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ABSTRACT Digital twin can be defined as a virtual representation of a physical asset enabled through
data and simulators for real-time prediction, optimization, monitoring, controlling, and improved decision
making. Recent advances in computational pipelines, multiphysics solvers, artificial intelligence, big data
cybernetics, data processing and management tools bring the promise of digital twins and their impact on
society closer to reality. Digital twinning is now an important and emerging trend in many applications. Also
referred to as a computational megamodel, device shadow, mirrored system, avatar or a synchronized virtual
prototype, there can be no doubt that a digital twin plays a transformative role not only in how we design and
operate cyber-physical intelligent systems, but also in how we advance the modularity of multi-disciplinary
systems to tackle fundamental barriers not addressed by the current, evolutionary modeling practices. In this
work, we review the recent status of methodologies and techniques related to the construction of digital twins
mostly from a modeling perspective. Our aim is to provide a detailed coverage of the current challenges and
enabling technologies along with recommendations and reflections for various stakeholders.

INDEX TERMS Digital twin, artificial intelligence, machine learning, big data cybernetics, hybrid analysis
and modeling.

I. INTRODUCTION
With the recent wave of digitalization, the latest trend in every
industry is to build systems and approaches that will help
it not only during the conceptualization, prototyping, testing
and design optimization phase but also during the operation
phase with the ultimate aim to use them throughout the whole
product life cycle and perhaps much beyond. While in the
first phase, the importance of numerical simulation tools
and lab-scale experiments is not deniable, in the operational
phase, the potential of real-time availability of data is opening
up new avenues for monitoring and improving operations
throughout the life cycle of a product. Grieves [1] in his
whitepaper named the presence of this virtual representation
as ‘‘Digital Twin’’.

Since its presence among the most promising technology
trends in Gartner’s recent report [2], the Digital Twin concept
has becomemore popular in both academia and industry (e.g.,
see [3] for a non-exhaustive glimpse at the major patented
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developments), apparently with many different attributes to
include or exclude in its definition. For example, Hicks [4]
differentiates a digital twin from a virtual prototype and
redefines the concept as an appropriately synchronized body
of useful information (structure, function, and behaviour) of a
physical entity in virtual space, with flows of information that
enable convergence between the physical and virtual states.
According to the authors in [5], digital twins represent real
objects or subjects with their data, functions, and communi-
cation capabilities in the digital world.

Although the first mention of the word digital twin can be
traced back to only the year 2000 when Grieves mentioned
it in the context of manufacturing, without a formal mention,
several industries and organizations had been exploiting the
idea at varying levels of sophistication. Some examples of
these are the log of patients health information and his-
tory tracking, online operation monitoring of process plants,
traffic and logistics management, dynamic data assimilation
enabled weather forecasting, real-time monitoring systems to
detect leakages in oil and water pipelines, and remote control
and maintenance of satellites or space-stations.
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FIGURE 1. A working digital twin of an offshore oil platform. Screenshot from Kongsberg Digital’s Dynamical Digital Twin for oil and gas, demonstrating
interlinked 2D process diagrams and 3D visualizations of an oil and gas production facility enriched with real-time data from the asset. The color on the
pipes shown in the 3D rendering can be used to show data such as flow rates, water / gas / oil fractions etc. The Dynamical Digital Twin can also run and
explore what-if scenarios generated by process simulators in which case it will be more appropriately called a Digital Sibling. Copyright Kongsberg Digital
2019.

More recently, the necessity to formalize and utilize the full
potential of digital twin concepts arises from a combination
of technology push and market pull. While the need for
online monitoring, flexibility in operation, better inventory
management and personalization of services are the most
obvious market pull, availability of cheap sensors and com-
munication technologies, phenomenal success of Machine
Learning (ML) and Artificial Intelligence (AI), in particular,
Deep Learning (DL), new developments in the computational
hardware (Graphics Processing Unit (GPU) and Tensor Pro-
cessing Unit (TPU)), cloud and edge computing are certainly
the major technology push. In this regard, it will not be an
overstatement to say that the digital twin concept is going to
bring revolution across several industry sectors. The topic of
digital twin is so diverse and complicated such that it is almost
impossible to cover all its aspects in a single article. The
current paper, therefore, is an effort to present a reasonably
comprehensive overview of the concept from a purely mod-
eling perspective. In doing so we plan to answer the following
questions:
• What is a digital twin?
• Is digital twin a new concept or has it existed with
different names in the past?

• What values are expected out of the digital twin
concepts?

• What are the major challenges in building digital twins?

• What are the existing and emerging enabling technolo-
gies to facilitate its adoption?

• What will be the social implications of this technology?
• What is expected from relevant stakeholders to extract
maximum benefits from the digital twin technology?

In Fig. 1, we give a taste of what a state-of-the art digital
twin of an offshore oil platform looks like. The digital twin is
continuously updated with sensor data in near real-time. The
sensor data can be augmented with synthetic data generated
from simulators which bring physical realism at high spatio-
temporal resolutions. The digital twin does not only give real-
time information for more informed decision making but can
also make predictions about how the asset will evolve or
behave in the future. In an ideal setting, a digital twin will
be indistinguishable from the physical asset both in terms
of appearance and behaviour with the added advantage of
making future predictions. In fact the digital twin shown
in Fig. 1 also gives the possibility for humans to interact
physically with the asset using an avatar. Based on our lit-
erature survey we also came across the term digital siblings.
Digital siblings can be considered as copies of the physical
asset which need not necessarily run in real-time but can be
used to test out hypothetical scenarios for ‘‘what if ?’’ analysis
and risk assessment.

We now start this paper with a brief description of
eight values (Section II) that any digital twin is capable of
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generating followed by a presentation of the state-of-the-
art technology in five diverse application areas (Section III).
Common challenges across these application areas are iden-
tified in Section IV. To address these challenges, certain
enabling technologies are required. Some of these tech-
nologies already exist but most of them are at different
stages of development. A comprehensive overview of the
enabling technologies is presented in Section V followed
by a section on the socio-economic impacts of the technol-
ogy (Section VI). Finally, the paper concludes with reflec-
tion and recommendations targeted towards five distinct
stakeholders.

II. VALUE OF DIGITAL TWIN
Building up on a report from Oracle [6], the following eight
value additions of digital twin are identified:
1) Real-time remote monitoring and control: Generally,

it is almost impossible to gain an in-depth view of
a very large system physically in real-time. A digital
twin owing to its very nature can be accessible any-
where. The performance of the system can not only be
monitored but also controlled remotely using feedback
mechanisms.

2) Greater efficiency and safety: It is envisioned that digi-
tal twinning will enable greater autonomy with humans
in the loop as and when required. This will ensure
that the dangerous, dull and dirty jobs are allocated
to robots with humans controlling them remotely. This
way humans will be able to focus on more creative and
innovative jobs.

3) Predictive maintenance and scheduling:A comprehen-
sive digital twinning will ensure that multiple sensors
monitoring the physical assets will be generating big
data in real-time. Through a smart analysis of data,
faults in the system can be detected much in advance.
This will enable better scheduling of maintenance.

4) Scenario and risk assessment: A digital twin or to be
more precise a digital sibling of the system will enable
what-if analyses resulting in better risk assessment.
It will be possible to perturb the system to synthesize
unexpected scenarios and study the response of the sys-
tem as well as the corresponding mitigation strategies.
This kind of analysis without jeopardizing the real asset
is only possible via a digital twin.

5) Better intra- and inter-team synergy and collabora-
tions: With greater autonomy and all the information
at a finger tip, teams can better utilize their time
in improving synergies and collaborations leading to
greater productivity.

6) More efficient and informed decision support system:
Availability of quantitative data and advanced analytics
in real-time will assist in more informed and faster
decision makings.

7) Personalization of products and services:With detailed
historical requirements, preferences of various stake-
holders and evolving market trends and competitions,

the demand of customized products and services are
bound to increase. A digital twin in the context of
factories of the future will enable faster and smoother
gear shifts to account for changing needs.

8) Better documentation and communication: Readily
available information in real-time combined with auto-
mated reporting will help keep stakeholders well
informed thereby improving transparency.

