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Abstract

Electricity shows similar characteris-
tics to traditional commodity goods which
led to the market mechanisms to trade
electricity being developed in similar man-
ner to markets for other commodities.
Kirchhoff’s laws, however, require a con-
stant equilibrium state, as supply surplus
or deficit is not physically possible in elec-
tricity systems. Thus, flexibility in ramp-
ing and startups/shutdowns of generation
units is a key characteristic that is topic of
vast literature on power systems. Compe-
tition models, however, have traditionally
been focused on representative points in
time. Transitions between those time pe-
riods have been either approximated or ne-
glected, in order to reduce model complex-
ity and allow for practical applications.
The same goes for decisions in-between
those time stages. However, as shown by
examples such as the Bellmann equations,
future decisions can and often will have
implications on current periods.

In changing systems with decreasing
prices and marginal cost, cost factors as-
sociated with discontinuous decisions will
grow in importance. In electricity sys-
tems, these discontinuous decisions are
mostly occupied with intertemporal deci-
sions. Therefore, traditional models from
game/equilibrium theory might not be fit

for these future applications.

In this dissertation and the presented
publications, a novelty in literature is pre-
sented: the state decisions of storing in-
ventory and dispatching units are con-
sidered in single-level competitive games.
This allows for previously ignored appli-
cations, such as assessing the strategic
impact of dispatch decisions on market
prices and electricity storage. In sys-
tems with decreasing shares of peak-units
and increasing uncertainty, such models
could prove key to assessing functionality
of market designs and existence of market
power.

Various other solution methods for
equilibrium models beyond the traditional
approach of deriving the Karush-Kuhn-
Tucker conditions are described and suc-
cessfully applied within the work of this
dissertation. These include Nikaido-Isoda
convergence algorithms and Gröbner ba-
sis formulations. Approximation tech-
niques are used, either through analyti-
cal approaches or dynamically via meta-
heuristics.

Due to non-convexity in the presented
interaction models, traditional views on
the characteristics of Nash equilibria are
reconsidered and redefined. Accurate
mapping of these potential outcomes
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might prove crucial in practical applica-
tions, where the results for individual play-
ers might vary depending on the equilib-
rium solution. Thus, analysis on multiple
Nash equilibria was provided, in order to
display the characteristics of the problem
accurately.

Further, various applications were in-
troduced. A focus on reserve markets/an-
cillary services was chosen based on the
assumptions of flexible units being the key
players in such.

Different, modular methodologies were
proposed. This allows for using parts
of the model individually and potentially
combining them with parts of the other
presented models.

Due to most large-scale storage being

provided by hydropower, a focus on real-
istic examples from this field was chosen.
This also resulted in analyzing the mod-
eling of uncertainty, due to the strong de-
pendency of hydropower on natural forces
such as precipitation. Formulation of un-
certainty in equilibrium models was chosen
to be mainly focused on robust/(weighted)
interior point methods.

These main findings and contributions
are meant to contribute to future re-
search on the topic of non-convex multi-
stage games under storage. Due to the
complexity/NP-hardness of the problem,
the presented methods - even though well
performing - can be considered only a
starting point for future studies on the
here presented novel problem setup.
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Chapter 1

Introduction

Electricity market liberalization/deregulation and the corresponding steps such as pub-
licity of information and vertical disintegration of the power system imposed a range
of new questions on the associated authorities. Questions such as ’which market type
should be chosen?’ - e.g. pool or nodal auction, options markets, long-term or short-
term contracts - and ’which mechanisms should be implemented to correct grid failures
and who should bear the respective financial cost of compensation?’ proved difficult to
decision makers having little experience with electricity as a commercial instead of a
non-commercial public good [118]. In addition, various changes in generation portfolios
due to changing resource prices for traditional sources of generation and lower invest-
ment cost for renewable generation have led to a still ongoing shift in power systems
which has to be captured by the design of the respective markets [53].

On the surface, it might be intuitive to assume that a central electricity system
planner acting as a ’benevolent dictator’ focusing on maximizing social welfare would,
in such a dynamically changing system, allow fulfillment of the societal goals that are
secure supply, generation cost minimization and low emission levels. Traditionally,
most power systems have been based on single-firm models. Even modern examples of
’benevolent monopolists/oligopolists’ exist, an example being the Chinese power grid
[155].

However, the assumption of a social-welfare maximizing central planner might not
be as straightforward, as it is indicated that markets that allow for strategic behavior
are able to increase the social welfare in the long term [116]. The rationale behind
market liberalization can be found in that private, profit-maximizing market partici-
pants have more incentive to acquire information and to act as a driver for innovation
as they are able (and due to competition: often forced) to invest short-term gains
resulting from strategic bidding. In a system governed by expense reimbursement at
short-term marginal cost level, there would be no room for investment and research,
which could potentially lead to long-term stagnation. For example, a politically moti-
vated central planner could cut short-term cost by reducing long term investments and
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1.1. MOTIVATION

research into more efficient means of generation.
Another liberalization-supporting aspect is given by systems with historically rooted

cultural disparity. Integrating systems such as the European Union under central
planning would already prove problematic on country-level. For example, Germany’s
transmission system alone is separated into four different control areas operated by four
different TSOs. Even though close cooperation through ENTSO-E exists, TSOs still
aim to act in national interests and as such full cooperation therefore not be considered
a realistic option for trans-European electricity grid operation [153]. On the contrary,
separated national grids would, in addition to denying positive effects on grid stability,
deny consumers considerable surplus gains caused by interconnection [123].

Based on this, it is plausible to assume a power market composed of strategic agents
with individual, not necessarily aligned goals (e.g. profit maximization or emission
minimization/short-term or long-term focus) and individual traits (e.g. preferences
for a certain generation portfolio such as ’phase out nuclear generation’). Due to
the complexity of the financial side of power systems, it is reasonable to assume that
certain agents are able to solidify their position on the market via the exercise of market
power, either through sheer size or strategic utilization of their position in the grid -
geographically1 as well as characteristically2 [16].

1.1 Motivation

The assumption of strategic decisions by participants of an electrical power system leads
to unique problems not shared with other commodity markets. The reason herefore
is that agents’ goals do not necessarily align with the goals of system operators. To
provide an example: system stability is not a natural goal of profit-making producers.

An example is given by Figure 1.1 which demonstrates a market price clearing
between a weakly elastic demand represented by the demand side price function pD(qD)
and an ascending stack of price bids submitted by producers represented by the supply
side price function pS(qS).

Through unforeseen events the generation q1 could not suffice to fulfill the clearing
demand q∗ or the generation q2 could exceed the market clearing demand. In other
commodity markets the outcome would be market prices of p1 or p2 which would result
in losses in social welfare.

In electrical power systems however, Kirchhoff’s laws do not allow for another
outcome than supply equaling demand, i.e. the equilibrium state p∗ = q∗. Furthermore,
this condition has to hold continuously over time, as only short disparities can cause
problems in the form of system frequency distortions. Thus, mechanisms have to be in
place to correct the imbalances of the quantities q∗ − q1 or q∗ − q2.

1An example would be a generation firm ’artificially’ separating an area/node in order to act as a
price-maker in this node.

2An example would be a generation firm holding a monopoly on a certain type of generation, being
able to define the prices for this specific form.

2



1.1. MOTIVATION

quantity [MWh]

price [AC]

p∗

p1

p2

pS(qS)
pD(qD)

q∗ q2q1

Figure 1.1: Demand and Supply in Electricity Markets
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1.2. ORGANIZATION OF THE DISSERTATION

Ancillary services such as reserve markets and capacity requirements/markets are
such mechanisms and are intended to support system stability. However, such addi-
tional services increase the complexity of the bidding process as more markets and
remuneration systems have to be implemented.

Factors such as the increased share of uncertain renewable generation in generation
portfolios do not point towards a reduction in system complexity due to a rise in impor-
tance of ancillary services. Paired with the rather high entry barriers for participation
in electricity markets and strategic bidding being a inevitable component of such fi-
nancial systems, market power and utilization of such deserves appropriate analysis.
The importance of such analysis is given by that existence and utilization of market
power effects, in the most severe case - firms behaving as monopolies or oligopolies -
cannot necessarily be ruled out in reformed and deregulated markets [89, 119].

The here presented work intents to provide a new angle on the definition of market
power and adequate tools to conduct future studies on the subject. The overall goal
of this research is to strengthen the robustness of electrical systems to faults caused
by misuse of financial tools3 and to support the electrical system in fulfilling its public
mission of providing a secure supply of emission-low electricity at low cost. Further, the
developed tools would aim to analyze and prevent cases of market participants utilizing
their size and impact in the power system in order to allocate their transactional risk
onto the society [96].

The context of the presented work is aimed on hydropower optimization, stemming
from it being the main source of generation in the Norwegian power system. Due to a
scarcity of publications on price-making storage operators, or more general: dynamic
problems of competition, analysis of price-effects of producers in such hydropower-
dominated systems as the Norwegian grid have traditionally been neglected [142].

Thus, the proposed methods do not only offer practically applicable tools for sys-
tems with large shares of (hydropower) storage, but also fill a crucial gap in literature.

1.2 Organization of the Dissertation

The structure of the work is the following:

Ch. 2 presents an introduction to equilibrium models with a focus on electrical power
markets. It presents various forms of competition such as Bertrand and Cournot
Competition. In addition, various solution techniques to such models are listed:
(linearized) Karush-Kuhn-Tucker conditions, Nikaido-Isoda function convergence
algorithm and Gröbner basis reformulation with respective code snippets pro-
vided in the appendix of the dissertation.

Ch. 3 gives an introduction to the economic aspects of hydropower storage. It analyzes
the formulation of uncertainty as well as the welfare impact of utilizing storage

3A famous example would be the impact of the trading decisions conducted by the Norwegian
electricity trader Einar Aas, which caused a 110 Million AC disparity on the Nordic NASDAQ market.
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1.2. ORGANIZATION OF THE DISSERTATION

capacities. Further, the chapter aims to define the role of hydropower storage
and the competitors of this form of electricity generation.

Ch. 4 shows the basic principles of hydropower dispatch and unit commitment. In
addition, the chapter analyzes the impact of a price-maker assumption on unit
commitment and the resulting multiplicity of equilibria.

Ch. 5 formulates the main research question and the core assumptions considered in
the following publications yielded during the work on this dissertation. Further it
introduces research requirements that were additionally imposed on the research
work in order to increase range of applications of the research results.

Ch. 6 introduces the main literature that establishes the knowledge foundation of this
work. It analyzes topics such as unit commitment, hydropower optimization,
systems under multiple equilibria.

Ch. 7 introduces the publications that were a direct result from the work on this dis-
sertation. The publications are introduced via an extended abstract and provided
in their pre- or post-print format.

Ch. 8 introduces potential future applications of the presented concepts. The chapter
discusses extensions for usage in electric power systems but also extends to appli-
cations in other energy or commodity markets and general operations research.

Ch. 9 concludes the findings and scientific contributions of the dissertation.

5



Chapter 2

Energy Market Equilibria

”Young man, in mathematics you don’t understand things. You just get
used to them.” - John von Neumann

Similar to Reference [152], market optimization models can be classified by the
number of participating firms, or more general - players, j (see Figure 2.1). The single
firm model in Figure 2.1a shows a reaction of an observed player to an external market
that can come in form of price or demand signals. The multi-firm case in Figure 2.1b
recognizes the interactions between players which has the potential to influence those
signals and thus other players’ decisions. Utilizing this influence has the potential to
prevent competing players in such a ’game’ from being able to conduct their optimal
strategies that they would choose in the setup without competition that Figure 2.1a
provides.

As Figure 2.1b provides a generalization of the system in Figure 2.1a, this work
will focus mainly on multi firm systems. In accordance with Reference [65] the general
market optimization problem of a single such player’s decision in such a system can be
formulated the following:

max
xj

Πj(x) (2.1a)

s.t. hj(x) = 0 (2.1b)

gj(x) ≤ 0 (2.1c)

xj ⊆ x (2.1d)

In this formulation, Equation (2.1a) defines the profit function. The reason for the
chosen formulation is the market focus of this work. In a more traditional approach, the
objective function could also be denoted as a payoff-function. Equation (2.1b) defines
the equality constraints and Equation (2.1c) the inequality constraints of a player.
Equation (2.1d) expresses that a single player cannot necessarily make all decisions

6



Optimization
Problem

Player j = 1

Clearing Conditions

Electricity Market

(a) Single Firm Model

Optimization
Problem

Player j = 1

Optimization
Problem

Player j = 2

...
Optimization

Problem
Player j = j̄

Clearing Conditions

Electricity Market

(b) Multiple Firm Model

Figure 2.1: Electricity Market Optimization Problems
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2.1. PROFIT FUNCTION FORMULATION

in the market but also has its objective function and constraints influenced by other
players’ decisions xj2 where j2 6= j.

In practical applications such as liberalized power markets, players are usually con-
nected via their objective functions. For example, instead of a central planner assigning
specific line flows to generation companies, a TSO decides on a transmission price on
certain lines. Thus, this usually means that hj(xj) ≡ hj(x) and gj(xj) ≡ gj(x).

The section below will introduce several objective function formulations commonly
used in wholesale energy markets. It has to be noted that collusion via cooperative
games were intentionally kept out of this work. The reason herein is the focus of this
work being on large-scale generation, specifically hydropower. This in turn means a
focus on wholesale electricity markets that can generally considered to be competitive.
As described above, this is the main incentive for countries to deregulate electricity
markets [144]. This, however, does not mean that collaborating players is impossible
in such environments. To provide an example - Reference [21] shows that tacit collusion
conducted by oligopoly players can be captured by non-cooperative models.

2.1 Profit Function Formulation

Reference [44] categorizes different types of interactions traditionally utilized in power
market applications. Generally, these model types can be defined by the type of decision
that a firm has to make: price decision, i.e. xj = pj , or quantity decision, i.e. xj = qj .
The interaction models, and thus the formulation of the profit functions, depend on
the model users’ assumption on the type of competition1.

Under Pure Competition (”No Market Power), prices p are considered as ex-
ogenous parameters that cannot be influenced by the players. The profit function
is that of a price-taker:

Πj(qj) = pqj − c(qj) (2.2)

Under Bertrand Competition (”Game in Price”), Quantity bids are set de-
pending on a price decision of a firm and fixed price bid assumptions of other
firms denoted as p′:

Πj(pj) = pjqj(pj , p
′
j2∀j2 6= j)− c

(
qj(pj , p

′
j2∀j2 6= j)

)
(2.3)

Cournot Competition (”Game in Quantity”) presents the reverse - quantity
decisions and assumptions on other firms’ decisions q′ are set by players:

Πj(qj) = pj(qj , q
′
j2∀j2 6= j)qj − c(qj) (2.4)

1It has to be noted that leader-follower games are considered out of scope for the here presented
work.
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2.2. THE LAGRANGIAN

General Conjectural Variations represent an interaction similar to Cournot
Competitition. However, instead of fixed quantity bid assumptions the bids of
other firms are considered to be dependent on(/function of) the bid of the deciding
firm:

Πj(qj) = pj(qj , q
′
j2(qj)∀j2 6= j)qj − c(qj) (2.5)

In Supply Function Equilibrium models, quantities of all players are con-
sidered supply functions of a players’ price bid pj that is conducted facing an
(assumed) market price function pmarket. This leads to the following profit func-
tion:

Πj(pj) = pmarket(qj(pj), q
′
j2(pj)∀j2 6= j)qj(pj)− c

(
qj(pj)

)
(2.6)

It can be observed that in general, the profit functions fulfill the definition of:

Profit Function = Revenue Function− Cost Function
or:

Profit Function = Price×Quantity− Cost Function

Regardless and independent of the objective function, player problems might be refor-
mulated as Lagrangian functions, also referred to in short as Lagrangians. This will be
defined below.

2.2 The Lagrangian

It can be assumed that all elements of a players’ decision vector xj can be formulated
as a set of variables xi. In practical applications this means e.g. xi being a bidding
block of a price curve xj submitted by a player to an energy market or xi being the
specific quantity bid of a generation company to a specific network node with xj being
the total generation of the firm. Further it shall be assumed that Πj(x) =

∑
i∈Ij

Πi(x).

Using this formulation allows expressing the Lagrangian function of Equation (2.1)
similar to Reference [24] as:

Li(xi, σi, λi) = −Πi(xi|xi2∀i2 6= i) + σihi(xi) + λigi(xi) ∀i ∈ Ij (2.7)

Assuming the set of feasible decisions, i.e. the set of all decisions that do not breach any
constraints, is defined as Xi in turn allows to establish the Lagrangian Dual Problem
for a single decision xi:

max
σi,λi

(
inf

xi∈Xi

Li(xi, σi, λi)
)

s.t. σi ∈ R+

λi ∈ R
(2.8)

The so-called dual variables σ and λ are often also referred to as shadow-prices, or in
other words: the value of ”breaching those constraints”. I.e. for generation capacity
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2.3. GENERALIZED NASH EQUILIBRIUM

constraints it would be the answer to ”what would be the monetary value of having an
additional MW available in this particular time step?”.

Assumed the optimal solution to the primal problem in Equation (2.1) is denoted
by ∗ and the optimal solution to this Lagrangian Dual Problem is denoted by ∗∗ allows
to formulate weak duality :

Πj(x
∗∗) ≥ Πj(x

∗) (2.9)

This shows that the optimal objective value yielded by solving the Lagrangian Dual
Problem provides an upper bound to the original profit function. The difference be-
tween those objectives is in literature referred to as Duality Gap. Having no duality
gap, i.e. the solution of the primal problem is equal to the solution of the dual problem,
is in literature referred to as strong duality :

Πj(x
∗∗) = Πj(x

∗) (2.10)

For convex problems, this strong duality can in general (but as Reference [24] annotes:
not always) be considered to hold.

Solution techniques that use this concept of Lagrangians to solve for equilibria will
be presented below. First, however, a definition of Nash equilibria and their importance
in power markets will be provided.

2.3 Generalized Nash Equilibrium

The Oxford dictionary defines an equilibrium as:

”A state in which opposing forces or influences are balanced.”

In interaction models, or ’games’, these forces are the decisions conducted by players.
These players might compete for limited, shared resources (e.g. generation quantities
sold to consumers, transmission capacities) or work towards shared goals (e.g. firms in
an oligopoly deciding to raise the prices by withdrawing quantity).

In competitive games, the concept of Nash equilibra originally proposed in Reference
[117] describes a state of a system/market where no participants have any incentives
to change their decisions. In (power) market terminology, this e.g. means that sup-
ply/generation and demand/used quantity is matched and thus the market can be
considered ’cleared’.

Due to its notational and thematic similarities, the here provided mathematical
definition is based on Reference [39]. A solution x∗ provides a Nash equilibrium if for
every participating player j the following condition holds for the feasible space X:

Πj(x
∗) = max

xj∈Xj

Πj(xj |x∗j2∀j2 6= j) (2.11)

Such a solution might not be unique, but could also be non-existent or have a mul-
tiple and potentially infinite number of possible equilibrium-solutions [106]. As shown
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2.4. MARKET CLEARING CONDITIONS

in e.g. Reference [128], multiple Nash equilibria can differ vastly in their characteristics
such as profits and decisions. Therefore it can be assumed, that in general yielding a
single numerical solution for a Nash equilibrium might paint an inaccurate picture of
the outcome of a system if no information on the set of potential equilibria is available.

In practical applications such as power markets clearing conditions are usually ap-
plied to systems to support yielding equilibrium states [65]. Such conditions will be
discussed below.

2.4 Market Clearing Conditions

Clearing conditions are constraints shared amongst the participants in a system. In
electricity markets, a cleared market is often considered the equilibrium point where
usage (demand) equals generation (supply) [152]:

d =
∑

j

qj (2.12)

As discussed in Chapter 1, this is supported by the physical characteristics of elec-
trical systems, as Kirchhoff’s laws state that electrical systems are continuously in
equilibrium states. Reference [132] applies a similar concept to other kinds of energy/-
commodity markets. However, different systems might require adjustments to apply
the concept. As an example, reference [66] uses time delays to account for the inventory
in gas pipelines. Another potential clearing condition is the assumption of equilibrium
prices, i.e. the price assumption of all bidders equaling to a market clearing price pMC:

pMC = pj ∀j (2.13)

Such an application is e.g. presented in Reference [33] where prices in $ provide a
common basis to find equilibria for transmission systems under a CO2 emission permit
market. As shown in Reference [65], these market clearing conditions can be added
directly to systems, or in the form of (social-welfare-maximizing) system operators,
such as TSOs or market operators [78].

In general, market clearing conditions are thus assumed to be equality constraints
in the form of:

m(x) = 0 (2.14)

Considering them as equalities has the advantage of ”forcing” a market to reach an
equilibrium state if possible.

Often, converging towards market clearing conditions can be enforced by assuming
complete information on other players’ decisions x′j2:

xj2 ≈ x′j2 ∀j, j2 6= j (2.15)
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2.5. SOLVING FOR EQUILIBRIA

In liberalized energy markets public data centers2 established by the market operators
support the validity of such an approach. Nonetheless, games of incomplete information
- often referred to as ’Bayesian Games’ after Reference [75] - are subject to ongoing
research, see e.g. References [99, 111], but will be omitted here for the sake of simplicity.

2.5 Solving for Equilibria

Having established the problem formulation, chosen an appropriate profit function and
established the market clearing conditions then requires application of fitting solution
techniques to yield the Nash equilibrium/equilibria. Some techniques are introduced
below. Appendix A provides compilable code for the respective techniques, on the
basis of a problem from literature.

The here presented techniques do not provide a full overview of the spectrum of
available techniques and intentionally does not list other solution methods such as
’(Quasi)-Variational Inequalities’ [65]. Instead it will introduce the techniques utilized
in the later presented publications that represent the core work of this dissertation.

As frequent use in practical applications rely on the Karush-Kuhn-Tucker optimality
conditions [152], the discussion will begin with their introduction.

2.5.1 Karush-Kuhn-Tucker Conditions

Assumed Πi, hi and gi are differentiable allows the KKT optimality conditions to be
formulated in short form as:

∂Li(xi,σi,λi)
∂xi

= 0 ∀i (2.16a)

hi(xi) = 0 ∀i (2.16b)

0 ≤ λi ⊥ gi(xi) ≤ 0 ∀i (2.16c)

σi ∈ R, λi ∈ R+ ∀i
m(x) = 0 (2.16d)

Condition 2.16a states that in an optimal point the gradient of the Lagrangian has
to be 0. Condition 2.16b shows the equality conditions that have to hold. Condition
2.16c is referred to as complementary slackness and ensures ’activation’ of constraints
whose boundaries are reached. Reference [17] offers additional optimality conditions
for different problem settings (characteristics of the functions Πi, hi and gi). For most
practical applications however, convex primal problems are of importance. This means
that for convex functions Πi, gi and affine hi there exists no duality gap for primal and
dual variables that fulfill these conditions [24].

Finding optimal solutions x∗, σ∗ and λ∗ that fulfill the KKT conditions is a Mixed
Complimentarity Problem (MCP). Assuming appropriate clearing conditions (2.16d)

2Examples include the German ’Smard’ Platform and the Scandinavian ’Nordpool’.
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2.5. SOLVING FOR EQUILIBRIA

are included will result in an optimal solution to such an MCP being a Nash equilib-
rium. Finding such a stationary point however requires dealing with the non-linearity
introduced by the slackness condition 2.16c. There exists commercial software applied
to derive solutions to such problems, most notably the PATH solver [50]. However, and
as shown below, it is also possible to use linear representations of the KKT conditions
in order to yield equilibrium solutions.

2.5.2 Linearized Karush-Kuhn-Tucker Conditions

It is possible to apply reformulation on the KKT conditions (2.16) to transform the
complementarity conditions into linear representations. This results in a Mixed Integer
Linear Problem (MILP) that can be solved with a wider range of commercial software
and methods than the previously presented problem. Some transformation techniques
will be presented below.

The Fortuny-Amat Notation

Without the loss of generality, the slackness condition (2.16c) can be reformulated as:

gi(xi) ≤ 0 ∀i
λigi(xi) = 0 ∀i
λi ≥ 0 ∀i

(2.17)

As shown in Reference [64] this complementarity can be further reformulated as:

0 ≤ gi(xi) ≤Mui ∀i
0 ≤ λi ≤M(1− ui) ∀i

ui ∈ [0, 1] ∀i
(2.18)

This reformulation is also known as the ’big M’ formulation. This highlights the im-
portance of choosing an adequately high number for the constant M in order that an
active constraint is not constrained below its maximum.

Standard Nonlinear Transformation

Reference [57] formulates an alternative linear reformulation for the slackness condition
(2.16c), which can be defined as:

gi(xi)ui ≤ 0 ∀i
λigi(xi) ≤ 0 ∀i

λi ∈ R+, ui ∈ R+ ∀i
(2.19)

Compared to the previously introduced Fortuny-Amat notation, this formulation does
not introduce integer variables. However, it increases the degree of the inequality con-
straint. At minimum it thus transforms a linear constraint into a quadratic constraint.
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2.5. SOLVING FOR EQUILIBRIA

Reformulation as a Generalized Disjunctive Program

Reference [76] proposes a reformulation of the complementarity constraints into a Gen-
eralized Disjunctive Program by using logic operators. This would read:




ui
0 = λi

0 ≤ −gi(xi)


 ∨




¬ui
0 ≤ λi

0 = −gi(xi)


 ∀i

ui ∈ [True,False] ∀i
(2.20)

The advantage of using this reformulation of condition (2.16c) is that there exist a
multitude of methods such as e.g. convex-hull reformulation, branch-and-bound and
branch-and-cut that can be applied to solve such problems [37]. Furthermore, addi-
tional solution techniques for MPECS are e.g. presented in Reference [105] but shall
not be discussed further here. Instead, other concepts to yield equilibria are introduced.

2.5.3 Nikaido-Isoda Convergence Algorithm

Originally presented in Reference [120], the Nikaido-Isoda function is an auxiliary func-
tion that sums the changes in profits for all players considering a single player j is the
only player allowed to change strategies xj to yj . Mathematically this can be formu-
lated as:

Ψ(x, y) =
∑

j

(
Πj(yj |xj2∀j2 6= j)−Πj(x)

)
(2.21)

Assuming there exists a decision x∗ that fulfills the definition of a Nash equilibrium
from Equation (2.11) for all players j. This allows to formulate the value of a the
Nikaido-Isoda function at such an equilibrium point:

arg max
y∈X

Ψ(x∗, y) = arg max
y∈X

∑
j

(
Πj(yj |x∗j2∀j2 6= j)−Πj(x

∗)
)

= 0 (2.22)

Reference [93] describes that for a weakly convex-concave3 Nikaido-Isoda function,
a stepwise algorithm can be applied to converge towards such a Nash equilibrium. By
choosing step sizes as a parameter 0 < us ≤ 1 for each step s, a convergence function
for decisions xs can be established:

xs+1
i = (1− us)xs + usy

∗
i ∀i (2.23a)

where Ψ(xs, y∗) = arg max
y∈X

Ψ(xs, y) (2.23b)

Assuming the algorithm has converged to an equilibrium point, thus fulfilling condition
(2.22), results in no update in the decision, i.e. xs+1 = xs. Reference [39] extends
the concept of this algorithm to problems specific to electrical systems. By listing

3Convex functions are weakly convex functions that are continuous.
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several practical examples it shows how the sub problem in Equation (2.23b) can be
reformulated as a decision problem:

max
y

Ψ(xs, y)

s.t. h(y) = 0
g(y) ≤ 0
m(y) = 0

(2.24)

Compared to the KKT conditions in Equation set (2.16), this problem has no com-
plementarities and thus does not require similar linearization in order to be solved.
In addition, the number of variables is smaller due to no dual problem having to be
solved, which can be advantageous for larger scale problems. In contrast to this stands
the disadvantage that for complex problems the amount of steps to converge might be
high.

2.5.4 Gröbner Basis Reformulation

A Gröbner basis is a reformulation of a system of polynomial equations that generalizes
Gaussian elimination, the Euclidian algorithm and the Simplex Algorithm [145]. This
reformulation has several advantages:

- it allows to formulate replacement rules (i.e. shows a decision as a function of
other decisions).

- it is more compact (and thus easier to solve for a numerical equilibrium).

- it is no approximation of the original problem (thus it includes all possible equi-
librium outcomes).

The original method to derive Gröbner bases was presented in Reference [26]. Since
the original publication and due to the computational complexity of the required op-
erations, resource-efficient computation of such bases has become an active field of
research itself [13, 56]. Therefore, methods to obtain these bases will be omitted in the
here presented work. Instead, software implementations such as presented in Reference
[109] will be applied to obtain a solution for the Gröbner basis G(·) where · denotes a
polynomial system. Nonetheless, a numerical example should be provided to introduce
the reader to the practical applications of Gröbner bases:

Numerical Example
Assumed be an equation system describing a Cournot market
under elastic demand.
The price is denoted as a linear function p consisting of constants
pa and pb.
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Participating suppliers are bidding under the objective of profit
maximization whereas no variable bounds such as capacity limits
are imposed on them.
The system can thus be formulated the following:

p = pa − pb∑
j

qj

Πj = p ∗ qj − cj(qj) ∀j
(2.25)

Equivalently, this system can be reformulated as polynomial
equations that allows derivation of the Gröbner basis:

G




p− pa − pb∑
j

qj = 0

p− ∂cj(qj)
∂qj

∀j


 (2.26)

Assuming a game under uncertainty, where the intercept is pa =
100 and the slope undefined pb =?
The cost functions of the players are defined as ci(qi) = 20 ∗ qi +
2 ∗ q2

i ∀i = 1, 2 and ci(qi) = 10 ∗ qi + 1 ∗ q2
i ∀i = 3.

Equation (2.26) can be derived by e.g. applying Buchbergers al-
gorithm and using graded reverse lexiographic order on the mono-
mial ring that represents the variables [26]. This results in:

Equation(2.26) =





2pbq3 − 5pb + 2q3 − 90,
p− 2q3 − 10,
2q1 − q3 + 5,
2q2 − q3 + 5





(2.27)

This formulation allows to define a distributionally robust re-
placement rule for the equilibrium quantity provided by the sup-
pliers based on the uncertain slope of the price function:

q1 = q2 = 5pb−90
8pb+4

− 2.5

q3 = 5pb−90
4pb+2

(2.28)

This allows obtaining numerical equilibrium solutions,

e.g. for pb = 4⇒ p = 32, q1 = q2 = 6, q3 = 22
or pb = 0⇒ p = 100, q1 = q2 = 20, q3 = 45.

Using such polynomial formulations of decision problems to find multiple equilibria
has been analyzed in literature previous to this work:
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2.5. SOLVING FOR EQUILIBRIA

- Reference [43] applies Buchberger’s algorithm to yield multiple Nash equilibria
in games under disjunctive decisions.

- Reference [94] extends this concept to other areas such as a Bayesian Nash equi-
libria.

- Reference [162] uses a mixed-strategy formulation of a discrete decision space and
applies it on bids in an electrical power market.

- Reference [74] applies an evaluation algorithm on a players’ KKT conditions in
order to derive the range of optimal points.

Latter method is extended on and described in the paper [EJOR] presented in
chapter 7. For the sake of completeness, however, an initial discussion of the concept
will be given here.

Applying Equation set (2.17) on the KKT conditions in Equation set (2.16) allows
for the following reformulation:

G




∂Li(xi,σi,λi)
∂xi

= 0 ∀i,
hi(xi) = 0 ∀i,
λigi(xi) = 0 ∀i,
m(x) = 0


 (2.29a)

gi(xi) ≤ 0 ∀i
λi ≥ 0 ∀i (2.29b)

σi ∈ R, λi ∈ R ∀i

As mentioned above, an optimal solution x∗ to the KKT system in Equation set (2.16)
will also be a solution to this reformulation, independent of the Gröbner basis G being
applied on the equality conditions in Equation (2.29). However, this system can be
reduced in a similar manner to Reference [74]:

1. find the Gröbner basis in Equation (2.29a).

2. apply the variable bounds in Equation set (2.29b) to cut the solution space.

The resulting Gröbner basis can appear in three different forms:

A an empty set.

B a set of polynomials with finite solutions.

C a set of polynomials with infinite solutions.

Case A shows that there is no equilibrium solution to the equality constraints. Case
B can be considered solvable by algebra. Case C might yield a system of functions
that can be solved via fixing certain parameters. In general, this infinite range of
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solutions will most often stem from homogeneous functions [80]. Publication [EJOR]
demonstrates this by showing a non-symmetric decision problem with an uncertain
factor that is set to different values to yield different equilibrium states.

An advantage of this approach is the unnecessity of approximation which results
in an adequate representation of Nash equilibria. This shows its importance in prob-
lems with a potential range of equilibrium states where traditional methods might lose
certain equilibria to approximations such as the cutting plane algorithm presented in
Reference [128]. The main disadvantage of this technique is the solution times for the
Gröbner basis. This issue is the subject of the core discussion in publication [EJOR].

As mentioned above, Appendix A provides a practical example and the correspond-
ing, compilable code illustrating the here presented methods. The following chapter
will aim to introduce the concept of dynamic problems, with the goal to extend the
presented models to problems under the consideration of multiple time periods.
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Chapter 3

Hydropower Optimization I -
Storage

”The thermal stations where fossil minerals are burnt to produce steam
have an intrinsic static feature at the individual level: the fuel is a flow
that can be bought on upstream markets so that an increase in generation
today does not burden future power generations. This is not true for hydro
stations using water resource accumulated in dams: it is renewable only on
a yearly basis but non renewable within the year so that any use of water to
produce a kilowatt today is lost for tomorrows consumption.” - Reference
[41]

Generation of electrical energy through hydrological power has its’ importance to
power systems rooted in several characteristics [104]:

- hydropower provides the largest mean of renewable generation.

- hydropower plants provide a large share of the plants with the largest generation
capacities globally.

- hydropower plants often show long life spans with investment time spans up to
100+ years.

Leaving other characteristics like environmental impacts1 beside, the main focus of the
work presented in this dissertation will be occupied with the following characteristic of
hydropower generation:

- hydropower storage provides the largest wholesale storage medium for electrical
generation.

1Positive impacts are e.g. the nearly CO2-neutral generation, negative impacts are e.g. the geo-
logical impact and the impact on local wildlife.
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This is the basis for the research questions of this dissertation as well as this and the
following chapter showing a focus on hydrological electricity storage.

Nonetheless, the later presented methods and models in this dissertation could
equivalently be applied to other mediums of electricity storage or, in general, to systems
under large-scale storage (e.g. manufacturing, logistics). However, the main practical
application for price-making electricity storage is considered to be provided by large-
scale hydropower generation. This is rooted in the potentially large financial gains
of using storage to strategically shifting generation capacities to high-price periods, a
concept referred to in literature as peak skimming [91, 144].

price[ ACMWh ]

period[h]

period[h]

t = 1 t = 2

p2

p1

t = 1 t = 2

2q

q

generation[MWh]

Πno storage = p1q + p2q

Πstorage = p22q

p2 > p1 → Πstorage > Πno storage

no storage

storage
transfer q from t = 1 to t = 2

Figure 3.1: Increasing Profits through Peak Skimming

An example for the profit increase through holding inventory is given in Figure 3.1
which uses the example of a price-taking generator that is able to withhold available
quantity from one period to use it for increased generation in the next. In principle, this
market mechanic is similar to traditional price arbitrage, whereas instead of shifting
quantity from market to market or player to player, it is here conducted from time
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stage to time stage [63].
For hydropower plants, the ability to conduct such arbitrage2 is determined by the

Degree of Regulation (DoR), which can be calculated the following:

DoR [%] =
storage capacity [MWh or mm3]

E[annual inflow][MWh or mm3]
(3.1)

The DoR can range from ≈ 0% to several ×100% [97]. Based on this measure, the
operation types of hydropower plants can be distinguished and defined as:

1. Run-of-river: low DoR

2. Storage: medium to high DoR

(a) No Pumping: plants behave as suppliers

(b) Pumped Storage: plants can behave as both wholesale customers and
suppliers

However, even in units with low DoR, decisions on state variables (e.g. hydrological
inventory) have to be made by the operators. Thus, traditional hydropower optimiza-
tion shows a focus on planning models incorporating unit states, specifically dynamic
programs [161].

The state constraints connecting the time periods t and t+1 for a single hydropower
unit i can be generally formulated as:

ri,t+1 = ri,t − qi,t + li,t (3.2)

However, it can be assumed that the hydrological inflow l cannot be foreseen exactly,
as it is subject to uncertainties caused by precipitation, leading to a formulation based
on uncertainty: l(ξ). Further, a slack variable si,t ∈ R+ representing the spillage is
often added in practical applications. This variable relaxes the equality condition in
order to allow yielding a result in high inflow scenarios (otherwise, if the inflows exceed
the maximum generation capacity, i.e. li,t > q̄i, the constraint could not be fulfilled.

Thus, a commonly used form of this state constraint can be formulated as:

ri,t+1 = ri,t − qi,t + l(ξ)i,t − si,t (3.3)

In multi-reservoir systems, inflows will be influenced by decisions made on upstream
reservoirs and power stations. More water shedding will result in more river stream
capacity and fill downstream reservoirs faster. However, in multi-reservoir systems, the
displayed state transitions presented in Figure 3.2 can be assumed in similar manner
[95]. In addition, it has to be noted that this state constraint should be adjusted for use

2Reference [54] discusses that this term might be misleading from a finance perspective. It might
be argued that time-stage-arbitrage could be a more fitting definition. In this dissertation however,
the term arbitrage will be used in order to highlight the strategic value of storage decisions.
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li,t−1 qi,t−1 li,t qi,t li,t+1 qi,t+1

... x x x ...

Πi,t−1 Πi,t Πi,t+1

Stage
t− 1

Stage
t

Stage
t+ 1

ri,t−1 ri,tri,t−2 ri,t+1

Figure 3.2: Sequential Decision Process

with pumped hydropower or other means of storage that allow active storage decisions
in form of acting as a wholesale customer on the power market. As this, however,
was not considered within the core scope of this dissertation, such a formulation is
presented in Appendix B.

Considering there exists such a connection between the time periods, the Bellmann
equation for the optimal profits under uncertainty in the previously introduced decision
problem in Equation set (2.1) can be formulated as:

Π∗j,t(ξ, x) =
{

max
xj,t

(
Πj,t(ξ, x) + Πj,t+1(ξ, x)

)∣∣hj(ξ, x) = 0, gj(ξ, x) ≤ 0
}

(3.4)

It has to be mentioned that the optimal decision in the following time stage Πj,t+1(ξ, x)
also incorporates Πj,t+2(ξ, x) and thus all following profits. Thus a single stage profit
is therefore a potentially infinite sequence of profit functions. In practical applications
this is usually solved by predetermining a finite time frame and assuming fixed end
states for the last period of this time frame [124].

Current hydropower modeling trends show a focus on uncertainty, mainly assuming
price-taking generators [142]. Such a simplifying assumption allows the formulation of
more accurate technical specifications such as head-tail relations [59] and larger, more
complex reservoir constellations [158] or additional improvements of the cutting plane
algorithms [20] applied to deal with stochasticity. Reference [125] and based on this,
Reference [136], introduced the basic principles of such a cutting plane framework
named as Stochastic Dual Dynamic Programming, which can be considered the indus-
try standard for price-taking hydropower producers (not to say that other approaches
do not exist - see e.g. Reference [102] which applies Approximate Dual Dynamic Pro-
gramming).

However, these principles will not be extended on in this work, as the underlying
focus of this dissertation is on price-making (multi-player) models and not on un-
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Figure 3.3: Comparison Stochastic and Robust Optimization

certainty models. Even though uncertainty will be considered in the later presented
models, stochastic price clearing will be achieved by other techniques such as robust
optimization [165] or a residual-minimizing approach based on Reference [25]. The
reason for this is presented in Figure 3.3. Both stochastic programming and robust
optimization methods yield single decisions for the current period. However, stochastic
methods consider the possibility of future changes in decisions in form of branches [46],
whereas robust optimization methods consider predetermined robust future decisions
[165].

Nevertheless, those decisions will not be fixed for the future outcomes, neither
in the case of stochastic programming nor for robust optimization. In both cases,
dynamic programming requires recalculation of future decisions over a rolling time
horizon conducted after a period has ”passed”3 and uncertainties of the period become
”known”. However, for robust methods there is an explicit solution for future periods
that can be used as an assumption in the current stage for clearing markets for their
equilibria instead of branches. This is important, as for a decision made in the current
stage, equilibrium decisions for the future stages are required. These, however, cannot
be yielded as long as there exists branching in the outcomes of those stages as it is the
case with a stochastic solution.

This means, that the solution to the stochastic optimization problem can be con-

3It is also possible to conduct this via simulation of certain scenarios and does not necessarily
require the model user to physically wait for additional data.
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3.1. THE ROLE OF HYDROPOWER STORAGE IN THE GRID

sidered similar to a set of pure strategies and the solution to the robust optimization
problem similar to a mixed strategy [2]. Latter shows the favorable characteristic of
supporting convergence to an equilibrium [9].

Further, technical constraints and extensive hydrological networks are also pre-
sented in simplified form in the publications presented in Chapter 7, as it can be
assumed that there exist methods in literature to display larger systems in simplified
form with little loss in accuracy [62, 151]4. The case for that was the intend of nota-
tional simplicity, as adding additional complexities do not change the later presented
core problem but instead simply expand notation and computational times.

As noted e.g. in References [111, 143] literature on hydropower lacks models ana-
lyzing the impact on the market and other players. Thus an important aspect of peak
skimming might be ignored in traditional hydropower optimization: the possibility for
storage operators to strategically create and deny emerging price peaks by exercising
market power. Based on this it might be argued that traditional hydropower optimiza-
tion methods as e.g. presented in References [139, 143] focus overly on uncertainty,
similar to other means of renewable generation such as wind and solar [115]. However,
it can be assumed that the accurate prediction of the impact of strategic storage de-
cisions might gain in importance compared to accurate prediction of uncertain inflows
the larger the DoR. Thus, large hydropower generators might neglect an important
aspect of their strategy set by applying techniques more suitable for run-of-river plants
compared to storage plants with a larger range of potential strategies. Based on this
assumption that the methods and models developed during the work on this disserta-
tion are aimed on (hydropower) storage units, a more in-depth analysis of their core
characteristics is presented below.

3.1 The Role of Hydropower Storage in the Grid

In addition to the previously presented arbitrage, References [48, 54, 141] list several
potential applications that can be attributed to (hydropower) storage:

- Electric Supply Capacity - utilities that require additional peak capacities might
be able to utilize storage instead of purchasing from marginal units on the whole-
sale markets.

- Support Time-Of-Use Pricing Schemes - by flattening the price peaks the off-
peak periods where time-of-use prices apply get smaller and make such pricing
schemes more applicable.

- Reduce Demand Charges - wholesale customers could have their demand charges
reduced by having the power draw reduced by storage units feeding into the grid.

4Which is also the topic of Publication [ENGIES] that was considered out of scope of this disser-
tation.
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3.2. WELFARE EFFECTS OF STORAGE

- Renewable Energy Time Shift - storage could assist renewable means of gener-
ation to bridge off-peak periods (or in case of pumped hydropower: consume
excess supply).

- Ancillary Services:

- Load Following (especially for pumped storage) - buying and releasing elec-
trical loads within small time frames (minutes) in order to conduct arbitrage
by being able to react fast.

- Area Regulation - use storage to ensure that transfer flows between control
areas are matched to scheduled flows.

- Reserve Capacity Provision - providing spinning and standing reserves.

- Transmission Support and Congestion Relief - with enough storage capaci-
ties plants can be used to reduce utilization of transmission lines and support
stable performance in case of outages.

- Improve Service Reliability - storage can e.g. support orderly shutdowns of
units.

In general, it can be assumed that provision of such services leads to welfare gains
[63, 140, 141]. This assumption can be considered similar to nodal arbitrage as e.g.
presented in Reference [78], which leads to decreasing price differences. This goal
of increasing consumer surplus by minimizing price variation and price peaks is also
a main argument for opening balancing mechanisms to competition and associated
publication of information [35]. However, it might be the case that such goals do not
necessarily align with the strategies of storage providers under market power. This will
be discussed below.

3.2 Welfare Effects of Storage

Withholding available arbitrage capacities and the resulting system welfare losses have
been shown to be optimal strategies for profit-maximizing agents in electricity mar-
kets [23, 88]. Thus, for the comparable mechanism of time-stage-arbitrage allowed by
holding reservoir inventories, similar effects can be expected.

However, generation firms neglect these effects under price-taker assumptions. This
would result in price-taker models neglecting the influence of players using market
power.

To demonstrate this, a Cournot model for a single generation company with a single
hydropower unit will be utilized:
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3.2. WELFARE EFFECTS OF STORAGE

max
q,r

∑
t
pt(qt)qt (3.5a)

s.t. rt+1 = rt − qt + lt ∀t (3.5b)

qt ≥ 0 ∀t (3.5c)

0 ≤ rt ≤ lt ∀t (3.5d)

Objective function (3.5a) maximizes profits over all (finite) time periods. As pre-
sented above, state equation (3.5b) ensures reservoir consistency. Using the dual vari-
able σ (in literature often also referred to as ’water value’) for the state equation, the
KKT conditions can be formulated in similar manner to the prior chapter:

∂pt(qt)
∂qt

qt + pt(qt) + σt = 0 ∀t
σt − σt+1 = 0 ∀t

rt+1 − rt + qt − lt = 0 ∀t
qt ≥ 0 ∀t

0 ≤ rt ≤ lt ∀t
σt ∈ R ∀t

(3.6)

These conditions can be solved for their equilibrium over a finite period t̄, by assum-
ing start and end reservoir values (e.g. r0 = 0 and rt̄ = 0). Using the ’bathtub’-
representation from Reference [62], a two-period case with linear price curves (with
increasing intercept) and equal inflows in each period can be displayed as in Figure
3.4.

Figure 3.4a shows the price gap under no utilized storage. The triangle defined by
the two price clearing points and the intersection of the price curves is the lost welfare.
In transmission models, where instead of two time periods two nodes are analyzed, this
lost welfare is also referred to as ’congestion rent’.

Figure 3.4b describes the social welfare optimum which can be considered a variation
of Hotellings’ rule [81]. It shows no loss in social welfare due to even prices in both
periods, assumed there is sufficient available inventory capacity.

