the non-learned helpless group at p < 0.00. The mean of the learned helpless 

group (M = 75.28, SD = 43.21) was significantly greater than that of the non-learned helpless 

group (M = 53.54, SD = 37.77) in the presynaptic cytoplasm. A further Tukey post-hoc test 

revealed an effect for the presynaptic cytoplasm for the wild-type and the non-learned 

helpless group at p = 0.002, where the mean of the wild-type group (M= 65.70, SD=38.85) 

was significantly higher than the mean of the non-learned helpless group (M = 53.54, SD = 

37.77) (figure 12). Syntaxin1 concentration in the presynaptic cytoplasm was therefore greater 

for both the learned helpless group and the wild-type group in comparison to the non-learned 

helpless group. 

Another overall effect of the dependent variable density (µm
2
) in relation to the independent 

variable group belonging was found for the postsynaptic cytoplasm (F2,483 = 7.56, p = 0.01). 
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As revealed by a Tukey post-hoc test a significant difference existed between the learned 

helpless group and the non-learned helpless group at p < 0.00. The mean of the learned 

helpless group (M = 44.61, SD = 36.80) was significantly greater than for the non-learned 

helpless group (M = 31.45, SD = 24.55) in the postsynaptic cytoplasm (figure 12). The 

concentration of syntaxin1 in the postsynaptic cytoplasm is therefore higher in the learned 

helpless group in contrast to the non-learned helpless group. 

Additional independent t-tests with a Bonferroni correction revealed that syntaxin1 

concentration is higher in the presynaptic cytoplasm compared to the postsynaptic cytoplasm 

within the wild-type (t = 9.55, df = 358, two-tailed p < 0.00), the learned helpless (t = 8.78, df 

= 358, two-tailed p < 0.00) as well as in the non-learned helpless group (t= 7.96, df = 358, 

two-tailed p < 0.00). 

 

3.1.2 PSD 

An ANOVA with the dependent variable linear density (µm) and the independent variable 

group belonging (WT, LH, NLH) revealed an overall effect for the PSD (F2,325 = 3.5, p = 

0.031). Because the one-way ANOVA is an omnibus test and did not reveal between which 

groups the significant differences occurred, a Tukey post-hoc test revealed that syntaxin1 

concentration is significantly lower in the non-learned helpless group compared to the wild-

type group in the PSD at p = 0.024. (figure 13). The mean of the non-learned helpless group 

(M = 9.49, SD = 7.03) was significantly smaller than the mean of the wild-type group (M = 

12.16, SD = 8.60). No significant differences between the groups were found in the active 

zone. Within the groups, there was no significant difference in the concentration of syntaxin1 

between the active and the PSD. 

Though we would expect syntaxin1 to be mainly located presynaptically, compared to the 

non-learned helpless group, syntaxin1 concentration was increased in the learned helpless and 

wild-type group in the pre- and postsynaptic cytoplasm as well as in the PSD and the 

presynaptic cytoplasm respectively. This finding is in line with the assumption that SNARE 

proteins are also active postsynaptically (Jurado et al., 2013; Suleman Hussain, 2013, personal 

communication). 
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A 

Group N Min. Max. Mean Std. 

Dev. 

WT 180 3.82 272.97 65.72 38.85 

LH 180 7.31 207.37 75.28 43.21 

NLH 177 5.70 217.88 53.54 37.80 

 

Group N Min. Max. Mean Std. 

Dev. 

WT 163 2.56 211.48 36.08 29.54 

LH 167 4.43 327.99 44.61 36.79 

NLH 156 3.01 153.00 31.45 24.55 

 

 
 

 
 

Figure 12 

 

Syntaxin1 concentration is higher in the presynaptic cytoplasm of the LH and WT group compared to the 

NLH group. Syntaxin1 concentration is also significantly higher in the postsynaptic cytoplasm of the LH 

group compared to the NLH group. 

 

Density of syntaxin1 in the presynaptic cytoplasm is significantly greater in the LH compared to the NLH group at p = 

0.001, and in the WT compared to the NLH at p = 0.002. Density of syntaxin1 is also greater in the postsynaptic 

cytoplasm in the LH group compared to the NLH group at p = 0.001. A: Semiquantative analysis of syntaxin1 gold 

particle density in the WT, LH and NLH rats. Bars represent mean value of linear density +/- 2 standard errors of the 

mean of the different groups. B: Electron micrograph from a section of a WT rat showing syntaxin1 immunogold 

labeling of an asymmetric synapse in the stratum radiatum. C: Descriptive statistics of density values in the presynaptic 

cytoplasm of each group. D: Descriptive statistics of density values in the postsynaptic cytoplasm of each group. E: 

Summary of main results. WT=wild-type, LH=learned helpless, NLH=non-learned helpless, AZ=active zone, 

PSD=postsynaptic density, PostCy=postsynaptic cytoplasm, PreCy=presynaptic cytoplasm. Scale bar = 200 nm. Size of 

gold particle = 10 nm. Asterisk=synaptic cleft. 
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Region of 

interest 

Finding Two-tailed p-

value 

PreCy LH > NLH 0.001 

PreCy NLH < WT 0.002 

PostCy LH > NLH 0.001 
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   Figure 13 

Syntaxin1 concentration  is significantly lower in the PSD of the NLH group compared to the WT group. 

 

 
 

 
 

A 

Group N Min. Max. Mean Std. 

Dev. 

