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Abstract 27 

The dopaminergic effect of PAH and PFAS mixtures, prepared based on environmental levels has 28 

been studied in juvenile female Atlantic cod (Gadus morhua). Benzo[a]pyrene, dibenzothiophene, 29 

fluorene, naphthalene, phenanthrene and pyrene were used to prepare a PAH mixture, while PFNA, 30 

PFOA, PFOS and PFTrA were used to prepare PFAS mixture. Cod were injected intraperitoneally 31 

twice, with either a low (1x) or high dose (20x) of each compound mixture or various combinations. 32 

After two week of exposure, levels of plasma 17β-estradiol (E2) were significantly high in high 33 

PAH/high PFAS treated groups. Dopamine: metabolite ratios (DOPAC/dopamine and 34 

HVA+DOPAC/dopamine) in brain homogenate changes with the levels of E2 in plasma except for 35 

high PAH/low PFAS and low PAH/high PFAS treated groups. In general, th mRNA levels inversely 36 

correlated with dopamine: metabolite ratios and gnrh2 mRNA levels. Respective decreases and 37 

increases of dr1 and dr2a after exposure to the high PAH dose were observed. Whereas, high PFAS 38 

exposure decreased both drs, leading to high plasma E2 concentrations. Other investigated endpoints 39 

suggest that these compounds at different doses and combinations have different toxicity threshold 40 

and mode of actions. These effects indicate potential alternations in feedback signalling processes 41 

within dopaminergic pathway by these contaminants. 42 

 43 
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1. Introduction 54 

Polycyclic aromatic hydrocarbons (PAHs) and perfluoroalkyl substances (PFASs) are among the 55 

most common xenobiotics found in the environment.1,2 PAHs are generally categorized into 56 

petrogenic and pyrogenic hydrocarbon groups, depending on whether they are produced by the 57 

incomplete combustion of petroleum or by irreversible temperature-mediated change of chemical 58 

composition.3 PFASs have been used in a wide variety of products, including fire-fighting foams, ink, 59 

paper coating and textile, and as water repellents.4,5 Both PAHs and PFASs are found in the aquatic 60 

environment and may threaten marine organisms.6,7 Concentrations of PAHs as high as 10 µg/g dry 61 

weight of sediment have been previously reported in the Seine estuary, Normandy, France.8 PFAS 62 

concentrations have been observed at ng/L and ng/g levels in surface waters and sediments 63 

respectively.9-14 Co-occurrence of both PAHs and PFASs at toxic levels has also been reported in 64 

tidal flats and costal ecosystems of the Ariake Sea, Japan.7,15     65 

The concentrations of these compounds in the aquatic environment might not significantly 66 

affect survival, but may severely alter reproductive capacity and endocrinology in fish. PAHs have 67 

been shown to disrupt the endocrine system through binding and activating the aryl hydrocarbon 68 

receptor (AhR) and produce anti-estrogenic responses.16-18 PAHs may also weakly bind to the 69 

estrogen receptor (ER) and have estrogenic properties.17 PFASs have also been reported to possess 70 

estrogenic properties. For example, in vivo and in vitro exposure to PFOS produced an up-regulation 71 

of vitellogenin (vtg) mRNA expression in fish liver.19,20 In contrast, other studies did not find 72 

significant changes in Vtg levels21 or reported downregulation of vtg mRNA expression.22 Further 73 

investigation is required to better understand the mechanism of action of PAHs, PFASs, and the 74 

combination of both compound classes on the reproductive system of teleosts. 75 

Biosynthesis of estrogen is regulated through the hypothalamus-pituitary-gonadal (HPG) 76 

axis.23 The hypothalamus produces gonadotropin-releasing hormone (GnRH) that controls the release 77 

of gonadotropins (GtHs): follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the 78 

pituitary gland. Gonadotropins induce oocyte development, maturation, and production of 17β-79 

estradiol (E2) in gonads. Among different feedback mechanisms, the dopaminergic system plays an 80 



 4 

essential role in controlling GnRH and GtH releases. High levels of E2 activate dopaminergic neurons 81 

generally to reduce the production of these hormones.23 However, increases in the production of GtHs 82 

may also occur.24,25 Dopamine can also regulate brain aromatase (Cyp19b), an enzyme that catalyzes 83 

the production of estrogen in the brain. Unlike GnRH, brain aromatase responds differently to 84 

dopaminergic agonists.26 Fontaine et al.27 showed that co-exposure of female fish to the dopamine 85 

receptor (Dr2a) antagonist domperidone and a GnRH agonist, resulted in an increased expression of 86 

GtH mRNA, suggesting that removal of dopamine inhibitory effects allow the hypothalamus to 87 

produce GnRH and consequently modulate plasma E2 levels.   88 

The production of dopamine is initiated by tyrosine hydroxylase (TH), the rate-limiting 89 

enzyme that converts tyrosine to 3,4-dihydroxy-L-phenylalanine (L-DOPA) which is subsequently 90 

metabolized by DOPA decarboxylase (DDC) to dopamine.28 Once released in the synaptic cleft, 91 

dopamine binds to two dopamine receptor (DR) families DR1 and DR2, which activate specific G 92 

proteins. For example, DR1 is coupled to Gαs and activates adenylyl cyclase (AC) which increases 93 

the concentrations of cyclic adenosine monophosphate (cAMP) and calcium ions. Conversely, DR2 94 

is coupled to Gαi/o and inhibits AC. In excess, dopamine is reabsorbed through the dopamine active 95 

transporter (Dat) in presynaptic neurons and further catabolized into 3,4-dihydroxyphenyl acetic acid 96 

(DOPAC) and homovanillic acid (HVA) by monoamine oxidase (MAO) and catechol-O-97 

methyltransferase, respectively.28,29 Exposure of mice to endocrine disruptive chemicals (EDCs), 98 

such as bisphenol A (BPA) and 2,4-dichlorophenoxyacetic acid, altered the expression of DRs and 99 