In the case of a price-making monopolist, this optimum would not be reached,
however. Instead, the storage operator would shed more load in period t in order
to reach the profit maximum5 in Figure 3.4c. This case again shows a loss in social
welfare.

In contrast, a price-taking generator would face the problem presented in Figure
3.4d and thus shift all available inflow to the second period. It can be assumed that

5The given example has linear price curves of pt(qt) = 4 − qt, pt+1(qt+1) = 6 − qt+1; inflows of
lt = lt+1 = 0 and the condition of empty reservoirs, i.e. rt+1 = 0. This means that the generator
profits are (4 − 1 × 2) × 2 + (6 − 1 × 4) × 4 = 12[AC] for the social optimum case and (4 − 1 × 2.5) ×
2.5 + (6− 1× 3.5)× 3.5 = 12.5[AC] for a monopolist exercising market power.
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Figure 3.4: Two-Period Price-Maker Storage under Monopoly
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if enough competition exists, so that individual generators have at best marginal in-
fluence on the price curves, price matching between time periods might be a valid
representation of the outcome.

On the other hand, assuming price-taking behavior for price-making agents, as
seems to be industry standard for scheduling models [142], might provide a skewed
representation of reality, effectively approximating the monopolists’ decision from Fig-
ure 3.4c with Figure 3.4d. This could prove especially problematic in regards to design
of sensible system components such as ancillary services, where selection of partici-
pants is more rigorous and thus more excluding leading to a lower pool of competitors
compared to other market forms [35]. Appendix C presents an analysis of the existence
of the welfare gap caused by exercise of market power through storage operators.

3.3 The Competitors of Hydropower Storage in the
Market

Hydropower shares comparable traits to other forms of renewable generation. Specif-
ically, it shows greenhouse gas emissions in orders of one to two magnitudes lower
compared to thermal generation [87], operating cost (and thus marginal cost) that are
negligible low [58] and is usually associated with techniques for optimization under
uncertainty [11, 142] similar to other forms of renewable generation such as wind and
solar [115]. As mentioned above, behavior of hydropower plants might resemble tra-
ditional renewables in case of run-of-river plants, which offer a rather limited range
of available storage decisions. Nonetheless, hydropower optimization for both low and
high DoR orients itself at price levels of marginal units in the market, which are mostly
provided by thermal plants [142, 158]. That is not to state that there exist no mod-
els analyzing the interactions of renewables and storage, however those formulations
generally aim for modeling cooperation and not the competitive aspects of liberalized
markets [48, 54]. The reasoning is given by the merit-order effect [124, 135]. It states
that in a pool market participants base their bids on the units that provide the clearing
prices, as those define the ’upper bound of acceptance’. Overstepping this boundary
(i.e. bidding extra-marginal) means not being accepted, whereas in pay-as-bid markets
understepping this boundary (i.e. bidding infra-marginal) results in losses of potential
profits (also referred to as ’opportunity cost’). Thus, a popular way to incorporate
renewables and other low-cost means of generation is by ’demand shift’ [144]. Figure
3.5 demonstrates this concept that is also applied on in some of the later presented
publications. By using equivalent representations ρ(q) of price curves p(q) that have
similar clearing points and slopes the auction can be formulated without the need to
incorporate low cost generation.

After introducing (hydropower) storage decisions and their economic implications,
the following chapter will focus on (hydropower) dispatch decisions.
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Figure 3.5: Equivalent Representations of Renewable Supply via Demand Shift
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Chapter 4

Hydropower Optimization II -
Dispatch

The previous chapter discussed the role of reservoir inventory as a state variable that
connects current with future decisions. Historically, a different kind of state variable
has been a major subject of research in energy system optimization. Initially occupied
with thermal generation [12, 138], discontinuous (binary/integer) dispatch variables
found recent applications in hydropower optimization [28, 126]. One reason for this
trend might be given by the generally low variable cost of hydropower generation, so
that even minor cost of starting generation units have significant impacts on the unit
schedules [59]. Especially in markets with low prices this could mean that models
that assume consistent generation limits over all future time periods (such as e.g.
Reference [27] which is presented in Appendix A) might not reflect reality accurately.
To demonstrate this, assumed be generation in a single unit i has lower and upper
bounds:

¯
qi ≤ qi,t ≤ q̄i ∀t (4.1)

Considering binary schedules bi,t ∈ Z2 allows reformulation of this constraint:

¯
qibi,t ≤ qi,t ≤ q̄ibi,t ∀t (4.2)

Usually, this dispatch variable is included in the cost function and thus subsequently in
the profit function. For the example of a price takers’ profit function given in Equation
(2.2), the formulation for a limited time frame and a player j holding a set of generation
units Ij would look the following:

Πj(qj , bj) =
∑

i∈Ij

∑

t

pqi,t −
∑

i∈Ij

∑

t

ci(qi,t, bi,t) (4.3)

Several other types of constraints and adjustments can be added to such a model [83],
e.g.:
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- maximum/minimum on/off-time

- startup/shutdown time requirements

- reserve constraints (i.e. a minimum of active units)

- capacity markets (would adjust the profit function so that it includes remunera-
tion for the binary variables)

As mentioned in the previous chapter, however, this dissertation does not aim to
provide a literature synopsis on how to solve unit commitment problems. Various work
is available on the techniques and methods [122] and would have to be extended to
consider uncertainty to be able to cater applications in hydropower optimization. As
this would be out of scope for the here presented work, further introduction to solution
techniques is omitted.

Nonetheless, the later presented publications will consider unit commitment in sim-
plified form. The applied methods, however, will be introduced within the specific pub-
lications and therefore not explicitly discussed here. For the here presented methods it
suffices to assume that a method able to deal with the introduced capacity constraints
from Equation (4.2) can also be considered to deal with the other additional constraints
and model adjustments presented above.

4.1 Unit Commitment and Price Takers

Now assumed be the market participants are able to influence prices, which can be con-
sidered a reasonable assumption in the light of the discussion of the previous chapters.
This would mean a different profit function formulation compared to Equation (4.3).
For the example of Cournot competition given in Equation (2.4), the profit function
including binary decisions could be formulated as:

Πj(qj , bj) =
∑

i∈Ij

∑

t

pj(
∑

i∈Ij
qi,t,

∑

i2/∈Ij
q′i2,t)qi,t −

∑

i∈Ij

∑

t

ci(qi,t, bi,t) (4.4)

Whereas various techniques were introduced to deal with price-taking dispatch
problems, this new formulation allows for a new range of strategies that are not con-
sidered in traditional unit commitment models.

One such example is given in Figure 4.1. Here a storage operator j = 1 and two
thermal generators j = 2, 3 meet in a spot market under uniform price clearing. The
base case in Figure 4.1a shows that the base loads are supplied by the storage operator
j = 1, the marginal unit held by thermal generator j = 2 and thermal generator j = 3
holds an extra-marginal unit. However, it is assumed that j = 3 cannot shut the
unit down in this period (e.g. is influenced by minimum up-times), whereas generator
j = 2 could choose to shut this unit down but the profit outcome Π2 is large enough
to reimburse for the cost of keeping the unit running.
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Figure 4.1: Unit Dispatch and Competition
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Figure 4.1: Unit Dispatch and Competition

As described in the previous chapter, a storage decision from the previous period
would extend the base load and decrease the clearing price. This is shown in Figure
4.1b. Such a storage decision and the resulting price drop, however, would also affect
the profits of the other participants. In this case, if the profits of player j = 2 would
not suffice to reimburse for the decision to keep the thermal unit running, a shutdown
decision could be made.

Such a decision can also be interpreted as a player choosing to exit a market. The
outcome is displayed in Figure 4.1c. In this case, a drastic increase in storage operator
profits can be observed. This profit increase is a result of indirect influence on other
players’ state variables (here the dispatch decision of player j = 2) and can only be
captured by models that incorporate competition and state variables (in this case both
storage and dispatch decisions are required to portrait the decision).

As will be argued below, literature on such decision models can be considered
scarce at best. This led to the formulation of the research focus of the scientific work
presented in this dissertation and resulting publications such as Publication [POLICY],
which discusses this principle in further detail, below.

4.2 Multiple Equilibria

Designing models of competition to be capable to incorporate state variables adds an-
other complicating factor: the number of equilibria ranges from 0 to a finite or an
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Figure 4.2: A Discrete Unit Dispatch Game

infinite number. Even though for most applications it might be possible to yield equi-
libria for mixed strategies [131], considering a discrete game as a continuous problem
might not be a useful result.

Similar to Reference [9] a discrete two-player game under complete information
might be considered here for the sake of illustration. Assumed are two players holding
one generation unit each and with profit functions of Πj = p(

∑
j2 qj2)qj − cj(bj).

Further, cost curves are assumed to be cj(bj) = cbjbj where bj denotes the binary

startup/shutdown decision and fixed cost component cbj is a constant.
The game is considered convex for fixed binary variables and can thus be solved

similar to Chapter 2 for optimal generation quantities q∗j . Figure 4.2 shows a potential
payoff-matrix that could be established. As it can be observed, there are two cells
that fulfill the requirements for a Nash equilibrium - i.e. b1 6= b2. In case of both
players supplying the market, both would operate under loss, whereas a single player
supplying would result in that player profiting from participating in the market. For
homogeneous players (i.e. similar plants), mixed strategies could result in outcomes
where both players are having their plants shut down or running. Both of those out-
comes would however not represent a Nash equilibrium of the original game and thus
distort assumptions on e.g. the capacity available in the system. This highlights the
importance of methodical selection and analysis of Nash equilibria, which the later
presented publications show a strong focus on.
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Chapter 5

Research Question and Main
Assumptions

Based on the previously established principles and the discovered lack of literature, a
main research question can be formulated:

How would a model need to be designed to accurately depict the
decision process of a price-making storage operator?

Based on the previously established theory, several core assumptions and model
requirements were formulated:

Assumption 1 As hydropower storage makes up the main part of large
scale storage, the models are focused mainly on the core
traits of (short-term) hydropower optimization models.

Assumption 2 The main competitor of large scale storage is thermal/-
marginal units.

Assumption 3 Units are not assumed to be consistently participating over
the entire time frame. Thus startup/shutdown decisions
have to be included.

Assumption 4 Due to its importance in representing electricity pool mar-
kets, focus is laid on Cournot competition [16]. Nonethe-
less, applicability on other modes of competition should be
given and possibility on applying the models beyond elec-
tricity, or generally, energy markets should be aimed for.
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Several additional research requirements were formulated:

Requirement 1 Due to hydropower being the main medium for large scale
storage, methods are focused on its main features.

Requirement 2 Multiple equilibria can be expected and thus have to be
analyzed and appropriately dealt with as mixed strategies
are considered unreliable for dispatch problems.

Requirement 3 A focus on reserve and capacity markets can be expected
and models should be designed focused on these applica-
tions, but not specifically tailored for such.

Requirement 4 The case studies should be intended to demonstrate the
basic capabilities instead of solving explicit practical ques-
tions. However, portability to problems from industry
should exist.

The next chapter intents to give an overview of the literature that covers the founda-
tion of the later presented publications intended to answer the here presented research
question.
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Chapter 6

Background Literature

In general, most models from literature intending to deal with the topics of hydropower
optimization or price-makers in electricity markets can be assigned to one of the two
types(/directions) displayed in Figure 6.1. The publications yielded through the work
on this dissertation, however, intent to follow the structure presented in Figure 6.2 that
incorporates both views. To introduce the necessary background required to approach
establishing such models and the necessary solution techniques, the most influential
literature considered in the work on this dissertation will be introduced below.

Here it shall be recognized that the subject of the presented pieces of literature
might not be assigned to a single classification and might also contribute to the other
topics presented. To resolve this issue, the references were assigned to the section
showing the best match to their main contributions.

6.1 Literature Reviews

The here presented literature reviews cover the basics of the different subjects con-
sidered in the later presented publications. As it will be shown below, literature on
problems similar to Figure 6.2 is scarce and thus no existing literature reviews are
available.

The bidding process of hydropower generators in liberalized markets are examined
in Reference [142]. It lists several examples of models and categorizes them by time
frame (immediate, short, medium, long term) and method classification. Even though
it lists price-making hydropower operator models, it points out the lack in literature
that approaches such problems.

Reference [152] exams competition in electricity markets by establishing the state-
of-the-art of models with multiple players. Specifically it deals with equilibrium models,
whereas a strong focus is put on Cournot models. Further model types and model
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t = 1

Unit Dispatch/Scheduling
Models

Market
Equilibrium

Models

- represents unit decisions

Figure 6.1: Models in Literature

38



6.1. LITERATURE REVIEWS

unit
i = 1
t = 1

unit
i = 1
t = 2

...
unit
i = 1
t = t̄

unit
i = 2
t = 1

unit
i = 2
t = 2

...
unit
i = 2
t = t̄

..
. ... ... ..
.

unit
i = ī
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extensions such as capacity markets and transmission constraints are discussed as well.

A general overview of hydropower and its role in the European energy system is
presented in Reference [68]. It further outlines the roles of plants with different DoRs
in different markets. Similar to Chapter 3 it concludes with estimating a stronger role
in ancillary services with rising DoR.

Reference [47] presents the basics of single-player hydro-thermal optimization, with
a focus on stochastic optimization. It discusses the main components of such optimiza-
tion models (e.g. cascading systems, thermal dispatch) and outlines the importance of
state variables.

Another review of hydropower optimization models is presented by Reference [139].
The paper discusses the different technical specifications with a strong focus on head
effects. In similar manner to Reference [47] it also discusses the importance of system
states.

A classification of ancillary markets and services is provided by Reference [130]. It
shows a strong focus on thermal generation. The reasoning for this can be found in
such units generally providing marginal units and showing reaction times fitting for
applications in provision of ancillary services.

In similar manner, Reference [69] provides an overview of markets for ancillary ser-
vices. It lists a multitude of models aimed to deal with both models under competition
and no competition. Further, a section is dedicated to the analysis of hydro-thermal
optimization, whereas it focuses on price-taking models.

In Reference [95] an overview of hydropower optimization techniques is presented.
The paper mainly focuses on models under hydrological networks, nonlinear objective
functions through head-tail effects and the effects of uncertainty.

A literature review of applications of game theory in electricity systems is presented
in Reference [108]. In addition to listing practical applications for both cooperative
and non-cooperative games it also outlines the NP-hard binary scheduling problems
approached by the methods of unit commitment presented below.

6.2 ’Traditional’ Unit Commitment

The field of optimal unit commitment and dispatch has a wide range of literature
available. The here presented publications are meant to only cover the surface of this
field of research and are intended as an introduction to the basic characteristics of such
models.

The basics of solution algorithms for dynamic models and optimal control is pre-
sented in References [18, 19]. Unit commitment models can be considered a subgroup
of such models as presented in Figure 6.3.
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Figure 6.3: Optimal Control Problem

A basic problem formulation of deterministic unit commitment is presented in Ref-
erence [12]. Even though the solution technique might not be considered up-to-date
to current methods, the core principles introduced are similar to modern and more
complex unit commitment problems.

Chapter 5 of Reference [115] presents an extended example for a dispatch problem
under uncertainty. In addition to various other generation forms it also discusses
hydropower and its technical specifications, such as ’high ramping rates’ and ’virtually
no minimum power outputs’.

Ramping costs in a system under uncertainty are discussed in Reference [110]. It
convexifies the ramping cost functions and uses deterministic equivalents of the chance
constraints by applying their probability distributions.

6.3 Hydropower Unit Commitment/Price-taking Hy-
dropower

Most of the sources presented within this section discuss unit commitment problems
with focus on hydropower. The applied solution techniques are, as described previ-
ously, concerned with adequate modeling of dynamic generation/storage decisions and
uncertainty. In addition to this, another important characteristic of such optimization
problems is the topology of river networks connecting various reservoirs.

This can lead to reservoirs affecting each others’ water levels through their shedding
and storing decisions. Combined with e.g. non-linearities in turbine - water level
efficiencies, such systems offer a high level of complexity, even without anticipating
price influences. An example for a typical river basin in Southern Norway is given in
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Inflow area 1

Inflow area 2

Inflow area 3

1 684.1Mm3

1 50MW

2 1398.4Mm3 3 104.1Mm3

2 190.8MW 3 71.8MW

4 36.8Mm3 5 317.7Mm3 6 274.3Mm3

4 5.94MW 5 110.4MW 6 179.6MW

78.8Mm3 8 54.4Mm3 9 15.5Mm3 10 55.6Mm3

8 4.2MW

1115.9Mm3 12 0.2Mm3

1122MW 12 931MW

13 155Mm3

13 104MW

Figure 6.4: ’Sira Kvina’ River Basin

Figure 6.4 (taken from [103]).

Unit commitment problems under uncertainty are solved in Reference [34] via ap-
plying robust optimization. In contrast to Reference [110] there is no convexification
applied, thus a global optimum will not necessarily be obtained.

An analysis of the value of applying stochastic optimization on hydro-thermal op-
timization problems is given in Reference [134]. It utilizes reservoir state constraints
in a similar manner as presented in Chapter 3.

The subject of hydropower unit commitment under uncertain demand is discussed in
Reference [126]. It analyzes several approaches to minimize total startups and advises
usage of rate-of-change cost approaches for similar problems.

Reference [36] lists several reasons for the importance of including startup cost
for hydropower units: the loss of water during maintenance, wear and tear of the
windings/the mechanical equipment, malfunctions in the control equipment, loss of
water during the startup. The presented methodology provides a framework to solve
the dispatch decisions for a single hydropower player with several reservoirs optimizing
their unit commitment in a pool market.

A hydro-thermal dispatch problem under uncertainty is analyzed in Reference [121].
The paper considers reserve constraints and similar to Chapter 4 proposes two simplifi-
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cations: negligible variable cost for hydropower and constant costs for binary variables.
The resulting problem is solved via dynamic programming.

A special case of hydropower optimization is given by Reference [58]. The paper
uses the case of a Nordic hydropower producer, which traditionally show a high share
of hydropower generation related to the portfolio. It assesses the value of applying
stochastic optimization compared to deterministic optimization and concludes that
former approach is less sensitive to changes in the actual outcome.

Reference [61] analyzes dispatch decisions related to a single hydropower generator
bidding on both day-ahead and balancing markets. It analyzes the methods of using
linear representations of the binary values or fixing the binary decisions/i.e. dropping
the binary variables entirely. Results indicate that the bidding decision on the balancing
market is influenced (to an extend related to the size of the startup/shutdown cost)
by the chosen representation of the dispatch decision. Further it is noted that for
short-term decisions those dispatch decisions should not be relaxed.

The use of equivalent representations of multi-reservoir systems that have fewer or a
single reservoir is discussed in Reference [137]. This paper and the work of Turgeon (see
e.g. References [149, 150]) can be considered the basis of the decision to not consider
multi-reservoir systems in the later presented publications. Instead, they consider
river basins with single reservoirs, whereas the principles are assumed to be possibly
extended to multi-reservoir systems in equal manner.

Reference [30] discusses the constraints and challenges faced by profit-maximizing
hydropower generators. It discusses non-linearities such as head-tail dependencies and
discreteness of unit dispatch variables. The approach applies piece-wise linear penalty
functions and, based on a short-term time frame, assumes a deterministic setup to
formulate a MILP.

6.4 Competitive Games in (Electric) Power Systems

As indicated by the publication chart presented in Figure 6.5, over recent years analysis
of competition efficiency has risen in power system. This can be related to liberalization
in global power markets.

As such, multi-player models with single firms not necessarily being aligned with
optimizing social welfare in a system have been arising and have been utilized to discuss
the effects of competition distortions such as market power and information asymmetry.

Reference [79] provides an early work on potential formulations of multi-player
models in electricity markets. It utilizes a convergence algorithm that stepwise updates
the player decisions with the goal of ending up in a Nash equilibrium.

Another early work on the topic is provided by Reference [71]. The paper discusses
the opportunity for oligopolstic generators to use tacit collusion in order to create
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Publications

Year

Figure 6.5: Publication History for selected Keywords [49]

artificial price spikes. Instead of formulating a specific solution model like the previ-
ous source, this source uses analysis methods from non-cooperative game theory and
supports the results with empirical observations.

A more general solution model for such Mathematical Programs with Complimen-
tarity Constraints (MPEC) setups was presented in Reference [78], which analyzes
the case of price-making firms participating in a multi-nodal pool market. It further
introduces the concept of nodal arbitrage to power systems.

In addition, Reference [160] extends the model formulations presented above by
formulating a search algorithm that is intended to solve such MPECs.

Such MPEC formulations were succesfully applied on a two-stage (forward-spot
market) framework in Reference [163]. The resulting Equilibrium Problem with Equi-
librium Constraints (EPEC) is solved similar to References [79, 160] - by applying a
convergence algorithm on the KKT conditions.

A compendium of formulations of such EPEC models and methods to yield sta-
tionary points (equilibria) is provided by Reference [146]. Even though the focus of
such models lies on Stackelberg competition, as the previously presented paper shows,
EPECs are not necessarily limited to such applications.

Another compendium to approach such EPEC problems can be found in Reference
[98] which aims to provide solution techniques for multi-leader-multi-follower games.
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Reference [156] shows a different application of the here presented models. It ap-
plies the previously introduced techniques from non-cooperative game theory to solve a
cooperative game with differing objectives - minimizing generation costs and emissions
simultaneously. It proposes a cutting plane algorithm to find the Nash equilibrium
within a Pareto set. An extension to this concept is given by Reference [157], which
presents an outer approximation algorithm to reformulate a non-convex dispatch prob-
lem as a convex problem.

Another practical application of competition models is provided by Reference [129].
It models the implications of market power on firms participating in energy and reserve
markets. Compared to the single-firm price-taker models presented in the previous
section, binary dispatch decisions are considered predetermined parameters.

A wide range of competition models for applications in (single-period and thus
state-less) energy markets is provided by Reference [65]. A focus on Nash equilibria in
Cournot competition can be observed, which supports the assumption of such a compe-
tition model being a reasonable representation of electricity pool market competition.

Reference [45] provides a multi-period formulation. However, the model does not
incorporate decisions on state-variables but instead formulates the states as a result of
the market clearing results.

Reference [66] establishes a multi-period framework under storage to model equi-
libria in gas markets. However, the infrastructure (pipelines and storage) operators
are considered price-takers in the presented model. In addition, storage operators are
relaxed similar to Reference [129] - by assuming predetermined states.

Even though less literature can be found on these topics, other approaches on
deriving electricity market equilibria have been presented:

- Nikaido-Isoda convergence algorithms (see Appendix A.2) as introduced by Ref-
erence [93] and applied e.g. by Reference [39].

- Supply function equilibria as introduced by Reference [92] and applied e.g. in
References [10, 21].

6.5 Price-making Hydropower

In traditional power system scheduling, optimization of decisions to minimize the devi-
ation from the optimum point of the cost function is a core aspect. In hydropower, low
marginal cost and flexibility in ramping times and frequencies shift the focus towards
another aspect: the maximization of utility of a deplorable good - water. As such,
accurate representation of uncertainty related to hydrological inflows and prices has
become the main focus of literature on hydropower optimization.

Applying price-maker assumptions on such models has however proven difficult.
This might be a result of the hurdle presented in Chapter 3: stochastic methods might

45



6.5. PRICE-MAKING HYDROPOWER

complicate finding equilibria. Or, as in most systems, hydropower does not provide
large enough capacities to have a measurable impact on the markets. However, liber-
alized markets with large generation portfolio shares of hydropower capacities exist in
e.g. Austria, Norway, Switzerland and Brazil. This and recent trends in large-scale bat-
tery storage technologies underlines the necessity of models analyzing the perspective
of price-making storage providers.

Reference [5] provides an analysis of a similar problem outside of the field of power
systems: exercising market power through holding inventory on goods. The author
notes that with appropriate storage space, a supplier could choose to withhold capacity
until time periods where it holds enough market share to act as a monopolist. This
is similar to the principle of arbitrage as shown above, but takes into account supply
shortages. Due to vast network sizes such effects might be rare on energy system level,
but might still appear on local level.

A two-unit hydro-thermal game under different modes of competition is introduced
in Reference [41], ranging from a welfare maximizing social planner to a profit max-
imizing monopolist. The paper supports the assumption of price-arbitrage being, in
general, a profit- and welfare- maximizing choice of strategy. Additional findings are
made. For example, it is shown that hydropower generators participating in a market
are able to generate positive effects for the consumer surplus even if generation de-
cisions are not optimal, i.e. are not profit-maximizing, since their marginal cost are
negligible low.

By embedding an equilibrium convergence algorithm in a dynamic program, Ref-
erence [154] attempts to formulate hydro-thermal competition between firms holding
several generation units. Even though reservoir levels are considered, they only impact
the level variation over the total time frame instead of affecting inventory in individual
periods.

The model presented in Reference [27] is introduced in detail in Appendix A of this
dissertation. It presents a multi-firm multi-period Cournot model, similar to many of
the approaches presented in Reference [65]. Even though the inflow formulation does
not consider periodical inflows nor uncertainty, the proposed model provides an impor-
tant starting point that many of the publications presented in the following chapter
are based on.

Built on the approach presented in Reference [27], Reference [60] establishes a
stochastic game formulation with a focus on risk hedging. It analyzes the utilization
of market power by large scale producers in the Nordic electricity markets. The model
is formulated as a two-stage stochastic Cournot model, whereas in the first stage both
output and contract decisions are made and in the second stage only output decisions
are made whilst contracts continue. The paper concludes in that large hydropower
producers do not show capabilities to exercise market power, whereas large thermal
producers do.

Reference [42] establishes a Cournot model for pumped hydropower storage in
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hydro-thermal competition similar to Reference [41]. Instead of a state constraint it ap-
plies a similar concept to Reference [27]: a capacity constraint over several (here: two)
periods. To prevent the possibility of pumping backwards in time, infinite slack costs
are utilized. The findings point out that a monopolist holding thermal and pumped
hydro generation might even decide to generate via thermal generation to raise prices
whilst at the same time pumping into their hydropower plants by purchasing from the
market.

An economical analysis of the welfare effects of storage is presented in Reference
[140]. It demonstrates that ownership of storage units affects the optimal strategies.
Due to consumers and producers aiming to maximize their surplus (e.g. minimize the
cost they pay or maximize the profits they receive), the usage is not only limited solely
to the arbitrage-profits that a pure storage operator would aim to maximize.

Reference [133] analyzes pumped hydropower storage on the German electricity
market. It applies a Cournot model to show a similar outcome to Reference [140]
- different actors (e.g. consumers, strategic wholesalers) utilize storage technology
differently. In similar manner they find that perfect competition supports the highest
utilization of storage capacities. This and the previous paper thus demonstrate that
the meaning of ’optimal storage strategy’ is influenced by the environment of the power
system such as level of competition and role of the agent holding the storage unit.

By using the structure of the previously introduced Nikaido-Isoda convergence al-
gorithm, Reference [114] implements a hydro-thermal Cournot model under network
constraints. Holding inventory is not realized via states but dispatched via an ’active
set method’. In short this can be described as: 1.) calculate equilibria of each period
individually,→ 2.) find periods which would show the highest profit increases and shift
there, → 3.) if no shift possible or necessary: converged, else back to 1.

Reference [3] nests a (decentralized or centralized) dispatch model formulated as an
MPEC in a market. The result is a bi-level EPEC, that is in turn transformed back
into a single-level problem by finding analytic solutions to the lower-level problems. An
equilibrium is then found by applying the additional condition of minimizing spillage.
Similar to the publications presented in the next chapter, this model is only applicable
for period 1 and has to be applied in a rolling time horizon to calculate future outcomes.

In chapter 11 of Reference [63] the case of a monopolistic hydropower storage
provider is analyzed. The conclusion drawn is that a storage provider holding market
power actively withholds capacity to raise prices. This outcome is similar to traditional
monopoly models in e.g. Cournot competition. As the book notices, in the case of hy-
dropower this could result in a generator choosing to spill water instead of supplying
the market with additional generation.

In addition to in-depth literature reviews on electricity market models with price-
making players and hydropower bidding, Reference [143] provides a model to approach
hydro-thermal competition. The proposed method uses the approach of a potential
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single player
j = 1 market

−D ≤ ∆r1 ≤ 0

−D ≤ ∆r2 ≤ +D

generation q1

generation q2

fixed demand D

Demand fulfillment:

q1 + q2 = D

Figure 6.6: Multiple Equilibria in Hydropower Systems

game (i.e. using an interpolated joint revenue function instead of individual player
revenues). Further it discusses the existence of multiple equilibria and outlines a frame-
work that helps decision makers on which equilibrium to choose.

Reference [127] models hydro-thermal competition under uncertainty and aims to
provide a tool to diagnose strategic behavior by generators. The applied framework is
based on the assumptions that hydropower agents tend to bid prices above the levels
that a water-conserving agent would aim for. Therefore, the model solves the problem
of a social planner and then individually adjusts the player decisions based on their risk
attitudes. This is conducted by solving a number of individual agents and applying
bounds on the total decision space of all players through complementarity constraints.

A model that utilizes two techniques - Bayesian and Robust Nash equilibria - to
solve hydropower-dominated systems under uncertainty is introduced in Reference
[111]. It uses various techniques as proposed above, such as applying slackness to
force duality and using the Fortuny-Amat formulation to solve the complementarity
conditions. The paper further discusses a search algorithm based on integer cuts aimed
on finding multiple equilibria. Such multiple (Nash) equilibria are further discussed
below.

6.6 Multiple (Nash) Equilibria

Several literature sources such as e.g. References [111, 143] highlight the importance of
finding and mapping several equilibria that provide (potential) solutions to a system.
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Reference [111] also emphasizes another common characteristic of systems with a range
of possible equilibria:

”Practitioners typically are satisfied when a single Nash equilibrium is
found, even in cases in which multiple (or even infinite) Nash equilibria
exist.” - Reference [143]

Contrary to this, Publication [ENERGY] presented below shows an analysis of the
practical importance of finding and evaluating various equilibria in its appendix.

Another example is given by Figure 6.6 which shows the example of multiple equi-
libria in hydropower systems. Even though the generation level have no impact on the
market clearing constraint (demand fulfillment), the changes in reservoir levels (∆ri)
show a range of potential equilibrium outcomes that varies depending on the choice of
generation.

Assume:

- a single player j = 1

holding two homogeneous generation units i = 1, 2

- a clearing condition for fixed demand:

Dt = q1,t + q2,t ∀t = 1, 2

- price is too low to compensate for running both units,

i.e.: b1,t 6= b2,t ∀t = 1, 2

This results in four potential equilibrium solutions:

t = 1 t = 2
i = 1 i = 2 i = 1 i = 2

q1,1 b1,1 q2,1 b2,1 q1,2 b1,2 q2,2 b2,2
D1 1 0 0 0 0 D2 1
0 0 D1 1 D2 1 0 0
D1 1 0 0 D2 1 0 0
0 0 D1 1 0 0 D2 1

Figure 6.7: Multiple Equilibria under Unit Commitment

In similar manner, Figure 6.7 displays multiple equilibria in a unit commitment
problem. Assuming homogeneous cost functions and all additional runtime constraints
(e.g. maximum/minimum runtime) are fulfilled during the two periods, all of those four
potential equilibria might be viable. However, the results itself could have implications
on future/not considered time periods, as it would be possible to e.g. not be able to
supply with both units in t = 3 if the maximum runtime of a unit is reached after
running the unit for two periods (which would render equilibria 3 and 4 problematic).
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These examples illustrate the necessity to consider multiple equilibria in the context
of price-making hydropower and multi-player dispatch models.

A game between electricity producers under supply-function competition is shown
in Reference [40]. To solve the problem for multiple Nash equilibria, a linear sub
problem is nested in a nonlinear problem which has its equilibria searched for via a
heuristic approach. Instead of binary unit dispatch, in this model non-convexity is
caused by line flows that are either strictly below, equal or above 0. However, the
scalability of such problems and the resulting ’curse of dimensionality’ are not further
discussed.

Reference [43] analyzes the use of polynomials to solve discrete games. It focuses
mainly on solution methods to polynomial systems, such as the previously presented
Gröbner basis approach. Limited scalability is discussed swiftly, as the author proposes
a heuristic based on Taylor series (or a heuristic search provided by the Gambit software
package) to deal with larger model sizes.

Scalability of such concepts is analyzed in Reference [9]. The paper further dis-
cusses several forms and applications of discrete games and discusses a mixed strategy
approach to solve for multiple equilibria.

The work presented in Reference [128] shows a strong focus on scalability and
subsequently on practical applications. Apart from proposing linearization of discrete
variables and the Fortuny-Amat transformation, the paper also suggests using a heuris-
tic algorithm adding cutting planes to find multiple equilibria (which in turn again uses
the Fortuny-Amat notation to become a linear problem).

Transformation of the equilibrium conditions into polynomial functions is proposed
in Reference [162]. In addition to formulating multiple equilibria, the paper discusses
how to select adequate solutions out of the set of Nash equilibria in order to be able to
support practical applications. Regarding complexity it notes an exponential growth
in solution paths with respect to the size of the game but does not propose specific
techniques or heuristics to approach this issue.

References [6, 7] introduce a model that formulates the problem of a system operator
(optimal demand) as an equilibrium set that is then overlapped by the best response
function of generators (optimal bids) to yield the Nash equilibria.

With a similar application in mind, Reference [77] formulates a technique to yield
extremal Nash equilibria (i.e. the stationary points minimizing/maximizing dispatch
cost in a power system). This is conducted by applying linearization techniques on
quadratic equations and solving a number of linear problems iterated for binary vari-
ables that determine the social cost of dispatch. The paper also highlights the satisfying
computational performance of the method, which might be attributed to the applied
linearization techniques.
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6.7 Equilibria under Dispatch

Most of the literature on games presented above considers convexity of individual
player problems. The choices to either use convex formulations or approximate them
as such might be given by the complimentarity formulation transforming the multi-
player model to a non-convex problem that requires additional techniques, such as the
introduced transformation methods, to converge to equilibrium points. However, in
certain cases, approximations might not be valid or - in case of the problems analyzing
dispatch - might eliminate the fundamental issue from the problem analysis. Models
analyzing such problems are presented here.

Reference [8] formulates a sequential day-ahead and reserve market framework with
a period for potential adjustments within the market stages. Even though dispatch is
assumed, the non-convex problem is transformed via assuming fixed unit commitment
schedules and the resulting problem solved via applying the Fortuny-Amat notation as
discussed before. Uncertainty is considered in simplified form via sampling distributions
and optimizing under expected values.

A game under uncertain curtailment of wind power plants is formulated in Ref-
erence [112]. The model realizes generators with binary ramping decisions that are
allowed to exercise market power in a leader-follower game. The case study observes
the leaders (generators) withholding capacity to maximize profits, affecting the dis-
patch costs and the prices in the system the follower (market operator) sets. It also
discusses the (potential) range of multiple Nash equilibria by applying the method
proposed in Reference [77].

The model presented in Reference [38] introduces an adjusted version of a Cournot-
model for a hydro-thermal system. It applies an iterative approach to continuously
update supply and demand curve slopes and eventually reach an equilibrium point.
This allows formulation of individual player problems as MILPs and thus is able to
incorporate binary startup/shutdowns and respective capacity limits.

Reference [67] illustrates how in discontinuous Nash-Cournot games a tradeoff be-
tween complementarity and integrality exists. It proposes a relaxation of the integrality
constraint within the KKT conditions as a continuous formulation. This is done by
adding a continuous slack variable to the integer variables that allows departing from
the integer conditions. This slack variable is then in turn minimized as part of the ob-
jective function of the MILP formulation (via the Fortuny-Amat notation) of the KKT
conditions. This allows fulfilling the complementarity conditions whilst simultaneously
minimizing the distance to fulfilling the integer conditions.

The curse of dimensionality when considering binary decisions in power market
games is discussed in Reference [86]. It approaches the problem by calculating the op-
timal binary variables from the perspective of each single player in the game forming
a best-response function. The topic of multiple equilibria is discussed and the assump-
tion is made, that a market operator selects the - from its own perspective - ’most
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optimal’ Nash equilibrium .

Reference [70] outlines the problem of marginal cost bidding not considering traits
such as reactive support and black start capability. The paper approximates the non-
convex cost function with unit commitment decisions as its convex lower envelope,
i.e. the convex hull. This convex formulation allows applicability on large-scale ap-
plications as it removes the curse of dimensionality. Compared to previous references,
however, it does not allow to derive explicit startup and shutdown decisions and in
turn cannot be applied to analyze problems as demonstrated in Chapter 4: influencing
other players’ dispatch decision via usage of market power or finding multiple equilibria
under dispatch.

Similar to the previous reference, Reference [82] formulates a convex-hull prob-
lem approximation. A market problem considering startups/shutdowns, ramping con-
straints and ancillary services is reformulated via using the convex hull of a units
feasible set and each units cost function respectively. After solving the problem via
this approach, the duality gap is calculated as a measure of fitness of the computed
results.

An approach different to binary schedules is presented in Reference [113], where
state transitions in generators between periods is modeled via continuous ramp-rates.
The problem is solved via applying conjectural variations (i.e. effectively modeling a
single players output as a function of another players output) for a single-level and bi-
level problem (where the ramp rates have to be determined prior to market clearing). It
concludes that in a two-level approach which requires inflexible ramp-rates, i.e. ramp-
rates stated ahead of market clearing, such as applied by the New York City ISO,
might be contradicting to the goals of regulation. It states that a bi-level problem
would create an additional layer of strategic behavior, that might not appear in single-
level problems as e.g. on the flexible Nordic markets. Further, the paper discusses
various methods to yield multiple Nash equilibria.

Reference [100] compares different approaches such as convex-hull reformulation
and discusses pricing schemes such as uplift pricing (remunerating suppliers for incon-
sistencies between central and individual unit dispatch) in their capabilities to address
the profit differences between the individual player’s MI(L)P solutions and the results
under marginal cost pricing. The model formulated in the paper aims to provide a
minimum uplift for the players to cover losses but offer little leverage for achieving
additional profits through gaming.

An algorithm to derive an equilibrium for a Cournot problem with integer variables
is established in Reference [148]. However, the applied search algorithm does not
consider capacity constraints for the variables and thus might show weaknesses in
practical applications.

Reference [72] models a thermal-renewable system with a focus on gas power plants.
It considers startup and shutdown decisions of those units on the basis of the associated
cost components being the primary component in the operators’ cost minimization

52



6.8. ANCILLARY SERVICE MARKET GAMES

(i.e. its unit scheduling). To embed these individual operator scheduling decisions in
a Cournot market, a bi-level game based on best-response functions is established and
solved similar to traditional KKT systems.

6.8 Ancillary Service Market Games

This section lists work which analyzes the impact of strategic players in ancillary service
markets.

In Reference [15] the authors analyze a model for hydropower arbitrage that consid-
ers multiple market forms. In the presented deterministic model hydropower generates
profits nearly exclusively on the reserve markets. This arguably highlights the impor-
tance of modeling the traits defining such a market (uncertainty and dispatch decisions)
accordingly.

Reserve market bids are modeled via a Bayesian approach (not to be confused
with the previously described Bayesian game) that assumes probability distributions
for other members of the game apart of the analyzed player in Reference [147]. This
player is considered to be bidding against a time-series of stepwise merit-orders that
are linearized. The results indicate an incentive for price-makers to withhold capacity
on reserve markets.

The model formulated in Reference [90] uses supply functions to establish a game
under symmetrical information (marginal cost functions are known among partici-
pants). It solves a bidding problem for players participating in the German spot and
reserve markets which are maximizing expected profits under marginal cost bids. Sim-
ilar to the previously presented paper it focuses on the merit order and concludes that
there is an incentive for the players to focus on providing reserve capacities.

6.9 Robust Optimization

For reasons mentioned in Chapter 3, robust optimization was the chosen approach to
implement uncertainty in the later presented publications (as it is comparable to a
mixed strategy approach over the scenarios). The methods applied were based on the
following publications.

Reference [165] formulates a column-and-constraint generation algorithm as a ro-
bust optimization alternative to traditional cutting-plane methods such as Benders’
decomposition.

Based on this work, Reference [164] extends the application of this algorithm to
bi-level mixed integer problems under complete recourse.

Reference [25] proposes an adjustment to the KKT conditions that allows incor-
porating uncertainty distributionally robust via a minimum residual approach. Even
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though it shows a focus on price-taking suppliers in electricity markets, the concept
might equivalently be applied on any (commodity) markets and competition formats.
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Chapter 7

List of Publications

The presented publications resulting directly from the work on this dissertation are, in
chronologically descending order:

POLICY Markus Löschenbrand, Xiaomei Cheng, Magnus Korp̊as,
”Exercising Market Power under Marginal Cost Bidding: the
Future Development of European Power Market”, [submitted
to], Energy Policy, vol. -, no. -, pp. -, 2019

EJOR Markus Löschenbrand, ”Finding Multiple Equilibria in
Power Systems via Machine Learning-supported Gröbner
Bases,” [submitted to] European Journal of Operational Re-
search, vol. -, no. -, pp. -, 2018

ENERGY Markus Löschenbrand, Wei Wei, Feng Liu, ”Hydro-thermal
power market equilibrium with price-making hydropower
producers,” [published in] Energy, vol. 164, no. 1, pp. 377 -
389, 2018

ITRANS Markus Löschenbrand, Magnus Korp̊as, ”Multiple Nash
Equilibria in Electricity Markets with price-making Hy-
drothermal Producers,” [published in] IEEE Transactions on
Power Systems, vol. 34, no. 1, pp. 422 - 431, 2019

IAEE Markus Löschenbrand, ”Market Power in a Hydro-Thermal
System under Uncertainty,” [published in] proceedings of the
IAEE International Conference, Groningen, 2018

EEM Markus Löschenbrand, Magnus Korp̊as, Marte Fodstad,
”Market Power in Hydro-Thermal Systems with Marginal
Cost Bidding,” [published in] proceedings of the Interna-
tional Conference on the European Energy Market,  Lódź,
2018
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POWERT Markus Löschenbrand, Hossein Farahmand, Magnus Korp̊as,
”Impact of Inertial Response Requirements on a Multi Area
Renewable Network,” [published in] proceedings of IEEE
Powertech, Manchester, 2017

The above presented publications were considered sufficient to answer the imposed
research questions. Therefore, the following publications are results from the work on
this dissertation but were chosen to not be further presented in this dissertation:

SEST Elise Tveita, Markus Löschenbrand, Sigurd Bjarghov, Hossein Farah-
mand, ”Comparison of cost allocation strategies among prosumers
and consumers in a cooperative game,” [published in] proceedings of
the International Conference on Smart Energy Systems and Technolo-
gies, Sevilla, 2018

ENGIES Markus Löschenbrand, Magnus Korp̊as, ”Hydro Power Reservoir Ag-
gregation via Genetic Algorithms,” [published in] Energies, vol. 10,
no. 12, 2017

PMAPS Markus Löschenbrand, Magnus Korp̊as, ”An Agent Based Model of
a Frequency Activated Electricity Reserve Market,” [published in]
proceedings of the International Conference on Probabilistic Methods
Applied to Power Systems, Beijing, 2016

Figure 7.1 presents the developmental flow of the work during this dissertation
visually. The following pages are dedicated to introduction of the publications.
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7.1 Exercising Market Power under Marginal Cost
Bidding: the Future Development of European
Power Markets

This work is currently under review in Energy Policy.

7.1.1 Extended Abstract

This paper discusses the exercise of market power conducted by producers bidding
under system marginal or unit marginal cost in energy markets under pay-as-bid or
uniform pricing. It discusses two effects to conduct ’supply curve manipulation’ with
the goal of increasing supplier welfare under completely inelastic demand:

• Strategic Unit Commitment - removing marginal capacity in order to increase
market clearing prices.

• Strategic Capacity Displacement - removing infra-marginal capacity in order to
increase market clearing prices.

Further, the paper discusses traditional measures for market power such as the Herfindahl-
Hirschman Index and explores the effects of a supply curve shift on such measures.
The paper uses a numerical example to demonstrate that such measures might show a
skewed picture of real market power, if base capacities are included.

It concludes in addition, that the traditional definition of supply-sided market power
(i.e. ”monopolists/oligopolists bid above marginal cost”) does not hold for the pro-
posed mechanism. This is proven by a complementarity model that emulates a market
clearing. By nesting such a model in an optimization model of optimal capacity with-
drawal, players are able to increase their profits.

The paper continues to use projections of future merit orders and supply elasticities
in the Northern European power system to demonstrate that such effects can be ex-
pected to increase in future. Based on these models, a future growth in market power
in systems under higher CO2 emission cost and larger generation portfolio shares of
renewables can be projected. It is further discussed, that the effects might increase on
local levels where congested transmission lines might lead to steep increases of market
power and higher amplitudes of such supply curve manipulation effects.
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Löschenbrand Markusa, Cheng Xiaomeia, Korp̊as Magnusa

aNorwegian University of Science and Technology, Department of Electric Power Engineering,
O.S. Bragstads plass 2E, 7034 Trondheim

Abstract

This paper introduces an alternate representation of market power and analyzes how
this concept gains importance in liberalized electricity markets with higher renewable
shares and higher CO2 emission cost. In the proposed concept, market participants
are able to lever their capacities and exercise market power whilst bidding at unit
marginal (in markets with uniform prices) or system marginal cost (in markets with
pay-as-bid pricing). The paper also shows how traditional measures such as the
Herfindahl-Hirschman Index fail to capture such mechanisms without adjustment.
A game-theoretical model and example case highlights how this theoretical effect can
be utilized in practice by bidders with different supply elasticities that are bidding
against an inelastic market demand. In addition, analysis of future projections
of installed capacities in the European power system are analyzed and suggest an
increased leverage to utilize the presented mechanism.

Keywords: Electricity Market, Renewables, Supply Functions, Game Theory,
Europe

1. Introduction

Even though efforts in market liberalization have been generally focused on pre-
venting arising market power, effects on market power asymmetries are screened for
and observed regularly in electricity markets. In general, however, it is assumed that
modern deregulated electricity markets on the whole have shown behavior similar to
perfect competition, but display small scale/localized market power effects caused
by e.g. congestion of distribution lines [1].

Such effects have to be taken into consideration regarding changing power sys-
tems, which are currently undergoing a global shift towards a higher generation
portfolio share of intermittent capacities.

