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Abstract
Monopile bottom-fixed offshore wind turbines have been in operation for around 30 years,
and more are being planned for the next decades. The location and wave conditions of
the planned wind farms make them susceptible to encounter steep and /or breaking waves
during extreme weather events, typically storms with a return period of 50 years. These
waves can produce large dynamic responses that threaten the structural integrity of the
turbine. It is therefore necessary to accurately model the loads produced by these steep
waves and the responses of the structure during the design stage of offshore wind turbines.

In this thesis, measurements from three experimental campaigns with model-scale wind
turbines subjected to extreme sea states are presented. In all three campaigns, the largest
responses were measured when a steep and breaking wave was passing through the turbine.
The response was a combination of a ringing type of response (i.e. transient excitation of
the first eigenmode of the structure) and excitation of the second mode of the structure.
Ringing responses were attributed to second and third order hydrodynamic loads, while
second mode response was triggered by so-called slamming loads (i.e. impulse loads
produced by a wave breaking at the cylinder). The response was decomposed and for
extreme events, quasi-static response accounted for 40 to 50% of the total response, the
first mode accounted for 30 to 40% and the second mode for up to 20%. Higher modes
were not analyzed.

Three design standards typically used for wind turbines in the North Sea were followed
in this thesis. Different models suggested in the standards were implemented to simulate
the responses measured during the experimental campaigns. Consistently with previous
research, it was found that models that did not include non-linear kinematics did not match
the measured first mode response, and models that did not include slamming loads did
not produce significant second mode response. One of the commonly used models, the
Morison equation with stream function wave kinematics and Wienke’s slamming load
model, was found to have the capability of exciting both the first and second mode of the
turbine, but generally missed the balance between the contribution of these two modes.

The model recently developed by Kristiansen and Faltinsen (2017), hereafter referred to
as KF was implemented for irregular waves, and it was found that this model has the cap-
ability to produce ringing responses, but generally overestimates the first mode response
for very steep waves. The Rainey model, which in the present implementation only dif-
fers from the KF model in their respective point loads, produced responses very similar to
those calculated with the KF model. This was shown to be due to the point loads producing
similar forces for steep waves.

The original contributions of this work to the offshore wind research community include
the quantification of the contributions of different eigenmodes in the response to steep
and breaking waves, the assessment of different hydrodynamic load models compared to
experimental results, and a suggestion for the implementation of the KF model in irregular
waves with fully non-linear kinematics.



ii

Acknowledgments
The first person I would like to thank is my main supervisor Jørgen Krokstad. I am part

of the lucky PhD students whose relationship with their supervisor goes beyond a profes-
sional one. In addition to all the academic support he has provided, we have shared confer-
ence trips, team-building sessions, late-night technical and philosophical discussions and
Chartreuse.

I am also extremely grateful to Erin Bachynski, who became my co-supervisor halfway
through the PhD. At a point where it was not certain that the project would go ahead,
having her join the team, with her amazingly sharp knowledge and constructive feedback
was definitely a breath of fresh air. It is absolutely fair to say that she saved this PhD.

I also want to thank my co-supervisor Jørgen Amdhal for fruitful discussions during this
PhD and for participating in the review process of the thesis.

The Marine Technology Department of NTNU has provided an inspiring environment
that facilitated highly interesting discussion and challenging questions. In particular, I
want to express my gratitude to Lene Eliassen, whose positive attitude always made it fun
to be at work and to Trygve Kristiansen for his relevant input and advice in the implement-
ation of the KF model that he has contributed to develop.

A number of research organizations have contributed to this PhD, and their support is
gratefully acknowledged: Marintek/Sintef Ocean provided the experimental set-up and
support for the experiments in the Lilletanken. The WiFi Joint Industry Project provided
experimental data and support. The Wave Loads project supplied experimental and nu-
merical data. A paper based on that data was devised during a two-week stay at the Wind
Energy Department of DTU, funded by DTU, with the invaluable help of Henrik Bredmose
and Fabio Pierella.

I also want to say thanks to Paul, Per-Ivar and Ruben, my friends at Simis. It’s hard to
work and write a PhD at the same time, but their support and enthusiasm made it possible.

Many friends should be acknowledged here as well, but I don’t think I need to cite names
for them to know. They provided a safe environment in which it was easy to not forget what
the important things are. Together we explored part of the amazing Norwegian nature, and
enjoyed these years to the fullest. If it was not for this ‘Trondheim/friends’ system, I might
have finished my PhD a bit earlier, but I certainly would be a less happy person.

Finally, I am extremely grateful for the family that I have, who are always present and
whose love I feel despite having been away for many years. Having their constant support
and knowing that they are my home gives me a peace of mind that is hard to describe.

And of course, thank you Diana for you. Ubitchomte Mnogo.

This thesis was partly funded by Statkraft and the Norwegian Research Council, project
number 237192. The other part was mainly funded by a consumption society that throws
insane amounts of food every year. Only in Norway, 385 000 tons of edible food were
thrown away in 2017, contributing to about 1.3 million tons of CO2-eq (Stensgård et al.
2018). This enables PhD students to get into dumpsters at night and save lots of perfectly
edible veggies, tasty cheeses or luxurious meat. This support is gratefully acknowledged.



Contents

Abstract i

Acknowledgments ii

List of Tables vii

List of Figures xi

Nomenclature xii

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Loads and load effects . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Difference between wind turbines and oil and gas platforms . . . 7

iii



iv CONTENTS

1.2.3 Simulation of the structure . . . . . . . . . . . . . . . . . . . . . 8

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 15

2.1 Dynamic analysis of an offshore wind turbine . . . . . . . . . . . . . . . 15

2.2 Wave theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Definition of the boundary value problem . . . . . . . . . . . . . 18

2.2.2 Linear wave kinematics . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Non-linear wave kinematics . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Irregular waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Wave loads on a surface piercing circular cylinder . . . . . . . . . . . . . 27

2.3.1 Loads from small amplitude waves . . . . . . . . . . . . . . . . 28

2.3.2 Loads from steep waves . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Loads from breaking waves . . . . . . . . . . . . . . . . . . . . 33

2.4 Response of a surface piercing circular cylinder . . . . . . . . . . . . . . 34

2.4.1 Dynamic amplification . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Structural models . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Design process for bottom-fixed offshore wind turbines . . . . . . . . . . 38

3 Model testing of monopile bottom-fixed offshore wind turbines 41

3.1 NTNU experimental campaign . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS v

3.3 Wave Loads Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Dynamic response analysis of monopile bottom-fixed offshore wind turbines 51

4.1 Experimentally determined response to steep and breaking waves . . . . . 51

4.2 Simulation of the response to steep and breaking waves . . . . . . . . . . 56

4.2.1 Individual assesment of the models . . . . . . . . . . . . . . . . 56

4.2.2 Comparison of numerical models . . . . . . . . . . . . . . . . . 64

5 Conclusions and future work 69

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Original contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Appended papers 81

Paper 1: Maximum loads on a one degree of freedom model-scale offshore wind
turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Paper 2: Simplified Bottom Fixed Offshore Wind Turbine in Extreme Sea States 93

Paper 3: Experimental results of a multimode monopile offshore wind turbine
support structure subjected to steep and breaking irregular waves . . . . . 103

Paper 4: Critical assessment of non-linear hydrodynamic load models for a fully
flexible monopile offshore wind turbine . . . . . . . . . . . . . . . . . . 119

Paper 5: Critical assessment of hydrodynamic load models for a monopile struc-
ture in finite water depth . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B Verification and validation of the numerical models 165

B.1 Structural models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B.1.1 Single degree of freedom . . . . . . . . . . . . . . . . . . . . . . 165



vi CONTENTS

B.1.2 Matlab mode shape solver . . . . . . . . . . . . . . . . . . . . . 166

B.1.3 Finite element software . . . . . . . . . . . . . . . . . . . . . . . 169

B.2 Wave kinematics models . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.2.1 Stream function theory . . . . . . . . . . . . . . . . . . . . . . . 170

B.3 Hydrodynamic load models . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.3.1 Morison equation . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B.3.2 FNV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.3.3 KF model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



List of Tables

3.1 Range of characteristics of the different models . . . . . . . . . . . . . . 42

3.2 Damping ratios measured on full-scale offshore wind turbines . . . . . . 42

3.3 Characteristics of the sea states from the WiFi experimental campaign . . 48

B.1 Eigenfrequencies reported during the experimental hammer test and ob-
tained through the numerical hammer test . . . . . . . . . . . . . . . . . 167

B.2 Damping ratios reported during the experimental hammer test and ob-
tained through the numerical decay tests . . . . . . . . . . . . . . . . . . 168

B.3 Measured and simulated responses during static load cases . . . . . . . . 168

B.4 Eigenfrequencies of the OC5 model . . . . . . . . . . . . . . . . . . . . 169

B.5 Comparison of kc2/g on the stream function wave theory . . . . . . . . . 171

B.6 Comparison of the amplitude of the inertia Morison load . . . . . . . . . 174

vii



viii LIST OF TABLES



List of Figures

1.1 Different components of an offshore wind turbine . . . . . . . . . . . . . 2

1.2 Cumulative installations of offshore wind in the world . . . . . . . . . . . 3

1.3 Average water depth and distance to shore for bottom-fixed offshore wind
farms in Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Illustration of a ringing event . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Occurrence of secondary load cycle . . . . . . . . . . . . . . . . . . . . 6

1.6 Schematic representation of the Draugen platform and a 4 MW offshore
wind turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Overview of publications during the PhD . . . . . . . . . . . . . . . . . 13

2.1 Definition of the characteristics of a wave . . . . . . . . . . . . . . . . . 17

2.2 Domain of analysis of the water waves . . . . . . . . . . . . . . . . . . . 18

2.3 Selection of different wave theories for regular waves depending on the
wave characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Contour plots for the Dogger Bank Creyke Beck B site . . . . . . . . . . 26

2.5 Illustration of the embedding process . . . . . . . . . . . . . . . . . . . . 27

ix



x LIST OF FIGURES

2.7 Maximum response of a one degree of freedom system . . . . . . . . . . 35

2.8 Illustration of the embedding procedure at two different time instants . . . 39

2.9 Procedure for estimating the 50-year response . . . . . . . . . . . . . . . 40

3.1 Experimental set-up of the NTNU campaign . . . . . . . . . . . . . . . . 43

3.2 Model used during the NTNU experimental campaign . . . . . . . . . . . 44

3.3 Experimental set-up of the WiFi experimental campaign . . . . . . . . . 46

3.4 Model used during the WiFi experimental campaign . . . . . . . . . . . . 47

3.5 Dimensionless mode shapes . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Set-up of the Wave Loads experimental campaign . . . . . . . . . . . . . 50

4.1 Exceedance probability plot for the measured base shear force . . . . . . 52

4.2 Example of the bending moment measured during an event with a large
response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Example of decomposition of the response around the eigenfrequencies of
the structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Snapshots of a steep wave breaking at the structure . . . . . . . . . . . . 55

4.5 Example of two events with a large measured response . . . . . . . . . . 55

4.6 Comparison of the measurements and the Morison equation with second
order wave kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Continuous wavelet transform of the measured and simulated responses . 59

4.8 Comparison of the measurements and the stream function models . . . . 60

4.9 Statistical assessment of the M_SF_W model . . . . . . . . . . . . . . . 61

4.10 Comparison of the measurements and the Rainey and KF models . . . . . 63

4.11 Third harmonic analysis of Fψ and F η in regular waves . . . . . . . . . 64



LIST OF FIGURES xi

4.13 Comparison between the measurements and the numerical models, ex-
ample 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.12 Comparison between the measurements and the numerical models, ex-
ample 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.14 Exceedance probability plot for the measured and simulated responses . . 68

B.1 Decay test, experimental and numerical response bending moment . . . . 166

B.2 Mode shapes obtained from the experiments and used for the numerical
simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.3 Comparison between the OC5 mode shapes from Ashes and Riflex . . . . 169

B.4 Decay test comparison between Ashes and Riflex . . . . . . . . . . . . . 170

B.5 Verification of simulated force against measurements for irregular waves . 170

B.6 Verification of the stream function theory at the free surface . . . . . . . . 172

B.7 Verification of the stream function theory under the crest and trough . . . 173

B.8 1st order free surface elevation and corresponding 2nd order elevation . . 175

B.9 Components of the FNV acting on the cylinder from Newman (1996) . . 177

B.10 Components of the FNV acting on the cylinder from the present imple-
mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.11 Comparison between the excitation loads obtained by Kristiansen and Falt-
insen (2017) and those obtained with the present implementation . . . . . 179



xii LIST OF FIGURES

Nomenclature

List of symbols

A wave amplitude [m]
An wave amplitude of the nth component in irregular waves [m]
a horizontal wave particle acceleration [m·s-2]
B damping coefficient [Nm·(rd·s-1)-1]
Bn nth Fourier coefficient of the stream function [-]
bn modal damping for the nth mode
Ca added mass coefficient [-]
CM inertia coefficient [-]
CD drag coefficient [-]
CS slamming coefficient [-]
C stiffness [Nm·rd-1]
c wave celerity [m·s-1]
cn modal stiffness for the nth mode
E Young’s modulus [Pa]
F (1), F (2), F (3) first, second and third order forces due to the linear incident

potential in the FNV [N]
fn modal excitation for the nth mode
f (n) eigenfrequency of the nth mode [Hz]
FI inertia term in the Morison equation [N]
Fslam slamming force [N]
Fψ point force due to the non-linear potential in the FNV [N]
F η point force in the Rainey model [N]
g acceleration due to gravity [m·s-2]
H wave height [m]
HS significant wave height [m]
h water depth [m]
I moment of inertia [Nm·(rd·s-2)-1]
~i, ~j, ~k unit vectors of the Cartesian coordinate system [-]
k wave number [m-1]
kn wave number of the nth component in irregular waves [m-1]
l length of the structure [m]
ma added mass in surge [kg·m-1]
Mexc excitation moment [Nm]
mn modal mass for the nth mode
N stream function order [-]
pexc exceedance probability [-]
R cylinder radius [m]
S wave spectrum
s wave steepness [-]
T wave period [s]



LIST OF FIGURES xiii

T1 first eigenperiod [s]
TP spectral peak period [s]
td impulse load duration [s]
Ur Ursell number [-]
u, v, w fluid particle velocity in the x−, y− and z−directions [m·s-1]
x, y, z coordinates along the~i, ~j, ~k axis in the Cartesian coordinate system [m]
~V fluid particle velocity [m·s-1]

α angle between the water surface and the axis of the cylinder [rd]
β auxiliary function in the FNV formulation [-]
γ peak shape parameter for JONSWAP spectrum [-]
ε perturbation parameter for the FNV theory [-]
εn phase of the nth component in irregular waves [rd]
ζ free surface elevation [m]
ζ(1) first order free surface elevation [m]
ζm maximum wave elevation for a slamming event [m]
ηn damping ratio of the nth mode [-]
θ coordinate of the one degree of freedom system [rd]
λ wave length [m]
λc curling factor [-]
ξn modal displacement of the nth mode
ρ water density [kg·m-3]
Φ velocity potential
Φ(1) linear velocity potential
Φ(n) velocity potential of order n
Ψ stream function
Ψ1, Ψ2 spatially varying functions in the FNV formulation [-]
Ψd structural deflection [m]
ψ non-linear potential in the FNV theory
ψn mode shape of the nth mode [-]
ω wave circular frequency, also called fundamental frequency [rd·s-1]
ωn wave circular frequency of the nth in component irregular waves [rd·s-1]



xiv LIST OF FIGURES

Abbreviations

DLF: dynamic load factor

FLS: fatigue limit state

FNV: Faltinsen-Newman-Vinje model, as presented in Faltinsen et al. (1995)

GBS: gravity base structure

KF: Kristiansen-Faltinsen model, as presented in Kristiansen and Faltinsen (2017)

MSL: mean sea level

M_SF: Morison equation with stream function wave kinematics

M_SF_W: Morison equation with stream function wave kinematics and Wienke’s slam-
ming model

SLC: secondary load cycle

ULS: ultimate limit state



Chapter 1

Introduction

This chapter gives an overview of the motivation, objectives, scope and contribution of
this thesis to the research community. The 5 papers that form the basis for this thesis are
listed here and appended in appendix A.

1.1 Motivation

Over the last decades, leading scientists have raised concern about how the current use of
natural resources poses serious threats to the biodiversity of our planet and the survival
of the human species (Hoekstra and Wiedmann 2014). One of these threats is climate
change, which leads to higher average temperatures worldwide, more occurrences of ex-
treme weather events and threats to unique ecosystems, to name only a few (Robinson and
Shine 2018). Among the solutions suggested by the research community to this sustain-
ability challenge, the Intergovernmental Panel for Climate Change (IPCC) advocates for a
technology-oriented option that requires only minor changes in the economic, social and
political systems (IPCC 2014). While it has been suggested that technological solutions
alone might not be sufficient (Creutzig et al. 2016), science and technological progress
can help reduce the CO2 emissions due to human activities, thus contributing to mitigate
climate change. The solutions suggested by this school of thought imply, among others,
the development of carbon-neutral ways of producing energy.

One of these is wind energy, which emits virtually no CO2 during operation. Within
the wind energy industry, bottom-fixed offshore wind represents 10.1% of the installed
capacity across Europe (Whiteman et al. 2019). Figure 1.1 shows the main components of
a bottom-fixed offshore wind turbine: the Rotor-Nacelle Assembly (RNA) is mounted on
top of a tubular tower which is fastened onto a substructure. For monopile substructures
(as the one shown in the example), a transition piece connects the tubular tower and the
monopile. The substructure transfers the environmental loads experienced by the turbine

1



2 Introduction

to the sea bed.

Figure 1.1: Different components of an offshore wind turbine. In this example, a monopile type of
substructure is shown

Offshore wind turbines present advantages compared to their land-based counterparts,
some of which are listed below:

• More space available offshore than on-land

• Reduced visual impact on the landscape, allowing for larger turbines

• Lower vertical shear in the wind

• No size limitations due to transport by rail or road

These advantages have enabled a reduction in the levelized cost of energy of offshore wind
and an increase in the total installed capacity worldwide. Figure 1.2 shows the reported
and predicted cumulative bottom-fixed offshore wind power from 2011 to 2030 (data from
GWEC 2017). The number of offshore wind farms is foreseen to increase over the next
decade.

Figure 1.3 shows the existing and planned bottom-fixed offshore wind farms in Europe
(WindEurope 2018). The near future will see several new wind farms being built in water
depths up to 50 m. Within these water depths, the monopile type of substructure, which
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Figure 1.2: Cumulative installations of offshore wind in the world, recorded and predicted, with
data from GWEC (2017)

consists of a circular cylinder that is piled into the sea bed and extends above the mean sea
level, is preferred. 81.7% of all substructures for offshore wind turbines in Europe (for all
depths, including floating) are monopiles (WindEurope 2018).

1.2 Challenges

This section presents some of the challenges that the offshore wind industry is facing with
respect to designing monopile substructures in finite water depth.

1.2.1 Loads and load effects

As shown in Figure 1.3, a significant number of offshore wind turbines are planned or be-
ing built in finite water depths in terms of hydrodynamics (see Section 2.2), where waves,
especially in storm conditions, can be significantly non-linear. These non-linear waves
can lead to the so-called ringing, springing and slamming phenomena, which threaten the
structural integrity of the turbine. These phenomena are defined hereafter.

Ringing: A ringing event is defined as a sudden transient oscillation of the structure pro-
duced by a steep wave whose fundamental frequency is significantly lower than the first
eigenfrequency of the structure. It is characterized by a fast build-up (only a few oscilla-
tions, Chaplin et al. 1997) and a much slower decay (Natvig and Teigen 1993). Figure 1.4
shows an example of a ringing event, where the bending moment of a vertical cylinder at
the sea bed oscillates in its first mode after the passage of a steep wave.

Ringing was first observed in the 1990s on model tests of the Hutton and Heidrun tension
leg platforms and then on concrete towers of the Draugen and Troll A platforms (Natvig
and Teigen 1993). Shortly after, numerical models were developed by Faltinsen et al.
(1995) and Malenica and Molin (1995) to predict ringing responses in infinite water. The
model developed by Faltinsen et al. (1995) is analyzed in detail in Section 2.3.2.
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Figure 1.3: Average water depth and distance to shore for bottom-fixed offshore wind farms in
Europe. The size of the bubble indicates the overall capacity of the site (taken from WindEurope
2018).
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Figure 1.4: Illustration of a ringing event. A surface-piercing vertical cylinder is exposed to a steep
wave, and the bending moment is measured at the sea bottom (note that in this picture the bending
moment has been filtered around the first eigenfrequency of the structure).

In the same period, many experimental campaigns studying ringing events were carried
out (Grue and Huseby 2002, Krokstad and Stansberg 1995, Huseby and Grue 2000, Welch
et al. 1999). By analyzing stiff cylinders, it was found that in a significant number of
occurrences of steep waves producing ringing, the excitation load experienced a sudden
high frequency increase. This phenomenon is called secondary load cycle (SLC), also
known as hydraulic jump and is illustrated in Figure 1.5. The SLC typically occurs about
one quarter wave period after the main peak of the excitation force (Grue and Huseby
2002), lasts for about 15% of the wave period (Grue et al. 1993) and has a magnitude
of up to 12% of the peak-to-peak excitation force (Riise et al. 2018), i.e. the difference
between the maximum and the minimum of the excitation force for the given event.

There is no general scientific consensus on the causality link between SLCs an ringing
events. Grue and Huseby (2002) analyzed several experiments on both infinitely stiff
and responding surface piercing cylinders and concluded that "The secondary load cycle
gives and important contribution to build-up of resonant body responses [...]". Rainey
(2007) used high-speed photography from the experimental campaigns of Chaplin et al.
(1997) and Rainey and Chaplin (2003) to conclude that "the rapid loading cycle causing the
"ringing" vibration is traceable to local wave breaking around the cylinder [...]". However,
Paulsen et al. (2014) carried out a numerical investigation of the SLC by solving the two-
phase incompressible Navier-Stokes equations and found that "[...] the secondary load
cycle is thus an indicator of strongly non-linear flow rather than a direct contributor to the
resonant forcing". This is in agreement with the earlier findings of Krokstad and Stansberg
(1995), who studied the phasing between the SLC and the ringing response and concluded
that "The hydraulic jump has no direct connection with the non-linear behaviour of the
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ringing force [...]".

Figure 1.5: Occurrence of secondary load cycle, visible on the excitation force (circled in black)

In the last decade, the increase in the size of bottom-fixed offshore wind turbines has led to
an increase of the first eigenperiod of the structures to levels where it can coincide with the
third and fourth harmonics of a large wave (Suja-Thauvin et al. 2014). Ringing responses
have been observed in model-scale experiments where structures with the characteristics
of an idling wind turbine were subjected to steep waves (de Ridder et al. 2011, Bredmose
et al. 2013b). In such an experiment, analyzed by Suja-Thauvin et al. (2017), it was found
that the contribution of the first mode to the maximum response bending moment at the
seabottom during a ringing event was up to 30%. This result will be studied in detail in
Section 4.1.

Slamming: Another phenomenon relevant for surface piercing bodies subjected to steep
waves is the loads from breaking waves. For very non-linear waves, the velocity of the
water particles at the crest become higher than the velocity of the wave itself (also called
wave celerity, noted c), leading to the wave breaking. When a wave breaks at the structure,
the wall of water hitting the cylinder produces a load at the point of impact of very short
duration and high amplitude that can be assimilated to an impulse type of load (Faltinsen
1990). These type of events are called slamming events and produce the so-called slam-
ming loads. Slamming loads have gained relevance for offshore wind turbines because
the depths of installation shown in Figure 1.3 increase the probability of occurrence of
breaking waves and thus of slamming events. Bunnik et al. (2015) and Hallowell et al.
(2015) report breaking waves on full-scale wind turbines, and the model tests performed
by de Ridder et al. (2011) and Bredmose et al. (2013b) show that slamming loads can
trigger large accelerations of the nacelle.
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Slamming loads on monopiles are difficult to predict because of their chaotic nature: small
changes in the system such as air entrapment, slightly different times of impact or sur-
face roughness make it very challenging to reproduce slamming loads experimentally.
Bachynski et al. (2017) analyzed an experimental campaign where a cylinder was sub-
jected to extreme irregular seas and found variations of up to 10% in the response of the
structure when repeating a slamming event. However, some simple models give reason-
ably accurate predictions of the loads produced by breaking waves. As will be see in
Section 2.5, a model commonly used in the industry is the one developed by Wienke and
Oumeraci (2005) (referred to hereafter as Wienke’s model). This model is based on earlier
work by Wagner (1932), who assumed potential flow theory to derive the pressure forces
around a cylinder entering water. Wienke’s model will be described in more details in
Section 2.3.2.

Springing: As mentioned in Section 1.1, non-linear waves carry energy at different har-
monics of the fundamental wave frequency. When these harmonics are close to the first
eigenfrequency of the structure, it will respond in its first mode. This type of response is
defined as springing. The main difference between springing and ringing is that spring-
ing is a continuous response, while ringing is a transient response. In practice, it is not
straightforward to distinguish between ringing and springing responses.

1.2.2 Difference between wind turbines and oil and gas platforms

The effects of ringing responses and slamming loads on surface piercing cylinders have
been extensively studied in the context of offshore oil and gas platforms. The models
that were developed to account for these phenomena are therefore based on the conditions
encountered by this type of structures. However, the oil and gas platforms are generally
located in deep water depth whereas, as seen in Figure 1.3, bottom-fixed offshore wind
turbines can be in finite water depth. This has the following consequences.

More non-linearities in the wave: Waves in finite water depth are more non-linear than in
infinite waters (Dalrymple and Dean 1991), which increases the likelihood and the mag-
nitude of phenomena such as ringing and slamming. Kristiansen and Faltinsen (2017)
extended the FNV model, initially developed by Faltinsen et al. (1995) for infinite water,
to finite water. Both models will be analyzed in detail in Section 2.3.2.

Different point of action of the hydrodynamic loads: The mode shapes of oil and gas plat-
forms mounted on a gravity base structure (GBS) and of bottom-fixed offshore wind tur-
bines have some similarities due to the large mass of the deck or nacelle (see Figure 1.6).
For oil and gas platforms, the hydrodynamic loads acting around the mean sea level (MSL)
will have an influence closer to the top mass than for wind turbines. Figure 1.6 illus-
trates this effect by comparing the mode shapes of the Draugen GBS platform (Natvig and
Teigen 1993) and a 4 MW wind turbine. For instance, it can be seen that the displacement
of the normalized second mode shape of the wind turbine at the MSL is larger for the wind
turbine than for the oil and gas platform. This means that slamming loads, which act at
the MSL, can produce significant second mode response on wind turbines, as shown for
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instance by Peeringa and Hermans (2017).

Figure 1.6: Schematic representation of the Draugen platform (Faltinsen and Timokha 2016) and
a 4 MW offshore wind turbine (Bunnik et al. 2015). The lines represent the first and second mode
shapes normalized against their maximum value. The drawings are not to scale.

Larger influence of the load distribution around the MSL: When evaluating the bending
moment at the sea bed, the arm with which the force acts is roughly equal to the water
depth. In infinite water, the length of this arm is such that inaccuracies in the point of
application of the hydrodynamic loads have a small influence on the bending moment. In
finite water, that influence becomes comparatively bigger and an inaccurate description
of the distribution of the load around the MSL might introduce a significant error in the
estimation of the bending moment at the sea bed.

1.2.3 Simulation of the structure

One challenge inherent to designing physical structures is to obtain data about how the
structure will behave once installed. This is not particular to offshore wind but is a central
element in this thesis. Three ways to obtain data on offshore wind turbines in finite waters
were explored in this work.

Model testing: a small-scale model of the wind turbine is built and placed in a controlled
environment that reproduces the most important physical effects of interest, and different
measurement devices are used to record the behaviour of the structure and the environ-



1.2. Challenges 9

mental conditions. In this thesis, data from three experimental campaigns, listed in Section
3, was used. In all three cases, a small-scale model of an idling wind turbine was placed
in a wave basin, and wave makers were used to produce the required wave conditions.

Numerical modeling: a numerical representation of the wind turbine is generated on a
computer. The equations that determine the behaviour of this model are coded according to
a given theory. This requires representing the loads from the environmental conditions, the
turbine, and its behaviour numerically. In the present context, a wide number of theoretical
models were available to represent the structure and how it responds to external loading.
The challenge was therefore to accurately simulate the environmental loads.

Full-scale measurements: it is possible to place measurement devices on and around a
full-scale structure, which gives the behaviour of the structure in actual environmental
conditions. Full-scale data from a meteorological mast located in the Dogger Bank site off
the coast of the UK was analyzed during this thesis, but due to the insufficient quality of
the data the project had to be abandoned. No further analysis of full-scale measurement
data was carried out in the thesis.

Table 1.1 gives an overview of the advantages and disadvantages of the three methods
listed above.

Table 1.1: Comparison of different methods to obtain data on a structure

Advantages Disadvantages
Model
testing • Quick (days/weeks) and cheap

compared to full-scale
• Controlled environmental

conditions
• High degree of repeatability

• Possible scale effects
• Limited by experimental

set-up & measurement
accuracy

• Limited by the representation
of the stochastic environment

Numerical
modelling • Cheapest and quickest option

• Perfectly repeatable, thus
enabling parametric studies or
different models

• Will miss phenomena not
accounted for by the theory

• Limited by accuracy of the
model

Full-scale
measurements • Provides data from the actual

environmental conditions with
the actual model

• Most expensive
• Time-consuming, typically

months/years
• Not possible to control the

environmental conditions
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1.3 Objectives

Currently, it is common in the North Sea to design offshore wind turbine substructures
using standards and guidelines that have been adapted from the oil and gas industry. In
particular, this thesis analyzes the suggestions from the IEC-61400-3 (2009), the DNV-
RP-C205 (2017) and the DNV-OS-J101 (2014) standards. Uncertainties in design analyses
are generally accounted for by having large safety factors and therefore producing more
expensive designs. The main objective of these thesis is to reduce uncertainties in the
hydrodynamic load models commonly used to simulate the wave loads in storm conditions.
To achieve this, the following research objectives are explored:

RO1 Importance of different non-linear hydrodynamic phenomena for extreme structural
responses

RO2 Relevance and accuracy of the methods suggested in the standards

RO3 Assessment of new models in ULS design of monopiles in finite water

1.4 Scope

To address these research topics, a leitmotif in this thesis work has been to analyze data
from experimental campaigns and compare the measured responses with numerical mod-
els. The work considers

• Monopiles: single column circular cylinder type of substructure with a diameter of
the order of magnitude of the wave amplitude

• Finite water depths: depths varying between 20 and 50 m, where the infinite water
approximation is not possible

• Ultimate Limit State (ULS) analysis: idling or parked turbines experiencing wave
conditions with a return period higher than 10 years

• Computationally efficient methods: models that enable to simulate thousands of
load cases within a time frame that fits the design process of wind turbines for the
industry, or that simplify several load cases into one

1.5 List of publications

The following papers form the scope of this thesis:

P1 Loup Suja-Thauvin, Jørgen R. Krokstad, and Joakim Frimann-Dahl. Maximum
loads on a one degree of freedom model-scale offshore wind turbine. Energy Pro-
cedia, 94:329–338, 2016
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Relevance to the thesis: This paper presents the results obtained during the NTNU
experimental campaign (see Section 3). It compares the response measured on a one
degree of freedom model in extreme irregular sea states to numerical simulations
using the FNV method (Faltinsen et al. 1995). Based on one extreme response
event, it shows that the FNV alone suffices to trigger first mode response, without
the need for slamming models.

My contribution: Together with Joakim Frimann-Dahl and as part of his master
thesis, we designed and set up the experimental campaign and carried out the exper-
iments. I then post-processed the results, implemented the numerical models and
ran the numerical simulations.

P2 Loup Suja-Thauvin and Jørgen Ranum Krokstad. Simplified Bottom Fixed Off-
shore Wind Turbine in Extreme Sea States. In The 26th International Ocean and
Polar Engineering Conference, Rhodos (Greece), June 2016. International Soci-
ety of Offshore and Polar Engineers. ISBN 978-1-880653-88-3. URL https:

//www.onepetro.org/conference-paper/ISOPE-I-16-468

Relevance to the thesis: This study uses the same experimental data as the previ-
ous paper, and its conclusion are extended from one to a large number of events.
Combined with the previous paper, the main conclusion of this work is that ringing
responses can result from second and third order hydrodynamic loads, and that slam-
ming loads alone cannot produce significant first mode response.

My contribution: I developed a model for linearizing measured wave elevation
time series. I implemented the numerical models and carried out all the analysis and
the post-processing of the results.

P3 Loup Suja-Thauvin, Jørgen R. Krokstad, Erin E. Bachynski, and Erik-Jan de Rid-
der. Experimental results of a multimode monopile offshore wind turbine support
structure subjected to steep and breaking irregular waves. Ocean Engineering, 146:
339–351, December 2017. ISSN 0029-8018. doi: 10.1016/j.oceaneng.2017.09.0
24. URL http://www.sciencedirect.com/science/article/pii/S002980

1817305437

Relevance to this thesis: This paper analyses experimental data from a fully-
flexible model of an offshore wind turbine in similar environmental conditions as
the previous paper. It describes the physical processes that occur when the model
experiences large wave-induced bending moment responses. In particular, it shows
that second mode response is significant and is triggered by breaking wave loads.
It also quantifies the contribution of ringing responses and responses to breaking
waves to the total response.

My contribution: The experimental data was produced by the Maritime Research
Institute Netherlands (MARIN) for the WiFi JIP (de Ridder et al. 2017). I post-
processed the data and carried out the analysis of the results.

P4 Loup Suja-Thauvin, Jørgen R. Krokstad, and Erin E. Bachynski. Critical assess-
ment of non-linear hydrodynamic load models for a fully flexible monopile offshore
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wind turbine. Ocean Engineering, 164:87–104, September 2018. ISSN 0029-8018.
doi: 10.1016/j.oceaneng.2018.06.027. URL https://www.sciencedirect.com/

science/article/pii/S0029801818310515

Relevance to this thesis: This paper compares the experimental data presented in
the previous paper with numerical models suggested in the common standards for
offshore wind energy. It demonstrates that slamming models are necessary to trig-
ger second mode response in the numerical simulations. The paper also shows that
for the most extreme sea states, even if the total bending moment prediction is reas-
onably accurate, these models do not capture the first and second mode responses
accurately.

My contribution: I implemented the numerical models and ran the simulations,
carried out the comparisons and analyzed the results.

P5 Loup Suja-Thauvin, Erin Elizabeth Bachynski, Fabio Pierella, Michael Borg, Jør-
gen Ranum Krokstad, and Henrik Bredmose. Critical Assessment of Hydrodynamic
Load Models for a Monopile Structure in Finite Water Depth. Marine Structures
(submitted), April 2019

Relevance to the thesis: This paper suggests a way of implementing the newly
developed KF model (Kristiansen and Faltinsen 2017) for irregular waves. By com-
paring experimental results to numerical simulations, it shows that this model has
the potential to predict extreme responses of bottom-fixed offshore wind turbines
in intermediate water depths but that it generally overpredicts first mode response
and underpredicts second mode response. The paper also demonstrates that the KF
model and the well-known Rainey model (Rainey 1989) produce similar excitation
forces for large waves.

My contribution: The experimental data was produced by DHI Denmark and the
Technical University of Denmark (DTU) for the Wave Loads project (Bredmose
et al. 2013a). The fully non-linear kinematics were produced by DTU and the
second order wave kinematics were produced by Erin Bachynski. I implemented
the numerical load models, post-processed the experimental and numerical results
and analyzed the data.

In addition to these publications, the following paper was presented at the 2014 IWEC
conference, but is not included in the thesis as it it considered a preliminary study:

C1 Loup Suja-Thauvin, Lene Eliassen, and Jørgen Krokstad. The scalability of loads
on large diameter monopile offshore wind support structures. In International Wind
Engineering Conference, Hannover, September 2014

An overview of how the publications relate to the research objectives and to different topics
explored in the thesis is given in Figure 1.7.
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Chapter 2

Background

2.1 Dynamic analysis of an offshore wind turbine

In the design process of a bottom-fixed offshore wind turbine, as will be explained in Sec-
tion 2.5, it is necessary to analyze the response of the structure in different environmental
conditions. Offshore wind turbines are typically subjected to various sources of loading,
due to the environmental conditions and to the operation of the turbine itself. When carry-
ing out the dynamic analysis of a turbine in operating conditions, the following elements
will affect the response:

• Aerodynamics: the loads from the air on the blades and the support structure.

• Hydrodynamics: the loads from the waves and current on the structure.

• Controller: depending on the environmental conditions, the controller will adjust
parameters such as the generator torque exerted on the rotor of the turbine or the
pitch angle. These will affect the behaviour of the system.

• Geotechnics: the monopile is piled into the ground, and the interaction between the
soil and the structure needs to be accounted for.

• Structure: the dimensions and characteristics of the structure, such as stiffness or
damping, will drive the response of the system.

Note that this list is not exhaustive, as several other sources can produce loads on the
structure, such as marine growth, icing, the electrical grid, etc. During operation, many
of the effects mentioned above interact, therefore models that simulate all these effects
simultaneously are in principle required. Coupling effects include

15
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• the aerodynamic loads influence the damping on the structure (so-called aerody-
namic damping)

• the waves radiated by the monopile influence the damping of the structure

• the presence of the monopile influences the waves

• the motion of the structure influences the relative wind and wave kinematics. For
the wave kinematics, this effect is negligible for bottom-fixed turbines

• the controller influences the dynamic response and the aerodynamic loads

• the soil-structure interaction influences the dynamic response, the stiffness and the
damping

• the deflections of the blades affect the aerodynamic loads

In this thesis, Ultimate Limit State conditions are assumed, and the main focus is on the
response of the structure due to hydrodynamic loads. Therefore, several of the coupled
effects listed above can be neglected, as will be shown in Chapter 3.

2.2 Wave theory

The goal of this section is to provide a theoretical basis for the rest of the thesis. To do so, a
summary of the assumptions and equations that depict the physics of water waves is given.
Many authors have detailed the derivation of these equations much better than what could
be done in this thesis, and the reader is therefore referred to these works for the complete
picture. Among the books that provide a good overview of wave theory, Faltinsen (1990),
Dalrymple and Dean (1991) or Mei et al. (2005) are especially recommended.