DAT, modulating dopamine synthesis, release and turnover in mice and rats.30,31 Similar results were 100 

observed in zebrafish and rainbow trout where bifenthrin altered E2 concentrations and dopaminergic 101 

systems.32  102 

Despite reports showing estrogenic responses of PAHs and PFASs, either individually or in 103 

combination, there is limited data concerning the effects of these compounds on dopaminergic 104 

signaling pathways. Therefore, the aim of this study was to investigate changes in dopaminergic 105 

signaling and endocrine function after in vivo exposure of Atlantic cod (Gadus morhua) to a low dose 106 

chosen based on environmental levels (low) and a higher (20 x low) dose (high) of PAHs and PFASs 107 
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alone or in combination. In the North Atlantic, Atlantic cod is major fisheries species, and is important 108 

in costal as well as oceanic ecosystems. It has been used as an indicator as well as model organism in 109 

environmental monitoring and toxicological studies respectively.33-35 Therefore, cod is a valuable tool 110 

for ecotoxicological studies and risk assessment. 111 

 112 

2. Materials and methods 113 

2.1. Chemicals and reagents 114 

Direct-zolTM RNA isolation and MiniPrep kit from Zymo Research Corporation (Irvine, CA, USA), 115 

iTaq SYBR Green Supermix with ROX and iScript cDNA synthesis Kit from Bio-Rad Laboratories 116 

(Hercules, CA, USA). 17β-estradiol (E2) enzyme immunoassay (EIA) kits (Cat. No. 582251 and 117 

582701) purchased from Cayman chemical company (Ann Arbor, MI, USA).  118 

 119 

2.2. Animals 120 

Juvenile Atlantic cod (G. morhua), approximately 5 months old were obtained from 121 

Havbruksstasjonen in Tromsø AS (Tromsø, Norway) and reared at Industrilaboratoriet in Bergen 122 

(ILAB, Bergen, Norway) in 500 L tanks supplied with seawater at 8 to 10 °C, 34 ppt salinity. The 123 

cod were held at a 12:12 h light/dark cycle and fed with a commercial marine diet (Amber Neptune, 124 

Skretting, Stavanger, Norway). At the start of the exposure the cod were approximately 18 months 125 

with average bodyweight of 172 ± 34 g. The experimental setup was approved by the Norwegian 126 

Food Safety Authorities (FOTS # 11730/17/18948) and performed accordingly.  127 

   128 

2.3. Exposure and sampling 129 

Cod were exposed for two weeks and were injected intraperitoneally once per week (day 0 and day 130 

7) with two different doses: low (1x) and high (20x) dose of PAH and PFAS (Table 1), individually 131 

and in various combinations consisting of the following groups; vehicle control, low PAH, low PFAS, 132 

high PAH, high PFAS, low PAH/low PFAS, high PAH/low PFAS, low PAH/high PFAS and high 133 

PAH/high PFAS (Fig. 1). The stock solutions were prepared in a 1:1 (v/v) mixture of rapeseed oil 134 
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(Eldorado rapsolje) and PBS and injected at 1 mL/100 g fish. Control cod were injected with solvent 135 

vehicle (1:1 of oil and PBS). The PAH concentrations (1x) were chosen based on PAH levels detected 136 

in Atlantic cod from Tampen and Egersund in the monitoring report of the Institute of Marine 137 

Research (IMR) from 2012.36 The PFAS concentrations (1x) were chosen based on reported values 138 

in cod samples from the Nordic environment and northern Norwegian mainland.37, 38 Following two 139 

weeks of exposure, the cod were euthanized and tissue samples were collected and frozen in liquid 140 

nitrogen before being transferred to -80 °C for downstream analyses.      141 

 142 

2.4. Quantitative (real-time) PCR 143 

Total RNA was extracted from brain tissues using the Direct-zolTM RNA kit, following the 144 

manufacturer's protocol. Quality of RNA was confirmed by formaldehyde agarose gel electrophoresis 145 

and spectrophotometric analysis. cDNA was generated by following the instruction of the iScript 146 

cDNA synthesis kit (Bio-Rad) and transcripts were amplified using Mx3000P real-time PCR machine 147 

(Stratagene, La Jolla, CA), details are presented in section 1.1 of the supplementary information (SI). 148 

 149 

2.5. Steroid hormone analysis 150 

Enzyme immunoassay (EIA) was used to measure the concentration of 17β-estradiol (E2) in plasma 151 

using EIA kit (Cayman Chemical Company, Ann Arbor, MI, USA). Detailed description of hormone 152 

extraction and quantification are presented in section 1.2 of SI. 153 

 154 

2.6. Ultra-Performance Liquid chromatography-mass spectrometry (UPLC-MS/MS) 155 

To measure dopamine and its metabolites, samples were prepared and ran, following the protocol of  156 

Bertotto et al.39 Detailed procedure is presented in section 1.3 of SI.  157 

 158 

2.7. Statistics 159 

Statistical analysis was performed on RStudio (version 1.1.456), the statistical difference between 160 

control and exposure groups were determined through one-way ANOVA (and a post-hoc Dunnett’s 161 
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test). To investigate interaction of compounds (and corresponding to mixture exposure), a two-way 162 

analysis of variance (ANOVA), followed by Dunnett’s post-hoc test was performed on a linear model 163 

with the significance level set at p ≤ 0.05. Details of the performed calculations and statistical tests 164 

can be found in section 5 of SI. Relationship between biological parameters and their response to 165 

chemical exposures were visualized in a principle component analysis (PCA). The first two principle 166 

components and their factor scores were summarized in a biplot using XLSTAT. Data Analysis and 167 

Statistical Solution for Microsoft Excel. Addinsoft, Paris, France (2017).     168 

     169 

   3. Results 170 

3.1. Effects of PAH and PFAS on plasma E2 171 

The plasma concentrations of E2 showed apparent dose-specific effects for both PAH and PFAS 172 

exposure groups (Fig. 2). The low PAH dose, increased E2 levels, while no change was observed in 173 

high dose exposure group. For PFAS, a non-significant increase in E2 levels was observed in the high 174 

dose exposure group, but, a decrease was noted in the low dose treatment (Fig. 2). Combined exposure 175 

to low PAH/low PFAS, low PAH/high PFAS and high PAH/high PFAS showed an increasing trend, 176 

significantly so at the later value (Fig. 2).  177 

 178 

3.2. Effects of PAH and PFAS on brain dopamine pathways 179 

The concentrations of brain dopamine showed a decreasing trend except to high PAH/high PFAS 180 

exposure. Cod exposed to low PAH, high PFAS and low PAH/low PFAS showed a significant 181 

decrease in dopamine levels (Table 2). One of the major dopamine metabolite, DOPAC was 182 

significantly decreased in cod exposed to high PAH dose. A decreasing trend (non-significant) of 183 

DOPAC was observed in other exposure groups, except for cod exposed to low PAH/low PFAS, high 184 

PAH/low PFAS and high PAH/high PFAS, only the latter showed a significant increase (Table 2). 185 

