
1

Incorporating software failure in risk analysis –– Part 2:
Risk modeling process and case study
Christoph A. Thieme1,2*, Ali Mosleh3,2, Ingrid B. Utne1,2, and
Jeevith Hegde1

1Norwegian University of Science and Technology (NTNU) Centre for Autonomous Marine Operations
and Systems (AMOS), NTNU, Otto Nielsens Veg 10, 7491 Trondheim, Norway; 2 Department of Marine
Technology, NTNU, Otto Nielsens Veg 10, 7491 Trondheim, Norway; 3 B. John Garrick Institute for the
Risk Sciences, University of California, Los Angeles, 404 Westwood Plaza, Los Angeles CA90095, USA
*Corresponding author E-mail: Christoph.Thieme@ntnu.no

Abstract

The advent of autonomous cars, drones, and ships, the complexity of these systems is

increasing, challenging risk analysis and risk mitigation, since the incorporation of software

failures intro traditional risk analysis currently is difficult. Current methods that attempt software

risk analysis, consider the interaction with hardware and software only superficially. These

methods are often inconsistent regarding the level of analysis and cover often only selected

software failures.

This paper is a follow-up article of Thieme et al. [1] and presents a process for the analysis of

functional software failures, their propagation, and incorporation of the results in traditional risk

analysis methods, such as fault trees, and event trees. A functional view on software is taken,

that allows for integration of software failure modes into risk analysis of the events and effects,

and a common foundation for communication between risk analysts and domain experts. The

proposed process can be applied during system development and operation in order to

analyses the risk level and identify measures for system improvement. A case study focusing

on a decision support system for an autonomous remotely operated vehicle working on a

subsea oil and gas production system demonstrates the applicability of the proposed process.

Keywords: Software failure; risk analysis; propagating effects; autonomy

Acronyms

3D Three Dimensional FTA Fault Tree Analysis

AM Active mode MOOS Mission Oriented Operating Suite

AROV Autonomous Remotely Operated Vehicle MDb Mission Oriented Operating Suite
Database

DFM Dynamic Flowgraph Methodology OEV Operational Envelope Visualizer

ET Event Tree PM Passive Mode

F Function (in the case study) SM Sporadic mode

FFIP Functional failure identification and
propagation methods

 SRS Software Requirements
Specification

FM Failure Mode (in the case study) STPA System-Theoretic Process
Analysis

2

FMEA Failure Mode and Effects Analysis UI User Input

FSPA Failure propagation and simulation
approach

 US User Screen

FT Fault Tree XT Christmas Tree

1 Introduction

Software is part of advanced technological systems. In the future, autonomous vehicles and

vessels may be an essential part of the transportation system [2]. Such systems will not be

accepted by the public or approved by the authorities, if they are not safe. This means that risk

analysis focusing on hardware, software, human and organizational factors, is necessary.

Several challenges arise when attempting to analyze the risk contribution from software and

interactions with hardware and humans. These need to be considered to cover the whole

spectrum of possible failures [3, 4]. Current methods applied in risk analysis, such as fault

trees (FT) and event trees (ET), cannot reflect the interaction of complex software intensive

systems sufficiently [5].Software might be reliable in the sense that it is executing the

programmed actions correctly. Software behaves deterministically (i.e., software failures will

always manifest under the same circumstances). However, the software might act reliably in a

situation where the action might be considered unsafe [6].The objective of this article and the

accompanying article [1] is to propose a process that may be used to identify hazardous events

from software and analyze potential propagating effects on the overall system, including the

hardware. The results from the proposed process in this article may be incorporated into a

holistic risk analysis during and design and system operation.

Based on the analysis’ findings necessary modifications and requirements for the software

system can be identified, during the design, development, use, and modification phases in the

software life cycle. In addition, it is possible to analyze how the software handles propagating

failures caused by other components of the system, such as sensors and human operators.

The case study in this article demonstrates the usability of the process. The case study is an

example of a software developed through rapid prototyping, to achieve a working solution for

demonstration purposes.

This process may be used to support the analysis efforts prescribed in IEC 61508 [7], or the

industry specific system safety related standards. Specific parts in some international

standards address software development requirements, for example, IEC 61508 [7] in part 3

[8], ISO 26262-6, [9], EN 61511-1, [10], and EN 50128, [11]. These standards highlight the

importance of software failure assessment, for the identification of software safety

requirements and the software development process. The suggested process can be used to

analyze the risk and identify potential software and system improvements during the

3

development. Similarly, for the development of systems that contain software that is not

considered safety related or that are developed to achieve a working solution, the assurance

processes in [7, 11, 12] may be too time consuming and resource intensive.

This article builds on the background and results from the accompanying article [1], which

provides a taxonomy for functional failure modes of software and the necessary foundations

for the process proposed in this article. The process described in this article is qualitative; a

quantification of risk is not attempted, this is subject to further work.

A review of the relevant literature for software risk analysis and modeling approaches is

presented in Section 2. This is followed by the developed and adapted process in Section 3.

Section 4 exemplifies each step of the process. Sections 5 concludes this article.

2 Requirements to a Process Incorporating Software in Risk

Analysis

A brief overview of current state-of-the-art methods to incorporate software systems into risk

analysis is given in the accompanying article [1]. The review outlines weaknesses in the current

methods. The current methods focus either on only specific software failures, e.g., through

injection in simulations, or they do consider software only superficially, i.e., not consider

software failure mechanisms in detail, or analyze the effect of a software failure on hardware

or software.

The term “software system” is used to describe the whole software program with its algorithms

and implementation in the hardware. This section presents a proposed set of requirements

that were used as a guideline for developing the process presented in this article.

Garrett and Apostolakis [6] identified error forcing contexts, which will lead to software failure.

They defined three abilities that risk assessment should have: (i) represent all those states of

the system that are deemed to be hazardous, (ii) model the functional and dynamic behavior

of the software in terms of transitions between states of the system, and (iii) given a system

failure event, identify the system states that preceded it.

Hewett and Seker [13] identified four properties of a risk analysis including software:

1. Represent structures and (temporal) behaviors of the whole system (together with its

interactions with external environments);

2. Support the evolution of software;

3. Provide modularity and building-block capabilities to cope with scalability issues;

4. Offer systematic mechanisms to facilitate automated deduction and inference

reasoning for risk analysis.

4

Chu et al. [14] collected information from an expert panel on risk analysis of software systems.

They agreed that a method incorporating software risk should account for different types of

bugs and consider fault tolerant mechanisms and all available information on the software.

Dependencies between hardware and software need to be included in the analysis.

In general, risk analysis shall answer three questions: (i) What can go wrong? (ii) How likely is

it that this will happen? (iii) If it does happen, what are the consequences? [15]. Risk analysis

is the process to comprehend the nature of risk and to determine the level of risk. These

definitions and the considerations above give input to the requirements for the process

incorporating software in risk analyses in Table 1.

Table 1 Requirements for a process incorporating software in risk analysis, based on input from [6, 13, 14].

Requirement Description

R1 Identify failure modes The process shall enable the analyst to identify failure modes that
might lead to unwanted consequences in the context.

R2 Identify possible failure
causes

The risk model developed in the process shall assist in the
identification of possible failure causes and sources in case of a
failure.

R3 Identify consequences
of failure modes

The process shall enable the analyst to trace software failure modes
through risk scenarios leading to adverse consequences.

R4 Represent functional
behavior

The risk model developed in the process shall reflect the functional
behavior and constraints of the software including different states
and transition between the states.

R5 Represent temporal
behavior

The risk model developed in the process shall reflect time-related
behavior, requirements, limitations, and states.

R6 Represent context of
use

The risk model developed in the process shall include required
contextual and overall constraints, hardware, software, and human
interactions.

R7 Be modular The model developed in the process as well as the process shall be
modular, such that changes in software modules can be reflected.

R8 Be scalable The risk model developed in the process shall be scalable, such that
different levels of detail can be addressed and that software
systems of different sizes can be analyzed.

R9 Make use of all
available information

The process shall use all available information to build and analyze
the risk model developed in the process.

R10 Be applicable
throughout the software
life cycle

The process shall be appropriate throughout the lifecycle of the
software and aide in decision making.

Requirements R6, R7, and R8 address features that a risk analysis process incorporating

softwareincorporating software should exhibit. Requirement R9 refers to the use of information

for the process, while R10 shall assure that the process is applicable during the life of the

software.

The requirements may be addressed using a functional perspective on the software, which

makes it scalable and suitable for failure mode analysis [14, 16]. The discussion, Section 5,

uses these requirements to highlight the features of the proposed process in comparison to

existing methods and processes.

5

3 Process for Incorporating Software in Risk Analysis

Figure 1 summarizes the steps in the proposed process in this article and sets it in the context

of the generic risk management framework presented by ISO 31000. Steps 2 to 4 are the main

novel contributions from this article and the accompanying article [1]. The sections detail each

of the steps, as indicated in the figure. Communication between different stakeholders,

especially between software engineers and risk analysts, is of utmost importance to apply the

proposed process successfully.