It is common in offshore environments to divide waves into deep water waves, interme-
diate water waves and shallow water waves, depending on the water depth and the wave
characteristics. Figure 2.1 represents a snapshot of a wave and describes its main charac-
teristics. Note that Figure 2.1 is taken at an instant t, which shows the wavelength λ but
does not show the variation in time of the wave. If the time-evolution of the wave is studied
instead, one can define the wave period T as the period of time between the occurrence of
two successive wave crests at a given point in space.

Sarpkaya (2010) classifies the waves depending on their wavelength λ and the site depth
h as follows:

• Deep water waves: h/λ > 0.5

• Intermediate water waves: 0.5 > h/λ > 1/20

• Shallow water waves: h/λ < 1/20
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Note that it is common to refer to deep water waves as infinite water waves and to group
intermediate and shallow water under the finite water waves category.

Another relevant parameter to consider when studying waves is the so-called wave steep-
ness, defined as s = kH where k = 2π/λ is called wave number. In finite water con-
ditions, the interaction between the sea bottom and the wave tends to increase the wave
steepness. When the wave steepness is above a certain limit (which depends on the water
depth), the wave will become unstable and break (Dalrymple and Dean 1991).

When the wave steepness is small, which occurs when the wave height H is small com-
pared to the wavelength λ and the water depth h, the waves are called linear. This implies
that the position, velocity and acceleration of the water particles composing the wave (so-
called wave kinematics) are proportional to the steepness of the wave s. This greatly
simplifies the equations describing the wave kinematics shown for example in Faltinsen
(1990). In addition, the kinematics of the wave oscillate at the wave’s fundamental fre-
quency, ω = 2π/T , also called the wave first harmonic. A mathematical definition of the
concept of linear waves is given in Section 2.2.2.

Figure 2.1: Definition of the characteristics of a wave, with A the amplitude of the wave, H the
wave height and λ the wave length.

If the conditions for a small steepness wave are not fulfilled, the waves are called non-
linear. Non-linear waves are steeper and have higher crests and shallower troughs than
linear waves. The kinematics of non-linear waves oscillate not only at the first harmonic of
the wave, but also at multiples of this first harmonic, i.e. at 2ω, 3ω and so on. This implies
that non-linear waves carry energy at higher frequencies than linear waves. In addition,
the larger the non-linearities are, the more energy will be carried at higher harmonics.

It should be noted that this thesis deals with so-called gravity waves. Two underlying
assumptions are thus that compressibility effects and surface tension are not significant.
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2.2.1 Definition of the boundary value problem

In the following paragraphs, we place ourselves in a Cartesian coordinate system fixed in
space, where~i, ~j and ~k are the unit vectors along the x−, y− and z− axes, respectively.
The height z = 0 is chosen to be at the mean sea level (MSL), and for the present analysis
the vertical axis (x, y) = (0, 0) can be chosen arbitrarily. Figure 2.2 shows the analyzed
domain and the corresponding boundaries, defined by the free surface and the sea bottom.
The lateral boundaries, shown as dashed lines in Figure 2.2 can again be chosen arbitrarily
for the present analysis.

Figure 2.2: Domain of analysis of the water waves

Governing equation The starting assumption to derive the wave theory used in this thesis
is that the water is an incompressible and inviscid medium. In addition, the flow is con-
sidered irrotational. Under these conditions, the fluid velocity at a point (x, y, z) at a time
t, denoted ~V (x, y, z, t) = (u, v, w), can be described by a velocity potential Φ such as

~V = ∇Φ =~i
∂Φ

∂x
+~j

∂Φ

∂y
+ ~k

∂Φ

∂z
. (2.1)

Since the water is assumed incompressible, conservation of mass implies that ∇ · ~V = 0.
The velocity potential Φ must therefore satisfy the well known Laplace equation:

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0. (2.2)

In order to describe the wave kinematics, one must therefore find a solution to the Laplace
equation. This requires establishing the boundary conditions for the fluid domain defined
in Figure 2.2.

Kinematic free surface boundary conditions The kinematic free surface boundary condi-
tion expresses the fact that a particle on the free surface remains on the free surface. We
define the free surface of the water to be at z = ζ(x, y, t). The kinematic free surface
boundary condition is then expressed as
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∂ζ

∂t
+
∂Φ

∂x

∂ζ

∂x
+
∂Φ

∂y

∂ζ

∂y
− ∂Φ

∂z
= 0 at z = ζ(x, y, t). (2.3)

Dynamic free surface boundary condition The dynamic boundary condition expresses the
fact that the water pressure is equal to the atmospheric pressure at the free surface. It is
obtained by applying the Bernoulli equation at the free surface and is expressed as

gζ +
∂Φ

∂t
+

1

2

((
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2
)

= 0 at z = ζ(x, y, t). (2.4)

Bottom boundary condition The sea bottom is considered impermeable, which means
that no water particle can go through it. For a constant water depth h, this translates into
the following condition:

∂Φ

∂z
= 0 at z = −h. (2.5)

2.2.2 Linear wave kinematics

In the following section we consider two-dimensional waves, i.e. we neglect all variations
in the y-direction. Expanding the theory to three-dimensional waves is trivial but would
make the equations in the following section unnecessarily complicated.

The free surface boundary conditions established in the previous section should be applied
at the free surface z = ζ(x, t), which is a priori unknown. A way to overcome this
problem is to take the Taylor expansion of the free surface elevation around z = 0 to
express those conditions. For example, this process applied to the kinematic free surface
boundary condition in two dimensions yields

(
∂ζ

∂t
+
∂Φ

∂x

∂ζ

∂x
− ∂Φ

∂z

)
z=ζ

=

(
∂ζ

∂t
+
∂Φ

∂x

∂ζ

∂x
− ∂Φ

∂z

)
z=0

+ ζ
∂

∂z

(
∂ζ

∂t
+
∂Φ

∂x

∂ζ

∂x
− ∂Φ

∂z

)
z=0

+ ... = 0.

(2.6)

Next, if the wave amplitude is assumed to be small such that kA � 1, then the wave
elevation, water particle velocities and other kinematics are small as well. This implies
kζ � 1 and therefore (kζ)2 � kζ, k2uζ � kζ and so on. This enables to separate the
terms into two categories: small first-order quantities such as ∂ζ/∂t or u = ∂Φ/∂x are
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called linear terms. The rest of the terms, such as ζ2 or uζ are called non-linear. The
assumption of small waves implies that the non-linear terms are negligible compared to
the linear terms. The linear kinematic free surface boundary condition then becomes

∂ζ

∂t
− ∂Φ

∂z
= 0 at z = 0. (2.7)

Similarly, the linear dynamic free surface boundary condition becomes

gζ +
∂Φ

∂t
= 0 at z = 0 (2.8)

The bottom boundary condition remains the same if we only consider linear terms.

The full derivation of the linear solution to the velocity potential can be found for example
in Mei et al. (2005), only the main assumptions are summarized here. In the following
we assume that the time dependency of the velocity potential can be described with one
single oscillatory frequency ω, which will produce so-called regular waves. By using
the linear boundary conditions given above, one can show that the velocity potential for
regular linear waves propagating in the positive x-direction can be expressed as

Φ =
gA

ω

cosh [k(z + h)]

cosh(kh)
cos(ωt− kx) (2.9)

with A the wave amplitude. With this definition of Φ, the linear dynamic free surface
boundary condition yields

ζ = A sin(ωt− kx). (2.10)

The wave frequency ω and the wave number k are linked through the so-called linear
dispersion relationship

ω2 = gk tanh(kh) (2.11)

Equations 2.9, 2.10 and 2.11 fully define the wave kinematics that will be used to calculate
the loads on linear regular waves in Section 2.3.

Note that for infinite water depth, kh� 1 and the velocity potential reduces to
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Φ =
gA

ω
ekz cos(ωt− kx) (2.12)

and the dispersion relationship becomes

ω2 = gk. (2.13)

2.2.3 Non-linear wave kinematics

In the previous section, the free surface boundary conditions have been linearized by
Taylor expanding them around z = 0 and keeping only linear terms. As explained, this
is consistent if the wave elevation is very small, which implies that the regular wave amp-
litude is also very small, kA� 1.

The waves that produce loads relevant to ULS analysis are generally too large for the as-
sumption kA � 1 to hold. Neglecting non-linear terms in the evaluation of the boundary
conditions will then lead to significant inaccuracies in the estimation of the velocity po-
tential. In this case, it is necessary to take into account higher order terms. The higher the
order of the terms retained, the more accurate the velocity potential is. However, retaining
more terms makes the equations more complex.

Different theories have been derived for determining the kinematics of steep regular waves
and are appropriate for different wave characteristics. Figure 2.3 shows the domain of ap-
plication of the wave theories commonly used to calculate the wave kinematics depending
on the wave characteristics. Non-linear wave kinematics are generally computed based on
Stokes wave theory (see for example Fenton John D. 1985) or stream function wave theory
(see Rienecker and Fenton 1981).
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Figure 2.3: Selection of different wave theories for regular waves depending on the wave character-
istics (taken from IEC-61400-3 2009). Note that in this figure, the water depth is denoted d

The following paragraphs give a non-exhaustive list of theories that have been developed
to model non-linear wave kinematics.

Stoke’s theory: perturbation approach

In Section 2.2.2, only the linear terms of the boundary conditions 2.3 to 2.5 defining the
problem were kept. Solving the Laplace equation 2.2 for these boundary conditions yields
the linear velocity potential Φ(1).

If the terms of second order in the boundary conditions are kept, we obtain a new system
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of equations. The solution of this new system of equations is known as the second order
velocity potential Φ(2). Note that the system of equations defining Φ(2) is dependent
on Φ(1). The sum of the first and second order velocity potentials satisfies the Laplace
equation and the boundary conditions to second order.

This makes it possible to obtain kinematics for regular waves with larger steepness than
what linear theory would accurately describe. However, second order theory can produce
nonphysical kinematics in finite water if the waves are too steep. A common way to assess
whether a given wave is within the range of validity of second order theory is to use the
Ursell number (Ursell 1953), defined as

Ur =
kA

(kh)3
. (2.14)

For Ur ≤ 0.33, second order wave theory is generally considered to be valid (Dalrymple
and Dean 1991).

It is in theory possible to reproduce this process and obtain velocity potentials to any
order, but the equations become rapidly too complex to be of practical use. In practice, it
is common to find second order and fifth order Stokes theory derivations (see Fenton John
D. 1985).

Note that for irregular waves (see Section 2.2.4), it is possible to use second order theory,
but to the knowledge of the author no general third order theory has been developed.

Stream function wave theory

In this thesis, a number of regular waves were modelled with the stream function imple-
mented according to Rienecker and Fenton (1981). Similarly to what was done in Section
2.2.2, if the fluid is incompressible, it is possible to define a stream function Ψ such that
the horizontal and vertical water particle velocities u and w are given by

u =
∂Ψ

∂z
and w = −∂Ψ

∂x
. (2.15)

If in addition the fluid is irrotational, the governing equation becomes, as in 2.2.2, the
Laplace equation:

∂2Ψ

∂z2
+
∂2Ψ

∂x2
= 0. (2.16)

The boundary conditions can be established following the same process as in Section 2.2.2.
The stream function wave theory solves the governing equation with the boundary condi-
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tions for the stream function instead of the velocity potential. The problem is solved in a
frame that moves at the celerity of the wave c, and the stream function is expressed as a
Fourier series of finite number of terms N , such as

Ψ(x, z) = B0y +

N∑
n=1

Bn
sinhnky

coshnkD
cosnkx (2.17)

where Bn are the Fourier coefficients of the stream function and D is an arbitrary refer-
ence level. N is called the order of the stream function and higher order means that the
boundary conditions are solved at a higher order. Consequently, more non-linear waves
require higher order in the stream function to correctly depict the wave kinematics.

This expression for Ψ is then inserted into the boundary conditions. If the water depth, the
wave height and the wave period are known, and by assuming that there is no current under
the wave, a solution that describes the wave kinematics as a sum ofN +1 components can
be found. Note that the first component corresponds to a constant, so for a regular wave of
circular frequency ω, the highest harmonics will oscillate at Nω.

Fully non-linear kinematics

Another possibility to approach non-linear waves is to solve the equations that define the
problem without carrying out the linearization process described in Section 2.2.1, i.e. solv-
ing equations 2.2 to 2.5. The kinematics thus obtained are referred to as fully non-linear.

This approach is generally very computationally intensive and requires an empirical ap-
proach to model breaking waves, but describes very steep (non breaking) waves without
making assumptions on their order. In addition, while the stream function or the Stokes
wave theories higher than second order only describe regular waves, this method can be
used on irregular waves.

2.2.4 Irregular waves

In the previous section, the assumption was made that the wave could be described with
a single oscillatory frequency ω, producing a regular wave. In order to describe the free
surface of the ocean, it is common to assume a superposition of linear regular waves, the
waves thus obtained are called linear irregular waves. The velocity potential becomes the
sum of the regular velocity potentials and can be expressed by the following equation:

Φ =

N∑
n=1

gAn
ωn

cosh [kn(z + h)]

cosh(knh)
cos(ωnt− knx+ εn) (2.18)

where An, ωn, kn and εn are respectively the wave amplitude, wave frequency, wave



2.2. Wave theory 25

number and wave phase of the nth component of the irregular waves. The free surface is
then given by

ζ =

N∑
n=1

An sin(ωnt− knx+ εn). (2.19)

The phase angles εn are well represented by a uniform distribution between −π and π.
The amplitude of each component is given by a wave spectrum S(ω) such that

1

2
A2
n = S(ωn)dω (2.20)

where dω is the difference frequency between two successive wave frequencies in the
spectrum. Different spectra can be used to represent irregular wave seas. In the North
Sea, it is common to use the so-called JONSWAP spectrum (see Hasselmann et al. 1973)
for fully developed seas. A common definition of the JONSWAP spectrum is given in
DNV-RP-C205 (2017) as

SJ(ω) = (1− 0.278 ln γ)
5

16
H2
S · ω4

P · ω−5 exp

(
−5

4

(
ω

ωP

)−4)
· γB (2.21)

with

B = exp

(
−1

2

(
ω − ωP
σ · ωP

)2
)

(2.22)

where σ = 0.07 for ω ≤ ωP
σ = 0.09 for ω > ωP

Equations 2.21 and 2.22 show that this variant of the JONSWAP spectrum can be defined
by three parameters: the significant wave height HS which corresponds to the average
height of the third of the waves with the highest wave height, the spectral peak period
TP = 1/ωP which corresponds to the period containing the most energy in the spectrum
and the the non-dimensional peak shape parameter γ (also called peakedness or gamma
factor).

Note that the JONSWAP spectrum provides an accurate description of the waves for fully
developed seas and deep water.
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Wave statistics

As will be seen in Section 2.5, the standards commonly used in the design phase of off-
shore wind turbines recommend describing the statistical variation of the long-term wave
statistics as a scatter diagram with the significant wave height HS on the y-axis and the
spectral peak period TP on the x-axis. Each (HS − TP ) pair corresponds to a so-called
short-term wave condition. Short-term conditions represent the wave elevation for a cer-
tain period (generally 20 minutes to 3 hours) during which the sea state can be charac-
terized by a constant HS and TP and represented by a spectrum such as the JONSWAP
spectrum. The HS − TP diagram then shows the probability of occurrence of each short-
term condition.

Once theHS−TP graph has been established, it is possible to plot the probability contours,
which show all the sea states that have a given probability of occurrence. Note that it is
usual to talk about return period rather than probability of occurrence. For example, a
50-year return sea state will occur on average once every 50 years, and its probability of
occurring within a year will be 1/50 = 0.02.

This concept is illustrated in Figure 2.4. This figure shows the contour lines of theHS−TP
scatter diagram for the Dogger Bank Creyke Beck B site off the coast of the UK (Frimann-
Dahl 2015). Here one can see the sea states with a return period of 1 and 5 years.

Figure 2.4: Contour plots for the Dogger Bank Creyke Beck B site

Similarly to the return period of a sea state, the return period of a wave can be defined. As
will be seen in Section 2.5, it is common to use the 50-year return wave, defined by the
wave with a height that will be exceeded on average once every 50 years.

It is possible to include the average wind speed in the statistical description of the sea, thus
yielding a 3D scatter diagram (Hs, TP , U ). In this thesis, the turbine is considered idling,
and the effects of the wind were neglected. Therefore, (HS , TP ) scatter diagrams were
sufficient to describe the long-term variations of the sea.
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Embedding of a regular non-linear wave into a linear irregular wave realization

Irregular waves are generally modelled as a superposition of linear regular waves. How-
ever, as seen in Section 2.2.3, linear wave theory is generally not sufficient to depict the
kinematics of steep waves, as explained in Section 2.5. In order to study the influence of
a non-linear wave in irregular waves, the standards suggest inserting the kinematics of the
non-linear wave into the irregular kinematics. This process is called embedding and was
performed according to the process described in Rainey and Camp (2007).

Figure 2.5 gives an example where the surface elevation of a stream function wave is
inserted into a linear irregular sea. In the area with the white background, the final solution
is equal to the linear irregular wave. In the area with the yellow background, the final
solution is equal to the stream function wave. To ensure a smooth transition between the
linear and the non-linear wave elevation, two blending zones (with a grey background) are
defined at each side of the non-linear wave.

Figure 2.5: Illustration of the embedding process (following the description in Rainey and Camp
2007)

2.3 Wave loads on a surface piercing circular cylinder

Once the kinematics have been established, different models can be applied to compute
the hydrodynamic loads on the structure. This section describes different models that
were used throughout this thesis.

In order to select relevant theories to depict the wave kinematics, it is convenient to classify
the wave conditions with two non-dimensional parameters. i) The non-dimensional water
depth kh, where k = 2π/λ is the wave number and h is the water depth. Sites can then be
classified as having infinite or finite water depths for given waves. ii) The wave steepness
kA where A is the wave amplitude, which is a good indicator of the wave non-linearity.
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In addition, the non-dimensional cylinder radius can be defined as kR, where R is the
cylinder radius. This parameter is especially relevant to determine the importance of the
influence of the cylinder on the wave: for cylinders small compared to the wave length,
the wave passes the cylinder undisturbed. For wavelength comparable to the cylinder
diameter, the wave will be affected by the structure and so-called diffraction effects are
to be considered. Faltinsen (1990) suggests a limit kR < π/5 to consider first order
diffraction effects of importance.

2.3.1 Loads from small amplitude waves

In this section we assume deep water conditions (kh � 1) and small wave steepness
(kA� 1). In these conditions, linear theory is sufficient to depict the wave kinematics. In
addition, we place ourselves in the long-wavelength regime (kR� 1).

For such waves and structure dimension, it is common to use the so-called Morison equa-
tion (Morison et al. 1950) to compute the wave loads on offshore structures. The Morison
equation gives the force on a section of a stationary vertical cylinder of length dz as

dF = ρRCDu(z)|u(z)|dz + ρπR2CMa(z)dz (2.23)

with ρ the water density
R the cylinder radius
CD the drag coefficient
CM the inertia coefficient
u(z) the horizontal water particle velocity at height (z)
a(z) the horizontal water particle acceleration at height (z)

The coefficients CM and CD are experimentally determined and vary depending on the
characteristics of the wave. It is common to refer to the first term of the equation as the
drag term and to the second as the inertia term. The inertia coefficient can be split into
two contributions, such as

CM = 1 + Ca (2.24)

where Ca is the added mass coefficient. The inertia term of the Morison equation can then
be rewritten as

dFI = ρπR2a(z)dz + ρπR2Caa(z)dz. (2.25)

The first term of equation 2.25, so-called Froude-Krylov force, results from the pressure
from the undisturbed wave on the cylinder section. The second term is called the added-
mass force and is due to the diffraction effects of the cylinder on the wave. If viscous
effects are neglected, potential flow theory can be applied and Ca = 1 is obtained (Falt-
insen 1990).
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It is possible to account for the motion of the cylinder section into the Morison equa-
tion. In the present work, the motion of the cylinder was negligible compared to the wave
kinematics and this effect is not accounted for.

In this work, the acceleration is taken as the Lagrangian derivative of the particle velocity,
such as

a =
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
. (2.26)

Note that even though linear wave kinematics are used, second order loads will appear due
to the convective terms in the acceleration, and third order loads will appear due to the
drag term.

Linear theory is generally not applicable when carrying out ULS analyses, but is relevant
for Fatigue Limit State (FLS) analyses where waves are typically smaller. Hydrodynamic
loads produced by linear waves are well understood and will not be analyzed in detail in
this thesis.

2.3.2 Loads from steep waves

As explained in Section 2.2.3, linear wave theory is insufficient to describe the kinematics
of steep waves. In this section, we describe four methods to compute wave loads from
non-linear non-breaking waves on a circular cylinder.

1. Non-linear wave kinematics applied to the Morison equation

A common method to calculate loads on circular cylinder from regular steep waves is to
compute the kinematics of the wave using a non-linear wave theory such as the stream
function wave theory described in Section 2.2.3 or fully non-linear kinematics. These are
then input into the Morison equation 2.23 under the assumption that the wavelength is
large compared to the cylinder diameter.

2. Model from Faltinsen et al. (1995)

The FNV model was developed by Faltinsen et al. (1995) for regular waves in deep waters,
and later extended to irregular waves by Newman (1996). This model is based on a per-
turbation approach on a small parameter ε, such that kA = O(ε) (small wave steepness),
kR = O(ε) (long wavelength regime) and A/R = O(1).

The velocity potential is divided into a linear and a non-linear contribution, denoted ψ. The
linear contribution is equal to the sum of the linear incident potential derived in Section
2.2.2 and the linearized scattered potential derived by MacCamy and Fuchs (1954), and
presented for example in Sarpkaya (2010). The non-linear potential ψ is of third order in
terms of ε and satisfies the free-surface boundary conditions approximated to third order.
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The excitation loads are then obtained by integrating the pressure term of the Bernoulli
equation along the cylinder. This has the two following implications:

• as opposed to computing the loads from the Morison equation and non-linear wave
kinematics, the loads from the FNV model will include long wavelength diffraction
effects

• the model includes all loads due to the the velocity potential up to third order, but
will miss some higher order loads. For example, loads due to the fourth order in-
cident potential will not be included. Therefore, loads of order higher than three
that result from the pressure integration are disregarded. The model is said to be
consistent to third order

The hydrodynamic loads as calculated by the FNV method are given in Newman (1996)
by the following equation: FFNV = F (1) + F (2) + F (3) + Fψ with

F (1) = 2πρR2

∫ 0

−∞
ut(z)dz (2.27)

F (2) = 2πρR2ut|z=0ζ
(1) + πρR2

∫ 0

−∞
(2w(z)wx(z) + u(z)ux(z)) dz (2.28)

F (3) = πρR2

[
ζ(1)

(
utzζ

(1) + 2wwx + uux −
2

g
utwt

)
−
(
ut
g

)
(u2 + w2)|z=0

]
(2.29)

Fψ = πρ
R2

g
u2ut|z=0β

(
h

R

)
(2.30)

with ρ the water density
R the cylinder radius
u, v the horizontal and vertical first order velocity components
ζ(1) the first order wave elevation

Subscript indicates differentiation. β is given by

β

(
h

R

)
=

∫ h/R

0

(3Ψ1(Z) + 4Ψ2(Z)) dZ (2.31)
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with Ψ1 and Ψ2 defined in Newman (1996). Note that in deep water, β = 4.

The force F (1) is of first order (i.e. proportional to ε) and equivalent to the inertia term of
the Morison equation with CM = 2. The force F (2) is of second order (proportional to
ε2). The first term of F (2) in equation 2.28 corresponds to the linear potential integrated
from the mean water level to the first order wave elevation. The second term corresponds
to the quadratic term of the Bernoulli equation integrated from the sea bed to the mean
water level. The force F (3) is of third order and due to the linear potential and includes the
static pressure integrated up to second order wave elevation. The force Fψ , also of third
order, results from the non-linear velocity potential.

Even though the FNV was initially developed for infinite waters, an attempt was made in
P1 and P2 to adapt it to finite waters, by bringing the following three modifications:

• the wave kinematics were computed using the finite water velocity potential

• the finite water dispersion relationship was used

• the lower limit of the integral in terms F (1) and F (2) was taken as −h instead of
−∞

This modification of the FNV presents two main sources of inaccuracies. First, the ori-
ginal equations were developed assuming the infinite depth velocity potential as described
in equation 2.12. Therefore there is no mathematical basis for using finite water wave
kinematics and the finite depth dispersion relationship. Second, the incident potential used
to derive the FNV equations is linear. In deep water, the higher order incident potentials
are not significant and can be neglected, but in intermediate water they contribute to the
incident potential. This influence is not accounted for by the attempted modification of
the FNV. Kristiansen and Faltinsen (2017) showed that in shallow waters, at the third har-
monic, the loads due to the third order incident potential are the dominant contribution to
the total load, which shows that the higher order potential cannot be neglected.

3. Model from Kristiansen and Faltinsen (2017)

The FNV model for infinite waters presented in the previous section was generalized to
finite waters by Kristiansen and Faltinsen (2017), hereafter referred to as KF model. This
model is also based on a perturbation approach on ε and assumes kA = O(ε) (small wave
steepness), kR = O(ε) (long wavelength regime) and A/R = O(1). The excitation loads
from the KF method are given by

FKF =

∫ η

−h
F ′(z, t)dz + Fψ. (2.32)

F ′ is a distributed load given by
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F ′(z, t) = ρπR2

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
+ma

(
∂u

∂t
+ w

∂u

∂z

)
(2.33)

where ma = CaρπR
2 is the added mass in surge with Ca the added mass coefficient. The

point force Fψ does not change compared to the infinite water case and is

Fψ = ρπR2 4

g
u2
∂u

∂t
. (2.34)

Note that Fψ is calculated with the kinematics taken at the MSL and applied at the MSL.

As opposed to the deep water case, the non-linear incident potentials must now be con-
sidered. As stated by Kristiansen and Faltinsen (2017), the loads produced by the KF
model are consistent up to third order if kinematics of at least third order are used. It
should be noted that the scattered potential is correct only up to third order. This means
that fourth order loads resulting from these formulae (for example from a fourth order in-
cident potential) will be incomplete since they will miss the contribution of the scattered
potential. Therefore the model is not consistent to orders higher than three.

By applying the KF model to a large number of regular waves with varying heights and
steepnesses, Kristiansen and Faltinsen (2017) showed that the contribution of the third
order incident potential, which is negligible in deep water, becomes dominant in shallow
water. On the contrary, the influence of the Fψ term decreases with decreasing water
depth.

4. Model from Rainey (1989)

Rainey (1989) developed a model to calculate loads on a slender surface-piercing body
based on energy balance arguments. For a vertical circular cylinder, his model reduces to
the inertia term of the Morison equation as presented in Section 2.3.1 with two additions.
The first addition accounts for the fact that the cylinder is not slender in its axial direction
(Manners and Rainey 1992) by adding the term

mau
∂w

∂z
. (2.35)

The second addition corresponds to a point force at the free surface to account for the
change in fluid kinetic energy due to the variation in time of the submerged portion of the
cylinder (corresponding to equation (7.4) in the original paper by Rainey 1989). This force
is given by



2.3. Wave loads on a surface piercing circular cylinder 33

F η = −1

2
mau

2 ∂η

∂x
. (2.36)

The point force F η is calculated with the kinematics taken at the free surface elevation and
applied at the free surface elevation.

2.3.3 Loads from breaking waves

For calculating slamming loads on slender structures, it is common to use the model de-
veloped by Wienke and Oumeraci (2005), so called Wienke model. This model consists of
adding a slamming load Fslam to the Morison equation, defined by

Fslam = CSρRc
2λcζm (2.37)

with CS the slamming coefficient
c the celerity of the wave
λc the curling factor
ζm the maximum wave elevation for the slamming event

The curling factor λc defines the portion of the wave that is impacting the cylinder, there-
fore λcζm indicates the height over which the impact is assumed to happen. Based on
experimental data, Burmester et al. (2017) found values of λc varying between 0.28 and
0.56 depending on the type of breaking wave and the characteristics of the bottom. For
irregular waves on a flat sea bed, they report λc = 0.28.

Defining t = 0 as the time of impact of the wave on the cylinder, the slamming coefficient
is defined as

CS = cosα

[
2π cos (α)− 2

√
cos (α)

c

R
t · tanh−1

(√
1− 1

4

1

cosα

c

R
t

)]

for 0 ≤ t ≤ 1

8

1

cosα

R

c
(2.38)

CS = cosα
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√
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with α the angle between the water surface and the axis of the cylinder as shown in Figure
2.6 and c the wave celerity.

Figure 2.6: Illustration of the angle α

2.4 Response of a surface piercing circular cylinder

Once the loads on the structure have been determined, it is necessary to calculate the
response of the structure to these loads.

2.4.1 Dynamic amplification

It is important to have a correct description of the structure because of the dynamic nature
of the system. The characteristic time of variation of several aerodynamic and hydro-
dynamic loads applied to wind turbines is within the order of magnitude or smaller than
the eigenperiods of the system, therefore dynamic effects can amplify the response of the
structure.

The dynamic load factor (DLF, also referred to as dynamic amplification factor in the
literature) is defined as the ratio of the response of a system to a given time-varying load
over the response the system would have if a load of same magnitude was applied in a
static manner (Biggs 1964). For transient loads, it is common to compute the DLF using
the largest response and dividing it by the static response. This is denoted DLFmax.

Figure 2.7 illustrates this concept: a one degree of freedom system of eigenperiod T1
is subjected to a triangular impulse load of duration td. The response of the system is
computed and the DLF is calculated based on the maximum response and the characteristic
load F. This procedure is repeated for varying load durations and DLFmax is plotted for each
td.

Different load shapes will give different DLFmax curves (Biggs 1964), however some gen-
eral results can be drawn from Figure 2.7:

• the highest DLFmax corresponds to a load with a duration close to the eigenperiod
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Figure 2.7: Maximum response of a one degree of freedom system depending on the duration of a
triangular impulse load. The shape of the load is given in the box within the graph.

of the system

• for a given amplitude, a load with a very short duration compared to the eigenperiod
of the system will not produce significant response

2.4.2 Structural models

Different structural models have been used throughout this thesis to compute the response
of the structure. The details of these models are given below, while their validation is given
in Appendix B.1.

Single degree of freedom equation

For systems that can be defined with a single degree of freedom, it is common to calculate
the response with a single degree of freedom equation. Here we take the example of a
system that oscillates around an axis x. Its position in time is determined by an angle θ(t).
If the excitation momentMexc(t) is known, the equation of motion derived from Newton’s
second law is then

Mexc(t) = Iθ̈(t) +Bθ̇(t) + Cθ(t) (2.40)

with I the moment of inertia around x
B the damping coefficient
C the stiffness
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The dot over a variable means differentiation with respect to time. Note that I , B and C
are here assumed to be constant. If the initial conditions θ(0) and θ̇(0) are known, the
equation can be solved and the response of the system can be found.

Mode shape solver

For a system with multiple degrees of freedom, it is possible to decompose the response
into the response of each of the eigenmodes of the system. For example, the deflection
Ψd of a structure slender in the vertical direction can be assumed to be the sum of the
deflections of each individual mode, such as

Ψd(z, t) =

N∑
n=1

ψn(z)ξn(t) (2.41)

with ψn the mode shape of the nth mode
ξn the modal displacement of the nth mode
N the number of modes considered

Note that the more modes are considered, the more accurate the response will be. The
modal displacement for each mode is determined solving the single degree of freedom
equation with:

fn = mnξ̈n + bnξ̇n + cnξn (2.42)

with fn the modal excitation for the nth mode
mn the modal mass for the nth mode
bn the modal damping for the nth mode
cn the modal stiffness for the nth mode

The modal mass and the modal stiffness are given by the following equations:

mn =

∫
l

m(z) [ψn(z)]
2
dz (2.43)

cn =

∫
l

EI(z)

[
∂2ψn(z)

∂z2

]2
dz (2.44)
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with m(z) the linear mass at height z
E the Young’s modulus
l the length of the structure

To obtain the modal damping, the damping ratio for each mode shape ηn is measured from
decay tests on the physical model. The modal damping for mode n is then computed as

bn = 2ηn
√
mncc. (2.45)

For slender structures, the modal excitation for each mode is obtained by integrating the
product of the excitation force times the mode shape over the length of the structure.

fn =

∫
l

F (z)ψn(z)dz (2.46)

where F is the hydrodynamic excitation load.

Once the deflection Ψd has been calculated, the response is obtained with the Euler-
Bernoulli beam equation. The response bending moment is given by

M(z, t) = EI
∂2Ψd(z, t)

∂z2
. (2.47)

Note that to obtain accurate responses, a higher number of mode shapes is required for
moments than for displacements.

Finite element method

Another way to compute the response of a structure is to discretize the structure into a
number of elements and establish the equations of motion of each of the elements. These
equations are then assembled into a system of equations that represents the whole structure.
Solving this system gives the response of each element of the model. Using finite element
models generally implies having a large number of elements compared to the number of
modes in a mode shape solver. This increases the computational time and the accuracy of
the solution.

In this thesis, the finite element software Ashes, specialized in simulation of wind turbines,
was used (Thomassen et al. 2012).
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2.5 Design process for bottom-fixed offshore wind turbines

Within the offshore wind industry, it is common to use the DNV-RP-C205 (2017), DNV-
OS-J101 (2014) and IEC-61400-3 (2009) standards when designing bottom-fixed offshore
wind turbines in the North sea. These standards typically suggest to carry out simulations
with different sets of environmental and operational conditions (called design load cases,
denoted DLC). These load cases aim at simulating all the critical conditions a wind turbine
will experience during its lifetime. A safe design of the structure must therefore withstand
all load cases.

In this thesis, special attention is brought to DLC6.1, as this load case was identified
by de Ridder et al. (2017) as driving the design for the experiments analyzed in P3 and
described in Section 3.2. The objective of using DLC6.1 is to design the wind turbine so
that it withstands the largest response it will experience over a 50-year period, so-called
the 50-year response (DNV-OS-J101 2014).

To calculate the largest response over a 50-year period, the standard IEC-61400-3 (2009)
suggests simulating the environmental conditions that have a 50-year return period and
taking the largest response as the 50-year response. It should be noted that the 50-year
response does not necessarily occur during the 50-year return environmental conditions,
but this process is generally used to assess DLC6.1. In the following, we refer to the largest
response occurring during the 50-year environmental conditions as the 50-year response.
Note that under these conditions, the rotor of the turbine will be idling, which means that
the blades will not be facing the wind. This drastically reduces the aerodynamic loads and
aerodynamic damping. In the rest of the thesis, it is assumed that the aerodynamic loads
on idling rotors can be neglected.

To define the 50-year environmental conditions, it is common to use the scatter diagram
as defined in Section 2.2.4. In principle, the most accurate way to calculate the 50-year
response is to simulate all environmental conditions with a 50-year return period, but as
most of these sea states will not produce large responses of the structure, it is common
to select only the most unfavourable sea state (Naess and Moan 2012). A stationarity
period is then assumed, usually 3 hours, and a random realization of that sea state for this
duration is carried out. However, this approach poses the following problems: i) since
the response from very steep waves is studied, the kinematics used must be non-linear.
Non-linear methods for obtaining irregular wave kinematics are computationally intensive
(see Section 2.2.3). ii) It can be inefficient to simulate 3 hours of environmental conditions
since the largest response will by definition happen only once, often for the most extreme
wave.

To tackle these issues, the approach suggested by IEC-61400-3 (2009) is to establish the
largest expected wave for the given 50-year sea state by assuming a certain distribution for
the wave heights. Two common distributions are the Rayleigh distribution and the Battjes
and Groenendijk distribution (Battjes and Groenendijk 2000). Once the largest expected
wave of the 50-year return sea state has been established, its kinematics are calculated
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with a non-linear wave theory and embedded in a 10-minute linear realization of the sea
state at a random instant. With this method, the simulation time is drastically reduced and
includes the largest expected wave.

(a) Wave elevation (b) Responses

Figure 2.8: Illustration of the embedding procedure at two different time instants. The maxima of
the responses is marked with an ’x’

With this method, however, the largest simulated response over the 10-minute time series
will be dependent on the time of embedding because of the time history of the response.
Figure 2.8 shows the embedding procedure for a given 50-year return wave modelled with
the stream function wave theory embedded into a given linear realization of a 50-year
return sea state at two different instants. As can be seen in Figure 2.8(b), the difference in
time of embedding produces a response magnitude 10% larger for the first case compared
to the second.

To address this issue, 20 realizations of the linear sea state are generated and the 50-year
wave is embedded in each of them. The average of the 20 maxima thus obtained is taken
as the 50-year response. The process, as suggested by IEC-61400-3 (2009), is performed
through the following five steps:

1. Establishing the characteristics of the 50-year return sea state and the 50-year return
wave at the site based on available metocean data.

2. Carrying out 20 realizations of the extreme sea state with different seeds. Each
realization is a superposition of linear regular waves.

3. In each of the 20 realizations, embedding a 50-year wave. The kinematics of the
wave are calculated with the stream function theory (see Section 2.2.3) and the or-
der of the stream function wave depends on the wave and site characteristics as
described in Figure 2.3.

4. Simulating the response of the structure. The hydrodynamic loads are calculated
with the Morison equation. For breaking waves, the slamming loads are calculated
with Wienke’s model (Wienke and Oumeraci 2005).
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5. Averaging the maximum responses obtained for each of the twenty realizations.

The average of the maximum responses is then taken as the driving response for DLC6.1.
This process is summarized in Figure 2.9.

Figure 2.9: Procedure for estimating the 50-year response, according to IEC-61400-3 (2009).

Note that in step 3, the time of embedding has to be such that the transients due to the start
of the simulation have died out. In this thesis, a period of 60 seconds was added at the
beginning of all simulations during which the stream function was not embedded for any
of the realizations.