The second most abundant dopamine metabolite (HVA) did not show any significant change after 186 

exposure to PAH and PFAS, singly, at different doses and their various combinations (Table 2). In 187 
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addition, a significant increase in DOPAC-dopamine and DOPAC+HVA-dopamine ratios were 188 

observed in cod exposed to low PAH/low PFAS and high PAH/low PFAS (Table 2).  189 

In this study, an interactive effect of PAH and PFAS was investigated on the level of dopamine 190 

and its metabolites as being represented in Fig. S5 and Table S3. PAH and PFAS at low dose produced 191 

a strong interactive effect on the levels of DOPAC. In single exposure, there is a mild decrease in 192 

levels of DOPAC, however in the mixture, the level was similar to the control group (Fig. S5D and 193 

Table S3). High PAH with low and high dose of PFAS in a mixture also produced an interactive 194 

effect on DOPAC levels (Fig. S5E and F and Table S3). For HVA, significant interaction was 195 

observed between high PAH and high PFAS in a mixture (Fig. S5C and Table S3). Exposure in the 196 

mixture of low PAH/high PFAS and high PAH/high PFAS showed strong interactive effects on the 197 

levels of dopamine. High PFAS and Low PAH single exposure significantly decreased dopamine 198 

level. However in the mixture, the level was similar to the control group (Fig. S5A and B and Table 199 

S3).  200 

 201 

3.3. Effects on brain dopaminergic and estrogenic signaling  202 

Significant changes were observed in the expression of dopaminergic (dat, dr1, and dr2a) and 203 

estrogenic (esr1, esrrb and cyp19a1b) signaling genes in cod brain following exposure to PAH and 204 

PFAS, given alone or in combination (Fig. S3 and S4). The high PAH dose decreased dr1 mRNA 205 

and increased of dr2a transcripts. On the other hand, high PFAS decreased both drs. Whereas, the 206 

combined exposure scenarios did not change the expression of dr2a mRNA. (Fig. S3C and D). 207 

Exposures in the mixture of low PAH/high PFAS and high PAH/high PFAS produced interactive 208 

effects on the expression of dr1. In an individual exposure, high PFAS significantly decreased the 209 

expression of dr1 than both doses of PAH. However, when they occurred in a mixture, the expression 210 

was similar to the control group (Fig. S6G and H and Table S4). In contrast, expression of dat was 211 

significantly increased after exposure to high PAH/high PFAS (Fig. 3B and D).  212 

The expression of esr1 was significantly decreased after exposure to high PAH and high PFAS 213 

doses, while combined exposures, including high PAH/low PFAS and low PAH/high PFAS, 214 
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significantly reduced esr1 expression (Fig. S4A). Both exposures, in the mixtures of low PAH/high 215 

PFAS and high PAH/high PFAS produced interactive effects, but the former showed a significant 216 

decrease compared to control (Fig. S6A and B and Table S4). Expression of esrrb mRNA was 217 

significantly decreased after low PAH, high PFAS and high PAH/low PFAS treatments (Fig. S4B). 218 

However, other combined exposures including low PAH/low PFAS, low PAH/high PFAS and high 219 

PAH/high PFAS showed significant interactive effect on esrrb expression (Fig. S6C, D and E and 220 

Table S4). Brain aromatase (cyp19a1b) gene expression was also significantly decreased in fish 221 

exposed to both low and high PAH dose and combined exposure of low PAH/high PFAS (Fig. S4C).  222 

 223 

3.4. Principle component analysis (PCA)  224 

The relationship between levels of all analysed observation and different exposure groups showed 225 

that the first two factor score (F1 and F2) could accounted 69.12 % of the total variance in the dataset 226 

(Fig. 3).  Respectively, F1 and F2 covered 50.5 % and 18.59 % of the total variability, showing that 227 

low PAH, high PFAS and combination exposure including, low PAH/low PFAS, high PAH/low 228 

PFAS and high PAH/high PFAS has a strong positive relationship with dopamine: metabolite ratios 229 

(Fig. 3 and Table S2). Despite of their strong positive association with dopamine: metabolite ratio, 230 

only high PAH/high PFAS exposure showed significant increase in E2 level. The expression levels 231 

of th, dr1, esr1, esrrb and cyp19a1b mRNA showing a negative relationship with all exposure groups 232 

and strong particularly to those that has highest dopamine: metabolite ratios. F1 and F2, showed 233 

strong negative relationship between th (-1.886, 0.022), dr1 (-1.703, 0.911), esrrb (-2.306, 0.139) 234 

mRNA expression and low PAH (0.955, 0.061), high PFAS (0.886, -0.408), low PAH/low PFAS 235 

(0.879, -0.342) and high PAH/low PFAS (0.788, -0.282) exposure groups. In general, th showed a 236 

decreasing trend and was negatively correlated to the expression of brain gnrh2 with F1 value of -237 

1.886 and 0.142 respectively (Pearson’s correlation coefficient, r = -0.54) (Fig. 3, Table S2 and S2.2). 238 

 239 

 240 

 241 
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4. Discussion 242 

Several in vivo and in vitro studies have shown that PFASs and PAHs are respective agonist and 243 

antagonists of ER and subsequently affect ER-mediated responses in vertebrate species.40,41 To better 244 

understand the underlying processes, alternative pathways by which PAH and PFAS may affect 245 

cellular E2 levels and E2-mediated downstream responses should be investigated. For example, PFOS 246 

and PFOA, despite their weak affinities to ER, have been shown to increase E2 production through 247 

modification of steroidogenic pathways.42,43 In addition, Cyp pathways contribute to estrogenic 248 

properties displayed by B[a]P, where hydroxylated metabolites such as 9-OH-B[a]P displayed 249 

estrogenic properties or may undergo subsequent metabolic steps to form more estrogenic species.44 250 

Nevertheless, there are few studies examining the effects of PAH and PFAS on E2 clearance, 251 

biosynthesis or physiological control mechanisms, including feedback processes. Consequently, 252 

additional biochemical processes that regulate neuronal and gonadal E2 homeostasis may be involved 253 

in previously reported estrogenic and anti-estrogenic responses of PAH and/or PFAS.  254 

Herein, the low PAH dose and high PFAS dose produced non-significant increases of plasma 255 

E2 levels. Previous studies have demonstrated an association between liver ER expression and plasma 256 

E2 concentrations, in contrast to brain ER expression patterns after exposure to a xenoestrogen 257 

(nonylphenol, NP), showing that er isotype expression in various tissues paralleled other 258 

xenoestrogen biomarkers (such as Vtg) in liver or plasma samples of Atlantic salmon (Salmo salar).45 259 