III. DIVERSE APPLICATIONS OF DIGITAL TWIN
Five diverse applications of a digital twin are selected to get
an in-depth understanding of the state-of-the-art, common
challenges, corresponding solutions and future needs to bring
more physical realism into it.

A. HEALTH
Health care is one of the sectors which is going to benefit
the most from the concept of digital twin. The emergence of
smart wearable devices, organized storage of health data of
individuals and societies, need for personalized and targeted
medication and inter-weaving of engineering and medical
disciplines are the major driving forces for the realm of smart
and connected health.

Psychologists have begun to use physical activity levels
using actigraphs to predict the onset of different episodes of
bipolar disorder [7]. Fernández-Ruiz [8] suggests combining
computational simulations with tissue engineering for more
reliable, successful and predictable clinical outcomes. In [9],
the authors give insight into how a digital twin framework
for remote surgery might look like. Bruynseels et al. [10]
projects digital twin as an emerging technology building sil-
ico representations of an individual that dynamically reflects
molecular status, physiological status and life style over
time. Zhang et al. [11] gives an overview of the latest devel-
opments in organ-on-a-chip (OOC) engineering. OOC syn-
thesized from the tissues of a patient offers an alternative
to conventional preclinical models for drug screening. The
chip can replicate key aspects of human physiology crucial
for the understanding of drug effects. By combining several
such OOC one can generate a full body-on-a-chip (BOC).
Skardal et al. [12] gives the progress made in this direction.
Although both OOC and BOC are seen as disruptive tech-
nologies in the context of digital twin (or digital sibling to be
more precise), in the more near future a digital twin of human
body can be worked out using most of the technologies and
data already available. To begin with, the health care system
in developed countries already has recorded health history of
its inhabitants. However, one issue is that this monitoring is
not regular and a big chunk of the young population is left
out because they visit physicians only when sick. To this end,
the data collected by smart wearables might hold huge value
since it can help balance the database enabling longitudinal
studies. Furthermore, in the presence of a digital twin of the
human body of a patient, a surgeon can already train himself
even before physically conducting the surgery. However, for
the digital twin to be a reality there are many technical,
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ethical and privacy issues that should be resolved. Physical
models for biochemistry, fluid and nutrient transport, and
other mechanistic models are required to better simulate the
internal working of a human body (organs, blood flow, signal
transmission etc). The authors in [13] explained a ‘‘compu-
tational man’’ vision, which is a dynamic fast-running com-
putational model of major physiological systems, such as the
circulatory, respiratory or excretory system in a human body.
In the prototype for remote surgery [9], the authors high-
lighted the importance of low latency, high level of security
and reliability hinting at how important roles communication
technologies (like 5G) and cybersecurity (encryption tech-
nologies) are going to play. Efficient Computer AidedModel-
ing (CAM) and Virtual Reality (VR) will also be instrumental
in this context. Jimenez et al. [14] also advocated building
digital twin technologies in medicine (see, for example, [15],
[16] for a detailed description of medical cyber-physical
systems). Kocabas et al. [17] detailed such medical cyber-
physical system considering the layers of data acquisition,
data preprocessing, cloud system and action module. The
secure integration of wireless body area networks (WBAN)
with cloud computing platforms and Internet of Things (IoT)
networks has been considered as another major challenge in
healtcare applications [18].

B. METEOROLOGY
The meteorological institutes all over the world have been
using the concepts of digital twin extensively. They utilize
solid models of a region (terrain, buildings), high fidelity
physics simulators and big data coming frommultiple sources
to provide both long and short term weather prediction which
are ultimately communicated using stunning rendering of the
numerical results via web browser, television or mobile appli-
cations (see, for example, [19]–[21]). The big data (terrain
data, satellites, masts, radar, radiosonde, sea buoy, drones,
LIDAR) handled in meteorology is characterized by the high
4Vs (volume, velocity, variety and veracity). In this applica-
tion area, one can find some of the most advanced methods
for big data assimilation in massively parallelized numerical
simulators capable of operating in real-time, and excellent
long-term and well documented data archival and retrieval
mechanisms.

One of the reasons for the immense success of the digital
twin concept within the field of meteorology is a relatively
much lower bar regarding privacy and confidentiality of the
data. There is a lot to be learned from this field. While it
will not be an exaggeration to term weather forecasting as
the most matured digital twin concept, there is still enough
scope for improvements with relative ease. The meteorolog-
ical services have poor quality in those locations throughout
the world where there are not enough weather stations or
observation data. The precision meteorology aims to improve
weather forecasting by updating predictions through numer-
ical modeling, data collection, data analytics, and technol-
ogy adoption enhancement. A greater than ever penetration
of smartphones in almost all societies has remained an

underutilized technology. By 2020 there will be more than
6 billion smartphones in the world. Compared to the paltry
10,000 official weather stations this number is huge. Each
smartphone is equipped to measure raw data such as atmo-
spheric pressure, temperature and humidity to access atmo-
spheric conditions.While the analysis of data from only a few
phonesmight not yieldmuch, analysis of data from billions of
phones will certainly be game changer. In fact Price et al. [22]
has already demonstrated the use of smartphones for monitor-
ing atmospheric tides. Nipen et al. [23] has recently shown the
value of crowd sourced data in improving operational weather
forecasts.

In weather and climate centers, large volume and large
variety observational data streams have been used to improve
our knowledge of the current state of the atmosphere and
ocean, that provide an initial condition for forecasts of future
states. As an integrated approach, observing system simula-
tion experiment (OSSE) systems mimic the procedures used
to analyze such satellite, balloon, or surface tower obser-
vations for specifying states of the atmosphere [24]–[28].
An OSSE can be considered as a digital twin to use com-
putational models to test new systems before their physical
prototype is actually built or deployed. It is anticipated that
in the future such OSSE techniques will be applied to diverse
domains with the use of increasingly advanced and sophisti-
cated simulations of nature and observations [29].

A near real-time weather forecast is a must for environ-
mental situational awareness for improved decision-making
scenarios [27]. Examples include, but are not limited to,
air traffic management, severe-weather watch, wind-turbines
adaptation, and so on. To achieve so, an increasing number
of observations should be assimilated instantaneously since
the lifespan of many weather phenomena can be less than
a few minutes. Solving a purely physics based model with
the required resolution while being compatible with the time-
scales of natural phenomena might be prohibitive. Therefore,
a parallel accelerated digital twin, capable of duplicating the
physical system with acceptable accuracy, could offer a real-
istic solution to assimilate these short-time observations. The
role of this twin is to give quick guidelines whether or not a
decision needs to be taken. This is specifically important with
the intrinsic stochastic characteristics of weather systems, and
hence the model should be able to monitor those seemingly-
random sequential observations [30]–[32]. Data-driven tools
do an excellent job in terms of online time-cost, however
relying only on data and disregarding the known and well-
established physics is not a wise step. Hybridization tech-
niques have been demonstrated to give superior performance
to either of the individual components alone. Therefore, a dig-
ital assimilation twin can be built to provide nature-informed
indicators for near-time events.

Besides, to test new models and assimilation tools before
adopting them into current operational platforms, they need
to be tested with some synthetic observations simulated from
realistic nature runs (NR) [29]. To maintain a realistic bench-
mark, these NR should mimic the natural phenomena with
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their respective time-scales and provide timely observations.
ML and AI tools have shown extraordinary performance
learning from available data. Supplying a digital twin with
sufficient amount of real (noisy) data and posing the well-
established physical constraints can provide a trained and
informed nature replica with realistic stochastic behavior.
In particular, this stochasticity is important for testing the
predictability of extreme events that usually occur without
previous long-term indicators [33]–[35].

C. MANUFACTURING AND PROCESS TECHNOLOGY
Manufacturing and process technology industries have a his-
tory of exploiting the digital twin concepts without explicitly
mentioning it. However, with the current trend of digitaliza-
tion and demand for customized, high quality products in
highly variable batches with short delivery times, the indus-
tries are forced to adapt their production and manufacturing
style. In this regard, even these industries are reevaluating
the digital twin concepts and are trying to include latest
enabling technologies (discussed later in Section V) in their
workflow. According to a report by BCG [36], Industry 4.0 is
seen as the convergence of nine digital technologies: big data
and analytics, cybersecurity, industrial IoT, simulation, aug-
mented reality, additive manufacturing, advanced robotics,
cloud services, horizontal and vertical system integration.
Borangiu et al. [37] stresses the importance of cloud services
in the context of resource virtualization as an enabler for
Factory of the Future (FoF) known by different initiatives
Industry 4.0 (Germany), Advanced Manufacturing (USA),
e-factory (Japan) and Intelligent Manufacturing (China) but
similar goals.