WT 123 2.27 44.64 12.17 8.60 

LH 119 2.55 47.25 10.73 7.57 

NLH 93 2.89 45.13 9.49 7.03 

 

B 

C 

Linear density of synatxin1 in the PSD is significantly lower in the NLH group compared to the WT group at p = 

0.024. A: Semiquantative analysis of syntaxin1 gold particle density in the WT, LH and NLH rats. Bars represent mean 

value of linear density +/- 2 standard errors of the mean of the different groups. B: Descriptive statistics of linear 

density values of each group. C: Electron micrograph from a section of a WT rat showing syntaxin1 immunogold 

labeling of an asymmetric synapse in the stratum radiatum. D: Summary of main finding. WT=wild-type, LH=learned 

helpless, NLH=non-learned helpless, AZ=active zone, PSD=postsynaptic density. Scale bar = 200 nm. Size of gold 

particle = 10 nm. Asterisk=synaptic cleft. 
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3.2  Synaptic concentration of the NMDAR subunit NR2B 

I hypothesized that the synaptic concentrations of NR2B in Schaffer collateral synapses in 

CA1 are different between the learned helpless, non-learned helpless and wild-type group. As 

with the analysis of syntaxin1, I split the data file according to the region of interest and 

analyzed effects between the groups. 

3.2.1 Postsynaptic cytoplasm 

The assumption of normality was not met by the data and a suitable log (x+1) transformation 

did not lead to normality. Therefore, I opted for the non-parametric version of the one-way 

ANOVA, the Kruskal-Wallis test, to examine effects between the dependent variable density 

(µm
2
) and the independent variable group belonging (WT, LH, NLH). As displayed in figure 

14, a Kruskal-Wallis test revealed that the particle density (µm
2
) in the three groups (WT, LH, 

NLH) differed significantly in the postsynaptic cytoplasm (x
2
 = 16.20, df = 2, two-tailed p < 

0.00). Determining which groups differ significantly, a Mann-Whitney U-test found that the 

density (µm
2
) score of particles in the learned helpless group (M= 27.33, SD = 25.04) was 

significantly higher than in the wild-type group (M= 20.95, SD = 22.50) in the postsynaptic 

cytoplasm (U = 12445.00, N1 = 174, N2 = 174, two-tailed p = 0.012). A further Mann-

Whitney U-test revealed that the density (µm
2
) score of particles in the non-learned helpless 

group (M= 31.46, SD = 28.19) was significantly higher than in the wild-type group (M= 

20.95, SD = 22.50) in the postsynaptic cytoplasm (U = 11635.5 N1 = 175, N2 = 174, two-tailed 

p < 0.00). Therefore, the concentration of NR2B in the postsynaptic cytoplasm is significantly 

higher in the learned helpless and non-learned helpless group compared to the wild-type 

group. Though there was no statistically significant between the groups with respect to the 

concentration of NR2B in the presynaptic cytoplasm, the mean value of NR2B concentration 

in the presynaptic cytoplasm is greatest in the learned helpless group (M = 9.72, SD = 12.96) 

compared to the non-learned helpless (M = 8.56, SD = 11.7) and the wild-type group (M = 

7.37, SD = 8.4). 

 

3.2.2 PSD 

For the dependent variable linear density (µm) and independent variable group belonging 

(WT, LH, NLH) an overall significant effect was found for the PSD. As demonstrated in 

figure 15, a Kruskal-Wallis test revealed that the linear density (µm) of particles in the three 
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groups (WT, LH, NLH) differed significantly in the PSD (x
2
 = 19.88, df = 2, two-tailed p < 

0.00). A Mann-Whitney U-test found that the linear density (µm) of particles is significantly 

higher in the learned helpless (M= 11.32, SD = 11.26) than in the wild-type group (M = 7.43, 

SD = 10.71) in the PSD (U = 11739.00, N1 = 175, N2 = 179, two-tailed p < 0.00). A further 

Mann-Whitney U-test revealed that the linear density (µm) of particles is significantly higher 

in the non-learned helpless group (M= 10.40, SD = 10.88) than in the wild-type group (M = 

7.43, SD = 10.71) in the PSD (U = 12358.00, N1 = 175, N2 = 177, two-tailed p = 0.003). 

Though there was no significant effect between the groups with respect to NR2B 

concentration in the active zone, the mean value of the NR2B concentration was greatest in 

the learned helpless group (M = 5.74, SD = 9.23) compared to the non-learned helpless group 

(M = 4.84, SD = 8.47) or the wild-type group (M = 5.08, SD = 8.31). Taken together, the 

concentration of NR2B is increased in the PSD in both the learned helpless and the non-

learned helpless group compared to the wild-type group. 
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Group N Min. Max. Mean Std. Dev. 

WT 174 .00 92.62 20.95 22.50 

LH 174 .00 141.23 27.33 25.04 

NLH 175 .00 125.18 31.46 28.19 

 

 
 

 
 

Figure 14 

NR2B subunit concentration is greater in the postsynaptic cytoplasm in both the LH and NLH group 

compared to the WT group. 

 

Density of NR2B in the postsynaptic cytoplasm is significantly greater in the LH compared to the WT group (U = 

12445.00, N1 = 174, N2 = 174, two-tailed p = 0.012), and in the NLH compared to the WT group (U = 11635.5 N1 = 

175, N2 = 174, two-tailed p < 0.00). A: Semiquantative analysis of NR2B gold particle density in the WT, LH and NLH 

rats. Bars represent mean values of density +/- 2 standard errors of the mean value of the different groups. B: Electron 

micrograph from a section of a WT rat showing NR2B immunogold labeling of an asymmetric synapse in the stratum 

radiatum. C: Descriptive statistics of linear density values in the PSD of each group. D: Summary of main findings. 

WT=wild-type, LH=learned helpless, NLH=non-learned helpless, AZ=active zone, PSD=postsynaptic density, 

PostCy=postsynaptic cytoplasm, PreCy=presynaptic cytoplasm. Scale bar = 200 nm. Size of gold particle = 10 nm. 

Asterisk=synaptic cleft. 
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 Figure 15 

NR2B subunit concentration is greater in the PSD in both the LH and NLH group compared to the WT 

group 

 

 
 

 
 

 

Group N Min. Max. Mean Std. 

Dev. 