In addition, the authors reported differential expression pattern of er isotypes in liver and brain of 260 

NP-exposed fish.45 Regression analysis of brain and liver er-a and er-b transcripts and vtg expression 261 

levels showed a linear relationship between liver er-α and vtg mRNA, whereas brain er-b had limited 262 

linearity with liver vtg. Unlike liver er-α, both brain and liver er-β showed a non-linear relationship 263 

with cyp19 isotypes in the brain.45 Despite the high plasma E2 levels measured at low PAH dose, 264 

there was a decrease in the levels of both brain esr1 and esrrb mRNA. In addition, we observed that 265 

the high PFAS dose produced elevated plasma E2 concentrations, while the brain showed decreased 266 

levels of both esr1 and esrrb transcripts. The fact that brain ers have limited association with 267 

dopaminergic and estrogenic signaling, mixture exposure scenarios may help in understanding 268 
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interactions among chemicals. For example, single exposures of high PAH and PFAS significantly 269 

decreased the expression of esr1, compared to their mixture, suggesting antagonistic interactions 270 

among these chemicals at the tested doses. On the other hand, exposure to low PAH/high PFAS 271 

significantly reduced esr1 mRNA. Similar antagonistic and chemical masking effects were observed 272 

with esrrb by low PAH/low PFAS, low PAH/high PFAS and high PAH/high PFAS mixtures, 273 

suggesting a complex interaction mode by these chemicals. 274 

Inconsistency in relationship between brain ERs expression and plasma E2 levels may suggest 275 

that other cellular pathways play important roles in regulating GnRH2 release in the brain or that 276 

neuronal ER expression does not parallel cellular E2 function and regulation. This speculation is 277 

supported by our observation that changes in gnrh2 expression paralleled changes in plasma E2 278 

levels, with Pearson’s correlation coefficient between dopamine metabolite ratio and gnrh2 279 

expression showing an r = 0.86 and 0.81 (Section 2.2 SI). Modulation of dopamine and its metabolites 280 

after exposure to PAH and PFAS, singly or in combination, suggests a disruption in dopaminergic 281 

function, which may subsequently disrupt E2 synthesis and regulation through feedback 282 

mechanisms.23 The high PAH treatment decreased the expression of dr1 with a concomitant increase 283 

in dr2a. A decrease in gnrh2 mRNA was observed in the brain. In rainbow trout (O. mykiss), binding 284 

of dopamine to Dr2a inhibited the production of GnRH-stimulated gonadotropin release from the 285 

pituitary.46-50 Elsewhere in goldfish (Carassius auratus), the release of GnRH-activated LH was 286 

blocked through Dr2a activation.51 In contrast, dopaminergic signaling via Dr2a was reported in 287 

Tilapia zillii, where an increase of dr2a mRNA paralleled increase in plasma E2 levels47,48,52, 288 

suggesting the presence of ER responsive elements (ERE) in the promoter of dr2a.53 In the present 289 

study, we observed a decrease in dr2a mRNA with a corresponding increase in plasma E2 for high 290 

PFAS and low PAH/ low PFAS treatment. Other combined exposures (high PAH/low PFAS, low 291 

PAH/high PFAS, and high PAH/high PFAS) did not produce any change in the expression of brain 292 

dr2a transcripts. 293 

For dopaminergic signaling, we observed a reciprocal association between expression of dr1 294 

and dr2a in the high PAH exposure group. Combined exposure, especially high PAH/low PFAS also 295 
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decreased the expression of dr1. In previous studies using rat prefrontal cortex, reduced expression 296 

of Dr1 was observed which paralleled an increase in DR1 protein after exposure to PFOS.54 In 297 

contrast, Pereiro et al.55 reported a respective decrease and increase of Dr1 mRNA and protein 298 

expressions in rat hippocampus after exposure to PFOS. Potential inconsistencies in the expression 299 

of transcript and protein might be due to an inhibitory effect of microRNA (miR-142-3p) that post-300 

transcriptionally regulates Dr1.56 This assumption is supported by recent studies showing that other 301 

regulatory micro RNAs, such as miR-326 and miR-9, which also control DR expression, were 302 

inhibited after exposure to PFAS.57 A significant interaction among chemicals also affected the 303 

expression of dr1. High PFAS significantly decreased dr1 expression. However, combined with 304 

PAHs in the mixtures of low PAH/high PFAS and high PAH/high PFAS, PAHs masked the inhibitory 305 

effect of high PFAS, enhancing dr1 expression which was similar to control.     306 

Modulation of dr transcription may ultimately affect dopamine and its metabolites (HVA and 307 

DOPAC) in the brain. In humans, alteration of dopaminergic-signaling was assessed by measuring 308 

dopamine metabolites in plasma and urine.58 Thus, the ratio of DOPAC:dopamine, as well as 309 

DOPAC+HVA:dopamine was used in the present study, to estimate the release and turnover of 310 

dopamine. The low PAH/low PFAS exposure significantly increased these ratios and paralleled an 311 

increase in plasma E2. Except for high PAH/low PFAS and low PAH/high PFAS, all exposure groups 312 

produced similar, but non-significant patterns between E2 and dopamine metabolite ratios. Contrary 313 

to individual chemicals, mixture exposures might have interactive effects at specific concentrations 314 

that regulate dopamine metabolism differently, thus violating their association with dopamine 315 

turnover. Previously, Bertotto et al.39,59 used these ratios to determine dopamine turnover in zebrafish 316 

embryos and juveniles, showing that a low ratio of dopamine and its metabolites demonstrated a 317 

relationship with dopamine turnover.  318 

In the HPG axis, feedback mechanisms regulate the endocrine physiology of vertebrates, 319 

including teleosts. Exposure to low PAH and high PFAS and combined low PAH/low PFAS triggered 320 

a mild increase in plasma E2 levels and subsequently decreased brain dopamine concentrations. On 321 

the other hand, high PAH and low PFAS exposures did not produce significant changes that 322 
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corresponded with plasma E2 levels. It should be noted that tyrosine hydroxylase (Th) plays an 323 

important role as the rate-limiting enzyme in the production of dopamine.28 We observed a reciprocal 324 

association between dopamine metabolite ratios and th expression in fish exposed, either to a low and 325 

high PAH and PFAS singly or in their various combinations (Pearson’s correlation coefficient, r = -326 