Mukherjee and DebRoy [38] and Knapp et al. [39] pro-
posed a conceptual framework of a digital twin for 3D
printing. In their models, the computationally demanding
mechanistic models (for heat transfer, fluid flow and material
deposition and transformation) are certainly the bottleneck.
By providing an overview of the historical perspective on
the data lifecycle in manufacturing, in [40] and [41] the
authors highlighted the role of big data in supporting smart
manufacturing. The state-of-the-art of digital twin applica-
tions in industrial settings has been studied systematically
in [42], where the authors concluded that the most popu-
lar digital twin application area is developing the advanced
prognostics and health management (PHM) systems. A five-
level cyber-physical system structure has been proposed
specifically for PHM in manufacturing applications [43].
In determining the major concepts and key methodolo-
gies, the authors in [44] reviewed intelligent manufacturing
systems.

A functional mock-up interface has been offered as a
tool independent standard to improve model-based design
between the manufacturers and suppliers [45]. Such a plat-
form independent co-simulation framework can be found
in [46]. In [47], the authors detailed the use of functional
mock-up units for the digital twin applications. A digi-
tal twin approach has been also highlighted in [48] as a

real-time control and optimization tool towards individual-
ized production systems.

D. EDUCATION
Massive Open Online Courses (MOOCs), which make uni-
versity courses available for free or at a very nominal cost
is a disruptive technology challenging traditional classroom
teaching. In this paradigm change in pedagogy, we are under-
going a plethora of opportunities in personalizing education
for a more effective teaching. Different students based on
their natural talent, interest and backgrounds have different
needs. Although universities and schools are recording more
and more data about the students, the feedback loop is not
complete. A digital twin for students will help counter this
shortfall. With the emergence of artificial intelligence driving
bots, personalized education and counseling will be more and
more available at no additional cost. In fact, a brief discussion
on the power of artificial intelligence-powered personaliza-
tion in MOOC learning can be found in [49]. A personalized
adaptive learning frameworks has been also constructed in
[50] using a smart learning environment. In [51], the authors
developed a smart education concept incorporating data min-
ing tools. The role of IoT in constructing a smart educational
process can be found in [52]. The authors in [53] explained
the gradual progress from e-learning to m-learning (mobile
learning), u-learning (ubiquitous learning), and s-learning
(smart learning). In [54], the authors demonstrated a digital
data management framework for accreditation purposes in
order to help assessment process considering data collection,
characterization, analysis and implementation. This might
also help to map program’s educational objectives to stu-
dent outcomes [55]. The authors in [56] discussed a set of
demanding skills that are critically important for the emerg-
ing digital twin paradigm and highlighted relevant business
model changes to accommodate with the Industry 4.0 digital
revolution. The growing gap between industry and academia
has been highlighted in [57], where the authors drew attention
to tremendous opportunities from a data science perspective.
Combining the digital twin of the education sector with that
of other industrial sectors, it would be more efficient in
grooming targeted talents.

E. CITIES, TRANSPORTATION AND ENERGY SECTOR
The digital twin relevant technologies become more mature
to offer smart solutions in construction, transportation and
energy sectors. In [58], the authors studied a digital twin
concept to engage citizens with city planning with an idea
of pairing physical objects with their digital counterparts.
The authors in [59] discussed the requirements of the scal-
able cloud model that can be used for smart cities. A col-
lection of essays about Singapore, arguably considered the
smartest city in the world, can be found in [60]. In his
editorial note, Batty [61] discussed the progress towards
digital twins concerning urban planning and city science.
A smart city paradigm that can enable increased visibility
into cities’ human-infrastructure-technology interactions has
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been explained in [62], in which spatio-temporal city dynam-
ics was integrated into a data analytics platform at the real-
time intersection of reality and virtuality.

Smart grids use sensors and digital communications tech-
nologies to detect and react to local changes in power usage.
A cyber-physical system perspective to the smart grid tech-
nologies can be found in [63]. The adaptation of the digital
twin technology for applications in power system control
centers has been recently studied in [64]. In [65], the authors
used a faster than real-time digital twin in predicting dynamic
behaviour of smart grid systems.

In [66], the authors outlined a cyber-physical system
approach to control large scale road freight transporta-
tion problems including minimized fuel consumption with
integrated routing and transport planning. An integration
approach between vehicles and mobile cloud computing
has been discussed in [67]. A vision for the integration
of cyberspace and physical space has been discussed in
[68] to tackle some challenges in aviation industry. In [69],
the authors provided a hybrid artifact solution for air traf-
fic control, in which paper and digital media are identical
and have equal importance, by suggesting tangible interac-
tion and augmented reality. A discussion on digital artifacts
related to simple examples of structural engineering can be
found in [70].

The recent technologies related to the Industry 4.0 have
been recently reviewed for oil and gas sector [71]. Highlight-
ing the digital shift, the authors in [72] discussed the integra-
tion of such technologies for improving energy efficiency in
smart factories with the aim of reducing both production costs
and greenhouse gas emissions. Fault detection and diagnos-
tics issues in built environment can be found in [73] towards
improved Building Information Modeling (BIM) systems.
As discussed in [74], BIMs constructed from aCADmodel do
not often capture details of a facility as it was actually built.
In [75], the authors introduced BIM digital twins for better
assessment and development of the design, construction and
performance of residential buildings. A full scale digital twin
of a district heating and cooling network aligned with the
visions of Industry 4.0 can be found in [76].

IV. COMMON CHALLENGES
As seen in the previous section, the concept of digital twin is
already in use in several application areas, however, in order
to make digital twins completely indistinguishable from their
physical counterparts, many challenges have to be addressed.
Digital twins should consider application-specific issues in
terms of time critical, safety critical and mission critical
services [77]–[81]. The feasibility and challenges of using
a digital twin to perform functionality and cyber-security
analysis is discussed in [82]. In a similar context, the authors
in [83] provided a compound table that touches on the impor-
tance of major cyber-physical system challenges for various
application domains. Their discussion includes detailed def-
inition for interoperability (composability, scalability, het-
erogeneity), security (integrity, confidentiality, availability),

dependability (reliability, maintainability, availability,
safety), sustainability (adaptability, resilience, reconfigura-
bility, efficiency), reliability (robustness, predictability, main-
tainability), and predictability (accuracy, compositionality).
In [84], the authors discussed various signal processing
related challenges in digital twin technologies. Strict require-
ments for explainability and the resulting data protection
laws now require that the decisions that are made for human
should be explainable to humans [85]. For example, human
factor perspectives on auto driving systems can be found in
a recent study [86]. With the rapid development of the AI
technologies in mind, the moral machine experiment [87]
provides many insights how machines might make moral
decisions. In the context of the current paper we stress on
challenges belonging to four categories that the modelling
community should focus on. Firstly, the success of digital
twin technology depends on a real-time two way connection
between the physical asset and its digital twin to bring in
physical realism without any compromises. Major challenges
in ensuring this relates to spatio-temporal resolution of sensor
data, latency in communication, large data volume, large
data generation rate, large variety of data, large veracity of
data and fast archival retrieval and online processing of data.
Secondly, as the physical asset evolves in time it requires a
corresponding evolution of the models while still maintaining
backward compatibility. Thirdly, as most of the physical
assets for which one can envision digital twins will require
high level of safety and security, there will be a need for
greater transparency and interpretability of the decisions
taken based on digital twins. This will require models which
are interpretable and physically consistent. Finally, the digital
twin needs to be presented to the end user in a way that it
appears indistinguishable from the physical asset and easier
and intuitive to operate. All these challenges which require
the immediate attention of the modellers are summarized
in Table 1. In the next section we focus on enabling tech-
nologies that can have maximum impact on addressing these
challenges irrespective of the application areas.