Chapter 3

Model testing of monopile
bottom-fixed offshore wind
turbines

Within the work carried out in this thesis, the data recorded during three experimental
campaigns has been analyzed. The first one of these three campaigns was carried out
at the ‘Lilletanken’ wave flume at the Norwegian University of Science and Technology
(NTNU)/Sintef Ocean facilities. The second one was carried out within the Wave Impact
on Fixed turbines Joint Industry Project (WiFi project, see de Ridder et al. 2017). The last
experimental campaign was carried out within the Wave Loads project (Bredmose et al.
2013a). These three experimental campaigns are referred to as the NTNU, the WiFi and
the Wave Loads experimental campaigns, respectively.

The structures that have been studied in these campaigns have been models of idling bot-
tom fixed wind turbines with rated powers between 4 and 6 MW. Table 3.1 summarizes
the main structural characteristics of the three models that have been experimentally tested
(detailed information about the experimental campaigns is given in the following subsec-
tions). Note that the model for the NTNU campaign was attempted to be built as a one
degree of freedom system. For that purpose, a stiff cylinder was mounted on a rotational
spring, which explains the high frequency of the second mode. This frequency is not
representative of full scale wind turbines, and the damping ratio at that mode was not
measured. More details are provided in Section 3.1.

Damping levels For all the environmental conditions analyzed in the presented experi-
mental campaigns, it was assumed that the wind speed is above the cut-out limit, meaning
that the blades will be pitched into the wind and the rotor will be idling or parked. In order
to validate the damping levels used in the experimental campaigns, data from full-scale
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Table 3.1: Range of characteristics of the different models used in the thesis. Values are given in
full-scale

NTNU WiFi WaveLoads
Scale [-] 48 30.6 80

Diameter at the mean sea level [m] 6.9 5.8 6
Tested water depths [m] 20.9, 30 27 20.9, 31, 40.8

First mode Eigenfrequency [Hz] 0.26 0.29 0.28
Damping ratio [%] 2.4 1.1 1.7

Second mode Eigenfrequency [Hz] 11.5 1.21 2
Damping ratio [%] - 1.1 2.7

offshore turbines were analyzed.

Table 3.2 summarizes the damping ratios reported in five papers for turbines with similar
characteristics and in the same conditions as the one used in the experimental campaigns.
In all the cited work, the damping ratio was established from measuring the response of
the turbine after a rotor stop sequence. At the beginning of such a sequence, the turbine
is operating. At a given time, the blades are pitched towards the wind and the brakes
are applied onto the main shaft. This will stop the rotor from rotating and provoke the
structure to oscillate in its first mode (Damgaard et al. 2013). By analyzing the oscillations
in the response and establishing the logarithmic decrement, it is possible to determine the
damping ratio of the turbine.

Table 3.2: Damping ratios measured on full-scale offshore wind turbines

Source Damping ratio [%]
Damgaard et al. (2013) 2.4 - 2.5
Damgaard and Andersen (2012) 2.25
Devriendt et al. (2014) 1.86
Shirzadeh et al. (2015) 1.7 - 2.8
Versteijlen et al. (2011) 3

The damping ratios used within the experimental campaigns are within the lower end of the
damping ratios range given in Table 3.2. This means that the responses measured during
the experimental campaigns will decay more slowly than for full-scale wind turbines.

Assumptions Consistently with the scope of the thesis, some assumptions were made in
all three experimental campaigns:

• Froude scaling

• the aerodynamic loads can be neglected because the blades are pitched into the wind.
Therefore no rotor was modelled, and no wind was applied to the models
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• no action from the controller was modelled

• no geotechnical modelling was implemented. The models were fixed at their lower
end, except for the NTNU test, where the model was pinned at its lower end (see
3.1)

• long-crested waves. The waves are assumed not to vary in the direction perpendic-
ular to their propagation

• no current

3.1 NTNU experimental campaign

The data from this experimental campaign was used in P1 and P2. More information about
the experimental campaign can be found in these papers,

Experimental set-up

This experimental campaign was carried out between April and May 2015 in the small
wave flume of the NTNU/Sintef Ocean facilities. This flume, illustrated in Figure 3.1, is
28 m long and 2.5 m wide with a constant water depth. One end of the flume was equipped
with a piston-type wave maker, consisting of a flat plate forced into translational motion
by an electric actuator. At the other end, an absorbing parabolic beach consisting of a
perforated plate was fitted in order to reduce wave reflection. The highest part of this beach
was a few centimeters above the mean sea level, and the height of the beach was adjusted
when the water depth was changed. A number of capacitance wave gauges, marked in red
in Figure 3.1, were placed in the flume to measure the wave elevation. The wave gauges
were calibrated every 48 hours to account for changes in the water temperature or other
unknown changes that could affect the set-up.

Figure 3.1: Experimental set-up of the NTNU campaign



44 Model testing of monopile bottom-fixed offshore wind turbines

Model

At about 15 m from the wave maker, a pit was constructed in which the model was placed.
This paragraph gives the characteristics of the model, in full-scale values unless otherwise
specified. The model, illustrated in Figure 3.2 consisted of a 1:48 representation of an
offshore wind turbine. It was a stiff (i.e. rigid) cylinder with a 6.9 m diameter and a 0.28
mm thickness. A mass of 557 t was placed on top of the cylinder to obtain an eigenfre-
quency representative of a full-scale offshore wind turbine. Note that for practical reasons,
the height of the model (1.54 m model scale, 73.9 m full scale) was significantly smaller
than that of a full scale turbine, therefore the top mass was significantly larger than typical
values of a full scale turbine. A series of decay tests were conducted on the model, for
different water depths and in dry conditions. For the data presented in this thesis, the full-
scale first wet eigenfrequency was found to be f (1)NTNU = 0.26 Hz (1.78 Hz model scale)
and the damping ratio was 2.4 % of the critical damping. The second eigenfrequency was
obtained through hammer tests and found to be around f (2)NTNU = 11.5 Hz (80 Hz in
model scale).

The model was held onto the bottom of the pit by a rotational spring which blocked all
degrees of freedom except for pitch. The spring was mounted onto a force and moment
transducer. Two accelerometers measured the accelerations at the top, in the longitudinal
and traversal directions of the flume.

An attempt was made to study the influence of damping on the response by adding an
adjustable damper. However, during the experiments where this damper was used, the
rotational spring became damaged, rendering the results unusable.

Figure 3.2: Model used during the NTNU experimental campaign
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Environmental conditions

Two water depths were tested, at 20.9 m and 30 m in full scale (0.435 m and 0.625 m
model scale). A large number of regular and irregular waves were tested, but only results
from irregular waves are presented here. Eight sea states were tested for each water depth,
corresponding to a combination of two significant peak periods TP = (15, 11.25) s with
fours significant wave heights HS = (9.04, 8.22, 7.69, 6.71) m. All the sea states were
realized following a JONSWAP spectrum with a spectral peak shape γ = 3.3. The waves
were calibrated by removing the model and running the tests. A high level of repeatability
was found for the wave elevation.

Limitations

• the mode shape of this model does not correspond to that of a wind turbine. For a
full-scale wind turbine, most of the motion occurs on the higher part of the structure,
while the displacement at the MSL is significantly smaller. This is not correctly
captured by the present model, which will experience large displacements at the
MSL. This will produce more radiated waves than a full scale turbine.

• as no second or higher modes are modelled, the influence of these modes on the
response is not accounted for.

3.2 WiFi

This experimental campaign was carried out in the context of the Wave impact on Fixed
foundations (WiFi) Joint Industry Project (WP3), where the objective was "to increase the
understanding of breaking and steep wave impact’s on fixed foundations of offshore wind
turbines." (de Ridder et al. 2017). The data from these experiments were used in P3 and
P4.

Experimental set-up

The experimental campaign was carried out in the shallow water basin at the Maritime
Research Institute Netherlands (MARIN). This tank, illustrated in Figure 3.3, is 220 m
long and 15.8 m wide with a flat bottom. It is equipped with a parabolic absorbing beach
at one end to minimize wave reflection and a piston-type wave maker at the other end. The
waves were generated following the second order wave generation technique presented in
Schäffer (1996) to correct for the difference between the oval motion of the water particles
in intermediate water and the horizontal motion of the piston. Two pits were dug into the
ground and two models were mounted onto two 6-component force frames that measured
the response of the models.
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Figure 3.3: Experimental set-up of the WiFi experimental campaign

Model

Two models were used to produce the data used in this work. The models are a flexible
and a stiff representation of a 4 MW wind turbine mounted on a monopile at a 1:30.6 scale.
The two models are presented in the following paragraphs. All values are given full-scale,
unless otherwise specified.

Flexible model: the fully flexible model was composed of two cylindrical sections of
5.5 m and 7 m, respectively, linked through a conical section which gave a diameter at
the MSL of 5.8 m (see Figure 3.4). The model extended 10.1 m below the sea bed at
a water depth of 27 m and reached a height of 87 m above the MSL. Special effort was
put into achieving similar first and second eigenfrequencies and first mode shape as the
full-scale model. For that purpose, a top mass of 276 t (9.5 kg model scale) was placed on
top of the structure to model the RNA, and some sections of the cylinder were partially cut
transversely to reduce their stiffness. The first and second eigenfrequencies thus obtained
were f (1)WiFi = 0.29 Hz and f (2)WiFi = 1.21 Hz. Figure 3.5 shows the targeted mode shapes
(i.e. the mode shapes of the full-scale turbine) and the obtained mode shapes (i.e. the
mode shapes of the model).

Stiff model: the stiff model had the same diameter and conical section as the flexible
model but only extended up to the expected maximum wave run-up. The goal of having
a stiff model was to be able to measure the excitation loads. For that purpose, the first
eigenfrequency of the structure should be as high as possible. In practice, the achieved
eigenfrequency was 1.8 Hz.
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Figure 3.4: Model used during the WiFi experimental campaign

The wave elevation and the bending moments at the bottom of the structure for both models
were measured. In addition, video cameras recorded the complete experimental campaign.

Environmental conditions

A large number of wave conditions were produced during this campaign, including regular
waves, focused waves and irregular waves. Only the data produced during the irregular
wave tests are analyzed in this thesis. All the irregular sea states were generated following
a JONSWAP spectrum with a spectral peakedness factor of 3.3. The characteristics of the
sea states are given in Table 3.3.

Limitations

• as seen in Figure 3.5, the discrepancies between the targeted and obtained second
mode shapes at the top were significant. This had little influence on the response to
hydrodynamic loads.

• the modes higher than second were not tuned to match those of the full-scale turbine.
Therefore, the influence of those higher modes was not representative of the full-
scale situation
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Figure 3.5: Dimensionless mode shapes. Blue colour represents the obtained mode shapes and red
colour represents the targeted ones.

Table 3.3: Characteristics of the sea states from the WiFi experimental campaign used in this thesis

HS [m] TP [s]
3.5 8.5
5.81 10.93
5.89 10
6.18 10
5 8.5
6.5 10
9 13
9 11

• the eigenperiod of the stiff model was relatively high compared to the duration of a
slamming event. This means that the dynamic response of the stiff structure will be
visible during wave breaking events.

• the mildest sea states presented in Table 3.3 did not correspond to extreme storms.
In these conditions, it is likely that the turbine is not idling but rather operating. The
assumption that aerodynamic loads are not significant might therefore not hold.

• no wave measurements without the structure were available. The wave elevation
used for the numerical models was taken from a wave gauge placed 13 diameters
away from the models and it was assumed that the influence of the models at that
location was not significant and that the waves were long-crested.



3.3. Wave Loads Project 49

3.3 Wave Loads Project

This experimental campaign was carried out as part of the Wave Loads Project (Bredmose
et al. 2013a) and the data it produced have been used in P5 as well as in other research
such as Bredmose et al. (2013b) or Robertson et al. (2016).

Experimental set-up

The experiments were carried out at the shallow water basin of DHI Denmark. The di-
mensions of the experimental set-up are given in Figure 3.6. This basin was equipped with
a piston wave maker on one side and an absorbing rock berm on the other side to minim-
ize wave reflection. A 1:25 slope was fixed onto the bottom, on which the structure was
mounted. More information on the experimental set-up can be found in the Wave Loads
project report (Bredmose et al. 2013a).

Model

A fully flexible model was used in this campaign, representing the NREL 5 MW wind
turbine (Jonkman et al. 2009) at a 1:80 scale. The main characteristics of the model are
given in full scale (unless specified otherwise). The model was a cylinder of constant
diameter of 6 m, with two point masses of about 937 t (1.78 kg in model scale) added
87 m and 128.6 m above the sea bed (108.75 cm 160.75 cm, respectively). The two
first eigenfrequencies of the model were f (1)WL = 0.28 Hz and f (2)WL = 2.0 Hz. More
information about the model can be found in Robertson et al. (2016).

A stiff model was also used during the experimental campaign, but the data measured on
the stiff model were not used in this thesis.

Environmental conditions

In the tests used in this thesis, three water depths were considered, at 40.8 m, 31 m and
20.9 m. At each depth, two irregular sea states were generated following the JONSWAP
spectrum, defined by (HS = 8.3 m; TP = 12.6 s) and (HS = 11 m; TP = 14 s),
respectively. Both sea states had a spectral peakedness factor of 3.3.

Limitations

• as for the WiFi experimental campaign, the modes higher than second were not
tuned to match those of the full-scale turbine. Therefore, the influence of those
higher modes is not representative of the full-scale situation

• the slope of 1:25 is larger than typical values (around 1:1000, see Bredmose et al.
2013a), which will create more plunging-type breaking waves. This can increase
the number of events with a large excitation of the second mode.
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Figure 3.6: Set-up of the Wave Loads experimental campaign



Chapter 4

Dynamic response analysis of
monopile bottom-fixed offshore
wind turbines

This chapter lists the main findings from the thesis. For all the experiments in chapter 3,
the general approach has consisted of two steps:

• Analyze the measured data, to describe the relative importance of different phenom-
ena and hypothesize as to what causes them

• Compare the measurements with numerical simulations, to assess how different nu-
merical models perform when predicting the structural responses.

For the NTNU and WiFi campaigns, the bending moment at the sea bed was measured,
while for the Wave Loads campaign, the shear force at the sea bed was measured. For
simplicity, we refer to both these measurements as response in the following sections.

4.1 Experimentally determined response to steep and breaking
waves

For all experimental campaigns, significant first mode response was observed even in non-
extreme waves. This was attributed to a springing-type of response. During the cam-
paigns, it was observed that ringing produced larger responses than springing. However,
the springing response prior to a ringing event will affect the maximum response depend-
ing on the phasing of the prior response and the ringing event (P1): if the structure is
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pitched towards an incoming wave that will produce ringing response, the springing and
the ringing responses will add-up. In the other extreme, if the structure is pitched away
from the wave, the springing response will cancel part of the ringing response. The latter
situation is referred to as non-additive or favorable by Bachynski et al. (2017) and the
former is referred to as additive or unfavorable.

The analysis of the measured response produced during the Wave Loads experiments (P5)
showed that for waves producing low responses, the amplitude of the response is driven
by the water depth: structures in larger depths experience larger response due to i) a larger
water column acting on the structure and ii) a larger mode shape displacement away from
the sea bed, which implies a larger modal excitation as can be seen from equation 2.46.

For waves producing a large response however, structures in shallower water experienced
larger responses than structures in deeper water. This is explained by the fact that waves
become more non-linear with decreasing water depth.

Figure 4.1 illustrates this phenomenon with data from the Wave Loads campaign. The
exceedance probability pexc of the measured responses from the same sea state at three
different depths is shown, and it can be seen that for the largest part of the population
(pexc > 0.2), the sea state at the largest depth (40.8 m) produces the largest responses,
followed by the medium depth (31 m) and the shallowest depth (20.9 m). For the largest
measured responses however, the order is inverted, with the shallowest depth producing
the largest responses and the deepest producing the smallest responses.

Figure 4.1: Exceedance probability plot for the measured base shear force for one sea state at three
different depths

In all campaigns, the largest responses were measured for steep and breaking waves. This
is illustrated in Figure 4.2, which shows the wave elevation and measured bending moment
at the sea bed for an event with a large response recorded during the WiFi campaign.
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Figure 4.2: Example of the bending moment measured during an event with a large response.

For the models with a realistic second mode (i.e. from the WiFi and the Wave Loads cam-
paigns, in P3 and P5), a spectral analysis showed that both the first and the second modes
were triggered in such events. For these two campaigns, the response was decomposed
into so called quasi-static, first mode and second mode contributions (note that contribu-
tions from higher modes were removed by low-pass filtering out the measured response).
The first and second mode contributions were obtained using a band-pass filter around the
first and second eigenfrequencies of the structure. The quasi-static response was the result
of subtracting the first and second mode responses from the total response (here and in the
rest of the chapter, total response refers to the response filtered out for modes higher than
second). Figure 4.3 shows an example of this decomposition for the measured response
during an event of the WiFi campaign.

This decomposition shows the contribution of the different modes to the total response.
Note that with this method, all the response at an eigenfrequency is attributed to the cor-
responding mode, which is not correct in general. For example, by assuming that all the
response around the first eigenfrequency corresponds to the first mode, we omit that the
second mode can also produce a response at the first eigenfrequency. The decomposition
also emphasizes the responses which are in phase at the instant of maximum response.

This decomposition was applied to a large number of events that produced large responses.
In such events from the WiFi campaign, it was found that the quasi-static response con-
tributed between 40 and 50 % of the total response, the first mode contributed between 30
and 40 % and the second mode up to 20% (P3). A similar decomposition was performed
on the acceleration close to the top of the structure of the Wave Loads campaign (P5): for
the largest measured acceleration over the whole campaign, the second mode contributed
to about 30% of the total acceleration.

In addition, a comparison between the second mode response and a video recording of
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Figure 4.3: Example of decomposition of the response around the eigenfrequencies of the structure

the experimental campaign was carried out in the NTNU and the WiFi campaigns (P2,
P3). This comparison showed that significant second mode response only occurred when
waves were breaking at the structure, therefore the hypothesis was made that second mode
response can only be triggered by slamming events. This was later confirmed by numer-
ically simulating the response of the structure with and without slamming load models
(P4, see Section 4.2). However, not all slamming events triggered significant second mode
response.

Figure 4.4 shows four snapshots of a breaking wave impacting the structure. The presence
of water particles ejected upwards and sideways, visible in the fourth image, are a visual
indicator that the wave has broken at the cylinder, as explained in P3.

Secondary Load Cycle

By analyzing the loads on the stiff model of the WiFi campaign, it was also possible to
study the excitation force and in particular the secondary load cycle phenomenon, referred
to as SLC. Figure 4.5 shows the wave elevation, the excitation force measured on the stiff
structure and the first mode response measured on the flexible structure. No correlation
between the SLC characteristics and the magnitude of the first mode response could be es-
tablished. However, some of the events presented a clear ringing response but did not have
a SLC, such as the one shown in Figure 4.5(b). This suggests that in the WiFi experimental
campaign, the SLC was not a necessary load attribute to generate ringing responses.
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Figure 4.4: Snapshots of a steep wave breaking at the structure, recorded during the WiFi campaign

(a) Event with a SLC (b) Event without a SLC

Figure 4.5: Example of two events with a large measured response. The first mode response is
measured on the flexible structure, the excitation force is measured on the stiff structure
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4.2 Simulation of the response to steep and breaking waves

The second step of the analyses consisted in reproducing the data produced during the ex-
perimental campaigns with different models. As explained in Section 3, the aerodynamic
and geotechnic effects were neglected in the present test, and since the turbine was as-
sumed to be idling no controller was modelled. The structural models used to calculate
the responses (see Section 2.4) do not present any major challenge, the focus of this work
was therefore in the hydrodynamic load models. In this section we assess how the models
used in this thesis compare, both at a deterministic and statistical level, to the experimental
data.

Note that comparing experimental data to simulations is not in general part of the design
process for offshore wind turbines (see Section 2.5). Making this comparison at a de-
terministic level introduces the added difficulty of having to match the measured wave
kinematics.

4.2.1 Individual assesment of the models

The following paragraphs summarize the general conclusions that were drawn for each of
the numerical models and provide a comparison between the simulated response and the
measurements for the event with the largest response measured during the Wave Loads
campaign.

4.2.1.1 Linear kinematics applied to the Morison equation

The measured wave kinematics were linearized following the process described in the ap-
pendix A of P4. The hydrodynamic loads were then calculated with the Morison equation
as described in 2.3. This model was used in P1, P2 and P4.

This model generally underestimated the largest measured responses because it did not
trigger significant first and second mode response. This was expected as the calculated
loads did not have the frequency content necessary to significantly excite the modes of the
structure. This result is well-known (see for example Paulsen et al. 2013 or Marino et al.
2013) and will not be discussed in further detail.

4.2.1.2 Second order kinematics applied to the Morison equation

This model was used to try to match the measured responses of the Wave Loads campaign
in P5. The wave kinematics used included components up to second order in terms of wave
steepness. This set of kinematics was obtained by first linearizing the measured wave el-
evation. The linearization was carried out by first removing the difference-frequency wave
components from the measurements, and then iteratively selecting the cut-off frequency
of a low-pass filter such that the reconstructed wave spectrum (including first and second
order terms) gave the best possible match to the measured spectrum. Further details can
be found in Bachynski et al. (2017).
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For the two cases in the shallowest water depth, the irregular Ursell number as defined by
Stansberg (2011) was above the classical limit of 0.33, beyond which second order theory
is not expected to depict accurately the wave kinematics. The responses calculated for
these cases therefore largely underpredicted the measurements and were not considered in
the analysis.

For the other cases, the Morison equation with second order wave kinematics matched
the main population of events but generally underestimated the largest responses. This
is due to the fact that the kinematics did not include harmonics higher than second and
therefore lack some components of the high frequency loads which trigger the largest
dynamic responses.

Figure 4.6 shows a comparison between this model and the measurements. The upper plot
shows the wave elevation obtained from the second order wave kinematics. The measured
wave is significantly steeper than the simulated one due to the lack of higher harmonics
in the simulated wave. The lower plot compares the response obtained with this model to
the measurement. The simulated response does not include any second mode response,
therefore underestimating the total response.

Figure 4.6: Comparison of the measurements and the Morison equation with second order wave
kinematics

4.2.1.3 Stream function wave kinematics applied to the Morison equation

Without slamming model This model is referred to as the M_SF model and was used to
calculate the responses measured in the WiFi campaign in P4. This model was assessed
at a deterministic level by selecting the waves that produced the largest responses, finding
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their period and height and modeling them with the stream function wave theory described
in Section 2.2.3. The kinematics thus obtained were embedded into a linearization of the
measured wave and applied to the Morison equation.

This model was able to produce ringing responses due to the higher harmonics contained
in the wave kinematics. However, at a deterministic level, there was no general trend
as to over- or underestimation of the first mode response: the first mode response was
underestimated for some events and overestimated for others.

This model was not able to trigger significant second mode response. This is consistent
with the findings from the measured data, which suggest that second mode response is a
consequence of slamming loads, which were not included in this model.

With Wienke’s slamming model This model is referred to as the M_SF_W model and
was assessed in P4 following the same procedure as for M_SF. A comparison was made
between the responses produced by this model and the previous one, where the only dif-
ference is the slamming model. The first mode responses produced by both models were
very similar, which suggests that the slamming model did not significantly influence the
first mode response. This is consistent with the basic structural dynamics theory discussed
in Section 2.4.1: it was shown in P2 that the duration of a slamming force calculated with
Wienke’s model was about two orders of magnitude shorter that the first eigenperiod of the
structure, which implies, as illustrate in Figure 2.7, that no significant first mode response
will be triggered.

Significant second mode response was triggered by this model. Figures 4.7(c) and 4.7(d)
show the continuous wavelet transform of the measured response and the response simu-
lated with the M_SF_W model for an extreme event, respectively. Figure 4.7(c) shows that
the first and second mode of the structure at 0.29 Hz and 1.21 Hz were triggered during
the experiments. Figure 4.7(d) shows that the M_SF_W model was capable of triggering
both the first mode and the second mode. By comparing with the results from the M_SF
model, it was concluded that the Morison equation with stream function wave kinematics
was able to produce the first mode response and that Wienke’s slamming model was able
to trigger second mode response.

However, by comparing a large number of extreme responses simulated with the M_SF_W
model to measured responses, it was found that the simulated amplitude of the second
mode response did not generally match the measured one. By performing this compar-
ison for the total response, it was found that the M_SF_W model was overpredicting the
response for some extreme events and underpredicting it for others, with no clear trend.

This is also illustrated in Figure 4.8, which compares both models to the measurements.
The upper plot shows the wave elevation, where the stream function wave has been em-
bedded into a linearization of the wave measured elevation following the process described
in Figure 2.5. Note that both models use the same wave kinematics, therefore the wave el-
evation is equal for both. Here it can be seen that the stream function exhibits a symmetry
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(a) Measured (zoom) (b) Simulated with M_SF_W (zoom)

(c) Measured (d) Simulated with M_SF_W

Figure 4.7: Continuous wavelet transform of the response measured and simulated with the
M_SF_W model in the WiFi campaign. The upper plots are a zoom of the lower ones around
the second eigenfrequency of the structure. Warm colors indicate a high energy content, while cold
colors indicate a low energy content. For visualization purposes, the color scale of the upper plots is
different from the lower plots.

around the crest, while the measured wave does not.

The lower plot shows that although both models underestimate the measured response,
the M_SF_W model triggers some second mode response, which increases the maximum
response by about 20% compared to the M_SF model. This is an example where the
M_SF_W model underestimates the second mode response, which can not be generalized
to all events.

Statistical assessment In P4, the M_SF_W model was also assessed at a statistical level,
following the procedure suggested in DNV-RP-C205 (2017), DNV-OS-J101 (2014) and
IEC-61400-3 (2009) to simulate DLC6.1 and described in Section 2.5.

Each of the sea states of P4 was assumed to correspond to the 50-year return sea state at a
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Figure 4.8: Comparison of the measurements and the Morison equation with stream function wave
kinematics, with and without slamming model

fictitious location. Following IEC-61400-3 (2009), the height of the 50-year wave was cal-
culated assuming that the sea state had a 3-hour stationarity during which the wave heights
followed a given distribution (two distributions were analyzed: the Rayleigh distribution
and the Battjes and Groenendijk distribution presented in Battjes and Groenendijk (2000)
and noted BG). The kinematics of the 50-year wave were then calculated with the stream
function theory and embedded at a random time into a realization of the 50-year return
sea state. The loads were then calculated with the Morison equation with Wienke’s slam-
ming model addition, and the maximum simulated response was taken. For each sea state,
this procedure was repeated 20 times, and the average of the 20 maxima was taken as the
50-year response, i.e. the driving response for DLC6.1.

The 50-year response thus calculated was compared to the largest measured response for
each sea state. Note that the 50-year response does not generally correspond to the re-
sponse to the 50-year return wave nor to the largest response during the 50-year return sea
state. However, this comparison provides a good indication of how the M_SF_W mode
performs.

Figure 4.9(a) shows the height of the 50-year return wave for the different sea states for the
Rayleigh and the BG distributions. The BG and the Rayleigh distribution produced similar
results in deep water, where the numerical predictions matched the measurements. The
wave heights predicted by the BG distribution were generally smaller than the Rayleigh
distribution for intermediate waters.
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(a) Wave heights (b) Responses

Figure 4.9: Comparison between the estimated 50-year wave heights (in Figure a) and the corres-
ponding responses (in figure b) with the measurements for different wave height distributions. The
error bars around the measured maxima correspond to 2 standard deviations of the maximum.

Figure 4.9(b) shows the 50-year return responses estimated using the procedure described
in Section 2.5 for the different distributions and compares them to the measurements. For
the sea states with a large significant wave height, the M_SF_W model overpredicts the
responses compared to the experimental measurements when using the Rayleigh distribu-
tion. The overprediction is reduced by using the BG distribution since this distribution
leads to lower estimates of the 50-year return wave height, as seen in Figure 4.9(a). For
lower sea states, the predicted response is closer to the measurements. It was shown in
P4 that the overprediction was mainly related to the response at the second mode of the
structure, which depends strongly on the celerity of the stream function wave.

4.2.1.4 KF and Rainey model

In this section the KF model and the Rainey model are discussed simultaneously. These
models were used to simulate the response in P5. The kinematics input into both mod-
els were fully non-linear wave kinematics computed with the OceanWave3D software
(Engsig-Karup et al. 2009) within the Wave Loads Project. Note that these models do
not include any slamming force term. For both models, a drag term equal to that of the
Morison equation was added. The loads from the KF model then become

FKF =

∫ η
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(
2ρπR2

(
∂u

∂t
+ w

∂u

∂z

)
+ ρπR2u

∂u

∂x
+ ρCDRu|u|

)
dz + Fψ (4.1)

By noting that conservation of mass for the present two-dimensional waves yields ∂u/∂x =
−∂w/∂z and using CM = 2, the force from the Rainey model can be written as
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FRainey =

∫ η
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In order to calculate the point force Fψ of the KF model, the kinematics at the mean sea
level must be used. The fully non-linear kinematics provided for the Wave Loads Project
only included data for wet parts of the monopile, so no kinematics were available at the
MSL when a trough was passing the monopile. To solve this issue, the kinematics at the
free surface were Taylor expanded to approximate the kinematics at the MSL and used to
calculate Fψ .

In addition, the KF model is consistent to third order only. To be consistent with the theory,
contributions higher than third order should be removed from the hydrodynamic loads thus
calculated. This is not trivial and was not carried out in this work.

The analysis carried out in P5 suggests that these two approximations did not introduce a
significant error compared to the original formulation of Kristiansen and Faltinsen (2017).

The KF and the Rainey models produced responses that matched the measurements reas-
onably well both for the main population of events as well as for extreme events, although
they did not generally overpredict or underpredict the measured responses. A general
observation is that the KF model produced larger responses than the Rainey model.

This is illustrated in Figure 4.10. The wave elevation in the upper plot shows that the fully
non-linear kinematics produced a higher but less steep wave than the measurements. Note
that both models use the same wave kinematics, therefore the wave elevation is equal for
both.

The lower plot shows the measured and simulated responses, and illustrates how for this
event the responses simulated with the KF and the Rainey model underestimate the meas-
ured responses by 11% and 20%, respectively.

Equations 4.1 and 4.2 show that the only difference between the models are the point
forces Fψ and F η . As shown in Section 2.3.2, these two point forces are given by

Fψ = ρπR2 4

g
u2
∂u

∂t
(4.3)

F η = −1

2
mau

2 ∂η

∂x
(4.4)

It is a well known result that in the small wave amplitude limit, Fψ is eight times larger
than F η (Chaplin et al. 1997, Faltinsen et al. 1995, Rainey 1995). The similarity between
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Figure 4.10: Comparison of the measurements and the Rainey and KF models

the responses produced by these two models suggested that this eightfold difference must
somehow be compensated in the present case. The third harmonic of the excitation force
produced by these two point loads for regular waves of different amplitudes and at different
depths was analyzed in P5. As shown in Figure 4.11(a), the eightfold difference at small
wave amplitudes tends towards unity for larger waves, which explains why the results
produced by the two models are similar.

By taking the derivative of the linear dynamic free surface boundary condition (given in
equation 2.7) with respect to x, it can be found that g∂η/∂x = −∂u/∂t. Inserting this
expression in the definition of F η given in equation 4.4 yields Fψ = 8F η and explains
the difference for small amplitude waves. This is illustrated in Figure 4.11(b), where the
third harmonic of u2∂u/∂t is analyzed. This figure shows that for small amplitude waves,
taking the kinematics at z = 0 or at z = η does not have a significant impact. However,
for large waves, the kinematics at z = η are significantly larger, which partly compensates
for the eightfold difference between the linear expressions of Fψ and F η .

By decomposing the measured structural acceleration at a point close to the top of the
structure around the first and second eigenfrequencies, it was found that for extreme
events, both models generally overpredicted the first mode acceleration while the second
mode acceleration was underpredicted. The latter was expected since the results from P4
show that slamming models are necessary to significantly trigger second mode response.
The former is a known limitation and has been discussed by Kristiansen and Faltinsen
(2017), who showed that the KF model overpredicts the third harmonic excitation for
steep waves such as those analyzed in this experimental campaign.
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(a) Ratio of Fψ and F η (b) Ratio of u2∂u/∂t taken at z = 0 and z = η

Figure 4.11: Comparison of the third harmonic excitation force for Fψ and F η and of the kinematic
term u2∂u/∂t taken at z = 0 and z = η

4.2.2 Comparison of numerical models

In this section the numerical results are compared to the measurements for the KF, Rainey,
Morison second order and M_SF_W models. Figure 4.12 compares the measurements
and the numerical models for the event shown in Figures 4.6, 4.8 and 4.10 (i.e. the event
that produced the largest response in the Wave Loads campaign). The three time series
represent, from top to bottom:

• The wave elevation. Note that the KF and the Rainey models use the same kinemat-
ics and therefore show the same wave elevation.

• The modal excitation of the first mode. Note that no measurement of the excitation
force was available.

• The shear force at the sea bed.

None of the simulated wave elevations matches the steepness of the measured waves. The
steepest wave is obtained from the fully non-linear kinematics, followed by the stream
function wave theory and the second order kinematics. There is a slight delay in the wave
simulated using the fully non-linear kinematics and the stream function theory. This delay
is also visible in the response in the third plot.

In the second plot showing the excitation force, it can be seen that the M_SF_W model
contains an impulse force, resulting from the slamming model. If this impulse force is
excluded, the KF and Rainey models produce the largest excitation forces, followed by the
M_SF_W model and the Morison second order model.

Note that the slamming force calculated with Wienke’s model was applied when the wave
reached its maximum steepness, as the results from P4 showed that this generally gave
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the closest temporal match between the simulated and measured second mode responses.
This produces a peak in the excitation force that is not in phase with the maximum of the
force from the Morison equation alone. This is due to the fact that the shape of the stream
function wave does not match the measured wave: while the measured wave is asymmetric
and sees the slamming load roughly in phase with the maximum particle acceleration, the
stream function wave is symmetric.

The third plot in Figure 4.12 shows that for this event, the largest response is produced
by the KF model, followed by the Rainey model, the M_SF_W model and the Morison
second order model. The order of the largest responses follows that of the excitation forces
(with the slamming impulse load excluded). For this event, none of the models match the
second mode response.

Figure 4.13 shows the same comparison for a different event. In this event, the second
mode response is largely overestimated by the M_SF_W model, and the response sim-
ulated by this model is the largest of all responses. The accuracy of the total response
produced by the M_SF_W model depends strongly on the amplitude of the second mode
response.

A statistical comparison of these models is shown in Figure 4.14, where the exceedance
probability plot of the response is given for the 3-hour sea state with HS = 11 m,
TP = 14 s at h = 31 m during which the largest response was measured. This figure
shows that all models match the main part of the population except M_SF_W. This model
largely underestimates the response for the lower events because the kinematics for non-
extreme waves are a linearization of the measured wave. Therefore, the model used in
non-extreme events is effectively the Morison equation applied to linear wave kinematics.
In this plot, only the 10 waves that produced the largest 10 responses are simulated with
stream function kinematics and have a slamming load added to the Morison equation. For
these events, as stated earlier, some events are underestimated while some are overestim-
ated by the M_SF_W model. The number of events simulated with the M_SF_W model
was selected to obtain a sample that could be compared to the other models for the most
extreme events.

Note that the order in which the events are plotted along the y-axis is not generally the
same for the different models and the measurements. Indeed, for the largest measured
response shown in Figure 4.12, the M_SF_W model underestimated the measured results.

As explained previously, the Morison second order model can accurately predict the lowest
responses but largely underestimates the most extreme events. For this sea state, the Mor-
ison equation with second order kinematics matches the measurements for pexc > 0.02.
The portion of the population for which the simulation was close to the measurements
improved for milder sea states but decreased for more extreme sea states (P5). For more
extreme sea states, the irregular Ursell number was above 0.33 and this model was not
valid.
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Figure 4.13: Comparison between the measurements and the numerical models, example 2: HS =
8.3 m, TP = 12.6 s, h = 40.8 m

The KF model produces responses that lie within 12% of the measured forces, with the KF
model generally producing larger responses than the Rainey model. However, as explained
previously, this figure does not keep the order of the events along the y-axis. Therefore,
the largest measured response and the largest response simulated by the KF model, which
appear reasonably close in Figure 4.14, do not correspond to the same event. The conclu-
sions about the KF and Rainey models drawn from this sea condition can be applied to the
other sea conditions as well (P5).
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Figure 4.12: Comparison between the measurements and the numerical models, example 1: HS =
11 m, TP = 14 s, h = 31 m
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Figure 4.14: Exceedance probability plot for the measured and simulated responses



Chapter 5

Conclusions and future work

This chapter gives a summary of the contributions to the scientific community that resulted
from the work presented in this thesis, as well as suggestions for future work based on the
challenges that were encountered while carrying out this work.

5.1 Conclusions

This thesis addresses research questions about the design of monopile bottom-fixed off-
shore wind turbines in Ultimate Limit State. It studies the response of such turbines in
extreme sea states and how to simulate the loads that produce such responses. This work
has focused on two non-linear phenomena that affect offshore structures in steep waves,
namely ringing (transient excitation of the first mode of the structure) and slamming (steep
wave breaking at the structure).

Data measured during three experimental campaigns were used to validate different hy-
drodynamic load models. A number of conclusions were drawn from this comparison,
which are listed below:

• the maximum responses consistently occurred during steep waves breaking at the
structure. In such events, the first mode response characteristic of ringing events
could be seen combined with second mode response (P1, P2, P3, P5).

• by band-pass filtering the response around the first and second eigenfrequencies,
it was possible to decompose the response into quasi-static, first and second mode
responses, to quantify the contributions of these modes to the total response in ex-
treme events. For the response bending moment at the sea bottom, it was found that
the quasi-static response contributed between 40 and 50% of the total response, the
first mode contributed between 30 and 40% and the second mode up to 20%. This

69
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shows the necessity of having an accurate second mode when carrying out model
tests or numerical simulations in order to not underestimate the extreme responses
(P3).

• the first mode of the structure was excited by second and third order hydrodynamic
loads only. It was not influenced by slamming loads because their duration is too
short to significantly excite the first mode of the structure (P1, P2).

• the second mode of the structure was excited by slamming loads. Waves that did not
break did not significantly trigger second mode response, but not all breaking waves
excited the second mode of the structure (P2, P3).