WT 175 .00 44.05 7.43 10.71 

LH 179 .00 49.98 11.32 11.26 

NLH 179 .00 43.08 10.40 10.88 

 

Linear density of NR2B in the PSD is significantly greater in the LH compared to the WT group (U = 11739.00, N1 = 

175, N2 = 179, two-tailed p < 0.00), and in the NLH compared to the WT group (U = 12358.00, N1 = 175, N2 = 177, 

two-tailed p = 0.003). A: Semiquantative analysis of NR2B gold particle density in the WT, LH and NLH rats. Bars 

represent mean value of linear density +/- 2 standard errors of the mean value of the different groups. B: Descriptive 

statistics of linear density values in the PSD of each group. C: Electron micrograph from a section of a WT rat 

showing NMDAR2B immunogold labeling of an asymmetric synapse in the stratum radiatum. D: Summary of main 

findings. WT=wild-type, LH=learned helpless, NLH=non-learned helpless, AZ=active zone, PSD=postsynaptic 

density. Scale bar = 200 nm. Size of gold particle = 10 nm. Asterisk=synaptic cleft. 
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3.3  Synaptic concentration of Arc 

I claimed that the synaptic concentrations of Arc in Schaffer collateral synapses in CA1 are 

different between the learned helpless, non-learned helpless and wild-type group. In 

accordance with prior analyses I split the data values according to the region of interest and 

then analyzed effects between the different groups. 

3.3.1 PSD 

As shown in figure 16, there exists an overall statistically significant effect of the independent 

variable group belonging (WT, LH, NLH) on the dependent variable linear density (µm) for 

the PSD as revealed by the Kruskal-Wallis test. The linear density (µm) of particles in the 

PSD significantly differs between the three groups (WT, LH, NLH) (x
2
 = 6.03, df = 2, two-

tailed p = 0.049). A Mann-Whitney U-test found that the linear density (µm) of particles is 

significantly higher in the learned helpless (M= 7.06, SD = 8.00) than in the wild-type group 

(M = 5.14, SD = 6.78) (U = 13037.00, N1 = 177, N2 = 172, two-tailed p = 0.048). The 

concentration of Arc is increased in the learned-helpless compared to the wild-type group in 

the PSD. The high presence of Arc in the PSD is in accordance with other investigators (Moga 

et al., 2004). 

Mann Whitney U-tests (with a Bonferroni correction) comparing the differential location of 

Arc in the active zone and the PSD within each group revealed that Arc concentration in the 

active zone is greater than the concentration of Arc in the PSD in the wild-type (U = 

12647.00, N1 = 178, N2 = 172, two-tailed p = 0.004), as well as in the learned-helpless group 

(U = 12699.00, N1 = 178, N2 = 177, two-tailed p = 0.002). 

No significant changes of Arc concentration in the pre- or postsynaptic cytoplasm of nerve 

terminals were found between the groups. 

File names of the electron micrographs are included in appendix 5. 
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Figure 16 

Arc concentration is greater in the PSD of the LH group compared to the WT group. 

 

Group N Min. Max. Mean Std. 

Dev. 

WT 172 .00 39.67 5.14 6.78 

LH 177 .00 48.40 7.06 8.00 

NLH 178 .00 32.08 6.07 7.92 

 

Linear density of Arc in the PSD is significantly higher in the LH than in the WT group (U = 13037.00, N1 = 177, N2 = 

172, two-tailed p = 0.048). A: Semiquantative analysis of Arc gold particle density in the WT, LH and NLH rats. Bars 

represent mean value of linear density +/- 2 standard errors of the mean value of the different groups. B: Descriptive 

statistics of linear density values of each group. C: Electron micrograph from a section of a WT rat showing Arc 

immunogold labeling of an asymmetric synapse in the stratum radiatum. D: Summary of main finding. WT=wild-type, 

LH=learned helpless, NLH=non-learned helpless, AZ=active zone, PSD=postsynaptic density. Scale bar = 200 nm. Size 

of gold particle = 10 nm. Asterisk=synaptic cleft. 
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4. Discussion 

4.1  Purpose and main findings of the work 

MDD is associated with a volumetric loss of neural areas such as the PFC, the amygdala and 

the hippocampus. These neural changes may contribute to the disturbances in cognitive 

functioning and emotional stability as seen in the course of MDD. Various biological 

hypotheses of MDD focus on plastic changes in the brain as a causing, or accompanying, 

factor of this disease. Though these hypotheses comprehensively account plastic changes at 

the cellular level during MDD, the molecular correlates of these plastic changes require 

further experimental analyses. 

The objective of this study was to investigate the involvement of synaptic proteins implicated 

in synaptic plasticity in the rat learned helpless model of depression. The proteins of interest 

were syntaxin1, the NMDA receptor subunit NR2B, and Arc. I tested my claim of a difference 

in the synaptic concentrations of these proteins in Schaffer collateral synapses in CA1 

between the learned helpless, the non-learned helpless and the wild-type group. 

By comparing the learned helpless group to the wild-type group, this work revealed that the 

concentration of NR2B is greater in the postsynaptic cytoplasm and in the PSD, as well as that 

the concentration of Arc in the PSD is greater in the learned helpless group compared to the 

wild-type group. The non-learned helpless group differed from the wild-type group with 

respect to a lower concentration of syntaxin1 in the presynaptic cytoplasm and in the PSD, as 

well as an increased concentration of NR2B in the postsynaptic cytoplasm and in the PSD. 

The concentration of syntaxin1 was greater in the pre- and postsynaptic cytoplasm of the 

learned helpless group compared to the non-learned helpless group. 

 

4.2  Interpretation 

The up- and down-regulation of syntaxin1, NR2B and Arc stems from an interplay between 

synaptic scaling (homeostatic plasticity) and an alteration of synaptic strength. As described 

previously, synaptic scaling allows neurons to increase or decrease the amount of 

AMPARs/NMDARs in order to keep ongoing synaptic activity in balance. Synaptic strength 

can be altered either through changes in the presynaptic machinery releasing the 

neurotransmitter, or by changing the concentration and functions of receptors at the 
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postsynaptic plasma membrane that sense the neurotransmitter signal. Figure 17 displays a 

summary of the between-group differences in the concentration of proteins in the regions of 

interest. 
 