V. ENABLING TECHNOLOGIES
It is quiet evident from the preceding section on com-
mon challenges that we need to develop technologies that
will address those challenges. In this section we attempt
to cover the enabling technologies under five major cate-
gories: physics-based modeling, data-driven modeling, big
data cybernetics, infrastructure and platforms, and human-
machine interface. The section is structured in way to address
the challenges using various enabling technologies (see
Table 1 for an overview).

A. PHYSICS-BASED MODELING
So far, the engineering community has been driven mostly
by a physics-based modeling approach (e.g., see Fig. 2
for broader hierarchical stages). This approach consists of
observing a physical phenomenon of interest, developing
a partial understanding of it, putting the understanding in
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TABLE 1. Mapping between common challenges and enabling technologies.

FIGURE 2. Physics based modeling: Based on first principles but can only
model part of known physics due to assumptions at different stages.

the form of mathematical equations and ultimately solving
them. Due to partial understanding and numerous assump-
tions along the line from observation of a phenomenon to
solution of the equations, one ends up ignoring a big chunk
of the physics. The physics based approach can be subdivided
broadly into experimental and numerical modeling.

1) EXPERIMENTAL MODELING
This approach consists of doing a lab or full scale experi-
ment or surveys to understand a process or a phenomenon,
developing correlations or models of quantities that can not
be directly measured (or is expensive to measure) that can
later be used in the the context of a digital twin. Hunt exper-
iment [88] to collect health data, Bubble experiment [89]
to collect urban boundary layer measurements, wind tunnel
experiments to understand the physics of fluid flows are some
of the examples that have been used to develop simplified

parameterizations which are now widely used in the respec-
tive fields. Laboratory scale experiments are conducted on
reduced scale of the problem under investigation. While it
is possible to work with a reduced scale model, the scaling
laws based on physics are almost always impossible to satisfy
and hence limit their utility. Furthermore, both lab scale as
well as field experiments can be extremely expensive, and
they are therefore conducted for very coarse spatio-temporal
resolutions.

2) THREE-DIMENSIONAL (3D) MODELING
The first step towards numerical modeling is 3D modeling.
It is the process of developing a mathematical representation
of any surface of an object. In most of the digital twins, 3D
models are the starting point. The 3D models can either be
constructed by a 3D scan of the object or through specialized
software using equations and finally represented in terms of
curves and surfaces. Almost all 3Dmodels can be categorized
into solid or shell models. In the context of digital twin,
the 3D model goes as input to the physical simulators and
hence its quality is of utmost importance. In this regard the
representation of 3D finite element models using splines [90]
(denoted isogeometric analysis) is interesting since it enables
streamlining the whole workflow from 3D modeling to sim-
ulation and visualization of results, see [91].

During the last decade great progress towards adaptive
refinement of isogeometric 3D models has been achieved.
One popular method for local refinement is the Locally
Refined B-splines (LR B-Splines), see [92] and [93]. In [94]
and [95] LR B-Splines have been proposed for achieving
more compact representation of the object geometry. In fact
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LR B-Splines approach appears to be very efficient in achiev-
ing high data compression ratios, which is very advantageous
in a digital twin context. These new developments facilitate
real-time geometry modifications (e.g., in simulating surg-
eries, deformation of structures) and associated simulations
(e.g., fluid-structure simulations).

3) HIGH FIDELITY NUMERICAL SIMULATORS
In order to add physical realism to any digital twin, the gov-
erning equations derived through physical modeling need to
be solved. For simplified equations, sometimes analytical
solutions are possible to derive but most of the time due to
complexities, the equations need to be solved numerically
on computers. Various discretization techniques over time
have been developed for this. Some of the commonly used
methods belong to one of the following categories: Finite
Difference Method (FDM), Finite Element Method (FEM),
Finite Volume Method (FVM) and Discrete Element Method
(DEM). A detailed history of these methods can be found
in [96]. They have been extensively used in many open-
source and commercial multi-physics simulation packages
(e.g., OpenFOAM, FEniCS, Elmer, ANSYS, Comsol, STAR-
CCM+ etc).
A great advantage of any physics based modeling

approaches is that they are generally less biased than data-
driven models since they are governed by the laws of nature.
However, the choices of which governing equation (e.g. tur-
bulence model in fluid flows) should be applied for a given
physical system might be biased in the sense that different
scientists/engineers have different preferences (e.g. due to
different educational background), but this kind of bias is
transparent as long as the governing equations are stated.
Furthermore, physics based models are highly interpretable
along with their generalizability to seemingly very different
problems governed by the same physics. At the same time,
however, these models can be prone to numerical instability,
can be too computationally demanding, can have huge errors
owing to uncertainty in modeling and inputs, and lack of
robust mechanisms to assimilate long term historical data.
Another problem associated with numerical modeling of man
made objects is the incompatibility between the way 3D
geometries are modeled in CAD-systems and the way the
equations are solved in numerical simulators. It is estimated
that 80% of the total time goes into cleaning the geometries
and pre-processing, if not more, and only the remaining 20%
for actual simulation and analysis. To alleviate this problem
Hughes et al. [90] in 2005 came up with a novel method for
analysis known as the Isogemetric Analysis. The approach
offers the possibility of integrating finite element analysis
with any conventional NURBS-based CAD design tools.
Since 2005, there has been an explosion of publication in this
field. The method has been utilized to solve a large array of
problems ranging from fluid mechanics [97], [98], to solid
mechanics to fluid-structure interaction [99], [100] as well as
adaptive computational mechanics based on a posteriori error
estimates [101] and [102].

FIGURE 3. Data-driven modeling: Data is seen as a manifestation of both
known and unknown physics.

Today advanced numerical simulators are e.g. used to
improve surgical procedures and develop patient-specific
models that enable predictive treatment of cardiovascular
diseases. High-performing simulators capable of handling
a billion degrees of freedom are opening new vistas in
simulation-based science and engineering and combined with
multiscale modeling techniques have improved significantly
the predictive capabilities. Thus, the dream of establishing
numerical laboratories (e.g. numerical wind tunnels) can now
be realized for many interesting real world systems. Despite
their immense success, the use of high-fidelity simulator has
so far been limited to the design phase of man made engineer-
ing objects/systems. Unless their computational efficiency is
improved by several orders of magnitude their full potential
will remain under-utilized in a digital twin context. However,
the great advances of the high-performance simulators during
the last two decades qualify (many of) them to be denoted
‘‘high-fidelity’’ models that can serve to develop ‘‘Reduced
Order Models’’ (ROM), see below, which may be used to
establish predictive digital twins.

B. DATA-DRIVEN MODELING
While physics based models are the workhorse at the design
phase, with the abundant supply of data in a digital twin
context, opensource cutting edge and easy-to-use libraries
(tensorflow, torch, openAI), cheap computational infrastruc-
ture (CPU, GPU and TPU) and high quality, readily available
training resources, data-driven modeling is becoming very
popular. Compared to the physics based modeling approach,
as illustrated in Fig. 3, this approach is based on the assump-
tion that since data is a manifestation of both known and
unknown physics, by developing a data-driven model, one
can account for the full physics. In this section we present
the state-of-the-art starting from data generation and safety
to advanced data driven modeling techniques.

1) DATA GENERATION
One of the main reasons for the recent popularity of digital
twins is the availability of cheap and miniaturized sensors
which are capable of recording all possible kinds of imag-
inable data: text, audio, RGB images, hyperspectral images
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and videos. These miniaturized sensors can be installed on
moving vehicles, drones, small satellites and underwater
vehicles to quickly span all the four dimensions (three in
space and one in time). Crowd sourcing of data because
of the popularity of smart phones is also contributing mas-
sively towards data generation. It has been used to build up
comprehensive databases of urban landcover World Urban
Database andAccess Portal Tools (WUDAPT [103]) database
and local weather using NETATMO stations [104]. Online
surveys and activities on social networking sites have created
huge databases which are being used for training advanced
ML models that are now being widely used for analyzing
data.