• as shown in previous research, linear wave kinematics applied to the Morison equa-
tion did not produce loads with the frequency content necessary to produce ringing
responses or excite the second mode of the structure (see for example Paulsen et al.
2013). Therefore, this model largely underestimated the response of the structure in
extreme events (P1, P2, P4).

• second order linear kinematics applied to the Morison equation can trigger ringing
responses, but this model generally underpredicted extreme events. For very steep
waves in shallow waters, the Ursell number was above the classical limit Ur <
0.33 where second order theory accurately depicts the kinematics of a wave. It was
therefore expected that this model did not accurately predict extreme responses (P5).

• the FNV model, initially developed by Faltinsen et al. (1995) for deep water, can
qualitatively produce ringing responses in intermediate water as well. However,
this model does not include any non-linear incident potential. As shown by Kristi-
ansen and Faltinsen (2017), the contribution from the non-linear incident potentials
is dominant in shallow water. Therefore, it is not consistent to use the FNV model
in finite water (P2).

• the model suggested by the common standards (IEC-61400-3 2009, DNV-RP-C205
2017, DNV-OS-J101 2014) is the Morison equation with stream function kinemat-
ics (Rienecker and Fenton 1981) and Wienke’s slamming model (Wienke and Ou-
meraci 2005). The Morison loads with the stream function kinematics could produce
ringing responses while the slamming model could trigger second mode response,
therefore the combination of the two had the capability to match the measured re-
sponses. However, this model generally missed the balance between first and second
mode response and the results it produced were not in general conservative (P4).

• the KF model is a generalization of the FNV to finite waters recently derived by
Kristiansen and Faltinsen (2017). The input to this model are third order wave
kinematics, and the model is consistent to third order. It requires separating the
wave kinematics into different orders, which is not trivial for irregular waves. It also
requires kinematics at the MSL, which, depending on the model used to generate
the kinematics, is not always possible. In the work presented in this thesis, the input
wave kinematics were not split into orders, which means that loads of order higher
than third were included, and therefore the loads are not consistent. In addition,
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the kinematics at the free surface were Taylor expanded to obtain the kinematics at
the MSL as required. These two modifications, although not consistent, showed a
reasonable agreement with the original formulation. (P5)

• the KF model with the modifications mentioned in the previous point matched the
extreme responses reasonably well but was not in general conservative. For most
extreme events it overpredicted the first mode response. This is expected as Kristi-
ansen and Faltinsen (2017) showed that this model overpredicts the excitation loads
for very steep waves. The model also underpredicted second mode response as it
lacks a slamming model (P5).

• the Rainey model presented by Rainey (1989) is equal to the KF model if the same
kinematics are used as input, apart from a point load. As for the KF model, the
Rainey model generally overpredicted the first mode contribution but underpredicted
the second mode contributions for event with large responses. The responses in-
duced by the Rainey model were generally 5 to 10% lower than those induced by
the KF model (P5).

• for small amplitude waves, previous research has shown that the point force of the
KF model is eight times larger than the point force of the Rainey model. The work
presented in this thesis shows that this ratio reduces towards unity for steep waves
(P5).

5.2 Original contributions

The main contributions of this thesis are summarized below.

• Quantification of the contribution of the first and second modes to the extreme re-
sponses in ULS

By analyzing time series of measured response bending moment at the sea bottom
for a fully flexible model, it was possible to investigate the relative contributions
of the first and second modes of the structure in the total response. This enables
quantifying the importance of the second mode for the total response.

• Assessment of the Kristiansen and Faltinsen model in extreme irregular waves

Kristiansen and Faltinsen (2017) validated the KF model against regular waves. This
thesis tests the validity of the model in the context of extreme irregular waves by
comparing numerical predictions to measurements obtained during model tests.

• Development of an approach to to apply the Kristiansen and Faltinsen model in
irregular waves

It is not straightforward to apply the KF model to irregular waves. In this thesis
we suggest and implement an approach for using fully non-linear irregular wave
kinematics as an input to the KF model.
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• Analysis of the eightfold ratio between the point loads of the FNV and Rainey models

The eightfold ratio between the point loads of the FNV and Rainey models is shown
to decrease towards unity for large waves, which explains why both models produce
similar results in ULS conditions.

• Critical assessment of the models suggested by the design standards

The response produced by the model suggested by the standards for computing
loads in ULS conditions, namely the stream function wave with Wienke’s slamming
model, is compared to experimental data.

• Evaluation of the importance of the secondary load cycle for ringing responses

The discussion on whether the secondary load cycle is a necessary attribute of the
excitation force to produce ringing responses has been ongoing in the last decades.
Here we show that for the considered conditions, ringing can occur without the
secondary load cycle.

• Development and implementation of a method to extract linear seas from wave
measurements

Several hydrodynamic load models, including the FNV model developed by Falt-
insen et al. (1995), require linear waves as input. When comparing measurements
to numerical modelling, it is therefore necessary to linearize the measured wave el-
evation. The method proposed in P4 filters out the waves of third and higher order
and then iteratively removes the second order wave contribution.

5.3 Future work

Based on the conclusions drawn in this thesis and the limitations encountered, several ex-
tensions of the work presented here can be envisaged. The following topics of investigation
are suggested:

1. Consistent use of the wave kinematics for the KF model

In this work, fully non-linear kinematics were used as input to the KF model. This
is not consistent with the original formulation as it does not allow to separate hy-
drodynamic loads by order, therefore loads of order higher than third were present
in the excitation calculated in this thesis. This limitation was assessed for regular
waves in P5 but its influence could not be quantified for irregular waves. A model
that sorts the kinematics by order, such as the Stokes fifth order theory for regular
waves, would make is possible to keep the results consistent with the KF theory and
therefore assess the inaccuracies of the method applied in this work.

2. Slamming model consistent with the KF model

In order to produce a realistic second mode response, the KF model should be com-
plemented with a consistent slamming model. This is not trivial because the KF
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model is based on perturbation theory consistent to third order, while slamming
loads are strongly non-linear (Rainey 2007). As shown in P3, second mode response
can account for up to 20% of the response of a wind turbine in extreme conditions,
which shows that capturing that response is crucial to endure a safe design of the
structure.

3. Influence of the embedding process

The design process suggested by IEC-61400-3 (2009) and described in Section 2.5
implies using the same wave characteristics for 20 different realizations of a sea
state. Since the embedded wave is the same for all realizations, the only variability
in the response comes from the response history of the structure. From a statistical
point of view, using the same wave could remove the randomness that is sought
when using different realizations of the irregular waves. This effect should be as-
sessed.

4. Analysis of the response for different damping levels

Bachynski and Moan (2014) analyzed tension leg platform floating wind turbines
and found that aerodynamic damping had a major role in the damping of the oscilla-
tions produced by a ringing event. An attempt to study the influence of damping was
made during the NTNU experimental campaign, but the set-up got damaged and the
results could not be used. Such a study would be relevant to close this knowledge
gap.

5. Fully integrated analysis

As explained in Section 3, in the presented experimental campaign, the influence
of aerodynamic loads was neglected, and the soil-structure interaction was greatly
simplified. A fully integrated analysis of the ULS response of the wind turbine
should be performed with the hydrodynamic load models presented in this thesis.

6. Influence of larger rotors

The flexible models used in the WiFi and the Wave Loads experimental campaigns
represented a 4 MW and a 5 MW wind turbine, respectively. Larger turbines have
since then been designed and installed, and it is likely that the eigenfrequencies of
the structure will change. This can potentially change the relative contributions of
the different modes, and these should be updated with the current and future sizes
of wind turbines.

7. Evaluation of experimental methods and uncertainties

The uncertainties inherent to model scale testing were not quantified or analyzed in
detail for the presented experimental campaigns. In order to assess the degree of
validity of the conclusions of this thesis, such analyses should be carried out.

8. Distributed response

The work presented in this thesis only deals with the response of the structure at
the sea bed. In order to verify the numerical models presented in this thesis, it is
necessary to check that they are able to correctly predict the stress distribution along
the support structure of the turbine.
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9. Full scale measurement

Model scale experiment might miss physical phenomena due to scaling issues or
incorrect environmental conditions. To validate the numerical models presented in
this thesis, they should be checked against full-scale measurements.
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Abstract 

This paper presents the results of an experiment carried out in a wave flume aiming at reproducing a 50-year wave condition on 
an extra-large bottom-fixed offshore wind turbine mounted on a monopile. The model is a stiff cylinder mounted on a spring 
allowing rotation of the system around its base only in the wave propagation direction. Under these conditions, the turbine is 
assumed to be idling, and the damping ratio of the system is 2.4%. The overturning moment at the base of the cylinder is 
measured, and it is found that the maximum responses are recorded when long steep breaking or near-breaking waves hit the 
cylinder and excite the first eigenperiod of the structure. For a selected event involving a breaking wave, the response of the 
system is compared to numerical simulations using the FNV method. The higher order excitation loads from the FNV are 
approximated as sinusoid pulse loads, and it is shown that since the duration of these pulses lies close to the eigenperiod of the 
structure, they suffice to trigger the first mode motion, without the need for a slamming model. A consequence of the low 
damping is that if the structure has been previously excited at its 1st mode (linearly or by higher order phenomena such as 
springing), the structure can already have a motion that adds up to the transient response to the pulse loads. The findings of this 
study also challenge some of the load models currently used by the industry to estimate the response of offshore wind turbines 
during extreme events. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of SINTEF Energi AS. 

Keywords: extra-large monopile, 50-year storm, low damping 

1. Introduction 

Offshore wind turbines in extreme weather often encounter steep or breaking waves that produce high response 
loads threatening the structural integrity of the foundation. Under these conditions the blades are typically pitched so 
that the turbine is idling, decreasing the total damping on the first mode for the whole structure. 
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During model tests performed in a wave flume at the Norwegian University of Science and Technology (NTNU) 
in Trondheim in April-May 2015, a one degree of freedom model composed of a stiff cylinder mounted on a 
rotational spring was exposed to 50-years wave conditions. Due to low damping, a lot of first mode oscillation could 
be observed through the experiment, and it was not clear whether these oscillations were due to linear excitation, 
non-linear excitation or slamming events. The structure was hit by a number of steep and breaking waves that 
produced oscillations of the whole structure and induced the maximum recorded loads. 

This paper challenges the physics behind the maximum events and how the low damping has a primary effect on 
them. It is organized as follow: Section 2 is a short presentation of the experiment and section 3 is a presentation of 
the numerical model used to represent the system and the hydrodynamic loads. In section 4 we try to match the 
experimental results with a simple model that can explain the behavior of the turbine and how the maximum loads 
are reached, and section 5 concludes on the findings of this paper. 

2. Presentation of the experiments 

This model test was carried out in the small wave flume at NTNU in April and May 2015. This flume is 28m 
long and 2.5m wide with a constant water depth. One end of the flume is fitted with a perforated parabolic absorbing 
beach and the other end is equipped with a piston-type wave maker, consisting on a flat plate forced into 
translational motion by an electric actuator. At about 15m from the wave maker, a pit has been constructed where 
the model is fixed. 

The model is a representation of a bottom-fixed extra-large offshore wind turbine mounted on a monopile with a 
scale of 1:48. It is a stiff cylinder 1.54m long with a 0.144m diameter and 6mm thick, attached to a force and 
moment transducer via an intermediate piece that behaves as a spring. These parts are dimensioned so that the 
bottom of the cylinder is exactly at the mudline. The transducer is then mounted on a stiff truss structure which is 
solidly anchored to the ground. The spring has been designed to model the stiffness of the soil, and enables the 
cylinder to rotate around its base in the wave direction but not in the transverse direction. The stiffness of the spring 
is 3300 Nm/rd. A mass of 5.04kg was added to the top of the model in order to model the mass of the rotor-nacelle 
assembly and get the correct eigenperiod for the system. The values given in this paragraph are model scale values; 
their full-scale equivalent is given in table 1. 

Decay test were performed on the structure, and it was found that the whole system (with the correct water depth) 
had a damping ratio of 2.4%. [1] and [2] estimated the total damping of offshore wind turbines based on rotor-stop 
sequences for five wind parks and found mean damping ratios varying between 2.3 and 2.5%. The water depths of 
the considered wind parks were between 6 and 27m, which shows that these damping ratios are realistic for a wide 
range of water depths. On a different wind farm, [3] found that for low wind speeds and with the tuned mass damper 
blocked, the damping ratio was 1.1%. For the same turbine, [4] found that fore-aft damping ratios could vary from 
1.7 to 2.8% depending on the wind speed, with the highest values corresponding to the highest wind speeds and with 
the tuned mass damper on. The values used in the presented experiments lie within the range of full-scale wind 
turbine in idling conditions. 

Two different water depths with 8 sea states and 20 seeds per sea state were run. Only one run is studied in 
details in this paper, and was aimed at modelling 50-year storm at the Dogger Bank Creyke Beck B site [5]. The 
waves were randomly generated following a JONSWAP spectrum with a significant wave height HS = 0.171m and a 
spectral peak period TP = 1.62s at a water depth of 0.625m (corresponding to full scale values of HS = 8.22m, TP = 
11.25s and h = 30m). Under these conditions, the turbine will be idling, so no aerodynamic modelling is 
implemented. 

The tank flume was equipped with pairs of capacitance wave gauges at different positions along its length, which 
were used to measure the wave elevation input into the numerical model (see section 3.2.1). Two accelerometers 
were placed at the top of the cylinder and confirmed that the model experienced motion only in the wave direction. 
The force and moment transducer aforementioned was used to calculate the response of the structure to the 
incoming waves. Two cameras recorded the whole duration of the test enabling a visual check of the wave. Focus 
was on whether the wave had broken when exciting the cylinder. 
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    Table 1. characteristics of the model test 

 Diameter Water depth Rotational stiffness Damping ratio Eigenperiod 

Full scale 6.9m 30m 1.75e7 kNm/rad 2.4% 3.89s 

Model scale 144mm 625mm 3300 Nm/rad 2.4% 0.562s 
 
Table 1 shows the characteristics of the model and their equivalent in full scale. A more exhaustive description of 

the model test can be found in [6]. 

3. Description of the numerical model 

3.1. Model of the structure 

The structure is represented by the classical single degree of freedom equation: 
 

        (1) 
 

with  excitation moment due to the waves 
  

 
 

moment of inertia of the pile 
moment of inertia due to the added mass 
damping coefficient 

  
 

rotational stiffness of the spring 
angular displacement of the structure 

 
 The dot over a variable means differentiation. The moment of inertia was calculated using an added mass 

coefficient of 1. Wavelet analysis showed small or close to negligible changes in the first mode frequency 
throughout all the recorded tests. The rotational stiffness was calculated based on the material and geometrical 
properties of the spring and tuned to fit the eigenperiod of the structure. The damping coefficient was estimated 
from the logarithmic decrement of the decay tests. Figure 1 shows the overturning moment measured at the base of 
the cylinder during the decay test and the simulation with the fitted parameters.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2. Hydrodynamic load model 

The input to equation (1) is the hydrodynamic excitation loads, which were calculated from the wave elevation 
measured during the model tests. The first part of this section will present the simple method used to obtain a linear 

Fig 2. Spectra of the filtered and unfiltered measured wave 
elevation 

Fig 1. Decay test, experimental and numerical 
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wave time series from the measured wave elevation (the concept of a linear wave time series and the reason for this 
being required are explained in the next section). The linear wave time series is then used as an input to the load 
model, which is developed in the second part of this section. 

3.2.1. Linear input wave 
The model used in this analysis is the FNV model, a weakly nonlinear model which will be presented in the next 

section. This model calculates 2nd and 3rd order hydrodynamic loads (in terms of wave steepness) from linear wave 
kinematics. If the wave kinematics used as input contain higher order terms, for instance 2nd order wave kinematics, 
2nd order hydrodynamic loads would be calculated from two contributions: (i) from the linear term of the FNV (see 
first line of equation (3)) applied to 2nd order wave kinematics, and (ii) from the 2nd order term of the FNV (see 
second line of equation (3)) applied to linear wave kinematics. This would be inconsistent and produce conservative 
hydrodynamic excitation loads. 

As a wave travels from the wave-maker to the model, non-linearities start to develop, and even more so due to 
the shallow waters considered. These are therefore found in the measured wave and should be removed before 
inputting the wave elevation into the FNV model. For the present paper, an attempt to linearize the measured wave 
elevation was made by filtering out the difference- and the sum-frequencies present in the wave spectrum. 

The waves due to difference-frequencies do not present a major difficulty, as they lie distinctively from the linear 
wave in the spectrum. It can be seen in figure 2 how applying a high-pass filter to the measured wave elevation 
suffices to eliminate the difference-frequencies. 

The waves due to second-order sum-frequencies require a much more elaborated method. Most of the energy 
from sum-frequency waves lies at about twice the spectral peak period which in a JONSWAP spectrum also 
contains energy from linear waves. Completely filtering out the energy at those frequencies would therefore result in 
a loss of information coming from the linear waves. For the present analysis, a simple method consisting in applying 
a Butterworth low-pass filter was used. The cut-off frequency, as suggested in [7] is defined by 

 

S
offcut H

g2            (2) 

 
where g is the gravitational acceleration. Figure 2 shows the spectrum of the measured wave elevation in blue, 

and the same spectrum once the filtering has been applied. As can be seen from the figure, there is a significant 
difference between the filtered and unfiltered spectra at high frequencies (so-called tail of the spectra). According to 
[8], weakly nonlinear models are strongly dependent on the cutoff frequency, which means that the results from the 
present analysis must be used carefully. However, the results presented here are qualitative, and attention is given to 
the phasing of nonlinear terms rather than their amplitude. More accurate ways of obtaining the linear wave 
elevation from a measured time series can be found in [9] or [10]. 

3.2.2. Excitation loads: FNV model 
The model used to calculate the excitation loads is the Faltinsen-Newman-Vinje model (hereafter referred as 

FNV, see [11]), which accounts for loads up to 3rd order in terms of wave steepness (referred as  hereafter). The 
FNV was developed in the 90s when ringing was first observed in basin experiments (see [12]) first for regular 
waves and further developed for irregular waves by [13]. The hydrodynamic excitation force calculated by the FNV 
method as found in [13] is given by the following equation: 

 
    (3) 

 
   

 

 
  

 

 
  

 



 Loup Suja-Thauvin et al.  /  Energy Procedia   94  ( 2016 )  329 – 338 333

 
Where  is the water density,  and  are the horizontal and vertical first order velocity components,  is the 

first order wave elevation,  is the mean water depth,  is the cylinder radius, and subscripts indicate differentiation. 
 is given by 

 
Rh

dZZZR
h /

0 21 43                       (4) 

 
with  and  defined in [13]. These functions represent the steady state and near field non-linear interaction 

with the cylinder for a deeply penetrating and constant diameter cylinder. The slenderness parameter, ,  has been 
omitted for simplicity. It is shown in [14] that all terms of equation (3) are of the order of . The FNV formulation 
assumes that , which is equivalent to saying that the wave amplitude is close to the cylinder diameter. In the 
implementation of the model, the deep water assumption was used for  as indicated in [13], giving . 
The FNV equations do not model any breaking wave loading effect, i.e. they do not model load events related to 
rapid change of added mass impacting the cylinder. The reason for using this model, as will be discussed in detail 
later, is to show that the higher order excitation loads (proportional to  and ) can predict the response measured 
during the experiments. 

The original formulation for the FNV, as shown in equation (3), gives a lumped force whose application point is 
at the mean free surface. The overturning moment at the mudline is then simply obtained by multiplying this force 
by the arm. In the present model, the two terms of equation (3) that require integration from the mudline to the mean 
water level, have been calculated as a distributed force. Each contribution has been multiplied by the corresponding 
arm to obtain the distributed moment. The first term for the overturning moment, which is equivalent to the inertia 
term of the classical Morison load, is then 

 
0221
h t dzzzuRMf                   (5) 

 
And the second term is 
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The first term of second order of equation (3) corresponds to the contribution of the linear potential integrated 

from the mean water depth to the first order wave elevation. In the present model, this force will be applied at the 
mean water level and the moment from this force will be 
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0
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The terms in the third and fourth line of equation (3) are third order term and will be multiplied by the mean 

water depth to obtain moments respectively named  and . 
The FNV model was initially developed for infinite water depth. Under the current setting, with a water depth of 

30m and a spectral peak period of 11.25s, the ratio between water depth and wavelength is about 0.18, which 
according to [15] is in the intermediate water depth range. An attempt to account for some finite water depth effects 
was made by using a finite water potential when calculating the wave kinematics, integrating  and  over a 
finite depth and using the finite water depth dispersion relationship (found for instance in [16]). 

The FNV is known to overestimate the loads, and it is inconsistent to use finite water depth kinematics since the 
formulas were developped assuming a deep water potential. However, as mentioned in section 3.2.1, this analysis 
aims at giving a qualitative explanation of the loading process with special focus on the phasing of different 
excitation loads and the response. The results, as will be seen in figure 3, fit the experiment sufficiently well to be 
considered valid as a parametric and efficient non-linear model. 
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4. Numerical results 

The FNV model was run with all the modelled sea states. It is known to be too conservative in general, but in the 
present analysis there were some events that were accurately depicted by the FNV. The maximum moment recorded 
for the sea state HS = 0.171m, TP = 1.62s and h = 0.625m occurred at about t = 994s and is shown in figure 3. 
During this event, it was visible from the video recording that a breaking wave impacted the turbine, and that the 
turbine started oscillating at its eigenperiod. In [17], slamming tests were carried out in a wave flume, and it was 
shown that the time duration of the impact is very small compared to the first eigenperiod of the structure. 
According to classical structure theory (see for example [18] p47), this will not create significant response of the 
system in its first mode compared to the quasi-static response due to non-breaking waves. In the following we try to 
show that non-impact higher order loads alone can explain the observed first mode motion. 

It appears from this figure 3 that the FNV gives a good approximation of the maximum moment whereas the 
Morison model (applied here with the same linear wave kinematics as the FNV model and with Wheeler stretching) 
underpredicts it. This is described in [16]. As the structure continues oscillating at its eigenfrequency, the FNV 
model starts to clearly overpredict the results while a closer fit is obtained with the Morison equation. As this paper 
analyses the maximum load and the mechanism that triggers the first mode motion of the structure, we focus on the 
first seconds of the event described here, which are correctly depicted by the FNV.  

 

Fig 3. Maximum recorded event from measurements and simulated, for HS = 0.171m, TP = 1.62s and h = 0.625m 

 
Figure 4 shows the different terms of the FNV for the maximum event (  is not shown as it is already clear 

from figure 3 that the Morison equation alone is not able to fully capture the first mode motion). From this figure 
one can see that ,  and  experience a dramatic increase around 993s. These moments are 
referred to later in this paper as higher order moments. As a first approximation, these three excitation loads are 
represented by a pulse load with a sinusoidal shape and variying periods (by pulse load we refer to a load that has 
zero amplitude except for a duration of the order of magnitude of a characteristic period of the system or smaller, 
like the load showed in figures 5 and 6). The aim of this approximation is to assess whether these loads are able to 
trigger the 1st mode motion. 

 

 

Fig 4. Excitation moments derived from the FNV 
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A pulse load of sinusoidal shape and arbitrary amplitude Mi is input to the numerical model. This simulation is 

ran many times with the pulse load duration td as a parameter. The maximum measured response is then divided by 
the static response (response to a constant load of same amplitude), giving the maximum dynamic load factor 
DLFmax (see [18]). Figure 5 shows the maximum dynamic load factor as a function of the pulse load duration (on the 
x axis, the load duration has been normalized by the eigenperiod of the system). The important point of this figure is 
that one can compare relative values of the response of the system for different duration of the pulse. Trying to fit a 
sinusoidal shape on the loads of figure 4, we find that the pulse loads equivalent to ,  and  
have durations of 0.6s, 0.45s and 0.36s respectively. With an eigenperiod of 0.56s, that gives for ,  
and  an amplification of 2.8, 2.2 and 1.7 respectively. This shows that for a load duration close to the 
eigenperiod of the system, the response will experience a significant amplification, which can partly explain the high 
values of the overturning moment after a steep wave. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In order to verify the assumption just formulated, an attempt to separate the 1st mode motion from the total 
response was made. In theory, since the model is a stiff cylinder mounted on a rotational spring, it should have only 
one degree of freedom and therefore only one eigenmode. However, due to the impossibility of having an infinitely 
stiff structure in reality, a second mode could be measured with a 2nd eigenfrequency lying around 80 Hz. It should 
be noted that this second mode has no full-scale meaning and is therefore not representative of the 2nd mode of a 
full-scale turbine. The response at the second mode was also extracted and contributed very little to the total 
moment, but it was seen by comparing it to the video recording that slamming events triggered second mode motion. 
This can also be seen in the third plot of figure 7, where the second mode response experiences a sudden increase 
when the breaking wave impacts the model. 

In the following part, we focus on  since it is the load that will produce the highest response, but it 
should be noted that the other higher order loads will also produce a dynamic amplification of the first mode motion, 
as was shown in the previous paragraph. It is known that for short waves, diffraction effects will reduce the 2nd order 
force (see [14]). For the studied event, and estimated from zero-upcrossing of the local wave period, the wave 
number-radius product is , which lies within the range where  is expected to give accurate 
results. 

Figure 7 shows the mode decomposition of the response for the maximum event. The decomposition was 
obtained by filtering the measured moment, and was shown to be very little sensitive to the filtering methods used.  

The second plot of figure 7 shows  and the 1st mode motion response. As suggested by the previous 
analysis, it seems like the 1st mode motion is greatly amplified by , with a delay of about 0.16 s. This 
delay can be explained mathematically using the classical equation for the response of an undamped linear system, 
that can be found in [18]:  

 

Fig 5. DLF max depending on pulse load duration Fig 6. Comparison between the analytical response to a pulse 
load and the measured 1st mode response 
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with  the response moment of the structure 
  response moment at the initial state 
  load amplitude 
  load shape function 
  eigenperiod of the system 

 
We use the same assumption for the load shape than previously, that is, that the load from 0 to td is a sinusoid of 

period 0.6s. From figure 4 we find that the amplitude of  which we will take as the amplitude of the 
sinusoidal load is about  (model scale). We take as the initial conditions the situation of the structure at 
the upscrossing time of , around 992.9s, which gives  and  (model 
scale). The displacement from t = 0 to t = 0.6 is then 
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Fig 7. Response decomposition for the maximum event 

Figure 6 shows the sine approximation for  and the corresponding response. The maximum for the 
impulsive excitation load occurs at t = 993.03s and the maximum for the analytical response occurs around t = 
993.19s, which gives a time delay of 0.16s, equal to what was previously found. 

After t = 0.6s, the approximated excitation load is equal to 0 and the structure starts oscillating at its 
eigenfrequency, without decaying since this model does not include damping. This is similar to what can be seen 
from figure 7, with some differences due to the fact that the shape of  is not a true sinusoid. 

The value of the first maximum from figure 7 also fits well the value of figure 6. In order to have an accurate 
approximation of this maximum, it is critical to have the correct initial conditions. These initial conditions are 
determined by the history of the response, which is itself highly dependent on damping. The presented experiment 
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was carried with very low damping. This implies that when the first mode is excited, either by short linear waves or 
by a previous non-linear wave loading, it is likely that it is still oscillating when a load like the one studied in this 
event occurs. The response to a new sudden excitation load will then occur on top of the free decay oscillations, 
potentially increasing the maxima if they occur in phase. 

It can be seen from figure 7 and figure 4 that a second impulsive-like 2nd order load occurs around 995s. This 
load has a longer duration and different initial conditions than the one studied in this analysis, both of which explain 
that there is not a significant increase in the 1st mode motion. This was checked with the proposed approximation 
and gave good quantitative results but a too high amplitude in the analytical response. This is in agreement with 
figure 3, where it can be seen that the FNV method overestimates the response around 995s. 

5. Conclusion 

The second order term of the FNV equation (equation 3) corresponding to the contribution of the linear potential 
integrated from the mean water level to the 1st order wave elevation was represented as a pulse load of sinusoidal 
shape. This simple approximation can explain the phasing and the amplitude of the responses found in the 
experiment. The observed oscillations appear to be the transient response to a short pulse load (of a time duration 
close to the eigenperiod of the structure) due to higher order hydrodynamic contributions rather than the response to 
a slamming load. The steady state response to the second order load term is still relevant but cannot explain extreme 
load responses in a close to breaking or combined breaking loading situation. 

It is important to account for the right damping when assessing these maximum loads, because it defines the state 
(position and velocity) of the structure when it is hit by the pulse load. A strongly damped structure will most likely 
decay into a resting position quickly after a transient response. This will induce lower loads when a new pulse load 
excites it. This will be investigated in further tests with varying damping.  

A commonly used method to estimate the response of a bottom-fixed offshore wind turbine to a breaking wave is 
to add a pulse load to the classical Morison equation (see[7]). It is shown in the present paper that none of these two 
models suffices to explain the first mode motion occurring after a breaking or near breaking wave hits the cylinder. 
The study presented brings some new insight into the process of maximum loading by showing that in order to 
correctly capture the first mode motion of the system, higher order excitation hydrodynamic loads are required. 

No slamming model was required to match the experiments, which suggests that a slamming load occurs too 
rapidly to trigger the first mode motion. However, this study does not aim at replacing state of the art theoretical 
models for estimating maximum loads on offshore wind turbines. A more thorough analysis, especially in a 
statistical perspective, is required to further validate it. Furthermore, it is important to recall that the presented 
experiments were carried out with a single degree of freedom system, with a conservative linear mode shape and 
where the second mode was not modelled. The second mode motion of the structure can be excited by slamming 
events and may increase the maximum loads. The latter will be presented in future studies.  
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A B S T R A C T

We present experimental data from MARIN on a bottom-fixed offshore wind turbine mounted on a monopile in
intermediate water depth subjected to severe irregular wave conditions. Two models are analysed: the first model
is fully flexible and its 1st and 2nd eigenfrequencies and 1st mode shape are representative of those of a full-scale
turbine. This model is used to study the structural response with special focus on ringing and response to breaking
wave events. The second model is stiff and is used to analyse the hydrodynamic excitation loads, in particular the
so-called secondary load cycle. The largest responses are registered when the second mode of the structure is
triggered by a breaking wave on top of a ringing response. In such events, the quasi-static response accounts for
between 40 and 50% of the total load, the 1st mode response between 30 and 40%, and the 2nd mode response up
to 20%. A statistical analysis on the occurrences and characteristics of the secondary load cycle shows that this
phenomenon is not directly linked to ringing.

1. Introduction

Over their lifetime, many bottom-fixed offshore wind turbines will
encounter steep or breaking waves that might produce large structural
responses. A number of offshore wind farms are planned or being
developed in the North Sea, in water depths between 20 and 50 m (Ho
et al., 2016). At these depths, interaction with the sea bottom enhances
the wave nonlinearity, increasing the likelihood of breaking waves
(Dalrymple and Dean, 1991). When designing the support structure of an
offshore wind turbine for a specific site, the industry has to assess the
maximum expected response that the structure will experience over its
lifetime (so-called Ultimate Limit State (ULS) analysis, DNV, 2014a;
DNV, 2014b; IEC, 2009).

Under ULS conditions, experiments have shown that the natural
period of the structure can be suddenly excited by non-breaking waves
whose fundamental period lies far from the structure's eigenperiod
(Marthinsen et al., 1996; Stansberg et al., 1995; Welch et al., 1999). This
phenomenon, called ‘ringing’, is characterized by a fast build-up of
transient resonant vibrations (only a few oscillations; Chaplin et al.,
1997) and a much slower decay (Natvig and Teigen, 1993). In the case of
a monopile type of support structure such as the one studied in this paper,
ringing occurs during the passage of steep waves whose height is of the
same order of magnitude as the diameter of the cylinder and whose

fundamental period is around 3 times the natural period of the structure.
Fig. 1 shows an illustration of a ringing event. The bending moment has
been filtered to show only the response of the first mode of the structure
(this procedure is explained in section 4). After the passage of a very
steep wave, the first mode gets suddenly excited and then decays slowly.

The ringing phenomenon started gaining attention in the 1990s when
it was first observed on model tests of the Hutton and Heidrun TLP
offshore oil and gas platforms, and then on the deep water concrete
towers of the Draugen and Troll A platforms (Natvig and Teigen, 1993).
Recently, the increase in size of offshore wind turbines combined with
the limitation of the blade tip velocity has led to decreasing natural
frequencies of the support structure down to a level where the 3rd har-
monic of large waves (i.e. three times the fundamental frequency) co-
incides with the first structural natural frequency. This intensifies the risk
of ringing response when subjected to extreme storms (see Suja-Thauvin
et al., 2014). In addition to higher order hydrodynamic loads, breaking
wave events have been a major concern for offshore structures. Both de
Ridder et al. (2011) and Bredmose et al. (2013) carried out experiments
on a bottom-fixed responding structure (as opposed to a stiff structure)
whose characteristics were similar to those of an idling extra-large wind
turbine (i.e. with the blades completely pitched to feather to limit the
aerodynamic loading) and found that breaking waves could lead to
extreme accelerations of the nacelle.
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The main objective of this paper is to examine the process of
maximum response of monopile offshore wind turbines under extreme
stochastic sea states, in particular assessing the importance of the second
mode of the structure and the characteristics of the measured excitation.
In order to do so, we analyse data from experiments carried out in the
Maritime Research Institute Netherlands (MARIN). The tests were per-
formed within the project Wave Impact on Fixed structures (WiFi JIP).
The characteristics of the model used for the experiments are those of an
idling 4 MW bottom-fixed offshore wind turbine mounted on a monopile.
These tests were performed with both a flexible and a stiff model in order
to be able to measure the response and the excitation of the structure.
Here, we focus on the measured excitation and response rather than on
the wave kinematics. A correct understanding of the most important
physical effects is an important first step in developing and validating
engineering models which incorporate the relevant nonlinearities in the
wave kinematics and in the wave-structure interaction.

In addition to the response analysis, we examine the phenomenon
known as “secondary load cycle”, or SLC, which appears as a rapid and
high frequency increase of the excitation force, as Grue et al. (1993)
described from their experiments. An occurrence of a SLC (sometime
referred to as ‘hydraulic jump’) is highlighted in Fig. 2. The SLC typically
occurs about one quarter wave period after the main peak of the exci-
tation force (Grue and Huseby, 2002) and lasts for about 15% of the wave
period (Grue et al., 1993).

Occurrences of SLCs have been extensively reported for steep waves

in experiments in infinite water depths (see Chaplin et al., 1997; Grue
et al., 1993; Grue and Huseby, 2002; Stansberg et al., 1995; Welch et al.,
1999). Grue and Huseby (2002) also summarized the experimental data
from those papers to establish a trend of occurrences of the SLC. One
of their conclusions is that flow separation effects might reduce the
likelihood of SLCs on small cylinders, and they suggest that for experi-
mental analysis of the SLC the β-number should be larger than 15 000
(β ¼ ð2RÞ2=νT, with R the cylinder radius, T the local period of the wave,
and ν the kinematic viscosity of the water). For the events presented in
this paper, the longest wave corresponds to β � 19 000 and the
Keulegan-Carpenter number is approximately 5, which places us in what
they describe as cylinders of moderate size.

There has been a lot of work published around the relevance of the
SLC for ringing responses. Grue and Huseby (2002) used the experi-
mental data of the above-mentioned papers to show that SLCs and
ringing responses are correlated, and state that “The secondary load cycle
gives an important contribution to build-up of resonant body responses
[…]”. High speed photography from the experiments of Chaplin et al.
(1997) and Rainey and Chaplin (2003) was used by Rainey (2007) to
conclude that “the rapid loading cycle causing the “ringing” vibration is
traceable to local wave breaking around the cylinder […]”. However, in a
recent study, Paulsen et al. (2014) investigate the SLC numerically by
solving the two-phase incompressible Navier-Stokes equations and
conclude that “[…] the secondary load cycle is thus an indicator of
strongly nonlinear flow rather than a direct contributor to the resonant
forcing”. This agrees with earlier findings from Krokstad and Solaas
(2000), where a study of the phasing between the SLC and the ringing
response led them to conclude that “The hydraulic jump [i.e. secondary
load cycle] has no direct connection with the non-linear behaviour of the
ringing force […]”.

The paper is organized as follows: in Section 2 we describe the
experimental set up and the models used during the tests and Section 3
gives a simple justification of how to estimate slamming events from
video recording. Section 4 presents the analysis of the response of the
flexible structure. Section 5 combines results from the stiff and the
flexible structure to establish the link between secondary load cycle and
ringing events. Conclusions of this study are drawn in Section 6.

2. Presentation of the model test

The model tests were carried out at 1:30.6 scale, and Froude scaling
was applied in order to correctly generate gravity waves. For the
considered model and wave conditions, inertia forces dominate
compared to viscous forces (DNV, 2014a; DNV, 2014b; IEC, 2009) and
the effects of the Reynolds number mismatch are not examined here. All
the values given in the paper are full-scale unless specified otherwise.

2.1. Test facilities

The tests were performed at the shallow water basin of MARIN, a
220 m long and 15.8 m wide wave flume (model scale) with constant
water depth. One end of the flumewas equipped with a piston-type wave-
maker, consisting of a flat plate forced into horizontal translational mo-
tion by an electrical actuator. The wave maker includes 2nd order wave
generation techniques that enable a correction for the difference between
the oval motion of water particles in shallow/intermediate waters and
the horizontal motion induced by the flat plate. It is possible to suppress
parasitic wave generation using this technique (see Sch€affer, 1996). On
the other side of the flume, an absorbing parabolic beach was fitted in
order to minimize wave reflection. Two pits were dug into the ground
approximately 65 m (model scale) from the wave maker, and the two
models were mounted onto two 6-component force frames solidly
anchored into the pits. Fig. 3 shows the layout of the experiment. No
aerodynamic loading was modelled during the tests.

Fig. 1. Illustration of a ringing event. A surface-piercing vertical cylinder is exposed to a
steep wave, and the bending moment is measured at the sea bottom. The 1st mode is
suddenly triggered and slowly decays, which is a typical characteristic of ringing events.

Fig. 2. Occurrence of secondary load cycle, visible on the excitation force (circled
in black).
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2.2. Physical models

2.2.1. Flexible model
A flexible model of an extra-large bottom-fixed offshore wind turbine

mounted on a monopile was built according to typical dimensions of a
4 MW turbine. The model is composed of two cylindrical sections of di-
ameters 7 m and 5.5 m, linked via a conical section (see Fig. 4). This gives
a diameter at the mean sea level of 5.8 m. The pile reaches 10.1 m below
seabed at a water depth of 27 m and extends up to 87 m above the mean
sea level, for a total length of 124 m. The rotor-nacelle assembly is
modelled by a mass of 278 tons placed at the top of the tower.