4.2.1 Syntaxin1 

I found a significant increase in syntaxin1 concentration in the presynaptic cytoplasm in the 

learned helpless group compared to the non-learned helpless group. Though the common 

assumption is that syntaxin1 is localized in the cell membrane of the active zone, an increased 

concentration of this protein presynaptically might indicate a potential enhancement of 

neurotransmitter release at later vesicle-membrane fusion stages (i.e a greater concentration of 

transport vesicles that deliver the neurotransmitter to the release site of the active zone). 

Because glutamate is the major excitatory neurotransmitter, one may speculate that an 

increase of syntaxin1 in the presynaptic cytoplasm prepares the presynaptic cell for an 

increased release of glutamate into the synaptic cleft. For the same token, an increased 

concentration of syntaxin1 in the presynaptic cell might indicate an increased turn-over of 

presynaptic vesicles. During the endocytosis of vesciles, the membrane might invaginate and 

detach from the plasma membrane with syntaxin1 being attached and transported back. 

The notion that syntaxin might be particularly involved in the release of glutamate is 

supported by the finding that this SNARE protein is primarily expressed in excitatory 

synapses (Koh et al., 1993). In addition, one study has found that antidepressant treatment 

disruptes the participation of syntaxin1 in the SNARE complex presynaptically leading to a 

lowered release of glutamate into the synaptic cleft (Bonanno et al., 2005). In particular, the 

interaction between syntaxin1 and Thr
286

 phosphorylated αCaMkinaseII that usually leads to 

an enhanced neurotransmitter release was diminished, while the interaction between syntaxin1 

and Munc-18, an interaction reducing neurotransmitter release, was enhanced. 

Besides the possible restriction of syntaxin1 being present in excitatory synapses only, Koh et 

al. (1993) also found that syntaxin1 concentration is greater in the presynaptic cytoplasm and 

is almost absent in the active zone (Koh et al., 1993). This finding is in stark contrast with the 

general notion that syntaxin1 concentration is restricted to the active zone where it regulates 

vesicle fusion (Sudhof and Rizo, 2011). 
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A lack of differences between the different groups in the concentration of syntaxin1 in the 

active zone does not imply a lack of antigen detection of the antibody because syntaxin1 was - 

without any significant differences - expressed in the active zone. It could be that syntaxin1 

might not be as easily detectable by antibodies due to the accumulation of various other 

proteins in the active zone. In addition, once at the active zone, syntaxin1 might already be 

engaged in the vesicle fusion process which might hinder the detection of the antigen by the 

antibody. 

To give an account why there was only a significant difference in the concentration of 

syntaxin1 in the cytoplasm of nerve terminals and not in the plasma membranes is 

problematic. However, research indicates that different isoforms of syntaxin (syntaxin 1-4) are 

confined to different compartments of the pre- and postsynaptic cell in the retina (Sherry et 

al., 2006). These different isoforms of syntaxin are associated with functionally different 

synapses in amacrine cells (syntaxin1) or bipolar cells (syntaxin3). In particular, Sherry et al. 

(2006) found that the isoforms of syntaxin2 and syntaxin4 are located postsynaptically, 

thereby rejecting the assumption that syntaxin2 and syntaxin4 are involved in 

neurotransmitter release at the presynaptic plasma membrane. 

I further found that the concentration of this protein is increased in the postsynaptic cytoplasm 

of the learned helpless group. The increased concentration of syntaxin1 in the postsynaptic 

cytoplasm of the learned helpless group suggests that syntaxin1 is involved in the trafficking 

of molecules to the postsynaptic plasma membrane or in the recycling of glutamate receptors. 

As it has been suggested by others (Suh et al., 2010), SNAP-23 a SNARE protein interacting 

with syntaxin1 is also found in the postsynaptic cytoplasm regulating the trafficking of 

NMDARs. A similar role of synaptic scaling could be attributed to synatxin1 where it 

regulates the trafficking and insertion of NMDARs into the postsynaptic membrane in the 

learned helpless group (as shown later, the NMDAR2B subunit is up-regulated in the PSD). In 

addition, a recent study has noted the importance of the isoform synatxin3 in postsynaptic 

regulation of AMPAR delivery to synapses during LTP, adding more evidence to syntaxin’s a 

possible involvement in the postsynaptic cell (Jurado et al., 2013). 

The findings of an increased concentration of syntaxin1 presynaptically and postsynaptically 

as described above should be regarded in connection with a higher concentration of NMDARs 

in the learned-helpless group as discussed next. 
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4.2.2 NMDAR2B subunit 

The concentration level of the NMDAR2B subunit was greater in the PSD and postsynaptic 

cytoplasm of the learned helpless group compared to the wild-type group. The increased 

concentration level of NMDARs is in line with others (Karolewicz et al., 2009) and 

underscores the importance of NMDAR antagonists such as ketamine as potential 

antidepressants (Zarate et al., 2006). A possible explanation why the concentration level of 

NR2B is increased in the PSD and the postsynaptic cytoplasm requires that the results are 

regarded in two divergent, yet interconnected, scenarios. 

First, it has been proposed that NMDARs are heavily involved in homeostatic plasticity by 

scaling the strength of incoming synaptic input up or down while preserving the relative 

weights between the inputs (Perez-Otano and Ehlers, 2005). Increasing the concentration of 

NMDARs, in this case the NR2B subunit could possibly increase the potential for synaptic 

plasticity or change. It has been suggested that MDD might be an evolutionary adaptive 

response to activate resources and make changes to the current painful situation (Nesse, 

2000). NMDARs are particularly involved in synaptic changes, or learning and memory, as 

outlined above. Therefore, learned helpless rats may display enhanced learning to make 

changes to the current depressive state. Previous research has indicated that depressed patients 

are impaired in selective attention (Lemelin et al., 1996). Impaired selective attention might 

benefit depressed patients in broadening their attention to find and adapt to changes in life. 