2) DATA PREPROCESSING, MANAGEMENT AND
OWNERSHIP
With huge amount of data comes the problem of quality, man-
agement and ownership resolution of the data. For a correct
working of digital twin there will be a need to improve the
quality of data and compress them on the fly. Algorithms are
required for automatic outlier detection and filling of missing
data. At the moment very simplistic models like Principal
Component and multidimensional interpolation techniques
are utilized to fix these issues. However, more advanced
methods like Restricted Boltzman Machine and Generative
Adversarial Networks can be employed. Martens [105] has
developed IDLE (Intensity observed = Displacement model
of (Local intensity model) + Error) methods for on the fly
learning from big data stream. As mentioned earlier LRB-S
representations can be used for achieving massive compres-
sion ratios. The problem of ownership will be a tough nut to
crack. The issue of data ownership can be complicated due to
the involvement of different stakeholders who participated in
the generation, processing, value addition or analysis of data.
This can jeopardize the smooth working of any digital twin
concept.

3) DATA PRIVACY AND ETHICAL ISSUES
For successful implementation of digital twins, trust in infor-
mation system is extremely critical especially when stringent
privacy laws are getting shaped, digital twin will be used
more and more in safety critical applications. In this context,
Nakamoto [106] presented two game changing concepts. The
first one is bitcoins and the other is blockchain. Blockchain
is a distributed, secured and verifiable record of information
(e.g., data, transactions) linked together in a single chain. The
information is stored inside cryprographic blocks connected
in a sequential order in a chain. The validity of each new
block is verified by a peer-to-peer network before it is linked
to the blockchain using a crytographic hash generated from
the contents of the previous block. This ensures that the chain
is never broken and each block is permanently recorded. This
provides maximum security, traceability and transparency in
applications where blockchains can be employed. In the con-
text of digital twin where traceability and security of informa-
tion is of utmost importance, blockchain is foreseen to play

an important role.It will ensure secured archival and retrieval
of data facilitated through advanced cryptography. It will be
practically impossible to loose data since due to its inherent
decentralized nature the data is always retrievalable. It will
remove the risk of malicious attacks. All of this will come
with greater transparency and hence greater accountability.
The businesses will also be able to put pre-set condition on the
blockchain to control automation. Mandolla et al. [107] gives
a nice insight into the exploitation of blockchain technology
in building a digital twin for additive manufacturing with
focus on aircraft industry, and Li et al. [108] introduces an
extended socio-technical framework for the implementation
of blockchain into the construction industry. The authors in
[109] propose a blockchain based searchable encryption for
electronic health record sharing. Reyna et al. [110] gives a
detailed overview of integration of the blockchain technology
with IoT, its challenges (related to scalability, privacy, secu-
rity and a total dearth of censorship) and latest research work
to alleviate the associated shortcomings.

4) MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE
Smart data analysis using ML and AI is expected to play a
major role in the context of digital twin. ML is the scientific
study of algorithms and statistical models that computer sys-
tems use in order to perform tasks effectively without being
explicitly programmed to do so and instead relies on learning
from data alone. Although the term was coined in 1959 by
Arthur Samuel, an American pioneer in the field of computer
gaming and artificial intelligence, its real potential is being
realized only recently when computers have begun to out-
perform humans in even creative tasks like art generation,
script writing, text summarization, language translation and
language interpretation and cross modal retreival [111]. Any
ML can be broadly categorized into supervised, unsupervised
and reinforcement learning.

Supervised learning is aimed at learning a mapping from
independent variables to dependent variables. The mapping
tasks can be either regression or classification. Most of the
commonly used supervised algorithms are Linear Regres-
sion, Logistic Regression, Support Vector Machine, Decision
Trees, Random Forest and Artificial Neural Networks. The
recent success of ML in outperforming humans in image
classification [112], [113], [114]) and games like GO is
attributed to Deep Learning (DL) [115] or Deep Neural Net-
work (DNN). Restricted Boltzmann Machines (RBM) [116]
can be seen as stochastic neural networks that learn the input
probability distribution in supervised as well as unsuper-
vised manner and hence can be a powerful tools in detecting
anomalies. In the context of digital twin, temporal RBM
can be used to model multivariate timeseries, convolutional
RBM is used to understand structure in timeseries, mean
co-variance RBM to understand the covariance structure of
the data and for dimensionality reduction [117]. Shallow
Autoencoders which are neural networks whose input and
output layers are exactly the same and sandwich a layer with
comparatively much reduced number of nodes have been in
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use for efficient linear data compression (similar to Princi-
pal Component Analysis (PCA)). However, just by stacking
many more layers result in Deep Autoencoder. These have
been used for very diverse applications like diabetes detection
[118], action detection for surveillance [119], feature learning
for process pattern recognition [120], denoising for speech
enhancement [121] [122], fault diagnosis [123], social image
understanding [124], low light image enhancement [125].
Convolutional Neural Network (CNN) is another DL method
which although has achieved unprecedented success mainly
in image classification (ImageNet, AlexNet, VGG, YOLO,
ResNet, DenseNet etc.) exceeding human level accuracy,
have also been extensively used in textual analysis. More
recently Generative Adversarial Networks (GANs) [126]
where two networks called generators and discriminators are
trained to outperform each other resulting in generators which
can create data which are indistinguishable from real ones
has achieved huge success. The method has huge potential
in improving the data quality like upscaling image resolution
[127], denoising [128], filling missing data [129] all of which
are relevant in the context of digital twins. As a powerful
Recurrent Neural Network (RNN), Long Short Term Mem-
ory (LSTM) network has demonstrated phenomenal success
in modeling data involving time. Karim et al. [130] demon-
strated the use of LSTM in timeseries classification. In [131]
LSTM was used to forecast petroleum production. By com-
bining CNN and LSTM, Kim et al. in [132] demonstrated
its value in making predictions of the energy consumption
in residential areas. The predictive capability of LSTM in
particular will be instrumental in creating future scenarios in
the context of digital siblings when direct observation data
will be unavailable. The supervised algorithm in a digital twin
context will be used for making predictions / projections or
for conducting sensitivity / what-if analysis.

One of the shortfalls of supervised algorithms is the need
of dependent variables (labeled data) which might not always
be available as in the case of anomaly. Unbalanced or skewed
data rarely results in reliable prediction models. Anomaly
detectionwhich is extremely important for online healthmon-
itoring of any system, the labeled data is rarely available in
abundance to train a supervised algorithms. In such a situation
unsupervised algorithms like self organized maps (SOM)
[133] and clustering analysis [134] (k-mean, t-SNE [135])
have better utility. Another important application of unsu-
pervised algorithms like PCA and Deep Autoencoder can
be for on-the-fly data compression for real-time processing,
communication and control of the system under operation.

While supervised and unsupervised learning ML algo-
rithms have been the most commonly employed algorithms
in real applications, they are not of much use in the absence
of enough data. Reinforcement Learning [136], though in
its infancy has the potential to aid in such a data-deprived
situation. Reinforcement learning is an area of ML in which
instead of learning directly from the data, an agent figures out
an optimal policy to maximize its long term cumulative gain.
It can be a key enabler for smart decision making systems in

the technologies related to the Industry 4.0 (see also [137]
for a nice discussion of the anatomy of a decision). For
example, in [138], the authors illustrated how a reinforce-
ment learning framework might support operation and main-
tenance of power grid applications. The algorithms [139]
without any prior knowledge and starting to play random
gains, in 24 hours, achieved super-human level performance
in chess, shogi as well as Go and convincingly defeated a
work-champion program in each case. Since then the algo-
rithm has been applied to solve more engineering problems
like advanced planning of autonomous vehicles [140], lung
cancer detection inmedical treatment [141], smart agriculture
[142], UAV cluster task scheduling [143], chatbots [144],
autonomous building energy assessment [145].

Some advantages of the data-driven models is that they
keep on improving as more and more data (experiences) are
fed into them. The training part of the data-driven modeling
might experience issues associated with instabilities. How-
ever, once trained the models are stable for making predic-
tions. At the same time the data-driven models have some
downsides too. Most complicated models of this class spe-
cially the ones based on DNN are uninterpretable. In safety
critical applications like automatic drug injection in humans,
guidance and navigation of autonomous vehicles or oil well
drilling, a black-box approach will be unacceptable. In fact
the vulnerability of DNN have been been exposed beyond
doubt in several recent works [146], [147], [148]. These
models can also be extremely biased depending upon the data
they were trained on.