Several studies have approached this topic of market power in changing power
systems. It has been shown that in systems under market power, benefits of ex-
ercising such are distributed favoring conventional units rather than intermittent
generation [2]. Further have price impacts of emission taxation programs been dis-
cussed and found to affect thermal units disproportionally to traditional base load
units [3].
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In addition, it has been shown previously that the emissions of the marginal
units in electricity system determine the impact of emission prices on electricity
prices [4, 5]. Compared to these models that assume market power in form of elastic
demand functions and analyze the shift of plants within the merit order, this paper
analyzes non-elastic demand functions and the increase in slope of the merit order
curve. Thus, and as demonstrated below, the effects displayed in this paper are
often less or not detected by traditional measures of market power.

Further, it seems intuitive that effects on connected factors such as electricity
prices should be considered regarding emission pricing in equal manner. Implica-
tions on those systems require careful monitoring, especially considering the Euro-
pean Union has chosen a ’Learning-by-doing’ approach with their implementation of
emission trading and related effects [6]. Even though initial phases of the establish-
ment of the market have been conducted, long-term implications by implementing
emission schemes still have yet to come in effect. Thus, this paper aims to an-
alyze the long-term impact of discouraging emissions in changing power systems
under increasing shares of renewables financially, especially focusing on the effects
on competition in the electricity market. Such analysis could provide essential in
securing the power system against clustering of market power that allows utilities
to distribute their risks onto other stakeholders in the system [7].

Indication has been found, that emission allowances positively impact the gen-
erator side profits, though not necessarily all generation firms, even if distributed
through auctions [8]. In addition, similar effects can be observed for the market
power of the generation firms, whereas previous studies have been conducted on
electrical systems under price-elasticity [9].

In addition to markets for electric power, market power within emission markets
such as the European Union’s Emission Trading System (ETS) have been analyzed
previously as well. This is particularly important considering that participants in
emission markets do not have the incentive to minimize emissions but rather maxi-
mize their own profits, giving them incentives to inflate emission prices [10].

The work presented below, however, focuses on market power under inelastic
demand curves, which can be considered a fitting assumption for electricity markets
[11].

In the presented work, the definition of market power in the context of dynamic
electricity markets will be analyzed. The authors show, that even under short-
run inelastic prices, that were previously assumed to be a cause of market power
influences [12], exercise of market power in order to increase supply side welfare is
a possibility.

Further, the future importance of the presented mechanism is analyzed. It is
estimated that through decreasing share of thermal units in the system, a survival-of-
the-fittest effect might be observed. As such, the thermal generation units remaining
in operation after portfolio restructuring could show a disproportionate potential to
impact market prices through gaming.

Such market power of thermal generators has been in discussion since the begin-
ning of market deregulation [13], as the periods with the highest thermal generation
portfolio shares preceded market liberalization. Modern studies aim to assess the
impact of restructuring on the scheduling and generation optimization of electrical

2 of 18

Submitted to Energy Policy

7.1. POLICY

60



power systems. To provide an example, Ref. [14] studies an increase in intermittent
generation capacities and the result on market power and ramping of generation
units. Approaches to accurately model the impact of dynamic decisions on power
system equilibria has been emerging only recently. Ref. [15] presents a model to
describe discontinuous decisions in dynamic games between thermal producers and
solves it without approximations for those discontinuous decisions. Ref. [16] de-
scribes a similar problem setup, with the addition of storage between time periods.
Ref [17] describes a game under uncertainty, storage and consideration of ramping.
Ref. [18] provides a game under uncertainty that also solves a scheduling problem
within a single-level framework.

As available literature only recently approaching modeling this topic of discontin-
uous dynamic decisions in power markets, assessment of the impact of such decisions
has been scarce at best [19]. This is the research gap this paper aims to close.

The authors of this work aim to contextualize the importance of applying dy-
namic gaming in strategic bidding regarding the changes within the European power
system. As mentioned previously, the presented mechanism shows a novelty of ap-
plication under non-elastic demand and also does not fulfill traditional criteria of
market power. In addition, the importance of such effects is clearly highlighted by
the projected generation portfolio of the European power system. As a result and as
a starting point for future research, the presented mechanisms have to be observed
and analyzed as well as additional work on both the practical implications as well
as the model techniques might be advised.

Nomenclature
Index

g generator
∗ equilibrium point

Set
G generation units/firms

Variables
p market price [AC/MWh]
q quantity [MWh]

∆q withheld capacity [MW ]
Parameters

¯
q,q̄ generation capacities [MW ]
d demand [MWh]

Functions
S supply curve [MWh]
C cost function [AC]
ε supply elasticity

L S,L D supply and demand side Lagrangian
Dual Variables

¯
µ,µ̄ shadow price of generation
γ shadow price of marginal bidding
σ shadow price of demand fulfillment
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Figure 1: Impact of Supply Curve changes on Market Clearing
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2. Definition of Market Power

In this work, an exercise of market power by generation firms through exerting
supply curve shifts is assumed [20, 21]. The core principle is illustrated in Fig.1,
which shows the impact of such exercise of market power on an energy market under
entirely non-elastic demand, where a supply-curve shift results in higher market
prices. The resulting demand-side losses are given by the sum of the increase in
generator surplus and the welfare losses. Latter are lost entirely, with the supply-
side gains only being the generator surplus increase.

The supply curves are given by a merit order1 of generation units participating
in the market, whereas the units defining the clearing price (indicated with a ∗) are
referred to as ’marginal units’. The units to the left of the demand can be referred
to as ’infra-marginal units’ and the units to the right as ’extra-marginal’ [11].

In general, such supply curve shifts are usually observed by market opera-
tors. The traditional definition of exercising market power is the observation of
Price Bid > Marginal Revenue or Price Bid > Marginal Cost. In Fig.1 this would
be represented by a producer in the merit order of curve S1(p) bidding at price

p2 >
∂Cg(qg)

∂qg
instead of price p1 = ∂Cg(qg)

∂qg
. Assumed several participants in the mar-

ket would act in similar manner, a new supply curve S2(p) could be established,
which has the participants exert market power via bidding above their respective
marginal cost.

Based the publicity of historical (cost) data2 and market power measures such as
price-cost margins [22] little to no indication of existence of market power via such
bidding above marginal cost can be found in liberalized electricity systems such as
in Northern Europe [23].

However, such an arguably narrow definition of market power could potentially

1The submitted price bids/cost curves in ascending order.
2An example for such is the online platform of the oldest liberalized power exchange Nordpool.
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Figure 2: Conducting a Supply Curve shift through Unit Rescheduling
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Figure 3: Conducting a Supply Curve shift through Capacity Withholding
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lose validity in electricity markets of growing complexity. In traditional electricity
market analysis, strategic bidding to obtain occasional profits by remuneration are
conducted by suppliers utilizing renewable generation [24]. This is generally accepted
as a requirement to assure investments into generation capacities and research. How-
ever, with renewable generation having close to no variable cost associated, every
conducted bid would thus represent a bid above marginal cost and thus fulfill the
criteria of market power exercise.

In addition, more complex systems with ancillary service markets, capacity and
energy markets with different bidding/provision time frames and various clearing
modes (options markets/intra-day markets/spot markets) and pricing details (uni-
form or pay-as-bid) may provide more room for such strategic bidding. A supplier
recognizing their capabilities to exercise such could thus utilize these complexities
and the difficulty for power market operators to differentiate between strategic bid-
ding and exercise of market power.

This paper will analyze two mechanisms that provide levers to exercise such
market power in order to increase generation firm profits in the short term:

1. Strategic Unit Commitment. This is demonstrated in Fig.2, where a gen-
eration firm holding two units (indicated in red) is able to conduct a Supply
Curve shift by withdrawing a quantity of ∆q provided by the marginal unit
from the market. This allows increasing profits (indicated in green) for the
infra-marginal unit held by the generator whilst suffering a comparably minor
loss in profits.

2. Strategic Capacity Displacement. This is shown in Fig.3, where a gener-
ation firm holding an infra-marginal unit (indicated in red) is able to conduct
a Supply Curve shift by withdrawing quantity ∆q (in this example: 50% of
the available generation of the infra-marginal unit) from the market. This can
be conducted through traditional exercise of market power, i.e. withholding
available capacity. In addition, a similar effect is possible through storage
operators transferring inventory to other time periods [25] or conventional
generation units operating in multi-market/-area systems deploying in other
market forms or areas [26]. This would not require any available generation
capacity to be withheld and thus not fulfill the traditional definition of market
power abuse.

Approach 1 is based on the assumption that strategic scheduling would allow the
indirect withdrawal of capacity in certain selected time periods and thus artificially
raise peak prices. This would be possible through strategically timed ramping of
units aiming to exercise market power.

However, a similar effect could be created by Approach 2. A generation firm
being able to participate in several market areas, i.e. a firm being both generator
and arbitrageur, would be able to withdraw capacity in nodes where it could be
convenient to increase prices.

Another form of such arbitrage would be withholding capacity by storing avail-
able capacity [27], i.e. conduct arbitrage over time periods. Such arbitrage would
withhold capacity from an area or period important to a profit-maximizer but not
directly withhold it, as the available capacity is not lost (as in Approach 1) but sold
at another location or time.
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Figure 4: Alternative Representation via Demand Shift

Price
[AC/MWh]

Generation
[MWh]

d1 S1(p)

S2(p)d2

p∗

q∗1q∗2

Nonetheless the approach, applying such mechanics strategically would require
flexibility in the generation units or in other words, low required transition times in
dispatch and scheduling.

Models analyzing strategic games between flexible and inflexible suppliers have
been presented previously. This paper therefore does not intend to discuss these
concepts further, as there is sufficient literature available discussing modeling tech-
niques for approach 1 [28, 29, 15], approach 2 [26, 30, 25, 17] or both approaches
combined [31, 16, 18].

However, this paper intends to discuss the future potential for conducting such
supply curve shifts (i.e. supply curve manipulation), especially in the context of
the European power system. The reason for this is given by the European mainland
providing the largest liberalized power market in the world, making strategic bidding
and related market power an important topic of research.

3. Supply Elasticity as a Driver for Market Power

As presented above, traditional measures of market power might not apply equiv-
alently to power systems. Based on the previously introduced principles it can be
argued that the pool of units able to exercise market power is significantly smaller
than the total installed capacity. This is a result of the strict separation in base and
peak load units, an effect that also allows for formulating equivalent supply func-
tion representations via a concept referred to in literature as ’demand shift’ [11].
As displayed in Fig.4, a supply-demand crossing can be equivalently represented
via removing base load capacities (symbolized by the dotted blue line) from the
merit-order (i.e. from the supply curve) and in parallel adjusting the demand by
a similar generation level. The result of removing these base load capacities is a
similar price and a similar (though adjusted) generation level. However, in Fig.4,
the new representation of S2(p) shows, compared to S1(p), a smaller range of ob-
served generators in the market clearing cross. This resulting market clearing model
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Table 2: Numerical Example for Herfindahl-Hirschman Index under Demand Shift

firm q̄peak
g [MW ] q̄base

g [MW ]
total market

share [%]
peakers’ market

share [%]
HHI:

g = 1 15 15 20 30
g = 2 15 15 20 30 total: 2000
g = 3 10 20 20 20 peakers: 2400
g = 4 5 25 20 10
g = 5 5 25 20 10

has similar characteristics to the original with the only difference being the starting
point at the x-axis now being the total capacity of the removed base load units
instead of 0 MWh.

Even though the clearing price p∗ stays on a similar level, results for traditional
measures of market power yield different results for such an alternative represen-
tation. An example of such a measure is the Herfindahl-Hirschman Index (HHI)
that analyzes market shares [32]. This measure for total (i.e. peak+base) and peak
capacity only can be calculated the following:

HHItotal =
∑

g∈Gtotal

( 100q̄g∑
g2∈Gtotal

q̄g2

)2

HHIpeak =
∑

g∈Gpeakers

( 100q̄g∑
g2∈Gpeakers

q̄g2

)2 (1)

A generation firm owning little but flexible peak capacities (i.e. units that have fast
ramping times such as coal power) might have stronger leverage exercising its market
power than a firm holding large inflexible base load capacities (i.e. intermittent
production or nuclear power). A numerical example showing how the consideration
of base load capacity shifts the observed market power is provided in Table 2.

To highlight this assumption, the price elasticity of supply, or in short ’supply
elasticity’, might be analyzed. This measure is defined by the change in quantity
and the related price effect by such a quantity change:

ε(q) = ∂S(q)
∂q

q
S(q) (2)

A lower extra-marginal price elasticity of supply (i.e. ε(q∗) at q∗ = d) would thus
mean a larger market clearing price impact of conducting a Supply Curve shift via
exercising market power.

This is illustrated by the examples given in Fig.5. Fig.5a shows a high and
Fig.5b a low Supply Elasticity for marginal and extra-marginal units and inflexible
demand. The result is a different price effect by a Supply Curve shift as a result of
withdrawing a similarly sized base load capacity (indicated in red).

Based on this, it can be expected that measures increasing (extra-marginal) price
elasticity of supply will lead to more effective market power of flexible peak units.

In addition, one considerable factor might be information asymmetry : extra-
marginal bids are mostly not published, leading to system participants potentially
not being able to determine their own market power. However, for markets with
transparent data platforms this factor can be insignificantly minor, as competitors
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Figure 5: Extra-marginal Price Elasticity of Supply (ε(q∗))
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are able to retrieve such information by assumptions based on historical data. In
addition, it can also be assumed that a market participant will likely be aware of
the network topologies and surrounding competitors, as locations, sizes and types
of power plants are public information.

In previous studies, demand elasticity has been regarded as a driver for market
power [26, 2]. Our presented novel principle however allows market power to be
exercised under inelastic demands. This principle will further be demonstrated by
a competition model in the following section.

4. A Game-Theoretical Framework

The model presented in this section will be based on the assumption that the
generators either participate in a market with uniform prices or are in a pay-as-bid
market with enough public information to bid (approximately) at the price level
of the system marginal units3. This assumption can be considered valid due to
the previously introduced mechanisms where most power markets are build on the
existence of a gap between marginal cost curves and market prices in the short term
that is meant to reimburse generators for long term investments [11].

For the sake of simplicity, the model will not consider network flows, different
market types, nodes/areas and is restricted to a single time period. A single energy
market is considered, where a number of generation companies each (∀g) aims to
maximize their profits whilst staying within their generation capacity limits:

max
qg

p qg − Cg(qg)

s.t.
¯
qg ≤ qg ≤ q̄g (

¯
µg, µ̄g)

(3)

Based on these individual generator decisions, a market operator clears the sys-
tem for a minimum price. This market operator has to consider that the participants
have to be paid their marginal costs ∂Cg(qg)

∂qg
at minimum, as otherwise they will not

choose to supply the market (as they would be operating at a loss):

3Bids below system marginal cost in a pay-as-bid scheme would still allow for a similar effect
but were excluded for the sake of presentational simplicity.
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min
p

∑
g

p qg

s.t. p ≥ ∂Cg(qg)

∂qg
∀g (γg)

(4)

The market is cleared to an equilibrium by matching supply to demand. In the
here presented example, completely inelastic demand is considered:

∑
g

qg = d (σ) (5)

This system can be reformulated for an equilibrium by deriving its’ Karush-
Kuhn-Tucker (KKT) conditions which are shown in Appendix A [26, 33].

Disregarding its simplicity, the presented model allows for adding a characteristic
novel in literature that displays profit-maximizing generators being able to exercise
market power in a market with marginal-cost bidding and no demand elasticity. In
classical literature, both of these traits were considered detrimental to the ability of
such market power exercise [34].

In the here presented model, however, such producers exercising market power
(denoted as Gex) are emulated via a bi-level profit-maximization problem:

max
∆qg∈Gex

∑
g∈Gex

p qg − Cg(qg)

s.t. Eq.(A.1)
Eq.(A.1c)→ 0 ≤ µ̄g ⊥ qg − q̄g + ∆qg ≤ 0 ∀g ∈ Gex

∆qg ≤ q̄g −
¯
qg ∀ ∈ Gex

(6)

The lower level problem is the market clearing formulated as the KKT conditions
in Eqs.(A.1). The upper level problem is the profit maximization of all units that
choose to collude and cause a supply curve shift as presented in Fig.3: through a
capacity reduction by a quantity of ∆q.

The model shows that collusion between several players is not even a necessity
to exercise market power in such a system. Table 3 displays this by the example of
a generator providing a system-marginal unit. By withdrawing available generation
this player increases the market prices and subsequently increases the cost for de-
mand fulfillment (i.e. decreasing the demand surplus) whilst increasing the profits
of all generators (i.e. increasing the supply surplus). By increasing the elasticity
of the supply functions (from Table 3a to Table 3b), the increase in supply surplus
rises from 24% to 27.5%. This enforces the assumption from the previous section: a
higher price elasticity of supply leads to a higher reward for the exercise of market
power.

Based on this, the following chapter will analyze the changes in supply elasticity
in the European power market. This is meant to give an estimate of the severity of
exercising the previously introduced supply curve manipulation.

5. Future Projection of Price Elasticity of Supply

Fig.6 shows the estimated future changes in the European power generation
[35]. Classifying hydropower, gas, oil and solids as peak load (a rather conserva-
tive approach, as hydropower includes run-of-river plants which closely resembles
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Table 3: Exercise of Market Power at Marginal Cost Bidding

(a) Case 1: Example Case

generators g = 1 g = 2 g = 3 g = 4 market operator
Cg(qg) = 0q1 7q2 + 0.02q2

2 5q3 + 0.015q2
3 5q4 + 0.01q2

4

[
¯
qg, q̄g] = [10, 200] [150, 850] [100, 800] [50, 350] d = 1700

no quantity withheld:
q∗g = 200 464.3 685.7 350

∂Cg(q∗g)

∂q∗g
= 0 25.6 25.6 12 p∗ = 25,6

p∗ q∗g − Cg(q
∗
g) = 5114.3 4311.2 7053.1 5975

∑
g

p∗ q∗g = 43471.4

colllusion between generators g = 1, 2
q∗g = 200 350 800 350

∂Cg(q∗g)

∂q∗g
= 0 21 29 12 p∗ = 29

p∗ q∗g − Cg(q
∗
g) = 5800 5250 9600 7175

∑
g

p∗ q∗g = 49300

(b) Case 2: Higher Supply Elasticity

generators g = 1 g = 2 g = 3 g = 4 market operator
Cg(qg) = 0q1 7q2 + 0.04q2

2 5q3 + 0.03q2
3 5q4 + 0.02q2

4

[
¯
qg, q̄g] = [10, 200] [150, 850] [100, 800] [50, 350] d = 1700

no quantity withheld:
q∗g = 200 478.6 671.4 350

∂Cg(q∗g)

∂q∗g
= 0 45.3 45.3 19 p∗ = 45.3

p∗ q∗g − Cg(q
∗
g) = 9057.1 9161.2 13524.5 11650

∑
g

p∗ q∗g = 76985.7

colllusion between generators g = 1, 2
q∗g = 200 350 800 350

∂Cg(q∗g)

∂q∗g
= 0 34 53 19 p∗ = 53

p∗ q∗g − Cg(q
∗
g) = 10600 11200 19200 14350

∑
g

p∗ q∗g = 90100
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Figure 6: European Electricity Portfolio
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the characteristics of traditional renewables such as wind and solar) allows to illus-
trate the projected decreasing ratio of peak to base load units which shows a clear
downward trend.

Wholesale effects of such merit-order changes have been discussed in the Ital-
ian [36], German [37] and Slovak [38] wholesale electricity markets. These studies
find significant decreases in electricity wholesale prices attributed to those genera-
tion portfolio shifts. In addition and aligned with the assumptions imposed in the
previous sections, these studies show that remuneration of flexibility in production
(which is generally associated with peak producers) might increase. Such an increas-
ing spread between base and peak prices would lead to sinking elasticities around
the marginal units (as shown in Fig.5).

Another aspect is provided by the expected future increase of CO2 emission cost
[39, 3]. Such an increase will lead to an increase in generation cost which the end
customers will have to compensate for through higher marginal cost. This will have
an effect on the merit order and decrease supply elasticity whilst increasing the
market power of the system participants.

Fig.7 illustrates this by the projected development of the merit order of the
Northern European Power System (Germany, Denmark, Sweden, Norway, Finland,
Netherlands)[39]. As seen in Fig.7b, the fitted exponential functions (Fig.7a: con-
tinuous lines) of the projections of the generation portfolios of the years 2020 and
2035 (Fig.7a: dotted lines) showed lower point elasticities for similar quantities.
This supports the previous assumptions on changes in elasticity. The effect might
be traced back to the two previously mentioned factors: an increase in CO2 emission
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Figure 7: Prognosed Change in the Northern European Power System
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cost and a reduction of thermal units in the generation portfolios.
In addition can be observed that the elasticities vary greatly depending on loca-

tion. To provide an example, as it can be observed in Fig.8, North-Eastern Germany
shows point elasticities ranging between 0 to 0.05 depending on capacity utilization.
This suggests, that specific areas might be more prone to market power exercise via
supply curve manipulation. This is aligned with the assumptions of Ref.[1], that
market power increases on the local levels.

6. Discussion

The here presented work introduces a new form of market power exercise: ma-
nipulation of supply curves. Through capacitating infra-marginal units, the system
marginal price is shifted and participants in such commodity markets are able to
yield a higher surplus. This comes at the cost of a loss in consumer surplus and
subsequently system welfare. The novelty in this view is that producers are not
required to bid above system marginal cost in pay-as-bid markets and unit marginal
cost in uniform markets.

Due to this, the traditional definition of market power (i.e. bidding above
marginal cost) might not necessarily apply, and traditional measures such as the
Herfindahl-Hirschman Index might misrepresent reality. This comes as a result of
a rising share of intermittent generation and reduced competition between the re-
maining flexible units in the system. These, mostly thermal, units are also facing
increased marginal cost due to increasing CO2 emission cost and thus will have an
increased leverage in such a market power exercise.

For sake of generality, the paper does not specify the proposed CO2 emission
scheme. However, popular mechanisms such as carbon taxes or emission trading
schemes can be expected to raise generation cost for the system-marginal thermal
units and thus also increase market prices [40].

The increased lever yielded by such an effect is discussed by a game-theoretic
model and an analysis of supply curve elasticities. Both the supplied case study
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Figure 8: Prognosed Change in North-Eastern Germany
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and data from the European power markets enforce the notion that the presented
mechanism of ’supply curve manipulation’ might rise in importance in future power
systems under liberalized markets.

Further, increasing granularity indicates an increase in this effect. This can be
expected, as competition on smaller scales (e.g. zones separated by congested lines)
can only be expected to increase compared to the total system level. Thus, further
research on this matter is suggested by the authors of this paper, in order to support
power system decision makers to detect and screen for the mechanisms introduced
in this paper.

Appendix A. Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions for Eqs. (3), (4) and (5) can be formulated
the following:

∂L S

∂qg
= −p+ ∂Cg(qg)

∂qg
−

¯
µg + µ̄g + ∂2Cg(qg)

∂2qg
γg + σ ∀g (A.1a)

0 ≤
¯
µg ⊥

¯
qg − qg ≤ 0 ∀g (A.1b)

0 ≤ µ̄g ⊥ qg − q̄g ≤ 0 ∀g (A.1c)

∂L D

∂qg
=
∑
g

qg −
∑
g

γg = 0 (A.1d)

0 ≤ γg ⊥ ∂Cg(qg)

∂qg
− p ≤ 0 ∀g (A.1e)
∑
g

qg − d (A.1f)

¯
µg, µ̄g, γg ∈ R+ ∀g (A.1g)

σ ∈ R (A.1h)

Assuming convex cost functions C allows the problem to fulfill Slater’s condition
[41], which assures no duality gap. This means that an optimal equilibrium solution
q∗,p∗ can be yielded as long as the model parameters render the problem feasible.

14 of 18

Submitted to Energy Policy

7.1. POLICY

72



[1] Fridolfsson, S.-o. & Tangera, T. P. Market power in the Nordic electricity
wholesale market : A survey of the empirical evidence. Energy Policy 37,
3681–3692 (2009).

[2] Twomey, P. & Neuhoff, K. Wind power and market power in
competitive markets. Energy Policy 38, 3198–3210 (2010). URL
http://dx.doi.org/10.1016/j.enpol.2009.07.031.

[3] Rocchi, P., Serrano, M. & Roca, J. The reform of the European energy tax di-
rective : Exploring potential economic impacts in the EU27. Energy Policy 75,
341–353 (2014). URL http://dx.doi.org/10.1016/j.enpol.2014.09.022.

[4] Chen, Y., Sijm, J., Hobbs, B. F. & Lise, W. Implications of CO2emissions
trading for short-run electricity market outcomes in northwest Europe. Journal
of Regulatory Economics 34, 251–281 (2008).

[5] Lise, W., Sijm, J. & Hobbs, B. F. The Impact of the EU ETS on Prices, Profits
and Emissions in the Power Sector: Simulation Results with the COMPETES
EU20 Model. Environmental and Resource Economics 47, 23–44 (2010).

[6] Parker, L. CRS Report for Congress The Barcelona Process : The European
Union’s Emissions Trading System /EU-ETS). Tech. Rep. (2006).

[7] Larsen, E. R., van Ackere, A. & Osorio, S. Can electricity companies be too
big to fail? Energy Policy 119, 696–703 (2018).

[8] Burtraw, D., Palmer, K., Bharvirkar, R. & Paul, A. The effect on asset values
of the allocation of carbon dioxide emission allowances. Electricity Journal 15,
51–62 (2002).

[9] Zhao, J., Hobbs, B. F. & Pang, J.-S. Long-Run Equilibrium
Modeling of Emissions Allowance Allocation Systems in Electric
Power Markets. Operations Research 58, 529–548 (2010). URL
http://pubsonline.informs.org/doi/abs/10.1287/opre.1090.0771.

[10] Hintermann, B. Market Power in Emission Permit Markets: Theory and Evi-
dence from the EU ETS. Environmental and Resource Economics 66, 89–112
(2017).

[11] Stoft, S. Power System Economics - Designing Markets for Electricity (Wiley,
New York, 2002).

[12] Borenstein, S. Understanding Competitive Pricing and Market Power in Whole-
sale Electricity Markets. The Electricity Journal 13, 49–57 (2000).

[13] Newbery, D. M. Privatisation and liberalisation of network utilities. European
Economic Review 41, 357–383 (1997).

[14] Traber, T. & Kemfert, C. Gone with the wind? - Electricity mar-
ket prices and incentives to invest in thermal power plants under increas-
ing wind energy supply. Energy Economics 33, 249–256 (2011). URL
http://dx.doi.org/10.1016/j.eneco.2010.07.002. arXiv:1006.5371v1.

15 of 18

Submitted to Energy Policy

7.1. POLICY

73



[15] Huppmann, D. & Siddiqui, S. An exact solution method for binary equilibrium
problems with compensation and the power market uplift problem. European
Journal of Operational Research 266, 622–638 (2018). 1504.05894.
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[18] Löschenbrand, M., Wei, W. & Liu, F. Hydro-thermal power market equilibrium
with price-making hydropower producers. Energy 164, 377–389 (2018).

[19] Munoz, F. D., Wogrin, S., Oren, S. S. & Hobbs, B. F. Economic Inefficiencies
of Cost-Based Electricity Market Designs (2017).

[20] Kirschen, D. Demand-Side View of Electricity Markets. IEEE Transactions on
Power Systems 18, 520–527 (2003).
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7.2 Finding Multiple Equilibria in Power Systems
via Machine Learning-supported Gröbner Bases

This work is currently under review in the European Journal of Operational Research.

7.2.1 Extended Abstract

This paper extends the principle of applying Gröbner basis calculations on optimization
problems on KKT conditions to find multiple extreme points in multi-player systems.
It discusses the advantages of doing this compared to other market/system clearing
approaches such as using linear approximations of the complementarity constraints
and applying MI(L)P solvers. These advantages are:

1. solutions incorporate all potential equilibum solutions.

2. possibility to display asymmetric problems (more decision variables than equa-
tions are possible).

3. non-convex player problems are a possibility.

The first advantage stems from that a Gröbner basis is only a reformulation of the
original problem and not an approximation. This could save a model user complicated
and potentially error-prone problem analysis that are a necessity for approaches that
yield only single equilibria. Such analysis would e.g. come in the form of branch-
ing a tree for the complementarity constraints or - in the simplest case - solving the
problem repeatedly with different variable starting values for the mathematical solver
software/method.

The second advantage gives a model user the option to incorporate homogeneous
functions. This means that instead of e.g. setting explicit numerical parameters for un-
certainties such as price elasticity of demand, scenario outcomes or available resources,
these parameters can be formulated as an external variable. The resulting Nash equi-
librium will then come in the form of a function of those external variables instead
of explicit numerical values. This gives the possibility to e.g. formulate distributional
robust problems or conduct dynamic sensitivity analysis by turning a parameter of an
original symmetric problem into a variable.

The third advantage stems from that Gröbner bases are derived by removing the
variable limitations (such as e.g. for a decision x there is x ∈ Z+) before solving the
problem for its equilibria. Later, those limitations are applied again to restrict the
solution set. This allows to consider non-convexity without applying any additional
methods such as branch-and-bound, bi-level problem formulations or cutting-plane
algorithms.

Furthermore, the paper proposes a dynamic approximation scheme for the Karush-
Kuhn-Tucker conditions, based on multiple regression conducted through evolutionary
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strategies. This approximation allows fitting more computationally complex player
problems into polynomial form, fit for application in Gröbner basis derivation.

A case study on price-making hydropower players is presented, that considers unit
commitment, head-tail relations, periodic inflows and both energy and capacity market
bids. Via the Nikaido-Isoda function as a fitness measure, a total profit difference of
around 5% to a Nash Equilibrium situation is assumed. The case study is further
extended by making inflows uncertain under unknown distributions. In this case, a
dynamic sensitivity analysis on the market clearing prices is conducted.

Due to the methods’ general formulation, applicability beyond the power sector and
beyond market applications can be assumed, with problems such as production and
storage decisions and routing problems under inventory holding.
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Abstract

This paper demonstrates a new approach to yield all potential equilibria in a system with multiple

actors by computing the Gröbner basis of the Karush-Kuhn-Tucker conditions. Further, it discusses

the advantages of choosing this method over traditional numerical approaches.

In addition, it provides a concept that applies machine learning, specifically evolution strategies,

to approximate utility functions. This is done in order to remove the requirement for solving the

dual problem of the system and thus allows to scale the equilibrium computation method to

larger, more complex problem setups. This is demonstrated by a novel case study on non-convex

players in form of hydropower generators operating simultaneously on spot and reserve markets

whilst considering startups and shutdowns, periodical inflows and non-linear water conversion head

effects. The model is further extended by considering uncertainty under unknown distributions

and analyzes this case via dynamic sensitivity analysis.

Keywords: Game Theory, OR in energy, Evolutionary computations, Non-linear Programming

1. Introduction

Restructuring of power systems results in changing challenges for its’ stakeholders. Such in-

clude new regulations and market types as well as changes in generation portfolios. Similar to

other commodity markets, interaction in such systems has traditionally been modeled as games

between units operating at or close to the marginal price of the system[1, 2]. However, indication

exists that such marginal players might be influenced by infra-marginal players with lower[3] or

infinitesimally low cost functions[4]. This influence can result in a rise of new problems for system

and market designers, such as increasing CO2 emissions due to wind power plant operators aiming

to minimize their ’spillage’ and therefore offering negative bids, causing marginal units to react by

changing dispatch and schedules[5]. Few models on such non-convex decisions have been proposed

in literature[6, 7] and solved for multiple equilibria[8, 9, 4, 10]. However, existing literature focuses

exclusively on non-convexity in form of binary variables. Even though an important cause of such

non-convexity in power systems, the approaches might be limited to such applications and not be
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applicable to other highly non-linear problems1.

Thus, in practical applications and with the aim to cover large scale systems, traditional ap-

proximation techniques are applied in order to ensure problem convexification[11, 12]. Applied on

systems with multiple participants with individual objectives, such convex approximations might

result at a cost of model accuracy. To attest this, approaches allowing mixed strategies have been

shown to be able to derive multiple Nash equilibria[13], but might show too large of distances to

exact solutions to be applied for practical decision making[7].

Based on this lack of literature, this paper proposes a machine-learning based approach to

dynamically approximate decision problems as polynomials. Such polynomials have been used

successfully in previous literature to yield multiple equilibria[14, 13]. The approach in this paper is

based on the concept of Gröbner bases[15], which provide an equivalence system to a set of polyno-

mials. It has been shown prior that this reformulation (not to be mistaken with an approximation)

can successfully be applied on single-player problems[16] and multi-player games with a limited

number of given decisions[17, 14] in order to solve these algebraically. The concept proposed below

offers a formulation based on Karush-Kuhn-Tucker conditions that allows the players a range of

continuous (and therefore unlimited) decisions and a similar range of potential equilibria. Further,

it shows that by applying machine-learning, the main issue of Gröbner bases - scalability - can be

mitigated to a level that allows users to apply modern Gröbner basis computation algorithms such

as Refs.[18, 19] to present-day problem setups. In comparison to previous Nash approximation

algorithms which approximate stationary points[20, 21], the proposed methodology provides an

exact algebraic reformulation of the set of all stationary points fulfilling the conditions of a Nash

equilibrium in a game between dynamically approximated agents.

In addition to displaying all Nash equilibria, this paper shows additional advantages of applying

Gröbner bases such as solving games with variable inputs, essentially extending the application

area of equilibrium models to an entirely new class of problems even beyond the demonstrated

applications in power systems.

General Nomenclature

Indices:

j player

k element of the decision vector

Decision Variables:

Yj ∈ Y decisions of player j

Ỹ approximated decisions of player j

1An example of such is provided by the combination of non-linear efficiency curves and binary schedules in the

later presented case study.
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X ”global” system/market decisions

σ,λ dual variables

Parameters:

θ polynomial constants

Functions:

U utility function

f payoff function

h equality constraint

g inequality constraint

m clearing constraint

p polynomial function

error error function

ψ Nikaido Isoda function

2. System/Market Clearing via Gröbner Bases

Originally presented in the PhD Thesis of Bruno Buchberger and subsequently named after

his advisor, Gröbner bases allow simplification of equation systems via establishing representative

polynomials[15]. The derivation is a generalization of three concepts: Gaussian elimination, the

Euclidean algorithm and the Simplex Algorithm[22]. This does not only allow to derive ’solution

rules’ e.g. in the form of ”in the optimal solution the factor 1 has to be equivalent to 10 times

factor 2” but also to define the number/range of real(/complex) solutions. Latter provides a

particularly important question in economics regarding multiplicity of market equilibria. Ref.[14]

approaches this by demonstrating potential applications to find equilibria e.g. in games with a

limited number of discontinuous decisions or a game under known utility functions. Instead of fully

known polynomial curves as assumed by Ref.[14] in practical applications such utility functions

come in the form of player-specific optimization problems themselves that can be formulated as

e.g.:

Uj(X) = max
Yj

fj(Yj |X)

s.t. hj(Yj , X) = 0

gj(Yj , X) ≤ 0

(1)

To provide an example, market decision X could be the total supply on a market and Y the

individual players’ demand or supply bids. As shown in Ref.[2] such problems can be converted

to systems of equalities via establishing the Karush-Kuhn-Tucker (KKT) conditions to find the
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optimal solution for a player’s decisions denoted by ∗:

Uj(X) = fj(Y
∗
j |X) (2a)

Ofj(Y ∗j |X)− σTj Ohj(Y ∗j , X)− λTj Ogj(Y ∗j , X) = 0 (2b)

hj(Y
∗
j , X) = 0 (2c)

λTj gj(Y
∗
j , X) = 0 (2d)

gj(Y
∗
j , X) ≤ 0 (2e)

σj ∈ [R], λj ∈ [R+] (2f)

Ref.[16] solves such a problem for a single player by first deriving the Gröbner basis for the La-

grangian (2b), the equality constraints (2c) and the active inequality constraints (2d). Subse-

quently, the solutions that breach the bounds of the variables are removed from the set of polyno-

mial solutions that is the Gröbner basis. This concerns specifically the inequality constraint (2e),

constraint (2f) and all limitations of the player decisions such as e.g. Yj ∈ [Z]. Without loss of gen-

erality, compared to single player optimization problems, problems with multiple Nash equilibria

can be solved similarly by applying market or - in broader sense - system clearing conditions:

m(X,Y ∗) = 0

Ofj(Y ∗j |X)− σTj Ohj(Y ∗j , X)− λTj Ogj(Y ∗j , X) = 0 ∀j
hj(Y

∗
j , X) = 0 ∀j

λTj gj(Y
∗
j , X) = 0 ∀j

gj(Y
∗
j , X) ≤ 0 ∀j

σ ∈ [R], λ ∈ [R+]

(3)

Such clearing conditions m can appear in various forms and are intended to connect the indi-

vidual players decision to form the game (which in this case is formulated as a complementarity

problem) and to ’force’ an equilibrium amongst the players or - in other words - ensure a ’cleared’

market[2]. The example presented in the case study below is that of ”the quantity provided to the

power market equals to the sum of quantities provided by other players”. This corresponds to the

assumption of complete information.

In theory, such a system can be solved in similar manner to Ref.[16]. However, solving primal

and dual variables for all players might, even in simple problems, lead to an increase in degrees of

freedom that imposes too high of a computational complexity to allow for practical applications.

This matter will be discussed further below.

As computation of Gröbner bases is an active and established field of research, various algebraic

solver implementations exist in high-level programming languages (such as Python, Matlab, Maple,

Julia)[17]. In the later presented case study, the implemented algorithm to derive the Gröbner basis

of the case study problem was the ’F5B’ algorithm[19], adapted from the ’Polynomials Manipulation

Module’ of the Python library SymPy[23].
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3. Advantages and Disadvantages of ’Gröbner Basis Clearing’

As mentioned above and suggested by the title of this paper, one important application of

Gröbner bases lies in the possibility to yield all (Nash) equilibria[14]. Opposed to traditional

solution techniques that either yield single stationary points and analytically describe the range of

solutions (e.g. Refs.[1, 2]) or techniques that apply search algorithms (e.g. Refs.[24, 4]) equilibria

in form of a Gröbner basis are an exact representation of the range of all equilibria in the original

system[17].

As such, Gröbner bases allow for a polynomial set instead of explicitly numerical form. This is

an important characteristic considering potential homogeneity of players or their characteristics.

As an example, having two renewable generators with marginal cost of approximately 0 compete

in an electricity market would, in traditional market clearing, require an initial assumption on the

decisions of one of the players to overcome the homogeneity of degree zero and yield an equilibrium

solution[25]. As the provided example in the appendix shows, this is not the case for Gröbner bases

- they allow formulation of multiple equilibria without the need of additional analysis.

Another aspect favoring a Gröbner basis equilibrium is the unnecessity of symmetrical primal-

dual problems. Examples such as Ref.[1] highlight the requirement of such symmetry in traditional

solution techniques which otherwise will not be able to terminate and deliver results. As shown in

the example in the appendix, equilibria formulated via Gröbner bases do not require all inputs to be

defined as parameters, but allow for inputs to be variables (and thus have no duals assigned). This

allows for a range of new, unexplored possibilities such as sensitivity analysis of Nash equilibria,

which the case study below illustrates.

Despite the Gröbner basis providing an exact representation, most practical applications of

such rely on adequate approximation or simplification techniques(see e.g. [26]). The reason for

this, as stated by Ref.[16], is in that computing Gröbner bases for even small practical problems

might be too complex to solve with finite resources[27]. This is still the case for modern and more

advanced algorithms than the original developed by Buchberger[28].

To deal with this ’curse of dimensionality’, the algorithm below aims to tackle this utility

function approximation dynamically, a task which has been previously conducted manually.

4. Approximation of Utility Functions

Establishing utility function representations of player problems in order to apply equilibrium

analysis has been applied successfully in practical applications. To provide an example, in power

markets Conjectured Supply Functions as e.g. described in Ref.[11] express market quantity as

global decisions X and single player price bids as player-specific decisions Yj , with the supply

offered by other players to the market being expressed in the form of a (linear) utility function

Uj(X).
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In this paper, however, all players are modeled via utility functions. A more general formulation

that, contrary to Ref.[11] does not require assumptions on the type of game, can therefore be

established. Thus, let it be assumed that for every element in the approximation of the decision

vector of a single player ykj ∈ Ỹj exists a representative polynomial:

ykj = p(θk, X) (4)

Assuming the approximated optimal decisions are (nearly) equivalent to the optimal decisions, i.e.

Ỹ ∗ ≈ Y ∗, allows reformulating Eq.(3) as:

m(X, Ỹ ∗) = 0

yk∗j − p(θk, X) = 0 ∀j, k
(5)

This reformulation has two advantages to the previous formulation. This is due to being expressed

without dual variables. First, it shows lower complexity as instead of individually formulating

Lagrangians and related constraints it requires a single utility function approximation (per player

decision ykj ). Second, it does not require additional bounds on the dual variables which also

simplifies sorting out non-viable solutions. This becomes more apparent when the full polynomial

approximation for the player problem in Eq.(1) (or Eq.(2)) is formulated:

Uj(X) ≈ fj(Ỹ ∗|X)

yk∗j = p(θk, X) ∀k
yk∗j ∈ Ỹ ∗j

(6)

It also shows that selecting the right representative polynomial function is of equal importance

as adjusting the constants in order to approach the desired outcome of Uj(X) = fj(Ỹ
∗|X), or

similarly: Y ∗ = Ỹ ∗. The method selected in the later presented case will be introduced below.

5. Polynomial Fitting

Choosing the form of the polynomial - specifically the number of monomials as well as the degree

of those - has to be a preliminary decision by the user of the model. As mentioned above, however,

due to the computational limitations of Gröbner basis derivations, complexity of polynomials has

to decrease with increasing player number and/or number of decisions. Assuming an adequately

selected polynomial function exists, the remaining problem is that of polynomial fitting, where the

problem for a single player can be expressed as in Fig.1. It has to be noted that for the subsequent

method the form (e.g. linear/non-linear) of the optimization problem (1) is not of particular

importance, but it requires the assumption that there exist (commercial) solvers/techniques to

yield replicable, preferably global results2.

2Thus, convex problems would be an advantage. However, this is not a requirement as the following case study

shows.

6 of 22

Submitted to EJOR

7.2. EJOR

84



Figure 1: Polynomial Approximation of Player j

Start
Optimization

Problem Eq.(1)

player

decisions Y ∗j

Approximation

Eq.(6)

player

decisions Ỹ ∗j

generate

system

input

X

min
θ

error(Y ∗j , Ỹ
∗
j )

if Y ∗j ≈ Ỹ ∗j : End

otherwise: Continue

As Ref.[29] illustrates there exists a wide variety of techniques that can be utilized for poly-

nomial fitting. In the here presented paper Evolution Strategies were the selected method[30].

There are several reasons for this decision: no requirement for back-propagation allows faster com-

putation and thus a larger amount of input scenarios whereas scalability with the possibility of

parallelization allows for similar performance in small and large problems. In addition, the chosen

algorithm showed high robustness to overfitting of functions, which can be considered a desirable

trait since it compensates for model users overestimating the complexity of the player problems.

Similarly, various other techniques from the field of reinforcement learning could be applied on

the problem[31, 29] and exploration of such offer a starting point for future research on the topic.

The selected error function to solve the parameter fitting problem was Mean Squared Error.

The performance of the applied technique will be demonstrated by the results of the following case

study and the algorithm is presented in pseudo-code in the appendix.

6. Evaluation of Nash Equilibria

Considering Jensen’s inequality it can be expected that the approximated polynomial utility

function performs either similar or worse compared to the original problem. In order to make viable

predictions on system behavior, evaluation of the stability of the derived approximated equilibrium

is therefore of significant importance.

Formulated first in Ref.[32] the Nikaido-Isoda function shows a distance measure to a Nash

equilibrium. Various examples from literature use this function to approach a Nash equilibrium

stepwise by decreasing this distance[33, 3, 4] based on an algorithm originally presented in Ref.[34].

In similar manner, the Nikaido-Isoda function can be applied to assess the stability of an existing
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equilibrium solution. To do so, the Nikaido-Isoda function in general form can be established as:

ψ(Y ∗, Ỹ ∗) =
∑

j

(
fj(Y

∗
j |X∗)− fj(Ỹ ∗j |X∗)

)
(7)

In words, this function defines the total incentive of players to deviate from a given solution. A

value of 0 would indicate a Nash equilibrium and an adequately low value of ≈ 0 can be considered

approximate to an equilibrium state.

To calculate this, first the (approximated) optimal system decisions X∗ are derived via com-

puting the Gröbner basis of the approximated problem in Eq.(5). Subsequently, this approximated

system solution can be applied to the individual player problems in Eq.(1) which, as stated before,

can be assumed to be possible to be solved for Y ∗j . This consequently allows derivation of the term

fj(Y
∗
j |X∗) and allows to yield a numerical result for the Nikaido-Isoda function ψ. To support

comparability, the results of this Nikaido-Isoda function in the case study below will be expressed

as ψ(Y ∗,Ỹ ∗)∑
j
fj(Ỹ ∗

j |X∗)
[%] instead of ψ(Y ∗, Ỹ ∗)[AC].

Case Study Nomenclature

Indexes:

j ∈ J players

t ∈ T time period [h]

System Variables:

xen energy price [AC/MWh]

xcap reserve capacity price [AC/MW ]

Player Variables:

yen energy generated [MWh]

ycap reserves supplied [MW ]

yst unit started/shut down [binary]

Function:

r reservoir level [mm3]

η water consumption [mm3/MWh]

cst runtime cost [AC]

Parameters:

yen,ȳen generation capacity limits [MW ]
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r,r̄ reservoir limits [mm3]

l periodical inflow [mm3]

aη water conversion base level [mm3/MWh]

bη,cη water conversion head influence [1/MWh],[1/MWh2]

aen,acap price function constant [AC]

ben,bcap price function elasticity [AC/MW (h)]

External Variables:

ξ uncertain factor ξ ∈ R

7. Case Study

To present the proposed method, a case study on hydropower producers competing in a Cournot

Game is introduced below. It has to be noted that the presented study aims to showcase the

capabilities of the presented framework and thus provides a simplified3 - even though realistic -

example.

The chosen case study aims to combine two recently developing fields of research: integer-

constrained games in systems of electrical power[6, 7] and price-making hydropower storage operators[35,

36]. In contrast to previously introduced studies attempting this task[4, 10], the proposed case

study includes capacity markets, non-linear (quadratic) head-dependencies and inflow uncertainty,

thus itself presenting a novelty in literature.