Figure 1 Steps in the proposed process to incorporate software failure in risk analysis and the corresponding
steps in the ISO 31000 risk management framework. Abbreviation: Sec. – Section.

Figure 2 shows the proposed process in relation to a generic system life cycle. The outcome

of the process is updated and refined through the life cycle phases. The lifecycle is not specific

for software or software development, since the process is applicable through the lifetime of

the system and useable during the operational phase of the system. Analysis results are fed

back in the life cycle phase activities, providing input to the software and system development

process. This input may then be used to support the activities outlined in IEC 61508 [7] or the

industry specific standards. The analysis is then updated with new information from the

engineering process through Step 7. The software development activities in the lifecycle

6

phases may be following the waterfall model, an agile development, or any other structured

development process.

Figure 2 The steps in the proposed process to incorporate software failure in risk analysis in a systems lifecycle.
The system life cycle was adapted from [17]. Broken lines with arrows indicate transfer of input.

3.1 Step 1: Define the Scope of the Analysis

The definition of the scope includes an overall description of the software, its purpose,

application area, and operational context. Risk analysis is system and context specific, and the

analysis should reflect this. The operational context describes which interactions the program

has with its environment, such as other software programs, servers, humans, or sensors. Every

interaction or output that is different from the expected interaction or output is a failure of the

software. Only with the context, it is possible to analyze which failures will cause negative

consequences.

The phase of the software in its life cycle determines the level of detail of the risk analysis. The

level of detail of the risk analysis needs to be defined. Available documentation for the

software, such as the software requirements specification (SRS) (according to IEEE 830 [18]),

the system requirements specification, the software development documentation, or the

verification and validation documentation, needs to be identified and used in the analysis

process. Software engineers should be involved in the process and development of the

functional software model to avoid ambiguity and increase understanding of the software

system.

7

3.2 Step 2: Decompose Software and Build Functional Software Model

A functional decomposition of the software system is the first step towards building the

functional software model. The functional decomposition and the description of functions is

necessary in order to collect and arrange the necessary information for the next steps. The

functional analysis standard EN14514 [16] may assist in the decomposition. The

accompanying article (Thieme et al. [1]) provides more information on functional

decomposition and the description of the functions.

The functional decomposition is used to build the functional software model, which graphically

represents the collected information. The functional software model visualizes the interactions

between the functions and assists the analysts in maintaining an overview of the functions and

their relationships. The connections between the functional elements are constructed

according to the information on inputs, outputs, and associated conditions.

Figure 3 summarizes the symbols used for building the model. Two types of connectors are

used in the functional software model. Transfer of information refers to the connection of

functions through common data (i.e., the input and output). The second type, functional

dependency, describes the influence of functions on other functions that are not related

through the exchange of data. This could be functional calls or prerequisite functions. The

software boundary is used as a visual cue to differentiate the external interfaces from the

software functions.

Figure 3 Modeling elements to represent the software functionality.

The information collected in the functional software model and the associated information on

the functions assist in the analysis of the interaction failure modes (Step 3) and the analysis of

the propagation behavior (Step 4). The description within the blocks needs to be coherent

throughout the model to facilitate these steps. An example of a model is shown in the case

study in Section 4.

8

3.3 Step 3: Identify and Assess Failure Modes for the Functions

This step is central to the proposed process since potential failure modes are identified for

each function. These function-specific failure modes are propagated in the next step to analyze

the effect of each individual failure mode.

The accompanying article [1] presents the failure mode taxonomy used in this present article.

In general, a failure mode is the manner in which an item fails [19], and they are context specific

[20]. There are four categories in the taxonomy: functional, interaction, timing-related, and

value-related failure modes. The failure mode taxonomy in [1] [1] suits the functional view of

software adopted in this article.

Functional failure modes are the failure modes that relate to a failure of functionality, e.g.,

operations are not executed, or extra, unintended functionalities are executed. Interaction

failure modes between software functions reflect a failure of transition between software

functions, for example, a faulty order of function executions. Timing related failure modes

describe the execution of a function at the wrong point of time, with respect to the requirements.

The value related failure modes similarly refer to the failure of an output value. Value here may

be a numerical value, a character or a symbol.

The analysts need to assess which failure modes are applicable to the software functions.

Each identified failure mode needs to have a unique identifier to make it traceable in further

analysis. Each failure mode should be described according to the chosen level of analysis.

The analysis should consider the complete information to give meaning to the failure modes.

Especially functional and non-functional requirements and constraints need to be included in

these considerations.

3.4 Step 4: Propagate Functional Failure Modes through the Software

System

The output and hence the effect of each failure mode on the external interfaces needs to be

analyzed with respect to the overall system functionality and the context. The critical aspect in

this step is how the failure modes interact with the external interface through the propagation

behavior. The analyst needs to assign an effect in a meaningful manner to the propagated

failures. The failure modes are propagated until all reachable interfaces are affected. The

importance of considering failure propagation is explained in the accompanying article [1].

Generally, the propagation of the effects resulting from the failure modes highly depends on

the software functions and its overall function. The effect of control loops and reiterations within

the software should be considered. The propagation should be reiterated at least once for

feedback loops, such that the effect of these becomes visible. Faults in the feedback may not

be apparent upon their occurrence, since the failure may occur after the feedback is used.

9

Hence, the influence on the software functions that use the feedback, needs to be assessed.

Additional iterations may be necessary. Fault detection and correction mechanisms need to

be considered while analyzing the failure propagation behavior.

Table 2 summarizes the propagation behaviors of the failure modes through a software

system. The first column summarizes the failure modes. The second column is labeled refined

failure mode. Refined failure modes describe the failure mode in more detail and reflect a

higher level of detail of the analysis. The third column describes the propagation behavior of

the failure mode. The column Ref. describes the source from which the propagation behavior

was derived. In this case, 1 refers to Wei [21] and 2 refers to the authors’ identified propagation

behavior.

Value-related failures affect subsequent functions by providing an incorrect value. The effect

depends on the functionality and the process in the subsequent functions. In most cases, the

value failure will lead to an incorrect value failure. Effectively, decisions and output to the

external interfaces will be affected by these incorrect values and/or dependent function calls.

The propagation and hence the overall effect on the external interfaces isare highly dependent

on the software purpose.

Functional failure modes mainly propagate similarly to value-related failure modes.

Propagation of interaction failure modes depends on the function process and interactions. Not

calling or skipping functions will mostly propagate as the failure modes no value or output

provided too late. In most cases, the failure modes related to external files will propagate as

the no value failure mode.

For timing-related failures modes, three cases are differentiated [21]: no fault tolerance

mechanisms with respect to timing (T1), watchdog timers or similar (T2), and failure recovery

mechanisms with respect to timing (T3). In the case of T1, these failures will propagate directly

through the software functions. In the case of T2, the software will either abort or exhibit a safe

behavior. Safe behavior refers to a standard functional call or usage of a safe standard value.

Moreover, in the case of a detected failure, T3 refers to software that will execute actions that

will reduce the negative effects of the failure mode [21].

If data-rate failures are considered, then the design of the data transfer system becomes

relevant [21]. In the sporadic mode (SM), the data receiving function is activated by the

available data. Data can be transferred in a passive mode (PM), and the data receiving

software functions check all events and data available in the associated buffer. In active mode

(AM), the buffer pushes out old data when it is full, and the software function has yet not

handled the data. A polling system specifically requests data as soon as the software function

requires input [21].

10

Table 2 Propagation behaviors for each failure mode. Propagation behaviors for timing and value-related failure modes were adapted from Wei [21] (marked with 1 in the Ref.
column). Other failure mode propagation mechanisms are based on the authors’ assessment (marked with 2). Refined failure modes refer to special cases of failure modes.

Reference 3 refers to Wei et al. [22] who in particular analyzed the propagation behavior of timing related failure modes.

Failure mode Refined failure mode Propagation behavior Ref.

Function failure modes

Omission of a function/missing operation Propagates as incorrect value failure mode or no value failure mode. 2

Incorrect functionality Propagates as incorrect value failure mode. 2

Additional functionality
Propagates as incorrect value failure mode (e.g., for outputs that shall not be manipulated).
Can also propagate as output provided spuriously failure mode.

2

No voting Propagates as no value failure mode. 2

Incorrect voting Propagates as incorrect value failure mode (for the voting result). 2

Failure in failure handling Detected failure are not handled, and the failure propagates as no value failure mode. 2

Interaction failure modes

Diverted/incorrect functional call Failure mode propagates in different ways, depending on the function (i.e., no value,
incorrect value, or output provided spuriously).