0.652 and -0.701, section 2.2 SI). For example, combined high PAH/low PFAS produced a decrease 327 

of th mRNA with a concomitant increase of both DOPAC:dopamine and DOPAC+HVA:dopamine 328 

levels. In contrast, there is a direct relationship between the expression of th and dopamine 329 

concentration in the brain. Elsewhere, Kumer and Vrana60 reported that the expression of th is 330 

regulated through a negative feedback loop in dopaminergic signaling, where elevated concentrations 331 

of catecholamine down-regulated th mRNA expression, leading to a decrease in dopamine levels.  332 

Locally produced brain E2 through aromatase (Cyp19b) activity plays an important role in 333 

reproductive- and neuroendocrine functions, and socio-sexual behavior in fish.61, 62 The entire process 334 

involves multiple factors, including E2, dopamine and their receptors which regulate the expression 335 

of cyp19a1b.26 Exposure of radial glial cells (RGCs) to a Dr1 agonist upregulated cyp19a1b 336 

expression through the phosphorylation of cyclic AMP response element binding protein (Creb).63 337 

This effect was shown to be enhanced using low E2 (100 nM) concentrations.63 However, exposure 338 

to high E2 concentrations decreased cyp19a1b expression through a classical negative feedback 339 

mechanism.26 As discussed above, the observed differences between dopamine receptor transcript 340 

and protein expression data and patterns of Cyp19b regulation reported by Xing et al.63, did not 341 

parallel our findings. These differences might be attributed to the direct exposure to E2 that may have 342 

suppressed the physiological feedback loop and should be investigated in more detail.  343 

In conclusion, we have demonstrated that exposure to these compounds altered dopaminergic 344 

signaling, including the modulation of dopamine biosynthesis, catabolism and its receptor expression 345 

in the brain of juvenile female Atlantic cod. These changes may affect the HPG axis and apical 346 

endpoints such as reproduction or behavior. Overall, our findings contribute to the understanding of 347 

novel cellular pathways that control steroidogenesis after exposure to PAHs and PFASs, and in 348 

complex contaminant mixture scenarios.  349 
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Figure 1. Three-level design of the study with two factors, PAH and PFAS. Each digit represents the 564 

dose (0=absent, 1=low, and 2=high dose) and values inside circle indicate the contribution of both 565 

factors in one exposure group.  566 

 567 

Figure 2. Plasma concentration of 17β-estradiol (E2) in juvenile female Atlantic cod exposed to two 568 

different doses (low and high) of PAH and PFAS, given singly or in combinations (low PAH/low 569 

PFAS, high PAH/low PFAS, low PAH/high PFAS and high PAH/high PFAS). Data are presented as 570 

ng/mL of n=3-8 ± standard error of the mean (SEM). Groups marked with asterisks (*) are 571 

significantly different compared with control (p<0.05). 572 

 573 

Figure 3. Principle Component Analysis (PCA) of measured biological parameter, two-574 

dimensionally visualized on an x-y scatter plot, with a combined factorial score of 69.12%. The data 575 

included is plasma 17b-estradiol levels, brain dopamine metabolite ratios and expression of 576 

dopaminergic and estrogenic signalling gene in the brain of juvenile Atlantic cod following exposure 577 

to PAHs and PFASs at different doses and their various combinations.   578 

  579 

 580 
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 587 
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 589 

Table 1: Overview of exposure chemicals* and their concentrations for in vivo exposure.      590 

 
 
 

 
Compound 

 
CAS No. 

µg/kg  
% of total Low Dose 

(1x) 
High Dose 
(20x) 

 
 
 
PAH 

Naphthalene 50-32-8 12.64 252.8 31.6 

Phenanthrene 132-65-0 8.38 167.6 21.0 

Dibenzothiophene 86-73-7 0.58 11.6 1.4 

Pyrene 91-20-3 1.45 29.0 3.6 

BaP 85-01-8 1.93 38.5 4.8 

Fluorene 129-00-0 15.03 300.5 37.6 

Total dose  40 800 100 

 
 
PFAS 

PFOS 2795-39-3 25 500 48.3 

PFTrA 375-95-1 16.95 339 32.8 

PFNA 335-67-1 5.925 118.5 11.5 

PFOA 72629-94-8 3.825 76.5 7.4 

Total dose  51.7 1034 100 

* All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) 591 

 592 
 593 

 594 

 595 
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Table 2: Concentration of dopamine, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid 607 

(DOPAC) as well as dopamine metabolite ratio (DOPAC/Da and DOPAC+HVA/Da) in the brain of 608 

female juvenile Atlantic cod exposed to different doses of PAH and PFAS, singly or in combination, 609 

analysed by UPLC-MS/MS.  610 

 pg/mg  ng/mg Ratio 

Exposure group Dopamine HVA  DOPAC DOPAC/Da DOPAC+HVA/

Da 

Control 49.39 ± 4.39 182.53 ± 13.22  28.68 ± 1.56 0.615 ± 0.06 0.699 ± 0.08 

Low PAH 36.28 ± 1.46* 178.60 ± 11.90  23.55 ± 1.57 0.669 ± 0.126 0.809 ± 0.12 

High PAH 38.79 ± 3.24 198.61 ± 16.65  18.23 ± 1.34* 0.484 ± 0.06 0.638 ± 0.056 

Low PFAS 46.56 ± 2.32 184.33 ± 35.59  24.33 ± 1.81 0.539 ± 0.041 0.629 ± 0.051 

High PFAS 33.93 ± 1.13* 143.84 ± 5.65  28.79 ± 1.66 0.855 ± 0.06 0.991 ± 0.058 

Low PAH/Low PFAS 32.51 ± 3.59* 133.59 ± 7.13  30.77 ± 1.09 1.01 ± 0.106* 1.174 ± 0.139* 

High PAH/Low PFAS 38.80 ± 0.43 156.48 ± 13.29  36.80 ± 1.57 0.965 ± 0.09* 1.076 ± 0.10* 

Low PAH/High PFAS 44.41 ± 3.27 199.74 ± 8.91  21.60 ± 1.58 0.512 ± 0.054 0.625 ± 0.063 

High PAH/High PFAS 56.39 ± 3.43 258.15 ± 30.62  43.52 ± 1.56* 0.779 ± 0.065 0.868 ± 0.056 
 611 

Concentration of both dopamine and HVA are given in pg/mg, while DOPAC is given in ng/mg. Each 612 

value represents the mean (n = 6-9 ± standard error of the mean [SEM]). Ratio data are presented in 613 

decimal of thousandth digit. Asterisk represent significant difference between control and exposure 614 

groups at p≤0.05. 615 
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1. Methodology 29 

1.1. Biometric data 30 

 31 

Table S1. Biometric data of experimental fish used in the present study. Data are presented as 32 

mean (n = 6-9) ± standard error of the mean (SEM). 33 
  

Biometric data 
 
Exposure group 

 
Fish weight (g) 