The deterministic, non-convex problem of a hydropower player j holding a single reservoir is

formulated the following:

max
yenj ,ycapj ,ystj

∑
t
xen,tyen,t

j +
∑
t
xcap,tycap,t

j −∑
t
cstj y

st,t
j (8a)

s.t. yst,t
j yen ≤ yen,t

j ≤ yst,t
j ȳen ∀t (8b)

yen,t
j − yst,t

j yen ≥ ycap,t
j ≤ yst,t

j ȳen − yen,t
j ∀t (8c)

rj ≤ rtj ≤ r̄j ∀t (8d)

η1
j = aηj

ηtj = aηj + bηj
( rt−1

j −rj

rj
− r̄j−rt−1

j

r̄j

)

+cηj
( rt−1

j −rj

rj
− r̄j−rt−1

j

r̄j

)2 ∀t > 1
(8e)

rtj =
t∑

t2=1
lt2j −

t∑
t2=1

ηt2j y
en,t2
j ∀t (8f)

yen,t
j ∈ R, ycap,t

j ∈ R+, yst,t
j ∈ [0, 1] ∀t (8g)

The optimization objective (8a) describes the profit maximization operating simultaneously on an

3Yet, in degrees of freedom and thus in computational complexity, comparable to previous studies on similar

topics[6, 7, 4, 10].
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Table 1: Case Study Parameters

yen ȳen cst aη bη cη r r̄

j = 1 10 80 100 0.75 0.05 -0.01 50 100

j = 2 5 60 100 0.75 0.05 -0.01 25 50

t = 1 t = 2 t = 3 t = 4 t = 5

aen 49 47 50 49 50

ben 0.025 0.07 0.085 0.075 0.09

acap 43 46 44 47 42

bcap 0.005 0.012 0.08 0.05 0.004

l1 75 40 5 20 30

l2 40 15 25 10 5

energy and a reserve capacity market (whereas up- and down-regulation is bid simultaneously).

For the sake of simplicity runtime cost instead of specific startup/shutdown cost are assumed

and down-/up-time limits are neglected. In similar manner the simplification of assuming equal

clearing periods for both markets describes that both decisions are made simultaneously. Thus

for a capacity market clearing of e.g. 24h and an energy market of 1h, both outputs are held

constant for 24h. Constraints (8b) and (8c) respectively describe the limits for energy and capacity

provided, whereas the average down-regulation consumed is considered equal to the average up-

regulation. Therefore any consumption of reserves is omitted. Reservoir capacities are described

in constraint (8d), reservoir levels at the end of the total time frame are to be decided by the

players. Eq.(8e) formulates the water conversion, which includes the quadratic head dependencies

of the waterways[37, 38]. Eq.(8f) describes the reservoir state equation. This cubic equation hints

that the problem might be of non-convex nature and the set of possible integer decisions as shown

in Eq.(8g) confirm that this is in fact the case. However, for a limited time frame T it can be

safely assumed that it is possible to use methods, such as the here applied mathematical solver

Couenne[39], that (approximately) yield a global optimum for the problem of a single player.

Similar to conventional Cournot models this case study uses linear price functions to clear the

markets[2], which can be formulated in form of polynomial sets:

m({xen}, Ỹ ∗) = {xen,t −
(
aen,t − ben,t

∑
j

yen,t
j

)
∀t}

m({xcap}, Ỹ ∗) = {xcap,t −
(
acap,t − bcap,t

∑
j

ycap,t
j

)
∀t}

(9)

Tab.1 presents the parameters used in this case study. To assist improving the convergence rate

of the utility function approximations, initial assumptions on the outcome of the system decisions

can aid in establishing better training samples for X. In the here presented case study, this was
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Figure 2: Random Price Sample Distribution Example

Figure 3: Convergence Results for player j = 1 in period t = 1

(a) Energy Price (b) Reserve Price (c) Unit Schedule

conducted via applying Poisson distributions4 on the price functions. Fig.2 shows an example

for such a distribution laid over the linear price function. Fig.3 shows some example convergence

rates for the algorithm from Fig.1, with each iteration (simultaneously for all variables of a player)

performing < 1sec at an Intel i7-5600|2.6Ghz. Thus the chosen polynomials of degree 1 were

considered a sufficient representation. Another positive aspect of the proposed clearing algorithm

is demonstrated by the binary scheduling variable yst: as it has no effect on the market clearing

variables it can therefore be omitted from calculating the Gröbner basis further simplifying its’

complexity (nonetheless, those binary decisions can change based on the market clearing equilib-

rium results). In the applied simulation of 1200 iterations per player, the Gröbner basis yielded a

single Nash equilibrium with a Nikaido-Isoda distance ≈ 4.1%.

The equilibrium decision results for player 1 can be found in Fig.4. The graphs denoted as

’approximated’ are the results obtained by the Gröbner basis (i.e. Ỹ ∗j for X∗), the graphs denoted

as ’solved’ are the individual optimization problem results using the market prices obtained from

4This is a subjective choice by the model user. In this case it was chosen due to the perception that absolutely

no generation was considered unlikely and that the probability had to decrease going towards maximum capacity.
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Figure 4: Market Equilibrium Player Decision Results

(a) Generation Player j = 1 (b) Reserve Player j = 1

Table 2: Stochastic Inflows

t = 1 t = 2 t = 3 t = 4 t = 5

l1 −1.5ξ +3ξ +1.2ξ −0.25ξ +0.25ξ

l2 +2.5ξ −0.25ξ −0.075ξ +0.35ξ +0.1ξ

the approximated market clearing (i.e. Y ∗j for X∗). The graphs illustrate that the player has little

or no incentive to deviate from the energy and capacity market decisions in most of the 10 market

clearing stages and no incentive to deviate from the obtained binary dispatch decision.

Uncertain Inflows

In addition and as discussed in Refs.[40, 10], individual players might be influenced by uncer-

tainty. Correct modeling of such uncertainty could prove crucial in renewable-dominated games,

where multiple equilibria caused by uncertainty could, from the perspective of a decision maker,

distort the value of obtaining only a single equilibrium.

To consider this aspect in the presented case, Tab.2 adds the example of an external variable to

the previously presented case. It be assumed here that there exists an uncertain factor −1 ≤ ξ ≤ 1

with no known distribution5, that influences the inflows into the two considered reservoirs. This

problem can be solved in similar manner as above, with the difference that the result is an infinite

number of Nash equilibria. Due to the lack of space, the Gröbner bases will be omitted, though

an excerpt will be presented: one of the polynomials in the basis reads ξ − 0.390yen,5
2 + 17.667

which can be reformulated as the replacement rule ξ+17.667
0.3897 = yen,5

2 . Due to the graded reverse

5Thus a uniform distribution is used to train the utilization function approximation. It can be assumed, that for

some problems, assumptions on the distribution of this variable might indirectly influence the outcome. However,

the problem is still of inherently more robust nature as techniques that require variable distributions as direct input.
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Figure 5: Equilibrium Price Curves under Uncertainty

(a) Energy Price Equilibria

(b) Capacity Price Equilibria

13 of 22

Submitted to EJOR

7.2. EJOR

91



Figure 6: Traditional System/Market Clearing

convex
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lexicographic order applied on the monomial ring, the rest of the polynomials in the resulting basis

is described in functions of yen,5
2 , for example one polynomial defining the capacity clearing price

in the first period reads xcap,1 − 0.787yen,5
2 − 13.522.

Thus, the resulting Gröbner basis and thus the set of Nash equilibria is scalable by changing the

value of the uncertain factor ξ. Knowing the limits of this factor, it is possible to dynamically yield

numerical results for different uncertain outcomes. Fig.5 shows this by plotting the equilibrium

prices for different stochastic outcomes. The Nikaido-Isoda function ranged between 9% to 11.5%

depending on the value of ξ, reinforcing the intuitive assumption that more system variables might

decrease the quality of the utility function approximation6.

8. Conclusion

This paper extends the concept of finding multiple Nash equilibria to continuous decisions, a

first in literature. Further, it proposes a machine-learning framework to train agents to replicate

the single player results. These agents are then interconnected via market/system clearing con-

straints and the equilibria are formulated as a Gröbner basis. This approach allows application

of such a solution algorithm to practical problems, as - even in modern algorithms - time-efficient

computation of Gröbner bases is still a strong practical constraint.

The paper shows how to implement traditional problems from game theory, as presented in

Fig.6, within the new framework and compares it to traditional solution methods such as derivation

of Karush-Kuhn-Tucker conditions.

In addition, it presents a set of new problems (presented in Fig.7) with limited discussion in

literature and proposes an approach based on the Nikaido-Isoda function to assess the quality of

6Yet, it can be assumed that the accuracy would increase by establishing several different approximations, e.g.

split the training sets and resulting Gröbner bases into −1 ≤ ξ ≤ 0 and 0 ≤ ξ ≤ 1. However, for the sake of

presentational simplicity this is omitted from the presented case study.
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Figure 7: Gröbner Basis Clearing
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obtained results.

To demonstrate the capabilities of the framework, a novel case study for two competing hy-

dropower players with each utilizing a non-linear multi-market/multi-period optimization model

is solved. It shows how the proposed methodology allows for a wide variety of novel applications

which are not restricted on power systems: sensitivity analysis of Nash equilibria, finding multiple

equilibria in non-convex games and solving non-symmetric complementarity systems (i.e. games

with inputs that are held variable instead of being fixed model parameters).

The concept promises applicability to solve arising questions in modern power system games

which include equilibria under consideration of unit scheduling, power system clearing under uncer-

tainty with unknown distributions and existence of multiple equilibria for systems under optimal

control and competition,

This might prove important in future applications such as electricity systems with growing un-

certainty and lower marginal costs of units which can be caused by a growing number of renewable

means of generation and sinking share of flexible thermal units. Nonetheless, the presented model

and techniques might be applied to other fields that show similar problem settings and are not

explicitly discussed in this paper.
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An illustrative Example

(Please note that the following section is meant as a demonstration of the capabilities of using

’Gröbner Clearing’ and not necessarily intended to show a realistic case study.)

Assumed be generators that supply an energy market with a quantity generated ygen
j [MWh]

at a price yprice
j [AC/MWh]. The generators show a marginal cost of MCj [AC], generation capacity

limits of ygen
j

[MWh] and ȳgen
j [MWh] and a maximum price bid of ȳprice

j [AC/MWh]. Assuming

uniform prices, the problem can be formulated the following:

max
yprice
j ,ygenj

yprice
j ygen

j −MCjy
gen
j

ygen
j
≤ ygen

j ≤ ȳgen
j (λgen

j , λ̄gen
j )

0 ≤ yprice
j ≤ ȳprice

j (λprice
j , λ̄price

j )

(.1a)

yprice
j1 = yprice

j2 ∀j1, j2 6= j1 (.1b)

Here, Eq.(.1a) formulates a single player’s quadratic problem and Eq.(.1b) the market clearing

condition. Assumed be an example of two homogeneous players e.g. two wind farms with ygen
j

=

0MWh, ȳgen
j = 100MWh and no marginal cost (i.e. MCj = 0AC). For the sake of computational

ability, finite bounds on the maximum bids have to be assumed: ȳprice
j = 9999AC/MWh. As

described in Ref.[25] traditional equilibrium modeling would require an initial assumption on one

of the players quantities or prices. In this example taking one of the extreme points (thus setting

one of the player decisions to their maximum or minimum) and solving the problem would yield a

single Nash equilibrium. This however might show a distorted picture of the real outcome as the

following procedure will show.

By establishing the KKT conditions similar to Eq.(3) and applying the ’F5B’ algorithm from

Ref.[19], the Gröbner basis can be derived:

Gröbner basis =
{
λprice

1 (ygen
2 )2−100λprice

1 ygen
2 +ygen

1 (ygen
2 )2−100ygen

1 ygen
2 , (λprice

1 )2+100λprice
1 −

(ygen
1 )2 + 100ygen

1 , λprice
1 λprice

2 + λprice
1 ygen

2 , (λprice
2 )2 + 100λprice

2 − (ygen
2 )2 + 100ygen

2 , λprice
1 ygen

1 −
100λprice

1 + (ygen
1 )2 − 100ygen

1 , −λprice
1 ygen

2 + λprice
2 ygen

1 , λprice
2 ygen

2 − 100λprice
2 + (ygen

2 )2 − 100ygen
2 ,

λprice
1 yprice

2 , λprice
2 yprice

2 , −9999λprice
1 + ygen

1 yprice
2 − 9999ygen

1 , −9999λprice
2 + ygen

2 yprice
2 − 9999ygen

2 ,

100λ̄gen
1 − 9999λprice

1 − 9999ygen
1 , 100λgen

1 − 9999λprice
1 − 9999ygen

1 + 100yprice
2 , λ̄price

1 − λprice
1 − ygen

1 ,
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Table .3: Number of Nash Equilibria (# NE) for different Cases

MC1 ygen
1

ȳgen
1 ȳprice

1 MC2 ygen
2

ȳgen
2 ȳprice

2 # NE

0 50 100 9999 0 0 100 9999 1

10 50 100 9999 0 50 50 9999 2

10 50 100 9998 0 50 50 9999 0

2 0 100 9999 0 0 100 9999 1

100λ̄gen
2 − 9999λprice

2 − 9999ygen
2 , 100λgen

2 − 9999λprice
2 − 9999ygen

2 + 100yprice
2 , λ̄price

2 − λprice
2 − ygen

2 ,

yprice
1 − yprice

2

}

As shown in Ref.[15], this system of polynomials is no simplification of the original problem

but an exact representation. Compared to the original problem however, the Gröbner basis can

be solved algebraically as a system of 18 equality equations with 12 variables. The results are

two Nash equilibria with primal variable results of either {ygen
1 = ygen

2 = 0, yprice
1 = yprice

2 = 0} or

{ygen
1 = ygen

2 = 100, yprice
1 = yprice

2 = 9999} . As with all multiple equilibria, there is no statement

about the likelihood of the outcomes. Thus finding both potential outcomes is of importance,

especially considering their highly different characteristics (full generation/no generation).

This example shows, that calculation of Gröbner bases can replace time-consuming and poten-

tially error-prone problem analysis in order to obtain Nash equilibria in such systems. This gains

in importance regarding analysis of non-homogeneous agents. For example, in the here provided

problem, the second Nash equilibrium (maximum production) vanishes, if one agent assumes a

smaller price cap than 9999AC/MWh. On the other hand, raising minimum production for any of

the involved agents above 0MWh eliminates the first Nash equilibrium. Latter is presented with

several other examples that show different potential Nash equilibria in Tab..3.

As discussed in the text above, using Gröbner bases also allows variable inputs, i.e. non-

symmetric complementarity problems. An example could be given for the initial case presented

before (homogeneous agents, no marginal cost) and with - as common for wind power plants

- non-specified output capacities (usually influenced by uncertainty). Assumed that there is no

information on the distribution of this uncertain parameter, the Gröbner basis with ȳgen
j considered

a decision variable can be found. With traditional solution techniques this would not be solvable

for an equilibrium, as the number of decision variables exceeds the numbers of equations in the

KKT conditions (i.e. a non-symmetric problem, due to a lack of dual variables). Nonetheless, it is

possible to formulate the Gröbner basis, which comes in the form of 18 equations and 14 variables.

This system can be solved to obtain a number of 4 Nash equilibria.

For example, two equilibria show that ygen
j = ȳgen

j (for each player j = 1, 2 respectively). Thus,

instead of having definite numerical results as with symmetric primal-dual problems, the result

is the relation between decision variables (i.e. a replacement rule). Therefore it bears practical
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application as it allows decision makers to analyze the impact of changing one parameter of the

system - i.e. perform sensitivity analysis - without any recalculation of the equilibrium points.

Polynomial Fitting via Evolutionary Algorithms

This section presents the algorithm from Ref.[30] applied on polynomial fitting. It is extended

with feature-rescaling, simulated annealing and a rounding mechanism to enhance performance of

the Gröbner basis computation. The goal of the proposed algorithm is the minimization of the

error function via adjusting the θ parameters of the chosen polynomial function. The algorithm

in pseudo-code reads the following:

Algorithm 1. Polynomial Fitting

define population Pop, noise standard deviation σ, learning rate α, annealing factors aσ, aα,

maximum steps stepsmax, minimum θmin;

define polynomial functions p(·);

define scaling factors s for X (with the aim of holding 0 ≤ svxv ≤ 1∀x ∈ X, v ∈ |X|);

init. θkv = U(0, 1)∀k ∈ |Y |, v ∈ |X|;
init. steps = 0;

for steps ≤ stepsmax do

solve Eq.(1) ∀j to receive Y ∗j ;

calc. X∗ and scale xv := svx
∗
v∀x ∈ X, v ∈ |X|;

sample step direction Nk
pop,v := N(0, 1)∀k ∈ |Y |, pop ∈ Pop, v ∈ |X|;

calc. steps ϑkpop,v = θk + σnkpop,v∀k ∈ |Y |, pop ∈ Pop, v ∈ |X|;
calc. approximation ỹ∗,kj,pop,v = p(ϑkpop,v, X)∀k ∈ |Y |, pop ∈ Pop, v ∈ |X|;
calc. errorkpop,v(y

∗,k
j , ỹ∗,kj,pop,v)∀k ∈ |Y |, pop ∈ Pop, v ∈ |X|;

calc. mean µerror,kv and standard deviation σerror,kv ∀k ∈ |Y |, v ∈ |X|;
for k ∈ |Y | do

for v ∈ |X| do

calc. Akv =
errorkv−µerror

v

σerror,k
v

;

update θkv := θkv + α
σPop

(
(Nk

v )ᵀ ·Akv
)

if abs(θkv ) < θmin then

update θkv := 0;

end if

end for

end for

update σ := aσσ, α := aαα;

update steps := steps + 1;

end for

return rescaled polynomial ỹkj = p(θk, X ⊗ s)∀k ∈ |Y |
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Similar to traditional machine-learning problems, parameter selection might require trial and

error. As mentioned above, the same holds for p(·), as an increase in degrees of freedom (more

players and/or decision variables) require a decrease in complexity of their representative polyno-

mials.

Optionally, the maximum step size might be replaced for target error values.

The parameter θmin defines which values are rounded to 0, as a variable denoted with an

infinitesimally small θk value would still add to the computation times of the Gröbner basis, but

cannot be expected to provide significantly to the quality of the result.
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7.3. ENERGY

7.3 Hydro-thermal power market equilibrium with
price-making hydropower producers

This work has been published in Energy.

7.3.1 Extended Abstract

This paper formulates a multi-period hydro-thermal Cournot game under consideration
of storage and unit commitment decisions.

The basic problem is formulated as a profit-maximization of a mixed portfolio player
with thermal units under generation capacity constraints and hydropower units under
generation and reservoir capacity constraints. Inflows are considered periodical and
uncertain. The problem is solved similar to other Cournot problems, by assuming
symmetric information on price curves, an assumption made based on the availability
of public databases for historical data of liberalized electricity markets.

The storage problem is solved via decomposition of the periodical inflows. Instead of
considering single reservoir decisions from a period into the next, the proposed solution
technique transforms this decision vector into a decision matrix which considers the
storage decision from each observed period into each other. This decomposes the
original equilibrium problem into a number of sub-problems equal to the considered
time periods, which can be solved to convergence via a backwards pass algorithm.

The binary decisions are reformulated into a set of preselected potential schedules,
giving the option to preselect only viable schedules. A player could thus sort out
schedules that do not fulfill conditions such as minimum/maximum uptimes or ramping
times. This decreases computational complexity and allows for consideration of larger
problems without suffering information loss. The resulting discrete game is then solved
via iteration of the available schedules, whereas each sub-problem can be solved via
taking the KKT-conditions for fixed scheduling decisions.

In addition to the proposed modeling techniques, an adjustment to the Karush-
Kuhn-Tucker conditions is proposed that aims to establish robustness under uncer-
tainty. The formulation is similar to a mixed-strategy game and extends current litera-
ture by a) allowing for distributions of uncertainty and b) extending the framework to
the Lagrangians, whereas the original model presented in literature was implemented
for complimentarity conditions.

A case study on the Scandinavian spot/intraday market is presented in the paper.
This case study analyzes the impact of hydropower on the marginal cost of energy and
capacity and observes an impact on the optimal schedules of the players. It shows
a positive welfare impact of adding hydropower capacities, which are caused by both
capacity and energy prices. However, there is a distinct profit loss observed for thermal
units in the case of additional storage capacities. These results can be considered
intuitive and are intended to provide a proof of concept for the proposed modeling
techniques.
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Abstract

This paper formulates an electricity market dominated by price-making hydro-
thermal generation. Generation companies optimize their unit commitment, schedul-
ing and bidding decisions simultaneously as a Mixed Integer Programming problem
and participate in a market under quantity competition, giving rise to a discontin-
uous Nash-Cournot game. Both hydropower and thermal units are considered as
price-makers. The market equilibrium under uncertainty is computed via time stage
decomposition and nesting of a Continuous Nash game into the original Discontin-
uous Nash game that can be solved via a search algorithm. To highlight applica-
bility of the proposed framework, a case study on the Scandinavian power market
is designed and suggests positive welfare effects of large scale storage, whereas the
implications on scheduling of conventional units are subsequently discussed. Re-
formulation allows computationally efficient scaling of the problem and possible
extensions to allow large scale applications are discussed.

Keywords: Hydropower, Hydro-Thermal, Cournot game, Nash equilibrium,
discrete game, electricity market

1. Introduction

1.1. Background

Larger integration of renewable resources increases the challenges on liberal elec-
tricity markets. Such means of generation are, compared to conventional forms
of generation, characterized by their low cost curves and uncertain capacity pro-
files. Higher shares of renewable generation could thus lead to increased supply side
volatility as well as increased gaps between peak and base prices. Those effects
will be eventually carried financially by the end consumer and, in interconnected
systems, might spread to otherwise unaffected nodes or areas[1]. Applying flex-
ible means of production mitigates this issue by applying the principle of ’peak
skimming’[2], where a producer strategically schedules generation for the periods
showing the highest market prices. Such flexible generation can come in form of
conventional plants or energy storage, whereas hydropower plants provide the most

Email address: markus.loschenbrand@ntnu.no (Löschenbrand Markus)
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prevalent large-scale application for latter. Despite their negligibly small cost curves,
hydropower units with large enough storage capacities 1 compete with conventional
generation for peak loads rather than for base loads with other means of renewable
generation[3]. This paper addressed the issue of an electricity market dominated
by hydro-thermal generation as price makers. Differing from the existing works on
this topic, in this paper the hydropower producers simultaneously decide their unit
commitment and scheduling strategies under uncertainty.

Table 1: Model Feature Comparison
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[1]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[*]

[*] refers to the model proposed in this paper

1.2. Related Works

In the literature, there are a multitude of examples given for analyzing the strate-
gic aspects of conventional means of generation[21]. In Ref.[4] nodal prices were

1In relation to their generation capacities, as a reservoir with large storage capacity and smaller
output capacity has higher flexibility regarding the time stages it chooses to feed into the system.
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derived through modeling transmission system operators and market operators as
players participating in a Cournot competition. Ref.[22] shows electricity market
applications of modeling market clearing through supply function equilibria, subse-
quently deriving Nash equilibria on the base of the cost functions of market par-
ticipants. Ref.[23] extends the concept of Stackelberg games to multi-leader games
and solves it through an Equilibrium Problem with Equilibrium Constraints(EPEC)
formulation. In the model presented in Ref.[5], demand sided players are presented
as strategic entities in a pool market.

Not considering technical specifications such as nonlinear efficiency curves, hy-
dropower shows two prominent characteristics that differentiate it from conventional
generation and make the above presented methodologies hard or impossible to apply:
negligibly small generation cost functions and uncertain, period-transferable capac-
ity in form of hydrological inventory. As a result, contrary to their conventional
counterparts, bidding models for hydropower units generally consider price-taker
approaches[24], leading to models for hydrothermal competition usually strictly sep-
arating between exercise of market power by conventional plants and efficient unit
commitment by hydrological plants. Game-theoretical applications that focus on
market clearing are found in Ref.[6, 7], whereas applications that focus on unit
commitment are given in Ref.[8, 9].

There is indication that anticipation of price-making storage operators can im-
pact market outcomes[10]. A few examples of literature analyze this topic: Ref.[11]
describes a Cournot market clearing based on a Nash equilibium convergence al-
gorithm through the Nikaido-Isoda function that has an active set method applied
to stepwise converge to an equilibrium with optimal storage. Ref.[12] extends this
concept to a deterministic multi-nodal Mixed-Integer market clearing problem and
finds the optimal unit schedules via branch-and-cut. In Ref.[13] two different ap-
proaches are considered to model Nash equilibria in hydro-thermal systems. As
the system is hydro-dominated focus is put on modeling uncertainty. Ref.[14] im-
plements hydrological storage through a capacity constraint connecting time stages
and thus otherwise individual models into a single market clearing model under
Cournot competition. Ref.[15] focuses on the scheduling decisions of the thermal
plants, ignoring inventory transfers through hydropower reservoirs and solving a
series of deterministic Mixed Integer Problems to converge towards a balance in
supply and demand to represent a cleared market. Despite the listed approaches,
no literature is found on a problem as shown in Fig.1: hydropower producers par-
ticipating in markets with changing access (on/off) for marginal (thermal) units,
i.e. a game with a time-dynamic set of participants. The reason herefore, as e.g.
listed in Ref.[25] is the difficulty of dealing with the duality gap created by such
integer decisions. The model presented in this paper however aims to connect ex-
ercise of market power in hydrothermal systems with optimal scheduling and unit
commitment, which has historically been focus of cost minimization[26]. This com-
petitive market is formulated as a Discrete game[27] and can be solved by commercial
solvers for its (potentially multiple) Nash equilibria, raising computational efficiency
through reformulation[28].
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Figure 1: Multi Period Hydro-Thermal Game
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1.3. Contributions

In the here presented paper the hydropower companies optimize their unit com-
mitment and bidding strategies simultaneously under the consideration of uncer-
tainty. The salient features of this paper are summarized as follows.

* Combination of scheduling and price-maker bidding: the presented
model provides a novel tool for both generation companies and system op-
erators to analyze the impact of storage capacities onto the network, thus
incorporating the change of market power over time.

* Model compactness: the nested problem of a continuous game under un-
certainty shows strong computational efficiency and thus has the potential to
itself be used as an analytic tool (without solving the scheduling problem).

* Practical applicability: future applications of the presented model have
a wide range. For example this could include analysis of capacity mecha-
nisms or the impact of maintenance and involuntary down-times, refinement
of hydropower-bidding through ability to model price impact, and analysis
of the interactions of strategic scheduling and strategic storage. The here
presented base model might be extended by additional dimensions (e.g. more
nodes, market types) and constraints (e.g. reserve provision) in a similar man-
ner to traditional equilibrium models[21] to enable it to cope with real-world
problems.

A direct comparison to models from literature can be found in Tab.1.

1.4. Organization

The rest of this paper is organized as follows. In Section 2, the hydro-thermal
model under consideration of uncertainty, periodic inflow and binary unit commit-
ment decisions is formulated. Section 3 specifies the solution techniques used to
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yield what is later defined as ’Nash tuples’. Case studies are presented in Section 4
with discussions on welfare effects. Section 5 concludes the paper.

Nomenclature
J players
Ij generation units of player j
IThj thermal units of player j

IHyj hydrological units of player j
T time periods
Ξ scenarios
N predefined schedules
Φ equilibrium tuples

Indexes
j player j ∈ J
i generation unit i ∈ Ij
t time period [h]
s inflow source period [h]
t2 inflow sink period [h]

Variables
qi,t generation level [MWh]
bi,t scheduling variable [binary]
qsi,t production from source period s used in period t [MWh]
q′i,t generation decisions of other players i /∈ Ij [MWh]
ni selected schedule ni ∈ R+

Parameters
ξ stochastic parameter ξ ∈ Ξ

q
i
, q̄i generation capacities [MW]
R̄i reservoir capacities [MW]
P ξ scenario probability [%]
k convergence parameter k ∈ R+

cfix,cavar,c
b
var cost function parameters

Functions
Πi,t profit function [AC]
Qs
i inflow in hour s [MWh/h]

pj,t price expectation of player j [ AC
MWh

]
ci,t cost function of unit i [AC]
dt demand function [MWh]
bi,t scheduling function [binary]

Dual variables
δi,t,δ̄i,t generation capacities
σi reservoir inflow
γi,t split representation
ψi,t reservoir capacity
µi,t non-negativity

ωp,ξi,t , ωQ,ξi stochastic - deterministic gap
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2. Model

2.1. Hydro-Thermal Generation

We assume a single area with a single pool market and competition in quantity.
All supply sided participants, further referred to as generation companies or players,
aim to solve a Mixed Integer profit maximization problem in the form of:

max
qi,t,qsi,t,bi,t

Πj =
∑
i∈Ij

∑
t∈T

Πi,t(ξ, qi,t, bi,t) (1a)

s.t. q
i
bi,t ≤ qi,t ≤ q̄ibi,t ∀i ∈ Ij, t ∈ T (1b)

max(T )∑
t=s

qsi,t ≤ Qs
i (ξ) ∀i ∈ IHyj , s ∈ T (1c)

t∑
s=1

qsi,t = qi,t ∀i ∈ IHyj , t ∈ T (1d)

t−1∑
s=1

max(T )∑
t2=t

qsi,t2 ≤ R̄i ∀i ∈ IHyj , (t > 1) ∈ T (1e)

qi,t ∈ R, qsi,t ∈ R+, bi,t ∈ [0, 1]

Objective function Eq.(1a) incorporates all generation units owned by the player.
The profit function of a single generation unit in a single time period, as shown
below in Eq.(2), depends on a stochastic parameter representing uncertainty, as well
as the chosen levels of generation and the scheduling variables. Each player might
hold both thermal and hydropower units. The generation capacities given in Eq.(1b)
depend on the unit schedules that define if the units are able to supply between their
given minimum and maximum generation limits in a certain period. This depends
on if the respective unit is running (i.e. bi,t = 1) or shut down (bi,t = 0). The
inflow consistency constraint Eq.(1c) ensures that the hydropower units only use
their given inflows, whereas s indicates the source period in which the inflow arrives
at the reservoir. Decision variable qsi,t represents how much of inflow from a source
period is used for generation in period t. Subsequently, Eq.(1d) ensures that the total
generation of those units matches this split representation. Physical capacities of
reservoirs are considered in Eq.(1e): transfers from a source period s < t into a sink
period t2 ≥ t count to the total inventory in period t which cannot exceed the upper
limit of the reservoir. The reason why it is conducted over (t > 1) ∈ T periods is that
for a number of max(T ) periods there are a number of max(T )−1 inventory transfers
between periods. For the sake of simplicity and similar to Ref.[14], no (mandatory)
end reservoir levels are assumed. Starting reservoir levels are determined by the
inflow in period 1.

The profit functions of the players are defined as:

Πi,t(ξ, qi,t, bi,t) = pj,t(ξ,
∑

i2∈Ij
qi2,t +

∑

i2 /∈Ij

q′i2,t)qi,t − ci,t(qi,t, bi,t) (2)

In Cournot competition, players calculate their individual profits based on assump-
tions representing decisions of other market participants, which are subsequently in
this paper marked by ′. As the model is aimed for short term applications, cost
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functions are assumed to be independent of uncertainty, thus limiting the profit
impact of the stochastic parameter ξ on the components2 of the price functions pj,t.
As hydropower cost components are generally considered to be negligible in short
to medium term applications, the respective cost functions ci,t can be omitted, sim-

plifying Πi,t(ξ, qi,t, bi,t)→ Πi,t(ξ, qi,t)∀i ∈ IHyj , t ∈ T . In addition, this removal of the
binary variables from the profit function also allows for a simplification of Eq.(1b)
- since, for hydropower units, there are now no (negative) profit effects caused by
the binary variables, they can be considered fixed as bi,t = 1∀i ∈ IHyj , t ∈ T . Fur-
thermore, depending on the form of price and cost curves of the thermal units, the
problem of a single player can take the form of a Mixed Integer Linear Program or
a Mixed Integer Quadratic Program.

2.2. Market Clearing

A system operator would aim to clear the market by calculating a periodical
demand, in the here presented framework with uniform pricing:

dt =
∑
i∈Ij

qi,t +
∑
i/∈Ij

q′i,t ∀j, t (3)

To allow derivation of a definite market price, symmetric information on price curves
has to be assumed:

pj1,t(·) = pj2,t(·) ∀j1 ∈ J, (j2 6= j1) ∈ J, t ∈ T (4)

As liberalized pool markets generally provide historical data publicly, such an as-
sumption can be considered valid in practical applications. Thus, Eq.(2) can be
simplified by:

pj,t(ξ,
∑
i2∈Ij

qi2,t +
∑
i2 /∈Ij

q′i2,t)→ pt(ξ, dt)∀j ∈ J, t ∈ T (5)

2.3. Model Limitations

As shown in Ref.[16], real-world hydropower short term unit commitment in-
cludes a large range of complicating factors such as interconnected inflows and tech-
nical characteristics (e.g. head and tail effects). In addition, due to increasing
uncertainty through intermittent generation such as wind, unit commitment prob-
lems might require advanced techniques to cope with their tasks[17]. As mentioned
below, in this paper however, uncertainty will be dealt with on an approximated
level - through addition of slack variables and minimizing their weighted distance
to a deterministic solution. Thus, the here presented problem gives a support tool
to show the interaction between unit commitment and equilibrium problems and
cannot replace optimal scheduling of units.

2In case of linear demand curves both slope and intercept would be subject to uncertainty.
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Figure 2: Solution Algorithm Flowchart (Discrete Game)
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3. Solution Approaches

Even though the previously listed assumptions and simplifications support effi-
cient solving of the model, several complications have still to be dealt with. Mainly,
the previously mentioned duality gap caused by the binary scheduling variables that
eliminates the possibility of straight-forward application of some of the conventional
techniques shown in the introduction to this paper. Furthermore, the ’curse of di-
mensionality’ related to problem size - i.e. amounts of scenarios, time stages, agents
- has to be approached to allow for practical applications of the proposed framework.
Thus, we propose a triple layer approach to derive multiple Nash Equilibria for the
player decisions as shown in Eq.(1).

Regarding annotation: below we will mark fixed variables/parameters as · and
optimal solutions of variables with ∗. The structure of the solution framework is
shown in Fig.2.

3.1. Market Clearing under Uncertainty (Continuous Game part I)

The core problem is represented by the Karush Kuhn Tucker conditions of Eq.(1),
with adjustments to cope with stochasticity and with initial presets for certain de-
cision variables. Namely, the schedules - i.e. the binary decision variables - are
given fixed values bi,t, and a specific inflow source period s is chosen, leading to all
quantity decisions that are not related to this inflow period being considered as fixed
parameters instead of variables, i.e. qsi,t := qsi,t∀(s 6= s) ∈ T with starting values of

qsi,t = 0.

As presented in Fig.3 this decomposes the model in a number of smaller equilib-
ria.

As with fixed schedules for thermal plants, price arbitrage between periods can
only happen through hydropower units, considering a specific inflow period s affects
only the following periods. Thus a new period set can be defined:

T s = {t|t ∈ T, t ≥ s} (6)
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Figure 3: Continuous Game - Decomposition
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over Tmax(T )−1

Equilibrium
over Tmax(T ) = T

qsi,t:

pass for s = 1

pass ∀s ≤ max(T )− 2

pass ∀s ≤ max(T )− 1

This allows simplification and reformulation of Eq.(1):

max
qi,t,q

s
i,t

Πj =
∑
i∈Ij

∑
t∈T

Πi,t(ξ, qi,t, bi,t)

s.t. q
i
bi,t ≤ qi,t ≤ q̄ibi,t

∀i ∈ Ij,
t ∈ T s (δi,t, δ̄i,t)

∑
t∈T s

qsi,t ≤ Qs
i (ξ) ∀i ∈ IHyj (σi)

t∑
s=1

{
qsi,t, if s = s
qsi,t, if s 6= s

= qi,t
∀i ∈ IHyj ,
t ∈ T s (γi,t)

t−1∑
s=1

max(T )∑
t2=t

{
qsi,t2 , if s = s
qsi,t2 , if s 6= s

≤ R̄i
∀i ∈ IHyj ,

(t > s) ∈ T s (ψi,t)

qsi,t ≥ 0
∀i ∈ IHyj ,
t ∈ T s (µi,t)

(7)

For a single scenario, taking the Karush Kuhn Tucker conditions of this problem
allows derivation of an equilibrium solution. To clear the problem under several
scenarios ξ ∈ Ξ with individual scenario probabilities we apply a similar approach
as found in Ref.[18], extending the model by two dual variables ωp,ξi,t and ωQ,ξi that
represent the shadow prices of a scenario deviating from a selected deterministic
solution, therefore minimizing the residuals between a deterministic solution and all
scenarios. Discussion on this approach is provided in Appendix A.

Subsequently, the Karush Kuhn Tucker conditions are formulated and provided
in Eq.(B.1) which can be found in Appendix B. The Lagrangians are shown in
Eq.(B.1a) to (B.1c), the feasibility and complementarity conditions are found in
Eq.(B.1d) to (B.1h). Eq.(B.1j) and (B.1k) respectively present the price and in-
flow consistency constraints that minimize the residuals between the different sce-
narios whose probability adjusted shadow prices can be found to affect Eq.(B.1a),
Eq.(B.1b), and Eq.(B.1f).

9 of 26

DOI: 10.1016/j.energy.2018.08.162

7.3. ENERGY

110



3.2. Backwards Pass (Continuous Game part II)
As shown in Fig.2 and Fig.3, readjustment of the fixed inflow source period s is

required to accommodate for all inflow periods. By nesting the single period problem
into a backwards pass algorithm, the multi-period problem can be solved. After
choosing a value for the convergence parameter this algorithm can be implemented
in the following manner:

Algorithm 1.

0. initialize s := max(T ), run := 1, Π0
j := −∞ ∀j ∈ J

1. solve KKT conditions

2. update: qsi,t := q∗si,t ∀j ∈ J, i ∈ Ihyj , t ∈ T, s = s

and Πrun
j := Π∗j ∀j ∈ J

3. if s > 1: s := s− 1 and back to 1.

4. if
∑
j∈J
|Πrun−1

j − Πrun
j | > k : run := run+ 1 and back to 1.

5. converged: q∗si,t = qsi,t ∀j ∈ J, i ∈ Ihyj , t ∈ T, s ∈ T

As mentioned in Ref.[13], such an equilibrium will only show one potential schedule
for the hydropower units. Even with a convergence parameter of k = 0(as in the
latter presented case study) and therefore requiring a global optimum, other sched-
ules might result in similar profits making the optimum non-unique. Discussion on
this matter can be found in Appendix C. However, as the derivation of the discon-
tinuous Nash equilibrium only uses the information on objective values of the player
problems (which are constant over all equilibria) and not the specific generation
decisions (which might diverge), validity of the results still holds.

3.3. Discontinuous Nash Equilibrium (Discrete Game)
As displayed in Fig.2 the Backwards Pass algorithm determines optimal genera-

tion in the equilibrium, considering that unit commitment is predefined. Such fixed
ramping schedules as utilized e.g. in Ref.[19, 20] which assume that binary sched-
ules of the units are pre-established and treated as input parameters to the problem.
However, as the here presented model aims to give the thermal plants the possibility
to react to hydropower decisions (i.e. withdraw from time stages with peaks low-
ered through storage arbitrage). Fixing the ramping schedules and thus the binary
variables bi,t eliminates those actions by the thermal players, thus weakening their
model strategies in relation to their options in reality and thus distorting the model
results and subsequently displaying a skewed representation of the equilibrium.

On the contrary to fixed schedules, all potential iterations of the binary variables

would amount to a number of 2

∑
j∈J
|Ithj |×max(T )

. Each of those iterations would in turn
represent a ’Nash tuple’, that is an equilibrium solution derived by the Continuous
game as shown above.

Thus, fixing schedules to a single outcome might not represent the reality ad-
equately, whilst keeping all iterations in the game introduces the problems tra-
ditionally related to Mixed Integer Programming: increasing complexity and the
possibility of ending up in local maximums.
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To adequately address this issue, we apply an approach that can be consid-
ered a middle course between those mentioned. By using a reformulation similar
to Ref.[28], we are able to reduce computational complexity whilst still keeping the
core strategies of the players intact: instead of solving for the binary decision vari-
able, we replace bi,t → bi,t(ni). The function bi,t(ni) represents preselected schedules
indexed by the decision variable ni ∈ Ni. This reduces complexity to a new number

of iterations: iter = 1 ≤ 2

∑
j∈J

∑

i∈Ith
j

|Ni|

≤ 2

∑
j∈J
|Ithj |×max(T )

. Even though this refor-
mulation of the scheduling decisions results in a computationally less demanding
problem setup, it still is of NP-hard nature[29]. Modern techniques usually tend to
work with various branch-and-cut approaches to derive solutions for such discontin-
uous problems[30]. However, comparing and evaluating different outcomes for Nash
equilibria in their ”validity” itself poses a problem that is not straightforward[27].
Furthermore, Nash equilibria are not necessarily globally optimal for the players,
as demonstrated by famous examples such as the prisoners’ dilemma. As a result,
instead of applying an approach using bounds and risking jeopardizing potential
viable equilibria, pre-selection of an adequately sized number of predefined sched-
ules to enable brute-forcing all equilibrium tuples was conducted. This is made
possible as every tuple (if feasible) can be solved for an equilibrium that defines
profits for each player, allowing to determine dominant strategies (i.e. scheduling
decisions). By defining a player j’s assumption on other generation units’ schedules
as n′i2 ∀i2 ∈ Ij2 6=j a Nash tuple equilibrium can be defined as:

Φ = 〈q∗i,t, q∗si,t, bi,t(n∗i )〉
where
Π∗j = max

ni

∑
i∈Ij

∑
t∈T

Πi,t(ξ, q
∗
i,t/q

′∗
i2,t
, bi,t(ni)/bi2,t(n

′
i2

)) ∀j ∈ J
(8)

As each iteration can potentially represent an equilibrium, the number of tuple
equilibria |Φ| will range within 0 ≤ |Φ| ≤ iter.

To derive the equilibria a search algorithm, e.g. in the following form, can be
used:

Algorithm 2.

0. initialize φ(ni) := {0|N
∏
i∈Ij

Ni

, j ∈ J}
1. for j ∈ J :
2. initialize N ′j = {ni2 |ni2 ∈ Ni2 , i2 ∈ Ij2 6=j}
3. while N ′j 6= {∅}:
4. choose any n′i2 ∈ N ′j
5. solve Π∗j
6. increment φ(ni/n

′
i2

) := φ(ni/n
′
i2

) + 1

7. remove n′i2 from N ′j
8. for all ni where φ(ni) = max(J): ni = n∗i

This algorithm builds on the requirement of a computationally feasible set of
available schedules. Adding more sophistication in terms of a larger set of unit
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Figure 4: Obtaining Scenarios through Lattice Separation
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schedules would require application of additional techniques, i.e. branch-and-bound
or branch-and-cut as demonstrated in e.g. Ref.[31]. However, as the here presented
model aims to focus on short term time frames, it is reasonable to assume that a
range of potential unit commitment schedules is already established. As mentioned
before, literature traditionally assumes a single such schedule, whereas we relax this
by providing a set of potential schedules to our players to choose from.

4. Case Study

To validate the proposed model and methods, a test case representing the Scan-
dinavian power system was designed to represent a late spring scenario in Southern
Sweden. The aim of the case study is to provide a showcase of the capabilities of
the demonstrated model framework.

Test System. Three oligopolistic players - respectively holding a hydropower, ther-
mal and mixed generation portfolio, were considered competing over 7 periods. Out
of the five thermal plants three heterogeneous plant types (Gas/Coal/Oil) were in-
troduced, whereas units of a specific type were modeled in homogeneous manner in
regards to generation capacities, up-/down-time limits and cost curves. The thermal
units were given quadratic cost functions in the form of:

ci,t(ni, qi,t) = cfixbi,t(ni) + cavarqi,t + cbvar(qi,t)
2 (9)

For the sake of simplicity in demonstration, ramp-up and -down cost were replaced
with fixed rates for up-time.

The five hydropower units were modeled heterogeneous in regards to generation
capacities, reservoir sizes, degree of regulation (relation of generation to reservoir
size, where generally a low value can be used to represent a run-of-river unit and
a large value a long term storage unit), inflow (base level, variability and trend).
This can be observed in Fig.5 which shows the scenarios for latter3. The total

3The size of the outer rings and strength of the connection lines display the likelihood of the
scenario.
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Figure 5: Inflow Scenarios for the Hydropower Units3

starting period inventory:
unit i = 6: high
unit i = 7, 8, 9: medium
unit i = 10: low

Figure 6: Nash Tuples

(a) Nash Tuple Hydro-Thermal Case (b) Nash Tuple Thermal-dominated Case

generation capacities for the thermal and hydropower plants were 1300MW and
280MW respectively.

Solvers. The model was coded in Python, using the multi solver interface Pyomo[32].
This interface provides nonlinear transformations for complementarity problems
with continuous variables[33] based on a constrained optimization technique from
Ref.[34], enabling the usage of freeware tools such as the nonlinear interior-point
solver IPOPT[35]. Performance on an Intel i7-5600U was an average of 80.5 seconds
to yield a tuple solution in each case, i.e. to solve the Continuous Game, for both
cases running in parallel.

Base Case (Hydro-thermal competition). In the case study, the chosen form of rep-
resenting uncertainty was using Markov processes transformed into samples. Tech-
niques to obtain such scenario lattices that adequately represent the distribution
exist plenty in literature, i.e. Ref.[36]. Therefore, we will assume that an adequate
discrete representation of price and inflow distributions are given and can be trans-
formed into scenarios as Fig.4 shows for a three period example. Historical price data
was obtained from the public database of Scandinavian market operator Nordpool,
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Figure 7: Welfare Distribution

(a) Demand Side (b) Supplier Side

Figure 8: Price Scenarios for Nash Tuples3

(a) Hydro-Thermal Case (b) Thermal-dominated Case

whereas the elasticity of the linear price curves was extrapolated based on volume
data4. 100 uniformly distributed initial scenarios were obtained and reduced to 15
normally distributed scenarios per time period.