C. BIG DATA CYBERNETICS: THE ART OF STEERING
Norbert Wiener defined cybernetics in 1948 as ‘‘the scien-
tific study of control and communication in the animal and
the machine,’’ which can be easily linked to digital twins.
The objective of cybernetics is to steer a system towards a
reference point. To achieve this, the output of the system is
continuously monitored and compared against a reference
point. The difference, called the error signal is then applied
as feedback to the controller which in turn generates a system
input that can direct the system towards the reference point.
At times the quantity of interest that is required to compare
against the reference can not be measured directly and hence
has to be inferred from other quantities that are easier and
cheaper to measure. With an increase in computational power
and availability of big data, there are two major improvement
possible within the cybernetics framework. Firstly, the con-
trollers can be improved by increasing its complexity to incor-
porate more physics. Secondly, the big data can be utilized
for a better estimation of the quantity of interest. In order to
address these two issues a new field of big data cybernetics
[149] shown in Fig. 4 is proposed. It is an adaptation of the
concept first conceived in [150] at the Norwegian Univeristy
of Science and Technology. In the figure, the first step is par-
tial interpretation of big data using well understood physics-
based models. The uninterpretable observation at this stage is
termed interpretable residual and in a second step is modeled
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FIGURE 4. Big Data Cybernetics: The model starts as a physics based model that is based on first principles but as time progresses the model is
continuously updated using knowledge generated from data.

using an explainable data-driven approach. After the second
step, again an uninterpretable residual remains which is mod-
eled using more complex and black-box models preferably
with some inbuilt sanity check mechanism. The remaining
residual is generally noise which can be discarded. The three
steps result in a better understanding of the data and hence
improved models, provided, new approach can be developed
to combine physics basedmodeling and data-drivenmodeling
with big data. The steps are continuously looped with the
availability of new streams of data (i.e., see Fig. 4). The new
approach should be intended towards removing the shortfalls
of pure physics-based or pure data driven modeling approach
(see Table 2 for a summary). We call this new approach
Hybrid Analysis and Modeling (HAM) and define it as a
modeling approach that combines the interpretability, robust
foundation and understanding of a physics based modeling
approachwith the accuracy, efficiency, and automatic pattern-
identification capabilities of advanced data-drivenML andAI
algorithms. It is possible to place HAM approaches at the
intersections of big data, physics based modeling and data
driven modeling as shown in Fig. 5.

1) DATA ASSIMILATION
Data assimilation (represented by the intersection of big
data and physics-based high fidelity simulations in Fig. 5)

FIGURE 5. Hybrid analysis and modeling: Hybridization happens at the
intersection of the three cricles.

is a well-established mathematical discipline that com-
bines computational models with observations. It is a geo-
science terminology and refers to the estimation of the state
of a physical system given a model and measurements.
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TABLE 2. Physics based modeling vs data-driven modeling.

In other words, it is the process of fitting models to data.
In engineering fields the terms filtering, estimation, smooth-
ing, prediction are often used [151]–[154]. Filtering and
smoothing are very closely related concepts and differ by
causality of the estimation problem. However, both terms
refer to inference based on some data, and often used inter-
changeably. The term smoothing is generally used to correct
predictive model before the current time by incorporating
observations from its past and future. However, the term fil-
tering is used to incorporate available observations to update
the model at the current time. In practice, many techniques
in data assimilation can be derived both from a determinis-
tic and stochastic point of view. There are many presenta-
tions of the topic in books, review and tutorial articles (e.g.,
we refer to [155]–[165] for detailed mathematical descrip-
tions). Although data assimilation approaches initially gained
popularity in numerical weather forecasting [166]–[173],
they are now routinely used in fields as diverse as finance,
medical physics, signal processing, computer vision, robotics
and navigation [174]–[191], and these techniques offer a
great promise in many digital twin applications.

In an operational atmospheric forecast, data assimilation
deals with very large-scale state space systems and typically
enables initialization of models by statistically combining
information from short-range model forecasts and observa-
tions, based on the estimated uncertainty of each [192]. Data
assimilation methods differ primarily in their treatment of the
model background error and the methods for solving the anal-
ysis equations [193]. Both variational (adjoint methods) and
sequential methods (Kalman filters) have been successfully
used in operational weather centers to minimize the error
between forecasting trajectory and noisy observation data.
Dedicated comparisons of four-dimensional variational data
assimilation (4D-VAR) and ensemble Kalman filter (EnKF)
approaches can be found in [194]–[196]. Their variants as
well as hybridized approaches have been also introduced
in atmospheric science and numerical weather predictions
[197], [198]. We refer to recent studies on the use of the
Kalman filter [199] and particle filter [200] in the digital twin
applications.

2) REDUCED ORDER MODELING
There are a great number of high-dimensional problems in
the field of science (like atmospheric flows) that can be
efficiently modeled based on embedded low-dimensional
structures or reduced order models (ROMs). This fam-
ily of model can be best described at the intersection of
physics-based high fidelity simulations and data-drive mod-
els as shown in the Fig. 5. These ROMs often trade a
level of accuracy for much greater computational speed.
This ROM concept (also called surrogate modeling or
metamodeling) allows one to emulate complex full-order
models or processes, and lies at the interface of data
and domain specific sciences. It has been systematically
explored for decades in many different areas including com-
putational mechanics [201]–[204], combustion [205]–[207],
cosmology [208]–[210], electrodynamics [211]–[214],
meteorology [215]–[218], fluid mechanics [219]–[225], heat
transfer [226]–[228] and various other multiphysics pro-
cesses [229]–[235], as well as systems and control theories
[236]–[241] in order to provide computational feasible surro-
gate models. Although the concept can be traced back to the
works done by Fourier (1768-1830), there exist many recent
monographs [242]–[249] and review articles [250]–[263].
In practice, ROMs (i.e., emulators) have great promise for
applications especially when multiple forward full-order
numerical simulations are required (e.g., data assimilation
[264]–[269], parameter identification [270]–[273], uncer-
tainty quantification [274]–[280], optimization and con-
trol [281]–[288]). These models can quickly capture the
essential features of the phenomena taking place, and we
often might not need to calculate all full order modeling
details to meet real-time constraints. Another advantage
can be realized for developing surrogate models stationary
parameterized systems, where full order models typically
require many pseudo-iterations to converge to a steady-state
at each control parameter [289]–[291]. Therefore, reduced
order modeling has been considered as a key enabler to
compress high fidelity models into much lower dimen-
sions to alleviate heavy computational demand in digital
twin technologies [292]. ROM enables reusing simulation
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models from the early phases of product development in
later product lifetime phases, especially during the product
operation phase [293].

Most of the conventional ROMs require the exact form of
the underlying partial differential equations (PDEs) involved
to explain the physics phenomena (hence called intrusive).
This is sometimes impractical due to Intellectual Property
Rights or issues related to an incomplete understanding of
the underlying processes. Alternatively, nonintrusive data-
driven models (lying at the intersection of big data and
data-driven models in Fig. 5) have emerged recently with
the democratization of computational power, explosion of
archival data, and advances in ML algorithms [294]–[304].
These approaches mostly involve matrix operations, which
can be very efficiently parallelized on affordable GPU and
TPU giving several orders of magnitude speedup as required
in real-time applications. One of the main advantages of a
nonintrusive approach is its portability, which results from the
fact that it does not necessarily require the exact form of the
equations and the operators or methods used to solve them.
This makes the approach applicable to experimental data
where the equations are often not well established or have
huge uncertainties involved in their parameters. Together
with their modularity and simplicity, nonintrusive models
offer a unique advantage in multidisciplinary collaborative
environments. It is often necessary to share the data or the
model without revealing the proprietary or sensitive infor-
mation. Different departments or subcontractors can easily
exchange data (with standardized I/O) or executables, secur-
ing their intangible assets and intellectual property rights.
Furthermore, nonintrusive approaches are particularly use-
ful when the detailed governing equations of the problem
are unknown. This modeling approach can benefit from the
enormous amount of data collected from experiments, sensor
measurements, and large-scale simulations to build a robust
and accurate ROM technology.