 
Fish length (cm) 

 
k-factor 

 
Control  

 
177.54 ± 5.56 

 
26.84 ± 0.26 

 
0.91 ± 0.02 

 
Low PAH  

 
167.27 ± 4.94 

 
26.87 ± 0.21 

 
0.85 ± 0.01 

 
High PAH  

 
174.18 ± 7.79 

 
26.72 ± 0.36 

 
0.90 ± 0.01 

 
Low PFAS  

 
180.81 ± 8.72 

 
26.81 ± 0.32 

 
0.92 ± 0.02 

 
High PFAS  

 
154.68 ± 6.27 

 
25.93 ± 0.32 

 
0.88 ± 0.03 

 
Low PAH/Low PFAS  

 
175.14 ± 7.07 

 
26.81 ± 0.35 

 
0.90 ± 0.02 

 
High PAH/Low PFAS  

 
155.90 ± 7.41 

 
25.89 ± 0.35 

 
0.88 ± 0.01 

 
Low PAH/High PFAS  

 
172.33 ± 7.53 

 
26.59 ± 0.32 

 
0.90 ± 0.01 

 
High PAH/High PFAS  

 
182.75 ± 7.43 

 
27.13 ± 0.32 

 
0.90 ± 0.01 

 34 

 35 

1.2. Quantitative (real-time) PCR 36 

Specific primer pair sequences (Table S2) for th, dat, drd1, drd2a, er-α, esrrb, cyp19a1b and 37 

gnrh2 genes were amplified using the Mx3000P real-time PCR machine (Stratagene, La Jolla, 38 

CA). The primer pairs were tested by analyzing single amplified product of expected size for 39 

individual genes. A parallel control, lacking cDNA template was used to validate the specificity 40 

and target sequence amplification. PCR program includes an enzyme activation step at 95 °C 41 

(4 min) followed by 40 cycles of 95 °C (15 s), 60 °C (30 s) and 72 °C (15 s) and last step 42 

temperature profile include 95 °C (60 s), 65 °C (30 s) and 95 °C (30 s). Expression of each 43 

gene was determined by following the well-validated procedure of absolute quantification in 44 

our laboratory.1 A known amount of plasmid cloned with an amplicon of interest used to 45 



S3 
 

generate a standard curve. The pre-made standard plot of cycle threshold (Ct) versus log copy 46 

number were used to quantify the expression of the target gene in unknown samples. 47 

 48 
Table S2: Primer pair sequences with amplicon size and annealing temperature conditions for 49 
genes quantified with real-time PCR. 50 

Target 
gene 

Accession 
no. 

Primer sequence* Amplicon 
size (bp) 

Annealing 
temp. (°C) 

 Forward Reverse 

th ENSGMOG0
0000017881 

ACCAGTGGCTGGTT
TGTT 

GTGACCCAGAAGC
TCATGTAT 

142 62 

dat ENSGMOG0
0000006703 

CTCCAAGCTATGGT
TCGTACAC 

GCTATTCTATCGC
AGAACTTCCC 

142 62 

drd1 ENSGMOG0
0000007704 

CTTCATCCTCAACT
GCATGGT 

GCGTTGAAGGCGT
AGATGAT 

147 62 

drd2a ENSGMOG0
0000006531 

CCACCTCGCTGAAG
GATAAG 

CTCATCCAGTTCC
AGGTCTTC 

152 62 

er-α ENSGMOG0
0000014898 

ATCTTCGCACAAGA
CCTCATC 

CCTTGAGACAGAC
AAACTCCTC 

142 62 

esrrb ENSGMOG0
0000015180 

AAGCGGCAGGAGG
AGAG 

GGATGCTCCGCTT
GAAGAA 

146 62 

cyp19a1b ENSGMOG0
0000010165 

CTGGAAGAAAGTG
AGGGCATATTT 

CACAGATCCCCAC
GGTTCTC 

145 51 

gnrh2 ENSGMOG0
0000009002 

TACCCTGGAGGAA
AGAGAGAG 

TGGCCAGGACATC
CATAAAG 

145 62 

* Primer sequences in 5´to 3´ direction. 51 

 52 

1.3. Steroid hormone analysis    53 

Steroid hormones were extracted from plasma with organic solvent. Plasma sample (100 µL) 54 

was mixed thoroughly with diethyl ether (4:1 volume of plasma), and two phases were allowed 55 

to separate by vortexing. The organic phase containing steroid hormones was transferred into 56 

new glass tube whereas the frozen aqueous phase was extracted again. The combined extract 57 

was allowed to evaporate at 30 °C, and the dry extract was reconstituted in 100 µL EIA buffer 58 

by vortexing and stored at 80 °C until analysis. EIA for E2 was performed by following the 59 

manufacturer's guideline. The plate was read using a Bio-Tek Synergy HT microplate reader 60 

(Bio-Tek Instruments, Winooski, VT, USA) at 410 nm. A standard curve was made by a 4-61 

parameter logistic fit between log concentration and logit transformation of B/Bo (Bound 62 

sample/maximum bound) and expressed as ng/mL. 63 

 64 

1.4. Ultra-performance Liquid chromatography-mass spectrometry  65 

The brain was homogenized using 0.1 % ice-cold formic acid (LC-MS grade, Sigma-Aldrich) 66 

with 1 ng DA-d4 and 2 ng of HVA-d5 per mg tissue as an internal standard. Following 67 
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centrifugation, the supernatant was subjected to solid-phase extraction with Starta X polymeric 68 

reverse-phase cartridges (33 µm, 60 mg, 3 mL; Phenomenex) preconditioned with 0.1 % formic 69 

acid in different solvents. The order in which cartridge was conditioned includes 0.1 % formic 70 

acid in acetonitrile, followed by 0.1 % formic acid in methanol and 0.1 % formic acid in water. 71 

The analyte was eluted with 0.1 % formic acid in acetonitrile/methanol (1:1, v/v), evaporate 72 

the organic solvent with a stream of nitrogen gas and finally reconstituted in 0.1 % formic acid 73 

in water. The extract was ready for analysis through Waters ACQUITY ultra-performance 74 

liquid chromatography (UPLC) coupled with Micromass Triple Quadrupole mass spectrometer 75 

(qQq) equipped with an electrospray ionization (ESI) interface (Waters, Milford, MA). An 76 

injection volume of 5 µL was passed through ACQUITY UPLC HSS T3, 2.1 mm × 100 mm, 77 