2

No call of next function The program stalls, it propagates as failure modes: no value, or output not provided in time. 2

No priority for concurrent functions Output is propagated with output provided too late failure mode. 2

Incorrect priority for concurrent functions Output is propagated with output provided too late failure mode. 2

Communication protocol dependent
failure modes

 These failure modes include the generic failure modes and propagate accordingly. 2

Unexpected interaction with input-output
boards

 Propagates as output provided spuriously. 2

Failure of interaction with external files or
databases

Wrong name Propagates as no value failure mode. 2

 Invalid name/extension Propagates as no value failure mode. 2

 File/ database does not
exist

Propagates as no value failure mode. 2

 File/ database is open
Writing: propagates as no value failure mode
Reading: might not propagate or propagates as no value failure mode.

2

 Wrong/invalid file format Propagates as no value failure mode. 2
 File head contains error Propagates as no value failure mode. 2
 File ending contains error Propagates as no value failure mode. 2
 Wrong file length Propagates as no value failure mode. 2
 File/database is empty Propagates like too many elements in data array/structure. 2

 Wrong file/database
contents

Propagates as no value failure mode. 2

Timing-related failure modes

11

Failure mode Refined failure mode Propagation behavior Ref.

Output provided Too early T11: No output is registered, propagates as no value failure mode. 1, 3

 T22: Failure is detected, and the software aborts the operation. 1, 3

T33: Failure is masked; the premature value is stored in a buffer and available for further
operation.

1, 3

 Too late T1: Fault propagates as delayed output by the same time as the initial delay. 1, 3

 T2: Delay is detected if it is longer than the programmed interval, software aborts operation. 1, 3

T3: If the delay is longer than the specified interval a standard value/behavior is used that is
propagated as incorrect value failure mode.

1, 3

 Spuriously
No output is registered, propagates as no value failure mode. Alternatively, a spurious action
is triggered that will propagate as too early failure mode.

2

 Out of sequence No output is registered, propagates as no value failure mode. 2

 Not in time See output provided too late, where, for T1, the output is not provided in time. 2

Output rate failure Too fast SM4: Propagates as too early failure mode. 1

 AM5 (drop new data) or PM6, within affordable rate: Propagates as too early failure mode. 1

AM (drop new data) or PM, faster than affordable rate: Buffer fills too fast, loss of data
propagates as incorrect value failure mode. If buffer handles events, these events are lost,
and the system does not react accordingly.

1

AM: push out old data: The output propagates as incorrect value failure mode, since the
value that is assumed to be read is different from the assumed value.

1

 Too slow PM: Output rate is the input rate. The too slow failure is propagated. 1

 AM: Old values stored in the buffer are used, propagates as incorrect value failure mode. 1

 PS: Output rate is the input rate. Too slow failure mode is propagated. 1

 Inconsistent Propagates as incorrect value failure mode, pairing values from different times. 2

 Desynchronized Propagates as incorrect value failure mode, taking the value from the synchronization delay. 1

Duration Too long Duration of a measurement: Output is propagated as too high value failure mode. 1, 3

Duration of detecting a presence: Signal is recognized multiple times, propagates as too high
failure.

1, 3

 Too short Duration of a measurement: Output is propagated as too low value failure mode. 1, 3

Duration of detecting a presence: Signal is not recognized, program does not execute the
command, propagates as output not provided in time failure mode.

1,3

1No failure detection mechanism with respect to timing
2Failure detection mechanism,
3Failure detection and recovery mechanisms,
4Sporadic mode.
5Active mode, PM – passive mode
6Passive mode

12

Failure mode Refined failure mode Propagation behavior Ref.

Recurrent functions scheduled
incorrectly

 Propagates as output provided spuriously or output not provided in time failure modes. 2

Value-related failure modes

No value
Either the next function waits for the value, propagating as too late failure mode, or a
predefined value is used, propagating as incorrect value.

2

Incorrect value Too high
The value failure propagates through the software, assuming that the value is correct. The
value will lead to wrong computational results and this wrong information will be used during
further evaluation. If the computed result falls out of the expected or allowable range, the
value will propagate as out of range failure mode.

1, 2
 Too low

 Opposite/inverse value

 Value is 0 (zero)

Value out of range Datatype allowable range Value is adjusted to fit in the range and will propagate as incorrect value failure mode. 1

 Application allowable range Value is adjusted to the closest allowable value of the range and propagates as incorrect
value failure mode with this value.

1

Redundant/frozen value Value propagates with the value as incorrect value. 2

Noisy value/precision error Depending on magnitude, will lead to an incorrect value failure mode and propagate as such. 2

Value with wrong datatype Depending on the type of the conversion, different propagation mechanisms were identified.
The failure mode might not influence the value and be masked, leading to a loss of precision
or incorrect value failure modes. If failure detection mechanisms can detect the failure, the
operation will be aborted, and the software will continue as specified. For a detailed list of
datatype errors, see Wei [21].

1

Non-numerical value Not a number (NaN) Corresponds to an undefined value conversion; hence, it will propagate according to the
propagation mechanisms for value with wrong datatype.

2

 Infinite Will propagate as incorrect value out of range failure mode.
2

 Negative infinite

Elements in a data array/structure Too many Elements come from different components. Error not propagated, additional input neglected. 1

 Elements come from one component, are read in fixed format, and are added to the end.
Error not propagated, additional input neglected.

1

 Elements come from one component, are read in fixed format, and are inserted in the data
array/structure. Incorrect value failure mode propagation from the element of insertion.

1

 Elements come from one component, are read in unfixed format, and are added at the end
of the data array/structure. Incorrect value failure mode propagation of the last element.

1

 Too few Elements come from one component, are read in unfixed format, and are inserted the data
array/structure. Incorrect value failure mode propagation of the remaining elements.

1

 Elements come from different components. Propagates as too late failure mode. 1

 Elements come from one component. Propagation as no value failure mode. 1

 Data in wrong order For the elements that are wrongly ordered the failure mode will propagate as incorrect value
failure mode. Value with wrong datatype failure modes might also be relevant.

2

 Data in reversed order The failure mode will propagate as incorrect value failure mode, with the correct reversed
values. Value with wrong datatype failure modes might also be relevant.

2

13

Failure mode Refined failure mode Propagation behavior Ref.

 Enumerated value incorrect If the value lies within the range of the array/structure, it will be propagated as incorrect value
failure mode. If falls out of the range it will lead to a program crash or will be handled by the
failure detection mechanism.

2

Correct value is validated as incorrect Correct values are rejected. Propagated as too late, or output not provided in time (c.f. timing
failure modes).

2

Incorrect value is validated as correct Incorrect value is propagated as incorrect value failure mode. 2

Data is not validated Propagated as too late, or output not provided in time (c.f. timing failure modes or software
aborts).

2

14

3.5 Step 5: Incorporate Failures and Propagated Effects in Risk Analysis

This step incorporates the propagating effects that were identified in Step 4. These effects may

be implemented, for example in FTs, or ETs.

Steps 4 and 5 are closely connected. Some iterations may be necessary to identify the relevant

effects on the external interfaces that need to be incorporated in the risk analysis.

The software failure mode effect on the external interfaces needs to be viewed in the context

of use with other technical sub-systems and/or operator actions [23, 24]. Human operator

actions may lead to software failures, but they may also recover the system from software

failure.

In addition to failures in the software, failures might arise in the interfaces of the software [3].

This might be faulty measurements from sensors, incorrectly entered data from human

operators, or incorrectly implemented database queries. Applying the failure mode propagation

behavior may be used to analyze the effect of an interface failure on the software system and

consequently on the other external interfaces. This is not discussed further here and is subject

to further work.

Quantification could be derived through expert judgment or software reliability models.

However, the quantification of the identified failure modes and the propagated failure effects

on the external interfaces is out of scope of this article and will not be discussed further.

3.6 Step 6: Suggest Improvement Measures

Risk analysis is used to determine the risk level of an activity and propose mitigating measures

in case of high levels of risk. Measures to improve the software system are (among others) to

specify additional software functionality, redesign the software system, or specify additional

safety and functional requirements for the software system. Risk analysis may also reveal the

need for changes to hardware and to external interfaces with the human operator (supervisor).

In general, in risk analysis should be used in the design phase of systems, so that necessary

changes can be specified and implemented in an early phase of development. The same

applies to the process proposed in this article; software failures need to be included along with

hardware failures and human error as early as possible in the system development phase.

The process may be applied to existing technological systems to estimate and include the risk

contribution from the software system to the overall risk level. In contrast to hardware systems,

software failure modes that are successfully removed from the software system will not reoccur

under the same circumstances. Software updates that address identified failure modes and

effects on the external interfaces need to be tested and verified.

15

The software system should be tested, validated, and verified before it is used in operation to

demonstrate compliance with the requirements. The results from the presented process to

incorporate software in risk analysis could be used to generate test cases to ensure that critical

failure modes will not occur. A formal software development process as laid out in

ISO/IEC/IEEE 12207:2008 [25] and ISO/IEC/IEEE 15288:2015 [26] may assist in improving

the software.

3.7 Step 7: Update the Analysis

In accordance with the risk management standard ISO31000 [27], risk analyses need to be

updated regularly. The identification of failure modes and the associated risk analysis might

make it necessary to update the functional software model. There might be changes in the

context of use, change of interfaces, implementation of new functions, or implementation of

failure identification and correction mechanisms.