162 schedule iterations(/tuples) of the thermal units were realized, whereas the
per-period profits of every iteration as well as the tuple representing the (single)
Nash equilibrium in schedules can be found in Fig.6a.

Thermal-dominated competition. For the second case analyzed, the hydropower player
holding four out of five units (and thus holding a quasi-monopoly on storage, apart
from unit i = 6) was removed, leading to a thermal dominated game between two
players with a total capacity of 1350MW resulting in a different Nash equilibrium
tuple found in Fig.6b.

Fig.7 shows that removing the hydropower player has a higher impact on the
supply side welfare than the demand side, whereas this effect is amplified in periods

4The elasticity was adjusted accordingly for the thermal-dominated case presented below.

14 of 26

DOI: 10.1016/j.energy.2018.08.162

7.3. ENERGY

115



Figure 9: Expected Utilizations of Maximum Unit Capacity

(a) Hydro-Thermal Case (b) Thermal-dominated Case

with lower variance in prices. This suggests that peak skimming has not only strong
positive effects on customer welfare but also benefits the generators, even though the
introduction of additional storage shows dampening effects over the whole spectrum
of price scenarios, as Fig.8 illustrates. Paradoxically, as seen in Fig.7b this drop
of prices through addition of storage creates positive welfare effects on the supplier
side. The reason herein lies in that the hydropower producer holds close to 3

4
of

the supplier profits by being able to generate at infinitesimally low cost. Further,
this positive impact on the supplier side seems to be of greater extend than on
the demand side, indicating that suppliers profit more from the cost savings of
introducing storage technology. This can partially be explained by low elasticities
of the price curves, as characteristic for electricity markets[21], but also is a result of
the here presented model being able to accurately capture costs related to schedules.

Especially in period 3, another negative effect for the players holding thermal
plants can be observed: due to plants aiming to schedule for upcoming high price
periods, certain periods shows welfare potentially taking negative values, i.e. gen-
erators supplying under loss. In systems with storage inflow from the market (e.g.
pumped hydro storage), capacity could be taken and transferred to later stages.
In systems like in the here analyzed cases, no such possibility for moving capacity
directly exists. Thus the thermal producers are given only two options: reduce the
outputs with current schedule or change schedule. Either way, the thermal produc-
ers are forced away from their optimal point and punished for inflexibility. Thus,
in systems with a large share of storage facilities with natural inflow (traditional
hydropower plants) inflexible thermal units might see adverse effects of inflexibility
amplified, whereas in systems with market inflow (e.g. pumped hydro storage), such
effects might be dampened.

This change in schedule can be observed in Fig.9, which shows the adjustments in
the output quantities of player j = 1 holding units i = 1, 2 and player j = 2 holding
units i = 3, 4, 5, 6. All units apart from i = 5 react with slight adjustments of their
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Table 3: Fixed Cost cfixbi,t(ni) [AC]

case unit t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
i = 1 500 500 500 500 500 500 500
i = 2 2000 2000 2000 2000 2000 2000 2000
i = 3 0 500 500 500 500 500 0
i = 4 0 0 0 0 2000 2000 2000
i = 5 850 850 0 0 0 0 0

H
y
d

ro
-T

h
er

m
al

5∑
i=1

3350 3850 3000 3000 5000 5000 4500

i = 1 500 500 500 500 500 500 500
i = 2 2000 2000 2000 2000 2000 2000 2000
i = 3 0 500 500 500 500 500 0
i = 4 0 0 0 0 2000 2000 2000
i = 5 850 850 850 850 850 850 850T

h
er

m
al

5∑
i=1

3350 3850 3850 3850 5850 5850 5350

Table 4: System Marginal Cost of Capacity

case t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
marginal

unit
i = 3 i = 4 i = 5 i = 5 i = 5 i = 5 i = 3

H
y.

-T
h

.

mccap
t [AC/MW ] 6.67 14.29 14.17 14.17 14.17 14.17 6.67
marginal

unit
i = 3 i = 4 i = 4 i = 4 - - i = 3

T
h

.

mccap
t [AC/MW ] 6.67 14.29 14.29 14.29 ∞ ∞ 6.67

∞ relates to no available capacity

output levels, withholding a minor amount of output in the thermal-dominated case
and thus causing the price increase mentioned above. Reducing the amount of play-
ers leading to resuming players withholding quantity is an expected characteristic
of Cournot models. However, in our presented model this effect is reduced by unit
i = 5 switching the schedule in the thermal case in order to produce on maximum
generation level. This leads to the conclusion that giving players the option to enter
or leave a Cournot game (in our model through scheduling units for the respective
time periods) dampens the effects of exercising market power. The impact on the
total fixed cost in the system can be found in Tab.3.

This gives the possibility to formulate the system marginal cost of additional
capacity by finding the minimum cost for adding an additional MW to the system:

mccap
t = min

i

∂ci,t(qi,t,bi,t)

∂bi,t
/q

i
· (1− bi,t(ni)) +∞ · bi,t(ni) (10)

The results of this for both cases can be found in Tab.4 which show an increase in
cost for the case where more thermal capacity is procured.
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Table 5: Marginal Cost of Energy[AC/MWh]

case unit t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
i = 1 41.95 36.48 34.42 37.24 37.6 37.15 39.14
i = 2 37.95 33.61 32.00 34.37 34.72 34.09 36.14
i = 3 10 36.48 34.42 37.24 37.6 37.15 10
i = 4 15 15 15 15 34.72 34.09 36.14
i = 5 ∞ ∞ 23 23 23 23 23

H
y
d

ro
-T

h
er

m
al

system 37.95 33.61 32.00 34.37 34.72 34.09 36.14
i = 1 43.99 37.09 32.78 36.17 36.82 36.57 40.36
i = 2 39.62 34.10 30.63 33.48 34.06 33.61 37.17
i = 3 10 37.09 32.78 36.17 36.82 36.57 10
i = 4 15 15 15 15 34.06 33.61 37.17
i = 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞T

h
er

m
al

system 39.62 34.10 30.63 33.48 34.06 33.61 37.17
∞ relates to no available capacity

Further, the marginal costs of energy can be derived from Eq.(9):

pj,t(ξ,
∑
i2∈Ij

qi2,t +
∑
i2 /∈Ij

q′i2,t)→ pt(ξ, dt)∀j ∈ J, t ∈ T (11)

The results, presented in Fig.5 show that the cost effects of additional storage
can not necessarily be found in reduction of cost, as the average marginal cost
over all time periods is with 34.70AC/MWh in fact slightly higher in the hydro-
thermal case than the 34.67AC/MWh in the thermal-dominated case. In addition,
a flattening effect of storage can be observed. In traditional economic models that
do not consider start-up and shut-down decisions, the system marginal costs would
be given by i = 4, 5 in the hydrothermal case and by i = 4 in the thermal case. In
the here presented model however, those units are not participating in the market,
as they are either not started in the first period (unit i = 4) or actively decide
to withdraw from the market (unit i = 5 in the hydrothermal case). Thus, our
model is able to capture both the indirect impact of changing capacity costs on
energy prices as well as on marginal cost of energy. This plays a role regarding the
modeling of otherwise homogeneous units. Units i = 1, 3 as well as units i = 2, 4
are assumed to be of similar types regarding cost curves and capacities. However,
with different initial states (units i = 1, 2 running from the start of the time frame
and units i = 3, 4 being off) and different proposed schedules, the unit commitment
and scheduling decisions differ vastly in the Nash equilibrium tuples of both cases,
as shown in Fig.9.

These scheduling tuples being Nash equilibria can also be supported by the
results of the individual players. Fig.10 shows that player j = 2 has an economic
incentive to switch the schedule on unit i = 5, with the chosen optimal schedules
(taken from the Nash equilibrium tuple) showing a more beneficial outcome for a
risk-neutral player.

The case studies indicate, that in a system relying on an energy only market,
the increasing fixed cost from changes in schedule as presented in Fig.3 and thus the
cost of optimal generation capacity are carried by both suppliers and generators.
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Figure 10: Profit Distributions of Player j = 2 in Thermal-dominated Case (probability distribu-
tions indicated in blue)

(a) Optimal Schedules (b) Schedules from Hydro-Thermal Case

Even in the here presented monopolistic cases, both suppliers and generators share
the loss of welfare after losing flexibility (by removing the storage provider from the
system).

However, adding additional capacities would require a payment in height of the
marginal values presented in Tab.4. The derived marginal costs in the here presented
case studies however lie significantly below the observed prices of regulating power in
the analyzed area of Nordpool (commonly close to equal to energy prices), indicating
high potential profit margins for participants in this market type. However, technical
simplifications such as assuming a fixed cost rate instead of start-ups and shutdowns
might play a role and thus we advise further research on this topic.

Model Discussion. The proposed approach presents a novelty in literature: solving
an equilibrium model with two groups of agents that either actively choose to partic-
ipate depending on the period or are able to distribute inventory over the time frame.
This gives the possibility to quantify the impact of scheduling on market equilibria
and thus allow to derive marginal cost of capacity, even for an energy-only market
as the example of the case study demonstrates.

Initial tests hint that scalability of the model for larger applications in dimensions
of time, player size and scenarios is of satisfying performance, especially considering
the original problem isNP-hard. The strictly disconnected nature of the Continuous
and the Discrete Game also allows for partial adjustments of the model. Examples
for former would be additional nodes and related transfer flows, more than a single
energy markets or other uncertain parameters as the ones already considered. Ex-
amples for latter would be addition of capacity mechanisms or consideration of unit
maintenance. As an extension of the model, we propose further discussion and re-
search on replacing the Continuous Game by a Non-Convex Game and the resulting
conditions to keep the Nash tuple equilibria yielded by the Discrete Game valid.

5. Conclusion

The presented base model shows a novel problem setup: players optimizing
unit commitment and bidding simultaneously (in form of a Mixed Integer Lin-
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ear/Quadratic Problem) whilst competing against each other in a multi-period
Cournot market under uncertainty. A nested equilibrium approach is proposed,
first finding the Nash equilibria within a decomposed Continuous Game and subse-
quently comparing the resulting discrete decision tuples to yield what we refer to as
Nash tuple equilibria.

Both the proposed Continuous and Discrete Game are complete novelties in liter-
ature and allow for a wide range of applications and adaptions. One such application
is presented in form of a case study on the Scandinavian power market, where the
quantitative influence of removing hydropower storage capacity is analyzed. With-
out having the hydropower generator in the system, sufficient capacities to conduct
’peak-skimming’ are missing, leading to additional thermal unit start-ups. The wel-
fare effects of those are observed and indicate that apart from the demand side also
the supplier side is influenced negatively by a lack of storage. In addition, the effects
on marginal cost on both continuous and discontinuous variables is calculated, which
allows for derivation of a system marginal cost of capacity, even in the presented
energy-only market. This allows for a variety of practical applications. In the here
presented case study this is shown by being able to analyze the welfare losses of
withdrawing flexible (storage) capacity. The results indicate that a loss of flexibility
is shared by both suppliers and generators. However, increasing flexibility through
additional dispatch over the point of optimal capacity has to be carried by the sup-
ply side (as e.g. through capacity or reserve payments to generators). In addition,
through the possibility of deriving ’marginal cost of capacity’ our results indicate
that the approximate 1:1 relation of reserve and spot/intraday prices in Nordpool
might be an overestimate in favor of reserve providers.
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Appendix A. Market Equilibria under Uncertainty

In order to elaborate on the method used to deal with uncertainty, we will make
use of an adjusted one-period example of the previously presented problem. In this
example players maximize profits under uncertain output capacities:

max
qi

∑
i∈Ij

p(ξ,
∑
j∈J

∑
i2∈Ij

qi2)qi − ci(qi)

s.t. 0 ≤ qi ≤ q̄i(ξ) (δi, δ̄i)
(A.1)

The reader might notice that this resembles the bidding problem of a renewable
energy producer such as wind or solar closer than the hydro-thermal example of this
paper. This however is intended as the displayed example provides a problem under
two different equations - an objective function and an inequality constraint - both
under uncertainty. It also has to be noted that the market clearing condition under
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symmetric information is already included in the price function by using the other
players actual bids qi instead of using an assumption q′i.

Assuming the players have symmetric information on the outcome of the un-
certain parameter, thus fixing ξ as ξ allows to formulate the KKT conditions as:

∂L
∂qi

= −
∂p(ξ,

∑
j∈J

∑
i2∈Ij

qi2 )

∂qi
qi

−p(ξ,∑
j∈J

∑
i2∈Ij

qi2)

+∂ci(qi)
∂qi
− δi + δ̄i = 0

∀j ∈ J, i ∈ Ij

0 ≤ δi ⊥ −qi ≤ 0 ∀j ∈ J, i ∈ Ij
0 ≤ δ̄i ⊥ qi − q̄i(ξ) ≤ 0 ∀j ∈ J, i ∈ Ij

(A.2)

Using uncertainty in form of scenarios ξ ∈ Ξ however might result in complications,
especially related to the objective function (which might be caused to not be able to
clear). To deal with this issue, Ref.[18] propose introduction of a slack variable into
the complementarity conditions. By denoting this variables as ω ∈ Ri and assuming
two scenarios ξ1 and ξ2 the uncertain generation maximum capacity constraint from
the previous example can be reformulated as:

0 ≤ δ̄i ⊥ qi − q̄i(ξ1) + ωi ≤ 0 ∀j ∈ J, i ∈ Ij
0 ≤ δ̄i ⊥ qi − q̄i(ξ2)− ωi ≤ 0 ∀j ∈ J, i ∈ Ij (A.3)

This shows that the slack variable finds a single solution qi that minimizes the
residuals between the two different scenarios. Reformulation for an open number of
scenarios leads to a similar formulation as in Ref.[18]:

0 ≤ δ̄i ⊥ qi − q̄i(ξ) + ωξi ≤ 0 ∀j ∈ J, i ∈ Ij, ξ ∈ Ξ∑
ξ∈Ξ

ωξi = 0 ∀j ∈ J, i ∈ Ij (A.4)

Below, we extend this formulation by two characteristics.

Appendix A.1. Consideration of Probability Distributions

The original formulation does not explicitly consider probability distributions.
Arguably, this could lead to distortions as outlier scenarios would be considered
with similar priority as more likely outcomes. In theory, this can be circumvented
by adding latter scenarios with a higher rate (i.e. scenario 2 is x times as likely as
scenario 1, so add 1 scenario 1 and x scenario 2). In practical applications however,
this would lead to an increase in model complexity, as every single additional scenario
represents an additional complementarity constraint for each constraint affected by
the uncertainty. Thus in this paper we decided to use the probabilities as weighting

parameters to replace ωξi with
ωξi
P ξ

. Thus, the higher the likelihood of an outcome,
the lesser the impact of the slack variable on diverging from that scenario. As a
result, the solution will be closer to the scenario with higher likelihood and deviate
more from the scenario with lower likelihood. It has to be noted, that the proposed
formulation does not consider any risk preferences, making all participants risk-
neutral players.
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Appendix A.2. Extension to Lagrangians

The Lagrangians can be relaxed in similar manner to the complimentarity con-
straints, yielding single solutions for the decision variables that allow clearing the
market for objective functions under uncertainty. For the previously defined example
this would result in the following KKT conditions:

∂L
∂qi

= −
∂p(ξ,

∑
j∈J

∑
i2∈Ij

qi2 )

∂qi
qi

−p(ξ,∑
j∈J

∑
i2∈Ij

qi2)

+∂ci(qi)
∂qi
− δi + δ̄i +

ωp,ξi
P ξ

= 0

∀j ∈ J, i ∈ Ij,
ξ ∈ Ξ

0 ≤ δi ⊥ −qi ≤ 0 ∀j ∈ J, i ∈ Ij
0 ≤ δ̄i ⊥ qi − q̄i(ξ) +

ωq̄,ξi
P ξ
≤ 0

∀j ∈ J, i ∈ Ij,
ξ ∈ Ξ∑

ξ∈Ξ

ωp,ξi = 0 ∀j ∈ J, i ∈ Ij
∑
ξ∈Ξ

ωq̄,ξi = 0 ∀j ∈ J, i ∈ Ij

(A.5)

Again, this yields a single solution for the quantity decision of every generation unit
and thus allows clearing the market similar to traditional (in this case: Cournot)
clearing procedures.
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Appendix B. Karush Kuhn Tucker(KKT)-Conditions

The KKT-conditions in extend form are:

∂L
∂qi,t

= −
∂pt(ξ,

∑
j∈J

∑
i2∈Ij

qi2,t)

∂qi,t
qi,t − pt(ξ,

∑
j∈J

∑
i2∈Ij

qi2,t)

+
∂ci,t(qi,t,bi,t)

∂qi,t
− δi,t + δ̄i,t +

ωp,ξi,t
P ξ

= 0

∀j ∈ J, i ∈ IThj ,
t ∈ T s, ξ ∈ Ξ

(B.1a)

∂L
∂qi,t

= −
∂pt(ξ,

∑
j∈J

∑
i2∈Ij

qi2,t)

∂qi,t
qi,t − pt(ξ,

∑
j∈J

∑
i2∈Ij

qi2,t)

−δi,t + δ̄i,t − γi,t +
ωp,ξi,t
P ξ

= 0

∀j ∈ J, i ∈ IHyj ,
t ∈ T s, ξ ∈ Ξ

(B.1b)

∂L

∂q
s
i,t

= σi + γi,t +
t∑

t2=s+1

ψi,t2 − µi,t = 0
∀j ∈ J, i ∈ IHyj ,

t ∈ T s (B.1c)

0 ≤ δi,t ⊥ q
i
bi,t − qi,t ≤ 0

∀j ∈ J, i ∈ Ij,
t ∈ T s (B.1d)

0 ≤ δ̄i,t ⊥ qi,t − q̄ibi,t ≤ 0
∀j ∈ J, i ∈ Ij,

t ∈ T s (B.1e)

0 ≤ σi ⊥
∑

t∈T s
qsi,t −Qs

i (ξ) +
ωQ,ξi

P ξ
≤ 0

∀j ∈ J, i ∈ IHyj ,
ξ ∈ Ξ

(B.1f)

t∑

s=1

{
qsi,t, if s = s
qsi,t, if s 6= s

− qi,t = 0
∀j ∈ J, i ∈ IHyj ,

t ∈ T s (B.1g)

0 ≤ ψi,t ⊥
t−1∑

s=1

max(T )∑

t2=t

{
qsi,t2 , if s = s
qsi,t2 , if s 6= s

− R̄i ≤ 0
∀j ∈ J, i ∈ IHyj ,

(t > s) ∈ T s (B.1h)

0 ≤ µi,t ⊥ −qsi,t ≤ 0
∀j ∈ J, i ∈ IHyj ,

t ∈ T s (B.1i)

∑

ξ∈Ξ

ωp,ξi,t = 0
∀j ∈ J, i ∈ Ij,

t ∈ T s (B.1j)

∑

ξ∈Ξ

ωQ,ξi = 0
∀j ∈ J, i ∈ IHyj ,

t ∈ T s (B.1k)

Appendix C. Multiple Solutions for Hydropower Commitment

Assumed be a game in two periods t = 1, 2 yields a player j holding two hy-
dropower units i = 1, 2 an optimal profit of Π∗j for clearing prices p∗1 and p∗2. As
mentioned above, hydropower units are assumed to operate cost-neutral, thus the
optimal profits cannot be decreased by changing commitment decisions as long as
pt(q1,t + q2,t +

∑
i2 /∈Ij q

′
i2,t

) = pt(d
∗
t ) = p∗t holds for both time periods and additional

constraints such as reservoir and generation capacities are fulfilled. Assumed there
is only a single deterministic inflow in period 1, denoted as Qi and no end reservoir
values are required (thus, the full inflow will be used in the two time periods), the
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previous condition can be reformulated as:

q1,t + q2,t = d∗t −
∑

i2 /∈Ij q
′
i2,t
∀t = 1, 2

Qi ≥ qi,1 + qi,2 ≥ 0 ∀i = 1, 2
(C.1)

Assuming constant quantities provided by other players, player j can choose i as
either 1 or 2 and freely select any quantities qi,t as long as they fulfill:

0 ≤ qi,t ≤ d∗t −
∑

i2 /∈Ij q
′
i2,t

∀t = 1, 2

qii,t = d∗t −
∑

i2 /∈Ij q
′
i2,t
− qi,t ∀ii 6= i, t = 1, 2

Qi ≥ qi,1 + qi,2 ≥ 0 ∀t = 1, 2
Qii ≥ qii,1 + qii,2 ≥ 0 ∀ii 6= i, t = 1, 2

(C.2)

There is a range of potential commitment solutions that fulfill these conditions.
They differ in reservoir held over the time stage as well as the periodical utilization
of the generation units but yield the same (i.e. the optimal) profits for the player
and end up in similar end reservoir values (here = 0).
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7.4. ITRANS

7.4 Multiple Nash Equilibria in Electricity Markets
with price-making Hydrothermal Producers

This work has been published in IEEE Transactions on Power Systems.

7.4.1 Extended Abstract

This paper formulates a deterministic hydro-thermal Cournot market with a minimum
capacity component caused by requirements for inertial response. To solve this game
and deal with the curse of dimensionality caused by the dimensions generation unit-
s/nodes/periods, the proposed technique splits the problem of deriving equilibrium
solutions into a discontinuous and continuous problem. The continuous problem is
solved via a stepwise Nikaido-Isoda convergence algorithm and the discontinous prob-
lem via a branch-and-cut methodology.

A special characteristic is that the here presented method does not require all contin-
uous problems to be solved for their respective Nash solutions, making the application
of such a stepwise procedure favorable to more commonly applied alternatives such as
application of the Karush-Kuhn-Tucker conditions. This is based on the possibility
of aborting the calculation of a specific equilibrium in favor of another equilibrium
tuple on a similar branch, that promises faster convergence (i.e. a smaller value of the
Nikaido-Isoda function).

By making problem-specific assumptions - which, in the presented case is ’only
competition on the supply side amongst players aiming to maximize profits’ - tailored
cutting rules can be designed, further improving and supporting convergence to equi-
libria under dispatch decisions. Similar to traditional cutting plane methods, these
rules can be based on feasibility and optimality.

A case study, with related data presented in its entirety, is introduced in the paper.
The study aims to provide a showcase of the capabilities of the presented algorithm
and to offer a starting point for models used on future decisions regarding new types
of ancillary services under the assumption of market power. In the here presented
case, hydropower producers in an adjacent network node suffered profit losses caused
by the implementation of requirements for provision of inertial response (or similarly,
spinning reserves restricted to a specific interconnected area). Further, the amount of
potential unit schedules providing the Nash Equilibria was reduced, but nonetheless a
larger spread in potential profit outcomes in these equilibria was observed.

Future usage of the proposed method may be manifold and not only restricted to
electrical power systems but similar commodity markets under production and dispatch
decisions. Further, the analyzed case study promises problem scalability and thus might
allow for large-scale applications (with restrictions, as the reduced branching problem
is, even though simplified, similar to the original problem of NP-hard nature).
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Multiple Nash Equilibria in Electricity
Markets with price-making Hydrothermal

Producers
Markus Löschenbrand and Magnus Korpås, Member, IEEE

Abstract

This paper proposes a novel approach incorporating scheduling decisions into a multi-
nodal multi-period Cournot game. Through applying the Nikaido-Isoda function, market
clearing is conducted without dual values being required. Maps of Nash equilibria are obtained
through a branch-and-cut algorithm, based on tailored cutting rules. A case study of inertial
response requirements shows that these maps and the resulting range of potential player profits
can be used to analyze the impacts of policy decisions influenced by discontinuous variables.
The case study also shows the financial impact on neighboring producers to the node with
applied inertial response requirements.

Index Terms

Nikaido-Isoda, Nash Equilibrium, Energy Markets, Cournot Competition, Nonlinear Op-
timization, Competitive Game, Inertial Response, Generation Dispatch, Hydropower

I. INTRODUCTION

Equilibrium modeling in power systems represents an established method for analyz-
ing player behavior and their reactions to system changes [1]. These methods have been
traditionally based on systems of conventional means of power production participating
in single-period games [1], [2]. Changes in system generation portfolios have, however,
led to greater integration of fluctuating renewable electricity generation such as wind
and solar power and to electricity storage facilities being added to the grid. These
developments can result in traditional market models not being fit to adequately deal
with arising problems.
To address this, several approaches have been proposed in the literature to deal with
multi-period setups: Ref. [3] implements an equilibrium model on an assumed, already
conducted hydro power scheduling, extending a single period Cournot model to a
short term time frame. Ref. [4] introduces storage operators that behave as price-
takers in a natural gas market with gas inventory holding being simplified through
a fixed overall period capacity. Ref. [5] analyzes, based on [3], the implications of
market power in a system with large shares of hydropower generation using a two stage
model that clears a Cournot market and then (re)schedules units. Another analysis of
market power in systems under hydrostorage is given by [6], which embeds hydropower
decisions into a game played within a dynamic program and solved via interpolating
the best response functions. Ref. [7] shows a leader-follower framework in a stochastic
Equilibrium Problem with Equilibrium Constraints. It circumvents reliance on Karush
Kuhn Tucker-conditions by using strong duality constraints in its bi-level problem setup
of clearing the market and maximizing profits. Ref. [8] uses the Nikadio-Isoda function
to establish an active set algorithm to clear a multi-period hydro-thermal market. The
method presented below also relies on such a Nikadio-Isoda equilibrium framework.
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Scheduling of generation units i ∈ I is incorporated in the strategic decision problem
by considering binary variables. Such scheduling over a finite time frame T creates a
finite number of possible iterations. Each iteration consists of a problem setup similar to
the one presented in [9] and each shows none or a (potentially) unique Nash equilibrium
(NE) [10] and therefore results in a finite number of potential equilibria. Multiple NE
can, as explained in [11] and [7], vary greatly in appearance. In [11] polynomial algebra
is used to define the equilibrium space and to establish the formulation presented. The
approach presented below, however, makes use of a branch-and-cut algorithm, due to
the finite number of potential ’equilibrium tuples’, with analytically derived optimality
and feasibility cuts making mapping of such tuples a possibility.
Integer problems in power systems have various applications. One is given by the
question of inertial system frequency response and its interaction with individual plants
[12]. The problem is defined by a fixed contribution of inertial response (frequently
referred to as ’inertia’) that is related to the on/off states of generators and thus is
closely related to other market problems such as the market for e.g. spinning reserves.
There are, however, no implemented remuneration schemes for inertial response that we
are aware of. Thus and to give a practical example, a case study, based on spot prices,
on inertia will be presented below.

II. NASH EQUILIBRIA

Assumed are players J that own generation units I participate in a game where they
receive a payoff(/profit) function π(x) that depends on a set of qi (quantity) decisions
x = {qi, i ∈ I}.

The set of collective actions from the perspective of a player, a generation company
j, can be described as (yj|xj) ≡ {qi∈Ij} where xj defines player j’s assumptions of
decisions on units not controlled by player j, denoted as xj = {qj,i, i /∈ Ij}. qj,i thus
specifies a single players assumption on the output of a specific unit held by a competitor.
Denoting optimal solutions with ∗ and using X as the set of viable decisions allows
the NE to be defined (similarly to [13] and [8]) as the point y∗ that fulfills:

πj(y
∗) = max

(yj |x∗
j )∈X

πj(yj|x∗j) ∀j (1)

The multivariate Nikadio-Isoda function can be defined as follows [14]:

Ψ(x, y) =
∑

j

[πj(yj|xj)− πj(x)] (2)

As shown in [9], this function is able to yield the distance to a (potentially unique) NE
for (weakly) concave profit functions.

III. A NON-COOPERATIVE, NON-CONVEX GAME

Adding additional dimensions to the game, such as a network of multiple nodes n or
several time periods, expressed through t and so leading to qi becoming qi,t, does not
necessarily change the ability of the function proposed above to find the NE distance.
Ref. [13] shows this e.g. by solving the multi-nodal example presented in [2]. However,
it should be mentioned that the complexity of the approach could increase due to the
need for techniques to extend the solution to other time periods, as later periods could
bear uncertainty.
Generation scheduling is strongly related to binary decisions, as the on/off states of
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NOMENCLATURE

Indices:
i, i2 ∈ I generation unit
ihydro, iwind hydropower/windpower

unit
j ∈ J producer
n network

node(/area/country)
ns, nd source, destination [node]
t period [h]
s ∈ S branching tuple
Variables:
yqi,n,t ∈ R+ quantity decision [MWh]
ybi,t ∈ {0, 1} scheduling decision
dn,t ∈ R+ energy demand [MWh]
qj,i,n,t ∈ R+ quantity assumption

[MWh]

Fixed Variables:
qi,n,t ∈ R+ quantity provided

[MWh]
bi,t ∈ {0, 1} dispatch decision
Functions:
pj,n,t price estimation

[AC/MWh]
ci,t generation cost [AC]
p∗n,t market clearing price

[AC/MWh]
πj profit function of pro-

ducer j [AC]

Parameters:
qmin
i , qmax

i generation capacity
[MW ]

cvari,t variable cost portion
[AC/MWh]

cfixi fixed cost portion [AC]
lns,nd
i,n line flow from ns to nd

[%]
lmax
nso,nde

line capacity [MW ]
wihydro inventory end value

[AC/MWh]
rihydro available reservoir quota

[MWh]
qcapi,t ∈
[qmin

i , qmax
i ]

available wind capacity
[MWh]

Hi inertial response constant
Hd

n inertial response require-
ment

Sets:
Ij generation units of pro-

ducer j
In generation units in node

n
SN set of branching tuples in

NE

units are factors that have to be considered in startup cost, ramp rate limits, reserve
constraints, and up and down time limits [15]. Using algorithms such as those proposed
in [16] or [17] allows the scheduling problem to be solved as a mixed integer cost
minimization problem for the optimal dispatch of thermal plants.
Adding storage technologies such as hydropower to such a game allows players to
strategically dispatch their resources. Providers with storage capabilities will actively
aim to provide in high price (i.e. peak) hours and to withhold in low price (i.e. base)
hours. Ref. [3] shows this concept for a Cournot game (a game with competition in
quantity) by binding the time stages by their marginal value of water. This concept,
which is often termed water value is used in both scheduling and in the optimization of
bidding in hydro power dominated systems [18]. Problem formulations based on water
values however often neglect the strategic impact of other players. To strengthen their
position on the market, these players might actively aim to withhold production from
peak periods in which other players aim to produce. In non-cooperative games, this
means a player might act as a leader in some time stages and as a follower in others
[19], so making the multi-period game more dynamic than single-period approaches.
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Adding (binary) integer variables to the problem setup leads to non-convex, non-continuous
payoff-functions and so breaches the definition of convex games from [14]. Ref. [8]
extends the concept of [9] by using an active set method to yield a combination of
decision variables (which we will later refer to as tuple) that define a NE. A binary
scheduling problem with I generation units, T time periods would, however, show a
possible number of 2I×T tuples, and as shown in [19], multiple equally viable tuple
equilibria - ranging from 0 to I × T (which is also discussed briefly in the appendix).
Therefore, deriving a single equilibrium tuple might give an incorrect perspective on the
existing array of equilibrium tuples. Such a misrepresentation could prove problematic,
particularly in the consideration of ancillary services/markets for reserve energy, where
the number of ”running” (i.e. committed) units is of significant importance.
We thus propose an algorithm based on the Nikaido-Isoda equilibrium algorithm that
incorporates branching and cutting based on analytical rules. The Nikaido-Isoda func-
tion, first proposed in [14] presents an auxiliary function that defines whether a given
player’s solutions yield a Nash Equilibrium. A step-wise algorithm as in [9] allows
such an equilibrium to be derived for a system with shared constraints (e.g. a network).
Based on this concept, the algorithm presented below is meant to bridge the economical
approach of determining market power effects and the technical aspect of deriving
explicit schedules for providing the commodity.

IV. SELECTIVE CUTTING

This section will briefly introduce solving a Cournot game with binary variables
using the Nikaido-Isoda function. This problem is not unique to power systems. A
more general formulation will therefore be used and will be extended in the following
sections to problems specific to electrical power systems. As discussed above, Cournot
games find broad application in power systems, as they are suitable solutions for
commodity market problems [1]. Other games such as Bertrand competition might also
be applicable. This would, however, require additional analysis of the cutting rules
presented below. Other modes of competition therefore have been excluded from this
paper. We define the profit function of a single player as:

πj(qi,n,t, bi,t) =
∑
t

∑
i∈Ij

∑
n

[pj,n,t(
∑
i∈Ij

qi,n,t

+
∑
i2 /∈Ij

qj,i2,n,t)qi,n,t − ci,t(qi,n,t, bi,t)]

where:
pj,n,t(

∑
i∈Ij

qi,n,t +
∑
i2 /∈Ij

qj,i2,n,t) = p∗n,t(dn,t)∀j, n, t

dn,t =
∑
i

qi,n,t ∀n, t

(3)

This assumption of an existing market clearing quantity dn,t requires the underlying
assumption of information symmetry on price elasticity among the competitors [1].
Thus, the expectations pj,n,t, qj,i2,n,t can be approximated as variables pj,n,t, qj,i2,n,t
from the perspective of a player. To solve this problem, we establish the Nikaido-Isoda
function in the general form as:

Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) =∑

j

[πj(y
q
i,n,t, y

b
i,t)− πj(qi,n,t, bi,t)] (4)
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The total set of tuples S = {s1, ..., sI×T |b1 6= ... 6= bI×T} is established by all potential
iterations of the binary variable bi,t. By fixing ybi,t := bi,t it is possible to solve every tuple
s for its equilibrium (assumed concave profit functions) through an iterative algorithm
[9]:

Algorithm 1:

0) assume starting values for (qi,n,t, bi,t)
1) solve for max

yqi,n,t

Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t))

2) is Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) = 0 ?

yes - end, (yqi,n,t, y
b
i,t) is the NE point (i.e. tuple is solved);

no - (qi,n,t, bi,t) := (yqi,n,t, y
b
i,t), back to 1)

Repeating this algorithm can be compared to individual players applying stepwise
(profit-)maximization, resulting in (supply-side) welfare maximization, whilst operating
under shared constraints. As mentioned before, problems in the form of (4) are non-
convex. As shown in [9], every individual tuple s therefore offers a (potentially unique)
NE as long as the set of constraints added to the problem is convex and allows a feasible
solution [10].

We define the set of viable NE SN ⊆ S as being the set of tuples for which no
player has an incentive to dispatch another unit (i.e. increase

∑
i∈Ij

bi,t). The system is

computationally efficient solved by making use of two characteristics of the Nikadio-
Isoda equilibrium algorithm presented in [8], [9]:

- solving one step of the convergence algorithm is, depending on the cost function, a
problem of linear/quadratic nature and thus solved computationally quickly using
available commercial software.

- the objective function Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) provides a quantitative statement

about the improvement in each step of the algorithm (as the NE is defined by
a value of 0, i.e. ’no improvement potential for any participant’). It is therefore
possible to rank tuples by their rate of convergence (lower value of the Nikaido-
Isoda function) and select the tuples s that are solved computationally more quickly
than others.

Our proposed algorithm labels all tuples s as either:
• pending - there can be no definite statement made about the tuple as the Nikaido-

Isoda function still returns a value above 0.
• solved - the NE of the tuple was found (Nikaido-Isoda function returns 0) and

might be considered to be a Nash tuple.
• sorted out - the tuple will not be a Nash tuple, irrespective of the value of the

Nikaido-Isoda function.
All tuples start as pending. Three transitions are possible:
1) pending ⇒ solved, 2) pending ⇒ sorted out, 3) solved ⇒ sorted out.
SN is the set of (Nash) tuples, for which no such transitions are possible anymore

(all tuples are thus either solved or sorted out). The proposed Nash tuple mapping
algorithm can be formulated as:

Algorithm 2:

5 of 18

DOI: 10.1109/TPWRS.2018.2858574

7.4. ITRANS

133



0) sort out tuples that do not fulfill (non-convex) constraints associated with
discontinuous variables (the preliminary cutting rules are presented later in
this paper).

1) conduct algorithm 1 on a number of (randomly) selected tuples s that are
still pending

2) use already solved tuples to sort out other tuples (i.e. apply dynamic cutting
rules)

3) are there any pending tuples left?
no - proceed | yes - back to 1).

4) were any nodes sorted out in step 2)?
yes - back to 2) | no - end (SN shows the ”map of Nash Equilibria”)

V. CUTTING RULE DESIGN

Even though the ranking of tuples heavily depends on starting values and in the
proposed framework tuples to be solved were selected randomly, generally applicable
rules can formulated to sort out unfavorable tuples. For one, they may relate to the set
of constraints and thus must be specifically tailored to the application. As such, they
mostly depend on pre-selecting iterations of the integer variable to sort out tuples that
do not fulfill given constraints. The Inertial Response Requirement Rule mentioned later
in this paper is such a type. For the other, rules can be defined, that dynamically declare
branches of tuples as infeasible or unfavorable, after a single tuple is declared as such.
The Marginal Cost Rule presented later is an example of such a rule. These rules can,
furthermore, draw dynamic conclusions based on already solved tuples. We formulate
one such rule here (referred later to as the Payoff-Function Cutting Rule) based on two
assumptions:

Assumption 1: players will not schedule units if that leads to a decrease in payoff
Assumption 2: adding additional units to the schedule will not increase any market
clearing prices

Assumption 1 is a straight forward economical decision and is valid for players that
aim to maximize their outcome. Assumption 2 is valid as long as units solely operate on
the supply side. Purchases (for example pumped hydro storage) would result in negative
supply effects and would increase dn,t and result in higher prices. The model presented
here is therefore limited to competition on the supply side. Non-concave, decreasing
market price functions are also a necessity. The assumptions presented here rely on the
concept of dominance in games [20]. No economically rational player j would choose to
commit generation units if the new equilibrium point would not dominate the previous.

To execute the proposed Payoff-Function Cutting Rule, two solved tuples denoted
as s∗ and s∗∗ are required. In addition, several conditions must be fulfilled by the
equilibrium solutions of the tuples , denoted as 〈yq∗i,n,t, yb∗i,t〉 and 〈yq∗∗i,n,t, y

b∗∗
i,t 〉 respectively:

b∗∗i,t ≥ b∗i,t ∀i, t (5a)

πj̄(y
q∗
i,n,t, y

b∗
i,t) > πj(y

q∗∗
i,n,t, y

b∗∗
i,t ) ∀j̄ (5b)

∑

i∈Ij̄

∑

t

b∗∗i,t >
∑

i∈Ij̄

∑

t

b∗i,t ∀j̄ (5c)
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solved tuple s∗

j i bi,1 bi,2 bi,3
1 1 0 0 1
1 2 1 1 1
2 3 0 0 1
2 4 1 1 0
π∗1 = 1000, π∗2 = 750

solved tuple s∗∗

j i bi,1 bi,2 bi,3
1 1 0 1 1
1 2 1 1 1
2 3 0 1 1
2 4 1 1 0
π∗∗1 = 500, π∗∗2 = 1500

pending tuple s
j i bi,1 bi,2 bi,3
1 1 0 1 1
1 2 1 1 1
2 3 1 1 1
2 4 1 1 0
π1 =???, π2 =???

As π∗1 > π∗∗1 (i.e.
π∗1 dominates), player 1
does not have an
incentive to set b1,2 := 1.
Thus, both the tuple s∗∗

and its branch tuple s
can be sorted out,
independent of the
profits of player 2.

Fig. 1: Numerical Cutting Example

j̄ represents a specific player from the set of available players j̄ ∈ J . (5a) ensures,
that tuple s∗∗ is located on a branch of tuple s∗. (5b) holds where player j̄ has a negative
payoff effect from transitioning from tuple s∗ to tuple s∗∗. Fulfilling requirement (5c)
means that said player j̄ made an active decision (committing an additional unit) that
enabled this tree branch. According to assumption 1, no reasonable player j̄ would
choose such a decision. Thus, and according to assumption 2, the tree branch can be
cut entirely: {s|bi,t ≥ b∗∗i,t;∀i, t} := sorted out

As one can see, this cutting method does not require the two tuples to be adjacent
in the branching tree. The structure of the tree plays no role, as long as the stated
conditions for s∗ and s∗∗ hold for the entire time frame. If the two assumptions hold,
applicability to (Cournot) problems other than the case presented in this paper is given.

A numerical example of a cut is given by Figure 1. A practical application of the
proposed algorithm with additional tailored cutting rules will now be presented.

VI. MULTI PERIOD COURNOT MARKET CLEARING

We developed an energy market clearing model based on problem (3) with affine
cost functions:

ci,t(qi,n,t, bi,t) = cvari,t

∑
n

yqi,n,t + cfixi ybi,t (6)

This allows the formulation of the extended general form of the Nikaido-Isoda function
for a single tuple s:
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Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) =

∑
j

∑
t

∑
i∈Ij

∑
n

[
pj,n,t(

∑
i2∈Ij

yqi2,n,t +
∑
i2 /∈Ij

qi2,n,t)y
q
i,n,t

−cvari,t

∑
n

yqi,n,t − cfixi ybi,t

]

−∑
i∈Ij

[∑
n

pj,n,t(dn,t)qi,n,t

−cvari

∑
n

qi,n,t − cfixi bi,t

]

where:
dn,t =

∑
i

qi,n,t ∀n, t
ybi,t = bi,t ∀i, t

(7)

This function combines the objective functions of the players into a single opti-
mization problem that allows conjoint optimization under consideration of previous
optimization results entered in the form of previous tuple solutions 〈qi,n,t, bi,t〉. Using
this function as the objective function (8) in an optimization problem and applying the
shared constraints allows the distance to the Nash equilibrium for a specific tuple (i.e.
a tuple with similar schedules ybi,t = bi,t ∀i, t) to be found.

The generation units show minimum and maximum output restrictions based on
whether the unit is running or not. The constraint (9) therefore has to be added to the
model. Line constraints connecting the different network nodes were also implemented,
one in the positive and one in the negative direction: (10), (11). The concept proposed
here extends the formulation proposed in [2], [13] by allowing the exclusion of specific
generation units from participating in competing in certain market nodes n or using cer-
tain transfer lines lns,nd

i,n . A transmission system operator and arbitrageurs as independent
players (as e.g. displayed in [2]) were excluded from the model for two reasons: 1.)
the Nikaido-Isoda function would require additional complexity for such heterogeneous
players to be incorporated, so increasing notational complexity unnecessarily; 2.) as
shown in [9], the stepwise algorithm is capable of dealing with such shared constraints
and can thus be used to assign line capacities shared by players. This comes as a
result of the Nikaido-Isoda function allowing solving all players problems bundled
within the single objective function (7) compared to other methods from literature
such as derivation of the Karush-Kuhn-Tucker conditions. There will, however, be
no direct result for wheeling fees, which can limit the applicability of the model in
certain markets such as those found in the USA (which would require heterogeneous
players). Furthermore, higher granularity of the problem (solving small scale problems
within limited areas) would require additional technical specifications and thus additional
(shared) constraints, both omitted in the here presented model. Assumptions such as
demand curve elasticity can be considered valid assumptions for large scale problems.
The case study was therefore chosen to represent an excerpt of cross-country trading
within the European electricity market.

8 of 18

DOI: 10.1109/TPWRS.2018.2858574

7.4. ITRANS

136



max
yqi,n,t,y

b
i,t

Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) (8)

s.t. qmin
i ybi,t ≤

∑

n

yqi,n,t ≤ qmax
i ybi,t∀i, t (9)

∑

i

∑

n

(lns,nd
i,n − lnd,ns

i,n )yqi,n,t ≥ −lmax
ns,nd
∀t, ns, nd (10)

∑

i

∑

n

(lns,nd
i,n − lnd,ns

i,n )yqi,n,t ≤ lmax
ns,nd
∀t, ns, nd (11)

Solving the maximization problem (8) iteratively, as described above, would result in
a NE point (i.e. Ψ((qi,n,t, bi,t), (y

q
i,n,t, y

b
i,t)) = 0). As can be seen, this point fulfills the

price clearing condition of (3): pj,n,t(
∑
i∈Ij

qi,n,t +
∑
i2 6=i

qj,i2,n,t) = pj,n,t(dn,t) = p∗n,t(dn,t)

Different constraints and parameter specifications must be added depending on plant
type. It should be noted that this paper shows a limitation similar to the literature
sources - the equilibrium considers only a deterministic representation. Uncertainty can
affect a number of parameters including market prices, hydrological inflow, available
wind power capacity, and fuel prices. Omitting stochastic representation, which was
considered necessary to deal with model complexity - limits the model to shorter time
frames that impose less uncertainty. To give an example, wind power is simulated
through stochastic parameters in unit commitment models, see e.g. [21], [22]. Such an
approach would, however, require additional techniques (i.e. sampling, decomposition)
and therefore exceed the limits of this paper. It was therefore decided to instead use
preselected wind capacity scenarios (i.e. point forecasts as presented in [23]).

A. Hydropower Plant
Hydropower plants show low cost profiles for production. Models therefore usually

exclude the generation cost [18]. The opportunity cost of storing water is instead taken
into consideration, defining the decision to generate or store in a single time period
[24]. Due to applied formulation of the reservoir function, the approach presented in
this paper manages the transition between time periods without1 calculating the dual
values of inventory that are commonly referred to as water value. It still, however,
requires a finite set of time periods t = 1, ..., T and an assumption of end values of
variables, which are traditionally the end levels of reservoirs. This paper instead applies
assumptions of the end value of stored hydrological inventory to demonstrate a different
approach. The variable cost of the hydro units were therefore assigned the opportunity
cost of stored water: cvarihydro,t

:= wihydro∀t.
The possibility of holding inventory effectively enables arbitrage over time stages. To

incorporate this, a concept similar to [3], [4], [8] was implemented. Thus, a predeter-
mined maximum allowance of available hydropower inventory for the total time frame
being given as a parameter. This indirectly represents the hydrological inflow by ap-
proximating the state transition caused by reservoir storage as a capacity constraint over
the total time frame. To realize this, additional constraints for each of the hydropower
units are required: ∑

n

∑
t

yqihydro,n,t ≤ rihydro ∀ihydro (12)

1with the exception of an initial, fixed assumption of the value after the observed time frame
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In contrast to [3], [4], [8], the approach presented here is realized through an inequality
constraint. This is made possible by assuming an end period water value instead of
reservoir storage, whereas the storage level is now subject to player decision. In the
case study presented here, the water values were considered to be the (assumed) spot
price of electricity rounded down to 100s, in the next period after the analyzed time
frame (i.e. T + 1) within the location node of the respective plant.