Once ROMs are constructed its operational execution cost
is usually negligible in PDE constrained optimization prob-
lems. Besides, another advantage can be viewed in such away
that the optimization task may be separated from the gener-
ation of data for a ROM via a design of experiments (DOE)
approach or other interpolation approaches [305], [306]. The
statistical approach proposed by Krige [307] has become
highly popular in such multidimensional interpolation prob-
lems (known as Kriging or Gaussian Process Regression
[308]). Of course, we have to take into account the cost
of creating an initial database requiring large-scale high-
fidelity simulations within complex domains discretized by
finite volumes or finite elements. The authors, in their recent
studies [309]–[311], make ROM inter-operatable between
different discretization techniques. In addition, the use of
radial basis functions (RBF) in finite elements can be found
in [312] for nonlinear structural analysis. A description of
radial basis approximation in PDE systems can be found in
[313]. A hybrid reduced basis and finite element method
has been proposed as a component-to-system model order

reduction approach, which is considered as one of the key
enablers in digital twin technologies [314]. An application of
RBF to construct a noninstrusive ROM for data assimilation
applications can be found in [315].

3) HARDWARE AND SOFTWARE IN THE LOOP
Hardware-in-the-loop (HIL) simulation approach, a well-
established concept of using a physical object during sys-
tem development phase in control engineering [316]–[318],
can be also considered as a promising approach towards
near real-time predictions within digital twin platforms (e.g.,
see also software-in-the-loop (SIL) simulation studies for
early design processes [319]–[321]). For example, a real-
time co-simulation concept for HIL simulations has been
presented in [322] considering the virtual commissioning of
production systems.

4) OTHER HYBRIDIZATION TECHNIQUES
As the constructive criticism of Albert Einstein andmany oth-
ers had helped to develop a better understanding of quantum
mechanics [323]–[325], we believe the valuable criticisms
coming from domain scientists might help to develop more
interpretable ML methodologies for scientific applications.
For example, we refer to recent surveys of ML in domain-
specific areas of molecular and material science [326] and
fluid mechanics [327].

Complete replacement of equations with ML algorithms
for gaining computational efficiency when generalization is
not a necessity (e.g., we refer to [328]–[335] and references
cited therein for speeding up numerical solvers for real-
time applications), and can be used in the context of digital
twin when the same process is to be monitored time and
again. However, this approach will fail in unexpected situ-
ation because the model only learns to interpolate and not
extrapolate.

A better approach on the integration ofML to physical pro-
cesses has been demonstrated intuitively in [336] where the
known physics is modeled using the established governing
equations while the unknown physics is modeled using black-
boxDNNor LSTMnetworks.When combined, the black-box
part improves the overall accuracy of the combined model
and the equation based part puts an inbuilt sanity check
mechanism to detect unexpected behavior of the black-box
part. In their perspective [337], the authors, considering an
Earth system model, charted a comprehensive integration
scheme that can be done through (i) improving parameteriza-
tion, (ii) replacing physical submodel with machine learning,
(iii) analysis of model-observation mismatch, (iv) constrain-
ing submodels, and (v) developing surrogates. It has been
concluded that a joint modeling approach offers viable solu-
tions to tackle challenges such as interpretability, physical
consistency, noise, limited data, and computational demand,
when these theory-driven physical process models combined
with the versatility of data-driven ML.

Another approach to improving the interpretability of any
ML algorithm is to reduce the complexity of the algorithm.
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One way of doing this is to engineer new features based on
domain knowledge and informing the ML about it. Since,
the algorithm is relieved of the additional task of rediscov-
ering these features, one can work with simpler algorithms
with far better accuracy. This approach was demonstrated in
the context of material discovery in [338], [339].

More work on hybrid analytics or hybrid physics-AI mod-
eling can be found in [340]–[344]. For example, we refer to
the works done in [345], [346] using such hybrid approaches
combining deterministic and ML components in general cir-
culationmodels (GCMs) for applications to climate modeling
and weather predictions. The processes in GCMs can be split
into two parts referring to model dynamics (i.e., set of 3D
equations of motion governed by PDEs for mass, momen-
tum, energy etc) and model physics (i.e., source terms for
parameterizing atmospheric radiation, turbulence, precipita-
tion, clouds, chemistry, etc). The hybrid approach has a good
motivation for emulating model physics, since this part often
dominates the total model computation time. Similar gray-
box approaches have been gaining popularity in various other
fields too (e.g., hydrology [347], material forming [348],
bioprocess [349], built environment [350], petroleum [351],
reactor design [352] and quantum chemistry [353]).

Another interesting way of combining physics based mod-
eling and big data is the approach advocated by Soize and
Farhat [354] and [355]. They exploit available data to adapt
the subspace in which the solution of the problem formu-
lated using the computational model is searched. The method
is innovative as it discover some form of the information
or knowledge encapsulated in data, instead of the common
approach to adapt model parameters. The resulting nonpara-
metric probalistic reduced order method enables a sound
mathematical/statistical based combination of physics based
model and data highly relevant in a digital twin context.

5) PHYSICS-INFORMED ML
When it comes to utilizing ML algorithms in cases where the
underlying physical process of high dimension, some of
the challenges include incorporating physical laws within
the learning framework, producing solutions that are inter-
pretable, addressing nonlinearities, conservation properties,
and dealing with the massive amount of data needed for
training. For example, in mathematical models governed
by PDEs, the authors in [356] demonstrated a different
approach of programming physics directly into the DL algo-
rithm. They did so by using the residual of the govern-
ing equations to regularize the cost function that can be
optimized in any ML algorithm. In [357], the PDEs are
reformulated as backward stochastic differential equations
and the gradient of unknown solution is approximated using
neural networks. This is inspired from the deep reinforce-
ment learning with gradient acting as the policy function.
Physics-informedML ideas have also been utilized in various
areas including inorganic scintillator discovery [358], fluid
dynamics [359]–[361], projection-based model reduction
[362], cardiovascular system modeling [363], and wind farm

applications [364]. In [365], the authors have presented a
comprehensive review on the taxonomy of explicit integra-
tion of knowledge into ML. As generously highlighted by
Martens in his perspective paper [105], most domain-specific
software tools can be improved by fresh impulses from the
developments in computer and cognitive sciences, and in
return, many specific disciplines have a lot to give to these
sciences as well as to other fields. Therefore, the concept
of Physics/Knowledge/Science-informed ML might offer a
powerful transformation to combine practice and theory (e.g.,
please see [366]–[370] for promoting theory-guided ML in
various disciplines). For example, a symmetry enforcing
approach to learn salient features from a sparse data set
has been introduced using a knowledge injection concept
[371], that might be a key enabler in developing digital twin
technologies.

6) COMPRESSED SENSING AND SYMBOLIC REGRESSION
Compressed sensing (CS) has been applied to signal process-
ing in seeking the sparsest solution [372]–[374]. Sparsity-
promoting optimization techniques (e.g., least absolute
shrinkage and selection operator (LASSO) and its general-
izations) often perform feature selection through L1 penalty
added to recover sparse solutions [375]–[377]. Ridge regres-
sion is another regularized variant where L2 penalty is added
to objective function [378]–[380]. Elastic nets combine the
strengths of the LASSO and ridge approaches [381]–[383].
Sequentially thresholded ridge regression (STRidge) can be
also used in more complex systems with correlated basis
functions [384].

In recent years, the use of ML methods has complemented
the need for formulating mathematical models, and allowed
accurate estimation of observed dynamics by learning auto-
matically from the given observations and building models.
For example, sparse regression has been applied for recov-
ering several nonlinear canonical PDEs [384]. These sparse
optimization techniques have been used to recover the under-
lying basis frommany candidate featuring terms. The compu-
tational time of these approaches are small and in general they
can handle large datasets. One of the key concern with these
techniques are that they perform poorly on data corrupted
with noise. In addition, evolutionary approaches are proposed
at another end of spectrum to leverage randomness as virtue
in recovering models. Symbolic regression (SR) methods
explore a function space, which is generally bounded by
a preselected set of mathematical operators and operands,
using a population of randomly generated candidate solu-
tions. A seminal work by Schmidt and Lipson [385] has
demonstrated that the SR approach can be used to determine
the underlying structure of a nonlinear dynamical system
from data. This approach is crucial where data is abundant
(e.g., geophysical flows, finance, neuroscience) but the accu-
rate physical law/model is not available. When it comes to
large-scale datasets, gene expression programming (GEP),
for example, has been applied to recover turbulence closures
[386]. The authors tailored original GEP algorithm [387]
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to handle tensor regression and recover complex func-
tional forms. Recently, a mixed approach was proposed by
Both et al. [388] where the feed forward neural networks and
sparse regression techniques were combined to handle noisy
data. These tools can be exploited as a potential data-driven
tool for recovering hidden physical structures or parameter-
izations representing high-dimensional systems from data in
digital twin applications.