3.8 Discussion

One important aspect for incorporating software in risk analysis of the proposed process is the

propagation of identified functional software failure modes to identify their effects on external

interfaces. The propagation behavior was partly adopted from the literature [21] and extended.

Wei [21] defined propagation behavior for less failure modes than the accompanying article [1]

covers. Therefore, this present article defines the propagation behavior for the failure modes

from [1] that have not been covered previously.

The propagation behavior allows for a consistent analysis of the software behavior if a

functional software failure mode occurs. The purpose of the proposed process is to highlight

possible weaknesses in the software and hardware system as a basis for improving the SRS,

system specification and focus testing and verification efforts on critical aspects of the software

system. This implies that a software project in an early phase should consider all failure modes

and therefore will be aware of possible failure modes and associated propagated effects on

the external interfaces.

Table 3 assesses the proposed process to incorporate software in risk analysis against the

requirements that are presented in Table 1. All requirements are fulfilled except R5 and R7.

Since the process is considering timing-related failure modes, R5 is only partly fulfilled.

However, only through incorporation of the process in dynamic risk analysis is it truly possible

to capture the full implications of timing-related failure modes in risk analysis [28].

Requirement 7, which is not fulfilled, addresses the quantification of the likelihood of software

failure modes and their associated effects on the external interfaces. This is subject to further

work. A software tool may facilitate the process of analyzing the effect of propagating failure

modes, their integration, and quantification in risk analysis.

16

Table 3 Assessment of the proposed process to incorporate software in risk analysis against the criteria from
Table 1.

Requirement Fulfillment Comment

R1 Identify failure
modes

Yes Individual functional failure modes are identified for each
function. The first part of this article identifies a
comprehensive and coherent set of functional software
failure modes.

R2 Identify possible
failure causes

Yes Failure causes can be found in the interfaces in the software
itself or failure in the hardware support. The accompanying
article outlines possible failure causes [1].

R3 Identify
consequences of
failure modes

Yes Through consequent application of the failure mode
propagation behavior, the consequences of software failure
modes can be identified. The effects on the external
interfaces can be integrated into risk analyses.

R4 Represent
functional
behavior

Yes The functional behavior of the software system is explicitly
modeled and represented through the functions.

R5 Represent
temporal
behavior

Partly The temporal behavior is included in the model through
timing constraints, requirements, and timing-related failure
modes.

R6 Represent
context of use

Yes The context of use of the software is represented by
including external interfaces in the functional software
model, considering the overall requirements, and using
context-specific failure modes for a certain situation.

R7 Be modular Yes The functional software model is modular through the
functional decomposition. Each function is represented as
its own module.

R8 Be scalable Yes The process for incorporating software in risk analysis is
scalable. It can be used for large and small software
systems. The interactions between the functions are known
and hence can be modeled. The process can focus on
different levels of detail and functional decomposition.

R9 Make use of all
available
information

Yes The functional software model uses and reflects all the
information that is collected in the SRS and other
documentation.

R10 Be applicable
throughout
software life
cycle

Yes Through the scalability and modularity, the process can be
applied at different phases of development. Especially in the
operation phase, the modularity makes it easy to adapt the
model to changes.

The proposed process in this article allows for identification of functional failure modes, failure

consequences (through the propagation), and failure causes, which addresses R1 to R3. The

process allows for representing the context and functional behavior (R4 and R6). Failure

modes are identified for the functional behavior. The effects of the functional failure modes

may be integrated in risk analysis, thus integrating it in the context.

The proposed process is modular and scalable (R7 and R8), which originates from the

functional approach. The functional approach also allows using the proposed process in

different life cycle phases (R10). The process makes use of all available information, building

the functional software model and assessing failure modes based on that information.

Generally, the proposed process requires a good understanding of the software to be analyzed

and the software development process. It is necessary that the risk analyst and software

17

developers work together and develop a common understanding of both the software and risk

analysis, such that ambiguities can be avoided.

The presented process is not the first to attempt to identify and incorporate software failures

into risk analysis. Wei et al. [29] applied failure modes and identified their effects in a simulation

environment. Wei et al. [29] only applied selected failure modes to some of the software

functions. Their approach requires that the full software is available. However, not all the

information that might be available from the software development process is incorporated.

Hence, the approach by Wei et al. [29] does not completely fulfill the requirements R7, R9, and

R10.

The presented process in this article differs significantly from a software failure mode and effect

analysis (FMEA). In most cases, FMEA assesses the effect of a failure mode based on

discussion and knowledge of the analysts, and not all available information is used (R9).

Moreover, FMEA is most suitable for risk analysis in the design phases of a system (R10, [19]),

more detailed analyses may require more sophisticated risk analysis techniques. The method

is based on simple checklists and focuses only on components or subsystems. The bottom up

analysis is does not allow for assessment of interactions.

The suggested process for incorporating software in risk analysis focuses on the software and

its interactions with external interfaces and implementation of relevant failure events in risk

analysis. This is different from other methods and processes, such as system-theoretic

process analysis (STPA, [30-32]) or the dynamic flowgraph method (DFM, [33-35]), which

focus on the identification of hazardous events. In addition, DFM does not provide mechanisms

for identifying failure causes (R2).

Li et al. [20] and Li [36] take as similar approach to the analysis of functional failure as in this

article. Selected identified failure modes in the software are directly implemented in FT and

ET, or ESD. No failure propagation is conducted (R3), which may exclude some consequences

from the considerations. Although timing failure modes are considered, the analysis is rather

static with only FT and ESD (R5).

The functional failure identification and propagation methods (FFIP, [37-39]) and the failure

propagation and simulation approach (FPSA, [39]) are developed to assess the system

behavior in case of one or multiple faults. Software and hardware interaction are the focus.

Several models, such as state space models and function flow models are used to assess the

propagation. The FPSA module allows for simulation of the model to identify time dependent

relationships and delayed failure effects. The model fulfills all the requirements outlined above.

However, failures need to be identified by the analysts and failure propagation behavior needs

to be defined specifically for each function.

18

4 Case Study

This section exemplifies the process to incorporate the impact of software failures in risk

analysis on a software-based decision support tool with risk relevant implications. Each step

of the proposed process will be addressed, except Step 7. A complete analysis of the software

system would be too extensive for this article. Hence, only selected aspects of the case study

object will be presented in detail. The case study is deliberately kept simple with respect to

decomposition to make the process better traceable and understandable for the reader. Steps

2 and 3 are briefly presented in the case study of the accompanying article [1].

4.1 Step 1: Define the Scope of the Analysis

Hegde et al. [40, 41] presented collision avoidance rules based on envelopes for an

autonomous remotely operated vehicle (AROV). They implemented the set of traffic rules in a

software tool to provide decision support in AROV operations, the underwater operational

envelope visualizer (OEV). Since the software provides decision support with respect to the

safe operation of the AROV, it is desirable that the tool does not increase the level of risk.

AROV may collide with the underwater infrastructure, the seabed and other underwater

vehicles [42]. A collision may lead to loss of the AROV, damages to the subsea structure and

damages to the environment caused through the damages to the subsea structure.

The aim of the underwater OEV software is to increase the situation awareness of the human

operator to detect collisions and avoid collision with subsea obstacles [42]. The control system

of the AROV and the physical components of the AROV are not part of the analysis, except

for the qualitative fault tree analysis in Section 4.5.

Ph.D. candidates at the Norwegian University of Science and Technology developed the

underwater OEV for demonstration purposes in the research project Next Generation

Inspection, Maintenance and Repair operations. The developers adopted a rapid prototyping

approach, where the software was specified, written, tested and reiterated several times. This

presented process is applied at a later iteration, to identify additional improvement measures

for the software. The main developer is a co-author of this article and provided necessary

information and input for the analysis. The process described in this and the accompanying

article was applied to use a structured process to identify risk relevant software failure modes

and consequently improve the software during the next iteration. It is to be noted that the

approach presented in this article is programming language independent. It is developed in an

academic setting, and therefore not following the lifecycle processes of software, as laid out ,

for example, in ISO/IEC/IEEE 12207:2017 [25] or ISO/IEC/IEEE 15288:2015 [26].

19

4.1.1 Context for the analysis

The underwater OEV by Hegde et al. [40, 41] has four aims: visualize the detection of static

obstacles using safety envelopes, suggest a change of course based on safe traffic rules if an

obstacle is detected, provide three-dimensional (3D) orientation and position visualization, and

visualize the traversed path in time and space.