That MDD might be an evolutionary adaptive response is furthermore supported by a study 

showing that depressed patients are faster in making motivational responses (Chase et al., 

2010). Enhanced cognitive processing with respect to rewards might enable and motivate 

depressed patients to change current situations in life. 

Second, it is known that activation of NMDARs during LTD in the hippocampus leads to the 

endocytosis of AMPARs through a calcium influx and CN activation (Beattie et al., 2000). An 

increasing rate of AMPAR endocytosis due to the increased concentration of NMDARs 

amplifies the induction of LTD. In previous work, our group found a tendency that AMPAR 

concentration is reduced in the brains of learned helpless rats (Daaland, 2012). The findings 

above support the notion that LTD is more pronounced during MDD and - because LTP is 

impaired when glucocorticoid levels are either very low or very high (as in MDD) - that LTP 

is impaired (Kim and Diamond, 2002). Furthermore, a greater activation of NMDARs is 
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accompanied by an increased influx of Ca
2+

 which, when excessive, leads to neurotoxicity 

and spine retraction (Christian et al., 2011). 

As mentioned above, antidepressant treatment seems to disrupt the participation of syntaxin1 

in the SNARE complex leading to a lowered release of glutamate into the synaptic cleft 

(Bonanno et al., 2005). The increased NMDAR concentration during MDD might lead to 

glutamate excitotoxicity through an uncontrolled increase of Ca
2+

 postsynaptically (Duman, 

2009). Excitotoxicity is central to mood disorders, and several studies have supported the 

notion that an excess amount of extracellular glutamate is related to the pathology of MDD. 

For instance, it has been shown that stress rapidly leads to an increase of glutamate in the 

hippocampus disturbing LTP (Cazakoff and Howland, 2010). In addition, research has shown 

that extracellular glutamate concentration was increased in a learned helpless paradigm 

(Almeida et al., 2010). The high level of glutamate in the extracellular space might be 

attributed to an impaired uptake of glutamate by glial cells (Zink et al., 2010). 

It has to be taken into consideration that previous work which found a down-regulation of the 

NMDARs did not distinguish between the different subunits of the receptor (Daaland, 2012). 

The discrepancy between the present work and the latter study may be due the combinatorial 

concentration measurement of NR2A/NR2B subunits. 

 

 

4.2.3 Arc 

The concentration of the protein Arc was highly increased in the PSD of the learned helpless 

group compared to the wild-type group. It has been shown that Arc transcription depends on a 

high NMDAR/AMPAR ratio (Rao et al., 2006) and that Arc is involved in the endocytosis of 

AMPARs (Chowdhury et al., 2006). 

It is likely that an increased concentration level of NMDARs, as shown in this work, lead to 

the increase in the concentration of Arc in the PSD. It has been shown that Arc is 

predominantly localized in postsynaptic sites of recently activated synapses (Moga et al., 

2004). This makes Arc an ideal candidate as a neural marker to explore the history of neural 

activity in the brain because increased concentration of Arc mRNA is immediately observed 

upon neural activation (Guzowski et al., 1999).  It could be that recently activated synapses in 

the learned helpless group, as revealed by the immunoreactivity of Arc, underwent 
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intracellular signaling mechanisms due to glutamate excitotoxicity (increased NR2B 

concentration). 

It has also been shown that overexpression of Arc blocks the up-regulation of AMPARs, while 

Arc KO neurons exhibit an increase in AMPARs, thereby permitting the homeostatic scaling 

of synaptic strength (Shepherd et al., 2006). A recent study supports the notion that Arc KO 

neurons display a deficiency in the synaptic scaling mechanism (Beique et al., 2011). In Arc 

KO mice, a prolonged reduction of glutamate release did not lead to a homeostatic up-

regulation of AMPARs. 

Surprisingly, the present work showed that Arc is also found in the active zone which is in 

contrast to the literature claiming that Arc is absent from the presynaptic cell (Moga et al., 

2004, Shepherd and Bear, 2011). Though there was no significant difference between the 

groups, immunoreactivity for Arc was even greater in the active zone than in the PSD within 

the groups. Though there were no significant effects within or between the groups, Arc 

concentration was also present in the presynaptic cytoplasm. Because Arc mRNA is targeted 

to recently activated synaptic sites where it is translated and enhancing the synthesis of 

proteins required for synaptic plasticity (Tzingounis and Nicoll, 2006), one may speculate that 

the function of Arc in the active zone is to integrate the expression of genes that direct the 

production of presynaptic proteins. Because one way of increasing synaptic strength is in 

modulating the neurotransmitter releasing machinery, an increased concentration of Arc in the 

active zone might indicate that the concentration of other SNARE proteins besides syntaxin is 

increased. 

 

 

4.2.4 Resilient animal type 

I found additional effects particularly for the non-learned helpless group when comparing it to 

the learned helpless or wild-type group. Because non-learned helpless rats represent a resilient 

animal type towards stress, the results of this animal group are appealing with respect to the 

increasingly valuable resilience-related research. Resilience-related research informs us why 

stressful life events are controllable to some persons while the same events are uncontrollable 

to others. 

In this work, I found a significant decrease of syntaxin1 concentration in the presynaptic 

cytoplasm and in the PSD of the non-learned helpless group compared to the wild-type group. 
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Furthermore, the NR2B concentration was significantly higher in the PSD and in the 

postsynaptic cytoplasm in the non-learned helpless group in comparison to the wild-type 

group. 

Because syntaxin is instrumental in exo-endocytotic activity, I assume that a lower 

concentration in the presynaptic cell is associated with a lower release of glutamate. Given the 

lower concentration of syntaxin1 in the non-learned helpless group, the results likewise 

suggest that vesicle turn-over is decreased, possibly transporting less syntaxin away from the 

active zone. A lower level of synaptic vesicle turn-over might therefore determine a resilient 

animal type. In line with stress-resiliency, a previous study has shown that disturbing the 

participation of syntaxin in the SNARE complex leads to an antidepressant effects by 

lowering the release of glutamate into the synaptic cleft (Bonanno et al., 2005). The 

involvement of syntaxin in the endocytosis of AMPARs in the postsynaptic cell has been 

reported previously. 