Special emphasis was put on achieving correct 1st and 2nd eigen-
frequencies and the 1st mode shape. Table 1 gives the eigenfrequencies
and damping values derived from hammer tests in water (Bunnik et al.,
2015), and Fig. 5 shows the targeted and obtained mode shapes of the
flexible model. Due to physical restrictions in the laboratory, it is not
straightforward to exactly match all mode shapes. The largest discrep-
ancies occur at hub height which has little influence on the response to
hydrodynamic loads. The obtained deflections at the mean sea level and
down to the sea bed are seen to be acceptable.

The measured 3rd and 4th mode characteristics are also shown in
Table 1 but they are not representative of the full-scale wind turbine.
More details about the physical meaning of the 3rd and 4th mode are
given in Section 4.4.

The damping for the first and second modes is found to be 1.1% of the
critical damping. For the first mode, this is somewhat lower than the
damping ratios measured on similar idling full-scale wind turbines
(1.7–2.8% depending on the wind speed, Damgaard et al., 2013; Dam-
gaard and Andersen, 2012; Shirzadeh et al., 2015). As a result, the ob-
tained responses are expected to be slightly conservative, but previous
research suggests that the damping is more important for the decay of the
response than for the maximum values (Bachynski and Moan, 2014;
Schløer et al., 2016).

2.2.2. Stiff model
A stiff model was also constructed, whose geometry is the same as the

flexible model but extended only up to the expected maximumwave run-
up. The objective of having a non-responding model was to be able to
measure the hydrodynamic excitation.

Ideally, the 1st eigenfrequency of the stiff model should be as high as
possible, such that it responds as little as possible to the hydrodynamic
loading. The obtained fundamental eigenfrequency was 1.8 Hz (full-scale
value). Fig. 6 shows the smoothed spectrum of the measured wave
elevation of one of the studied sea states (with a spectral peak period
TP ¼ 10 s, see section 2.3). The wave spectrum does not contain signif-
icant energy at or above 0.4 Hz, i.e. one-third of the eigenfrequency of the
stiff model, so 2nd and 3rd order excitation loads are not expected to
excite significant response.

During the tests, it was observed that the stiff model was nonetheless
responding at times in its 1st mode. The loads measured on the stiff
model can therefore not be taken as the excitation loads because they
contain the dynamic amplification of the 1st mode of the structure. In
order to remove the response of the stiff model from the measured
response and keep only the excitation loads, a low-pass 6th order But-
terworth filter was applied with a cut-off frequency at 1.2 Hz. This simple
technique brings a major limitation: loads from breaking waves typically
have very short durations, so by removing high frequencies from the
excitation loads, the load contribution from breaking waves is potentially
removed as well. The data from the stiff model therefore cannot be used
to study slamming loads, but it can be used to examine 2nd and 3rd
order loads.

2.2.3. Data acquisition
Foundation loads: Both models were placed on a 6 component

measurement frame that enabled recording of forces and moments at
the seabed.

Wave probes: 4 resistance-type wave probes were placed around the

Fig. 3. Top and side view of the experimental set-up (values are given both in full and model scale).
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models to measure the wave elevation. One of the wave probes (marked
with a red cross in Fig. 3) was placed between the 2 models, at 2.4 m
(model scale) from both of them (corresponding to around 13 diameters).
It is expected that this wave probe is far enough from themodels to not be
affected by radiated and diffracted waves.

Video recording: Most sea states were recorded with two above-
water cameras, one for each model. These video recordings were used
to visually check whether a wave has broken when a large response of the
structure was recorded (see section 3).

Accelerations: both models were fitted with accelerometers along
their length. In the present study, those accelerometers were used to
confirm that the flexible monopile only experienced significant
displacement in the wave direction and to derive its mode shapes.

The wave elevations, loads and accelerations were recorded at a
sampling rate of 200 Hz (model scale value), resulting in a time step of
5 ms in model scale, or 0.028 s in full scale.

2.3. Sea states

During the experiments, different irregular sea states were generated
following a JONSWAP spectrum (Hasselmann et al., 1973). The JONS-
WAP spectrum describes sea conditions that are likely to occur for severe
sea states in the North Sea and is typically recommended by the standards
for ULS analysis (DNV, 2014a; DNV, 2014b; IEC, 2009). Table 2 shows
the sea states that are analysed in this paper. For each sea state, only one
realization was performed. Each sea state is characterized by a spectral
peak period TP and a significant wave height HS. All sea states were
realized with a spectral peak enhancement factor of 3.3.

We define an average wave steepness sP for irregular seas based on
(DNV, 2014b):

sP ¼ kPHs

2π
(1)

where kP is an average wave number obtained from TP from the
dispersion relationship (DNV, 2014b uses a linear dispersion relationship
but we here apply eq (1) in Kirby and Dalrymple, 1986, which is based on
2nd order theory). For the analysed spectral peak periods, at the
considered water depths, sea states with a steepness larger than 0.059 are
not possible (DNV, 2014b). The average steepnesses used in this paper
are well below this limit.

In addition, we calculate an averaged Ursell parameter Ur for the

Fig. 4. Characteristics of the flexible model (values are given both in full and
model scale).

Table 1
Achieved frequencies and damping ratios of the flexible model (obtained from hammer
tests).

1st mode 2nd mode 3rd mode 4th mode

Eigenfrequency [Hz] 0.29 1.21 3.11 7.24
Damping (% of critical) 1.1 1.1 2 2

-0.5 0 0.5 1
Normalised displacement [-]
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-27
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100

1.21 Hz 1.01 Hz 0.30 Hz
0.29 Hz

Sea bed

Mean sea level

Hub Height

1st obtained
2nd obtained
1st targeted
2nd targeted

Fig. 5. Dimensionless mode shapes. Blue colour represents the obtained mode shapes and
red colour represents the targeted ones. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Example of an incoming wave spectrum.
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presented sea states. The Ursell parameter is typically defined for regular
waves, but here we use the method given by Stansberg (2011) to
calculate an average value for irregular seas:

Ur ¼ kpHs

2
�
kph

�3 (2)

where h is the water depth. The average Ursell numbers thus calculated
are well below the classical limit of 0.33, above which 2nd order wave
kinematic models are no longer valid and fully non-linear models
are suggested.

To give an indication of what these sea states represent in terms of
return period, the HS-TP graph based on the metocean conditions at the
Dogger Bank Creyke Beck B site is given in Fig. 7 (see Frimann-Dahl,
2015). The yellow and blue lines correspond to 1-year and 5-year return
period sea states, respectively, and the sea states are indicated with as-
terisks. More sea states than the ones analysed in this paper were run, but
they are not presented here as they did not produce large responses of
the structure.

When carrying out ULS analysis, the standards commonly used by the
industry in the North Sea (DNV, 2014a; DNV, 2014b; IEC, 2009)
recommend assessing sea states corresponding to 50-year return storms.
The sea states considered in this paper correspond to generally much
lower sea states, as illustrated by Fig. 7, which is a limitation of this study.
More extreme sea states were later tested with the same experimental set-
up and will be included in future work.

It should also be noted that the wind conditions for the analysed sea
states have not been determined. For the present paper and in the ex-
periments, the turbine is assumed to be idling, which is likely not to be
the case under the studied wave conditions. On an idling turbine, aero-
dynamic damping is usually small compared to an operating turbine
(Shirzadeh et al., 2015) whichmakes 1st mode oscillations due to ringing
decay slower than on an operating turbine (Bachynski and Moan, 2014;
Schløer et al., 2016). This means that the ringing events observed during
the experiments would decay faster if the turbine was operating.

3. Use of video recording to detect slamming on the flexible
structure

Loads from breaking waves have been a major concern in the design
of offshore structures over the past decades. We define ‘slamming loads’
for this paper using the explanation provided by Sarpkaya (1979): we
consider a cylinder of radius R fixed to the sea bottom that we divide
vertically into strips of length dz. We assume now that a vertical wall of
incompressible water parallel to the cylinder with a control volume of
constant mass per unit length M approaches a strip at a velocity u0, the
mass of water has then a horizontal momentum per unit length p ¼ Mu0.
The duration of the impact being very short (Faltinsen, 1990; Sarpkaya,
2010) compared to the eigenperiod of the structure, it is reasonable to
assume that, during the impact, no significant response will occur (ac-
cording to classical structural theory, see for example Biggs, 1964) and
that the cylinder will thus behave as a stiff structure. If we neglect
nonconservative forces, the momentum of the water will remain constant
during penetration. After the breaking wave has impacted the structure,
because the fluid is in motion in the vicinity of the cylinder, a positive 2D
added-mass termma appears, thus reducing the velocity to u and giving a
new equation for the momentum p ¼ Mu0 ¼ ðM þmaÞu. Herema is taken
as the high-frequency asymptote for the added mass (Faltinsen, 1990).
Fig. 8 illustrates the terms defined here, with the expression of the mo-
mentum p before and after impact. We can calculate the horizontal force
using Newton's second law:

dF ¼ dp
dt

dz ¼
�
ðma þMÞ du

dt
þ u

dma

dt

�
dz (3)

The first term of the above equation, proportional to the acceleration
of the fluid, is the classical added mass load (see for example Faltinsen,
1990). The second term incorporating the time derivative of the added
mass is the so-called slamming load dFslam. If the latter is non-negligible
compared to the former, the event is considered a slamming event.

This derivation provides a good mathematical understanding of
slamming but is of little use in practice because the evaluation of the
time-varying added mass is rather complex (Sarpkaya, 2010). However,
it provides a way to visually check whether slamming loads occur. In
order to have a large slamming force on a cylinder strip, we need to have
a large velocity u in the horizontal direction and a rapidly changing
two-dimensional added mass in the horizontal plane. For the considered
monopile, the most suitable situation for slamming loads to occur is when
a breaking wave impacts on the cylinder.

Under these conditions, most of the momentum of the water in mo-
tion will be in the horizontal direction. When the water particles impact
the cylinder, they are restricted in the horizontal direction by the
incoming water on the back side and by the cylinder itself on the front
side. In order to conserve the total momentum, these particles must be
deflected and ejected upwards and sideways, which gives a good visual
indication of whether a slamming load has occurred. In the present
paper, video recordings of the experiments are used to check whether
slamming has occurred using the above hypothesis. Fig. 10a and b shows
two such events.

4. Maximum response analysis

This section deals with the response of the flexible model and only
data measured on this model is used here. Here and in the rest of the
paper, the term ‘response’ corresponds to the bending moment of the
flexible model taken at the seabed. A positive bending moment corre-
sponds to the structure being deflected in the direction of the wave
propagation. Since the amplitude of the moment is what is relevant to the
design of a monopile rather than its direction, we compare absolute
values of those moments. We therefore refer to ‘maximum’ or ‘highest’
moments even when the moment is negative.

In order to study the influence of different modes on the response of

Table 2
Selected sea states.

HS TP sP Ur

5.89 10 0.043 0.070
6.18 10 0.045 0.074
5.81 10.93 0.038 0.088

1-year
5-year
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H
S

Fig. 7. Contour lines for the metocean conditions at the Dogger Bank Creyke Beck B site.
The asterisks represent the studied sea states.
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the structure, the measured bending moment in the frequency domain
was split into responses around different frequencies corresponding to
the eigenfrequencies of the system. Fig. 9 below is the result of such
decomposition performed on one of the events studied in this paper. The
sum of the quasi-static, 1st and 2nd mode responses equal the total
response. This figure enables us to assess the relative importance of the
responses of different modes of the structure.

4.1. Maximum responses

In this section, the two events with the largest responses of all three
sea states (named event 1 and event 2 and shown in Fig. 10a and b
respectively) are analysed in detail. Table 3 gives the characteristics of
these two events. The trough-to-trough period is measured for each event
and used to calculate the wave number k based on 2nd order theory
(calculated with eq (1) in Kirby and Dalrymple, 1986), and ηm is the
maximum wave elevation of the given event. The trough-to-trough
period rather than the up- or down-crossing period was chosen because
this type of wave is typically approximated by embedded stream function
waves in design practices. The embedding process commonly uses the
trough-to-trough period (Rainey and Camp, 2007).

Fig. 10 shows these two events side to side. The figures from top to
bottom correspond to snapshots of the cylinder at the time of impact, the
measured response and wave elevation, the frequency decomposition (as
shown in Fig. 9) and the continuous wavelet transform (cwt) of the
measured response. Responses from the 3rd and 4th modes of the
structure have been removed by low-pass filtering, see Section 4.4. Even

though the contribution of these modes has been removed, we still refer
to this filtered response as ‘total response’.

For these events, the maximum response is measured when a steep
and breaking wave passes the structure (see Fig. 10c and d). The wave
excites the 1st mode of the structure, which starts oscillating and decays
in similar fashion to the ringing phenomenon described in section 1. As
shown in Fig. 10e and f, the structure also oscillates in its 2nd mode, but
in a different way than the 1st mode response: the 2nd mode resonant
oscillations occur suddenly after the breaking wave has passed, whereas
the 1st mode response experiences a build-up over one wave period and
then slowly decays. The influence of the second mode is studied in more
detail in the following section.

The cwt plots of Fig. 10g and h also show that the structure responds
at the frequency of the wave (about 0.1 Hz for the selected events) and
that its 1st and 2nd modes are triggered (respectively at 0.29 and
1.21 Hz). The snapshots of Fig. 10a and b indicate that the wave breaks at
the cylinder. As explained in the previous section, the water particle
ejection visible in the photographs is characteristic of slamming events.

In addition to the two events shown in Fig. 10, the 21 events with the
largest responses were analysed. For all events it was found that the 1st
and 2nd mode responses were triggered after the passage of a steep and
breaking wave, as described above. The characteristics of these 21 events
are given in Table 5.

Previous work done by Suja-Thauvin et al. (2016) and further
developed by Suja-Thauvin and Krokstad (2016), showed that the first
mode response of a similar structure can be explained solely by 2nd and
3rd order hydrodynamic excitation loads, without the need to account for
slamming loads. We apply their findings to the present study to conclude
that the ringing response observed for large events is mainly due to 2nd
and 3rd order hydrodynamic loads and not to slamming loads. However,
as their work is done on a one degree-of-freedom system, it does not
include any consideration of the 2nd mode of the structure.

4.2. Contributions to the total response

In this section, we analyse the contribution of the different modes of
the structure to the total response. To do so, we decompose the response
as shown in Figs. 9 and 10c and d and evaluate the value of the response
at different modes at the instant of maximum total response. Their
relative importance for events 1 and 2 is given in Table 4. Moments (here
and in the rest of the paper) are given within an accuracy of 3%.

Fig. 11 offers a graphical interpretation of Table 4 for the 21 largest
events. This figure shows the different contributions to the total response:
quasi-static response accounts for between 40 and 60%, 1st mode
response accounts for between 30 and 40% and the second mode con-
tributes up to 20%. The numerical values for each event are given
in Table 5.

Fig. 8. Breaking wave on circular cylinder before impact (left) and after impact (right).
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Fig. 9. Example of decomposition of the response around the eigenfrequencies of
the structure.
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Fig. 10. Characteristics of the largest and 2nd largest measured responses, respectively Event 1 and 2.
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These observations suggest, as was also found in de Ridder et al.
(2011), that not taking into account the 2nd mode of the structure when
assessing ULS leads to underestimation of the total response. For these 21
events, we also note that the maximum response is negative, i.e. it cor-
responds to the structure moving against the wave propagation direction.

It should be noted that Table 5 only shows the characteristics of the
individual waves that occur at the same time as the maximum response.

Table 3
Events with maximum bending moments.

Event Sea state Max ½MNm� Time ½s� Period ½s� ηm ½m� k ½m�1 �
1 HS ¼ 5:89 m;TP ¼ 10s �145 8848 7.80 6.61 0.0599
2 HS ¼ 6:18 m; TP ¼ 10 s �130 6246 8.13 7.57 0.0550

Table 4
Different contributions to the maximum load.

Event Total moment [MNm] % quasi-static % 1st mode % 2nd mode

1 �145 41.1 41.6 17.2
2 �130 48.3 33.2 18.5

Fig. 11. Decomposition of the largest responses into quasi-static, 1st and 2nd mode response. The red circles correspond to events where no secondary load cycle was observed (see section
5). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
Characteristics of the 21 highest recorded responses. T, ηm ,H and k correspond to the trough-to-trough wave period, the crest elevation, the wave height and the wave number, respectively.

Event Max [MNm] Contribution to total moment [%] Time [s] Sea state HS - TP T [s] ηm ½m� H ½m� k ½m�1�
Quasi-static 1st mode 2nd mode

1 �145 41.1 41.6 17.2 8848 5.89 m–10 s 7.82 6.61 9.32 0.0599
2 �130 48.3 33.2 18.5 6246 6.18 m–10 s 8.15 7.57 10.6 0.055
3 �127 51.1 35.1 13.7 1046 5.89 m–10 s 8.76 8.06 11.96 0.0492
4 �111 52.2 37.6 10.2 3132 6.18 m–10 s 7.24 6.65 9.02 0.0664
5 �110 48.8 36.7 14.5 6962 6.18 m–10 s 9.34 6.33 9.67 0.0474
6 �103 49.2 37.3 13.5 10688 5.89 m–10 s 7.57 5.85 8.45 0.0642
7 �98.2 60.2 34.0 5.8 340 6.18 m–10 s 8.62 6.43 9.53 0.0527
8 �97.0 56.8 35.5 7.7 6961 5.89 m–10 s 9.29 7.4 10.23 0.0465
9 �95.7 59.2 31.4 9.4 4217 5.81 m–10.93 s 7.96 6.52 8.57 0.0587
10 �88.6 51.8 46.1 2.1 6482 5.89 m–10 s 8.82 6.12 9.51 0.0516
11 �88.6 61.3 32.9 5.8 8748 5.89 m–10 s 7.63 5.67 8.3 0.064
12 �86.3 47.5 42.1 10.4 4514 5.81 m–10.93 s 10.59 6 8.64 0.0405
13 �86.0 58.2 33.0 8.9 6685 6.18 m–10 s 7.96 5.83 8.01 0.0599
14 �85.7 58.2 34.9 6.9 5293 6.18 m–10 s 8.71 7.08 10.06 0.0511
15 �85.1 67.8 29.6 2.6 6245 5.89 m–10 s 8.71 6.57 10.09 0.0518
16 �83.6 61.8 30.6 7.6 6562 5.89 m–10 s 8.46 5.79 8.53 0.0551
17 �83.2 60.2 35.1 4.8 8583 5.89 m–10 s 7.43 7 9.54 0.0633
18 �82.5 48.7 39.9 11.4 8616 5.81 m–10.93 s 10.14 5.69 7.74 0.0431
19 �81.6 60.6 33.3 6.1 2304 6.18 m–10 s 7.13 4.67 6.5 0.073
20 �80.9 60.2 30.8 9.0 9499 5.89 m–10 s 8.12 6.09 8.82 0.0578
21 �80.1 70.5 267.0 2.5 11492 5.81 m–10.93 s 10.06 7.18 10.41 0.0421
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However, a wave with a given height could produce less response than a
wave with smaller height if, for the latter case, the structure was already
responding to a previous wave. This “memory effect” is relevant for dy-
namic systems with low damping. Peng et al. (2013) showed that wave
groups could produce larger responses than individual regular waves
with the same characteristics as the largest wave of the wave group.

4.3. Physics of the second mode response

Fig. 12 shows the full time series of the 2ndmode response of sea state
HS ¼ 6.18 m and TP ¼ 10 s. In this plot, independent peak occurrences of
2nd mode response higher than half of the standard deviation of the
quasi-static response have been marked with a red dot. From comparison
with the video recordings, it appears that these large second mode re-
sponses only occur when a breaking wave hits the cylinder. Indeed, as
pointed out by Hallowell et al. (2015), loads from breaking waves have
two characteristics that make them especially relevant when analysing
2nd mode motion:

- They have a very short duration (as shown for instance byWienke and
Oumeraci, 2005) compared to 1st, 2nd or 3rd order loads (Suja--
Thauvin and Krokstad, 2016). With such a duration, according to
classical structure theory (see for example Biggs, 1964), these loads
have the potential to trigger significant 2nd mode response.

- They are concentrated around the free water surface, where 2nd
mode shape displacement is the highest (see Fig. 5) whereas loads
from non-breaking waves are distributed between the free surface and
the sea bed.

This visual check was performed for all sea states mentioned in this
paper, and it was consistently found that responses of the 2nd mode
above the selected threshold corresponded to breaking wave events. We
therefore suggest that large 2nd mode responses only occur when a wave
breaks at the cylinder. However, it should be noted that not all breaking
wave events produce such a large response in the 2nd mode.

The empirical cumulative distribution function of the 2nd mode
response is given in Fig. 13 in terms of exceedance probability. Exceed-
ance probabilities for total and the quasi-static response are also shown
for comparison. There is a qualitative difference between the 2nd mode
response and the other responses: for the main part of the observations
(for an exceedance probability higher than about 3% for the most severe
sea states or even than 0.5% for the mildest sea state), the probability of
exceedance curve of the 2nd mode response follows a linear variation (in
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Fig. 12. Response of the structure in its 2nd mode. A zoom of the 2nd mode response of
event 1 is also shown. The red line corresponds to half of the standard deviation of the
quasi-static response. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 13. Empirical exceedance probability curve for response moments.
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the logarithmic plot). For lower exceedance probabilities, the 2nd mode
response significantly increases. This sudden change in the slope of the
probability of exceedance curve is not visible for the total or the quasi-
static response.

In order to explain this observation, we compare the 2nd mode
response to the quasi-static response. A given wave produces a quasi-
static response proportional to the wave particle acceleration for an
inertia-dominated structure such as the one presented here. The quasi-
static response is therefore roughly linear in terms of wave steepness.
The 2nd mode, however, is only triggered by breaking waves, which
means that below a certain steepness threshold, no 2nd mode response is
expected, but past this threshold the 2nd mode gets excited and large
responses will occur. This confirms the non-linear behaviour of 2ndmode
response and shows that there will be a large number of outliers in the
peak distribution.

In addition, the excess kurtosis gives a good indicator of the behav-
iour of the outliers of a given distribution. The excess kurtosis (calculated
for each sea state using all data points) is calculated by Matlab® with the
following formula:

k1 ¼
1
n

Pn
i¼1

ðxi � xÞ4
�

1
n

Pn
i¼1

ðxi � xÞ2
�2 � 3 (4)

where n is the number of samples, x is the set of data points and x is the
average of x. A large excess kurtosis means that the distribution produces
a large number of outliers and that their value will be more extreme than
for a normal distribution. For the presented sea states, the 2nd mode
response has a very large excess kurtosis compared to the total and quasi-
static responses, as shown in Table 6. This confirms what was suggested
in the previous paragraph, i.e. that the extremes of the 2nd mode
response lie far from the rest of observations.

4.4. 3rd and 4th modes

The previous analysis considered measured responses after filtering
out the 3rd and 4th mode. However, these modes are in fact present and
they contribute to the total measured response. As exemplified in Fig. 14
(a zoom of event 2), structural modes higher than the 2ndmode influence
the response. These modes decay quickly after the slamming impact.

Fig. 15 shows a zoom of the wavelet plot for event 2 (the scaling of the
colours has been changed compared to Fig. 10 for clarity). This plot
shows that the 3rd and 4th modes, respectively at 3.11 and 7.24 Hz are
also excited by the breaking wave but that their influence is limited
compared to the 2nd mode response at 1.21 Hz.

The 3rd and 4th modes on the model were not tuned to fit the modes
of a full-scale wind turbine, so the response at these modes is not
representative of that of a full-scale wind turbine. Further analysis of the
influence of higher modes is needed to assess their influence on the total
response of an offshore wind turbine, and whether not including 3rd and
4th modes might lead to non-conservative results.

5. Secondary load cycle analysis

In this section we use data measured on the stiff model and on the
flexible model. Both models were in the basin at the same time and
experienced the same sea states.

5.1. Occurrences in the present study

The secondary load cycle (SLC) appears as a rapid and high-frequency
variation in the excitation force. Fig. 16 shows an occurrence of a SLC
together with the definitions of its magnitude (FSLC) and the peak-to-peak
force (FPP). The SLC ratio is defined as FSLC=FPP (Grue and Huseby, 2002).

The occurrences of SLCs are found by analysing the force measured by

the stiff structure. As explained in Section 2.2.2, this measured force is
first low-pass filtered at a frequency of 1.2 Hz to remove the response of
the structure, giving the time-series obtained in Fig. 16. Grue et al. (1993)
state that the SLC has a duration of about 15% of the wave period. For the
present experiments, this corresponds to durations of about 1.5 s. The
cut-off frequency is about twice the expected frequency of the SLC; it is
therefore expected that the SLC is not removed or significantly altered by
the filtering. A visual check of the excitation force time series is per-
formed on each of the events selected hereafter to ensure they correspond
to SLCs.

For each of the three sea states, the 25 occurrences of SLCs with the
highest magnitudes are kept and plotted in the kR� kηm plane in Fig. 17.
Our observations of SLCs are within the same range as those reported by

Table 6
Excess kurtosis of the measured wave (Wmeas), of the total (Mtot ), quasi-static (M0) 1st
mode (M1) and 2nd mode (M2) moments.

Wmeas Mtot M0 M1 M2

HS ¼ 6:18 m; TP ¼ 10 s �0.0543 0.787 0.0667 3.83 190
HS ¼ 5:89 m; TP ¼ 10 s 0.0538 0.915 0.185 4.91 147
HS ¼ 5:81 m; TP ¼ 10:93 s 0.0020 0.370 0.0704 1.10 33.3

Fig. 14. Zoom of the response of event 2. The difference between the two curves is due to
modes higher than 2nd.

Fig. 15. Zoom of the cwt plot of the unfiltered measured response of event 2.
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Grue and Huseby (2002) where they report SLCs for 0:1< kR<0:21 and
0:2< kηm <0:33. They analysed the SLC phenomenon based on experi-
ments carried out in deep water, whereas the experiments of the present
paper were performed in finite water. It should be noted that due to finite
water, we observe SLC for waves steeper than those reported in Grue and
Huseby (2002). This is the only noticeable difference between SLC oc-
currences in deep water and finite water.

5.2. Link with maximum responses

The correlation between SLC and ringing responses was examined in
the present experiments. For each of the 75 occurrences, the response of
the structure in its 1st mode is analysed: the maximum of the 1st mode
response (measured on the flexible structure) occurring immediately
after the SLC is normalized by dividing it by the excitation moment
(measured on the stiff structure). The obtained result is plotted as a
function of the SLC ratio in Fig. 18.

Fig. 18 shows that the highest 1st mode amplifications are not pro-
voked by the largest SLC ratios. Breaking waves usually provoke large 1st
mode amplification, but as explained previously, there is no causality link
between the two phenomena: both are a consequence of a wave being
very steep.

Another correlation that was explored is the time of occurrence of the
SLC against the 1st mode response amplification. The time of occurrence
is defined as the time between the maximum of the excitation force and

the maximum of the SLC, and is normalized by the wave period. As
shown in Fig. 19, there is no clear trend between the time of occurrence
and the 1st mode amplification.

In addition, some events did not present a SLC but a ringing type of
response was still visible in the bending moment (these events are
marked with a red circle in Fig. 11). Fig. 20 shows events 3 and 4
(respectively 3rd and 4th highest total responses) in detail. No SLC was
seen in the measured excitation for either event. However, the lower
plots of Fig. 20 clearly show a resonant response of the structure around
its first eigenfrequency, characteristic of ringing responses.

These observations suggest that in the present experiment, the SLC is
not a necessary load attribute to generate ringing response. This state-
ment has important implications in terms of what is necessary to accu-
rately model the response of offshore wind turbines in ULS conditions.
Faltinsen et al. (1995) and Malenica and Molin (1995) developed
third-order hydrodynamic models based on a perturbation approach
(with the wave steepness as the perturbation parameter) in order to
model ringing events. These models, as was shown in Paulsen et al.
(2014), cannot depict the SLC because it is a phenomenon of even higher
order. However, as discussed in this paragraph, the SLC is not required in
the excitation force to produce ringing responses, meaning that these
models that cannot predict SLCs can still potentially predict ringing re-
sponses, as seen for deep water (Gaidai and Krokstad, 2014).

Fig. 16. Example of a secondary load cycle occurrence with the definitions of the
magnitude and the peak-to-peak force.

Fig. 17. Occurrences of secondary load cycle in the kR - kηm plane. The 25 largest oc-
currences (i.e. with highest magnitudes) of each of the 3 sea states are kept.

Fig. 18. Correlation between the secondary load cycle ratio and the 1st mode amplifi-
cation. The 25 largest occurrences (i.e. with highest magnitudes) of each of the 3 sea states
are kept.

Fig. 19. Correlation between the time of occurrence of the secondary load cycle and the
1st mode amplification. The 25 largest occurrences (i.e. with highest magnitudes) of each
of the 3 sea states are kept.
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6. Conclusions

Experimental data of a bottom-fixed offshore wind turbine mounted
on a monopile and subjected to extreme weather conditions in finite
water are analysed in this paper. Two models of the support structure are
presented: one is a fully flexible model whose 1st and 2nd eigen-
frequencies and 1st mode shape were tuned to fit those of a full scale
4 MW wind turbine and the other one is a stiff model with the same
dimensions as the flexible model. Both models were in the tank at the
same time and therefore experienced the same incoming waves.

The flexible model is used to study the bending moment response at
the seabed of the structure in ULS conditions. Over the whole set of ex-
periments, the 21 events with largest responses are analysed and the
bending moment is decomposed into response around the 2nd eigen-
frequency, response around the 1st eigenfrequency (which highlights
ringing responses) and quasi-static response. It is found that for every
event, in addition to the quasi-static response, the structure experiences
ringing and that its second mode is triggered, contributing to up to 20%
of the total response. In line with what was found in Suja-Thauvin and
Krokstad (2016) and by comparing the bending moment time series with
video recordings, the conjecture is made that ringing responses are
induced by 2nd and 3rd order hydrodynamic loads and that the 2nd
mode is excited by slamming loads. The 2nd mode response exhibits
behaviour qualitatively different than the total response or the
quasi-static response. By analysing the excess kurtoses of the 2nd mode
response of different sea states and the exceedance probability, it is
shown that there are more outliers with more extreme values in the 2nd
mode response than in the total or quasi-static response.

The excitation force is obtained by measuring the force at the stiff
structure. This enables study of the phenomenon known as secondary
load cycle, where shortly after the passage of a steep wave, a high fre-
quency increase of the excitation force occurs. It has been conjectured in
previous work that the secondary load cycle could be a cause of ringing
responses. In the present paper, however, no correlation is found be-
tween the characteristics of secondary load cycles and ringing responses.
Furthermore, some events with a strong ringing response do not present a
secondary load cycle in the excitation force, indicating that the secondary
load cycle is not a necessary load attribute to trigger ringing responses.

There are several important limitations to the present work, which is
based on a limited number of experimental realizations at 1:30.6 scale. In
addition to the limitations and uncertainties associated with small-scale
testing and wave generation, this study only deals with one pair of values
for 1st and 2nd eigenfrequencies. With the current trend of rotors getting
larger (Ho et al., 2016), it is expected that the mass andmoment of inertia
on top of the tower will increase differently, thus changing the ratio of 1st
over 2nd eigenfrequency. This could potentially change the relative
contributions of the 1st and 2ndmode responses to the total response and
therefore modify Fig. 11. Amore detailed assessment of this phenomenon
is left for further studies. The presence of the 3rd and 4th mode in the

response, and the use of visual detection of slamming also represent
limitations in the present work. Furthermore, the sea states considered
here are not associated with a 50-year return period. As such, the
considered conditions are not necessarily representative of typical ULS
assessment, and the assumption of an idling turbine may not be correct.
Finally, memory effects (i.e. the fact that the response to one wave de-
pends on the response to previous waves) are not studied in this paper. As
explained in section 4.2, wave groups can produce larger responses than
individual regular waves with the same characteristics as the largest
wave of the wave group.

This study explains the mechanism of large responses in ULS condi-
tions for offshore wind turbines and shows the necessity of having both a
non-linear hydrodynamic load model and a slamming model for the
excitation loads, and at least 1st and 2nd structural modes accurately
represented. The finite water conditions make it likely that more and
steeper breaking waves will occur at the support structure of the turbine
compared to deep water. In order to account for the phenomena
described in this paper, a common practice in the industry is to simulate
the wave kinematics using the stream function theory (Rienecker and
Fenton, 1981) and adding a slamming model on top of it. This model will
be studied in depth in future work.
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A B S T R A C T

This paper presents a comparison between experimental data of a model-scale 4MW monopile offshore wind
turbine subjected to extreme irregular sea states in finite water and the numerical models suggested in offshore
wind energy standards to assess ULS conditions. The model is fully flexible with its 1st and 2nd eigenfrequencies
and 1st mode shape tuned to fit those of the full-scale turbine. The measured and simulated bending moments at
the sea bottom are decomposed around the eigenfrequencies of the structure, and the Morison equation with
stream function wave kinematics is found to trigger transient 1st mode response (so-called ringing response).
The amplitude of the simulated 1st mode response is proportional to the incoming wave steepness; such a
relationship is not observed experimentally. Similarly, 2nd mode response is triggered by Wienke's slamming
model, but generally does not match the experimental data. Although the numerical models from the design
standards (Morison's equation with stream function kinematics, plus a slamming model) can give conservative
estimates of the extreme responses, the models miss the balance between 1st and 2nd mode responses. The
simplification of the physics in the numerical models can thus lead to inaccuracies in response prediction, such
as the stress distribution along the monopile.

1. Introduction

Offshore wind turbines mounted on monopiles are currently being
built or planned in the North Sea in water depths between 20 and 50m
(Ho et al., 2016). In order to safely design the monopiles, the maximum
load effect that the structure will experience over its lifetime has to be
assessed (so-called Ultimate Limit State (ULS) analysis). A number of
standards suggest hydrodynamic load models for such a study for dif-
ferent situations (for example DNV-OS-J101, 2014; DNV-RP-C205,
2014a; IEC 61400-3, 2009). These standards are mostly adapted from
experience from the oil and gas industry, whose structures differ from
offshore wind turbines in two important aspects:

● The depths considered for oil and gas platforms are much larger
than those of offshore wind turbines, enabling the simplification of
‘infinite water depth’.

● For offshore wind turbines, the displacement of the 2nd mode shape
near the mean sea level is large compared to oil and gas platforms.
This means that the 2nd mode of the structure will be excited by
breaking wave events (which induce loads around the mean sea
level), as shown for instance by Peeringa and Hermans (2017). For
bottom-fixed oil and gas platforms, breaking wave loads act close to

the maximum of the 1st mode shape, but are unlikely to excite
global 1st mode response due to the short load duration.

Fig. 1 illustrates the concepts explained above. The largest con-
tribution from hydrodynamic loads is around the mean sea level, which
means that for a wind turbine it will be low (in relative heights) com-
pared to an offshore oil and gas platform.

The main aim of this paper is to assess how well the standards used
by the offshore wind industry predict the response of the support
structure in ULS conditions. Experimental data produced by the
Maritime Research Institute Netherlands (MARIN) is compared to the
numerical models proposed in the standards. In these experiments, a
fully flexible model of an idling 4MW bottom-fixed offshore wind
turbine mounted on a monopile was subjected to extreme weather
conditions. Suja-Thauvin et al. (2017) analysed these experiments and
showed that the largest responses for an offshore wind turbine in the
above-mentioned conditions were provoked by steep and breaking
waves. 2nd and 3rd order hydrodynamic loads from the wave trigger
the 1st mode of the structure and produce the response phenomenon
known as ‘ringing’, characterized by a build-up of the resonant vibra-
tion over about one wave period which then slowly decays (Natvig,
1994) and illustrated in Fig. 2. The bending moment in Fig. 2 has been
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filtered to show only the response of the 1st mode of the structure, this
procedure is explained in section 5.2. The loads due to the impact of the
breaking wave on the structure (so-called slamming loads) excite the
2nd mode of the structure, which can account for up to 20% of the
maximum response (Suja-Thauvin et al., 2017). Slamming loads excite
all modes of the structure, but only higher modes will be significantly
excited due to (i) the very short slam duration compared to the 1st
eigenperiod and (ii) the shape of the 2nd mode compared to the 1st
mode. A conclusion of Suja-Thauvin et al. (2017) is thus that in order to
correctly depict the maximum responses experienced by the support
structure of offshore wind turbines, one has to account for both ringing
responses and responses to breaking waves.

Numerical models for predicting ringing gained attention in the
1990s, when ringing was first observed during model tests of the

Hutton and Heidrun TLP offshore oil and gas platforms and of the deep
water concrete towers of the Draugen and Troll A platforms (Natvig and
Teigen, 1993). For offshore wind turbines, the necessity of using non-
linear wave kinematics when calculating hydrodynamic loads for cap-
turing this phenomenon was shown for example by Marino et al.
(2013a). This agrees well with Paulsen et al. (2013), who showed by
using a CFD solver that the excitation force based on linear wave ki-
nematics does not have the frequency content necessary to excite the
1st mode of the structure. Bredmose et al. (2012) used a simple canti-
lever beam numerical model to assess the importance of wave height
and water depth with respect to ringing responses and to show how this
phenomenon can dominate the total response due to dynamic amplifi-
cation.

In addition to ringing responses, breaking wave events have also
been studied for offshore wind turbines. Both de Ridder et al. (2011)
and Bredmose et al. (2013) carried out experiments on a bottom-fixed
responding structure whose characteristics were similar to those of an
idling extra-large wind turbine and found out that breaking waves
could lead to extreme accelerations of the nacelle. Bredmose and
Jacobsen (2010) carried out a CFD analysis where focused waves were
forced to break at different locations in the vicinity of the turbine in
order to assess the hydrodynamic loads at different stages of the
breaking process. Marino et al. (2013a) applied a fully nonlinear high-
order boundary-element solver to a series of realistic sea states and
showed that the bending moment at the tower base could be six times
larger compared to a linear model.