The underwater OEV is designed for the operation of AROVs, which are unmanned underwater

vehicles that operate mostly autonomously. The aim of the underwater OEV is to aid the human

supervisor during different underwater intervention scenarios. Unlike traditional collision

avoidance system, which are reactive safety system, the underwater OEV can be categorized

as a decision support system. The OEV follows two main assumptions: (i) the size and position

of all detected obstacles are known and (ii) the exact position of the AROV is known. To ensure

easy interface with different software modules within the project, the underwater OEV was

developed in Python 2.7 programming language. The required functions were identified during

the early development phase. A rapid prototyping and testing approach were used to create

the first working version of the underwater OEV, which was later continuously improved. The

user interface was created with Qt creator and was converted to python code. The renderer of

the 3D model uses the Visualization Toolkit library. The plots are realized with the Matplotlib

library.

AROVs will be required to approach subsea production systems to inspect, maintain or repair

it during subsea inspection and repair operations. For the analysis, a transit of the AROV from

a subsea garage to a working site in an underwater oil and gas production facility is assumed.

The AROV moves with velocity of 1.5 m/s. The distance from the center of the AROV to the

outer envelope is 2.5 m. During the transit, the AROV passes another subsea structure.

Figure 4 summarizes the system architecture and the mission test setup. In the bottom half of

the figure, the AROV flies close to a mock Christmas tree (XT, a subsea valve array). The

position of the mock XT is predetermined. A collision detection algorithm utilizes the position

of the obstacle and the AROV and detects the collisions areas if the AROV is on collision

course with the XT. The position of the AROV is obtained by the Qualisys motion sensors and

forwarded to the Mission Oriented Operating Suite (MOOS) middle-ware.

20

Figure 4 Test set up of the underwater OEV showing the AROV with the environment on the bottom half of the
illustration and the system architecture on the top half of the illustration. Adapted from [41]. Abbreviations. XT -

Christmas Tree

The upper part of Figure 4 shows the system architecture. The underwater OEV is one of the

three modules accessible to AROV supervisors through visualization screens. The underwater

OEV receives its input from an external interface. The MOOS database provides position,

attitude, and collision data. In addition, MOOS is a middleware developed to access the

mission-related parameters [43]. The MOOS database collects, and stores data produced by

the AROV and associated software. The data can be requested from the AROV components

that need parts of the data. The underwater OEV produces outputs. It sends requests to the

MOOS database for position, orientation, and identified collision candidates, and it visualizes

the 3D model, position plots, and status messages regarding recommended actions to the

human operator via a screen.

Figure 5 shows the user interface of the underwater OEV. The operator and the AROV can

utilize the information from the collision detection algorithm to identify the area sensitive to

collisions given the position of the known obstacle. The green blocks in Figure 5 signify safe

21

areas and red blocks signify unsafe areas/ collision candidates. Depending on the collision

candidates, the user/ AROV is suggested as an appropriate collision avoidance maneuver.

The user also has access to the real-time orientation of the underwater vehicle through the

visualization. For the analyzed scenario, shown in Figure 5, the expected recommendation of

the underwater OEV is to execute an evasive maneuver to the left of the structure to keep a

safe distance from the obstacle. The human operator could also take direct control of the

AROV using the control joysticks. Although the underwater OEV is a conceptual development,

it is assumed that it is part of the human-machine interface of the human operator with the

AROV and hence can assist in the operation.

Figure 5 Situation visualization for the case study; the plots on the right hand side are a visual example, not
representing the current situation. This is what the operator will see during an operation.

The implementation of the safety envelopes in the MOOS database and the AROV control has

been verified and demonstrated [40, 41]. The traffic rules are assumed to be implemented

correctly in the underwater OEV. It has been verified that the MOOS database gives expected

datatypes and outputs in the right format.

4.1.2 Aim of the risk analysis

The analysis focuses on how the underwater OEV could contribute to a collision with the

subsea structure that the AROV shall pass. Based on the above-described situation, the

possible effects of the software on the external interfaces are analyzed with the failure modes

22

and the propagation behavior. The results of the analysis shall be implemented in qualitative

FTs to analyze the effect on the overall operation.

The application of the process shall give input to potential mitigation measures and shall help

to improve the software during the next update. Other mitigating measures may be to adapt

the system architecture. It shall also identify additional requirements or functionalities, which

are necessary to avoid or mitigate the effect of possible failures.

4.2 Step 2: Decompose Software and Build Functional Software Model

The software decomposition can be found in the accompanying article [1]. Five functions were

identified: initialize underwater OEV (F1), obtain data (F2), determine suggested action (F3),

prepare render information (F4), and display information (F5).

In the first function, initialize underwater OEV, the program starts, establishes a connection to

the database, and sets up the window for visualizing the data. In F2, obtain data, the software

polls for the necessary information that the underwater OEV uses in the subsequent functions.

The underwater OEV shall poll data from the MOOS database with a frequency of 2 Hz. The

function is detailed in the accompanying article [1] and shall further serve as an example for

the process in this article.

In F3, determine suggested action, information on the collision candidates and their positions

is used to determine which actions are necessary to avoid a collision and stay at a safe

distance. In F4, prepare render information, this information and the information on the collision

candidates is used to highlight the corresponding safety envelope elements and display the

recommendation. In addition, the 3D model is rendered according to the orientation of the

AROV to give the human operator an overview of the situation.

The last function, display information, updates the plots for the position and the 3D model. This

information is sent to the user screen, where the human operator will see the information and

use it as aid for operating and monitoring the AROV.

Figure 6 presents the functional software model for the underwater OEV. It was developed

from the functional decomposition and the description of the functions. All identified interfaces

have been included. The program execution loop is represented through the broken line from

F5 to F2. The diagram supports the analyses of failure modes and failure effect propagation in

the next two steps. It illustrates the connection of the functions, the flow of information, and the

dependency of functions. Each line is labeled with the associated output. These are described

in Table 4. They represent the information that was summarized above.

23

Figure 6 Functional software model of the underwater operational envelope visualizer. Abbreviations: UI – User
input; MDb – MOOS Database; US - User screen, description of the outputs can be found in Table 7.

Table 4 Description of the outputs of the functions of the underwater OEV, found in Figure 7.

Abbreviation Name Description

F2. O5 AROV orientation Vehicle orientation in roll, pitch, and heading of the AROV.

F2.O6
AROV operational
mode

Mode of operation of the AROV (i.e., remote control, semi-
autonomous, autonomous).

F2.O7 AROV position

Local position of the AROV with respect to a local
reference coordinate system, described in the north, east,
and down reference frame.

F2.O8
Information on
identified collision
candidates

Information on objects that were identified as falling within
the safety envelopes of the underwater OEV.

F3.O1 Suggested action
Suggested action to the AROV operator based on the
current context.

F4.O1 Render information Information necessary to update the renderer.

F5.O1 Screen information
Visualized information containing the render model,
suggested action and position plot.

4.3 Step 3: Identify and Assess Failure Modes for the Functions

As mentioned in the previous section, F2, obtain data, is used as the case study object. The

accompanying article [1] identified 36 failure modes for that function. The set of identified failure

modes is incomplete. It focuses on demonstrating how most of the generic failure modes can

24

be applied to the software function. The identified failure modes can be found in the first two

columns of Table 5 in the next section. The failure mode identification will not be explained

further here.

4.4 Step 4: Propagate Functional Failure Modes through the Software

System

Table 5 summarizes the effects of applying the failure mode propagation behavior to the

identified functional failure modes of F2. For the propagation of the failure modes, the

information collected in Figure 6 is used. Information on the affected functions can be read

directly from the functional software model (Figure 6).

In general, functions that are assessed with no effect do not propagated further. No information

updated or displayed in the column effect on user screen can be interpreted as a crash or a

hanging of the underwater OEV. The human operator will not receive any information. Some

selected examples shall clarify the analysis process and provide additionally needed

information in the following paragraphs.

The failure mode FM4, incorrect functionality of storing values in the corresponding variables,

making them unavailable, will result in no output to the subsequent functions. These will not

be able to produce their required output due to the missing data. Therefore, the user screen

will not be updated, or any information displayed.

In FM8, no function call to F3, the software execution is affected in such a way that F4 will be

executed directly. That means that the render information is prepared and sent further to

function F5. In this case, F5 will prepare the display data without the suggested action since it

was not determined. Hence, the user screen will show all information correctly, except the

suggested action.

With respect to timing-related failure modes, two examples will be further explained. Output

provided too late (500 ms): request for AROV orientation (FM14), which is a delay in the

execution of the functions that succeed F2, occurs. The program will periodically run the

functions in the specified order. The human operator will experience the delay since the screen

is not updated in real time but with the delay of 500 ms.

25

Table 5 Propagation behavior applied to the failure modes identified for Function 2 obtain data. The outputs are described in Table 3.

Failure modes
Propagation
through F3

Propagation
through F4

Propagation
through F5

Effect on user screen (the external
interface)

Function failure modes

FM1 Omission of “Obtain data”, which is not
executed.

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated

FM2 Omission of requesting data, which means
that data is not requested.

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated

FM3 Omission of converting MDb.O1 to AROV
orientation data, which means that the
orientation is note executed.