The distinctions between the learned helpless and the non-learned helpless group with respect 

to the wild-type group are less clear for the concentration level of NR2B. The results showed 

that the concentration levels of NR2B in the PSD as well as in the postsynaptic cytoplasm of 

the non-learned helpless group increased in accordance with the learned-helpless group. The 

concentration of NR2B in the latter two groups were both significantly higher compared to 

the concentration in the wild-type group, but were not significantly different from each other. 

Comparing the learned helpless and the non-learned helpless group with each other revealed a 

trend in the differential concentrations. The concentration level of NR2B in the PSD of the 

learned helpless group increased slightly more than the level in the non-learned helpless 

group, while the concentration of NR2B subunit in the postsynaptic cytoplasm of the non-

learned helpless group increased slightly more than the level in the learned helpless group. 

However, this differential effect is not statistically significant and is only a tendency. 

 Nevertheless, the relationship between the learned helpless and the non-learned helpless 

group follows a linear function where a certain threshold of NMDAR concentration 

determines whether a stress response is maladaptive (learned helpless) or adaptive (non-

learned helpless). The small, though not significant difference, between the non-learned 

helpless and learned helpless group might resemble the threshold where an increasing 

glutamate excitation (increased number of NMDARs) develops into a maladaptive adaptation 

to stress causing the animal to be vulnerable to learned helpless behavior. 
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However, these speculations need to be further verified at the functional and molecular level 

by resilience-related research. 

 

 

4.3  Limitations 

4.3.1 Methodology 

It should be taken into consideration that the labeling efficacy in immunocytochemical 

procedures is influenced by the quality of the antibody, the fixation procedure, the embedding 

medium, and the incubation parameters. These factors have an impact in any experiment 

making use of immunolabeling, and very likely influenced the results of my work as well. 

When evaluating the results obtained in this work, it should further be taken into 

consideration that whether the lack of escape behavior as expressed by animals in the learned 

helpless model can unhesitatingly be applied to MDD in humans is under debate. There seems 

to be major overlap in neural activation between the LH model and MDD in humans (Pryce et 

al., 2011). However, the important question about what neural structures and functions have 

been maintained between species and what neural structures and functions underwent species 

specific adaptations is unconditionally ignored in the evaluation of animal models. 

 Figure 17 

Between-group differences 

   

A B C 

Protein concentration in the different groups. A: LH (compared to WT), B: NLH (compared to WT), C: LH 

(compared to NLH). Arrows indicate up- or downregulation of the proteins. Green=Arc, blue=NR2B, 

red=synatxin1. Background picture retrieved from http://cargocollective.com/synapses#what-is-a-synapse 
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Furthermore, with respect to MDD, clinical diagnosis is largely based on communication 

between patient and health staff. Obviously, animals lack the ability of self-reflection and 

have no means to communicate effectively with researchers. Therefore, not all clinical 

symptoms in animals can be modeled due to the reliance on verbal report in psychiatric 

diagnostics. 

The learned helpless model has strong validity criteria (Vollmayr and Henn, 2003). At the 

same time, these criteria resemble one of the greatest weaknesses of the learned helpless 

model. The face validity criterion creates a relationship between the learned helpless model 

and MDD on the basis of known signs and symptoms of MDD. A shortcoming of this 

approach is that, as the DSM-V demonstrates, some symptoms are weighted more than others 

differentiating between core and peripheral signs of MDD. According to the DSM-V, the core 

symptoms are anhedonia and depressed mood. While anhedonia, which is also a major 

symptom in schizophrenia, can be modeled in animal models, depressed mood (such as guilt 

or suicidality) cannot. The symptom of anhedonia therefore captures a great role in 

determining a depressed state in an animal neglecting the criterion of depressed mood. 

Peripheral symptoms of MDD such as psychomotor changes, fatigue or loss of energy, are the 

preferred and prominent symptoms in animal models when judging whether an animal is 

depressed i.e. learned helpless (Willner and Mitchell, 2002). 

Construct validity requires that neurobiological and psychosocial concepts of MDD are in 

alignment with the exhibited behavior of the modeled animal. This approach is clearly 

hampered by the lack of a comprehensive etiological theory on the development of MDD. It is 

far from being known how psychosocial factors (undesirable life events, chronic mild stress, 

adverse childhood experiences, and personality traits) are involved in the physiological 

processes underlying mood. In addition, there does not exist one common etiological factor 

that precedes depression, rather it is a diverse set of causes (Willner and Mitchell, 2002). 

An additional shortcoming is the discriminative effect of stress on the development of MDD. 

If very severe stress is used to induce symptoms of MDD in animals, it is possible that the 

model approximates post-traumatic stress disorder (PTSD) rather than MDD. Furthermore, 

the learned helpless model links the inability to terminate the foot shock by pressing the level 

with a depressed helpless state. However, the inability to escape or terminate the shock might 

also be related to behavioral impairments such as decreased locomotor activity or analgesia 

(Willner and Mitchell, 2002). 
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Despite the use of animal models in research of MDD, the above described limitations need to 

be taken into consideration when evaluating the results. An animal model such as the learned 

helpless model is an approximation of MDD. 

 

4.3.2 Subdivisions of the hippocampus 

 

The results obtained in this work could have been influenced by the selection of neural tissue 

from the CA1. The tissues used in this work have been dissected from the dorsal 

hippocampus. Focusing only on the ventral division of the hippocampus might have led to 

different results of the protein concentrations. The ventral hippocampus seems to be the 

subdivision which ultimately needs to be explored in research related to MDD as supported 

by the findings outlined below. 

Cognitive functioning and emotional stability are major parts of the pathology of MDD. It 

seems that these two functions of the human mind are interrelated, and also that they are 

regulated by activity in one neural area, the hippocampus (Pessoa, 2008). Despite the strong 

relationship between cognition and emotion, the hippocampus is commonly regarded as being 

purely responsible for cognitive functioning such as memory, or being solely a regulator of 

emotion. 