The numerical models presented in the aforementioned works pro-
vide accurate predictions of the response of a bottom-fixed offshore
wind turbine to steep breaking waves but are too computationally ex-
pensive to be used by the industry for design, where typically thousands
of load cases need to be assessed. The standards commonly used by the
industry to calculate hydrodynamic loading under steep breaking waves
(DNV-OS-J101, 2014; DNV-RP-C205, 2014a; IEC 61400-3, 2009) sug-
gest simpler models, such as the stream function theory (Rienecker and
Fenton, 1981) and Wienke's slamming model (Wienke and Oumeraci,
2005). To assess the validity of these models for calculating the turbi-
ne's response under steep/breaking wave loads, the above-mentioned
models have been implemented in Matlab® and used to try to match the
experiments carried out by MARIN.

Other theories that attempt to reproduce ringing responses have
been developed by Faltinsen et al. (1995), so-called FNV model, and
Malenica and Molin 1995, so-called MM model. Both these theories
were developed based on a perturbation approach and estimate the
excitation load up to third order in terms of wave steepness. Krokstad
et al. (1998) presented a validation of the response predicted by the
FNV model in deep water, and Kristiansen and Faltinsen (2017) further
developed the model for finite water. Paulsen et al. (2014) showed that
the 3rd order excitation loads from both the FNV and the MM models,
within their range of validity, match those predicted by CFD. Both
models account for hydrodynamic-structural interaction by considering
the diffracted wave from the cylinder. On the contrary, the models
presented in this paper – and commonly used in design – do not account
for the presence of the structure, and only estimate the kinematics of
the undisturbed wave.

The paper is organized as follows: section 2 briefly presents the
experiments carried out by MARIN, and in section 3 we introduce the
structural model used in the paper. In section 4 we use the models
proposed by the standards to carry out the ULS analysis under the en-
vironmental conditions of the MARIN experiments, and section 5
compares the same models on a single event basis to assess how the
models perform. Conclusions are drawn in section 6.

2. Presentation of the model test

A more detailed description of the experiments is given by Suja-
Thauvin et al. (2017); only the most relevant points are given here. The

Fig. 1. Schematic representation of the Draugen platform (Natvig and Teigen,
1993) and the offshore wind turbine used in the present paper (not to scale).
The lines represent the 1st and 2nd mode shapes normalized against their
maximum value (the mode shapes of the Draugen platform are taken from
Faltinsen and Timokha, 2016).

Fig. 2. Illustration of a ringing event. A surface-piercing vertical cylinder is
exposed to a steep wave, and the bending moment is measured at the sea
bottom.
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dimensions of the experimental set-up and the flexible model are given
in Fig. 3 and Fig. 4. The values given in the paper are full-scale, unless
specified otherwise. The fully flexible model was held by a 6-compo-
nent force frame and placed in a pit dug into the shallow water basin of
MARIN, a rigid model was also constructed and placed in the basin but
is not analysed in this study. The force frame was calibrated by pulling
on it with known weights and showed an accuracy in measured mo-
ments of 2–3%. The fore-aft bending moment was measured at the sea
bed and is simply referred to as ‘response’ in the rest of the paper.

4 wave gauges were placed in the basin. The accuracy of the wave
gauges was not reported, but a typical value is approximately 1mm in
model scale (Steen, 2014), or 5 cm in full scale. Only one wave gauge

(marked in Fig. 3) was used in this study. This wave gauge was placed
about 13 diameters from both models, so it is expected that the dif-
fracted and reflected waves can be neglected. The elevation measured
by this wave gauge is used as an input for the numerical models after
linearization (see appendix A). The waves were generated by a piston-
type wave-maker, consisting of a flat plate forced into horizontal mo-
tion by an electrical actuator.

The prototype is a 1:30.6 Froude scaled model of a 4MW wind
turbine. The diameter at the mean sea level is 5.78m and the water
depth is 27 m. Special effort was put into achieving the correct 1st and
2nd eigenfrequencies and correct 1st mode shape. Table 1 shows the
eigenfrequencies and damping ratios of the model (derived from
hammer tests in water, see Bunnik et al., 2015), and Fig. 5 shows the
mode shapes of the 1st and 2nd mode.

It should be noted that the damping values are low compared to
idling full-scale wind turbine (Damgaard et al., 2013; Damgaard and
Andersen, 2012; Shirzadeh et al., 2015 report 1.7–2.8% of critical
damping for the first mode, depending on the wind speed). Con-
siderations regarding very lightly damped systems are briefly discussed
in section 5.4.

The 3rd and 4th modes measured on the experimental model have not
been tuned to fit those of the full-scale model, which implies that conclu-
sions based on the analysis of these two modes (and even higher) could not
be applied to a full-scale wind turbine. Therefore these higher modes have
been left out of the study. All the measured data presented in this work has
been low-pass filtered to remove the response of the structure at these
higher modes. More details are given in Suja-Thauvin et al. (2017).

In this paper, we analyse selected sea states from the experiments,
summarized in Table 2 and plotted in Fig. 6. The experimental cam-
paign was divided into Part A and Part B as they were different stages of
the same project, but the experimental set-up remained unchanged
between these two parts. Fig. 6 shows the −H TS P graph of the Dogger-

Fig. 3. Top and side view of the experimental set-up (values are given both in full and model scale).

Fig. 4. Flexible model (values are given both in full and model scale).

Table 1
Frequencies and damping ratios of the model (full-scale values).

1st mode 2nd mode 3rd mode 4th mode

Eigenfrequency [Hz] 0.29 1.21 3.11 7.24
Damping (% of critical) 1.1 1.1 2 2
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Bank Creyke Beck B site (see Frimann-Dahl, 2015) and gives an in-
dication of the return periods of the analysed sea states. It should be
noted that the wind conditions for the selected sea states have not been
determined. Under all sea states analysed in the paper, the turbine is
assumed idling and no aerodynamics are modelled (except estimated
damping from an idling turbine). In reality, the mildest sea states are
probably associated with an operational turbine.

3. Structural model

The numerical tool developed for modelling the response of the
structure is a simple mode shape solver (see for example Gans, 2015).
The mode shapes and damping levels were provided by Bunnik et al.
(2015). The response bending moment of the structure is calculated
with the Euler-Bernoulli beam equation assuming a slender structure in
the vertical direction z:

= ∂
∂

M z t EI Ψ z t
z

( , ) ( , )2

2 (1)

where M is the response bending moment, E is the Young's modulus, I
is the area moment of inertia of the cross-section andΨ is the deflection
of the system. The deflection is assumed to be the sum of the deflections
of each individual mode:

∑=
=

Ψ z t ψ z ξ t( , ) ( ) ( )
i

N

i i
1 (2)

where ψi is the mode shape of the ith mode and ξi is the modal dis-
placement of the ith mode. The modal displacement for each mode is
determined solving the simple one degree of freedom equation with
Matlab®:

= + +f m ξ b ξ c ξ¨ ˙
i i i i i i i (3)

where fi is the modal excitation for the ith mode and mi, bi and ci are
respectively the modal mass (including added mass), the modal
damping and the modal stiffness of mode i. The modal excitation for
each mode is obtained by integrating the product of the excitation force
times the mode shape over the instantaneous wetted surface:

∫=f F z ψ z dz( ) ( )i
h

z

i

0

(4)

where F is the hydrodynamic load, calculated with one of the models
described in section 4.1.4, z0 is the instantaneous wave elevation and h
is the water depth.

4. Standards – statistical analysis

4.1. Procedure to estimate ULS response

In this section we evaluate the characteristic response for ULS de-
sign (shortened to “ULS response”) of the structure using three
standards commonly used in the offshore wind industry, namely
DNV-OS-J101 (2014); DNV-RP-C205 (2014a); IEC 61400-3 (2009). We
investigate load case 6.1 from these standards, which was established
by de Ridder et al. (2017) as the design driver for the present experi-
mental campaign. The standards prescribe 20 realizations of the 50-
year return sea state corresponding to the desired location, each in-
cluding a wave with the characteristics of a 50-year return wave em-
bedded at a random time. If the wave is breaking at the structure, a
slamming load model has to be added to account for the impact-like
load on the structure (more details are given in section 4.1.4).

Each realization has a 10-min duration and corresponds to a linear
superposition of regular wave components according to a JONSWAP
spectrum (see Hasselmann et al., 1973) as suggested in all three stan-
dards. The average of the 20 maxima obtained from the simulated re-
sponse time-series is interpreted as the ULS response. This response is
commonly referred to as the ‘50-year response’ even though it is rather
the response to 50-year return environmental conditions. In this paper,
in order to align with the common terminology, we denote the response
estimated following the aforementioned procedure the ‘50-year re-
sponse’. Fig. 7 illustrates this procedure.

In this paper, we assume that each of the analysed sea states (given
in Table 2) corresponds to a 50-year return sea state at a fictitious lo-
cation. Once the 50-year return sea state has been determined, one must

Fig. 5. Normalized mode shapes of the model. These mode shapes are also used
in the structural model (see section 3).

Table 2
Selected sea states.

HS TP γ Number of realizations

Part A
3.5 8.5 3.3 1
5.81 10.93 3.3 1
5.89 10 3.3 1
6.18 10 3.3 1
Part B
5 8.5 3.3 1
6.5 10 3.3 1
9 13 3.3 3
9 11 3.3 3

Fig. 6. HS-TP plot for the DoggerBank Creyke Beck B location. Contour lines for
1, 10 and 50-year return period.
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define the characteristics of the 50-year return wave and the wave ki-
nematics used to model this wave. The next four subsections deal re-
spectively with.

• determining the characteristics of the 50-year wave

• choosing the kinematics model used to simulate the 50-year wave

• the embedding procedure

• the hydrodynamic load models.

4.1.1. 50-year return wave characteristics
To define the height of the 50-year return wave based on the 50-

year return sea state, IEC 61400-3 (2009) assumes that the sea state has
a 3-h stationarity during which the wave elevation follows a Gaussian
distribution and the wave heights follow a given distribution (in this
paper either a Rayleigh or a Battjes and Groenendijk distribution, see
Battjes and Groenendijk, 2000). We denote hereafter H50 the height of
the 50-year return wave and HS50 the significant wave height of the 50-
year return sea state. IEC 61400-3 (2009) shows in detail how to esti-
mate H50 assuming a Rayleigh distribution of the wave elevation. This
assumption yields the classical result =H H1.86 S50 50. The same deriva-
tion can be carried out assuming a Battjes and Groenendijk distribution
(hereafter noted BG). The details of the derivation can be found in
Battjes and Groenendijk (2000).

Fig. 8 shows the calculated H50 assuming the two different wave
height distributions for each sea state. In addition, we show the sig-
nificant wave height for each sea state and the maximum measured
wave height. In order to find the maximum wave height, two maxima
are measured per sea state, corresponding to trough-to-crest and crest-
to-trough wave heights, and then the maximum of the two is taken. The
error bars for the measured values correspond to two standard devia-
tions of the 3-h maximum, as estimated for a Rayleigh distribution of
the peaks, above and below the measured value (see for example Naess
and Moan, 2012). The measured maximum wave height is only given as
an indication, since the maximum wave of a 3-h realization of the 50-
year return sea state is in general not the same as the 50-year return
wave.

The Rayleigh distribution is known to be a good approximation for
wave height distribution in deep water. The BG distribution takes depth
into consideration and converges towards the Rayleigh distribution in
deep waters. This is confirmed by Fig. 8, where for lower sea states both
models give similar results. The method presented by Battjes and
Groenendijk (2000) uses a look-up table and does not provide an esti-
mate for the lowest sea state (HS=3.5m, TP= 8.5m). For such con-
ditions, it is reasonable to assume that the wave height distribution is
well represented by a Rayleigh distribution.

In addition to determining the H50, it is necessary to determine the
period of the 50-year return wave, hereafter noted T50. T50 can be taken
within the range given by the following formula, according to IEC
61400-3 (2009).

< <H
g

T H
g

11.1 14.3S S50
50

50

(5)

For each sea state, different values of T50 varying within the range
given by equation (5) were tested and the most conservative results

were always obtained with the shortest T50 (corresponding to the stee-
pest 50-year return wave). Only results for the steepest 50-year return
wave are shown in this paper. It should be noted that this equation
provides T50 depending only on HS50. In this paper, the 2 highest sea
states have the same HS and will therefore have the same T50.

4.1.2. Determination of the wave kinematics
In order to accurately model the kinematics of a single wave, different

theories suggest different approaches. Fig. 9 is common to all three stan-
dards and suggests which theory can be used to describe a given regular
wave depending on the wave height, wave period, and water depth. All
these theories provide a solution for the Laplace equation and boundary
conditions that can be found in most text books (e.g. Faltinsen, 1990). The
main difference between these theories is the order to which they satisfy the
dynamic and kinematic boundary condition at the free surface, higher order
meaning more accuracy but also higher computational time.

In Fig. 9, the ‘x’ and the ‘+’ represent the 50-year return waves
shown in Fig. 8. It can be seen in Fig. 9 that a stream function of order
between 3 and 9 is required to accurately model the 50-year return
waves analysed in this study. For the following simulations, a 9th order
stream function was used to model the 50-year return waves. The ki-
nematics of the stream function waves were computed following
Rienecker and Fenton (1981).

Fig. 9 also shows dots which correspond to the individual events
studied in section 5.

Fig. 7. Procedure for estimating the 50-year response.

Fig. 8. Estimated 50-year wave heights (open symbols) and measured 3-h
maximum wave height (red circle). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)
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4.1.3. Embedding procedure
For the present paper, the embedding of the stream function is done

following Rainey and Camp (2007), as shown in Fig. 10. This figure
shows how the stream function wave is smoothly embedded into the
linear irregular sea by defining two blending areas (marked in grey)
where the linear and the stream function wave are multiplied by
weighting functions. These weighting functions ensure a transition
without discontinuities between the stream function and the linear ki-
nematics. The weighting functions are applied to the wave elevation,
the particle velocity and the particle acceleration.

According to IEC 61400-3 (2009), the instant when the 50-year
wave is embedded into the linear irregular sea is randomly selected for
each realization of the 50-year sea state. The effect of the time of em-
bedding on the estimation of the ULS load can be seen by comparing the
responses of the structure to the same realization of a 10-min sea state
with a stream function randomly embedded with 2 s of difference (no
slamming model is applied in this simulation). Fig. 11a shows the wave
elevation of the linear realization and with the two different embed-
dings, while Fig. 11b shows the response of the structure.

As shown in Fig. 11b the difference of maximum bending moments
between the two embeddings is about 13%. 10 realizations of 2 time
series with 2-s separated embeddings have been carried out, and the
average difference between the 2 embeddings was about 9%. This is
caused by the response history of the structure, i.e. its position, velocity
and acceleration when the wave passes through it, as well as the wave

Fig. 9. Wave kinematic models depending on wave characteristics (taken from IEC 61400-3, 2009).

Fig. 10. Embedding process (following the description in Rainey and Camp,
2007).
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kinematics induced by sewing together the time histories. Since the
time of embedding is random, the kinematics of the structure at the
time of embedding vary from one realization to the next. Furthermore,
the process of embedding introduces different wave kinematics in the
overlap region. By averaging the maxima over 20 realizations, the re-
sult accounts for some of these uncertainties.

4.1.4. Hydrodynamic load models
The considered 50-year return waves all have a wavelength longer

than 10 times the radius of the cylinder, which implies that near-field
first-order diffraction effects from the structure can be neglected
(Faltinsen, 1990). Therefore, as suggested by all three standards, the
numerical model of the structure is vertically divided into strips of
length dz and the well-known Morison equation (Morison et al., 1950)
is used to calculate the hydrodynamic loads dF on each strip:

= +dF ρπC R adz ρRC u u dzM D
2 (6)

with ρ the water density, R the cylinder radius, a and u the particle
acceleration and velocity in the horizontal direction respectively, and
CM and CD the inertia and drag coefficients. The particle acceleration
and velocity are obtained from the kinematic model as explained above.
The inertia and drag coefficients are determined empirically. For the
Reynolds and Keulegan-Carpenter numbers relevant to this study,
Sarpkaya (2010) recommends =C 1.8M and =C 0.8D .

A slamming load is added to the Morison equation to account for the
impact of the breaking wave on the structure. This load is calculated
according to “Wienke's model” developed in Wienke and Oumeraci
(2005) and given by the following equation:

=F C ρRc ληslam S m
2 (7)

with CS the slamming coefficient, c the wave celerity, λ the curling
factor and ηm the maximum wave elevation for the given slamming
event. The slamming coefficient is time dependent and is given by
(assuming =t 0 corresponds to the time of impact)
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with γ the angle between the water surface and the axis of the cylinder.
In the present paper, the slamming load is applied when the slope of

the wave elevation is maximum (as this was found to fit the experi-
mental data by comparing the excitation loads measured on some of the
small sea states to the numerical models) and at the free surface ele-
vation. Both the duration and the amplitude of the slamming load are
dependent on the celerity of the wave, which in the present study is
calculated with the stream function theory. In another study using the
same experimental data as this paper, Burmester et al. (2017) report a
curling factor of 0.28. This value is used in the present study.

4.2. Analysis of the statistical results

In the data provided by MARIN, we interpret each wave elevation
time series as a 3-h realization of a 50-year sea state and look at the
maximum response over this realization. We then compare this max-
imum to the estimation of the 50-year response obtained following the
procedure explained above and summarized in Fig. 7. This comparison
is plotted in Fig. 12. The calculated 50-year responses correspond to
estimations of H50 considering the two mentioned wave height dis-
tributions (Rayleigh and BG). As in Fig. 8, the error bars for the mea-
sured values correspond to two standard deviations of the 3-h max-
imum, as estimated for a Rayleigh distribution of the peaks, above and
below the measured value.

For the sea states with a large significant wave height, the models
suggested by the standards overpredict the responses compared to the
experimental measurements. The overprediction is reduced by using
the BG distribution since this distribution leads to lower estimates of
H50 (as seen in Fig. 8). For lower sea states, the predicted response is
closer to the measurements. The overprediction is mainly related to the
2nd mode response, which depends strongly on the celerity of the
stream function wave. In order to understand the difference of predic-
tion between low and high sea states, individual events where a large
response of the structure was measured are analysed in section 5.

It should be noted that the maximum response of the structure
during a 50-year sea state does not generally correspond to the response
of the structure to a 50-year return wave: it is therefore not strictly
correct to compare the measurements and the estimations. However,
such a comparison provides an indication of whether the numerical
simulations are conservative.

5. Single event simulation

In this section, we analyse how the models suggested by the in-
dustry perform when assessing extreme responses by considering in-
dividual events. We focus on the events that produced the largest
measured responses of part A and part B. For Part A, that event oc-
curred during sea state = =H m T s5.89 , 10S P and for Part B, it

Fig. 11. Illustration of the embedding procedure at two slightly different instants.
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occurred during sea state = =H m T s9 , 13S P . These events are named
events A1 and B1 respectively, and are simulated using the following
three models:

● M_Lin: Morison with linear kinematics. The wave kinematics are
obtained from a linearization of the wave elevation measured during
the experiments (see appendix A). Wheeler stretching (Wheeler,
1969), non-linear wave models and slamming models are not ap-
plied.

● M_SF: Morison with stream function wave kinematics. The wave
immediately preceding the measured large response is replaced with
a 9th order stream function wave. The wave height and wave period
of the embedded stream function wave are taken as the measured
wave height and trough-to-trough period, as shown in Fig. 13.

● M_SF_W: Morison with stream function wave kinematics and
Wienke's slamming model. As in M_SF, with the addition of Wienke's
slamming model at the instant where the slope of the wave elevation
is maximum. For the slamming model, the wave celerity is obtained
from the stream function theory.

5.1. Largest responses

Fig. 14 shows the simulated and measured responses of events A1
and B1. The upper plot shows the time series of the response, and the
following plots are the continuous wavelet transforms (cwt, see
Daubechies, 1992) of the measured and simulated responses. The
colour scale is kept the same over all events, with warm colours cor-
responding to high energy content.

Fig. 14a and b and Fig. 14c and d shows that during the experiments
the structure oscillates in its 1st and 2nd mode (with eigenperiods of
3.44 and 0.82 s, respectively). This confirms what was found by Suja-
Thauvin et al. (2017), i.e. that the passage of a steep and breaking wave
triggers both 1st and 2nd mode response.

The time series in Fig. 14a and b and the cwt plots in Fig. 14e and f
shows that for both events, using the M_Lin model does not match the
measured response. Neither the 1st nor the 2nd mode are triggered. The
limitations of using linear wave kinematics to simulate extreme waves

are well known (Marino et al., 2013a; Paulsen et al., 2013; Suja-
Thauvin et al., 2014).

For event A1, it can be seen from Fig. 14a and the cwt plots in
Fig. 14g that the 1st mode response is not triggered correctly using the
M_SF model. As seen in Fig. 15 (zoom of Fig. 14i), adding Wienke's
slamming model triggers 2nd mode response but does not change the
1st mode response. Indeed, the duration of the slamming load estimated
by Wienke's model is too short to significantly trigger 1st mode re-
sponse (see Suja-Thauvin and Krokstad, 2016).

For event B1, the time series in Fig. 14b and the cwt plot in Fig. 14h
show that the 1st mode response is triggered by the M_SF model. As for
event A1, Fig. 14j shows that the M_SF_W model triggers 2nd mode
response.

Fig. 16 shows the modal excitation force for the first mode simu-
lated with M_SF and M_L for event B1. The cwt plots show that the
excitation force of the M_SF model contains higher frequencies than
that of the M_L, which explain its ability to trigger 1st mode response in
the structure. The trough-to-trough period of the wave provoking event
B1 is 11.25 s, which for the 9th order stream function wave gives a 9th
harmonic at 0.8 Hz. The ability of the stream function to trigger 1st
mode response is analysed in more detail in section 5.3.1.

These results suggest that the studied non-linear wave kinematic
model can qualitatively produce 1st mode response, and that Wienke's
model can trigger the 2nd mode of the structure. A combination of the
two models therefore has the potential to match the experimental data.
To assess the models in more detail, the next section examines a larger
number of events.

5.2. Response decomposition by modes

For the 21 largest events of part A and the 30 largest events of part B
(in terms of measured response), the responses were decomposed into
quasi-static, 1st mode and 2nd mode response. Two Butterworth band
pass filters were applied around the 1st and 2nd eigenfrequencies of the
structure to extract the 1st and 2nd mode responses, and the remaining
signal was taken as the quasi-static response. Fig. 17 shows the de-
composition of the response for event A1. The vertical dotted line
corresponds to the time Tmax where the total response is maximum. By
evaluating the amplitude of the responses of different modes atTmax it is
possible to determine the contribution of the different modes to the
maximum response.

Fig. 18 shows the contribution of the different modes for the si-
mulated responses and how they compare to the measured responses

Fig. 12. 50-year responses obtained for the different wave height distributions
(open symbols) and 3-h maximum measured response (red circles). (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the Web version of this article.)

Fig. 13. Embedding of a stream function wave onto the linearization of the
measured wave elevation.
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for part A. Fig. 18a shows that all models reproduce the quasi-static
response reasonably well, with M_Lin slightly underestimating it. The
differences in quasi-static response between M_Lin and the models in-
cluding stream function kinematics are due to the vertical length of
integration of the loads on the structure: M_Lin assumes loads up to the
mean water level whereas M_SF and M_SF_W assumes loads up to the
measured wave elevation. As noted in section 5.1 and illustrated in
Fig. 18b,c, M_Lin does not trigger 1st or 2nd mode response and
therefore underestimates the total response, as shown in Fig. 18d and e.
Fig. 18b also shows that both models using stream function wave ki-
nematics do trigger 1st mode response to a larger extent than M_Lin but
still underestimate it. As explained previously, only the slamming
model has the capability to 2nd mode response, but the response from

the simulations is significantly larger than the experiments.
It appears from Fig. 18 that 1st mode and quasi-static response are

affected by the presence of the slamming model. The time of occurrence
of the maxima when the slamming model is applied is slightly different
than without slamming model, and therefore the contributions of the
different modes vary slightly. There was no indication that the slam-
ming model significantly affected the 1st mode and the quasi-static
response.

Fig. 18 indicates that stream function wave kinematics with Wien-
ke's slamming model have the potential to correctly predict the total
response of the structure, but generally do not capture the balance
between 1st and 2nd mode response. This leads to an inaccurate dis-
tribution of the stresses along the monopile.

Fig. 19 shows the same results as Fig. 18 for the largest 30 events of
part B. The conclusions regarding the M_Lin model and the quasi-static
and 2nd mode response drawn for part A also apply for part B. When it
comes to 1st mode response however, there is no clear trend of how
well the models using the stream function (models M_SF and M_SF_W)
capture it: for some events, they produce conservative results while for
others they are non-conservative.

Fig. 19e shows that the stream function with Wienke's model does
not give a conservative estimate of the total response of the structure
when the 1st mode response is underestimated. This underestimation
can in some cases be compensated by an overestimation of the 2nd
mode response using the slamming model, but the physics of the pro-
cess of maximum response are not correctly captured.

5.3. Analysis of the models

In this part we try to explain the discrepancies observed between the
models and the experimental data. In the following, we define the wave
steepness as the steepness of the highest third of the wave, equal to

∗
H

c T
( / 3)

( )1/3
, where H/3 and T1/3 are defined in Fig. 20 and c is the wave

celerity, taken equal to the stream function wave celerity for simulated
waves and estimated with the nonlinear dispersion relationship for
measured waves.

5.3.1. Stream function – ringing response
Here we assess how the frequency content of the excitation affects

the 1st mode response. We evaluate the energy content of the modal
excitation force for mode 1 (obtained from equation (4)) at the 1st ei-
genfrequency by calculating the cwt and taking its maximum along the
1st eigenfrequency of the structure, indicated by a red dot in Fig. 16.

From Fig. 21 to Fig. 26, the data points correspond to the events

Fig. 14. Analysis of individual events: the plots on the left and on the right
correspond events A1 and B1 respectively.

Fig. 15. Zoom of Fig. 14i (cwt of the response simulated with the embedded
stream function and Wienke's model for event A1).
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analysed in section 5.1. Fig. 21 shows the correlation between the en-
ergy content of the modal excitation force at the 1st eigenfrequency
(which has been normalized against its maximum value) and the
maximum value of the simulated 1st mode response (this is different

from previous figures, where the contribution of the 1st mode response
at the instant where the total maximum was reached was shown). As
expected, there is a strong correlation between these parameters.

Fig. 22 shows the correlation of the stream function wave steepness
and the energy content of the excitation force at the 1st eigenfrequency.
Waves get steeper as the influence of higher harmonics gets larger,
therefore steeper waves have a higher energy content at high fre-
quencies. The eigenfrequency of the structure (0.29 Hz) corresponds to
harmonics between 3 and 5 for the considered waves. This explains why
steeper waves produce excitation forces with larger energy content at
0.29 Hz, as can be seen in Fig. 22.

In Figs. 21 and 22 the black line is obtained from a linear regression
of the data. The R2 coefficient is given in the caption.

Fig. 23 shows that there is no clear correlation between the mea-
sured wave steepness and 1st mode response. Fig. 24 shows the same
for a different definition of the wave steepness (wave height over wa-
velength). This suggests that the reason why the stream function model
does not consistently capture 1st mode response is because it produces a
response proportional to the wave steepness, which does not corre-
spond to what is observed in the experiments.

5.3.2. Slamming model – 2nd mode response
By definition, the amplitude of the slamming load is proportional to the

wave elevation times the wave celerity squared (see Wienke and Oumeraci,
2005). The impulse of the slamming load is proportional to its amplitude,

Fig. 16. Modal excitation load for mode 1 of event B1. The red dot in the cwt plot corresponds to the maximum energy content at the 1st eigenfrequency of the
structure (Section 5.3.1). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 17. Decomposition of the response around the eigenfrequencies of the
structure for event A1.
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Fig. 18. Comparison of the simulated responses with the measured response for the largest events in Part A. The response has been decomposed into contributions of
the different modes of the structure.
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Fig. 19. Comparison of the simulated responses with the measured response for the largest events in Part B. The response has been decomposed into contributions of
the different modes of the structure.
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and classical structure dynamics (see for example Biggs, 1964) shows that
increasing impulse produces an increased response of the structure. This
explains the linear trend in the correlation between the simulated 2nd mode
response and the wave elevation times the wave celerity squared seen in
Fig. 25. As in the analysis of 1st mode response in section 5.3.1, the trend in
the simulations does not correspond to what can be observed from the
experiments. Fig. 26 shows no apparent trend between the measured 2nd
mode response and the wave elevation times the celerity squared. This can
be due to (i) physical phenomena not considered in the theory (such as air
entrapment, asymmetry of the load, imperfections on the surface), (ii) an
inaccurate estimation of the wave celerity and (iii) an inaccurate re-
presentation of the shape of the impact load by the slamming model (given
by equation (8)). A detailed analysis of the effect of the shape of the
slamming load is beyond the scope of this paper, but classical structure
dynamics (Biggs, 1964) shows that the response of a structure to a transient
load depends on the shape of the load. It should be noted that the impulse
could not be obtained from measurements with the given experimental
setup.

Fig. 20. Definition of the wave steepness at the highest third of the wave.

Fig. 21. Energy content of the excitation force at the 1st eigenfrequency against
maximum 1st mode simulated response (R2=0.91).

Fig. 22. Stream function wave steepness against energy content of the excita-
tion force at the 1st eigenfrequency (R2= 0.76).

Fig. 23. Measured wave steepness against maximum 1st mode measured re-
sponse.

Fig. 24. Measured wave steepness (wave height over wavelength) against
maximum 1st mode measured response.
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5.4. Discussion on damping

The damping of the 1st and 2nd mode was 1.1% of the critical damping.
Research done by Bachynski and Moan (2014) and Schløer et al. (2016)
suggests that damping is not critical for the maximum response but more
relevant for fatigue damage. This agrees with the numerical simulations
reported in Marino et al. (2013b) where it can be seen at an event level that
the maximum bending moments at the tower bottom are not generally
smaller in power production mode (which implies larger damping) com-
pared to idling conditions. However, Suja-Thauvin et al. (2016) pointed out
that for very lightly damped systems the 1st mode response produced by a
ringing event will not decay quickly, so a new event may produce 1st mode
response on top of these free decay oscillations, potentially increasing the
maximum if the oscillations from the two events occur in phase. Bachynski
et al. (2017) explored this issue further and showed that at a statistical level,
increased damping would decrease the extreme bending moment at the
tower bottom.

The present experimental set-up did not enable variation of the
system damping. It was thus impossible to assess whether – for a very
lightly damped structure – the response to non-linear loading might be

somewhat hidden by the large responses at the 1st eigenmode. Indeed,
if an event A induces a 1st mode response in the structure and that
response has not dampened out by the time a later event B occurs, it
will be challenging to assess the contribution of each event to the 1st
mode response. The question of whether low damping decreases the
sensitivity of the system to non-linearities is left for further studies.

6. Conclusion

Experimental data of a monopile offshore wind turbine subjected to
severe irregular waves has been compared to the numerical models
suggested by typical standards used in the offshore wind industry
(namely DNV-OS-J101, 2014; DNV-RP-C205, 2014a; IEC 61400-3,
2009). The experimental campaign at MARIN consisted of a fully flex-
ible monopile offshore wind turbine in finite water depth and subjected
to extreme irregular sea states. The model was built so that its dimen-
sions, its 1st and 2nd eigenfrequencies and 1st mode shape fit those of a
full scale 4MW wind turbine. During the experimental campaign, ULS
conditions were found to be the design driver for the given structure (de
Ridder et al., 2017), so this paper attempts to reproduce the char-
acteristic response for ULS design, commonly referred to as the 50-year
response. Both statistical and event-based comparisons were con-
sidered.

Several limitations to the present work should be noted. This ana-
lysis is based on experimental data from a limited number of sea state
realizations at 1:30.6 scale, with the inherent limitations and un-
certainties associated with wave generation and small-scale testing. In
addition, due to the experimental set-up, only one combination of 1st
and 2nd eigenfrequencies was analysed. As rotor size increases (Ho
et al., 2016), the mass and moment of inertia on top of the tower may
increase at different rates, thus changing the ratio of 1st to 2nd ei-
genfrequency. This could potentially change the relative contributions
of the 1st and 2nd mode responses to the total response and therefore
modify Figs. 18e and 19e. Furthermore, the wave elevation measured
during the experiments is inherently nonlinear and had to be linearized
to be a valid input to the hydrodynamic load models (see Appendix A).
The 3rd and 4th modes of the structure were also disregarded in this
study and might be relevant when assessing maximum responses. Fi-
nally, we did not consider memory effects (i.e. the fact that the response
to previous events influences the response to a given wave). Peng et al.
(2013) showed that it is possible to get larger responses from wave
groups than from individual regular waves with the same character-
istics as the largest wave of the group.

In order to determine the 50-year response, the standards suggest
simulating the response of the structure over 20 realizations of the 50-
year sea state with the 50-year wave randomly embedded. The 50-year
wave kinematics are determined using the stream function and the
hydrodynamic loads are computed with the Morison equation. During
the experiments, large responses were provoked by steep and breaking
waves, so Wienke's slamming model (see Wienke and Oumeraci, 2005)
was added on top of the Morison loads. The numerical model gave a
conservative estimate of the 50-year response for the largest sea states
studied in this paper, but underpredicted the 50-year response for the
milder sea states.

The events which produced a large response in the experiments were
analysed individually, and the measured and simulated responses were
decomposed into contributions around the 1st and 2nd eigenfrequencies
of the structure. The results suggest that the numerical model does not
correctly predict the relative contributions of the 1st and 2nd mode re-
sponse to the total response. In particular, it was found that.

• The quasi-static response was in general accurately estimated by
linear as well as non-linear wave kinematic models.

• The Morison equation with stream function wave kinematics in-
consistently predicted ringing response (transient 1st mode re-
sponse). The amplitude of the simulated response was roughly

Fig. 26. Maximum 2nd mode measured response against wave elevation *
celerity squared.

Fig. 25. Maximum 2nd mode simulated response against wave elevation *
celerity squared (R2= 0.78).
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proportional to the wave steepness, but this correlation was not
found in the experimentally measured response.

• The 2nd mode of the structure was only excited by the slamming
model. This is consistent with the findings of Suja-Thauvin et al.
(2017), who show that during the experiments, 2nd mode response
was triggered by waves breaking at the structure. However, ac-
cording to the theory, the amplitude of the 2nd mode response is
proportional to the wave elevation times the celerity squared, which
was not observed in the experimental data.

Overall, the numerical model – with Morison's equation, stream
function wave kinematics, and a slamming model – conservatively es-
timated the total maximum response on 3 out of 21 events for part A
and 14 out of 30 events for part B. For all events where the total re-
sponse was overestimated, the 2nd mode response was also over-
estimated, but there was no clear trend for the 1st mode response.
These findings imply that even in a situation where the models give a
conservative estimate of the 50-year response, the balance between 1st
and 2nd mode response might not be realistic, and the stress distribu-
tion along the monopile can be inaccurate.

It should be noted that in this paper, the models were implemented to
reproduce experimental data in order to allow an event-based compar-
ison. In the estimation of 50-year response of offshore wind turbines,
rather than using experimental data, the industry typically has access to
metocean data to estimate the relevant extreme conditions. In order to
select a relevant 50-year return wave in section 4.1.1, based on IEC
61400-3 (2009), we assumed both Rayleigh and Battjes and Groenendijk
distributions for the wave heights for a 3-h sea state. In addition, several
parameters required careful selection in order to provide trustworthy

results. The assumptions made here are summarized in Table 3.
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Appendix A. wave linearization

A1 filtering

Difference-frequency waves are first removed from the measured signal using a simple high-pass filter. The difference-frequency waves are far
from the linear waves (in the red circle in Figure 27a), making the filtering process straightforward.

Next, some of the higher order waves are removed by using a low-pass filter. We assume that 3rd and higher order waves have energy at
frequencies that are higher than the linear wave, and will therefore simply be removed by the low-pass filter. However, removing second order sum-
frequency waves is more complicated because some of these waves have frequencies that lie within the range of linear waves. If the cut-off frequency
is too low, one might lose information from the linear waves. On the other hand, if the cut-off frequency is too high, part of the higher order waves
will remain. The explanation of how this cut-off frequency is selected is given in appendix A2.

Once the high-pass and low-pass filters have been applied, we obtain the initial approximation ζinit
(1) for the linear wave (red curve in Figure 27b).

In this initial approximation, difference-frequency waves have been removed, but the sum-frequency waves whose frequencies lie within the linear
waves remain. This unwanted energy is removed as follows: a second order wave (yellow curve in Figure 27c) is estimated from the initial ap-
proximation of the linear wave (Newman, 1996):

= − ⎡
⎣

+ + ⎤
⎦

ζ
g

u w ζ w1 1
2

( ) init t1
(2) 2 2 (1)

(9)

with g the gravitational acceleration, u and w the horizontal and vertical water particle velocities, respectively and with subscript indicating
differentiation.

We then want to remove this second order wave from ζinit
(1) . However, part of ζ1

(2) is higher than the cut-off frequency (the region to the right of the
black dotted line in Figure 27c) and will introduce higher frequencies into the linear wave if simply substracted. Therefore, ζ1

(2) is first filtered in the
same way as the measured wave elevation (the result of this filtering is the yellow curve in Figure 27d) and then substracted from ζinit

(1) . We then
obtain the second approximation of the linear wave

= −ζ ζ ζinit2
(1) (1)

1
(2) (10)

Equation (9) used to calculate ζ1
(2) requires a linear wave elevation as input. However, ζinit

(1) contains second order wave energy that was not
removed by the initial filtering process, as explained above. This introduces an error in the second order wave ζ1

(2) and therefore in the linear wave
ζ2

(1). In order to reduce this error, we use ζ2
(1) to calculate a new estimation of the second order wave, using equation (9) with ζ2

(1) instead of ζinit
(1) . We

then obtain ζ2
(2).

We iterate this process and compare −ζi 1
(1) and ζi

(1) at each step. When the maximum of the difference is below a certain threshold (set to H
100

S for the
present study), we consider that the process has converged and we use the obtained linear wave as input for the numerical models.

The flow chart in Figure 28 describes the iterative process explained above. In this flow chart, the numbers of the figures illustrating the concepts
are also given.