No effect
F4.O1 with wrong
orientation

F5.O1 prepared
with wrong
orientation

Rendered model displayed with
wrong orientation

FM4 Incorrect functionality of storing values in the
corresponding variables, making them
unavailable

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated

FM5 Additional functionality while converting
AROV orientation (e.g., conversion of AROV
position)

No effect No effect
F5.O1 prepared
with wrong position

Plots displayed with wrong position

FM6 Failure in failure handling, no detection that no
value has been received

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated

Interaction failure modes

FM7
Incorrect function call, calling F4, skipping F3 F3 not executed

Updated without
F3.O1

F5.O1 prepared
without suggested
action

Information displayed without
suggested action

FM8
No function call to F3 F3 not executed

Updated without
F3.O1

F5.O1 prepared
without suggested
action

Information displayed without
suggested action

FM9
Incorrect priority for functions, call function F4
before F3

Executed after
the renderer is
updated

Updated with F3.O1
with old information

F5.O1 prepared
with old suggested
action

Information displayed with old
suggested action

FM10 Unable to request information from the
database (communication protocol-
dependent failure)

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated

FM11
Request with wrong variable name to the
database for AROV position

No effect No effect
F5.O1 prepared
without position
information

No update of AROV position plot

Timing-related failure modes

FM12 Output provided too early: Request for AROV
orientation

Output provided
too early

Output provided too
early

F5.O1 provided too
early

Information on screen is updated
earlier than required

FM13 Output provided too late: Request for AROV
orientation

Output provided
too late

Output provided too
late

F5.O1 provided too
late

Information on screen is updated
later than required

FM14 Output provided too late (500 ms): request for
AROV orientation

Output provided
500 ms late

Output provided
500 ms late

F5.O1 provided
500 ms late

Information on screen is updated
500 ms later than required

26

Failure modes
Propagation
through F3

Propagation
through F4

Propagation
through F5

Effect on user screen (the external
interface)

FM15 Output provided spuriously: AROV
operational mode

No effect No effect No effect
Information on screen is incorrectly
updated

FM16 Output provided out of sequence: Information
on identified collision candidates provided
before AROV position

No effect No effect No effect
Information on screen is incorrectly
updated earlier than required

FM17
Output not provided in time: Information on
identified collision candidates

Output provided
too late (delay
determined by
delay in F2)

Output provided too
late (delay
determined by delay
in F2)

F5.O1 provided too
late (delay
determined by
delay in F2)

Information on screen is updated
later than required (delay
determined by delay in F2)

FM18 Output rate too fast: Requests to database
send too fast (within affordable rate)

Output provided
too early

Output provided too
early

F5.O1 provided too
early

Information on screen is updated
earlier than required

 Output rate too fast: Requests to database
send too fast (out of affordable rate, data
dropped)

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated

FM19 Output rate too slow: Requests to database
send too slow

Output provided
too late

Output provided too
late

F5.O1 provided too
late

Information on screen is updated
later than required

FM20
Inconsistent rate for requests

Output provided
inconsistently in
time

Output provided
inconsistently in time

F5.O1 provided
inconsistently in
time

Information on screen is updated
inconsistently

Value-related failure modes

FM21
No value for AROV position No effect No effect

F5.O1 is not
containing an
position update

No update of AROV position plot

FM22
Incorrect value for AROV position (not further
defined)

No effect No effect
F5.O1 is not
containing the right
position

Plots displayed with wrong position

FM23
Incorrect value, too high for AROV
operational mode = 2

No effect No effect

F5.O1 contains
wrong operational
mode
“autonomous”

Display of information that AROV is
in autonomous mode

FM24
Incorrect value, too low for AROV operational
mode = 0

No effect No effect
F5.O1contains
wrong operational
mode “manual”

Display of information that AROV is
in manual mode

FM25
Incorrect value, too high, AROV orientation
[0, 0, -15]

No effect

Render model
prepared with wrong
heading orientation
(- 15°)

F5.O1 prepared
with - 15° wrong
heading

Render model displayed with -15°
wrong heading

FM26
Incorrect value, too high, AROV orientation
[0, 0, -30]

No effect

Render model
prepared with wrong
heading orientation
(- 30°)

F5.O1 prepared
with - 30° wrong
heading

Render model displayed with -30°
wrong heading

27

Failure modes
Propagation
through F3

Propagation
through F4

Propagation
through F5

Effect on user screen (the external
interface)

FM27

Incorrect value, zero for AROV position [0,0,0] No effect No effect

F5.O1 prepared
with position
displayed as origin
of the local
coordinate system

AROV position displayed as origin of
the local coordinate system

FM28 Value out of application allowable range for
Information on identified collision candidates
includes the value 68

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated

FM29

Value out of datatype range for AROV
operational mode = 2,147,483,648

No effect No effect

Operational mode
adjusted to closest
allowable value (0),
F5.O1 prepared
with wrong
operational mode

Display of information that AROV is
in manual mode

FM30
Frozen value for Information on identified
collision candidates (no collision candidates
detected)

F3.O1 = no
suggested action

F4.O1 without
highlighted envelope
elements

F5.O1 prepared
without suggested
action and without
highlighted
envelope elements

Display of information that no action
is needed, and no collision
candidates were detected

FM31
Imprecise value for AROV position varying
more than 1 m

No effect No effect
F5.O1 prepared
with imprecise
position (+/- 1m)

AROV position imprecisely displayed
(+/- 1m)

FM32 Wrong datatype for AROV operational mode,
string instead of int

No effect No effect
No effect, if the
value is 1

No effect

FM33
Too many (65) elements, in information on
identified collision candidates

No effect, if the
value is within the
range

No effect No effect No effect

FM34 Too few elements (two elements instead of
three) in AROV orientation

No effect No F4.O1 No F5.O1 No information displayed or updated

FM35 Data in wrong order in AROV position [z, x, y]
instead of [x, y, z]

No effect No effect
F5.O1 prepared
with wrong position

Plots displayed with wrong position

FM36 Incorrect value (no value) for F2.O5-F2.O8 is
validated as correct and is output

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated

Abbreviation: FM – Failure mode, MDb – MOOS database, Functions: F2 – Obtain data, F3 – Determine suggested action, F4 – Prepare render information,
F5 – Display information

28

In FM16, output provided out of sequence: information on identified collision candidates

provided before AROV position, there is no effect on the output. The information is stored in

dedicated variables. Unless the information is stored to the wrong variables, it will not affect

the output to the external interfaces.

The failure modes FM23 and FM24, incorrect value, too high, AROV orientation [0, 0, -15]/

[0, 0, -30], respectively, are a special demonstration of how similar failure modes might affect

the risk level. In this case, the heading of the vehicle is shifted in the failure mode by -15° and

-30°, respectively. This failure will affect the model of the AROV being displayed with a wrong

heading. Incorrect orientation display might have different implications for the human operator.

Regarding FM28, value out of application allowable range for information on identified collision

candidates includes the value 68, the failure mode will propagate as no output. The output will

lead to no output in F3 since the value cannot be interpreted. No mechanisms are in place to

check whether the value falls in the range. The no output failure mode will propagate to the

screen, and the human operator will experience it as a hanging or crashing of the program.

Similarly, FM 34, too few elements, (two elements instead of three), in AROV orientation, will

lead to no output in Function 4. Function 3 is not affected since it does not use the information

in the output AROV orientation. In Function 4, the program will read from the array, which only

has two elements and not the expected three elements. When trying to read the third element,

the function will not be able to do so and cannot produce an output. The human operator again

will experience this as hanging or crash.

4.5 Step 5: Incorporate Failures and Propagated Effects in Risk Analysis

This section demonstrates how the identified effects on the external interfaces and the safety-

relevant effects can be implemented in the risk analysis. For that purpose, a fault tree analysis

(FTA) was conducted. The top event for the FT is collision with subsea structure during transit.

It incorporates human- and software-related events. The developed FT covers only part of the

complete risk analysis.

Figure 7 and Figure 8 present the developed FT, which is split into two parts for better

readability. The effects on the interfaces from the propagated failure modes that relate to the

display of wrong information are presented in Figure 7.

The effects on the interfaces from the propagated failure modes that relate to the omission of

displaying information can be found in Figure 8. Examples are no information displayed or

updated or no update of AROV position plot. These events are only relevant if the human

operator needs to rely heavily on the underwater OEV, due to visibility or technical conditions,

and if the human operator decides to continue the mission, despite the degraded performance

29

of the underwater EOV. Two events in the FTs are undeveloped, these relate to the failure in

the control system and human operator failure during waypoint planning or implementation.

The main part of the FT, Figure 7, includes some of the events that relate to a wrong display

of information or delayed output of information. The AND-Gate 3, for example, contains events

in which the information is provided too late with respect to the requirements. However, it might

be possible that the human operator can act beforehand or that the human operator can react

and avoid a collision. Effects of propagated functional software failure modes that were

included are information on screen is updated 500 ms later than required, information on

screen is updated later than required, and information on screen is updated inconsistently.