1.7 µm column at the flow rate of 0.3 mL min1 with the gradient of two solvents; solvent A 78 

(0.1 % formic acid in DI water, 18Ω) and solvent B (0.1 % formic acid in an equal volume of 79 

acetonitrile/methanol). The gradient program starts from 95 % A and 5 % B for 1 min and 80 

ramped to 40 % A over the course of 1 min, it was further decreased to 10 % for 1.5 min then 81 

linearly decreased to 0 % for 0.5 min and finally ramped back to 95 % A involving intermediate 82 

step in which there is linearity increase to 10 % for 0.5 min and stayed at 95 % A, 0.5 min for 83 

equilibration. The specific instrument setting was as follows: source temperature 150°C, 84 

desolvation temperature 600 °C, capillary source voltage 3.00 kV, dwell time 0.028 s, cone gas 85 

150 L h-1 and desolvation gas 1200 L h-1, the collision gas was 99.9% pure argon. Cone and 86 

collision voltage of 50 V and 20 V respectively were generated using IntelliStart software 87 

(Waters). Individual compound peaks were detected and integrated using TargetLynx XS 88 

software.     89 

A linear calibration curve in a range of 0.2 - 5 ppb for dopamine, from 5 – 200 ppb for 90 

HVA and from 1 – 15 ppm for DOPAC (Sigma-Aldrich), purity >98 %) with r2 > 0.97 was 91 

used to quantify levels of these metabolites in the brain (Figure S1A, B and C). A deuterated 92 

derivative of dopamine-1,1,2,2-d4 (DA-d4) and 4-hydroxy-3methoxyphenyl-d3-acetic-d2 acid 93 

(HVA-d5) were purchased from Sigma-Aldrich and used as an internal standard for dopamine 94 

and HVA respectively (Figure S2A, B). The same HVA-d5 standard was used for DOPAC. 95 

Recoveries were determined by spiking internal standard at a concentration of 4ppm of DA-d5 96 

and 8 ppm of HVA-d4 per 100 mg of brain tissue.  97 
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 98 

Figure S1: Calibration curve of DA, HVA and DOPAC spiked at specific concentration range 99 
through UPLC-MS/MS with r2 > 0.97.  100 

 101 

 102 

Figure S2: Calibration curve of deuterated derivative, DA-d5 and HVA-d4 spiked at specific 103 
concentration range through UPLC-MS/MS with r2 > 0.97.   104 

 105 

 106 

 107 

 108 
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2. Statistical analysis 109 

To determine effect of both compounds, separately and their interactions (corresponding to the 110 

mixtures), three-level factorial design, statistically analysed using R-Studio (version 1.1.456). 111 

A one-way analysis of variance (ANOVA) followed by a Dunnett’s post-hoc test was 112 

performed to test effect of all treatment groups separately, comparison against a single control 113 

group (nine levels). A two-way analysis of variance (ANOVA) was performed on a linear 114 

model to test an interaction effect of compounds on parameter of interest. To normalize the 115 

residuals of model, data was transformed using natural logarithm and visually inspected using 116 

quantile-quantile and histogram plots, as well as Shapiro-Wilk test. Some of the groups belong 117 

to E2 and DOPAC data violated Shapiro-Wilk test, therefore applied Kolmogorov-Smirnov 118 

test was applied to check normality (Figure S3). Homogeneity of variance was determined by 119 

Levene’s test. The data belongs to E2, HVA and drd2a, violated Levene’s homogeneity test, 120 

therefore Brown-Forsythe and Welch’s heteroscedastic F-test was applied. Gene expression 121 

data of drd1, an outlier belonging to the Low PAH/Low PFAS treatment group was removed 122 

from dataset before logarithm transformation. The dopamine catabolites, DOPAC, gene 123 

expression data of drd1 and E2 data were logarithmically transformed before analysis. 124 

 125 

 126 

Shapiro-Wilk test:     p = 0.925                                     p = 0.115                                    p = 0.107
dat drd1 drd2a

(D)                                                 (E)                                                 (F)

es-! esrrb cyp19a1b
Shapiro-Wilk test:     p = 0.072                                      p = 0.498                                    p = 0.108

(A)                                                 (B)                                                 (C)
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 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

Figure S3: Normal distribution of gene expression (er-α, esrrb, cyp19a1b, dat, drd1and drd2a 149 
in A, B, C, D, E and F panels respectively), dopamine and its metabolite data (dopamine, HVA 150 
and DOPAC in G, H and I panels respectively) visually inspected using quantile-quantile plot 151 
along with Shapiro-Wilk test, p-value. 152 

  153 

(G)                                                 (H)                                                 (I)

Shapiro-Wilk test: p = 0.271                                       p = 0.338                                        p = 0.014
Dopamine HVA DOPAC
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3. Results 154 

3.1 Expression levels of genes measured in the present study. 155 

 156 

Figure S4: Transcriptional change of tyrosine hydroxylase 1 (th: A), dopamine active 157 
transporter (dat: B), dopamine receptor (drd1: C) and (drd2a: D) in the brain of juvenile female 158 
Atlantic cod exposed two different doses (low and high) of PAH and PFAS, given singly or in 159 
various combinations (low PAH/low PFAS, high PAH/low PFAS, low PAH/high PFAS and 160 
high PAH/high PFAS). Data are presented as mean (n = 6-9) ± standard error of the mean 161 
(SEM). Groups marked with asterisks (*) are significantly different, compared with control 162 
(p<0.05). 163 
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 165 

Figure S5: Transcriptional change of estrogen receptors (er-ɑ: A, esrrb: B), cyp19a1b (C) and 166 
gnrh2 (D) in the brain of juvenile female Atlantic cod exposed two different doses (low and 167 
high) of PAH and PFAS, given singly or in combinations (low PAH/low PFAS, high PAH/low 168 
PFAS, low PAH/high PFAS and high PAH/high PFAS). Data are presented as mean (n = 6-9) 169 
± standard error of the mean (SEM). Groups marked with asterisks (*) are significantly 170 
different, compared with control (p<0.05). 171 

 172 
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3.2 Significant interaction effects between variables investigated in the present study 186 

187 
Figure S6: PAH and PFAS interaction in mixture significantly affect levels of dopamine (p = 188 
0.001 and 8.3e-05; A and B), HVA (p = 0.046; C) and DOPAC (p = 0.005, 9.7e-06 and 4.2e-189 
05; D, E and F). Data are presented as mean of concentration (n = 6-9) and 95 % confidence 190 
interval. Group marked with asterisks (*) are significantly different, compared with control 191 
(p≤0.05). 192 
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 193 