Table 3
Input to the numerical models.

Required input Selected value Reference

Load model Morison with strip
theory

(DNV-RP-C205, 2014; IEC
61400-3, 2009)

Hydrodynamic
coefficients

=C 1.8M and =C 0.8D . (Sarpkaya, 2010)

Wave kinematic model Stream function wave
theory

(DNV-RP-C205, 2014; IEC
61400-3, 2009)

Wave embedding
procedure

Method described by
Rainey and Camp

(Rainey and Camp, 2007)

Slamming model Wienke's model (DNV-RP-C205, 2014)
Curling factor =λ 0.28 (Burmester et al., 2017)
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Fig. 27. Spectra of the wave elevation during filtering process.

A2 Selection of the cut-off frequency
As stated above, the selection of the cut-off frequency for the low-pass filter is not straight forward. It is specified in the standard DNV-RP-C205 (2014a)

that if second order loads are to be calculated from a linear wave time series, a low-pass filter should be applied with the following cut-off frequency.

=ω
g

H
2

DNV
S (11)

This cut-off frequency, developed for deep water, has to be applied because some kinematic terms used in non-linear hydrodynamic models can
become unphysically large at the tail of the commonly used wave spectra (see Johannessen, 2008). For intermediate water conditions, the inherent
non-linear behaviour of the waves implies that a lower cut-off frequency than the one presented in equation (11) has to be used.

The unwanted high-frequency energy is filtered out by use of a Butterworth filter. This filter is defined by two parameters: the cut-off frequency
and the order of the filter, higher order meaning a sharper cut at the cut-off frequency. Suja-Thauvin and Krokstad (2016) varied these two
parameters and a reconstructed linear wave was calculated for sea states of different severity. It was found that a 4th order Butterworth filter with a
cut-off frequency = ⋅ω ω0.8cutoff DNV gives the most accurate results. However, as pointed out by Johannessen (2011), the results are sensitive to the
cut-off frequency selected. A careful assessment of the filter has to be carried out in order to get accurate results.

The linearization of the measured wave elevation introduces uncertainties into the estimation of the input to the hydrodynamic models, but these
do not affect the computation of the loads that determine the 50-year response in the present study:

• For the stream function theory, the wave height is taken from the unfiltered measured wave elevation and the period from the linear wave is
practically the same as for the measured wave. The kinematics of the stream function are only dependent on those two parameters and the water
depth and therefore independent of the linearization process.

• Wienke's slamming model is only dependent on the wave elevation and the celerity of the wave (which depends on the stream function). Its
ability to trigger 1st or 2nd mode motion is therefore not dependent on the linearization process
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Fig. 28. Flow chart for the linearization process.
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The response from steep and breaking waves for a monopile structure is investigated by analysis of experimental results and by 

application of numerical models for six sea states. The experimental monopile was designed to reproduce the first and second natural 

frequencies of the NREL 5 MW reference monopile wind turbine. The measured response is reproduced in a finite element model using 

the Morison equation extended to full Lagrangian acceleration with second-order wave kinematics, and with fully non-linear kinematics 

and the axial divergence term. For the fully nonlinear wave kinematics, the additional point forces of Rainey [1]and Kristiansen & Faltinsen 

(KF) [2] are further added. In the latter model, the kinematics at the still water level are obtained by Taylor expansion of the kinematics 

from the free surface. 

The shear force at the sea bed and the structural accelerations are next compared between the force models and the experimental data. 

Among the findings are that the extreme force events are generally smallest for the second-order Morison approach, followed by the 

extended Morison model, the Rainey model and the KF model. While the total accelerations are found to generally match the 

measurements with fair accuracy, a modal decomposition shows that all models overpredict the response at the first eigenfrequency and 

underpredict it at the second eigenfrequency for extreme events. The latter is linked to the missing description of slamming loads in the 

modelling approach. The point force models of Rainey and KF are found to give quite similar results for the extreme events, the reasons 

for which are demonstrated by regular wave analysis.  

 

Keywords: monopile wind turbine, wave loads, ringing, slamming, fully non-linear kinematics 

1 Introduction 
The number of bottom-fixed offshore wind turbines around the world has been increasing for the past decade and is expected to continue 

this trend in the years to come [3]. In Europe, 81.7% of all substructures for wind turbines are currently monopiles [4]. Over their lifetime, 

many of these structures will encounter extreme storms with steep and breaking waves. These waves may produce large responses thus 

threatening the structural integrity. In particular, two load effects have been the focus of several research projects over the last years, 

namely ringing and slamming. 

Ringing responses are an intermittent excitation of the first mode of the structure by a steep wave, not necessarily breaking, whose 

fundamental frequency lies far from the first eigenfrequency of the structure. Figure 1 illustrates such an event: large first mode response 

is triggered by a very steep wave. The response builds up over one wave period and slowly decays. Ringing started gaining attention in the 

1990s when it was observed during experimental campaigns on offshore oil and gas platforms [5], and has recently been observed in 

model tests of bottom-fixed offshore wind turbines as well [6]–[9]. Although the mechanisms producing ringing responses are not yet fully 

understood, all research agrees on the fact that it is a nonlinear phenomenon [2], [10]–[12], and that numerical models that only use 

linear wave kinematics to calculate the forcing on a structure cannot reliably reproduce the complete ringing response [13]–[16].
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Figure 1. Illustration of a ringing event, recorded in the experiments presented by Suja-Thauvin et al. [17]. In this figure the quasi-static 
contribution to the bending moment has been filtered out to keep only responses near the first eigenfrequency of the structure. 

Slamming events occur when a breaking or near-breaking wave impacts the monopile, producing an impulse load on the structure. The 

duration of slamming loads is usually very small compared to the first eigenfrequency of the structure [18] and it has therefore been 

argued that slamming loads alone are less important for the first-mode response, since this is to a large extent driven by ringing loads [8]. 

However, large responses around the second mode of the structure have been observed when slamming events occur, both on full-scale 

measurements [19] and during experiments [7], [9]. Suja-Thauvin et al. demonstrated that the dynamic amplification of the second mode 

of the structure can account for up to 20% of the maximum total response, thus showing that models that do not include slamming are 

likely to underestimate the response [17]. 

This discussion highlights the importance of having models for external forcing that predict the dynamic amplification of at least the first 

and second modes when designing a bottom-fixed offshore wind turbine. In the North Sea, the assessment of the response of the 

structure under extreme environmental conditions -so-called Ultimate Limit State (ULS) analysis- is commonly performed following the 

DNV-OS-J101, DNV-RP-C205 and IEC-61400-3 standards [20]–[22]. These standards suggest that the hydrodynamic loads produced by 

extreme waves are calculated with the Morison equation [23] applied with stream function theory wave kinematics [24]. In cases where 

the wave is breaking, a slamming model must be applied. For plunging breaking waves, the method derived by Wienke and Oumeraci [25] 

is usually applied; whereas for spilling breakers, the method developed by Nestegård et al. [26] is generally used (an overview of the 

different types of breaking waves is given by Galvin [27]). 

The standard hydrodynamic load models used to predict ringing and slamming were initially developed for oil and gas platforms in deep 

waters and present some limitations regarding application to offshore wind turbines. These models fail to accurately depict the physics, as 

they generally do not reproduce the balance between the measured response of the first mode of the structure and that of the second 

mode [28]. In the present paper, four numerical models, briefly described hereafter, are analysed. The main goal of this paper is to assess 

how well these models predict the response of a bottom-fixed monopile offshore wind turbine subjected to extreme irregular waves. 

Experimental data produced by DHI Denmark as part of the Wave Loads project [29] are compared to the responses modelled with those 

numerical models.  

The first model uses wave kinematics that include components up to second order in terms of wave steepness (hereafter referred to as 

second-order wave kinematics). The hydrodynamic loads are then computed applying those kinematics to the well-known Morison 

equation [23]. Compared to a traditional application of the Morison equation, the wave kinematics applied here include convective 

acceleration terms. 

The second model uses fully non-linear wave kinematics applied to the Morison equation with the convective acceleration terms. In 

addition, a correction term presented by Manners and Rainey [30] is added to account for the fact that the cylinder is not slender in its 

axial direction. 

The third model uses the same fully non-linear wave kinematics, and the force model developed by Kristiansen and Faltinsen [2], hereafter 

referred to as KF model. The point force of the KF model requires the kinematics at the mean water level. This is not trivial because when a 

wave trough passes the cylinder, the area around the mean water level is dry and no kinematics are available. A solution using Taylor 

expansion is suggested here.  

The last model uses the same fully non-linear wave kinematics, and the so-called Rainey force model which is derived from energy balance 

arguments. When used with a circular cylinder, the model reduces to the Morison force model plus two additional terms. The first 

additional term is the above mentioned axial divergence term [30]. The second one is a point force at the surface which accounts for the 

change of kinetic energy in the fluid associated with the time variation of the wet portion of the cylinder [1]. 

For longcrested waves, the Rainey and KF models are identical apart from the point force terms that act at the free surface elevation 

(Rainey) and at the mean water level (KF). This difference between these models is analysed in detail in Section 6. 

The aim of the present paper is to compare the predicted responses in strong sea states at intermediate depths for the four models with 

experimental data. Special focus is given to first- and second-mode response, and the role of slamming. 

The paper is organised as follows: Section 2 presents the experimental set up used by DHI, and section 3 analyses the experimental data. 

In Section 4, we describe the numerical models in detail and some of the limitations in the way we apply them. Section 5 compares the 

responses obtained with the numerical models to those measured during the experimental campaign, and Section 6 analyses the 

differences between the Rainey model and the KF model. Conclusions are drawn in section 7. 

2 Experiments 

2.1 Experimental set-up 
The experiments analysed in this paper were carried out at DHI Denmark in collaboration with the Technical University of Denmark (DTU) 

in the Wave Loads project [29].  A more detailed description of the experiments is given in the report of the Wave Loads Project [29] and 

in the work by Bredmose et al. [9], only the most relevant points are given here. The experiments were designed at a scale 1:80 following 

Froude scaling. All dimensions are given at full scale with the model scale in parenthesis and italic font, unless otherwise specified. The 

model was a circular cylinder of constant diameter and constant thickness of 6 m (0.075 m) and 0.144 m (1.8 mm), respectively, placed on 

a 1:25 slope. Three water depths were tested, 20.9 m, 31 m and 40.8 m (0.26 m, 0.39 m and 0.51 m).  
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Two point masses of 937 t and 936 t (1.786 kg and 1.784 kg) were placed 128.6 m and 87.0 m (160.75 cm and 108.75 cm) above the sea 

bed, respectively, thus matching the first two eigenfrequencies of the support structure of the NREL 5 MW wind turbine [31], at 𝑓1 =  0.28 

Hz and 𝑓2 = 2.0 Hz (2.5 Hz and 18 Hz), as shown in Table 1. Figure 2 shows the dimensions of the experimental set up. The axis (𝑥, 𝑦)  =

 (0,0) corresponds to the axis of the cylinder, and the height 𝑧 = 0 corresponds to the still water level. 

 

 

Figure 2. Experimental set-up (not to scale). Model scale dimensions are shown in italic font.  

The wave conditions correspond to situations where the turbine is expected to be idling, therefore, no aerodynamics were modelled. Wet 

decay tests were carried out and the damping for the first and second mode was found to be 1.7% and 2.7% of the critical damping, see 

Table 1. For the first mode, this corresponds to a lower limit of damping ratios measured on similar idling full-scale wind turbines (1.7%-

2.8% depending on the wind speed, [32]–[34]). Previous research suggests that the damping is more important for the decay than for 

maximum values [35]. 

Table 1. Eigenfrequencies and damping ratios of the first two modes of the model 

 First mode Second mode 

Eigenfrequency [Hz] 0.28 2.0 

Damping ratio [-] 0.017 0.027 

 

Several wave gauges were placed in the wave basin at the centreline of the wave maker and towards the structure, and additional gauges 

were placed around the structure. A three-component force transducer at the bottom of the structure and five accelerometers distributed 

along the cylinder measured the response of the structure. One of the accelerometers was placed at the level of the highest point mass 

and is used in Section 5.1. All data was sampled at 200 Hz (model scale) giving a time step of 0.005 s (0.045 s in full scale). 

2.2 Environmental conditions 
Two different irregular sea states based on the JONSWAP spectrum [36] were considered. Combined with the three tested water depths, 

this gives six wave conditions, which are referred hereafter as load cases (Table 2). Some of these load cases have been used by Bredmose 

et al. [9] and Robertson et al. [37]. Each load case is defined by its targeted (as opposed to measured) significant wave height 𝐻𝑆, targeted 

spectral peak period 𝑇𝑝 and water depth ℎ, and named based on the depth and 𝐻𝑆. All sea states have a target spectral peakedness factor 

of 𝛾 = 3.3. Each load case is named with a letter corresponding to the depth (S-shallowest, M-medium and D-deepest) and a number 

corresponding to 𝐻𝑆. Note that the shallowest case does not correspond to shallow water waves [38] but rather to intermediate water 

waves. 

For each sea state, we define an average steepness 𝑠𝑃 based on the definition given in DNV-RP-C205 [21]. Instead of using the linear 

dispersion relationship, as is the case in DNV-RP-C205 [21], we calculate the average wave number 𝑘𝑝 from the second-order dispersion 

relationship (eq (1) by Kirby and Dalrymple [39]). The average steepness is defined as 

 𝑠𝑃 =  
𝑘𝑝 𝐻𝑠

2𝜋
  1 

Full-scale measurements show that sea states above a certain average wave steepness are not realistic. All load cases are below the 

limiting value of 𝑠𝑃 provided in DNV-RP-C205 [21]. 

For each sea condition, we also calculate an irregular Ursell parameter using the method suggested by Stansberg [40]: 

𝑈𝑟 =  
𝑘𝑝𝐻𝑠

2(𝑘𝑝ℎ)
3 2 

The Ursell parameter is typically defined for regular waves, and it has been showed that for 𝑈𝑟 > 0.33, second-order wave theory is not 

valid to represent the regular wave kinematics [41]. Stansberg [40] extended the analysis to irregular waves and showed that this limit is 

also applicable. As shown in Table 2, load cases S8.3 and S11, which correspond to the shallowest water depth, are above this limit. 
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Table 2. Characteristics of the analysed load cases. The load cases are named after the depth (S – shallow, M - medium or D - deep) and 
the significant wave height (8.3 m, 11 m) 

Name Target 𝐻𝑠 [𝑚] Measured 𝐻𝑠 [𝑚] Target 𝑇𝑝 [𝑠] Measured 𝑇𝑝 [𝑠] ℎ [𝑚]  𝑠𝑃 [−] 𝑈𝑟  [−] 

D8.3 8.3 7.88 12.6 11.95 40.8 0.2457 0.0697 

M8.3 8.3 7.97 12.6 11.93 31 0.2664 0.1353 

S8.3 8.3 8.32 12.6 11.99 20.9 0.2991 0.3500 

D11 11 10.53 14 13.23 40.8 0.2795 0.1254 

M11 11 10.55 14 13.42 31 0.3031 0.2431 

S11 11 10.38 14 13.60 20.9 0.3301 0.6691 

 

3 Analysis of the Measured Data 
In this section, we analyse the data obtained during the experimental campaign. An analysis of the measured shear force at the seabed 

and acceleration at the highest point mass has also been performed by Bredmose et al [9]. A positive shear force corresponds to an 

external load in the direction of the waves (i.e. positive x-direction). For the design of wind turbine substructures, it is the amplitude of the 

shear force rather than its direction that is relevant. We therefore study the absolute value of the shear force and refer to ‘maximum’ or 

‘largest’ shear force even when the forces are negative.  

3.1 Statistical analysis 

 

Figure 3. Exceedance probabilities for the measured wave heights 

Figure 3 shows the exceedance probability plots for the measured wave heights for all six load cases. The wave height is measured 

between two zero-downcrossing values of the wave elevation time series. As expected, the load cases with 𝐻𝑠 = 8.3 m show lower wave 

heights than the one with 𝐻𝑠 = 11 m. For the 𝐻𝑠 = 8.3 m load cases, non-linear shoaling effects induce an increase in wave heights for 

decreasing water depth. For the 𝐻𝑠 = 11 m load cases, this effect occurs for the main part of the population. For the most extreme events 

however, the shallowest water case (S11) produces lower wave heights than the other two cases. This is due to wave breaking, which 

occurs more frequently in shallow waters.  
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Figure 4. Exceedance probabilities for the measured shear force. The two events analysed in section 5.2 are marked with an X 

Figure 4 shows the exceedance probability plots for the seabed shear force. To obtain Figure 4, two consecutive zero-downcrossings in the 

wave elevation signal are found, and the maximum absolute value in the force for each wave is identified. This procedure is applied 

throughout the paper for all exceedance probability plots. The measured shear force was filtered to remove frequencies above 4 Hz (full 

scale) by applying a Butterworth filter. This removes the contribution of the higher modes of the structure, as they were not tuned to fit 

any full-scale turbine. The third eigenfrequency of the structure lies at 5.6 Hz [29].  

As for the wave heights, larger 𝐻𝑠 implies larger shear forces for all three depths. Considering the 𝐻𝑠 = 11 m cases, for 80% of the 

population (𝑃𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 > 0.2), larger water depth implies larger shear forces. This is due to i) a larger water column acting on the 

structure and ii) a larger mode shape displacement further away from the sea bed. For deeper water, a load at the surface will induce 

higher modal loads than the same load at the surface for a shallower case. At 𝑃𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 ≈ 0.2, the shear force in S11 becomes larger 

than that of D11 and M11. The shallower water depth produces more non-linear (steeper) waves which then have the necessary 

frequency content to excite the first mode of the structure. At 𝑃𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 ≈ 0.03, the same phenomenon happens for M11, which then 

shows larger shear forces than D11. Similar trends can be observed when comparing load cases corresponding to 𝐻𝑠 = 8.3 m. 

3.2 Spectral analysis 
 

 

 
Figure 5. PSD of the wave elevation for the 𝐻𝑠 = 8.3 m cases. 

 

 
Figure 6 PSD of the wave elevation for the 𝐻𝑠 = 11 m cases 

Figure 5 and Figure 6 show the power spectral density of the wave elevation for (𝐻𝑆, 𝑇𝑃) = (8.3 m, 11.6 s) and (11 m, 14 s),  respectively. 

For the milder sea state of 𝐻𝑠 = 8.3 m shown in Figure 5, the energy content around the peak frequency 𝑓𝑝 is very similar for all three load 

cases. Differences appear in the difference-frequency region (between 0 and 0.05 Hz) and the sum- frequency region (around 0.16 Hz), 

where the load cases with shallower water have higher energy content. This is consistent with the fact that waves in shallow waters are 

more non-linear than in deep waters. 

For the extreme sea state of 𝐻𝑠 = 11 m shown in Figure 6, load cases in shallower water contain less energy around 𝑓𝑝. This is due to wave 

breaking, which occurs more frequently in shallow water than in deep water, and to the migration of energy to sub- and super harmonics. 

As for the previous sea state, the shallower cases show more energy in the difference- and sum-frequency region. 
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Figure 7. Discrete Fourier transform of the shear force for the 
𝐻𝑠 = 8.3 m cases 

 

 
Figure 8. Discrete Fourier transform of the shear force for the 
𝐻𝑠 = 11 m cases 

 

Figure 7 and Figure 8 show the Fourier components of the seabed shear force of the structure for (𝐻𝑆, 𝑇𝑃) = (8.3 m, 11.6 s) and (11 

m, 14 s),  respectively. From these figures it appears that deeper waters induce larger shear forces around 𝑓𝑝. As explained in Section 3.1, 

this is due to a larger water column and to the loads acting at a level with a larger mode shape displacement. Around 2𝑓𝑝, the shear force 

in shallower waters becomes larger, due to the waves being more non-linear and therefore containing more energy at this frequency (as 

shown in Figure 5 and Figure 6). 

The dynamic amplification of the first mode (0.28 Hz) is clearly visible in both Figure 7 and Figure 8. For the 𝐻𝑠 = 11 m cases (Figure 8), 

the amplitude of the shear force around the first eigenfrequency is similar for all depths: the relative contribution of the response at the 

first natural frequency increases with decreasing water depth. This is consistent with Figure 6, as shallower depths induce steeper waves 

that contain energy at higher frequencies. This effect is not visible in Figure 7, where the amplitude of the shear force around the first 

eigenfrequency for the deepest case (D8.3) is larger than for the other cases. A possible explanation is that for the 𝐻𝑠 = 8.3 m and 𝑇𝑝 =

12.6 s cases, the sea state is milder and therefore produces less steep waves. For these cases, the effect of non-linearity of the waves is 

less important than for the stronger sea states of the 𝐻𝑠 = 11 m and 𝑇𝑝 = 14 s cases. 

4 Presentation of the numerical models 
In Section 5, we reproduce the measured shear forces with different numerical models. This is done in three steps: first the wave 

kinematics must be determined, then the hydrodynamic loads are computed and finally the shear force of the structure at the seabed is 

calculated.  

The models used to perform these three steps are presented in this section. 

4.1 Wave kinematics 
In this study, we compare models using two different sets of wave kinematics. 

The first set of wave kinematics includes components up to second order in terms of wave steepness. This set of kinematics is obtained by 

first linearizing the wave elevation measured on a wave gauge placed on the side of the cylinder, see Section 2.1 . The linearization is 

carried out by first removing the difference-frequency wave components, and then iteratively selecting the cut-off frequency of a low-pass 

filter such that the reconstructed wave spectrum (including first and second order terms) gives the best possible match to the spectrum 

measured on the wave gauge positioned on the side of the cylinder, see Section 2.1. Further details can be found in Bachynski et al. [6]. 

The reconstructed set of kinematics is hence referred to as ‘second-order’. 

 

The second set of wave kinematics is produced with the fully non-linear potential flow solver OceanWave3D, presented by Engsig-Karup et 

al. [42]. The code discretizes the domain by means of finite differences, and integrates the Laplace equation with fully nonlinear boundary 

conditions at the water surface. The Laplace problem is solved in a (𝑥, 𝑦, 𝜎) coordinate system, where 

𝜎 ≡
𝑧+ℎ(𝑥,𝑦)

𝜂(𝑥,𝑦,𝑡)+ℎ(𝑥,𝑦)
     3 

Here 𝜂 is the wave elevation, ℎ is the water depth and (𝑥, 𝑦, 𝑧, 𝑡) are the spatial and time coordinates. Using the non-dimensional 𝜎 

coordinate allows to solve for the Laplace equation in a time-invariant grid, increasing the accuracy and the speed of the solution. The 

kinematics in the physical coordinate system are then calculated from the potential Φ(𝑥, 𝑦, σ) via a chain rule derivation. For example, the 

horizontal particle velocity for long crested waves is 
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𝑢(𝑥, 𝑧) =
𝜕𝜙

𝜕𝑥
(𝑥, 𝑧) =

𝜕𝜙

𝜕𝑥
(𝑥, 𝜎) +

𝜕𝜎

𝜕𝑥

𝜕𝜙

𝜕𝜎
(𝑥, 𝜎)     4 

The physical domain of the experiments from the wave maker to a position behind the cylinder was set up in the numerical domain. A 

linear representation of the incident waves was obtained by analysis of four wave gauges in the deeper part of the domain, by applying a 

variant of the reflection analysis of Goda and Suzuki [43], presented by Bredmose et al. [44]. This linear wave field was next imposed at the 

offshore boundary in a relaxation zone to the left of the wave maker. The approach is similar to the one used in Bredmose et al [9] and 

other OceanWave3D studies. In the relaxation zone, the numerical solution from the wave model is in each time step replaced by a 

weighted average of the numerical solution and the prescribed wave field. The weighting function undergoes a smooth transition from the 

prescribed wave field to the numerical wave field through the relaxation zone. Beyond the relaxation zone, only the internally- calculated 

potential is retained. The waves are then allowed to propagate through the shoaling numerical domain fulfilling the Laplace equation for 

the velocity potential and the fully non-linear kinematic and dynamic free surface boundary conditions. To represent the effect of wave 

breaking, which is beyond the physics of a potential-flow model, an ad-hoc dissipative filter was applied in each time step, whenever the 

downward local vertical particle acceleration exceeded 0.3 times gravity. This value was has provided good results in earlier studies, e.g. 

Schløer et al. [45]. 

The kinematics are then sampled in pre-defined positions in space and time and saved to memory. The fully non-linear kinematics are 

referred to as ‘FNL’ in the following. 

Figure 9 shows the exceedance probability plots of the wave heights. For each load case, the exceedance probability is computed for the 

measured and modelled waves. The FNL kinematics generally agree with the measured wave elevation. S11 is the case with the shallowest 

water and the largest average steepness, and consequently produces the most non-linear waves. For S11, the results of the FNL model 

overestimate the most extreme wave heights by about 30%. Applying a stricter wave-breaking filter could enable a closer match but was 

not attempted here. It is therefore expected that the responses calculated with the FNL kinematics for S11 will be significantly larger than 

the measurements. As expected, although the second-order wave field is produced from a wave gauge at the same position as the 

structure, the kinematics from the second-order model produced wave heights slightly lower than those from the FNL model. As noted in 

Table 2, S8.3 and S11 have an Ursell number higher than 0.33 and therefore exceed the limit of validity of second-order theory. In 

addition, the second-order kinematics are obtained assuming a flat bottom, which is not consistent with the test conditions. 

 

Figure 9. Exceedance probability plots for the wave height for all load cases. Comparison between the measured wave elevation and the 
wave elevations obtained with the FNL and second-order kinematics models 
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4.2 Load models 
Four load models are used to compute the hydrodynamic loads on the structure: i) the Morison equation presented by Morison [23] with 

second-order wave kinematics, hereafter ‘Morison second-order’, ii) the Morison equation with FNL kinematics, hereafter  ‘Morison FNL’, 

iii) the model proposed by Kristiansen and Faltinsen [2], with FNL kinematics, hereafter ‘KF’ and iv) the model proposed by Rainey [46], 

with FNL kinematics, hereafter ‘Rainey’. 

Note that the motion of the structure was not taken into consideration for any of the models. It is assumed that the displacement of the 

structure is not significant compared to other sources of uncertainty. This assumption was verified by modelling all load cases with and 

without the motion of the structure, where differences of less than 1% were found. The main damping of the response was found to be 

due to structural damping. 

4.2.1 Morison second-order 
The first model is based on the well-known Morison equation [23], often used due to its simplicity. The difficulty of using the Morison 

equation resides in the selection of the wave kinematics. As mentioned in the introduction, the simplest solution of applying linear wave 

kinematics does not produce accurate results in steep waves. At the other end, some advanced kinematic models such as those obtained 

by using a fully non-linear high-order boundary-element solver [14] are able to produce both first and second mode response of the 

structure. The Morison equation is composed of a drag term and an inertia term  

𝐹𝑀𝑜𝑟𝑖𝑠𝑜𝑛 = 𝐹𝐷 + 𝐹𝐼  5 

with 

𝐹𝐷 =  ∫ 𝜌𝐶𝐷𝑎𝑢|𝑢|
𝜂

−ℎ
𝑑𝑧 6 

and  

𝐹𝐼 =  ∫ 𝐶𝑀𝜌𝜋𝑎2 𝑑𝑢

𝑑𝑡

𝜂

−ℎ
𝑑𝑧 7 

where 𝜂 is the incident wave elevation, 𝜌 is the water density, 𝑎 is the cylinder radius, 𝑢 is the horizontal wave particle velocity and 𝐶𝐷 and 

𝐶𝑀 are the drag and inertia coefficients, respectively. In the present analysis, the values of 𝐶𝐷 and 𝐶𝑀 are obtained by calculating an 

irregular version of the KC and Reynolds numbers [47] based on the measured 𝑇𝑃 and the standard deviation of the particle velocity from 

the FNL kinematics. Table 4.11 in Sumer and Fredsøe [48] is then used to determine 𝐶𝐷 and 𝐶𝑀. In the present study, for all load cases, 

𝐶𝐷 = 1.1 and 𝐶𝑀 = 2. 

The derivative of the particle velocity is taken as the Langrangian derivative in 2D: 

𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑧
  3 

where 𝑤 is the vertical particle velocity. The total load can thus be expressed as 

𝐹𝑀𝑜𝑟𝑖𝑠𝑜𝑛 2𝑛𝑑 𝑜𝑟𝑑𝑒𝑟 = ∫ (CM𝜌𝜋𝑎2 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑧
) + 𝜌𝐶𝐷𝑎𝑢|𝑢|) 𝑑𝑧

𝜂

−ℎ
 4 

In this model we use the second-order kinematics to compute the loads. The loads are thus integrated to second-order wave elevation. 

4.2.2 Morison FNL 
The Morison FNL model is the same as the Morison second-order model, except that 1) the FNL kinematics are used and, 2) to account for 

the fact that the cylinder is not slender in its axial direction, the term 𝜌𝜋𝑎2𝑢 𝜕𝑤 𝜕𝑧⁄  is added [30]. As in the previous model, the 

Lagrangian acceleration is applied. For the present 2D incident waves, conservation of mass implies that 
𝜕𝑢

𝜕𝑥
= −

𝜕𝑤

𝜕𝑧
, so the total load can 

then be expressed as: 

𝐹𝑀𝑜𝑟𝑖𝑠𝑜𝑛 𝐹𝑁𝐿 = ∫ (CM𝜌𝜋𝑎2 (
𝜕𝑢

𝜕𝑡
+ 𝑤

𝜕𝑢

𝜕𝑧
) + (CM − 1)𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝐶𝐷𝑎𝑢|𝑢|) 𝑑𝑧

𝜂

−ℎ
 5 

As for the Morison second-order model, values of 𝐶𝐷 = 1.1 and 𝐶𝑀 = 2 are used. 

4.2.3 KF model 
The first version of the so-called FNV model was developed by Faltinsen et al. [11] in order to predict ringing responses of oil and gas 

platforms observed on model tests in the 90s [5]. This model was initially developed for deep water regular waves based on perturbation 

theory and includes the effect of long wave diffraction and the waves scattered by the cylinder. It is consistent up to third order in terms 

of wave steepness. Krokstad et al. [49] presented a validation of the model in deep water, and Paulsen et al. [50] showed that the third-

order load matched calculations computed with CFD. This model was further extended to irregular waves by Newman [51] and eventually 

to finite water depth by Kristiansen and Faltinsen [2]. The latter implementation, referred to as KF model, is the one used in the present 

analysis, and the load is calculated as follows 

𝐹𝐾𝐹 = ∫ 𝐹′(𝑧, 𝑡)𝑑𝑧 + 𝐹𝜓𝜂

−ℎ
  6 
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𝐹′(𝑧, 𝑡) is a distributed load given by 

𝐹′(𝑧, 𝑡) = 𝜌𝜋𝑎2 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑧
) + 𝑚𝑎 (

𝜕𝑢

𝜕𝑡
+ 𝑤

𝜕𝑢

𝜕𝑧
) 7 

where 𝑚𝑎 = 𝜌𝜋𝑎2 is the added mass in surge. 𝐹𝜓 is the force due to the scattered potential and is applied at 𝑧 = 0. 

𝐹𝜓 = 𝜌𝜋𝑎2 4

𝑔
𝑢2 𝜕𝑢

𝜕𝑡
  8 

where 𝑔 is the acceleration due to gravity. In the original paper from Kristiansen and Faltinsen the kinematics used to calculate 𝐹𝜓 are to 

be taken at 𝑧 = 0 [2]. However, in the current analysis, no FNL kinematics are available in the dry parts of the structure: whenever a 

trough passes the structure, there are no kinematics at 𝑧 = 0. Therefore, the kinematics at 𝑧 = 𝜂 are Taylor expanded to 𝑧 = 0. This 

approach is assessed in section 4.4.1. 

In the present implementation, we add a drag term based on the Morison equation with 𝐶𝐷 = 1.1 . The total force calculated with the KF 

model is then 

𝐹𝑓𝐹𝑁𝑉 = ∫ (2𝜌𝜋𝑎2 (
𝜕𝑢

𝜕𝑡
+ 𝑤

𝜕𝑢

𝜕𝑧
) + 𝜌𝜋𝑎2𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝐶𝐷𝑎𝑢|𝑢|) 𝑑𝑧 + 𝐹𝜓𝜂

−ℎ
 9 

where 𝐹𝐷 is defined as in subsection 4.2.1. 

In the present analysis we use the FNL kinematics to compute the KF loads. To be consistent to third order, contributions higher than third 

order should be removed from the hydrodynamic loads thus calculated. This is not trivial and was not carried out in this analysis. This 

implies, for example, that loads of fourth order are obtained due to the multiplication of contributions of second-order kinematics in the 

convective acceleration, whereas fourth order terms due to the scattered potential will be missing since the scattered potential is 

consistent to third order only. The effects of this shortcoming are analysed in section 4.4.2. 

4.2.4 Rainey model 
The Rainey model is derived from energy balance arguments. When applied to circular cylinders, it reduces to the Morison equation as 

presented in section 4.2.1 with two additions. The first one accounts for the fact that the cylinder is not slender in its axial direction by 

adding the term 𝑚𝑎𝑢
𝜕𝑤

𝜕𝑧
 [30]. The second one corresponds to a point force at the free surface to account for the change in fluid kinetic 

energy due to the variation in time of the submerged portion of the cylinder (equation 7.4 in the original paper [1]). This force is given by 

𝐹𝜂 = −
1

2
𝑚𝑎𝑢2 𝜕𝜂

𝜕𝑥
  10 

where 𝜂 is the instantaneous free surface elevation. By noting that conservation of mass for the present 2D waves gives 
𝜕𝑢

𝜕𝑥
= −

𝜕𝑤

𝜕𝑧
, we can 

rewrite the force given by the Rainey model as 

𝐹𝑅𝑎𝑖𝑛𝑒𝑦 = ∫ (2𝜌𝜋𝑎2 (
𝜕𝑢

𝜕𝑡
+ 𝑤

𝜕𝑢

𝜕𝑧
) + 𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝐶𝐷𝑎𝑢|𝑢|) 𝑑𝑧 + 𝐹𝜂𝜂

−ℎ
 11 

with 𝐶𝐷 = 1.1. In the present implementation, the FNL kinematics are used for the Rainey model. It should be noted that the integrated 

force of the Rainey model and the KF model in the present implementation are the same and equal to the force computed in the Morison 

with FNL kinematics model. The only difference between the Rainey and KF models lies in the point force and is further explored in section 

6. 

 

Table 3 is a summary of the four load models implemented in this analysis. 

Table 3. Summary of the load models. ‘X’ means that the term is included in the model, ‘-‘ means that it is not 

 Morison second-order Morison FNL KF Rainey 

Drag and inertia term X X X X 

Lagrangian acceleration X X X X 

Non-slender in axial direction - X X X 

Point force - - 𝐹𝜓 𝐹𝜂 

Wave kinematics second-order FNL FNL FNL 

 

4.3 Structural model 
The hydrodynamic loads calculated in the previous section are used as input to a finite element representation of the cylinder described in 

section 2.1 with 160 elements. The finite element software applied here is Ashes, which uses the Newmark-Beta integration method to 

solve for the deflections of the structure [52]. The added mass coefficient used is 𝐶𝑎 = 1, and the first and second eigenfrequencies 

obtained with the finite element model match perfectly those given in section 2.1. The damping applied is Rayleigh damping, with the 

damping ratio tuned to match that of the first mode of the physical model. This implies that the damping of the second mode is larger on 

the numerical model than on the physical model. 
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Figure 10 shows the mode shapes of the structure obtained with Ashes. The mode shapes and the eigenfrequencies show slight variations 

depending on the water depth. These variations are accounted for in the numerical simulations. 

 

Figure 10. Mode shapes of the structure, obtained with Ashes (ℎ = 31 m) 

 

4.4 Limitations of the current method to compute the 𝑭𝝍 term 

4.4.1 Selection of the kinematics 
As explained in section 4.2.3, the theory developed by Kristiansen and Faltinsen  implies that 𝐹𝜓 must be computed with kinematics at 𝑧 =

0 and applied at 𝑧 = 0 [2]. In the current work, since no FNL kinematics are available at 𝑧 = 0 when the cylinder is in a wave trough, the 

kinematics at 𝑧 = 0 are obtained through first order Taylor expansion: 

𝑢(𝑧, 𝑡)|𝑧=0 = 𝑢(𝑧, 𝑡)|𝑧=𝜂 − 𝜂
𝜕𝑢(𝑧,𝑡)

𝜕𝑧
|

𝑧=𝜂
 12 

𝜕𝑢(𝑧,𝑡)

𝜕𝑡
|

𝑧=0
=

𝜕𝑢(𝑧,𝑡)

𝜕𝑡
|

𝑧=𝜂
− 𝜂

𝜕2𝑢(𝑧,𝑡)

𝜕𝑧𝜕𝑡
|

𝑧=𝜂
 13 

In the present study, 𝜕2𝑢 𝜕𝑧𝜕𝑡⁄  is not output by the fully non-linear solver, so it is calculated by numerical differentiation using the 

available grid points.  

To assess the impact of this method for calculating 𝐹𝜓, the shear force of the structure is modelled in regular waves with kinematics 

calculated with the stream function wave theory, following the method presented by Rienecher and Fenton [24], which solves for a 

velocity potential in the whole domain and therefore provides kinematics in the dry parts of the domain also. Three procedures are 

studied, described hereafter. 

• 𝑧 = 0 based 𝐹𝜓: the kinematics are taken at 𝑧 = 0, as proposed in the original method 

• Taylor expansion based 𝐹𝜓: the kinematics are obtained from first order Taylor expansion (equations (17) and (18)).  

• 𝑧 = 𝜂 based 𝐹𝜓: the kinematics are taken at 𝑧 = 𝜂 and the force is applied at 𝑧 = 𝜂 

To assess the difference between these formulations, the trough-to-trough characteristics of the wave that produced the largest shear 

force over the whole experimental campaign are selected: height 𝐻 = 13.7 m, period 𝑇 = 17 s and depth ℎ = 20.8 m. As recommended 

in the standard IEC-61400-3 [22] for a wave of these characteristics, the order of the stream function is taken as 𝑁 = 9. Figure 11 shows 

the shear force of the structure to the KF model where 𝐹𝜓 has been calculated with the three procedures proposed above. The approach 

with the kinematics taken at 𝑧 = 𝜂 produces an overestimation of the response of about 25% and will therefore not be used. Using the 

Taylor expansion approach produces an underestimation of the shear force of 3%. This procedure is kept in the rest of the analysis. 
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Figure 11. Shear force of the structure in regular waves with the KF model. 𝐹𝜓is computed following two different procedures 

Adding more terms to the Taylor expansion produced good results in the simulations with the regular waves but gave clearly unphysical 

loads when applied to irregular waves. Therefore, analyses with more terms are not shown. 