The hippocampus is involved in the formation of episodic memories and spatial navigation. 

However, in 1937, the hippocampus was already described by Papez as being part of an 

emotion processing system, known today as the limbic system (Papez, 1937). Given the 

different functional roles of the hippocampus it suggests itself that different regions of this 

structure may be important for different (cognitive and emotional) functions. 

Evidence for a fragmentation of the hippocampus was reviewed by Moser and Moser (1998). 

They outlined that the hippocampus contains different subdivisions because (i) the ventral and 

dorsal hippocampus have different input structures, (ii) spatial memory only appears to 

depend on the dorsal hippocampus, and (iii) stress responses and emotional behavior are only 

altered by lesions to the ventral hippocampus. In addition, the dorsal hippocampus sends 

projections mainly to areas responsible for visuospatial processing, memory processing and 

spatial exploration. In contrast, the ventral hippocampus sends projections to nuclei of the 

amygdala, the PFC, and medial zones of the hypothalamus regulating endocrine functions and 

motivated behaviors. 
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Others have found that also the induction of LTP differs between the dorsal and the ventral 

hippocampus (Segal et al., 2010) and hypothesized that the induction of LTP in the dorsal or 

the ventral hippocampus might regulate the stress responses. In normal conditions, the ability 

to evoke LTP is greater in the dorsal hippocampus. During acute stress; however, LTP is 

facilitated in the ventral hippocampus and inhibited in the dorsal region. Opposite effects 

might allow the ventral part of the hippocampus to enhance the connectivity with the 

amygdala and the PFC. 

 

4.3.3 Glial cells 

Given the current knowledge of MDD, it could be that an excess amount of extracellular 

glutamate might mirror the highly increased amount of NMDARs in the PSD and 

postsynaptic cytoplasm of the learned helpless group as shown in this work. An increased 

amount of glutamate receptors allows more Ca
2+

 to enter the postsynaptic cell leading to 

excitotoxicity and eventual cell death or retraction of spines. Studies suggest that the amount 

of astrocytes is reduced in MDD contributing to the pathological alterations in glutamate 

neurotransmission (Cotter et al., 2002, Ongur et al., 1998). A study has shown that glutamate 

uptake in the hippocampus is disturbed in learned helpless rats (Almeida et al., 2010) which is 

in line with a study showing that learned helpless rats have lower levels of the glutamate 

transporters GLT-1 in the hippocampus (Zink et al., 2010). A critical role in the removal of 

glutamate is performed by astrocytes containing the glial glutamate transporter (GLT-1) 

which eventually reduces the risk of excitotoxicity (Rothstein et al., 1996). It has also been 

shown that in patients suffering from MDD the level of glutamate is increased and is possibly 

related to the decreased amount of GFAP found in postmortem brains (Si et al., 2004). 

In sum, the general finding of reduced hippocampal volume might not solely be related to 

synapse or neuron loss. Though I looked at synapses in the hippocampus, investigating 

proteins such as GFAP might be promising in order to establish a link between the loss of 

glial cells and volumetric reductions of the hippocampus. Above all, glial cells might be 

heavily involved in synaptic plasticity by inducing new synapses in the CNS and maintaining 

them over time as indicated above (Pfrieger and Barres, 1997, Nedergaard et al., 2003). 
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4.3.4 Group size and outliers 

The study revealed significant effects between the learned helpless and wild-type group and 

also between the non-learned helpless and the wild-type group. However, it should be noted 

that the groups differed in the amount of animals they contained (the learned helpless and 

non-learned helpless group contained four animals each while the wild-type group contained 

two animals). 

Different group sizes affect the criterion of homogeneity of variance of the ANOVA. The 

ANOVA computes effects by comparing the variance between the groups (between group 

variance) with the variance within the groups (within group variance/error variance). A 

greater variance between the groups compared to the variances within the groups leads to 

statistically significant results. However, the greater the within variance, or error variance, 

the more likely it is to get statistically significant results by chance (Howitt and Cramer, 

2006). Since the wild-type group only contained two animals this group is more likely to 

display a greater within variance than the learned helpless or the non-learned helpless group 

that contained twice as many animals as the wild-type group. 

Because significant results could be obtained by chance by having unequal group sizes, I 

regarded the group size not as the number of animals but as the number of studied synapses. It 

could be argued that the criterion of independence might be violated. However, each synapse 

contributed to one group only once and the concentration of proteins in one synapse had no 

effect on the concentration of proteins in other synapses, i.e. they were independent. In order 

to conform both groups with respect to size, I increased the number of pictures taken of each 

animal (WT N = 180, LH N = 180, NLH N = 180). If differences in the variances occur 

nevertheless, the ANOVA is robust to differences in error and within variances when group 

sizes are equal (Howitt and Cramer, 2006). I applied the Kruskal Wallis test when the 

variances of the groups differed significantly and violated the homogeneity of variances 

criterion. 

As stated in section 3.9, I removed outliers which were further than three interquartile ranges 

(IQR) away from the end of a boxplot. I assumed these observations must have been caused 

by pure chance. Though there is no objective way to remove outliers and no real evidence that 

these are actual true values I kept outliers which were 1.5 IQRs away from a boxplot in the 

analysis. Given the very large values of outliers being further than three IQRs away from the 
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end of the boxplot, I considered them to be occurring by chance and not resembling true 

detection of antigens by the antibodies. 

 

4.4  Implications and suggestions for future work 

The results demonstrate at the molecular level that synaptic proteins such as syntaxin1, the 

NMDAR2B subunit or Arc are involved in changes of synaptic plasticity in the learned 

helpless model of depression. An altered concentration of synaptic proteins lies at the heart of 

the neuroplasticity hypothesis of MDD which implicates that malfunctioning plasticity 

mechanisms lead to a volumetric loss of the hippocampus in MDD. 