Another group of effects of propagated functional software failure modes are those that relate

to wrong information being displayed, such as position in AND-Gate 4, heading in AND-Gate 2,

and AROV operational mode being displayed as autonomous operation in AND-Gate 5. Most

of the events that will lead to a collision require the human operator to be fully trusting the

information provided by the software, while not using other available information.

Not all of the identified effects of propagated functional software failure modes are relevant for

the context. Hence, they were not included in the FTs. For example, information on screen is

updated earlier than required does not influence the risk in relation to a collision. On the

contrary, the earlier information is available and updated (an increased update frequency is

implied) the better it is for the human operator.

Similarly, display of information that AROV is in manual mode was not included since the

human operator will act, in this case. This is disregarding the possibility that the human

operator will not act due to other reasons. Such an event could be potentially found in the

undeveloped event operator failure during waypoint planning or implementation.

The event render model displayed with -15° wrong heading was not included in the FT, since

it is a rather limited change of heading and it falls in the normal variation of the AROV heading

(e.g., to compensate for external disturbances). A deviation by more than that, in this case -30°,

is assumed significant, such that the human operator will act, in this case, one that may lead

to a collision.

The minimal cut sets should be identified from the fault trees to reveal the most critical events.

Risk reduction and mitigation efforts should be prioritizing the most critical events from the

minimal cut set analysis.

30

Figure 7 Main fault tree with the top event collision with subsea structure during transit. The fault tree was developed with the effects from the propagated functional
software modes.

31

Figure 8 Sub-fault tree for the transfer gate P2 of the fault tree collision with subsea structure during transit.

4.6 Step 6: Suggest Improvement Measures

Most of the failure modes and their propagation effects on the interfaces of the underwater OEV

that were identified could be prevented by verifying that the data received is in the correct format

and expected datatype.

The most critical software failures are those that lead to a crash or hanging of the software. Most

of these may be avoided. In the current version of the program, no timing watchdogs or similar

mechanisms are implemented to ensure that the software will abort after a time without output. By

defining such requirements and accordingly implementing them, hanging of the program can be

detected and prevented. Similarly, no mechanisms for checking the validity and of inputs from the

MOOS database or outputs within the software.

32

In general, the underwater OEV was missing an implemented failure message system to the

human operators. This should be implemented to assist the human operators in failure detection

and solutions. Since the case study only covers a limited set of failure modes, no more

improvement measures will be discussed.

4.7 Discussion

The case study was chosen due to its relevance for operation of an AROV and the potential for

software improvement. Almost all the failure modes can be applied to the case study; hence, it is

well suited for demonstration. Function 2 of the underwater OEV is described in detail. The

analysis of other functions of the underwater OEV can be carried out similarly. The identification

and propagation of software failure modes has been demonstrated. Only a few timing

requirements are defined; therefore, only a few aspects of the timing-related failure modes could

be demonstrated.

Results from the case study show that software functional requirements and fault detection

mechanisms can be identified to improve the software. This is addressed in the case study in

Section 4.6. Analyzing the other functions and Function 2 completely could potentially identify

additional relevant effects on the external interfaces, which should be implemented in the risk

analysis. Consequently, this will lead to more specific recommendations for improvement of the

software.

The example demonstrates that the effects of propagated failure modes on the external interfaces

can be implemented in a risk analysis, in this case an FTA. The presented FTA uses a simplified

FT, neglecting failures that might arise independently of the analyzed software. In a full risk

analysis, these events may need to be considered. For example, the control system of the AROV

should be analyzed with the proposed process.

Some challenges are associated with the application of the proposed process to the underwater

OEV. The software is developed in an academic setting, which does not apply a formal

development process, as it may be used in the industry. However, it is believed that the example

is representative for safety-relevant and safety-related software systems and the risk analysis of

these. The analyzed software is an important support system for the operation of AROV and might

be implemented in future human-machine interfaces for AROV.

The programming language chosen in the case study, Python, may be seen critical. It is not a

recommended programming language for safety related systems [44]. However, the underwater

OEV does not perform a safety related function as defined in IEC 61508-4 [45]. The underwater

OEV is a supporting tool for visualization of the systems state that may lead to accidents that may

33

result in severe losses and environmental consequences. In addition, the software was developed

through a rapid prototyping approach to achieve a working solution. Following the assurance

processes in, e.g., IEC 61508 [7], would not have been viable. Hence, this example shows also

that a non-safety-related function may contribute to risk and needs to be incorporated in risk

analyses.

The proposed process is cumbersome; thus, only one of the five functions of the underwater OEV

was analyzed. Analyzing more complex software systems will be time-consuming. However, it will

benefit the software being analyzed by deriving a comprehensive list of functional failure modes

and their associated effects on external interfaces. Hence, an automated software tool should be

developed and used to aid in the process.

5 Conclusion

This article presents a process for incorporating software failures in risk analysis, analyzing the

effects of the propagated failure modes on external interfaces, and incorporating these into the

risk analysis. The process provides a systematic way to analyze the effects of failure modes on

the software output and associated external interfaces. The identified effects can be implemented

in risk analysis and incorporated with human operator, sensor, and computing hardware–related

failure events. This is an advantage over the current methods for incorporating software in risk

analyses since a structured process is applied that may produce replicable, traceable and

understandable results.

The proposed process may be used in the development phase of the software. It may aid in

highlighting necessary measures to improve the software and make it safe before the software

code is finalized and released. The process may be applied to systems that are not per definition

safety related but that may have implications for the level of risk. In addition, systems that are

developed through rapid prototyping approaches may benefit from the proposed process, since

the rapid changes can be easily captured and implemented in the model. The process may be

applied to existing software systems, which makes it possible to improve existing software

systems through updates and changes in operation.

Ten requirements were developed to assess the process for incorporating software in a risk

analysis. The proposed process fulfills these requirements, except for two. The proposed process

does not fully capture the dynamics of the software with respect to the context; a dynamic risk

analysis is required. The proposed process does not provide an approach to quantify the likelihood

of the identified effects of propagated functional software failure modes on the external interfaces.

34

Relevant software failure effects are context specific and can be implemented directly in a risk

analysis, via methods, such as FTs and ETs. The case study in this article shows how such a

venture could be conducted. It is believed that the proposed process can assist in identifying a

cohesive set of software failure effects on other safety related software systems, hardware

systems and/ or human users through its external interfaces. Therefore, it is possible to improve

the safety performance of the overall system.

In the future, the process should be applied to more complex technical systems, such as

autonomous ships, to demonstrate its applicability and feasibility. In addition to the expected

increase in the complexity of each software system, such an analysis will require the analysis of

different software systems that interact and communicate with each other, e.g., a navigation

system and a traffic monitoring system.

The dependencies between different software systems may be analyzed with the proposed

process, for example a software failure effect may propagate through another software system.

Future work should also incorporate the software failure effects on the external interfaces with

human and organizational factors and the complete hardware system. Including these propagation

behaviors will improve the incorporation of mutual dependencies between software users,

hardware, and software.

Further work includes the investigation of failure causes for the failure. Two main causes may lead

to a software failure; undetected faults in the code or failures of sensor or the computing hardware.

Further investigation is needed to identify a suitable quantification method. In addition, a software

tool, facilitating the proposed process in this article, should be developed, to save the analyst time.

Acknowledgements

The authors want to thank three anonymous reviewers, who helped to improve this article through

their valuable comments.

C. A. Thieme and I. B. Utne appreciate the support of the Research Council of Norway through

the Centres of Excellence funding scheme, Project number 223254 – NTNU AMOS.

J. Hegde, has been supported by the Research Council of Norway, Statoil and TechnipFMC

through the research project Next Generation Subsea Inspection, Maintenance and Repair

Operations, 234108/E30 and associated with AMOS 223254.

C. A. Thieme acknowledges the financial support from Norges tekniske høgskoles fond, who

supported this research with a scholarship for a research exchange with the B. John Garrick

Institute for the Risk Sciences at the University of California in Los Angeles.