Both of these changes to traditional hydropower equilibrium models, i.e. no re-
quirement for dual values and alleviation of the inventory constraints, led to gains
in computational efficiency that support the performance of the Nash tuple mapping
algorithm. Similar to [5], spillage of hydrological inventory is not considered.

B. Wind Power Plant
Wind, unlike water, which can be physically stored, is a fluctuating resource, that

cannot be transferred from time stage to time stage. Availability depends on external
factors which the players have no control of (there is no market for the ’procurement’
of wind). Wind curtailment can therefore be considered to be a parameter and requires
additional constraints for the generation units of ’wind power’ type:

∑
n

yqiwind,n,t
≤ qcapi,t ∀iwind, t (13)

C. Thermal Power Plant
An introduction of CO2 caps or the ability to store coal or fossil fuels would add a

constraint similar to (12) into the mix. However, such a constraint was omitted, for the
sake of simplicity. It was considered sufficient for the case study to have higher variable
and fixed cost factors than the renewable generation forms, which implicitly forces the
players to minimize up-times and therefore CO2 emissions. The here presented case
also is focused on short term modeling. Thermal restrictions such as minimum and
maximum downtime were therefore neglected. Constraints for the contribution to nodal
inertial response were instead chosen to demonstrate a modern application which the
algorithm shown here offers. Nonetheless, we propose future extensions to the model in
the form of a more sophisticated representation of intertemporality in players’ dispatch
decisions. I.e. startup and stopping cost, maximum and minimum runtimes, etc.

D. Inertial Response Requirements
As debated in [12], evolving power systems shifting their production portfolio to

higher shares of renewable generation, increases the demand for additional security
services. One such service would be providing kinetic energy, or inertial response
capabilities. The inertia constant (in the literature commonly denoted as H) was used
to implement this characteristic in our presented market competition model and to rate
the individual impact of generation units and formulate inertia ”demand” constraints.
Defining inertial response contribution as a parameter Hi supplied at an equal level
as long as the unit is running (i.e. ybi,t = 1) and summation of those contributions to
define the nodal/system inertia was considered to be an appropriate approximation [24].
This is given to create a realistic example to showcase the capabilities of the designed
framework and is not necessarily aimed at providing a statement about quantitative
impacts of inertial response that can be considered without further analysis.
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We assumed the fictional scenario in which nodes can be assigned minimum inertia
requirements, relating to the model in the form of a nodal demand constraint:

∑
i∈In

ybi,tHi ≥ Hd
n ∀t, n (14)

E. Additional Cutting Rules
As mentioned in section V, analytically derived cutting rules are an integral com-

ponent of the algorithm presented. In literature, cuts are commonly categorized into
feasibility and optimality cuts. We also use the definitions preliminary and dynamic
cuts. Preliminary refers to cuts that can be conducted before any tuple equilibria are
obtained (i.e. relate to step 0 in the tuple sorting algorithm in III). Dynamic cuts require
one or more already solved s∗(i.e. relate to step 2 in the Nash tuple mapping algorithm
in III).

1) Feasibility Cuts: Some combinations of the binary variables bi,t cause infeasibility
and thus yield no possible market equilibrium. Certain tuples therefore can and must
be sorted out before calculating the tuple NE Ψ((qi,n,t, bi,t), (y

q∗
i,n,t, y

b∗
i,t)) = 0.

- Inertial Response Requirement Cut (preliminary): Too few committed units in
a certain node n in period t will result in a breach of (14). Tuples leading to such a
situation can be sorted out before solving them. This can be formulated as:

∑
i∈In

bi,tHi < Hd
n for any t, n (15)

Tuples s that fulfill rule (15) must therefore be sorted out.
- Minimum Hydropower Output Cut (preliminary): Certain tuples can, due to their

minimum outputs over the total time frame being higher than available reservoir volume,
similarly show a constellation of binary values that breach constraint (12). The cutting
rule reads: ∑

t

qmin
ihydro

bihydro,t > rihydro for any ihydro (16)

The affected s that breach (16) have to be (as for the other cuts) sorted out.
2) Optimality Cuts: One of the core aspects of the Nikaido-Isoda function is that

some tuples converge faster than others. Therefore, (dynamic) optimality cuts can be
conducted to stepwise decrease the amount of unsolved tuples.

- Payoff-Function Rule (dynamic): As explained above, two tuples are required to
be in state solved for their NE whereas s∗∗ has to be located on a branch of s∗.

- Marginal Cost Rule (dynamic): Players in Cournot competition are able to influence
prices by varying their bidding quantity. It is therefore possible for prices to end up
at a level where no production quantity could compensate for the involved cost. A
tree branch, where the Marginal Cost of a unit i exceeds the Market Clearing Price
is therefore not economically viable for the player controlling that unit. This means
choosing the maximum price of all nodes n in a single period t as a benchmark clearing
price:

for a tuple s∗ cut all tuples s where:
bi,t ≥ b∗i,t ∀i, t∑

i,t

[bi,t|pMC
i,t > max

n
p∗n,t] > 0

pMC
i,t = bi,tc

var
i,t

(17)

This shows that cuts might overlap. A tuple affected by the Marginal Cost Rule
would show qi,n,t = 0 for i and t where pMC

i,t > max
n

p∗n,t. Otherwise, the generator i
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Fig. 2: Case Study Setup

would produce at a loss. However, as the cost portion cfixi must be paid by unit i due
to bi,t = 1, then the payoff-function will inherently yield a lower result πj(qi,n,t, bi,t) for
the owner of i ∈ j. Therefore, such a case would also be cut through the payoff-function
rule presented above.

The following section introduces a case study to demonstrate a practical application
of the framework presented here.

VII. CASE STUDY

As illustrated by Figure 2, the case study is designed to relate to an excerpt of
the European power system, nodes representing the countries of Norway, Denmark
and Germany. As discussed above, a representation of areas or countries in which
little regard is paid to wheeling fees can be considered fitting for the model in the
here proposed form. Further granularity would require adequate adjustment (i.e. the
introduction of further agents). The test case resembles part of a week in late fall
with medium to high available wind capacity (especially in the North Sea) and low to
medium available hydropower capacities. The parameters can be found in the appendix.
The importance of this case study is highlighted by the lack of literature on market power
in hydrothermal competition and market power in the European system. Hydrothermal
competition is based on the technical constraints related to the state variables, whereas
analysis of market power is based on legislature aiming to hinder exercise of such
(but not strategic bidding). We argue, particularly in the light of the introduction of
new products such as commercialization of inertial response, that a careful analysis of
market robustness to such actions should be incorporated in the design process.

Different types of generation units2 (Table II) meet in a 3-bus network to conduct
trade under the assumption of similar information on market clearing price elasticity
(Table III). The power line flows lns,nd

i,n found in Table IV were assumed to be similar to
the Power Transfer Distribution Factors (PTDF) presented in [2]. A single convergence
criteria was added to the model:

Ψ((qi,n,t, bi,t), (y
q∗
i,n,t, y

b∗
i,t)) ≤ 0.00001 ≡ 0 (18)

2note that the plants are assumed to be continuously running or idle for a whole day
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(a) case #1: no requirements for inertial response (b) case #2: requirements for inertial response in
node n = D

Fig. 3: Price curves for each Nash tuple s ∈ SN

No further tolerances were added on the constraints, as they are not required due to
tuple problems being represented by quadratic optimization problems (an advantage of
the Nikaido-Isoda method compared to more traditional methods such as using Karush-
Kuhn-Tucker conditions) that can be solved by most commercial solvers.

The case study aims to analyze the impacts of applying minimum requirements
for inertial response in the wind power dominated node n = D. Therefore the case
study can be adjusted to increase computational efficiency by analyzing generation
schedules. Several plants show no fixed cost. No negative effects of the on/off states of
the generation units on the profit functions can therefore be expected. These units can
therefore be assumed to run continuously, i.e. b̄i,t := 1∀i = {1, 2, 5, 6, 8, 9, 10}, t. For
hydropower plants, this is only possible as their minimum generation is assumed to be
0. Schedules would have to be included for minimum output capacities > 0 and the
cut presented in (16) would have to be applied. However, as this is not the case, these
tuples were removed, reducing the number of total tuples from 210×7 to 23×7.
The model does not consider the possibility of shared inertial response within the
whole system but instead focuses on modeling nodal inertia demands. Thus, and as
the scheduling of the thermal plant i = 7 does not affect the inertial response in node
n = D, it was assumed to be predetermined as b̄7 := [1, 1, 1, 1, 0, 0, 0]. This led to a
reduction in tuples from 23×7 to 22×7 = 16384. This remaining set of tuples was solved
twice:
#1: no requirements for inertial response:

Hd
N = Hd

D = Hd
G = 0

#2: requirements for inertial response in Denmark:
Hd

N = Hd
G = 0, Hd

D = 1

The Nash tuple mapping algorithm required solving 629 (randomly selected) tuples for
case #1 and 385 tuples for case #2 until the mapping algorithm converged. Processing
times on an Intel i7-5600 core @2.6 GHz were below 1 second for an iteration, with
an average of 15 iterations until a single tuple converged. The resulting set of Nash
tuples SN contained 390 elements in case #1 and 128 elements in case #2. The model
does not show a large range of infeasible states. Most cuts were therefore conducted
dynamically.

Figure 3 shows a reduction in the ranges of price scenarios from case #1 to #2.
Scheduling decisions however seem to mostly affect the node of the two plants with
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(a) case #1: no requirements for inertial response (b) case #2: requirements for inertial response in
node n = D

Fig. 4: Map of Nash tuples s ∈ SN

(a) case #1: no requirements for inertial response (b) case #2: requirements for inertial response in
node n = D

Fig. 5: Firm profits for each Nash tuple s ∈ SN

variable schedules. The map of NE is displayed in Figure 4. The figure demonstrates
the importance of showing different equilibrium tuples. Every chosen schedule yields
strongly different outputs and player profits, whereas each tuple is an equilibrium and
thus represents a potential outcome. The figure shows that the range of equilibrium
results increases slightly for player j = 1, strongly for j = 2 and decreases slightly
for j = 3. This change in the range of profit scenarios is also displayed in Figure 5.
Player j = 1 profits marginally and j = 2 strongly from apparent effects of ”forced
cooperation”. This change in profit stems from that the respective owner would choose
to not schedule in order to result in an alternate optimum (i.e. it would be profitable to
shut them down, thus they would be sorted out by rule (5a) to (5c)).

Scheduling these unprofitable units however occupies transfer line capacities and thus
reduces the possibility of the hydropower player j = 3 accessing other market nodes,
resulting in lower profits across all scenarios. The effect of additional line congestion
can be observed in the increase in average capacity in line N → D, as displayed in
result Table I. It shows that increasing exports and decreasing local production leads to
lower impact of binary variables on the price ’spread’. This is shown by the wide gap of
prices in t = 1 in Figure 3 and the low spread in t = 7. The case study demonstrates that
influencing unit commitment decisions (as ancillary services such as primary reserves
or the inertial response requirements discussed here do) has an impact on otherwise
unaffected generators in the system - here represented by hydropower producer j = 3.
This negative effect, i.e. a profit decrease, comes as a result of the market share that
is shifted to generators that would choose to not schedule in the optimum, but who
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TABLE I: Transfer Results (averaged over all tuples)

line utilization case #1 case #2
line D → G 278.3 MW 330.8 MW
line G→ N -194.4 MW -191.8 MW
line N → D 60.6 MW 113.3 MW

t = day 1 day 2 day 3 day 4 day 5 day 6 day 7
Local generation [MWh]
case #1 1281 1449 1274 549 81 243 0
case #2 1283 1620 1469 549 81 243 0
Exported generation [MWh]
case #1 911 848 1048 633 823 716 1177
case #2 912 916 1055 709 907 759 1392

are, through system constraints, forced to participate in certain periods. This distorts
competition by removing market share from more competitive players such as the time
stage abitrageurs (hydro power producers) and assigning them to less competitive forms
of generation such as thermal producers. This effect comes from the inertia requirements
making certain equilibria from case #1 infeasible, thus effecting the tree and enabling
branches that support less efficient equilibria. Averaged over the tuples, case #1 results
in a generator welfare of 144MAC whereas case #2 shows 224.6MAC, a welfare increase
that would have to come at the expense of the demand side, i.e. consumers.

VIII. CONCLUSIONS

The proposed framework and case study in this paper presents a number of contri-
butions:

The main contribution is the consideration of strategic scheduling decisions in a model
with price-making generators and multiple interconnected time stages, a novelty in the
literature [25]. Furthermore, the resulting mapping of a finite pool of Nash equilibrium
tuples demonstrates a new view on discontinuous problems in energy systems, that have
traditionally been occupied with converging towards single solution tuples (e.g. [9])
whilst disregarding potential other equilibria. This allows the discontinuous decisions
of a player to relate to its market impact and vice versa, so determining the impact
players have on each others’ scheduling. In addition, the proposed cutting techniques and
adjustments to other models proposed in the literature allows for a more computational
efficient approach to model hydro-thermal(-renewable) systems. Finally, the proposed
case study itself constitutes a novelty. It shows that introducing minimum requirements
for committed units in single nodes has an effect on the profits of other participants
in the system. The reason for this is found in transmission capacities being used by
the newly committed units, occupying transmission lines that could be otherwise used
by different actors to conduct nodal price arbitrage, resulting in a worse outcome for
those arbitrageurs. This result and the framework proposed in the paper might aid
future discussions of system design options, for example the analyzed requirements for
inertial response. One limitation of the paper is demonstrated by the case study. The
requirement of in-depth problem analysis does not allow for the plug-and-play of the
solution framework. Tailored cuts and predetermining the generation units that are valid
in active scheduling decisions requires a case-by-case analysis. As mentioned above, the
problem in its current form might be applicable for similar large area applications such
as the analysis of spinning reserves. However, and as for most equilibrium problems,
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real world uncertainty and resulting forecast volatility influence the outcome and thus
provide an important starting point for future research.
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APPENDIX

NOTE ON EXISTENCE OF NASH EQUILIBRIA

In the proposed framework, a stepwise Nikaido-Isoda convergence algorithm is ap-
plied to find a Nash Equilibrium for a tuple s that is defined by a fixed set of binary
variables. This transforms the original Cournot Game of players optimizing Mixed
Integer Problems into a number of individual continuous Cournot Games that are solved
via a branch-and-cut algorithm. The existence of Nash Equilibria is represented by one
of two forms: 0 Nash tuples - this situation can only occur due to infeasibility. The
preliminary cuts proposed in this model will sort out all infeasible states, leaving no
tuples that are able to transition towards the solved state. An infeasible problem also
means that no Nash Equilibrium could be found by the Nikaido-Isoda optimization
problem, thus leaving no result for the continuous problem that could represent a tuple.
≥ 1 Nash tuples - where the problem is feasible and due to the convexity of the
continuous problem, each tuple can yield (at least one) Nash equilibrium (even if the
solution is that every player produces at minimum/maximum levels) [9]. Multiple Nash
equilibria might exist within one tuple (see e.g. [6]). However the Nikaido Isoda function
is able to determine the optimal profits for a single equilibrium tuple which subsequently
allows the comparison of tuple equilibria. It can be therefore stated that a Nash tuple
represents a definite solution for the integer variables but can include a continuum of
solutions for the continuous variables that yield similar player profits.

DATA SETS

Table II lists plant types, specifications and related generation firms (i.e. players). Note
that daily values were obtained through a factor of 24 on the parameters denoted in hours
[h] as the plant is assumed to consistently run/stand idle for a whole day. The selected
data set is based on real world data from NordPool and from selected power plant data
(slightly distorted to ensure anonymity). The fuel mixes are a hydro power generator in
Norway, a representative Danish offshore wind/thermal mix and a representative slice
of German generation in form of a large thermal plant, an onshore wind farm and an
offshore wind farm. The remaining generation in the countries are expressed indirectly
by the elasticity of the price curves given in Table III. These are based on the spot
market volume obtained through NordPool. Table III shows the market price curves
during the observed week. Table IV lists the locations and the PTDF associated with
the plants adapted from the three-node case in [2]. It should be noted for lns,nd

i,n that the
superscript represents a lineflow ns → nd and the subscript represents the source unit
i and the target node n.
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TABLE III: Market Price Parameters

p∗n,t = n = N n = D n = G
t = 1 25.5− 6E−6dn,t 33.04− 10E−5dn,t 34.92− 10E−6dn,t

t = 2 25.7− 6E−6dn,t 33.63− 7E−5dn,t 35.29− 10E−6dn,t

t = 3 25.8− 5E−6dn,t 30.58− 7E−5dn,t 39.79− 8E−5dn,t

t = 4 25.4− 5E−6dn,t 27.67− 7E−5dn,t 32.42− 10E−6dn,t

t = 5 25.1− 5E−6dn,t 26.83− 8E−5dn,t 35.71− 10E−6dn,t

t = 6 23.1− 8E−6dn,t 23.5− 6E−5dn,t 27.79− 10E−6dn,t

t = 7 22.9− 7E−6dn,t 16.38− 5E−5dn,t 22.42− 10E−6dn,t

TABLE IV: Plant locations and connections

lD,G
i,G = 67%, lD,N

i,G = lN,G
i,G = 33%

i = 1, 2, 3, 4 location: n = D
lD,N
i,N = 67%,lD,G

i,N = lG,N
i,N = 33%

lG,D
i,D = 67%, lG,N

i,D = lN,D
i,D = 33%

i = 5, 6, 7 location: n = G
lG,N
i,N = 67%,lG,D

i,N = lD,N
i,N = 33%

lN,D
i,D = 67%, lN,G

i,D = lG,D
i,D = 33%

i = 8, 9, 10 location: n = N
lN,G
i,G = 67%,lN,D

i,G = lD,G
i,G = 33%

SENSITIVITY OF WATER VALUES

Expectations of water values also impact the range of equilibrium tuples of non-
hydro players. A low expectation of future prices and resulting low water values for
the hydropower players leads to a higher range of potential schedules for the thermal
players. A high price expectation furthermore leads to a reduction in potential tuples.
This is a result of the additional flexibility of a hydropower producer having to shift
production to another time stage if profitable.

This is shown by the result of setting water values to 16.67AC per hour (or 400AC per
day) which increases the total number of equilibrium tuples to 412. Another extreme
can be given by water values of 25AC per hour, which results in only a single equilibrium
tuple. This indicates that flexibility in storage creates flexibility in the schedules in a
system, even though the units do not belong to the same players.

NOTE ON PERFORMANCE

With increasing problem complexity, specifically additional actively scheduled units
and extended time periods, decreasing performance can be expected. However, addi-
tional tests indicate that resource-efficient scaling is possible and the algorithm allows
for more complex problem settings than the one presented. To provide an example,
thermal unit i = 7 was considered with flexible schedule. The result was 15 Nash
equilibrium tuples, that required solving 999 tuples (∼ 15000 seconds) for a problem
with a total of 2097152 tuples.
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7.5. IAEE

7.5 Market Power in a Hydro-Thermal System un-
der Uncertainty

This work has been presented at the 41st IAEE International Conference.

7.5.1 Extended Abstract

This paper proposes a solution concept for aggregating uncertainty and unit commit-
ment decisions within a hydro-thermal Cournot framework into a single decision vector
and solving the resulting problem via robust optimization and interpolation.

The proposed concept reformulates binary dispatch decisions as functions of uncer-
tainty, allowing for cases such as the following example:

- scenario 1 (e.g. high demand/hydropower inflow): unit always on

- scenario 2 (e.g. medium demand/hydropower inflow): unit either on or off

- scenario 3 (e.g. low demand/hydropower inflow): unit always off

A profit maximization problem of a single player holding several units under genera-
tion capacity and hydropower storage constraints operating under a number of such
scenarios can be solved for its robust solution via a Column and Constraint Generation
algorithm.

For two consecutive time periods, this single-player problem can be extended to a
multi-player market clearing problem by using variables shared by several agents - here
the market demand in the two time periods - as parameters in each individual players’
decision problem. Through alternating this ’global’ variable, a three dimensional supply
curve can be established for both time periods, with the spaces between the solved
variable combinations being filled via interpolation.

This is a result of robust optimization yielding a specific solution for both time
periods, irrespective of the realized scenario, allowing to clear for Nash equilibria over
both time periods.

The paper presents a case study on a three player problem under uncertain market
prices and hydrological inflow uncertainty.

On the equilibrium results of this case, the Nikaido-Isoda function is applied as
a measure of performance (i.e. closeness to a ’real’ equilibrium for the interpolated
solution). Based on this measure, the applied algorithm promises strong performance
and allows for making active decisions in the tradeoff solution quality ↔ solution time
by alternating the number of different ’global’ variable steps.

Extensions of the model to further time periods is possible, with each considered
period adding a dimension to the supply curve of each period.

147



Market Power in a Hydro-Thermal System under Uncertainty

Markus Löschenbrand∗

abstract
A method to find the Nash Equilibrium in a Cournot game for a number of players -

generation companies - scheduling hydro-thermal units by robust optimization is proposed.
Binary start/stop decisions are incorporated through approximation functions. Furthermore,
an uncertain future time stage is considered, which effects hydrological inflows as well
as price curve shape. The market in both time stages is cleared through interpolated
three-dimensional supply functions. Finally, further discussion on improvement of the
methodology and addition of further constraints to the players’ optimization problems is
provided.
Keywords: Game Theory, Cournot Game, Nash Equilibrium, Market Power,
Nikaido-Isoda, Hydropower, Thermal Generation, Unit Commitment, Robust
Optimization, Column & Constraint Generation

1. INTRODUCTION

Deregulation of power markets introduces competition aimed to decrease prices and increase service
quality for the end customers. As in traditional commodity markets a concern regarding efficient
market design is market power. As necessary infrastructure carries the risk of arising monopolies, the
transmission side of power systems is traditionally exempt of regulation. On the contrary, the supply
(i.e. generation) side of - especially European and U.S.American - power systems has seen constant
deregulation, with all related risks such as arising asymmetric market power (Berry et al., 1999).

For conventional thermal generation established models are available, that consider power
systems from an economic angle (Hobbs, 2001). Game theoretic methods similar to other commodity
markets - such as for other forms of energy or resources - are established in literature (Gabriel et al.,
2013). Those methods mostly consider single time periods which can show a distorted view of player
decisions in systems under large scale storage, such as e.g. the Scandinavian power system with large
hydropower capacities, as such systems tend to operate different from traditional thermal systems
(Wolfgang et al., 2009).

Even though literature on such systems exists (e.g. (Førsund, 2015)), usually market power
effects are dismissed due to lower price peaks and legislature aimed to prevent firms from exercising
market power. In addition, network connections (such as e.g. to central Europe in the case of the
Scandinavian system) introduce different generation setups, whereas the constellation of hydro-thermal
plants in market clearing is not fixed as players can actively decide which markets to enter. (Bushnell,
2003) provides an approximation of hydropower units which can be included into basic deterministic
thermal economic market models that are solved via tradtional techniques such as Karush-Kuhn-Tucker
conditions. However, as shown in e.g. (Pereira and Pinto, 1991) uncertainty plays an important role
in hydrological inflows and therefore requires consideration in hydropower dispatch (Wangensteen,
2012). Traditionally, dispatch problems are assumed to be external inputs to problems focused on the
market side, an example is given by (Rahimi-kian and Haghighat, 2007).

∗Department of Electric Power Engineering, Norwegian University of Science and Technology - Electrical Engineering
Building E, 3rd Floor, O.S. Bragstads plass 2a, Gløshaugen, 7034 Trondheim. E-mail: markus.loschenbrand@ntnu.no.
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(Moiseeva and Hesamzadeh, 2017) establishes a methodology to obtain both a Bayesian and
a Robust Nash Equilibrium for hydropower producers with a multitude of technical constraints such
as a hydrological network, power flows and ramping constraints/costs.

(Steeger and Rebennack, 2015) uses interpolation to obtain revenue functions that are used
to obtain Nash Equilibria. Furthermore it analyzes the potential number of Nash Equilibria, a
characteristic the previously presented paper omits.

(Molina et al., 2011) uses a stepwise algorithm to distribute storage over a number of periods.
The methodology is based on the concept of Nikaido-Isoda functions, which present a distance
measure to an equilibrium point that was first presented in (Nikaido and Isoda, 1955). (Krawczyk
and Uryasev, 2000) presents a relaxation algorithm that allows stepwise convergence to a Nash
Equilibrium. This principle is especially useful in systems where players share constraints, as e.g.
(Contreras et al., 2004) shows for an example of a traditional power market (also incorporating the
numerical example provided in (Hobbs, 2001)).

The here presented methodology aims to provide a new angle. Assumed are hydro-thermal
generation companies operating in a two-stage (i.e. two-period) single node/single market system under
robust optimization (Zeng and Zhao, 2013). An interpolation method to establish three-dimensional
supply functions is introduced and the market cleared via a sorting algorithm minimizing deviations.
The Nikaido-Isoda function is used to determine the quality of the obtained Nash Equilibrium and
further possibilities to increase the efficiency of the principle are introduced as well.

2. GENERATOR PROBLEM

This section introduces the decision process of a single hydro-thermal player, in specific a generation
company (GenCo) j holding i ∈ I j generation units. Due to higher generation cost of thermal units, it
can reasonably be assumed that thermal units provide the marginal units in market clearings. Thus, it
is of importance for hydro-thermal producers to accurately depict the thermal optimization problem
in their generation planning, or in specific: unit commitment decisions.

2.1 Unit Commitment

Solving optimization models with such active dispatch decisions - e.g. in the binary form of ’run
unit’/’shut down unit’ - traditionally makes use of techniques from the field of nonlinear programming
and is strongly related to decision making of thermal power plants (Padhy, 2004), whereas some
existing literature also extends its application to other forms of generation such as hydropower (Philpott
et al., 2000).

Assumed be a time stage t: a generation unit i has maximum and minimum generation
capacities of qi

max[MW] and qi
min[MW] respectively and makes a continuous decision on generated

quantity qi
t [MWh] ∈ R and a discontinuous decision on dispatch bit [on/off] ∈ Z. The resulting

capacity constraint for every time stage thus reads:

qi
minbit ≤ qi

t ≤ qi
maxbit (1)

Contrary to such models, approaches focused on optimization of bids traditionally tend to assume
predetermined unit schedules, one such example can be found e.g. in (Baillo et al., 2004).

Assuming fixed schedules over longer time frames however might lead to distortion in models
under uncertainty, as an extended time frame means extended leeway for a player to react to uncertain
future events. Thus, this paper proposes an approximation (denoted by )̂ that represents a balance
between those approaches: instead of considering an active dispatch variable, unit commitment
decisions are represented as a function of uncertainty ξ:

bit ≈ b̂it (ξ) (2)
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Figure 1: Different Implementations of Unit Dispatch for a single Generation Unit

This allows players to consider different schedules for e.g. low and high price scenarios without the
requirement for additional discontinuous variables that introduce non-convexity to a decision problem.

Figure 1 shows a comparison between the two traditional methodologies - implementing
scheduling as deterministic parameters or using decision variables - and the proposed approximation
technique. A single generation unit i is given the possibilities to produce in the second stage (bi

t+1 = 1)
or stay idle (bi

t+1 = 0). The first stage is supposed to be certain (scenario ξt ) and the second stage is
assumed to be one of two scenarios (xix

t+1 or xix
t+1) with no known distribution.

It shows, that using approximations does not increase the size of the fan of potential outcomes
but still provides more depth compared to the original deterministic approach.

2.2 Profit Maximization Problem

The underlying decision problem will be modeled in the form of a profit maximizing hydro-thermal
GenCo that operates on a hourly cleared, uniformly priced market for energy (i.e. no capacity markets
are included).

To further reduce model complexity several additional assumptions are made:

1. decisions in the current stage are assumed to be certain.

2. start-up and shutdown cost as well as down/uptime constraints for thermal plants are neglected.

3. no interaction between hydrological reservoirs is considered (i.e. no waterways).

4. due to low cost profiles, dispatch decisions of hydropower units are neglected.

5. start and end period reservoir levels are neglected.

Assuming a single player j holding a set of generation units/power plants denoted as I j

allows formulating the two-stage problem of maximizing the profits for a time period t with recourse
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in period t + 1 as:

max
q,φ

pt (ξt, dt )
∑
i∈I j

qi
t −

∑
i∈I j

ci(qi
t ) + φ (3a)

subject to
φ ≤ pt+1(ξxt+1, dt+1)

∑
i∈I j

qi
t+1 −

∑
i∈I j

ci(qi
t+1) ∀x ∈ R j

(3b)

qi
minb̂it (ξt ) ≤ qi

t ≤ qi
maxb̂it (ξt ) ∀i ∈ I jthermal (3c)

qi
minb̂i

t+1(ξxt+1) ≤ qi
t ≤ qi

maxb̂i
t+1(ξxt+1) ∀i ∈ I jthermal, x ∈ R j (3d)

qi
min ≤ qi

τ ≤ qi
max ∀τ ∈ {t, t + 1}, i ∈ I jhydro (3e)

qi
t ≤ lit (ξt ) ∀i ∈ I jhydro (3f)

qi
t + qi

t+1 ≤ lit (ξt ) + li
t+1(ξxt+1) ∀i ∈ I jhydro, x ∈ R j (3g)

lit (ξt ) − qi
t ≤ qi

res ∀i ∈ I jhydro (3h)

lit (ξt ) + li
t+1(ξxt+1) − qi

t − qi
t+1 ≤ qi

res ∀i ∈ I jhydro, x ∈ R j (3i)

The objective function (3a) presents a profit maximization. The first stage energy price function
pt (ξt, dt )[AC/MWh] is dependent on a certain scenario ξt and a market demand dt [MWh] and is
further multiplied by the generated quantity to give the revenues in period t. Subtracting the sum of
the individual unit cost functions ci(qi

t )[AC] yields the profits.
Variable φ[AC] ∈ R represents an approximation of the profits in the recourse period t + 1

and is defined by constraint (3b). The difference to the first stage profits lies in the scenarios being
realized as xix

t+1, where x is a scenario index and R j ⊆ X a finite discrete set of recourse decisions.
X represents the set of potential scenarios and is assumed to be player-independent, which will be
further discussed below.

Capacity constraints (3c) and (3d) limit the generation of thermal units, whereas (3e) sets
the capacities for the hydropower generation units.

Equation (3f) and state equation (3g) connect the first and second stage decisions by requiring
the generation capacities to lie below the inflows of first and second stage, denoted as lit (ξt )[MWh]
and li

t+1(ξxt+1)[MWh] respectively.
The capacities of the hydrological reservoirs are considered in constraint (3h) and (3i). The

inflow in hydrological inventory minus the used hydrological inventory have to stay within the physical
boundaries of the reservoir.

2.3 Obtaining a Robust Solution

This formulation allows applying a procedure similar to the technique presented in (Zeng and Zhao,
2013) - Column and Constraint Generation (CnCG).

Due to the reservoir limit constraint in the GenCo problem (3), decisions in stage 1 can lead
to infeasibility in stage 2. Cutting plane algorithms like CnCG traditionally apply feasibility cuts to
avoid consideration of such scenarios and cut the feasible area of the optimization problem to an area
which does not incorporate infeasible scenarios. In reality however, such scenarios can happen: for
example, a hydrological reservoir can reach its bounds and overflow. To consider this and therefore
ensure complete recourse, a state constraint relaxation in form of a spillage variable sit [MWh] ∈ R+
is introduced to the model. This removes the requirement for feasibility cuts in the later presented

4 of 17

7.5. IAEE

151



algorithm and therefore increases computational performance.

max
qt,st,φ

pt (ξt, dt )
∑
i∈I j

qi
t −

∑
i∈I j

ci(qi
t ) + φ

subject to
φ ≤ pt+1(ξxt+1, dt+1)

∑
i∈I j

qi
t+1 −

∑
i∈I j

ci(qi
t+1) ∀x ∈ R j

qi
minb̂it (ξt ) ≤ qi

t ≤ qi
maxb̂it (ξt ) ∀i ∈ I jthermal (4)

qi
min ≤ qi

t ≤ qi
max ∀i ∈ I jhydro

0 ≤ lit (ξt ) − qi
t − sit ≤ qi

res ∀i ∈ I jhydro

0 ≤ lit (ξt ) + li
t+1(ξxt+1) − qi

t − qi
t+1 − sit − si

t+1 ≤ qi
res ∀i ∈ I jhydro, x ∈ R j

Thus, a (relaxed)master problem is established. Furthermore and for the sake of simplicity, constraints
(3f), (3g) and (3h), (3i) are gathered into single constraints.

Φ(qi
t, s

i
t ) = min

x∈X
max

qt+1,st+1
pt+1(ξxt+1, dt+1)

∑
i∈I j

qi
t+1 −

∑
i∈I j

ci(qi
t+1)

subject to

qi
minb̂i

t+1(ξxt+1) ≤ qi
t ≤ qi

maxb̂i
t+1(ξxt+1) ∀i ∈ I jthermal (5)

qi
min ≤ qi

t+1 ≤ qi
max ∀i ∈ I jhydro

0 ≤ lit (ξt ) + li
t+1(ξxt+1) − qi

t − qi
t+1 − sit − si

t+1 ≤ qi
res ∀i ∈ I jhydro

Next, a sub problem is established that returns the approximation of the second stage as a function of
the first stage decision Φ(qi

t, s
i
t )[AC]. It is represented by a profit maximization problem nested in a

minimization problem, whereas latter returns the worst case scenario x (selecting the scenario with
minimal profits).

Algorithm 1 Column-and-Constraint Generation

initialize upper bound UB = +∞, lower bound LB = −∞, recourse decisions R j = {∅};
for UB − LB ≤ conv and R j , X do

[MP] solve master problem (4) and derive optimal solutions qi∗
t , s

i∗
t , φ

∗;
update upper bound UB := pt (ξt, dt )

∑
i∈I j

qi∗
t −

∑
i∈I j

ci(qi∗
t ) + φ∗

[SP] solve sub problem (5) and derive optimal solution Φ(qi∗
t+1, s

i∗
t ) and derive scenario x∗;

derive qi∗
t+1 and si∗t

update lower bound LB := max{LB, pt (ξt, dt )
∑
i∈I j

qi∗
t −

∑
i∈I j

ci(qi∗
t ) + Φ(qi∗

t , s
i∗
t )}

[cut] optimality cut: add scenario x∗ to R j

[fin] converged

Assuming a convergence coefficient denoted as conv allows to formulate the CnCG algorithm
in pseudo-code as shown in algorithm 1.

The result is a generation schedule that holds for the maximization problem in period 1 as
well as the min-max problem in period 2.
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Figure 2: Supply Function Interpolation in t

3. MARKET CLEARING PROBLEM

Similar to literature, the underlying game formulation is that of Cournot competition. The price being
defined as a function of demand allows establishing a trajectory of a price curve. Market clearing,
i.e. matching the demand with the supplied quantity, cannot however be achieved in similar manner
to traditional models, which would rely on establishing necessary and sufficient conditions and e.g.
solve it as a complementarity problem by formulating the Karush Kuhn Tucker conditions(Hobbs,
2001). The reason herein lies in that the player problems are solved via CnCG, a non-convex function
due to the recourse scenario selection decision being an integer decision. (Steeger and Rebennack,
2015) solve a similar problem with interpolation, which will also be the method of choice to conduct
the market clearing in this paper.

Applying the discussed robust optimization method for a specific demand tuple 〈dt, dt+1〉
and player j results in quantity solutions qi∗

t , q
i∗
t+1 ∀i ∈ I j . After all players are solved to convergence,

the solutions for all generation units participating in the game, denoted as I ⊇ I j , can be defined as
the market supply tuple 〈qm

t , q
m
t+1〉, where qm

t =
∑
i∈I

qi∗
t and qm

t+1 =
∑
i∈I

qi∗
t+1.

Choosing a number n of demand tuples D = {〈d1
t , d

1
t+1〉, ..., 〈dn

t , d
n
t+1〉} and solving them via

CnCG yields a similar number of supply tuples S(D) = {〈qm1
t , qm1

t+1〉, ..., 〈qmn
t , qmn

t+1〉}, which can be
done by defining a demand range (between which the market clearing quantities can be assumed)
and solving for a pre-defined step size. As discussed previously, solving the robust problem is faster
than other techniques such as applying Benders’ cuts, but in most realistic problem setups can be
still too computationally demanding to cope with small step sizes. Thus, as proposed in (Steeger and
Rebennack, 2015) and mentioned earlier, (linear) interpolation is applied to define additional steps
that lie between the tuples derived by CnCG.

The interpolation results for the case study proposed later in this paper is shown in figures
2 and 3. 81 demand scenarios (shown in blue) are solved and extended by 5000 additional values
obtained by interpolation to obtain a three-dimensional supply function for both periods. The
discontinuity observed in figure 3 is analyzed in the result discussion below.

After these sets of solved tuples D and S(D) are established, the market clearing tuple that
fulfills 〈dm∗

t , dm∗
t+1〉 ≈ 〈qm∗

t , qm∗
t+1〉 can be found by solving an integer program:

min
dm
t ,d

m
t+1

(dm
t − qm

t )2 + (dm
t+1 − qm

t+1)2

subject to (6)
〈dm

t , d
m
t+1〉 ∈ D

〈qm
t , q

m
t+1〉 ∈ S(D)
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Figure 3: Supply Function Interpolation in t + 1

The objective function shows the minimization of the Mean Squared Errors, whilst selecting from the
finite set of demand tuples. Due to the calculation times of the iterations1 and CnCG tuple solutions
increasing to greater extend than the integer clearing problem, it can be assumed that the problem can
be solved for a global optimum via brute-force search.

4. NASH EQUILIBRIUM

A state of a game where no players can take actions to increase their payoffs considering the rest of
the players actions remains unchanged, is defined as a Nash Equilibrium. In the here presented game
the player payoffs can be denoted as profit functions Πx, j(dt, dt+1)[AC]. For the recourse problem (3)
this reads:

Πx, j(dt, dt+1) = pt (ξt, dt )
∑
i∈I j

qi
t −

∑
i∈I j

ci(qi
t ) + pt+1(ξxt+1, dt+1)

∑
i∈I j

qi
t+1 −

∑
i∈I j

ci(qi
t+1) (7)

Denoting the (quantity) decisions of other players with ′ and assuming the market clearing demand
equals the generation decisions leads to a market clearing condition:

dt =
∑
i∈I j

qi
t +

∑
i<I j

q′it ∀ j

dt+1 =
∑
i∈I j

qi
t+1 +

∑
i<I j

q′i
t+1 ∀ j

(8)

As discussed above, the market can be assumed to be cleared, meaning this condition is assumed to
hold. Thus, the profit functions can be reformulated as:

Πx, j(dt, dt+1) = Πx, j(∑
i∈I

qi
t,

∑
i∈I

qi
t+1) = Πx, j( ∑

i∈I j
qi
t +

∑
i<I j

q′it ,
∑
i∈I j

qi
t+1 +

∑
i<I j

q′i
t+1) (9)

This allows to state the previously introduced Nash Equilibrium as a solution tuple 〈∑
i∈I

qi∗
t ,

∑
i∈I

qi∗
t+1〉

that fulfills the Nash condition that no player can increase their payoff by departing from the Nash
solution:

Πx, j(∑
i∈I

qi∗
t ,

∑
i∈I

qi∗
t+1) = max

qi
t ,q

i
t+1∀i∈I j

Πx, j( ∑
i∈I j

qi
t +

∑
i<I j

q′i∗t ,
∑
i∈I j

qi
t+1 +

∑
i<I j

q′i∗
t+1) ∀ j (10)

(Nikaido and Isoda, 1955) proposes a distance measure that defines the difference between
a Nash Equilibrium and a current solution. For the here proposed two-stage problem this concept,

1in the here proposed approach conducted via the scipy.interpolate library function ’griddata’ that allows three-dimensional
linear interpolation and shows adequate performance (SciPy.org, 2018)
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Table 1: Case Study Parameters
player unit type qi

min qi
max qi

res cost curve
j = 1 i = 1 biofuel 80MW 800MW - 10qi

t + 0.075(qi
t )2

j = 1 i = 2 oil 87.5MW 350MW - 25qi
t + 0.1(qi

t )2
j = 1 i = 3 gas 120MW 400MW - 30qi

t + 0.05(qi
t )2

j = 2 i = 4 coal 400MW 1000MW - 30qi
t + 0.035(qi

t )2
j = 2 i = 5 coal 320MW 800MW - 32qi

t + 0.03(qi
t )2

j = 2 i = 6 coal 200MW 500MW - 34qi
t + 0.03(qi

t )2
j = 3 i = 7 hydro 0MW 950MW 500MW 0.005qi

t + 0.0001(qi
t )2

j = 3 i = 8 hydro 0MW 300MW 300MW 0.005qi
t + 0.0001(qi

t )2

Figure 4: Components of price in period t + 1

referred to in literature as Nikaido-Isoda function (Molina et al., 2011; Krawczyk and Uryasev, 2000),
can be formulated in similar form.

To do so, qm∗ is defined as the market clearing decisions that fulfill constraint (8) and q j∗

as the individual profit maximizing quantities that solve (3) for a specific player (through robust
optimization as shown above). This results in the problem-specific formulation of the Nikaido-Isoda
function as:

Ψx(qm∗, q j∗) = ∑
j

[
Πx, j( ∑

i∈I j
q j,i∗
t +

∑
i<I j

q′m,i∗t ,
∑
i∈I j

q j,i∗
t+1 +

∑
i<I j

q′m,i∗
t+1 ) − Πx, j(∑

i∈I
qm,i∗
t ,

∑
i∈I

qm,i∗
t+1 )

]
(11)

As per definition the market clearing supply has to equal the clearing demand, i.e. qm∗ = dm∗. Section
3 showed how to derive those clearing quantities. Equation (7) can thus be used to yield the values of
the term Πx, j(∑

i∈I
qm,i∗
t ,

∑
i∈I

qm,i∗
t+1 ) within the Nikaido-Isoda function.

However, and as shown above, the market clearing condition qm∗ = dm∗ will not hold due to
the values being interpolations of instead of actual solution to the robust optimization problem. Thus,
taking the tuple 〈dm∗

t , dm∗
t+1〉 allows solving the two stage problem (3) from the perspective of a single

case player. It yields the tuple 〈q j∗
t , q

j∗
t+1〉 which then in turn results in a quantitative solution of the

Nikaido-Isoda function.
The value of this solution then allows to give a statement about the ’quality’ of the

interpolation: Ψx(qm∗, q j∗)[AC] denotes the total improvement in payoff (i.e. profit) that all individual
players could gain by individually departing from their strategies given that the second stage scenario
is ξx

t+1.

5. CASE STUDY

Table 1 shows the case study setup: a generation portfolio of 8 generation units held by 3 players - 2
thermal players j = 1, 2 and 1 hydropower player j = 3.

Market data was obtained from the public data platform of the Scandinavian electricity
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Table 2: Thermal Unit Commitment Decisions
generation unit: i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

period t generation unit state: b̂it (ξt ) = 1 1 0 1 0 1

period t + 1 availability:
∑

x∈X
b̂i
t+1(ξ x

t+1)
card(X) = 0.95 0.88 0.76 0.90 0.88 0.92

Figure 5: Inflow Scenarios Unit i = 7 Figure 6: Inflow Scenarios Unit i = 8

market operator Nord Pool. The case study considers a number of card(X) = 100 scenarios in the
second stage.

The price in the first stage was considered as the function pt (ξt, dt ) = 60 − 0.0065dt for a
certain scenario ξt . Second stage prices were formulated as pt (ξxt , dt+1) = αx − βxdt+1 whereas the
values for the vectors α and β can be found in figure 4. β is based on the elasticity of the total market
(i.e. the volume of the units within the case study related to the total market volume obtained from
the public data platform). It can be observed that the main assumption is low to no elasticity in the
second stage (αx ≤ 0.006) which aligns with the general assumption on market power Scandinavian
electricity markets(Wangensteen, 2012). However, the here proposed model includes a number of
scenarios where market power does exist (even though to a limited degree). Such scenarios and the
resulting counter-effects with other players are neglected in traditional optimization models that focus
on individual players.

The thermal unit commitment decisions can be found in table 2. Even though startup and
shutdown cost were neglected in the here presented simplified model formulation, negative payoff
effects due to units running on minimum generation with cost curves above the market price might be
observed.

Figures 5 and 6 show the distributions of the hydrological inflows into the reservoirs of the
two hydropower units in stage 2. The deterministic inflows in stage 1 were 1000MW h and 300MW h
for unit i = 7 and i = 8 respectively.

5.1 Results

Conducting the previously introduced algorithm on a number of 81 original and 25E6 interpolated
tuples(as shown in figures 2 and 3) required ~37 minutes on an Intel i7-5600U @ 2.60 Ghz to solve to
an equilibrium solution.

The equilibrium points within the supply curves can be found indicated in blue in figure 7
for the first period and figure 8 for the second.

These equilibria result in potential payoffs for the three players which are displayed in figure
9. It shows that player j = 1, i.e. the GenCo with the thermal units with lower cost curves (shown
in figure 11), also has the lowest spread of payoff over the scenarios (indicated in grey in figure 9).
Hydropower player j = 3 shows the largest spread of profit over the analyzed scenarios. In addition,
the range of potential profits can also range into negative outcomes, which is the case for certain
scenarios for both thermal players, especially for j = 2.
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Figure 7: Market Clearing in Stage t

Figure 8: Market Clearing in Stage t + 1

Figure 9: Total Profits for potential Second Stage Scenarios ξx
t+1
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Figure 10: Clearing Price Scenarios and Generation Cost

Figure 11: Generation Cost Functions

This indicates that there exists a number of scenarios where players operate units under
a loss. This would be amplified by cost curves that are functions of the binary variables (e.g. by
incorporating startup/shutdown cost). The appearance of losses are a result of minimum generation
capacities of running thermal units, which for the marginal units seems to lie above the market price
for certain scenarios.

This effect is also displayed in figure 10 that displays the market clearing price scenarios and
the generation costs for the individual units. Units i = 2, 4, 5, 6 overlap with the scenario fan in stage
t + 1, showing that there exist potential scenarios where the units operate under a loss.