 

4.4.2 Contributions of higher than third order 
Another limitation in the way the KF model is implemented in the present work is that we consider all orders in the incoming wave 

kinematics, as explained in section 4.2.3. To assess this limitation, the incoming kinematics must be separated into contributions to 

different orders. Since it is not straightforward to perform such a separation on a stream function wave, a Stokes fifth order wave is used 

instead, implemented following the work by Fenton [53]. The Stokes expansion does not converge for the regular wave previously 

analysed in section 4.4.1, therefore a less steep wave is chosen, with a height 𝐻 = 10.5 m, a period 𝑇 = 16 s in a depth ℎ = 31 m. Two 

procedures are analysed here: 

• KF3: only kinematics that produce loads up to third order are kept, both for the integrated load and for the 𝐹𝜓 term, as 

proposed in the original method. 

• KF5: all kinematics are kept. The integrated load is integrated to the instantaneous fifth order free surface.  

Figure 12 shows the shear force of the structure for these two procedures. The KF5 procedure produces a maximum shear force about 

15% lower than the KF3 procedure. Investigating the kinematics, it is found that higher order kinematics reduce the excitation load at 

lower harmonics. For instance, the fourth order kinematics reduce the second harmonic of the load, and the fifth order kinematics have a 

similar effect on the third harmonic of the load. As a consequence, the excitation load obtained with the KF5 procedure is lower than that 

obtained with the KF3 procedure. This is consistent with the work of Kristiansen and Faltinsen, who showed that the KF5 procedure 

generally produces lower loads than the KF3 procedure at the first, second and third harmonic of the force [2]. They also point out that the 

KF3 procedure tends to overestimate the excitation loads when compared to measurements. They finally show that using the KF5 

procedure, while still overpredicting with respect to the measurements, gives a closer match [2]. 
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Figure 12. Shear force for a fifth order Stokes waves with H = 10.5 m, T =16 s in h = 31 m depth 

 

In the case of fully nonlinear kinematics, it is most natural to apply the full kinematics with no attempt of decomposition into orders. While 

the above analysis is restricted to regular waves and fifth order, the results support that this approach is applicable. This will be further 

tested in section 5 where comparisons with measurements are presented. 

 

 

5 Numerical responses 
In this section, we assess how the different numerical models perform by comparing them to the measurements.  As pointed out in 

section 4.1, for S8.3 and S11, the Ursell parameter shown in Table 2 is above the classical limit of 0.33, above which second-order theory is 

not sufficient to predict the wave kinematics [40]. The shear forces produced by the Morison second-order model were therefore largely 

underpredicting the measurements and are not shown in this section. 

5.1 Statistical analysis 
Figure 13 shows the exceedance probability plots for the shear force at the sea bed for the six load cases and four numerical models. The 

numerical results are compared against the experimental data. 

Below shear forces of about 4 MN, all models compare well with the measurements, except the Morison second-order model, that shows 

a slight overprediction for D8.3 and M8.3. For shear forces above 4 MN, deviations from the measurements are observed. Generally, the 

Morison second-order model produces the smallest forces, followed by the Morison FNL model, the Rainey model and then the KF model.  

In D11, the extreme force peaks are best predicted by the Rainey model, while they are overpredicted by the KF model. In M11, the largest 

force calculated with the KF and the Rainey model are 3.5 and 7.5% lower than the largest measured force, respectively. For load cases D-

M-S8.3 and D-M11, and with the exception of the second largest force predicted by the KF model in D11, the forces calculated by the KF 

and the Rainey model lie within 12% of the measured forces. However, none of these two models can be said to generally over- or 

underpredict the results. For S11, all models using the FNL kinematics give larger results than the measurements due to the overprediction 

of the wave heights by the FNL model shown in Figure 9.  

The Morison FNL model is equivalent to the Rainey and KF models without their respective point forces. It can be seen in Figure 13 that 

this model underpredicts most of the extreme events, which shows the importance of the point loads. The KF model has been shown to 

overpredict the third harmonic loads for steep waves [2]. The steepness for the waves producing the largest shear forces is calculated with 

the following formula: 

𝑠 = 𝑘𝐻/2𝜋 14 

where 𝑘 is the wave number calculated from the second-order dispersion relationship (eq (1) given by Kirby and Dalrymple [39]) based on 

the downcrossing period and 𝐻 is the crest-to-trough height. The steepnesses thus calculated are well above the 1/40 limit for which 

Kristiansen and Faltinsen showed that the third harmonic load is overpredicted by the KF model [2]. Despite this overprediction, the 
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modelled extreme forces agree reasonably well with the measurements. This is explored further in this section by decomposing the 

acceleration at the highest point mass into first and second structural mode contributions.

 

 

Figure 13. Exceedance probability plots for the shear force. The two individual events analysed in section 5.2 (one in D8.3 and the other in 
M11) are marked with a red asterisk. 

To examine the dynamic load effects in detail, the structural accelerations are now analysed. Figure 14 shows the exceedance probability 

plots for the acceleration at the highest point mass of the structure. For the measured acceleration, Bredmose et al. found that increasing 
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depth led to an increased acceleration level due to the larger moment arm. Extreme accelerations, though, were strongest at the smallest 

depths due to the impulsive loads from very steep and breaking waves [9]. 

  

Figure 14. Exceedance probability plots for the total acceleration at the highest point mass 

For S11, the numerical models largely overpredict the measurements due to the inaccurate wave heights resulting from the FNL 

kinematics visible in Figure 3. S11 is not analysed in further detail. In general, the models using the FNL kinematics show the same order 

obtained in the analysis of the shear forces: Morison FNL produces the lowest accelerations, followed by the Rainey model and then the 

KF model. 

With the exception of D11 and the Morison second-order model in D8.3, all models match the main part of the population reasonably 

well. The extreme events however are consistently underestimated by all models in all load cases, and an increasing Ursell number leads 

to an increasing number of extreme events being underestimated. 

To understand this effect, the accelerations are decomposed around the first and second eigenfrequencies of the structure. The 

decomposition is performed by applying a Butterworth band-pass filter. For the first mode, the filter was of ninth order and a frequency 

band of 𝑓1 ± 0.022 Hz was used. For the second mode, the filter was of sixth order and a frequency band of 𝑓2 ± 0.2 Hz was used. 

Different frequency bands and filter orders were tested. Although the amplitude of the filtered acceleration shows a slight sensitivity to 

those parameters, the qualitative results did not exhibit significant variations. Note that the accelerations that do not occur around the 

first or second eigenfrequency are not considered in this analysis. Figure 15 shows such a decomposition for the largest measured 

acceleration of M8.3. 
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Figure 15. Decomposition of the measured acceleration at the nacelle for the largest acceleration during M8.3 

  

Figure 16. Exceedance probability plots for the acceleration at the first eigenfrequency 

 

Figure 16 shows the exceedance probability plots for the structural acceleration filtered around the first eigenfrequency. Note that the 

number and order of the events shown in this figure might be different than that of the unfiltered acceleration shown in Figure 14, as the 

largest unfiltered acceleration does not necessarily exhibit the largest first mode acceleration. 

For the main population of events, the results follow a similar trend as the unfiltered acceleration shown in Figure 14. This is consistent 

since non-extreme events are mainly the results of first mode forcing. For most extreme events however, all models overestimate the 
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measurements. As for the unfiltered accelerations, among the models using the FNL kinematics, the Morison FNL model produces the 

lowest results, followed by the Rainey model and the KF model. 

  

 

Figure 17. Exceedance probability plots for the acceleration at the second eigenfrequency 

 

Figure 17 shows the acceleration around the second mode of the structure. For all load cases, the models follow the main part of the 

population reasonably well but largely underpredict  extreme events. This is due to the absence of a slamming model in the numerical 

models: large events are produced by large waves which are generally breaking and thus will excite the second mode of the structure [19]. 

de Ridder et al. [7] showed based on similar experimental data that triggering the second mode of the structure has a large influence on 

the acceleration at the top. Suja-Thauvin et al. [28] compared different numerical models to calculate loads on offshore wind turbines and 

demonstrated that slamming models were required to produce impulse loads with a duration short enough to trigger second mode 

response. Since none of the models analysed in this study include a slamming model, it is expected that they underestimate the second 

mode acceleration. 

The decomposition of the acceleration around the first and second eigenfrequencies of the structure shows that the models tend to 

overpredict the response around the first mode but underpredict the response around the second mode. 

5.2 Single event analysis 
In this section, we analyse two characteristic events of the experimental campaign, marked with an ‘X’ in Figure 4 and Figure 13. For each 

event, four time series are shown comparing the measurements and the numerical models: 

• The wave elevation. Note that the KF, the Rainey and the Morison FNL models use the same kinematics and therefore show the 

same wave elevation. 

• The modal excitation, computed with the mode shape of the first mode following the equation 
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 𝐹𝑚1 = ∫ 𝐹𝑒𝑥(𝑧)𝜓1(𝑧)𝑑𝑧
𝜂

−ℎ
  

where 𝐹𝑒𝑥 is the hydrodynamic load calculated with the models described in section 4.2 and 𝜓1 is the first mode shape. Note 

that no measurement of the excitation load is available.  

• The shear force at the seabed. 

• The acceleration at the highest point mass. 

Figure 18 illustrates an event where a mild shear force was recorded. No dynamic amplification appears in the measured or modelled 

shear forces. The lowest plot shows significant acceleration around the first mode and a lower acceleration at the second mode. . Thisplot 

also shows that the Morison second-order model produces higher acceleration at the first natural frequency than the other models, which 

is consistent with Figure 16. This is due to the different kinematics: the upper graph of Figure 18 shows that the wave obtained with the 

second-order kinematics is steeper than the one obtained with the fully nonlinear kinematics. This produces a larger amount of high 

frequency content in the load, which excites the first mode of the structure. The phasing between the wave elevation and therefore the 

shear force response is also better for the Morison second-order model than the KF and Rainey models. This is because the second-order 

kinematics are obtained from a linearization of the wave measured at the cylinder, while the FNL kinematics are produced from a 

linearization of the measured wave elevation that is allowed to propagate from the wave maker. 

It can also be noted that the KF, the Rainey and the Morison FNL models produce very similar excitation loads and therefore very similar 

shear forces. As the waves composing the studied event have low steepness, the particle velocities and acceleration are also low. The 𝐹𝜓 

and 𝐹𝜂 terms are of third order in terms of wave steepness, so these point forces become small compared to the 𝐹𝐼 of the Morison 

equation defined in equation (5). Therefore, the excitation loads from the KF and the Rainey models are mainly due to the integrated load, 

which, as shown in section 4.2, is equal to the Morison FNL model. 
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Figure 18. From top to bottom: wave elevation, modal excitation, shear force and acceleration for an event recorded during D8.3. In the 
second subplot, the differences in modal force 𝐹𝑚1 for the Morison FNL, the Rainey and the KF models are indistinguishable. 

As seen in Section 5.1, only the models that use the FNL kinematics can correctly predict the most extreme events. To understand this, the 

event that produced the largest measured response of M11 is now analysed individually. Figure 19 shows the same results as in the 

previous example for this event. The upper plot shows that the wave modelled using the second-order kinematics model is less steep than 

the measured one. Combined with the absence of a point load, the lower steepness produces lower excitation loads than the other 

models and the Morison second-order model therefore underpredicts both the shear force and the acceleration, consistent with the 

statistical analysis of section 5.1. 

The steepness of the measured wave and the large second mode energy observed both in the measured shear force and acceleration 

indicate that the wave is breaking. The wave resulting from the FNL kinematics is significantly steeper than the one resulting from the 

second-order kinematics but less steep than the measured one. The shear force graph shows that the models using the FNL kinematics 

produce first mode response but fail to trigger the second mode. This is also the case for the acceleration. This suggests that the excitation 

forces calculated with these models do not have the required frequency content to significantly excite the second mode of the structure. 

The KF model and the Rainey model give similar shear forces, as observed in Figure 13. However, the KF model produces a high frequency 

variation of the modal force around the maximum, which translates into slightly larger shear force and acceleration. This is consistent with 

the findings of section 5.1 where it was found that the KF model generally produces larger responses than the Rainey model.   
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Figure 19. From top to bottom: wave elevation, modal excitation, shear force and acceleration for the event that produced the largest 
shear force in M11 

 

6 Comparison between the 𝑭𝝍 and the 𝑭𝜼 terms 
As shown in section 4.2.4, the Rainey model and the KF model in the Taylor expanded version only differ from the Morison FNL model by 

their respective point forces 𝐹𝜂 and 𝐹𝜓, which contribution is visible in Figure 13. This figure also shows that the Rainey model and the KF 

model produce similar results. However, it is known that 𝐹𝜓 = 8𝐹𝜂 in the small amplitude limit [10], [11], [54]. To understand how the 

two models can produce similar results despite this apparent eightfold ratio, the point forces are analysed in detail in this section. 

In the present context, the kinematics for 𝐹𝜂 are taken at 𝑧 = 𝜂 and the kinematics for 𝐹𝜓 are taken at 𝑧 = 0. In addition, the kinematics 

are fully nonlinear and the contributions of different orders are not isolated. In the following paragraph, a comparison between 𝐹𝜓 and 𝐹𝜂 

is performed for regular waves. The waves analysed are shown in Figure 20: the three water depths studied in this work (ℎ = 20.9 m, ℎ =

31 m and ℎ = 40.8 m) are tested, a period 𝑇 = 16 s is chosen for all waves and the wave height 𝐻 is varied to go from small steepness 

waves up to the breaking limit. As in section 4.4.2, the stream function theory is used to model the kinematics of the waves. The order of 

the stream function is chosen according to Figure 20. Note that the algorithm did not converge for steepness larger than the steepest ones 

shown in Figure 20.  
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Figure 20. Selected waves for the comparison between 𝐹𝜓 and 𝐹𝜂 (taken from the IEC-61400-3 standard [22]) 

The analysis in this section focuses on the third harmonic of the 𝐹𝜓 and the 𝐹𝜂 forces. The third harmonic is extracted by band-pass 

filtering the time series for the two forces. Figure 21 shows the amplitude of the third harmonic of the two point forces for the waves 

shown in Figure 20. In this figure, for low wave height, the amplitude of the third harmonic predicted by the 𝐹𝜓 term is about eight times 

larger than that of the 𝐹𝜂 term. Note that this ratio is not visible in the total force (for example in Figure 13) because the contribution of 

both point forces is not significant compared to the integrated load for low wave heights. 

As the wave height increases, the ratios between amplitudes of the third harmonic decrease until, for the largest wave heights, the third 

harmonic of both point forces becomes similar. 

The result at small amplitudes is consistent with the previous research mentioned above [10], [11], [54]: the present analysis considers all 

orders, but at small amplitudes the non-linear kinematics are not significant compared to the linear ones and 𝐹𝜓 ≈ 8𝐹𝜂. For larger 

amplitudes however, the higher orders play an important role in the estimation of the excitation loads. In particular, the difference 

between the kinematics at 𝑧 = 𝜂 (taken as input for 𝐹𝜂) and  𝑧 = 0 (taken as input for 𝐹𝜓) is significant and partially accounts for the 

eightfold difference in the small amplitude limit. This can be seen in Figure 22, which presents the ratio of the third harmonic of the term 

𝑢2 𝑑𝑢 𝑑𝑡⁄  taken at 𝑧 = 0 and taken at 𝑧 = 𝜂. For large waves, the kinematics at 𝑧 = 𝜂 are significantly larger than at 𝑧 = 0. 
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Figure 21. Amplitude of the third harmonic of the 𝐹𝜓 and 𝐹𝜂 forces at different depths 

 

Figure 22. Comparison between the terms 𝑢2 𝑑𝑢 𝑑𝑡⁄  taken at 𝑧 = 0 and 𝑧 = 𝜂. 

For small amplitude waves, Rainey [54] shows that the eightfold difference between 𝐹𝜓 and 𝐹𝜂 comes from neglecting the diffraction of 

the waves by the cylinder and suggests the addition of a so-called ‘surface distortion’ force to compensate for the difference. This force is 

given by 

𝐹𝑑𝑖𝑠𝑡 =
7

2𝑔
𝜌𝜋𝑎2𝑢2 𝜕𝑢

𝜕𝑡
|

𝑧=𝜂
     20 

With this addition, the point force in the Rainey model produces similar loads to the 𝐹𝜓 point force in the small amplitude limit. However, 

the derivation of the surface distortion force 𝐹𝑑𝑖𝑠𝑡 assumes that the Froude number 𝐹𝑟 =  𝑐 √𝑎𝑔⁄ , where 𝑐 is the wave celerity, is small 

[54]. This is not the case for waves producing large responses of the structure. 

The analysis performed in this section indicates that the eightfold difference between 𝐹𝜓 and 𝐹𝜂 present in the small amplitude limit 

disappears for large waves because the difference between the wave kinematics taken at 𝑧 = 0 for 𝐹𝜓 and at 𝑧 = 𝜂 for 𝐹𝜂 becomes 

significant. This also justifies the procedure of Taylor expanding the kinematics from 𝑧 = 𝜂 around 0 to apply them to the KF model. 

 

 

7 Conclusions 
Experimental data of an idling bottom-fixed offshore wind turbine under extreme irregular wave conditions have been analysed. The 

scaled model was fully flexible and its first and second modes fit those of the NREL 5 MW turbine mounted on a monopile [31], [55]. Three 

water depths (20.9 m, 31 m and 40.8 m) and two JONSWAP spectra (𝐻𝑠 = 8.4 m, 𝑇𝑝 = 12.6 s and 𝐻𝑠 = 11 m, 𝑇𝑝 = 14 s) were considered, 

for a total of six load cases. The shear force at the seabed was measured and it was found that for the main population of events, the 

largest shear forces correspond to the deeper water cases. This is due to a larger water column acting on the cylinder and the loads acting 
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at a point with a larger modal displacement. For the largest events however, the trend was inverted, with the largest shear forces 

occurring for the shallower depths. In shallower water, the waves are more non-linear and carry energy at frequencies close to the 

eigenfrequencies of the structure. Excitation of the first mode and of the second mode therefore produced large shear forces. 

In the second part of the paper, four numerical models were compared against the experimental results: the classical Morison equation 

with second-order wave kinematics, the Morison equation with fully non-linear kinematics, the Rainey model presented by Rainey [1] and 

the KF method presented by Kristiansen and Faltinsen [2]. The last three models use fully non-linear wave kinematics as input. Exceedance 

probability plots showed that the wave heights obtained with this kinematic model are in good agreement with the measurements for five 

of the six load cases tested in this paper. For the most extreme case (i.e. shallowest water and highest sea state), the wave heights 

produced with the fully non-linear kinematic model largely overpredicted the largest measured wave heights, undermining the possibility 

of a meaningful comparison. This case was therefore not examined in detail. Also note that the KF model requires using kinematics at 𝑧 =

0, which were not available for the FNL kinematics when a trough passes the cylinder. Instead, the kinematics at 𝑧 = 𝜂 are Taylor 

expanded to 𝑧 = 0.  

The Morison equation with second-order kinematics matched the main population of events well but underestimated the largest 

measured shear forces. There are two reasons for this underprediction: first, second-order kinematics miss some higher harmonics in the 

loads that are necessary to excite the eigenmodes of the structure. Second, this model did not include a point force load. 

The models using fully non-linear kinematics predicted the most extreme shear forces reasonably well, but they were not in general 

conservative. The KF model and Rainey model underpredicted the largest measured shear force in two and four out of five load cases, 

respectively. To understand where the inaccuracies of these models come from, the acceleration at the highest point mass close to the top 

of the structure was decomposed into contributions around its first and the second mode. It was found that the models generally 

overpredicted the first mode acceleration but underpredicted the second mode acceleration for large response events. This was 

confirmed by the analysis of the time series for two characteristic events, where it was seen that these two models could produce ringing 

responses but did not produce significant response at the second mode. 

The underprediction of the second mode shear force by the numerical models was expected since no slamming load model is 

implemented in the current analysis. As shown by Suja-Thauvin et al. [17], second mode response is triggered by the impulse load 

produced by waves breaking at the structure. Recommended future work is to include a slamming model consistent with the numerical 

models presented in this paper. 

In the last part of this paper, the excitation from the point forces of the Rainey model, 𝐹𝜂 and of the KF model, 𝐹𝜓 were compared for 

regular waves of different steepnesses. In the small amplitude limit, 𝐹𝜓 is eight times larger that 𝐹𝜂. This difference reduced to unity for 

large waves, mainly because the difference in the wave kinematics (taken at 𝑧 = 0 for 𝐹𝜓 and at 𝑧 = 𝜂 for 𝐹𝜓), which is negligible in the 

small amplitude limit, becomes significant. 

Several limitations to this work should be pointed out: the analysis was based on data obtained through an experimental campaign at a 

1:80 scale, with all the limitations and uncertainties inherent to this type of testing. The study also dealt with only one pair of values for 

first and second eigenfrequencies, corresponding to a 5 MW wind turbine in idling conditions. Current wind turbines have exceeded this 

rated power, and it is expected that the second eigenfrequency of larger turbines will be lower than in this study. This will change the 

relative contribution of the first and second modes in the response and could allow for mechanisms other than wave breaking to trigger 

second mode response. In addition, no slamming load model was used in the current paper, thus missing a critical load component from 

breaking waves. Finally, this analysis did not include responses at frequencies higher than the second eigenfrequency. The influence of 

such higher frequencies could have a relevant impact on the overall response of the turbine. 

It should also be noted that the inputs to these models were kinematics based on measured wave elevation time series. The difficulties 

inherent in producing accurate kinematics play a role in how well the modelled responses match the measured ones. However, for 

designing substructures for offshore wind turbines in the industry, the common workflow implies generating random sea states rather 

than using measurements. This removes the need for kinematics that accurately fit measurements and demands that the models perform 

well on a statistical rather than a deterministic level. Therefore, the models based on fully non-linear wave kinematics analysed in this 

paper have the potential to be used in the design of bottom-fixed offshore wind turbines, and can be further improved by adding a 

consistent slamming model. Finally, to be relevant for the industry, a remaining challenge will be to reduce the computational cost of 

producing fully non-linear wave kinematics. A database of fully non-linear kinematics is under production within the DeRisk project [56]. 
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Appendix B

Verification and validation of the
numerical models

B.1 Structural models

B.1.1 Single degree of freedom

The matlab 1 degree of freedom equation is used to model the experiments carried out in
the wave flume at NTNU. The model is a stiff cylinder mounted on a rotational spring.
Assuming that the flexibility of the cylinder is negligible, the structure can be represented
by:

Mhydro = (IP + IA)θ̈ +Bθ̇ + Cθ (B.1)

with Mhydro excitation loads
IP moment of inertia of the pile
IA moment of inertia due to the added mass
B damping coefficient
C rotational stiffness of the spring
θ angular displacement of the structure

The dot over a variable means differentiation. The moment of inertia was calculated using
a 2D added mass coefficient of Ca = 1. The rotational stiffness was calculated based
on the material and geometrical properties of the spring and tuned to fit the eigenperiod
of the structure. The damping coefficient was estimated from the logarithmic decrement
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of decay tests. Figure B.1 shows the overturning moment measured at the base of the
cylinder during the wet decay test and the simulation with the fitted parameters. The
numerical results based on the implementation of equation B.1 in Matlab show a very
good agreement with the experimental results.

Figure B.1: Decay test, experimental and numerical response bending moment

B.1.2 Matlab mode shape solver

To simulate the experiments from the WiFi project, a simple mode shape solver was im-
plemented in Matlab (see for example Gans 2015). The response bending moment of the
structure is calculated with the Euler-Bernoulli beam equation assuming a slender structure
in the vertical direction z:

M(z, t) = EI
∂Ψ2(z, t)

∂z2
(B.2)

with M the response bending moment
E the Young’s modulus
I the area moment of inertia of the cross section
Ψ the horizontal deflection of the system

The deflection is assumed to be the sum of the deflections of each individual mode:

Ψ(z, t) =

N∑
n=1

ψn(z)ξn(t) (B.3)

with ψn the mode shape of the nth mode
ξn the modal displacement of the nth mode
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The modal displacement for each mode is determined solving the simple one degree of
freedom equation with Matlab:

fn = mnξ̈n + bnξ̇n + cnξn (B.4)

with fn the modal excitation for the nth mode
mn the modal mass (including added mass) for the nth mode
bn the modal damping for the nth mode
cn the modal stiffness for the nth mode

The modal mass, damping and stiffness were provided by Bunnik et al. (2015). The modal
excitation for each mode is obtained by integrating the product of the excitation force times
the mode shape over the instantaneous wetted surface.

fn =

∫ z0

h

F (z)ψn(z)dz (B.5)

with F the distributed hydrodynamic load
z0 the instantaneous wave elevation
h the water depth

No decay tests were provided for this model, only static load cases and hammer tests.
Figure B.2 shows the mode shapes of the experimental model, obtained from de Ridder
(2015) and the mode shapes used in the present mode shape solver for the numerical
simulations, provided by Bunnik et al. (2015).

The eigenfrequencies of the physical model were obtained during the experimental cam-
paign through hammer tests. The modal masses and stiffnesses were provided by Bunnik
et al. (2015) and were used to calculate the eigenfrequencies of the numerical model. The
eigenfrequencies are shown in full scale in Table B.1.

eigenfrequency de Ridder (2015) Bunnik et al. (2015) Present solver
1st mode (Hz) 0.29 0.29 0.29
2nd mode (Hz) 1.19 1.21 1.21
3rd mode (Hz) 3.11 3.11 3.11

Table B.1: Eigenfrequencies reported during the experimental hammer test (see de Ridder 2015),
reported by Bunnik et al. (2015) and obtained through the numerical hammer test

The damping ratios used in the present solver were also provided by Bunnik et al. (2015).
In de Ridder (2015), only damping ratios for the first 2 eigenmodes are given. To verify the
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Figure B.2: Mode shapes obtained from the experiments and used for the numerical simulations

damping values of the present solver, decay tests were run numerically, and the damping
ratio was computed based on the logarithmic decrement. The results are shown in Table
B.2.

Damping ratio de Ridder (2015) Bunnik et al. (2015) Present solver
1st mode (%) 1.09 1.10 1.07
2nd mode (%) 1.10 1.10 1.06

Table B.2: Damping ratios reported during the experimental hammer test (see de Ridder 2015),
reported by Bunnik et al. (2015) and obtained through the numerical decay tests

During the static load cases, the structure was loaded by pulling with a known force at
the sea level, and the response was measured at the sea bottom. The measured responses
showed in Table B.3 are taken from de Ridder (2015). Next to the measured response, we
show the response simulated with the mode shape solver under the same load conditions.
The simulated results lie within 1.5% from the measured ones.

Applied load (kN) Measured
response (MNm)

Simulated
response (MNm) Simulated/measured

2870 84.616 84.313 99.6%
5740 170.593 168.627 98.8%
7175 212.195 210.783 99.3%

Table B.3: Measured and simulated responses during static load cases
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B.1.3 Finite element software

To simulate the response obtained during the DHI experiments we use Ashes, which is a
finite element solver for aeroelastic simulation of wind turbines. Ashes uses the Newmark-
Beta integration method to solve for the deflections of the structure (see Bruheim 2012).
This software was used to model the structure from the experimental campaign of the OC5
project Phase Ib, presented in Robertson et al. (2016).

The Ashes model is first verified against the model presented by MARINTEK in the OC5
project Phase Ib. The MARINTEK model is implemented using the finite element software
Riflex. The eigenfrequencies obtained with Riflex and reported by Robertson et al. (2016)
are shown in Table B.4.

Eigenfrequency Robertson et al. (2016) Riflex Ashes
1st mode (Hz) 0.28 0.28 0.28
2nd mode (Hz) 2.0 2.0 2.0

Table B.4: Eigenfrequencies in full scale presented in Robertson et al. (2016), obtained with Riflex
and with Ashes.

The mode shapes output by Ashes and by Riflex are plotted in Figure B.3 and show an
excellent match.

Figure B.3: Comparison between the mode shapes from Ashes and Riflex. The solid lines corres-
pond to Ashes and the dotted lines correspond to Riflex

Figure B.4 shows a comparison between decay tests run with Riflex and with Ashes and
indicates an excellent match between the two.

In addition to the decay tests, the response of the Ashes structural model with the Mor-
ison load equation with linear wave kinematics is compared with the results presented in
Robertson et al. (2016) in Figure B.5. Here we compare the response in irregular waves
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Figure B.4: Decay test comparison between Ashes and Riflex

with HS = 0.104 m, TP = 1.4 s in 0.51 m water depth (model scale values). This corres-
ponds to HS = 8.32 m, TP = 12.5 s in 40.8 m water depth in full scale. The results from
Ashes lie within the results from other codes. For large responses, the results from Ashes
are significantly lower than the measured response (noted EXPERIMENT in the figure)
because non-linearities in the wave kinematics are not included.

Figure B.5: Verification of simulated force against measurements for irregular waves with HS =
0.104 m, TP = 1.4 s in 0.56 m depth (model scale value). The results from Ashes have been added
to Figure 11 in Robertson et al. (2016).

B.2 Wave kinematics models

B.2.1 Stream function theory

The wave kinematics used in the models based on stream function wave theory were im-
plemented based on the work by Rienecker and Fenton (1981). In Table 1 of their paper,
they present values of kc2/g obtained with their method, where k is the wave number,
c is the wave celerity and g is the acceleration due to gravity. They present values for
different wave heights H for a constant value of kQ/c, where Q denotes the volume
rate of flow underneath the steady wave and exp(−kQ/c) = 0.5 (which is equivalent
to wavelength/depth ≈ 9). In Table B.5 we show the comparison of the value of kc2/g
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obtained by Rienecker and Fenton (1981) to the one obtained with the present implementa-
tion. The results for the present implementation were calculated with a water depth h = 27
m and a stream function order N = 16. The match is excellent up to wave heights of 18
m. This discrepancy was deemed unimportant since all the waves occurrences during the
experiments are below that value.

Height (m) Period (s) kc2/g (-)
(Rienecker and Fenton 1981)

kc2/g (-)
present implementation diff (%)

4.67 15.93 0.6150 0.6150 -0.0042
6.82 15.69 0.6311 0.6310 -0.0049
10.26 15.19 0.6665 0.6664 -0.0046
13.35 14.69 0.7064 0.7064 -0.0022
16.26 14.21 0.7482 0.7482 -0.0028
17.58 14.05 0.7644 0.7644 -0.0050
18.14 14.18 0.7677 0.7541 -1.7725

Table B.5: Comparison of kc2/g obtained by Rienecker and Fenton (1981) and with the present
method

The current implementation of the stream function wave theory was also verified against
other sets of data, listed below:

• Peeringa: data published by Peeringa (2005)

• Dalrymple: data produced with the code implemented by Dalrymple (1996)

• Fenton: data produced with the code implemented by Fenton (2015)

Two cases, published in Peeringa (2005), were used in this verification process. In case 1
(corresponding to test 1 in Peeringa 2005), the wave height is H = 10 m, the wave period
is T=10 s, the water depth is h = 20 m and the stream function order is N = 12.

The implementation is tested for 3 results: wave elevation, wave particle horizontal accel-
eration at free surface and wave particle horizontal velocity at free surface. The results are
plotted in Figure B.6 show an excellent match for all 3 comparisons.

In case 2 (corresponding to test 4 in Peeringa 2005), the wave height is H = 10 m, the
wave period is T = 10 s, the water depth is h = 20 m and the stream function order is
N = 7. In this test, the wave particle horizontal velocity is computed below the crest and
below the trough.

Both Figure B.7(a) and Figure B.7(b) show an excellent match between the present im-
plementation and the results obtained with the codes implemented by Fenton (2015) and
Dalrymple (1996). The results presented by Peeringa (2005) show discrepancies below
the mean sea level. The reason for these discrepancies was not established.
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(a) Wave elevation

(b) Horizontal particle acceleration (c) Horizontal particle velocity

Figure B.6: Verification of the present implementation at the free surface

B.3 Hydrodynamic load models

B.3.1 Morison equation

In different models presented throughout this thesis, the Morison equation Morison et al.
(1950) has been used to calculate hydrodynamic loads on vertical cylinders. In the presen-
ted work, the inertia term of the Morison equation is dominating. The inertia force on a
section of the cylinder of length dz is given by

dFI = ρπR2CMa(z)dz (B.6)
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(a) Horizontal particle velocity under crest (b) Horizontal particle velocity under trough

Figure B.7: Verification of the present implementation under the crest and trough

with ρ the water density
R the cylinder radius
CM the inertia coefficient
a(z) the horizontal water particle acceleration at height (z)

At a water depth h, for a wave of amplitude A, frequency ω and wave number k, the
amplitude of the horizontal acceleration is

a(z) = ω2A
cosh[k(z + h)]

sinh(kh)
(B.7)

So the amplitude of the inertia Morison load integrated from z = −h to z = 0 is

FI =
ω2AρπR2CM

k
(B.8)

In order to determine the cylinder length dz required for accurate results, the integration of
the load in equation B.6 is performed for different vertical discretizations of the cylinder
and compared to the analytical result obtained through equation B.8.

2 regular wave cases were tested with R = 2.89 m, CM = 1.8, ρ = 1000 kg.m-3 and h =
27 m. Table B.6 shows the ratio between the solution from the present implementation
and the analytical solution. For each case, the current implementations was tested with the
cylinder divided into 10, 20, 50 and 100 elements, respectively. For more than 50 elements,
the present formulation matches the analytical solution within 5 significant digits.
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Analytical (MN) 10 el 20 el 50 el 100 el
H=5 m, T=7 s 1.1336 99.79 % 99.94 % 100 % 100 %
H=10 m, T=12 s 1.7585 99.94 % 99.99 % 100 % 100 %

Table B.6: Comparison of the amplitude of the inertia Morison load obtained from the analytical
solution and with the present implementation

B.3.2 FNV model

The hydrodynamic loads as calculated by the FNV method are given in Newman (1996).
In our implementation we modify the original equations by introducing the water depth h,
and we obtain the following equation: FFNV = F1 + F2 + F31 + F3ψ with

F1 = 2πρR2

∫ 0

−h
ut(z)dz (B.9)

F2 = 2πρR2ut|z=0ζ
(1) + πρR2

∫ 0

−h
(2w(z)wx(z) + u(z)ux(z)) dz (B.10)

F31 = πρR2

[
ζ(1)

(
utzζ

(1) + 2wwx + uux −
2

g
utwt

)
−
(
ut
g

)
(u2 + v2)|z=0

]
(B.11)

F3ψ = πρ
R2

g
u2ut|z=oβ

(
h

R

)
(B.12)

with ρ the water density
R the cylinder radius
u, v the horizontal and vertical first order velocity components
ζ(1) the first order wave elevation
h the water depth

Subscript indicates differentiation. β is given by

β

(
h

R

)
=

∫ h/R

0

(3Ψ1(Z) + 4Ψ2(Z)) dZ (B.13)

with Ψ1 and Ψ2 defined in Newman (1996). Note that in deep water, β = 4.
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Newman (1996) illustrated these equations with results obtained for an irregular sea state
composed of 5 regular waves with different frequencies and amplitudes. Figure B.8 shows
the comparison between the 1st and 2nd order free surface elevation presented in New-
man (1996) and the present implementation. Correctly estimating the 1st order elevation
does not pose any difficulties, but the 2nd order elevation requires a correct calculation of
the particle velocities and vertical acceleration. Figure B.8 shows that the 2nd order free
surface elevation matches the published work.

Figure B.8: 1st order free surface elevation and corresponding 2nd order elevation

The next step is to verify the FNV equations. To remove the influence of the water depth
in the present implementation, a depth h = 500 m is used.

For this verification, it is not possible to superimpose the results presented by Newman
(1996) to the results of the present implementation because the quality of the digital ver-
sion of their paper does not allow it. Instead, the results are presented in two separate
figures, namely Figure B.9 and Figure B.10. These figures show that the hydrodynamic
forces from the present implementation match those from Newman (1996).
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B.3.3 KF model

Kristiansen and Faltinsen (2017) generalized the model of Faltinsen et al. (1995) to finite
water depth. Their model is hereafter referred to as KF. In their model, the hydrodynamic
excitation load is calculated as

∫ ζ

−h
F ′(z, t)dz + Fψ (B.14)

F ′(z, t) is a distributed load given by

F ′(z, t) = ρπR2

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂v

)
+ma

(
∂u

∂t
+ w

∂u

∂z

)
(B.15)

with ma = Caρπa
2 the added mass in surge and Ca = 1. Fψ is the force due to the

scattered potential and is applied at z = 0. As shown by Kristiansen and Faltinsen (2017),
Fψ is no different than in deep water and is given by

Fψ = ρπR2 4

g
u2
∂u

∂v
|z=0 (B.16)

In order to verify our implementation of the KF model, the excitation loads thus obtained
are compared to those shown in Figure 14 of Kristiansen and Faltinsen (2017). A regular
wave with a heightH = 8.25 m and a period T = 13.98 s, in a water depth h = 27 m and for
a cylinder radius R = 3.45 m is selected. The wave kinematics are computed following the
Stokes 5th order theory presented by Fenton John D. (1985). Consistently with the results
presented in Kristiansen and Faltinsen (2017), the terms in the integral are evaluated up
to the 5th order wave elevation. Figure B.11 shows a comparison between the excitation
loads obtained with the present implementation and shown in Kristiansen and Faltinsen
(2017). The excitation loads are decomposed around the 1st, 2nd and 3rd harmonic of the
wave. The results show a perfect match.
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Figure B.9: Components of the force acting on the cylinder for the same times as shown in Figure
B.8. All forces are normalized by the factor ρgR2, and the results are in units of meters. Taken from
Newman (1996)
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Figure B.10: Components of the force acting on the cylinder from the present implementation
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Figure B.11: Comparison between the excitation loads obtained by Kristiansen and Faltinsen (2017)
and those obtained with the present implementation
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