A vast amount of other synaptic proteins continue to require scientific investigation in 

unraveling their role in the pathology of MDD. A possible protein to explore is the AMPAR. A 

down-regulation of AMPARs would be in line with the results of this work and would further 

support the notion of increasing Ca
2+

 influx into the postsynaptic cell enhancing LTD, 

excitotoxicity and eventual cell death, i.e. volumetric decreases of the hippocampus. In fact, a 

moderate, but not significant reduction in synaptic AMPAR concentration was noted 

previously in our lab (Daaland, 2012). 

It is plausible that the reduction of neural tissue in the hippocampus during MDD might be 

mediated or even attributed to alterations in glial cells. This would support the idea of 

disturbed astrocytic clearance mechanisms of glutamate from the synaptic cleft due to the 

reduced concentration of glutamate transporters that are located in glial cells (Zink et al., 

2010). It needs to be further examined whether the neural areas displaying a volume loss are 

associated with a loss in glial cells.  
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5. Conclusion 

 

I have examined the relative concentration level of three important synaptic proteins. I found 

an increased concentration level of syntaxin1 in the pre- and postsynaptic cytoplasm, as well 

as an increased NMDAR2B subunit concentration in the postsynaptic cytoplasm and the PSD, 

and an increased concentration of Arc in the PSD of learned helpless rats. The non-learned 

helpless rats showed a significant reduction in the concentration level of syntaxin1 in the pre- 

and postsynaptic cytoplasm, as well as an increased concentration of the NR2B subunit in the 

postsynaptic cytoplasm and the PSD. The results of this work demonstrate that mechanisms of 

synaptic plasticity are altered in the learned helpless model of depression. Disturbed forms of 

synaptic plasticity might be related to the morphological and behavioral changes in the 

learned helpless model. Hence, these latter changes may be connected to the expressed 

cognitive and emotional symptoms accompanied by a volumetric decrease of the 

hippocampus as seen during MDD. 
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6. Appendix 

 

  
 Appendix 1 

Information about the experimental rats 

Animal Group Stock no. DOB LPs Time (min) 

SL3 LH 6007 11.02.2010 1 20.7 

Sl4 LH 6008 11.02.2010 0 21 

SN11 NLH 6010 12.06.2010 15 7.71 

SN12 NLH 6011 12.06.2010 14 8.7 

WT_A WT 5773    

WT_B WT 5774    

CLH_A LH 5769    

CLH_B LH 5770    

CNLH_A NLH 5771    

CNLH_B NLH 5772    

 DOB = date of birth, LP = lever press, Time = time to finish testing session, CLH = congenital learned helpless, CNLH 

= congenital non-learned helpless, WT = wild-type. 
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Appendix 3 

Composition of solutions 

Appendix 2 

Chemicals, supplier, catalogue number 

 

 

  

Product Supplier Catalogue number 

Trizma base Sigma T1503 

Sodium chloride AnalaR Normapur 27810.296 

Triton X-100 Sigma T8787 

Albumin, human serum Sigma A1653 

Polyethylene glycol Sigma P2263 

Glycine Sigma G7126 

HCI AnalaR Normapur 20252.290 

TBST 

(200ml) 

Tris solution TBST with 

50mM glycine 

(5 ml) 

TBST with 2% 

HSA (2 ml) 

TBST with 2% 

HSA and PEG 

(1 ml) 

PEG 

solution (1 

ml) 

20ml 0.05M 

Tris-HCI 

pH7.4 

 

1,211g Tris 

(Trizma Base) 

in 170 ml dH20 

18.75 mg 

glycine 

40 mg HSA 100 µl PEG 

solution 

 

5 mg PEG 

 

+ + + + + + 

180ml dH20 

with XXg 

NaCl 

(0.3% = 

0.54g, 0.4% 

= 0.79g, 

0.5% = 0.9g, 

0.6% = 

1.08g, 0.9% 

= 1.62g) 

 

Adjust HCI to 

reach p.H7.4 

and add up 

dH20 until 200 

ml 

5 ml TBST 2 ml TBST 900 µl TBST 

with 2% HSA 

1 ml TBST 

+  

0.02g 

(0.01%) or 

0.2g (0.1%) 

Triton X-

100 
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Appendix 4 

Protocol for post-embedding immunochemistry 

 

1) Place grids into a grid support plate and put on 50mM glycine in  

            TBST (Tris buffered saline with Triton X-100)                                        10min.  

      4)  Preincubate in TBST containing 2%HSA (human serum albumin)          10min.  

      5)  Incubate in primary antibody diluted in TBST containing 2% HSA    over night                                                        

6)  Rinse in TBST                                                                                       3 X short 

                                                                                                                    1 X 10min. 

                                                                                                                    3 X short 

                                                                                                                    1 X 10min. 

7)  Preincubate in TBST containing 2%HSA                                                   10min. 

8)  Incubate in secondary antibody (immunoglobulins coupled to  

     colloidal particles, 15nm). Diluted as recommended from the company 

     in TBST with 2%HSA and 0.05% PEG (polyethylenglycol)                     90min.                                                 

9)  Rinse in UF-water                                                                                   6 X short 

     Dry sections 

    10)  Incubate in 5% uranylacetate in 40% ethanol                                            90sec. 

    11)  Rinse in UF-water                                                                                   3 X short 

           Dry sections 

    12)  Incubate in lead nitrate                                                                               90sec. 

    13)  Rinse in UF-water                                                                                   3 X short  

 

           Let sections dry completely before examination in the microscope. 
 

  
 Appendix 5 

File names of electron micrographs 

Figure 12B: Syntaxin_cy_WT_5773-2_H1_23.tif 

Figure 13C: Syntaxin_PSD_WT_5773-2_H2_28.tif 

Figure 14B: NMDAR_cy_WT_5773_J1_Tv15.tif 

Figure 15B: NMDAR_PSD_WT_5773_E3_Tv41.tif 

Figure 16C: ARC_PSD_WT_5773-2_J1_26_Tv80.tif 
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