To make a statement about the validity of the Nash Equilibrium, the previously introduced
Nikaido-Isoda function Ψx(qm∗, q j∗) is related to the total profits and averaged over the scenarios:

Ψ(qm∗, q j∗) = ∑
x∈X

Ψx (qm∗,q j∗)∑
j

[
pt (ξt,dm∗

t )
∑

i∈I j
qm, i∗
t − ∑

i∈I j
ci (qm, i∗

t )+pt+1(ξ x
t+1,d

m∗
t+1)

∑
i∈I j

qm, i∗
t+1 −

∑
i∈I j

ci (qm, i∗
t+1 )

] /card(X)
(12)

The resulting distance measure of ~0.017 can be interpreted as that all players together have
an incentive to depart from the market quantities yielded by the algorithm by an average of 1.7% per
scenario.

The resulting productions are displayed in figure 11: the hydropower units are running on
full capacity in stage t, whereas the thermal units adjust their production (upwards or downwards)
within the time stage transition. The results consider all units running in the second stage, indicating
that players applying robust optimization is similar to an assumption of strong competition, as shutting
generation units down would result in higher prices and therefore better conditions for cooperating
players. However, such analysis is not considered in this paper but might provide a promising starting
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Figure 12: Discontinuity in Stage t + 1

Figure 13: Stage t solved for 121 original Tuples Figure 14: Stage t solved for 256 original Tuples

point for future research. The market clearing results shows hydropower to have the greatest benefits
from uniform pricing, as the low marginal cost allow for large supply side welfare, whereas the player
holding the marginal thermal unit(s) i = 4 (shortly followed by i = 5) shows the lowest welfare.

The market clearing results for the analyzed case study are shown in table 3 attached in the
appendix. Due to the quantity results being obtained by point interpolation instead of continuous
functions, a gap between clearing supply qi∗

t , qi∗
t+1 and clearing demand d∗t , d∗

t+1 can be found.
Sensitivity analysis (introduced below) showed this gap to close for higher number of tuples used to
conduct the algorithm.

As observed in figure 3 and highlighted in figure 12 a distinctive discontinuity close to the
market clearing demand is observed in stage t + 1.

Table 4 in the appendix shows the reasons for this nonconvexity: a transition of second stage
values from dt+1 = 1500MWh→ 2000MWh→ 2500MWh results in the binary decisions for units
i = 1, 2 : b̂i

t+1(ξxt+1) = 1(i.e. on) → 0(i.e. off) → 1. As the first and second tuple are close to the
market clearing quantities in the second period(see: figure 8), additional granularity might yield a
more stable Nash Equilibrium. Below this will be further analyzed.

5.2 Sensitivity

Increasing the resolution of the solution procedure comes in two different aspects: increasing the
number of original tuples and increasing the number of interpolated tuples. For the sake of simplicity,
in this paper both will be scaled simultaneously, thus not allowing a statement about which provides
a larger contribution to result quality. This quality is defined as the previously introduced distance
measure Ψ(qm∗, q j∗) - the lower the number the closer the result to a Nash Equilibrium.

Increasing the number of tuples - displayed for stage t in figures 13 and 14 and for t + 1 in
figures 15 and 16 - showed a positive effect on this Nash Equilibrium quality. The reason can be
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Figure 15: Stage t + 1 solved for 121 original TuplesFigure 16: Stage t + 1 solved for 256 original Tuples

applied tuple resolutions:

1. 25 original/ 6.25E6 interpo-
lated

2. 81 original/ 25E6 interpo-
lated

(analyzed case, shown in
blue)

3. 121 original/ 100E6 interpo-
lated

4. 256 original/ 225E6 interpo-
lated

Figure 17: Performance for different Tuple Resolutions

attributed to the location of the clearing points: close to the ’bend’ of the plane in stage t and at the
edge of the ’gap’ in stage t + 1, both which gain additional resolution and are more ’defined’ in the
cases incorporating a higher number of tuples.

Figure 17 shows the increase in quality/decrease in computational performance due to an
increase in tuple resolution.

6. DISCUSSION

The provided case and subsequent case study illustrate that the proposed framework can yield schedules
for a 3 player model with 2 time periods and 100 second stage scenarios under uncertain distribution.
These results can then used to create 3-dimensional supply functions and subsequently be interpreted
as approximate Nash Equilibria that fulfill the Nash condition with minimal deviations. Despite
the novelty of the proposed concept, model limitations exist and provide potential starting points
for future research. Those limitations and proposals for future potential model extensions will be
discussed below.

6.1 Limitations

The main limitation of the model is the computational performance. By applying approximation
functions to replace integer variables in the core problem as well as choosing the technique of CnCG
over other more resource demanding cutting-plane techniques such as Benders’ decomposition the
performance can be increased, the model performance still indicates that large-scale application
requires further adjustments. This could play an especially important role in applications that extend
the model to a larger time frame than the original two-stage solution. Similar to other economic
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applications this can be circumvented via adequate problem analysis and design - e.g. pooling similar
plant types in single plants, collapsing the scenario tree, etc. However, this could decrease the
possibility of dynamic application as it would require potentially extensive preparation and tailoring
of the applied cases instead of simple ’plug-and-play’.

Another limitation is given in the assumption of symmetric information that the market
clearing requires. As both the tuple solutions as well as the analysis of the equilibrium points are
implicitely based on this assumption, the model could prove problematic in situations with strong
information asymmetry. Such cases can appear when a large number of technical constraints is
incorporated into the players’ base model, which the proposed framework allows. However, the
yielded Nash Equilibrium might a) not exist or b) exist but might never be reached in reality due to a
lack of player information. Thus, asymmetric information has been left out of the analysis conducted
in this paper.

Not only that the market clearing algorithm cannot ensure existence of a solution, multiple
Nash Equilibria can also not be ruled out. Additionally, due to the non-convexity of the problem (as
e.g. shown by the ’gap’ in the supply function of stage t + 1) an assumed solution method that yields
more than one equilibrium could not provide any information on the number of Nash Equilibria2.

6.2 Potential Extensions

Three different areas of improvement can be defined for the proposed model - increase the time frame,
increase the technical complexity of the model, increase the efficiency:

6.2.1 Extend Model Time Frame

The core problem of the framework is formulated as a two-stage problem with recourse. In principle
this would allow for application of similar dynamic models as are traditionally applied on problems
from the field of hydropower optimization (Pereira and Pinto, 1991). Available literature exists on
how to apply such multi-time stage mechanisms on single players under robust optimization (see e.g.
(Jiang et al., 2012)). In theory, expanding the proposed framework of this paper can be done in similar
manner. However, incorporating more time periods could increase computational complexity to a
level where additional approximation techniques and solution methods are required to ensure efficient
solving of the problem.

6.2.2 Increase Model Complexity

Literature on incorporating price-making effects into traditional hydropower optimization is rare.
Examples of such are (Moiseeva and Hesamzadeh, 2017) and (Steeger and Rebennack, 2015) which
both discuss derivation of Nash Equilibria. Further research could be conducted on incorporating
technical specifications that the models proposed in these papers consider but which were left out in the
here presented framework for the sake of simplicity. Those include: waterway connections, power flows,
ramping costs, capacity bids. In addition, more electrical network nodes and minimum/maximum up-
and down-times could be incorporated.

6.2.3 Increase Model Efficiency

Decreasing the computational complexity relates to the scaling of the model presented in the previous
subsections. Higher complexity of the player models and larger time periods require more efficient
solution methods.

2as for convex problems this number can be either 0,1 or ∞; for non-convex problems however ≥ 0 and ≤ ∞ (Gabriel
et al., 2013)
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As shown in section 5.2 solutions for low amounts of tuples (25 original tuples) can already
result in a Nash Equilibrium distance of ~0.032. Thus, a search algorithm increasing granularity
around the area that surrounds the equilibrium might prove more efficient than evenly distributing the
tuples as it was done in the sensitivity analysis above. Furthermore, brute-forcing the minimization
problem within the second stage min-max problem could potentially be replaced by an approximation
and scenario-fan collapsing techniques could be used to increase solution times for the individual
player problems.

7. CONCLUSION

This paper proposed a novel algorithm to locate and subsequently evaluate the quality of a Nash
Equilibrium in a hydro-thermal power systemunder price-making competition. Through approximation
of binary variables a (potentially) convex two-stage player problem is obtained. Similar to (Zeng and
Zhao, 2013) and (Jiang et al., 2012) the problem is solved distributional robust. Applying a brute-force
algorithm allows interpolation of three-dimensional supply functions that can be used to derive a tuple
solution which can further be evaluated for its distance to a Nash Equilibrium. Similar to literature
(e.g. (Contreras et al., 2004), (Molina et al., 2011)) this is done via applying Nikaido-Isoda functions
which are then averaged over the scenarios. The case study and following sensitivity analysis shows
promising results that hint for practical application of the proposed framework.

8. APPENDIX

Table 3: Market Clearing Results for the Case Study
qi∗
t qi∗

t+1
i = 1 237.96MWh 114.52MWh
i = 2 103.47MWh 117.71MWh
i = 3 0MWh 71.39MWh
i = 4 400MWh 400MWh
i = 5 0MWh 320MWh
i = 6 209.97MWh 200MWh
i = 7 950MWh 400MWh
i = 8 300MWh 79MWh
total: 2201.39MWh 1702.63MWh

d∗t d∗
t+1

2201.04MWh 1702.54MWh

Table 4: Discontinuity - Point Results
tuple: dt = 1000, dt+1 = 1500 dt = 1000, dt+1 = 2000 dt = 1000, dt+1 = 2500
i = 1 192.5MW h 0MWh 161.02MWh
i = 2 87.5MWh 162.09MW h 87.5MWh
i = 3 120MWh 0MWh 120MWh
i = 4 400MWh 400MWh 400MWh
i = 5 320MWh 320MWh 320MWh
i = 6 200MWh 200MWh 200MWh
i = 7 400MWh 400MWh 400MWh
i = 8 79MW h 79MWh 79MWh
total: 1799MW h 1561.09MW h 1767.52MWh

Table 3 shows the case study quantity clearing results. Table 4 displays the numerical values
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of the ’gap’/non-convexity in the second period of the analyzed case study.

8.1 Note on the Integer Approximation applied on Column-and-Constraint-Generation

Assumed be a single player holding a single thermal generation unit i that optimizes profits in
accordance to the recourse problem (3) under anticipation of two possible scenarios. Considering no
demand effects on prices, the simplified Mixed Integer (Bidding) Problem (MIP) can be defined as:

for x = 1, 2 :
max
qi,bi

t+1

ptqi
t − ci(qi

t ) + px
t+1qi

t+1 − ci(qi
t+1)

subject to
qi

minbit ≤ qi
t ≤ qi

maxbit
qi

minbi
t+1 ≤ qi

t+1 ≤ qi
maxbi

t+1
qi
t, q

i
t+1 ∈ R, bit+1 ∈ Z2

(13)

Assuming the player does not want to estimate scheduling functions as proposed in section
2.1, the two Mixed Integer Problems (13) can be reformulated as four equivalent continuous problems:

for 〈px
t+1, b̂

i
t+1(ξxt+1)〉 ∈

[〈p1
t+1, 0〉, 〈p1

t+1, 1〉, 〈p2
t+1, 0〉, 〈p2

t+1, 1〉
]

: (14)
max
qi

ptqi
t − ci(qi

t ) + px
t+1qi

t+1 − ci(qi
t+1)

subject to
qi

minbit ≤ qi
t ≤ qi

maxbit
qi

minb̂i
t+1(ξxt+1) ≤ qi

t+1 ≤ qi
maxb̂i

t+1(ξxt+1)
qi
t, q

i
t+1 ∈ R

(15)

Considering a similar approach as shown in section 2.3 results in two different subproblems:

1. problem 13 shows a maximization problem over two scenarios with a nested non-convex MIP
problem.

2. problem 14 shows a maximization problem over four scenarios with a nested linear/quadratic/...
and potentially convex3 problem.

It can be assumed that for a larger scale (more units, thus more binary variables in problem
13 and more scenarios in problem 14) problem 14 solves faster as it can be conducted with techniques
from linear programming. In addition with the potential of reducing the scenario tree by assuming
predetermined schedules as functions of scenarios (as was done in the presented method above), a
significant reduction in computation times can be expected by applying this reformulation combined
with the method of Column-and-Constraint-Generation.
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7.6. EEM

7.6 Market Power in Hydro-Thermal Systems with
Marginal Cost Bidding

This work has been presented at the 15th International Conference on the European
Energy Market.

7.6.1 Extended Abstract

This paper presents an analysis of the potential to use market power to increase profits
in a multi-player game with storage capacities, unit dispatch and marginal cost bidding.

The problem is formulated as a supply function equilibrium problem and the stor-
age capacities are assigned via a stepwise convergence algorithm. Unit commitment
schedules for the binary dispatch variables are reformulated as functions of a scheduling
index to reduce model complexity.

The result is a four-period case study that analyzes the optimal decision (matrix)
of hydro-thermal players. It observes that storage capacities allows for opportunistic
tacit collusion between profit/welfare-maximizing hydro-thermal players by strategi-
cally changing unit dispatches.

This collusion in turn leads to system welfare losses at the expense of consumers,
even though the traditional definition of market power abuse - bidding above marginal
cost and withholding generation - are not breached in traditional sense. Instead, supply
is withheld indirectly by shutting down units and by not utilizing the full available
storage capacities.

The results are higher prices as in the comparison case of a less market power per
participating firm, which is established by splitting the hydropower producer in a larger
number of smaller producers.
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Abstract

Traditionally, electricity markets have been designed with the intention of disabling
producer side market power or prohibiting exercising it. Nonetheless it can be assumed that
players participating in pool markets and aiming to maximize their individual benefits might
depart from the optimum in terms of total system welfare. To recognize and analyze such
behavior, system operators have a wide range of methods available. In the here presented
paper, one of those methods - deriving a supply function equilibrium - is used and nested in
a traditional discontinuous Nash game. The result is a case study that shows that marginal
cost bidding thermal producers have an incentive to collaborate on scheduling in order to
cause similar effects to tacit collusion.

Index Terms

hydro power, thermal power, market power, nash equilibrium

I. INTRODUCTION

Literature shows various examples in which supply functions were applied to analyze
market power in electricity markets. [1] models the effects of consumer pricing schemes
on market power in electricity spot markets, concluding that variable end consumer
billing has collusion-reducing effects compared to fixed rates. [2] use supply functions
individual to each participant to cope with the downsides of Cournot competition,
namely impossibility of demand curves without any elasticity and the resulting demand
distortion for extreme price scenarios. [3] nests the supply function equilibrium in a
prisoners game, aiming to explain price spikes created through collusion. It concludes
that suppliers have incentives to withhold and selectively place supply in order to
increase profits. [4] considers individual welfare maximization as well as an aggregated
supply function in order to find market power in an optimal power flow setup and
uses a similar stepwise convergence algorithm as [5] to derive a Nash equilibrium.
[6] establishes affine supply functions that are turned piece-wise by incorporation of
capacity constraints in order to analyze various games with different generation unit and
firm(i.e. player) setups. The approach presented in the following sections will introduce
the coupling of time periods as well as active scheduling decisions to a supply function
market clearing. No existing literature on combining those concepts in a single model
is known to the authors.
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II. SUPPLY FUNCTION MARKET CLEARING MODEL

Considering a pool market, every clearing period t participating generation units i will
submit bids consisting of both price bpi,t[$] and quantity bqi,t[MW/t]. The price curves
symbolize the individual supply function for each generation unit. After receiving the
bids, a market operator here assumed to be clearing for a uniform price in a pool market
will create a supply curve, denoting the period supply curve as a St(dt)[$], a function
depending on the periods’ demand dt:

St(dt) = min
qi,t

∑
i

bpi,t(qi,t)qi,t

s.t. qi,t ≤ bqi,t ∀i
dt =

∑
i

qi,t

qi,t ∈ R+ ∀i

(1)

As long as the objective function is convex and the quantity bids bqi,t are enough to
fulfill the demand clearing (i.e.

∑
i

bqi,t ≥ dt∀t) constraint, this market supply curve will

yield a finite global result. Assuming quadratic cost functions Ci(qi,t) and generators
bidding at marginal cost (MCi(qi,t)) level yields the following formulation for the price
bidding function:

Ci(qi,t) = ai + biqi,t + ciq
2
i,t

bpi,t(qi,t) = MCi(qi,t) =
∂Ci(qi,t)

∂qi,t
= bi + 2ciqi,t

(2)

These price bids as well as the size of the offered quantity are assumed to be a result
of an interal optimization process of each player j which owns a number of generation
units. For simplicity’s sake we set the number of potential bids per player equal to the
number of generation units i ∈ j. It will also be assumed, that these bidding curves
bqi,t(qi,t) are predefined and will not be altered depending on factors such as amount of
players and will stay time-consistent disregarding external influences such as the fuel
prices. As the analyzed time frame will be of short term, this approximation can be
considered valid.

Furthermore, affine demand functions are assumed:

Dt(dt) = αt − βtdt (3)

Generally, demand in electricity markets offers low elasticity, requiring this curve to be
sufficiently steep.

The market clearing price p∗t can be formulated as the intersection of demand and
supply curves at a clearing quantity d∗t :

p∗t = Dt(d
∗
t ) = St(d

∗
t ) (4)

As the here presented model follows a pool based auction with uniform pricing, every
player will have its supplied quantity

∑
i∈j
qi,t remunerated at this market clearing price.

III. HYDRO-THERMAL MODEL

Storage technology allows binding in the dimension of time, giving storage facility
operators(in the here presented case: hydro power plants i ∈ Ihy) the chance to transfer
quantity ri,t from a time stage t to the next. In addition, due to maximum uptimes
and cooling down periods, thermal plants can be considered to not operate during the
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Fig. 1. Generator Surplus for Unit i ∈ Ij

entire duration t = 1, ..., T . In a stateless 1-period model scheduling decisions would be
implemented through altering the pool of generation units i ∈ I th. In the case of storage
however, time periods are connected and thus scheduling variables sni

i,t that determine the
on/off-states (bqi,t/0) of the thermal plants are required to ensure fluctuating player pools
over the time frame. This results in the following formulation for the hydro-thermal
supply function:

St(dt, ri,t, s
ni
i,t) = min

qi,t

∑
i

bpi,t(qi,t)qi,t

s.t. qi,t ≤ bqi,t + ri,t−1 − ri,t ∀i ∈ Ihy

qi,t ≤ sni
i,t ∀i ∈ I th

dt =
∑
i

qi,t

qi,t ∈ R+ ∀i

(5)

A player j would aim to maximize its supply side surplus Wi as seen in figure 1
for all of its units i ∈ Ij . This requires initial assumptions on market clearing price
(Ej[p∗t ]) and on procured quantity (Ej[q∗i,t]). Every producer would then alter the stored
hydropower inventory ri,t[MW/t] indirectly (through adjusting generation) for all of its
storage units in addition to choosing a production schedule [sni

i,1, ..., s
ni
i,T ] for its thermal

units. It can be considered that the player defines a limited set of predefined schedules
s which leads to a reformulation in the form of:

s =







[s11,1, ..., s
1
1,T ]

...
[s1I th,1, ..., s

1
I th,T ]




...


[sNi
1,1, ..., s

Ni
1,T ]

...
[sNi

I th,1
, ..., sNi

I th,T
]







sni
i,t = {0, bqi,t} ∀i ∈ I th, t

(6)

Scheduling of thermal units is thereby conducted through making index ni, which
refers to the prospective schedule of generation unit i, a decision variable and thus
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reformulating the players’ previous decision problem over the whole time stage as:

Wj = max
ri,t,ni

∑
t

∑
i∈j

Ej[Wi,t]

Ej[Wi,t] =

(
Ej[p∗t ]− bpi,t(Ej[q∗i,t])

)
· Ej[q∗i,t]

+
bpi,t(Ej [q

∗
i,t])−b

p
i,t(0)

2
· Ej[q∗i,t]

∀i ∈ Ij, t

s.t. St(dt, ri,t, s
ni
i,t) = St(d

∗
t , ri,t, s

ni
i,t) ∀t

ri,t ≤ r̄i ∀i ∈ {Ihy ∩ Ij}, t
ri,t ∈ R+ ∀i ∈ {Ihy ∩ Ij}, t
ni ∈ Z+ ∀i ∈ {I th ∩ Ij}, t

(7)

Reservoir storage from one period to the next has an imposed upper capacity of
r̄i[MW ].

Defining the set of strategies that a player chooses depending on the assumption
on other players strategies as 〈ri,t, ni∀i ∈ Ij;E[ri,t],E[ni]∀i /∈ Ij〉, the resulting Nash-
Equilibrium can be formulated as:

Wj = max
〈r∗i,t,n∗i ∀i∈Ij2 ;E[ri,t],E[ni]∀i/∈Ij2 〉

Wj2 ∀j, j2 6= j (8)

In words, a Nash equilibrium is reached if no player has an incentive to store more/less
water or change the schedule for the thermal units.

The assumption of complete and symmetric information gives the possibility to solve
for this equilibrium:

p∗t = Ej[p∗t ] = Ej2 [p∗t ] ∀j, j2 6= j
q∗i,t = Ej[q∗i,t] = Ej2 [q∗i,t] ∀j, j2 6= j

(9)

Symmetric information in this case refers to the players having knowledge of each
others individual supply functions/bidding curves. As mentioned above, marginal cost
bidding was assumed and due to the availability of a large range of historical data
within power markets, player knowledge about competitors’ marginal cost functions
can be considered valid.

Assuming a fixed schedule for all thermal units allows this welfare game to be solved
for its equilibrium point. Market clearing condition (4) presents a sub-problem in the
welfare-maximization of every player. Taking advantage of the fact that every producer
has an incentive to shift generation from time step t−1 to t as long as both the capacity
constraint for maximum reservoir inventory is not breached and there are generator
side surplus gains to be made for this producer, time stage transfer of inventory (i.e.
arbitrage) will happen. This can be solved by selecting an adequately small step size
rstep and applying a convergence algorithm:

0) initialize roriginal =




[0, .., 0]
...

[0, .., 0]




1) calculate (4) ∀t to establish sorted set
τ = {τ1, ..., τT |p∗τ1 ≥ ... ≥ p∗τT } where τt ∈ {1, ..., T} and τ1 6= ... 6= τT

2) remove max(τt ∈ τ)
3) if last element in τ is equal to max(τ) :

remove it and back to 3)
4) if τ = {∅} : finished -

i.e. converged to equilibrium as shown in (8)
5) select first element τt from τ
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TABLE I
GAME SETUP

Generator j i type bqi,t∀t bpi,t(qi,t)∀t
1 hydro 4MW/t 0 + 0 · 2 · qi,t1 2 hydro 4MW/t 0 + 0 · 2 · qi,t
3 hydro 4MW/t 0 + 0 · 2 · qi,t2 4 thermal 5MW/t 1 + 0.02 · 2 · qi,t
5 thermal 5MW/t 1.5 + 0.02 · 2 · qi,t3 6 thermal 8MW/t 3 + 0.02 · 2 · qi,t

period t Customer Demand
1 Dt(dt) = 150000− 10000 · dt
2 Dt(dt) = 160000− 10000 · dt
3 Dt(dt) = 180000− 10000 · dt
4 Dt(dt) = 170000− 10000 · dt

6) solve objective function of (7) to receive:
W original
j for roriginal and

W new
j for

rnew
j =




roriginal
i,t ∀i ∈ {Ihy ∩ Ij}, t 6= τt,

roriginal
i,t ∀i ∈ {Ihy ∪ Ij}, t 6= τt,

min{roriginal
i,t + rstep, r̄i} ∀i ∈ {Ihy ∪ Ij}, t = τt




7) for each j where W new
j > W original

j :

set roriginal
i,t := rnew

j,i,t∀i ∈ {Ihy ∪ Ij}
if roriginal is unchanged: remove τt from τ and back to 4)

8) and back to 1)
The algorithm increases the held inventory continuously by step size rstep until no

player can increase their individual welfare by increasing the inventory, which corre-
sponds with the definition of a Nash equilibrium. Similar convergence algorithms were
used to derive equilibrium points in bidding problems for power-flow based problems
[4] and within hydro-storage convergence algorithms [5]. As the here presented algo-
rithm solves the market clearing problem via supply curve matching, the convergence
algorithm is solely concerned with matching the held inventory.

As mentioned before, this can be only conducted by assuming fixed ni for all players.
Thus, the algorithm has to be brute-forced for all possible iterations that the schedules
allow, in other words for all combinations of sni

i that s allows.

IV. CASE STUDY

The presented cases will analyze the game setup shown in table I: six generation
units owned by three players (one hydro player, one thermal player, one mixed) compete
for a (nearly) inelastic market demand ranging between 16 to 20MW/t depending on the
period. Such demand curve shifts can stem from a variety of factors such as fluctuating
base-load caused by renewable generation or consumer behavior.

Case 1, as shown in table II proposes the base case with no available storage capacity
and all thermal units running continuously in every period.

The results found in figure 2 show the impact of a lack of period price balancing
effects that holding inventory provides: producers owning storage units would have an
incentive to increase their surplus by shifting generation into successive periods and
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TABLE II
IMPLEMENTED CASES

r̄1 = 0 s4 = [[1, 1, 1, 1]]
r̄2 = 0 s5 = [[1, 1, 1, 1]]case #1
r̄3 = 0 s6 = [[1, 1, 1, 1]]

r̄1 = 0 s4 =

[
s14 = [1, 1, 1, 1]
s24 = [1, 1, 0, 0]

]

r̄2 = 0 s5 =

[
s15 = [1, 1, 1, 1]
s25 = [1, 1, 0, 0]

]

case #2
r̄3 = 0 s6 = [[1, 1, 1, 1]]

r̄1 = 1.5 s4 =

[
s14 = [1, 1, 1, 1]
s24 = [1, 1, 0, 0]

]

r̄2 = 1.5 s5 =

[
s15 = [1, 1, 1, 1]
s25 = [1, 1, 0, 0]

]

case #3
r̄3 = 1.5 s6 = [[1, 1, 1, 1]]

Fig. 2. Result Case 1

thus skimming the price peaks. As there is no storage capacity, high deviations in price
are a result of the demand changes.

Case 2 assumes the possibility of schedule changes - the two thermal units i = 4, 5
might be shut down in period 3 by choosing another schedule (i.e. setting ni = 2
respectively). This can result in 4 different states, depending on which schedule is
chosen by which player.

Those states are shown in form of a decision matrix in table III. This shows that
individually, player j = 2 has no incentive to shut unit i = 4 down, combined with
the thermal player committing to a shutdown, both are however able to increase their
surplus. Those effects are displayed in figure 3. Thus, curtailing available supply and

TABLE III
DECISION MATRIX CASE 2

j = 3
n5 = 1 n5 = 2

W1 = 172.32 W1 = 184.32
n4 = 1 W2 = 164.0 W2 = 177.5

W3 = 6.02 W3 = 6.02
W1 = 215.52 W1 = 347.52

n4 = 2 W2 = 128.9 W2 = 194.9

j = 2

W3 = 87.42 W3 = 162.42
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Fig. 3. Result Case 2, with n∗4 = 2, n∗5 = 2

TABLE IV
DECISION MATRIX CASE 3

j = 3
n5 = 1 n5 = 2

W1 = 169.556 W1 = 178.775
n4 = 1 W2 = 159.469 W2 = 175.19

W3 = 2.625 W3 = 12.04
W1 = 208.806 W1 = 322.882

n4 = 2 W2 = 141.872 W2 = 209.049

j = 2

W3 = 62.349 W3 = 117.546

thus increasing the price to maximize individual producer surplus can be enabled through
cooperation, resulting in the equilibrium defined by n∗4 = 2, n∗5 = 2. This phenomenon
referred to as opportunistic tacit collusion by [1] and [3] seems to be amplified by
collaboration amongst colluding players. As [7] illustrates - a supply side increase in
surplus would come at amplified expenses on the demand side, resulting in a loss of total
welfare. Thus, avoiding such coordination is in the interest of a welfare maximizing
system operator. However, the result of case 1 - n∗4 = 1, n∗5 = 1 - still fulfills the
definition of the Nash equilibrium shown in (8). Thus, the standard case with no
shutdowns still offers an equilibrium situation, that could similarly be achieved due
to the indifference of player j = 3 between shutdown or not in case player j = 2
chooses no shutdown.

Case 3 removes this indifference by adding hydro storage capacity to the respective
units. The resulting scheduling decision matrix is shown in figure IV. There now only
exists a single Nash equilibrium where both players owning thermal units collaborate in
order to increase supply side surplus. Total transfers from period to period accumulate
to 0.9MW, 1.5MW, 1MW respectively. The reason for this (seemingly) low transfer is
the small pool of players and the resulting high impact of transfer decisions. Players
will aim to maximize their relation of

∑
i∈Ij

q∗i,t to ∂St(dt)
∂dt

(Appendix B analyzes this).

In the specific case, the hydro power operator does not have a strong incentive for
peak skimming as it would hurt this balance, especially since the mixed hydro-thermal
operator actively shifts units (with full capacity of 1.5MW ) from period 2 into period
3, to actively create peaks. Appendix A introduces the game from case 3, all hydro
power units taken from their respective firms and distributed equally amongst a larger
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Fig. 4. Result Case 3, with n∗4 = 2, n∗5 = 2

pool of smaller firms. It clearly shows a loss of the ”strategic value” of hydro power
for the mixed generator.

V. CONCLUSION

This paper presented a novel aspect of electrical systems: the possibility of exercising
market power whilst bidding marginal through colluding on unit commitment. A supply
function was applied on a hydro-thermal system spanning over several time periods and
individual player (generation firm) surpluses were calculated. Two forms of exercise of
market power were noted in thermal/hydro-thermal operators: tacit collusion through
alignment of schedules of thermal units, creating price peaks through withholding low
cost units; and active creation of price peaks through strategic supply shifts over periods.
It has to be noted, however, that the here presented concepts of influencing the market
require a large impact of single generation firms. It shows however, that monopolists are
still able to bid at marginal cost, which is traditionally considered as system welfare-
maximizing, and still exercise market power, resulting in welfare-losses on customer
side. This however requires information on scheduling decisions of other (thermal)
players. As shared knowledge of the game participants’ schedules might not be complete,
future research on this topic is proposed.
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APPENDIX A

Fig. 5. Result Case 3, with 52 players

Figure 5 shows the results from figure 4 where the hydro power units are taken from
the participants and split up into 50 firms with equal capacities. All of the smaller
players thus inherit less market power, resulting in them bidding more competitively
with reservoir transfers of 4MW, 4.5MW, 4MW .

APPENDIX B
Assuming a hydro power producer considers shifting ri,tMW from period t to t+ 1,

the resulting period surplus changes for unit i are:

∆Wi,t =
∂St(b

q
i,t−ri,t,

∑
i2 6=i

bqi2,t
)

∂dt
qi,t(b

q
i,t − ri,t)

∆Wi,t+1 =
∂St+1(b

q
i,t+1−ri,t+1,

∑
i2 6=i

bqi2,t
)

∂dt
qi,t+1(b

q
i,t+1 + ri,t+1)

(10)

Further considering all of the transferred capacity will be acquired by the market results
in:

∆Wi,t = −
∂St(b

q
i,t−ri,t,

∑
i2 6=i

bqi2,t
)

∂dt
ri,t

∆Wi,t+1 = +
∂St+1(b

q
i,t+1−ri,t+1,

∑
i2 6=i

bqi2,t
)

∂dt
ri,t+1

(11)

Thus, in case there is sufficient demand for the shifted capacity, only the resulting slopes
of the demand functions in relation to the chosen step size will define if a period shift
is conducted. Thus, players generally do not have an incentive to shift capacity if the
steepness in period t+ 1 does not outweight period t.
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7.7. POWERT

7.7 Impact of Inertial Response Requirements on a
Multi Area Renewable Network

This work has been presented at the 12th IEEE PES PowerTech Conference.

7.7.1 Extended Abstract

This paper analyzes the impact of transfer lines capable of sharing inertial response on
unit commitment decisions. Three types of generation - thermal, wind and hydropower
- are considered operating over a limited number of periods in two areas connected by
a transfer line.

The presented model considers additional constraints on binary variables such as
minimum up-times and down-times. Optimal dispatch is conducted via a cutting plane
algorithm.

Further, it discusses the issues specific to determining a ’monetary value of inertia’.
Due to no differentiability of functions containing integer variables, there can be no clear
marginal cost calculation that would yield a price for inertia. However, the presented
analysis of the stepwise structure of provision of inertial response might support future
decisions on market structure for such ancillary services.
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Abstract

Developments in renewable integration are continuously changing power system port-
folios globally. Higher volatility of the networks might pose a threat to grid stability and
thus increase the need for ancillary services. In this paper one such service - the provision
of inertial frequency response (in short referred to as inertia) - is analyzed. An additional
demand constraint is added to a SMIP (Stochastic Mixed Integer Problem) formulation of an
interconnected two-area system consisting of wind, hydro and conventional thermal plants.
Environmental stochastic influences - wind curtailment and hydrological inflow - as well
as demand fluctuation, forecasting errors and inter-area congestion are incorporated. The
potential of cross-border trade of inertial response such as the impact of inertia requirements
on traditional scheduling is analyzed and discussed.

Index Terms

Inertia, MIP, Stochastic Programming, Generation Scheduling, Ancillary Service, Cutting
Plane

I. INTRODUCTION

Growing integration of ’green’ generation into power grids lead to an increase in
demand for ancillary and balancing services. Those services are a necessity to stabilize
grids with high shares of renewable energy, a form of generation more prone to deviation
[1]. One factor describing grid quality - in terms of stability - is the reaction time to
frequency deviations, also referred to as inertial (frequency) response or ’inertia’ [2],
[3]. A wide range of research on this topic has been carried out over recent years,
examples include the impact of frequency control on market dispatch [4] or the impact
of wind power integration on grid stability [5]. However, no models to quantify the
cost impact on a power system have been analyzed, which this paper aims to provide
in a novel approach. The chosen method was a scheduling model, a method with long
history, initially used in deterministic single unit systems [6] and recently focused on
stochastic influences such as presented in [7], [8] and [9] for hydro-thermal, [10] for
wind-hydro or [11] for wind-hydro. This paper aims to gather the ideas proposed here
and add various components to show the impact of inertial response.
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NOMENCLATURE
i = 1, ..., I wind units
j = 1, ..., J hydro units
k = 1, ..., K conventional (thermal) units
t = 1, ..., T time period
a = [1, 2] areas

P = {i, j, k} total available plants
P1 = {i, k} available plants in area 1
oP,t ∈ {0, 1} plant state: off/on
pP,t ∈ R+ unit output level
rj,t ∈ R+ hydro inventory
Ft ∈ R (bidirectional) area transfer flow
τ current time period

p
min/max
h , pmin/maxk min/max output level hydro and thermal

pnP nominal power plant output
pmini , pmaxi,t min/max output level wind
rmaxj hydro reservoir size
ej,t hydro reservoir inflow
θk,t current thermal runtime
θmaxk max thermal uptime (consecutive)
θmink min thermal downtime (consecutive)

αP , βP , γP1 cost factors
c
up/down
k thermal start/stop cost
Dp
a,t electricity demand

CF
t flow capacity

HP inertia constant
DH
a inertia demand

Λt hydro inventory coefficient
W (t) social welfare function
Oup
t,k minimum amount of starts over total time period T

Odownt
t,k minimum amount of downtime over total time period

T
E[Dp

a,t] electricity demand forecast
E[CF

t ] expected flow capacity
E[pmaxi,t ] wind curtailment forecast
E[ej,t] reservoir inflow forecast

II. MODEL FORMULATION

In the here presented model, the plants participating in the scheduling will be sepa-
rated into two adjacent areas by a flow constraint. Fig. 1 illustrates this setup: I wind
power plants and K conventional (thermal) power plants meet in a node, from here
on referred to as area, and are connected by a transfer line to a second area with
an array of J hydro power plants. The chosen representation for the reservoirs of the
hydro power plants was the aggregated single reservoir form [12], [13]. This allowed to
neglect interactions between the hydro facilities (one might think of outflow influencing
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Fig. 1. Model Setup

pmax1,t pmax2,t pmaxI,t e1,t e2,t eJ,t

wind 1 wind 2 ... wind I
hydro 1

reservoir 1

hydro 2

reservoir 2
...

hydro J

reservoir J

Dp
1,t, D

H
1 area 1

transfer

flow
area 2 Dp

2,t, D
H
2

thermal 1 thermal 2 ... thermal
K CF

t

the inflow of others) as well as different reservoir constellations which would otherwise
increase the complexity of the model unnecessarily1.

Objective function:

minimize
oi/j/k,t pi/j/k,t rj,t Ft

W (t) =
T∑

t=τ

−Λt

J∑

j=1

rj,t

+
T∑

t=τ

I∑

i=1

αioi,t + βipi,t

+
T∑

t=τ

J∑

j=1

αjoj,t + βjpj,t + γjp
2
j,t

+
T∑

t=τ

K∑

k=1

αkok,t + βkpk,t + γjp
2
k,t

+
T∑

t=τ

K∑

k=1

ok,t(1− ok,t+1)c
down
k

+
T∑

t=τ

K∑

k=1

ok,t(1− ok,t−1)c
up
k

(1)

The chosen goal was to maximize welfare by fulfilling the inelastic demand in both
areas. The objective function is shown in (1), it consists of the targets to minimize
total cost (wind farms have linear cost curves, thermal and hydro quadratic curves) and
maximimize reservoir inventory. Starting costs for conventional plants were included,
but the low extend of those factors for hydro and wind power plants led to them not
being included in the model. The initial plant states were considered as off (oi/j/k,0 = 0).
As shown in [12], to incentivize saving water in hydro power plants, the value of the
reservoir inventory (the so-called ’water value’ Λ) can be assumed to have an increasing
value over time. As shown in [12], the monetary difference in reservoir inventory (’water
value’ Λt) has to fulfill the condition Λt < Λt+1 in each period2. However, as the
focus of this paper did not lie on determining this value, it was set to a static, very
minor number(

∑
t Λt → 0). The aim of the here presented model was to schedule the

1pumping was not included in the here presented model
2other cases like the risk of spilling in high inflow scenarios which were chosen to be neglected in this model
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generators in every single period t starting from the current period τ until the final
period T , under consideration of the already committed resources in t < τ such as the
reservoir levels and the total thermal uptime.

Dp
1,t ≤

I∑

i=1

pi,t +
K∑

k=1

pk,t + Ft ∀t = τ

E[Dp
1,t] ≤

I∑

i=1

pi,t +
K∑

k=1

pk,t + Ft ∀t = τ + 1, ..., T

(2)

(2) and (3) shows the electricity demand fulfillment constraints. The flow in between
was restricted through the time variable flow capacity constraint presented in (4)3.

Dp
2,t ≤

J∑

j=1

pj,t − Ft ∀t = τ

E[Dp
2,t] ≤

J∑

j=1

pj,t − Ft ∀t = τ + 1, ..., T

(3)

−CF
t ≤ Ft ≤ CF

t ∀t = τ

−E[CF
t ] ≤ Ft ≤ E[CF

t ] ∀t = τ + 1, ..., T
(4)

I∑

i=1

oi,t × pni ×Hi +
J∑

j=1

oj,t × pnj ×Hj

+
K∑

k=1

ok,t × pnk ×Hk ≥ DH ∀t = τ, ..., T

(5a)

in case the inertial response cannot be shared:
I∑

i=1

oi,t × pni ×Hi

+
K∑

k=1

ok,t × pnk ×Hk ≥ DH
1 ∀t = τ, ..., T

J∑

j=1

oj,t × pnj ×Hj ≥ DH
2 ∀t = τ, ..., T

(5b)

In addition to the demand fulfillment, the market areas also impose inertia require-
ments on the plant schedules, as shown in (5). The calculation method was derived from
the formulation of total system inertia in [14]. Both cases of shared eqrefeq:inertiademandA
and separated fulfillment (5b) can be studied with the model. This separation solely
focuses on catering to an inertial response requirement in an AC network, demand
fulfillment is considered pooled in any of the presented cases. Inertia was considered

3It has to be noted that the flow capacity has a negative lower bound. In solvers unable to compute this, two
variables with opposing directions achieve a similar outcome in summation.
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to be able to be provided by all involved means of generation, in case of wind plants
through additional curtailment [5].

oi,t × pmini ≤ pi,t

pi,t ≤ oi,t × pmaxi,t

∀i = 1, ..., I; t = τ

oi,t × pmini ≤ pi,t

pi,t ≤ oi,t × E[pmaxi,t ]
∀i = 1, ..., I; t = τ + 1, ..., T

(6)

(6) realizes the wind capacity constraints, whereas the maximum possible output is
variable over time. The reason lies in the curtailment of wind.

oj,t × pminj ≤ pj,t

pj,t ≤ oj,t × pmaxj

∀j = 1, ..., J ; t = τ, ..., T (7)

ok,t × pmink ≤ pk,t

pk,t ≤ ok,t × pmaxk

∀k = 1, ..., K; t = τ, ..., T (8)

(7) and (8) show the capacity constraints for the other plant types.

θk,t ≥ ok,t + ok,t × θk,t−1 ∀k = 1, ..., K; t = 1, ..., T

0 ≤ θk,t ≤ θmaxk ∀k = 1, ..., K; t = 1, ..., T
(9)

As mentioned above, there has to be a maximum thermal uptime imposed, realized
through (9). This constraint is based on the potential of overheating of units, which has
to be avoided through forcing the units to stop to cool off. It has to be mentioned that
the nested variable θk,t−1 in itself is limited by ok,t−1 +ok,t−1×θk,t−2 with the emerging
row of constraints proceeding until ok,0 = 0.

θk,t =
T∑

y=1

T∏

t=y

ok,t ∀k = 1, ..., K (10)

The series notation shown in (10) demonstrates that the constraint is of quadratic nature
and thus would transform the existing problem from a MIP to a MIQCP (Mixed Integer
Quadratic Constrained Problem), thus result in avoidable complications (as described
in [15]) - as the conventional plants constitute the most expensive plants and thus
will be run in support (as a peak load plant) to the other means of production, thus
in most cases already fulfilling the required downtime constraint without the need to
have it imposed strictly [1]. Thus a cutting plane algorithm, as shown in Fig. 2 and
the necessary dynamic capacity constraint (11) was determined a fitting solution and
introduced to the model to enable it to deal with and decrease the level of complexity.

T∑

t=τ

ok,t × (1− ok,t−1) ≥ Oup
τ,k ∀k = 1, ..., K (11)

In a similar manner, the minimum downtime restriction (12) - required to give the
thermal units the necessary time to cool down - had to be implemented.

θmink −1∑

t2=0

ok,t+t2 ≤ 0 ∀t = 3, ..., T − θmink

where ok,t−2 × (1− ok,t−1) = 1

(12)
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Fig. 2. Cutting Plane Algorithm for Time Period t

Oup
τ,k := 0
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solve objective
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increment
Oup
τ,k := Oup

τ,k + 1
∀k = 1, ..., K
that have (9) 

no constraint
violation

constraint
violation:

(9) or (12) 

Oup
τ,k ≥

T−Odowntτ,k

2
for

k ∈ 1, ..., K

Oup
τ,k <

T−Odowntτ,k

2
for

k ∈ 1, ..., K

increment Odownt
τ,k :=

Odownt
τ,k + 1

∀k = 1, ..., K
that have (12) 

model solved
for period t

model infeasible
in period t

This was realized by adding another dynamic constraint with the aim of increasing the
total downtime (or, in other words, decreasing the total uptime) of the units4 until either
a feasible solution was reached or infeasibility determined, as seen in (13).

T∑

t=τ

ok,t ≤ T −Odownt
τ,k ∀k = 1, ..., K (13)

rj,t ≤ rj,t−1 + ej,t − pj,t ∀j = 1, ..., J ;
t = 1, ..., τ

rj,t ≤ rj,t−1 + E[ej,t]− pj,t ∀j = 1, ..., J ;
t = τ + 1, ..., T

(14)

4not to be mistaken with the total startups/stops
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Fig. 3. Inertia Demand Scenario with RH = LH∑
P

αP

Inertial response

LH RH

DH

∑
P

HP

λI

Fig. 4. Inertia Demand Scenario with RH 6= LH∑
P

αP

Inertial response

LH

RH

DH

∑
P

HP

λI

(14) displays the inventory function of the reservoirs. Spilling is indirectly considered
through the opportunity costs of losing one unit of Λ for each unit of ej,t spilled. (15)
defines the reservoir size.

rj,t ≤ rmaxj ∀j = 1, ..., J ; t = 1, ..., T (15)

Determining a price for Inertia through dual values of the inertia constant demand
constraint (5) is restricted by the fact that Integer Problems (IPs) do not offer a straight
forward approach for the determination of shadow prices. In consideration of the con-
straint setup however, it can be seen that there only exists one direct impact lever
for an increase of inertial response - constraint (set) (5), meaning that Inertia as such
should have a marginal cost function of 0, as there are no variable cost components
necessary to consider in increasing total system inertia, causing the sole existance of long
term implications of inertia requirements, which should be included in the investment
decision rather than the day to day expenses. Another implication demonstrated in [16],
the fallacy of strongly inelastic demand - as assumed in the here proposed model - is
given by the (potential) difference in right-hand (RH) and left-hand (LH) side values,
as shown in Fig. 3 and Fig. 4.

λI,τ =min{ αP
pnP ×HP

+ ψτ |oP,τ = 0}

with new objective function:

W (t)+

∣∣∣∣∣∣

ψ1

...
ψT

∣∣∣∣∣∣

T ∣∣∣∣∣∣

CF
T − F1

...
CF
T − FT

∣∣∣∣∣∣
and ψt ≥ 0

(16a)

or in case of inertia-segregated areas:

λI,τ,1 =min{ αP1

pnP1
×HP1

|oP1,τ = 0}

λI,τ,2 =min{ αj
pnj ×Hj

|oj,τ = 0}
(16b)

However, it was still deemed possible to give a quantiative estimation for the value
of the short term impact of inertia. The ’shadow price’ of inertial response - λI,τ (or
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Fig. 5. Hydro Plant Reservoir Inflow Forecast Accuracy
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E[ej,τ+1]
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Fig. 6. Wind Power Forecast Accuracy

capacity[MW]

t [days]10 20

pmaxi,τ

λI,τ,1/2 in case of separated areas) - was thus selected to appear in the next committed
unit with the lowest fixed cost component. It has to be noted that the distribution shown
in Fig. 3 and Fig. 4 does not have to follow a merit order, as the units on the RH side
might carry a lower fixed cost portion than on the LH , as the units are committed in
regards of their lowest total cost and not only their fixed cost. However, the next unit
committed solely for the purpose of providing inertial response has to show the lowest
fixed component of the available units. (16) depicts this. In the case of (16a) with the
possibility of transfer of inertial response, the shadow prices ψτ of the line flow, i.e.
the dual value of (4) have to be defined. A two-stage approach (solving the original
problem and then assigning the resulting schedule as deterministic parameters to the
binary variables oP,t) proved successful. Due to the nature of dual values, no congestion
would therefore set the shadow price to 0 and the price for inertial response to a fraction
of the fixed cost of the cheapest extra-marginal unit, such as in the case of two areas
without shared inertia as shown in (16b).