Table S3: Significant interaction effect of PAH and PFAS on dopamine and its metabolite 194 
(DOPAC and HVA). All metabolic data are presented in concentrations, dopamine and HVA 195 
(pg/mg) and DOPAC (ng/mg) with 95% confidence interval (n = 6-9). 196 

 Conc.  Low 95% CI High 95% CI 

Dopamine Control 49.39 38.19 60.59 

(p = 0.001) Low PAH 36.28 31.52 41.05 

 High PFAS 33.93 27.7 40.16 

 Low PAH/ High PFAS 44.41 36.87 51.95 

(p = 8.3e-05) High PAH 38.79 28.46 49.12 

 High PFAS 33.93 27.7 40.16 

 High PAH/ High PFAS 56.39 46.84 65.94 

HVA Control 182.53 149.58 215.49 

(p = 0.046) High PAH 198.61 153.75 243.48 

 High PFAS 143.84 119.63 168.04 

 High PAH/ High PFAS 258.15 154.02 362.28 

DOPAC Control 28.68 24.72 32.65 

(p = 0.005) Low PAH 23.55 13.75 33.35 

 Low PFAS 24.33 19.60 29.05 

 Low PAH/ Low PFAS 30.77 24.20 37.34 

(p = 9.7e-06) High PAH 18.23 13.11 23.35 

 Low PFAS 24.33 19.60 29.05 

 High PAH/ Low PFAS 36.80 30.10 43.39 

(p = 4.2e-05) High PAH 18.23 13.11 23.35 

 High PFAS 28.79 22.48 35.10 

 High PAH/ High PFAS 43.52 33.43 53.61 
 197 

 198 

 199 

 200 
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 202 

Figure S7: PAH and PFAS interaction in mixture significantly affect levels of er-a (p = 0.004 203 
and 4.7e-05; A and B), esrrb (p = 0.015, 4.0e-04 and 6.0e-04; C, D and E), cyp19a1b (p = 204 
0.008; F), drd1 (p = 0.005 and 0.0001; G and H) and gnrh2 at High PAH/Low PFAS (p = 205 
0.031; not graphically presented). Data are presented as mean of fold change (n = 6-9) and 95% 206 
confidence interval. Group marked with asterisks (*) are significantly different, compared with 207 
control (p≤0.05). 208 

 209 

Table S4: Significant interaction effect of PAH and PFAS on gene expression of er-a, esrrb, 210 
cyp19a1b and drd1. All expressions are presented relative to the control (set at 1) with 95% 211 
confidence interval (n = 6-9). 212 

 Mean  Low 95 % CI High 95 % CI 

er-a Control 1 0.83 1.16 

(p = 0.0049) Low PAH 0.73 0.64 0.86 

 High PFAS 0.56 0.37 0.75 

 Low PAH/ High PFAS 0.74 0.61 0.85 

(p = 4.7e-05) High PAH 0.68 0.54 0.81 

 High PFAS 0.56 0.37 0.75 

 High PAH/ High PFAS 0.90 0.61 1.19 

esrrb Control 1 0.84 1.15 

(p = 0.015) Low PAH 0.57 0.49 0.65 

 Low PFAS 0.83 0.52 1.14 
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 Low PAH/ Low PFAS 0.84 0.68 0.94 

(p = 4.0e-4) Low PAH 0.57 0.49 0.65 

 High PFAS 0.56 0.32 0.80 

 Low PAH/ High PFAS 0.72 0.64 0.81 

(p = 6.0e-4) High PAH 0.86 0.63 1.09 

 High PFAS 0.56 0.32 0.80 

 High PAH/ High PFAS 1.01 0.77 1.25 

cyp19a1b Control 1 0.89 1.10 

(p = 0.008) Low PAH 0.61 0.44 0.88 

 Low PFAS 0.84 0.53 1.16 

 Low PAH/ Low PFAS 0.98 0.80 1.12 

drd1 Control 1 0.94 1.06 

(p = 0.005) Low PAH 0.90 0.57 1.26 

 High PFAS 0.61 0.44 0.79 

 Low PAH/ High PFAS 0.87 0.75 0.98 

(p = 0.0001) High PAH 0.76 0.56 0.96 

 High PFAS 0.61 0.44 0.79 

 High PAH/ High PFAS 1.02 0.65 1.38 
 213 

 214 

4. Principal component analysis 215 

4.1 Correlation matrix (Pearson) 216 

Table S5: Correlatonal matrix (Pearson) showing statistical interactions between studied 217 
variable. Values in bold fonts are significantly different, compared with control at α≤0.05. 218 

Observations 
DOPAC/ 

Da DOPAC+HVA/Da th drd1 drd2a er-a esrrb gnrh2 
DOPAC/ Da 1 0.978 -0.652 -0.620 -0.555 -0.150 -0.227 0.856 
DOPAC+HVA/Da 0.978 1 -0.701 -0.703 -0.508 -0.277 -0.328 0.811 
th -0.652 -0.701 1 0.798 0.414 0.706 0.802 -0.543 
drd1 -0.620 -0.703 0.798 1 0.127 0.650 0.509 -0.485 
drd2a -0.555 -0.508 0.414 0.127 1 -0.009 0.396 -0.367 
er-a -0.150 -0.277 0.706 0.650 -0.009 1 0.827 -0.205 
esrrb -0.227 -0.328 0.802 0.509 0.396 0.827 1 -0.159 
gnrh2 0.856 0.811 -0.543 -0.485 -0.367 -0.205 -0.159 1 

 219 

 220 
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Table S6: Factor score of the variable and observation on the two factorial axes. 221 

  Axes 

 Descriptors F1 F2 

Variable Control -0.256 -0.540 

Low PAH 0.955 0.061 

High PAH 0.479 0.521 

Low PFAS 0.153 0.809 

High PFAS 0.886 -0.408 

Low PAH/ Low PFAS 0.879 -0.342 

High PAH/ Low PFAS 0.788 -0.282 

Low PAH/ High PFAS 0.737 0.229 

High PAH/ High PFAS 0.771 0.189 

Observation DOPAC/Da 1.488 -1.541 

DOPAC + HVA/Da 2.835 -1.075 

17b-estradiol 4.136 0.231 

th -1.886 0.022 

drd1 -1.703 0.911 

drd2a 0.162 1.159 

dat 1.352 2.990 

er-a -2.341 -0.609 

esrrb -2.306 0.139 

cyp19a1b -1.879 -0.476 

gnrh2 0.142 -1.753 
 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 
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