35

References

[1] Thieme CA, Mosleh A, Utne IB, Hegde J. Incorporating Software Failure in Risk Analysis – Part 1:
Software Functional Failure Mode Classification. Submitted for review to Reliability Engineering and System
Safety. submitted: pp. 1-29.
[2] Marr B. The Future of the Transport Industry - Iot, Big Data, Ai and Autonomous Vehicles. 2017;
https://www.forbes.com/sites/bernardmarr/2017/11/06/the-future-of-the-transport-industry-iot-big-data-ai-
and-autonomous-vehicles/#2b854d791137; Accessed: 21.02.2018
[3] Ozarin NW. The Role of Software Failure Modes and Effects Analysis for Interfaces in Safety- and
Mission-Critical Systems. IEEE International Systems Conference Proceedings, SysCon 2008. Montreal,
QC, Canada: IEEE; 2008. pp. 200-207.
[4] Ozarin NW. Applying Software Failure Modes and Effects Analysis to Interfaces. Annual Reliability and
Maintainability Symposium 2009. pp. 533-538.
[5] Mosleh A. Pra: A Perspective on Strengths, Current Limitations, and Possible Improvements. Nuclear
Engineering and Technology. 2014;46: pp. 1-10.
[6] Garrett CJ, Apostolakis G. Context in the Risk Assessment of Digital Systems. Risk Analysis. 1999;19:
pp. 23-32.
[7] IEC. Iec 61508: Functional Safety of Electrical/Electronic/ Programmable Electronic Safety Related
Systems. Geneva, Switzerland: International Electrotechnical Commission; 2010.
[8] IEC. Iec 61508-3: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related
Systems. Part 3: Software requirements. Geneva, Switzerland: International Electrotechnical Comittee;
2010.
[9] ISO. Iso 26262-6: Road Vehicles-Functional Safety. Part 6: Product development at the software level.
Geneva, Switzerland: International Organization for Standardization; 2018.
[10] EN. En 61511-1: Functional Safety - Safety Instrumented Systems for the Process Industry Sector.
Part 1: Framework definitions, system, hardware and application programming requirements. Brussels,
Belgium: European Committee for Electrotechnical Standardization; 2017.
[11] EN. En 50128: Railway Applications - Communication, Signalling, and Processing Systems. Software
for railway control and protection systems. Brussels, Belgium: European Committee for Electrotechnical
Standardization; 2011.
[12] ISO. Iso 26262: Road Vehicles - Functional Safety. Geneva, Switzerland: International Organization
for Standardization; 2018.
[13] Hewett R, Seker R. A Risk Assessment Model of Embedded Software Systems. 2005 29th Annual
IEEE/NASA Software Engineering Workshop, SEW'05. Greenbelt, MD, USA: Institute of Electrical and
Electronics Engineers Computer Society; 2005. pp. 142-149.
[14] Chu T-L, Martinez-Guridi G, Yue M, Samanta P, Vinod G, Lehner J. Workshop on Philosophical Basis
for Incorporating Software Failures in a Probabilistic Risk Assessment. Digital System Software PRA.
Brookhaven National Laboratory; 2009. pp. 1-1-2-21.
[15] Kaplan S, Garrick BJ. On the Quantitative Definition of Risk. Risk Analysis. 1981;1: pp. 11-27.
[16] EN. Ns-En14514: Space Engineering Standards - Functional Analysis. Brussels, Belgium: European
Committee for Standardization; 2004.
[17] Blanchard BS. System Engineering Management. 4th Ed. ed. Hoboken, N.J: Wiley; 2008.
[18] IEEE. Ieee 830: Recommended Practice for Software Requirements Specification. New York, NY,
USA: Institute of Electrical and Electronics Engineers; 2009.
[19] IEC EN. En Iec 60812: Analysis Techniques for System Reliability – Procedure for Failure Mode and
Effects Analysis (Fmea). Brussels, Belgium: International Electrotechnical Commission, European
Committee for Electrotechnical Standardization; 2018.
[20] Li B, Li M, Ghose S, Smidts C. Integrating Software into Pra. Issre 2003: 14th International Symposium
on Software Reliability Engineering, Proceedings. 2003. pp. 457-467.
[21] Wei YY. A Study of Software Input Failure Propagation Mechanisms. College Park, MD: University of
Maryland; 2006.
[22] Wei Y, Rodriguez M, Smidts C. How Time-Related Failures Affect the Software System. In:
Stamatelatos MG, Blackman HS, editors. Proceedings of the Eighth International Conference on
Probabilistic Safety Assessment and Management (Psam). New York, NY: ASME; 2006.
[23] Ozarin NW. Bridging Software and Hardware Fmea in Complex Systems. 2013 Proceedings Annual
Reliability and Maintainability Symposium (RAMS). 2013. pp. 1-6.

https://www.forbes.com/sites/bernardmarr/2017/11/06/the-future-of-the-transport-industry-iot-big-data-ai-and-autonomous-vehicles/#2b854d791137
https://www.forbes.com/sites/bernardmarr/2017/11/06/the-future-of-the-transport-industry-iot-big-data-ai-and-autonomous-vehicles/#2b854d791137

36

[24] Lindholm C, Notander JP, Höst M. A Case Study on Software Risk Analysis and Planning in Medical
Device Development. Software Quality Journal. 2014;22: pp. 469-497.
[25] ISO/IEC/IEEE. Iso/Iec/Ieee12207: Systems and Software Engineering - Software Life Cycle Processes.
Geneva, CH; New York, NY, USA: International Organization for Standardization , International
Electrotechnical Commission, Institute of Electrical and Electronics Engineers; 2017. pp. 1-164.
[26] ISO/IEC/IEEE. Iso/Iec/Ieee 15288: Systems and Software Engineering - System Life Cycle Processes.
Geneva, Switzerland: International Organization for Standardization , International Electrotechnical
Commission, Institute of Electrical and Electronics Engineers; 2015. pp. 1-118.
[27] ISO. Iso 31000 Risk Management - Principles and Guidelines. Geneva, Switzerland: International
Organization for Standardization 2018.
[28] Zhu D, Mosleh A, Smidts C. A Framework to Integrate Software Behavior into Dynamic Probabilistic
Risk Assessment. Reliability Engineering & System Safety. 2007;92: pp. 1733-1755.
[29] Wei YY, Rodriguez M, Smidts CS. Probabilistic Risk Assessment Framework for Software Propagation
Analysis of Failures. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability. 2010;224: pp. 113-135.
[30] Leveson NG, Fleming CH, Spencer M, Thomas J, Wilkinson C. Safety Assessment of Complex,
Software-Intensive Systems. SAE International Journal of Aerospace. 2012;5: pp. 233-244.
[31] Abdulkhaleq A, Wagner S, Leveson N. A Comprehensive Safety Engineering Approach for Software-
Intensive Systems Based on Stpa. Procedia Engineering. 2015. pp. 2-11.
[32] Abdulkhaleq A, Wagner S. Integrated Safety Analysis Using Systems-Theoretic Process Analysis and
Software Model Checking. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 2015. pp. 121-134.
[33] Garrett CJ, Guarro SB, Apostolakis GE. The Dynamic Flowgraph Methodology for Assessing the
Dependability of Embedded Software Systems. IEEE Transactions on Systems, Man, and Cybernetics.
1995;25: pp. 824-840.
[34] Guarro SB, Yau MK, Dixon S. Context-Based Software Risk Modeling: A Recommended Approach for
Assessment of Software Related Risk in Nasa Missions. 11th International Probabilistic Safety Assessment
and Management Conference and the Annual European Safety and Reliability Conference, PSAM11,
ESREL2012. 2012. pp. 1839-1848.
[35] Guarro SB, Yau MK, Ozguner U, Aldemir T, Kurt A, Hejase M, et al. Formal Framework and Models for
Validation and Verification of Software-Intensive Aerospace Systems. AIAA Information Systems-Infotech
At Aerospace Conference. Grapevine, TX, USA: American Institute of Aeronautics and Astronautics Inc,
AIAA; 2017.
[36] Li B. Integrating Software into Pra (Probabilistic Risk Assessment) [Monograph]. College Park, Md:
University of Maryland; 2004.
[37] Jensen D, Tumer IY, Kurtoglu T. Modeling the Propagation of Failures in Software Driven Hardware
Systems to

Enable Risk-Informed Design. 2008 ASME International Mechanical Engineering Congress and Exposition.
Boston, Massachusetts, USA: ASME; 2008.
[38] Tumer I, Smidts C. Integrated Design-Stage Failure Analysis of Software-Driven Hardware Systems.
IEEE Transactions on Computers. 2011;60: pp. 1072-1084.
[39] Mutha C, Jensen D, Tumer I, Smidts C. An Integrated Multidomain Functional Failure and Propagation
Analysis Approach for Safe System Design. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing. 2013;27: pp. 317-347.
[40] Hegde J. Tools and Methods to Manage Risk in Autonomous Subsea Inspection, Maintenance and
Repair Operations. Trondheim, Norway: Norwegian University of Science and Technology (NTNU); 2018.
[41] Hegde J, Henriksen EH, Utne IB, Schjølberg I. Development of Safety Envelopes and Subsea Traffic
Rules for Autonomous Remotely Operated Vehicles. Journal of Loss Prevention in the Process Industries.
2019: pp.
[42] Hegde J, Utne IB, Schjølberg I. Development of Collision Risk Indicators for Autonomous Subsea
Inspection Maintenance and Repair. Journal of Loss Prevention in the Process Industries. 2016;44: pp. 440-
452.
[43] Newman PM. Moos-Mission Orientated Operating Suite. Massachusetts: Department of Ocean
Engineering, MIT; 2008. pp. 1-53.

37

[44] IEC. Iec 61508-7: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related
Systems. Part 7: Overview of techniques and measures. Geneva, Switzerland: International
Electrotechnical Comittee; 2010.
[45] IEC. Iec 61508-4: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related
Systems. Part 4: Definitions and Abbreviations. Geneva, Switzerland: International Electrotechnical
Comittee; 2010.