III. CASE STUDY

A system consisting of two small and one medium wind power plant, two medium
sized hydro power plants and a single thermal plant was used to evaluate the model(inertial
response impact was held constant for the different plant types.). The total potential
power output without wind curtailment and with full reservoirs was set to 25 MWh in
total. The hydro reservoirs were sized to be able to cater demand of one area for 3
periods and the transmission line was considered big enough to transmit the nearly the
full demand of one area to another (nearly no congestion). There was a seasonality in
form of a sinus curve with a 20% change over the 3 week period applied to both areas.
To create expected values used in the system forecast, an exponential error term was
added to the deterministic data set. The expected value of a function f in time t2, as
observed in time t was defined as E[f(t2)]t = min[f(t2)×Γ(t), 0] where the uniformly
distributed error term used in the equation was defined as Γ(t) ∈ U{2− e(t2/s), e(t2/s)}
and −Γ(t)max <= Γ(t) <= Γ(t)max. Thus, being closer in time to a period gave a
more accurate depiction of the situation to incorporate into the planning - Fig. 5 and
Fig. 6 show the simulated forecast scenarios for wind and water [1]. Fig. 7 shows the
scheduled output aggregated on form of generation for a period of three weeks and
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Fig. 7. No Inertia Requirement
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Fig. 8. Shared Inertia Requirement

Output [MW]

t [days]

∑3
i=1 pi,t

pk,t

∑2
j=1 pj,t

0 5 10 15 20
0

5

10

15

20

Fig. 9. Separated Inertia Requirement
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Fig. 10. Cost Curves for Shared Inertia Obligation (Fig.8)
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in case of no inertia requirements. Wind power provided the main generation to the
system, supported by hydro in periods of low wind supply. Thermal production was
used to supply the demand in the initial filling period, balancing the starting level of
the hydro plants. Adding a shared inertia constraint on both areas, increased the on-time
of the hydro plants, as shown in 8. Decoupling of the trade of inertia as shown in 9 lead
to the necessity of starting the thermal plant to supply the necessary inertia and thus
to an even greater total price increase. Consequently, it can be stated that increasing
the inertia requirement causes plants to start redundantly (and thus to pay their fixed
cost portion αP ), which would otherwise not have been scheduled. Fig. 10 shows the
difference in Market Cutoff Price and price of inertia λI,τ for the case of an area with
shared inertia fulfillment5.

IV. CONCLUSION

In a novel modeling approach, a ’demand’ for inertial response was imposed on
the system and its impact quantified. This is based on the fact that as this inelastic
requirement was realized through a cut in the solution set, a quantitative difference to the
initial, optimal social welfare situation can be expected. Furthermore, this paper analyzed
the impact of inertial response requirements on a two-node/are system characterized by
renewable generation forms. It was demonstrated, that inertia intuitively behaves like a
traditional capacity payment but differs on short term from the price of capacity as the
cost of providing inertial response are carried by the cost of production; however, still
influenced by area congestion. Thus follows, that on a long term average, capacity price
should be considered ≥ inertia price. For future work, a long term analysis via a rolling
time horizon and more (both in number and generation form diversity) areas could be
included in the model, as well as additional work on the process of inertia-pricing might
be advised.

5the price curve of the test system for separated areas of inertia was omitted as it showed a nearly steady level
due to the low amount of participating plants
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7.8 Errata

For the sake of critical discussion of the presented publications, a thorough list of
weaknesses in modeling and presentation shall be given here. These weaknesses are
the following:

[POLICY]: the case study 2 on page 11 should be titled ’lower elasticity’. Thus,
the text on page 10 should read ’decreasing the elasticity’ and ’lower price elas-
ticity’ instead of ’increasing the elasticity’ and ’higher price elasticity’.

[EJOR]: instead of ’other techniques from the field of reinforcement learning’
should read ’other optimizers’.

[ENERGY]: the case study results will be misrepresented due to a missing con-
straint interlinking player quantities. This would require an aggregation quantity
in the form of qj =

∑
i∈Ij

qi for every single player j. In the current representation,

each individual units stands in competition with all other units.

[ITRANS]: the Nikaido-Isoda convergence algorithm has no parameter assigned
to determine its learning rate. This means that a learning rate of u = 1 is
used, whereas the range in the original presentation of the algorithm is stated as
0 < u <= 1. A different learning rate would support convergence and thus would
improve algorithm performance.

[IAEE]: equation (3d) and equation (5) use qit which should read qit+1 in both
cases.

[EEM]: generator welfare maximization is utilized. However, there is no difference
to the principle of profit maximization.

[POWERT]: the problem is continuously referred to as ’stochastic’. However,
instead of a stochastic representation a deterministic equivalent is used.

[POWERT]: the nomenclature uses p
min/max
h which instead should read p

min/max
j ”.

None of the presented points change the core principles of the presented methods and
the validity of the provided core statements in the paper.
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Chapter 8

Further potential Applications

As the research question and main assumptions in Chapter 5 were kept intentionally
general, a wide range of applications of the proposed models and methods from Chapter
7 can be expected. Proposals for future research and applications of the presented
concepts will therefore be introduced in this chapter.

On one hand, increasing importance of similar models in electric power systems can
be expected, e.g. based on the decreasing generation portfolio shares of flexible means
of generation [53].

On the other hand, various other industries might encounter problems that are in
a similar manner described as ’games under storage and dispatch decisions’. As the
novel models and methods presented in this dissertation are able to approach these
problems, possible extensions to other fields will also be discussed in this chapter.

8.1 Applications in Electric Power Systems

There exist various possible additional starting points for future research using the
presented concepts:

8.1.1 Model Extensions

As presented in References [1, 36, 95, 111], various additional factors such as hydro-
logical typologies, conversion rates, bidding blocks, different bidding time frames and
various market types could be incorporated in the proposed market models. Even
though these factors have not been considered in depth in the presented publications,
extension of the introduced models to incorporate such features would allow to analyze
a broader range of practical cases.
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8.2. APPLICATIONS IN OTHER FIELDS

8.1.2 Different Means of Storage

Existing studies highlight the feasibility of applying small-scale storage to buffer in-
termittency of renewable sources [14, 29]. An operator of a network of small-scale
storage units would be able to conduct arbitrage similar to traditional large-scale stor-
age providers. Considering that such applications are also intended to reduce the
strains on the transmission networks [29], local price-maker areas/nodes might become
a growing topic of analysis [16]. Here, the presented methods might provide a starting
point for future research.

8.1.3 Multi-level Games

Multi-level games such as games under investment decisions [84] or leader-follower
games [98] could be reformulated as single-stage games by adding state constraints as
proposed above. Connection between the individual levels of the model would be similar
to storage decisions, whereas constraints denying temporal regression, i.e. holding
inventory backwards in time, could be removed. This would allow lower ranked levels
to exercise impact on the higher ranked levels of such a model.

8.2 Applications in other Fields

Due to the generality of the problem, applications beyond the analyzed areas can be
expected. These include the following:

8.2.1 Non-electric Energy Markets

Formulation of competition as complementarity models and solution techniques pre-
sented in Chapter 2 have been proposed for other energy markets such as gas markets
[22, 51], coal [73], crude oil [85], district heating [159] or emission allowance schemes
[166]. State decisions such as network routing and (pipeline) inventories and uncer-
tainty in demand, supply, weather effects, etc. could be considered viable additions
to such models. These additions could be made in similar manner to the previously
proposed concepts.

8.2.2 Other Applications from Operations Research

The above presented methods share various characteristics with other markets for com-
modity goods: players acting under consideration of limitations (e.g. production ca-
pacities, conversion efficiencies, state-dependent constraints,...), a distribution network
(e.g. electricity grid, road network, railway network, storage facility pathways), state
decisions (e.g. inventory, dispatch) and varying levels of competition as well as several
market/contract types.
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8.2. APPLICATIONS IN OTHER FIELDS

Due to this, the range of practical research applications is broad. The models
presented in the publications above allow to incorporate competition between multi-
ple players to multi-period newsvendor models [31, 107], vehicle routing problems [4],
(storage facility) allocation problems [55] or queuing problems [101].
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Chapter 9

Conclusions

The presented work attempts to introduce novel market models in electric power sys-
tems and subsequently design solution techniques to approach those. The main focus of
the work is directed on competition between peak-load units. These units are assumed
to be provided by thermal power plants and large-scale storage plants. In practical
applications, the latter can be assumed to be provided by hydropower units1. In the
presented applications, the applied models focus mainly on storage plants with natural
(hydrological) inflow and no pumping/purchasing. Latter would be an important trait
in analyzing other means of storage. However, due to the simplifications of the state
constraints and methods, extension to other storage types such as large scale battery
storage is considered a possibility.

Due to the focus on player interaction, models from the field of game-theory were
applied. Competition was mainly formulated via Cournot models, due to the impor-
tance of ’quantity games’ in commodity markets such as the electric power system.

The solution and modeling techniques developed during the work on this disserta-
tion mainly focus on a model with two problem ”dimensions”:

j - Several players are assumed to participate in the proposed market models. Those
players are assumed to have the means to impact the decisions of other players.
This is done through actions such as changing the decisions on generation and
thus impacting market prices.

t - Several stages/time periods are considered. These periods allow the players to
alternate their states via such decisions as dispatching units and storing inventory.

1It has to be noted that hydropower generation do not necessarily act only as peak load providers.
The ratio of inflow to storage capacity influences the range of viable storage decisions (and might vary
over the year/s). If this number is high, operation similar to traditional base load units is inevitable.
However, this dissertation focuses on plants that are assumed to have sufficient freedom in their storage
decisions.
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The previous problem ”dimension” implies that these state decisions are therefore
also able to influence other players’ state decisions.

Literature on this intersection of traditional competition models and unit commitment
models was found to be rare. In addition, both of these models individually suffer from
the ’curse of dimensionality’ that the required non-linear solution methods offer.

Because of these problem characteristics, the choice to design suitable methods and
techniques to solve such problems efficiently was made. Rather than direct the focus
of the work on large-scale case studies, the focus was directed on suitable small-scale
examples intended to display the viability of the applied approaches. These models were
aimed on the Northern European power system due to the high share of hydropower in
this part of the European grid. However, the applications were designed with the intend
of supporting execution of studies of greater extent. Thus, computational complexity
and resource efficiency were a core topic of the presented algorithms.

Further importance is found in the appearance of solutions, as both finite and in-
finite ranges of multiple Nash equilibria are possible results to the proposed models.
Careful selection and analysis of those potential outcomes is therefore both advised
and conducted in the presented case studies. One result of this analysis is the map-
ping of Nash equilibria, as conducted in various of the publications presented in this
dissertation.

The main research results fulfill the originally formulated research question from
Chapter 5:”How would a model need to be designed to accurately depict the decision
process of a price-making storage operator?”2 Considering the number of published
works as a result of this dissertation, this research question can be considered ap-
proached in multiple ways by the work presented in Chapter 7. Several techniques and
models were designed and discussed:

- Publication [EJOR] presents a dynamic approximation scheme for a non-symmetric/
non-convex game solved via Gröbner basis formulation.

- Publication [ENERGY] introduces a discontinuous game under uncertainty that
is solved via reformulation, a nested discontinuous-continuous algorithm and a
weighted residual approach.

- Publication [ITRANS] provides a solution methodology based on a stepwise
Nikaido-Isoda convergence algorithm that is nested in a tailored cut-and-branch
methodology.

- Publication [IAEE] solves a discontinuous game under uncertainty via a method
based on multi-dimensional price curves approximated via interpolation that is
nested in a Column-and-Constraint-Generation algorithm.

2Further assumptions such as a focus on non-pumped hydropower storage and reserve markets/an-
cillary services are formulated in Chapter 5. The previous chapters present discussion leading to those
assumptions.
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Nonetheless, additional results and finds beyond this core question were made and
presented in the work. These research contributions can be summarized the following:

# 1 An overview over existing publications on competition under state-
constraints was provided. Due to the computational ramifications of
including such traits, these models proved rare in literature. This
however allowed for a rather complete mapping of the existing work
in the field that is provided within Chapter 6 of this dissertation.

# 2 Additional solution techniques beyond the traditional Karush-Kuhn-
Tucker for equilibrium models were applied. Applications based
on Nikaido-Isoda functions and Gröbner bases were developed.
Additional convergence algorithms and supply function equilibria
were discussed. Further, dynamic approximations via machine-
learning/metaheuristical techniques aimed at traditionally neglected
problems from game-theory were introduced.

# 3 Practical applications of the developed methodologies were shown.
These applications such as strategic unit commitment or markets
for running reserves/inertial response could prove valuable starting
points for future research.

# 4 Various methods to find and select multiple Nash equilibria are pro-
posed. These range from polynomial formulations to reformulation
techniques that reduce the complexity of the discontinuous decisions.
As a starting point for future research, large-scale cases could test
and assess those approaches in their practical validity.

# 5 Modular methodologies were designed. Even though problems were
solved entirely on single-level3, discontinuous and continuous deci-
sions were most often separated. This allows for adjustments of
individual parts without changing the concept of another. For ex-
ample could the branch-and-cut technique proposed in Publication
[ITRANS] be used to solve the discontinuous problem in Publi-
cation [ENERGY], or the approximation technique in Publication
[EJOR] to solve a Nikaido-Isoda convergence problem as in Publi-
cation [ITRANS] or a traditional KKT problem as in Publication
[ENERGY].

3Opposed to traditional approaches, which often solve bi-level problems in the form of e.g. ’solve
scheduling/storage decision’ → ’solve market equilibrium’.
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# 6 Concepts for including uncertainty in electricity market games were
analyzed. This matter was considered of vital importance, as hy-
dropower optimization is strongly influenced by uncertainty in inflow
caused by precipitation. The current best practice for this application
is provided by techniques from stochastic optimization. Such tech-
niques, however, result in a branched tree instead of single (expected)
solution states for future periods (this is extended on in Chapter 3).
Therefore, the developed methods were mostly focused on robust/in-
terior point solutions.

# 7 The traditional definition of market power, i.e. ’bidding above
marginal cost’ was challenged. It was shown that systems under
marginal cost bidding still offer strategic players options to influence
market prices. The here considered strategies were:

a) for hydropower/storage units - not conduct storage even though
sufficient capacity is available, releasing available capacities
prior to peak periods in order to create higher peaks.

b) for thermal units - strategically dispatch units by planning in
order to have units with higher marginal cost available in peak
demand periods.

Both of these strategies could be regarded as the traditional monopo-
listic/oligopolistic strategy of ’withholding supply’ but are conducted
indirectly by players limiting their own generation capacities in sub-
sequent periods. In Publication [POLICY] the future impact of such
decisions was projected to continue growing due to a reduced share
of peak load units and reduced supply elasticities.

By providing a review on existing literature in Chapter 6, the presented dissertation
highlights the novelty of the presented methods. Techniques to reduce problem com-
plexity were presented in multiple forms and include reformulations, decomposition,
approximations and problem-specific analysis. However, the essential core problem of
non-convex games still is NP-hard. Extending this problem to multiple time stages
further increases this complexity. The developed methodologies thus offer a useful
starting point for future developments and improvements that might show a growing
importance in changing future power systems.

9.1 Closing Words

With the work on this dissertation and the publications presented in Chapter 7, the
author hopes to contribute to a new angle of view on competition under storage. In
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electric power systems, models from game theory were traditionally intended to analyze
the interaction between flexible agents in selected, representative time periods/scenar-
ios. Recent developments have, however, led to drastic changes in the system.

These changes of the electric power system include: intermittency and uncertainty
caused by a higher share of renewable generation in the system, end customers actively
seeking participation in markets, both via decisions on prices but also via voicing
preferences for certain generation portfolios; higher shares of small-scale storage also
in the form of electric vehicles), shorter investment cycles for generation units, increases
of large-scale cooperation projects4 and increasing complexity in financial markets.

Considering these changes, reassessment of traditional techniques can be considered
a crucial step in preparation for future challenges. The author of this dissertation aimed
to provide valid concepts and ideas to detect and analyze inefficiencies in such future
electric power systems.

The motivation was to support the responsible decision makers to implement ade-
quate solutions to deal with such inefficiencies in order to fulfill their mission imposed
by society: supplying consumers economically and ecologically efficient with the com-
modity that is electricity.

4Examples are provided in e.g. Reference [52]
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without reduction to zero (F5)’, Proceedings of the 2002 international symposium
on Symbolic and algebraic computation - ISSAC ’02 -(-), 75–83.

[57] Ferris, M. C., Dirkse, S. P. and Meeraus, A. [2002], Mathematical Programs with
Equilibrium Constraints: Automatic Reformulation and Solution via Constrained
Optimization, Technical report, Oxford University Computing Laboratory.

[58] Fleten, S. E. and Kristoffersen, T. K. [2007], ‘Stochastic programming for opti-
mizing bidding strategies of a Nordic hydropower producer’, European Journal of
Operational Research 181, 916–928.

[59] Fleten, S. E. and Kristoffersen, T. K. [2008], ‘Short-term hydropower produc-
tion planning by stochastic programming’, Computers and Operations Research
35(8), 2656–2671.

[60] Fleten, S.-E. and Lie, T. T. [2013], A Stochastic Game Model Applied to the
Nordic Electricity Market, in ‘World Scientific Series in Finance’, Vol. 4, pp. 421–
441.

[61] Fodstad, M., Helseth, A. and Henden, A. L. [2016], Modeling start/stop in short-
term multi-market hydropower scheduling, in ‘International Conference on the
European Energy Market, EEM’, Vol. 5.

[62] Førsund, F. R. [2014], ‘Hveding’s Conjecture: On the Aggregation of a Hydro-
electric Multiplant Multireservoir System’, CREE working paper pp. 1–30.

[63] Førsund, F. R. [2015], Hydropower Economics, 2 edn, Springer.

[64] Fortuny-Amat, J. and McCarl, B. [1981], ‘A Representation and Economic Inter-
pretation of a Two-Level Programming Problem’, The Journal of the Operational
Research Society 32, 783 – 792.

[65] Gabriel, S. A., Conejo, A. J., Fuller, J. D., Hobbs, B. F. and Ruiz, C. [2013],
Complementarity Modeling in Energy Markets, Springer, New York.

200



[66] Gabriel, S. A., Kiet, S. and Zhuang, J. [2005], ‘A Mixed Complementarity-
Based Equilibrium Model of Natural Gas Markets’, Operation Research 53(March
2017), 799–818.

[67] Gabriel, S. A., Siddiqui, S. A., Conejo, A. J. and Ruiz, C. [2013], ‘Solving
Discretely-Constrained Nash-Cournot Games with an Application to Power Mar-
kets’, Networks and Spatial Economics 13(3), 307–326.

[68] Gaudard, L. and Romerio, F. [2013], ‘The future of hydropower in Europe: In-
terconnecting climate, markets and policies.’, Environmental Science and Policy
37, 1–10.
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Appendix A

Solving Equilibria in Code

This chapter will introduce examples of various methods formulated in the Python
Programming Language used to yield Nash equilibria for a selected problem setup.
Since the methods presented in Chapter 7 are developed as extensions to the tech-
niques presented in Chapter 2, this chapter aims to provide a practical example for
implementation of the basis market clearing algorithms. Due to its importance in the
publications presented above, the hydro-thermal bidding problem setup presented in
Reference [27] is taken as an example to demonstrate the various solution techniques:

player optimization problem ∀j ∈ J :

max
qi∀i∈Ij

∑
i∈Ij

∑
t
pj,t(

∑
i2∈Ij

qi2,t +
∑
i3/∈Ij

q′j,i3,t)qi,t −
∑

i∈ITh
j

∑
t
ci(qi,t)

s.t.
¯
qi ≤ qi,t ≤ q̄i ∀i ∈ Ij , t∑
t
qi,t = ri ∀i ∈ IHy

j

(A.1a)

market clearing condition :
∑
i∈Ij

qi,t +
∑
i/∈Ij

q′j,i,t =
∑
i∈I

qi,t ∀j, t (A.1b)

The individual player decision problems presented in Equation Set (A.1a) formulate
competition on a Cournot market over several time stages t. Players hold a number
of generation units Ij which can be either of the types ’thermal’ or ’hydropower’.
All units are constrained by minimum and maximum generation, denoted as

¯
qi and q̄i

respectively. Hydropower units further have a limited available reservoir inventory over
all considered time frames, which is denoted by ri. As mentioned above, the market
clearing condition (A.1b) is required to ensure convergence towards a Nash equilibrium.
In the original paper, Bushnell uses linear demand functions and piecewise linear cost
functions. For the sake of simplicity, cost functions will also be assumed linear in
the here presented example. Further, complete information on demand functions is
modeled as pj,t ≈ pt∀j. The object preamble defining the data set and results are:
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A.1. (LINEARIZED) KARUSH-KUHN-TUCKER CONDITIONS

class Parameter ( object ) :
def i n i t ( s e l f ) :

s e l f . J = None # an i n t e g e r
s e l f . I = None # an i n t e g e r
s e l f .T = None # an i n t e g e r
s e l f . i = {} # . i [ j ]=[ u n i t s ]
s e l f . Ihy = [ ] # i n t e g e r s
s e l f . I th = [ ] # i n t e g e r s
s e l f . p a = [ ] # p r i c e = p a [ t ] − p b [ t ] ∗ q sum [ t ]
s e l f . p b = [ ] # −−−
s e l f . c a = [ ] # c o s t = c a [ i ] + c b [ i ] ∗ q t h [ i ]
s e l f . c b = [ ] # ( c a = c b = 0 f o r hydro )
s e l f . qmin = [ ] # lower cap
s e l f . qmax = [ ] # upper cap
s e l f . r = [ ] # ( . r [ i ]=0 f o r thermal )

class Var iab l e s ( object ) :
def i n i t ( s e l f ) :

s e l f . q = [ ] # . q [ j ] = f l o a t
s e l f . q sum = None # market c l e a r i n g q u a n t i t y

A.1 (Linearized) Karush-Kuhn-Tucker Conditions

The KKT-conditions for the presented problem can be formulated similar to Equation
Set (2.16). In extended form they read:

−pt(
∑
j2∈J

qj2,t)−
∂pt(

∑
j2∈J

qj2,t)

∂qj,t
qj,t − σj,t = 0 ∀j, t

{
0 if i ∈ IHy

∂ci(qi,t)
∂qi,t

if i ∈ ITh − ¯
λi,t + λ̄i,t +

{
σri if i ∈ IHy

0 if i ∈ ITh + σj,t = 0 ∀j, i ∈ Ij , t

0 ≤
¯
λi,t ⊥

¯
qi − qi,t ≤ 0 ∀i, t

0 ≤ λ̄i,t ⊥ qi,t − q̄i ≤ 0 ∀i, t∑
t
qi,t − ri = 0 ∀i ∈ IHy

∑
i∈Ij

qi,t − qj,t = 0 ∀j, t

σri , σj,t ∈ R ∀i ∈ IHy, t

¯
λi,t, λ̄i,t ∈ R+ ∀i, t

(A.2)

The variables to be solved for are the two decisions qi (generation per plant) and qj
(total generation) made by a player and the four dual variables

¯
λ, λ̄, σr, σ.
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A.1. (LINEARIZED) KARUSH-KUHN-TUCKER CONDITIONS

The Python plugin Pyomo has several linear transformation methods included as
callable functions [76]. The KKT conditions in linearized form can thus be implemented
via the following code:

from pyomo . envi ron import ∗
from pyomo . opt import So lverFactory
from coopr . pyomo import value
from pyomo . mpec import ∗
import random
def l inearizedKKT ( Parameters ) :

par = Parameters
kkt = ConcreteModel ( )
# s e t s :
kkt . J = Set ( i n i t i a l i z e = range ( par . J ) )
kkt . I = Set ( i n i t i a l i z e = range ( par . I ) )
kkt .T = Set ( i n i t i a l i z e = range ( par .T) )
# d e c i s i o n v a r i a b l e s :
kkt . q = Var ( kkt . I , kkt .T, with in=Reals , \
i n i t i a l i z e = random . randrange (min( par . qmin ) ,max( par . qmax ) ) )
kkt . q j = Var ( kkt . J , kkt .T, with in=Reals )
kkt . qsum = Var ( kkt .T, with in=Reals )
# dual v a r i a b l e s :
kkt . lambda d = Var ( kkt . I , kkt .T, with in=NonNegativeReals )
kkt . lambda u = Var ( kkt . I , kkt .T, with in=NonNegativeReals )
kkt . s igmar = Var ( kkt . I , with in=Reals )
kkt . sigma = Var ( kkt . J , kkt .T, with in=Reals )
# KKT c o n d i t i o n s :
def l ag rang ian1 ( kkt , j , t ) :

return −(par . p a [ t ]−par . p b [ t ]∗ kkt . qsum [ t ])−\
(−par . p b [ t ]∗ kkt . q j [ j , t ])− kkt . sigma [ j , t ]==0

kkt . l ag rang ian1 = Constra int ( kkt . J , kkt .T, r u l e=lagrang ian1 )
def l ag rang ian2 ( kkt , i , t ) :

for j 2 in range ( par . J ) :
i f i in par . i [ j 2 ] :

j = j2
return par . c b [ i ]−kkt . lambda d [ i , t ]+\
kkt . lambda u [ i , t ]+kkt . s igmar [ i ]+kkt . sigma [ j , t ]==0

kkt . l ag rang ia2n = Constra int ( kkt . I , kkt .T, r u l e=lagrang ian2 )
def capacityDown ( kkt , i , t ) :

return complements(0<=kkt . lambda d [ i , t ] ,\
par . qmin [ i ]−kkt . q [ i , t ]<=0)

kkt . capdown = Complementarity ( kkt . I , kkt .T,\
r u l e=capacityDown )
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A.2. NIKAIDO-ISODA CONVERGENCE ALGORITHM

def capacityUp ( kkt , i , t ) :
return complements(0<=kkt . lambda u [ i , t ] ,\

kkt . q [ i , t ]−par . qmax [ i ]<=0)
kkt . capup = Complementarity ( kkt . I , kkt .T, r u l e=capacityUp )
def s t a t e equa t i on ( kkt , i ) :

return sum( kkt . q [ i , t ] for t in kkt .T)−par . r [ i ]==0
kkt . r e s e r v o i r s = Constra int ( par . Ihy , r u l e=s ta t e equa t i on )
def f i rmbid ( kkt , j , t ) :

return sum( kkt . q [ i , t ] for i in par . i [ j ])− kkt . q j [ j , t ]==0
kkt . f i rm = Constra int ( kkt . J , kkt .T, r u l e=f i rmbid )
def marketc l ear ( kkt , t ) :

return sum( kkt . q [ i , t ] for i in kkt . I )−kkt . qsum [ t ]==0
kkt . marketc l ear = Constra int ( kkt .T, r u l e=marketc l ear )
# thermal p l a n t s have no r e s e r v o i r s and thus no sigmas :
def s i g m a f i x e r ( kkt , i ) :

return kkt . s igmar [ i ]==0
kkt . s i gma f ix = Constra int ( par . Ith , r u l e=s i g m a f i x e r )
t rans f o rmat i ons = [ ’ gdp . bigm ’ , ’mpec . s i m p l e n o n l i n e a r ’ ,\

’mpec . s i m p l e d i s j u n c t i o n ’ , ’ gdp . c h u l l ’ ]
# choose l i n e a r i z a t i o n method
xfrm = TransformationFactory ( t rans f o rmat i ons [ 2 ] )
xfrm . app ly to ( kkt )
def S o l v e I t ( ) :

return So lverFactory ( ” ipopt ” ) #d e f i n e s o l v e r
opt = S o l v e I t ( )
r e s u l t s = opt . s o l v e ( kkt , t e e=True ) #s o l v e
v a r r e s u l t = Var iab l e s ( )
v a r r e s u l t . q = [ [ round( va lue ( kkt . q [ i , t ] ) , 5 ) \

for t in kkt .T] for i in kkt . I ]
v a r r e s u l t . qsum = [ round( va lue ( kkt . qsum [ t ] ) , 5 ) \

for t in kkt .T]
return v a r r e s u l t

A.2 Nikaido-Isoda Convergence Algorithm

As described in section 2.5.3, applying the Nikaido-Isoda Convergence algorithm re-
quires establishing the Nikaido-Isoda function. For the prior established problem, this
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function reads:

Ψ(qs, qy) =
∑
j

(( ∑
i∈Ij

∑
t
pt(

∑
i2∈Ij

qyi2,t +
∑
i3/∈Ij

qsi3,t)q
y
i,t −

∑
i∈ITh

j

∑
t
ci(q

y
i,t)
)

−
( ∑
i∈Ij

∑
t
pt(
∑
i2∈I

qsi2,t)q
s
i,t −

∑
i∈ITh

j

∑
t
ci(q

s
i,t)
) (A.3)

The sub problem of the convergence step can in turn be formulated as:

max
qy

Ψ(qs, qy)

s.t.
¯
qi ≤ qyi,t ≤ q̄i ∀i, t∑
t
qyi,t = ri ∀i

(A.4)

In Python-code this can be formulated the following:

from pyomo . envi ron import ∗
from pyomo . opt import So lverFactory
from coopr . pyomo import value
def NikaidoIsodaFunct ion ( Parameters , qs , qy ) :

# the Nikaido−Isoda f u n c t i o n = sum j ( p r o f i t L − p r o f i t R )
par = Parameters
def qsum1( j , t ) :

return sum( qy [ i , t ]−qs [ i ] [ t ] for i in par . i [ j ] ) +\
sum( qs [ i ] [ t ] for i in range ( par . I ) )

def qsum2( j , t ) :
return sum( qs [ i ] [ t ] for i in range ( par . I ) )

p r o f i t L = sum(sum(sum( ( par . p a [ t ]−\
par . p b [ t ]∗ qsum1( j , t ) )∗ qy [ i , t ]\

for t in range ( par .T) ) for i in par . i [ j ] ) −\
sum(sum( par . c a [ i ]+par . c b [ i ]∗ qy [ i , t ]\
for t in range ( par .T) ) for i in par . i [ j ] ) \

for j in range ( par . J ) )
pro f i tR = sum(sum(sum( ( par . p a [ t ]−\

par . p b [ t ]∗ qsum2( j , t ) )∗ qs [ i ] [ t ]\
for t in range ( par .T) ) for i in par . i [ j ] ) −\
sum(sum( par . c a [ i ]+par . c b [ i ]∗ qs [ i ] [ t ]\
for t in range ( par .T) ) for i in par . i [ j ] ) \

for j in range ( par . J ) )
return p r o f i t L − pro f i tR

def NiIs SubProblem ( Parameters , qs , u ) :
par = Parameters
m = ConcreteModel ( )
m. I = Set ( i n i t i a l i z e = range ( par . I ) )
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m.T = Set ( i n i t i a l i z e = range ( par .T) )
# d e c i s i o n v a r i a b l e s :
m. qy = Var (m. I ,m.T, with in=NonNegativeReals )
# o b j e c t i v e f u n c t i o n :
m. obj=Object ive ( expr=NikaidoIsodaFunct ion ( par , qs ,m. qy ) ,\

s ense=maximize )
# c o n s t r a i n t s :
def LowerCap (m, i , t ) :

return par . qmin [ i ]<=m. qy [ i , t ]
m. lowcap = Constra int (m. I ,m.T, r u l e=LowerCap )
def UpperCap (m, i , t ) :

return m. qy [ i , t ]<=par . qmax [ i ]
m. upcap = Constra int (m. I ,m.T, r u l e=UpperCap )
def HydroRes (m, i ) :

return sum(m. qy [ i , t ] for t in m.T)==par . r [ i ]
m. r e s = Constra int ( par . Ihy , r u l e=HydroRes )
# s o l v e r :
def S o l v e I t ( ) :

return So lverFactory ( ” ipopt ” )
opt = S o l v e I t ( )
r e s u l t s = opt . s o l v e (m, t ee=False )
print ( ” nikaido−i soda−f unc t i on value : ” ,m. obj ( ) )
v a r r e s u l t = Var iab l e s ( )
v a r r e s u l t . q = [ [(1−u)∗ qs [ i ] [ t ]+u∗ value (m. qy [ i , t ] ) \

for t in m.T] for i in m. I ]
v a r r e s u l t . qsum = [sum( v a r r e s u l t . q [ i ] [ t ]\

for i in m. I ) for t in m.T]
return v a r r e s u l t ,m. obj ( )

def NiIs ConvStep ( Parameters , Var iab les , u ) :
# u d e f i n e s the l e a r n i n g r a t e 0<u<=1
par , var = Parameters , Var i ab l e s
try :

r e s u l t s , n i k i s o = NiIs SubProblem ( Parameters , var . q , u )
except :

#i n i t i a l e s t i m a t e f o r q
q =[ [0 for t in range ( par .T) ] for i in range ( par . I ) ]
r e s u l t s , n i k i s o = NiIs SubProblem ( Parameters , q , u )

return r e s u l t s , n i k i s o
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A.3 Gröbner Basis Reformulation

To apply the above presented Gröbner basis reformulation, the KKT conditions (A.2)
can be reformulated:

G




−pt(
∑
j2∈J

qj2,t)−
∂pt(

∑
j2∈J

qj2,t)

∂qj,t
qj,t − σj,t = 0 ∀j, t

{
0 if i ∈ IHy

∂ci(qi,t)
∂qi,t

if i ∈ ITh − ¯
λi,t + λ̄i,t +

{
σri if i ∈ IHy

0 if i ∈ ITh + σj,t = 0 ∀j, i ∈ Ij , t

¯
λi,t(

¯
qi − qi,t) = 0 ∀i, t

λ̄i,t(qi,t − q̄i) = 0 ∀i, t∑
t
qi,t − ri = 0 ∀i ∈ IHy

∑
i∈Ij

qi,t − qj,t = 0 ∀j, t




¯
qi − qi,t ≤ 0 ∀i, t
qi,t − q̄i ≤ 0 ∀i, t
σri , σj,t ∈ R ∀i ∈ IHy, t

¯
λi,t, λ̄i,t ∈ R+ ∀i, t

(A.5)
The respective Python code is the following:

from sympy import ∗
import time
def groebnerReformulat ion ( Parameters ) :

par = Parameters
# d e f i n e the primal v a r i a b l e s :
q = [ [ symbols ( ”q”+str ( i )+” ”+str ( t ) ) \
for i in range ( par . I ) ] for t in range ( par .T) ]
q j = [ [ symbols ( ” q j ”+str ( j )+” ”+str ( t ) ) \
for j in range ( par . J ) ] for t in range ( par .T) ]
qsum = [ symbols ( ”qsum”+str ( t ) ) \
for t in range ( par .T) ]
# d e f i n e the dua l v a r i a b l e s :
lambda d = [ [ symbols ( ” ld ”+str ( i )+” ”+str ( t ) ) \
for i in range ( par . I ) ] for t in range ( par .T) ]
lambda u = [ [ symbols ( ” lu ”+str ( i )+” ”+str ( t ) ) \
for i in range ( par . I ) ] for t in range ( par .T) ]
def s i g r ( i ) :

i f i in par . Ihy :
return symbols ( ” s i g r ”+str ( i ) )

else :
return 0

sigmar = [ s i g r ( i ) for i in range ( par . I ) ]
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sigma = [ [ symbols ( ” s g j ”+str ( j )+” ”+str ( t ) ) \
for j in range ( par . J ) ] for t in range ( par .T) ]
# the marginal c o s t :
def marg ina l cos t ( i ) :

i f i in par . I th :
return par . c b [ i ]

else :
return 0

mc = [ marg ina l cos t ( i ) for i in range ( par . I ) ]
# d e f i n e the po lynomia l s :
equat ions = [ ]
for j in range ( par . J ) :

for t in range ( par .T) :
equat ions . append(−(par . p a [ t ] − par . p b [ t ] ∗\
sum( q j [ t ] [ j 2 ] for j 2 in range ( par . J)))−\
(−par . p b [ t ] ) ∗ qj [ t ] [ j ] − sigma [ t ] [ j ] )

for j in range ( par . J ) :
for i in par . i [ j ] :

for t in range ( par .T) :
equat ions . append (mc [ i ]− lambda d [ t ] [ i ]+\
lambda u [ t ] [ i ]+ sigmar [ i ]+sigma [ t ] [ j ] )

for i in range ( par . I ) :
for t in range ( par .T) :

equat ions . append ( lambda d [ t ] [ i ]∗\
( par . qmin [ i ]−q [ t ] [ i ] ) )

equat ions . append ( lambda u [ t ] [ i ]∗\
( q [ t ] [ i ]−par . qmax [ i ] ) )

for i in par . Ihy :
equat ions . append (sum( q [ t ] [ i ]\

for t in range ( par .T))−par . r [ i ] )
for j in range ( par . J ) :

for t in range ( par .T) :
equat ions . append (sum( q [ t ] [ i ]\

for i in par . i [ j ])− qj [ t ] [ j ] )
print ( ” s t a r t groebner with ”+\

str ( len ( equat ions ))+” equat ions ” )
s t a r t t i m e = time . time ( )
marketc l ear = groebner ( equat ions ,\

order=’ g r ev l ex ’ , method=”F5B” )
print ( ” s o l u t i o n time : ” , time . time ()− s t a r t t i m e )
groebnerkkt = [ str ( marketc l ear [ l ])+ ”=0”\

for l in range ( len ( marketc l ear ) ) ]
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for i in range ( par . I ) :
for t in range ( par .T) :

groebnerkkt . append ( str ( par . qmin [ i ]−q [ t ] [ i ])+ ”<=0” )
groebnerkkt . append ( str ( q [ t ] [ i ]−par . qmax [ i ])+ ”<=0” )
groebnerkkt . append ( str ( lambda d [ t ] [ i ])+ ”>=0” )
groebnerkkt . append ( str ( lambda u [ t ] [ i ])+ ”>=0” )

print ( ” reduced s e t : ” )
print ( groebnerkkt )
# o p t i o n a l l y sympy s u p p l i e s an a l g e b r a i c s o l v e r :
# s o l v e ( marke tc l ear )

Here, it has to be noted that executing the proposed code fragment might take a
significant time duration to solve. Thus, an approach similar to the one proposed in
publication [EJOR] might be the method of choice when applying Gröbner bases on
this or similar problems.
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Appendix B

General Formulation of the
Storage State Constraint

The previous example of Equation A.2 already allows for a more general formulation
of the storage problem that is not explicitly discussed in Reference [27]: assigning
negative lower generation capacity limits

¯
qi to storage operators allows them to act

as consumers on the market, whereas this consumption is stored to be used in other
periods.

The following code establishes a test case that explores this with the previously
introduced model:

def casestudy ( s to rage ) :
case = Parameter ( )
case . J = 2
case . I = 2
case .T = 3
case . i = { 0 : [ 0 ] , 1 : [ 1 ] }
case . Ihy = [ 0 ]
case . I th = [ 1 ]
case . p a = [ 3 0 , 1 0 0 , 9 0 ]
case . p b = [ 1 , 0 . 7 5 , 0 . 7 5 ]
case . c a = [ 0 , 5 0 ]
case . c b = [ 0 , 1 5 ]
i f s t o rage == True :

case . qmin = [−25 ,15]
else :

ca se . qmin = [ 0 , 1 5 ]
case . qmax = [ 2 5 , 5 5 ]
case . r = [ 0 , 0 ]
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return case

In case of storage = False there is no available storage capacities to the storage
operator as the inflow is equal to 0, resulting in no output for this player:

EXIT : Optimal So lu t i on Found .
quant i ty un i t 1 : [ 0 . 0 , 0 . 0 , 0 . 0 ]
quant i ty un i t 2 : [ 1 5 . 0 , 55 . 0 , 5 0 . 0 ]
quant i ty t o t a l : [ 1 5 . 0 , 55 . 0 , 5 0 . 0 ]
p r i c e s : [ 1 5 . 0 , 58 . 75 , 5 2 . 5 ]

Adding the possibility for a storage decision by setting storage = True results
in negative quantity decisions and prices rising above the price-intercept in the first
period:

EXIT : Optimal So lu t i on Found .
quant i ty un i t 1 : [−15.75758 , 10 .10101 , 5 . 656 57 ]
quant i ty un i t 2 : [ 1 5 . 3 7 87 9 , 51 .61616 , 47 . 17172 ]
quant i ty t o t a l : [−0.37879 , 61 .71717 , 52 . 82828 ]
p r i c e s : [ 3 0 . 3 7 8 7 9 , 53 .7121225 , 50 . 37879 ]

However, the presented model would be better suited for traditional inventory prob-
lems as for applications in pumped hydropower storage, as an essential technical trait
of electricity storage problems is not included - the efficiency loss of conducting such
storage.

Thus, a more general formulation of the traditional optimal (inventory) control
problem can be formulated the following[17, 19, 32]:

ri,t+1 = ri,t − qout
i,t + qin

i,t (B.1)

This formulation can be considered a generalization of the previously introduced
hydropower reservoir functions (deterministic - Equation (3.2), stochastic - Equation
Equation (3.3)).

In literature, distinguishing between quantities offered qout
i,t ∈ R+ and quantities

demanded qin
i,t ∈ R+ contrary to applying a single quantity decision qi,t ∈ R is of

importance. In examples from traditional supply chain models, this could e.g. mean
that producing in-house might be cheaper than purchasing from the market, leading
to two different cost curves cout

i (·) 6= cini (·) depending on their respective quantities.
For the example of pumped hydropower storage, efficiency losses play a key role in

regards to this control problem[133], as it cannot be expected that 100 % of the energy
required for pumping can be conserved and shed again at a later stage.

Thus, effiency constants ηi,t[%] can be considered, leading to an inventory function
in the form of:

ri,t+1 = ri,t − qout
i,t + ηi,tq

in
i,t + l(ξ)i,t (B.2)
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As presented in Publication [EJOR], efficiencies of storage can themselves be based
on the current reservoir level, which in this case would lead to an efficiency function
ηi,t(ri,t)[%].

Due to the limited available literature on games combined with such inventory
control problems, extensions beyond the basic inventory functions were considered out
of scope of this work and not considered in the presented publications. However, the
presented models and methods were designed to allow for such extended models, which
also shows in the publications’ focus on performance and computational efficiency.
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Appendix C

Market Power and Storage:
the Welfare Gap

Assumed be a price-making storage operator j with a single-period profit function:

Πj,t(qj,t) = pj,t(qj,t)qj,t − cj(qj,t) (C.1)

Further, cost functions are assumed to be negligible minor [58], i.e. cj(qj,t) ≈ 0, and
the price function pj,t(qj,t) is considered strictly decreasing. In addition, it shall be
assumed that a single firm (thus dropping the j) optimizes storage over two periods t
and t + 1. The profit functions for the whole time frame and the individual periods
are:

Π(rt) = pt(lt − rt)(lt − rt) + pt+1(rt)rt
Πt(rt) = pt(lt − rt)(lt − rt)

Πt+1(rt) = pt+1(rt)rt

(C.2)

In this case it is assumed, that there exists only a single inflow lt in the first period
and no capacity restrictions on storage. Further, it is assumed that the entire inflow
has to be used up in the considered time frame. It can be assumed that there exist
stationary points that provide global optima for the respective profit functions:

∂Π(rt)
∂rt

= 0
∂Πt(rt)
∂rt

= 0
∂Πt+1(rt)

∂rt
= 0

(C.3)

However, a reservoir decision rt that provides a stationary point for one of the profit
functions does not necessarily provide optima for the others. This can be interpreted
as a firm having to commit to tradeoffs between the individual time periods in order
to maximize profits over the entire time frame.
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[AC]

rt[MWh]

Π(rt)

Πt+1(rt)

Πt(rt)

pt(lt − rt) = pt+1(rt)

(a) pbt = 0.01pat , p
a
t+1 = 1.5pat , p

b
t+1 = 0.015pat

[AC]

rt[MWh]

Π(rt)

Πt+1(rt)

Πt(rt)

pt(lt − rt) = pt+1(rt)

(b) pbt = pbt+1 = 0.01pat , p
a
t+1 = 1.5pat

Figure C.1: Optimal Profits for linear Price Functions
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rt[MWh]

Π(rt)

Πt(rt) = Πt+1(rt)

pt(lt − rt) = pt+1(rt)

(c) pbt = pbt+1 = 0.01pat , p
a
t+1 = pat

[AC]

rt[MWh]

Π(rt)

Πt+1(rt)Πt(rt)

pt(lt − rt) = pt+1(rt)

(d) pbt = pbt+1 = 0.0075pat , p
a
t+1 = pat

Figure C.1: Optimal Profits for linear Price Functions
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It cannot be expected that these optimal points equalize prices over the periods.
Figure C.1 demonstrate this under usage of linear price functions based on the intercept
pa and slope pb:

pt(lt − rt) = pat − pbt(lt − rt)
pt+1(rt) = pat+1 − pbt+1rt

(C.4)

Figure C.1a demonstrates that overlapping stationary points, i.e. a single result for
rt fulfilling all conditions from Equation set (C.3), do not necessarily mean no price
differences (dotted line indicated in gray) and thus a persisting welfare gap. This
welfare gap is illustrated in Reference [63], which shows by the example of the Hotelling
rule that with sufficient storage capacities, the welfare-maximizing outcome is that of
price equalization.

Figure C.1b illustrates that even though equal prices would be the optimal choice
for the more profitable period t + 1, a monopolist would still choose to deviate from
this point by storing less.

Figure C.1c shows the case of a monopolist deciding to equalize prices due to similar
cost functions in both periods.

Figure C.1d shows another case of similar cost functions but demonstrates that the
optimal points do not necessarily have to overlap for the individual periods.

In real cases, additional details like less market power e.g. through more competi-
tors, less price elasticity; or complicating factors such as limited reservoir capacity and
uncertainty might influence the optimal points. However, this example demonstrates
the weakness of the price-taker assumption (i.e. prices are matched over the periods)
especially in systems with large storage capacity in relation to the system size.
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