D. INFRASTRUCTURE AND PLATFORMS
1) BIG DATA TECHNOLOGIES
The infrastructure for storing and processing high volume
data has been advanced considerably over the last decades.
Many available platforms are available to handle big data
projects in terms of blending, integration, storage, central-
ized management, interactive analysis, visualization, acces-
sibility and security. Many IT vendors benefit from Hadoop
technology [389]–[392], which allows us to execute tasks
directly from its hosting place without copying to local mem-
ory. Indeed, there are many survey articles to discuss var-
ious aspects of big data including not only state-of-the-art
technology and platforms, but also algorithms, applications
and challenges [393]–[407]. More recently, Kaufmann [408]
introduced a big data management concept to address the
critical needs of digital twin applications.

2) IoT TECHNOLOGIES
The IoT is becoming increasingly popular to develop smart
technologies in several sectors ranging from healthcare to
agriculture, from transportation to energy. The availability of
high-speed Wi-Fi internet connection, digital machines, low-
cost sensors along with the development of ML algorithms
to perform real-time analysis has contributed to enabling
IoT [409], [410]. The leading IoT vendors provide reliable
and innovative platforms to set up IoT devices for various
applications [411].

Amazon Web Services (AWS) offers various IoT solu-
tions [412]. For example, AWS IoT finds its application
in biomedical research to identify biological insights which
were not known before [413]. The high volume of complex
biomedical data is being generated using the state-of-the-art
high-throughput machines and this data can be processed and
stored efficiently using cloud computing. In their work [413],
the cloud computing framework was applied to genome map-
ping which uses a large amount of next-generation sequenc-
ing (NGS) data. This task can be easily distributed over a
computer cluster and cloud computing is an ideal platform for
this, as it does not have limitations of high-performance com-
puting (HPC) systems such as job queues and unsupported
software. Another application of IoT is in sensor network
technologies which are used extensively in environmental
monitoring and industrial automation. Cloud computing often
provides a flexible computational model that is perfectly
suitable for unpredictable demands generated by environ-
mental sensor networks. For example, in [414], Amazon’s

elastic compute cloud (EC2) was applied for processing
dynamic data collected by sensor networks in environmental
applications.

IoT has also been used in developing smart home tech-
nologies in which the operating conditions such as humidity,
temperature, luminosity, etc are controlled with minimum
user’s intervention. In [415], IoT concepts and cloud comput-
ing were integrated to facilitate smart home implementations.
Their architecture uses microcontroller-enabled sensors to
monitor home conditions, actuators for performing required
actions, and Google App Engine platform for creating and
setting up their web application. In [416], the authors used
Twitter application to collect data, and presented Google
App Engine as a possible solution for mining and analyzing
the large amount of data.

Microsoft launched Azure IoT Suite, a platform that
enables end-users to communicate with their IoT services and
devices, exchange data, and process it in a convenient way
[417]. Many other specified platforms have been built on top
of Azure for different applications. Forsström and Jennehag
[418] investigated a system built by combining Azure IoT
hub and the open plant communication universal architec-
ture (OPCUA) for a realistic industrial situation tracking
an industrial component with 1500 sensors. For agricultural
purposes, Vasisht et al. [419] presented FarmBeats, an end-
to-end IoT platform for data-driven agriculture which uses
Microsoft Azure IoT Suite for cloud services and passing data
summaries to storage. FarmBeats is capable of handling data
from various sensor types with different bandwidths. Also,
it is sufficiently reliable even in cases of power and inter-
net outages from bad weather. For healthcare applications,
Manashty et al. [420] proposed a healthcare event aggrega-
tion lab (HEAL) model in order to detect health anomalies
as accurately and fast as possible. A prototype of HEAL was
implemented and tested on Azure. Das et al. [421] proposed
a cloud based approach to make users aware of probable
health risks of the flickering of surrounding artificial light.
A small-length video is recorded using phone’s camera. It is
then uploaded to Azure cloud storage, where it can be further
processed and analyzed to give informed instructions.

SAP cloud platform helps to implement IoT applications.
Koduru et al. [422] proposed a framework based on SAP
cloud for implementing a smart irrigation system takingwater
supply from borewells and weather conditions into account.
Tsokov and Petrova-Antonova [423] proposed EcoLogic,
a solution for real-time monitoring of running vehicles and
their respective emissions’ levels, in order to keep the carbon
emissions within acceptable limits through smart notifica-
tions and management of vehicle’s power. The system com-
bines hardware module that collects data related to vehicles’
emissions with cloud-based applications for data processing,
and analysis using SAP cloud platform.

Salesforce IoT which is based on software delivery
paradigm where users access the software through per-
sonal web browsers and vendors host the business soft-
ware. This software delivery paradigm is categorized under
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software-as-a-service (SaaS) built on cloud computing [424].
This paradigm helps in scalability, efficient maintenance,
efficient management and lower resource costs. Salesforce
IoT platform is designed to take in the massive amount of
data generated by devices, sensors, websites and applications
and initiate actions for real-time responses. Some real-time
applications might include wind turbines that automatically
adjusts its parameters based on live weather data, passen-
gers whose connecting flights are delayed could be rebooked
before they have landed [425]–[427]. Salesforce customer
relationship management (CRM) software package was used
by organizations to anticipate customer needs based on their
past requirements and choices [428]. Such platforms have
been also deployed in governmental organizations [429].

Oracle IoT is a cloud-based service for business implemen-
tations and uses software delivery paradigm called platform-
as-a-service (PaaS) [430], [431]. Among many applications,
Oracle IoT has been used for analyzing data regarding user’s
venue recommendations such as user’s current geographical
location, weather and traffic conditions, cost, service or dis-
tance of the venues, as well as social network user reviews of
venues [432].

Cisco is one of the early business groups to realize the
birth and potential of IoT based platforms [433]–[435].
Okafor et al. [436] used Cisco Nexus platform to develop a
scalable IoT datacenter management (cost-effective process-
ing, storing, and analysis of large volumes of data) for fog
computing. In [437], the authors summarize the opportunities
and challenges of fog computing in the networking context
of IoT. A fog assisted IoT system has been considered as
a health monitoring system in smart homes [438]. In their
recent work, Bakhshi et al. [439] discussed industrial security
threats and concerns for both Cisco and Microsoft Azure
IoT architectural models (for data accumulation and abstrac-
tion layers of those model architectures) and then suggested
some security considerations. In fact, the security and privacy
concerns are the major challenges of implementing any IoT
devices [440].

Bosch IoT suite provides not only services through
cloud connections but also the on-premise services with no
third party access to the local data [441], [442]. In [443],
the authors introduced an architectural model to successfully
establish such IoT ecosystem through platform interoperabil-
ity. An example of integrating IoT devices provided by Bosch
IoT suite into a business process has been discussed in details
in [444].

Using the IBMBlueMix cloud computing platform, an IoT
technology has been applied to build a smart car system
that monitors and the car’s activity and informs the owner
or technician about the routine maintenance to ensure safe
and efficient driving [445]. In [446], real-time air quality
parameters such as humidity, temperature, and particulate
matter were measured using different sensors. Data storage,
datamanagement, and data analysis were performed using the
IBM Bluemix cloud to inform about the necessary decisions
promptly.

3) COMMUNICATION TECHNOLOGIES
A reliable working of any digital twin will require informa-
tion arising from different components to reach its intended
target on time. For example, during a robotic surgery,
the action of a surgeon in a digital operation theater should
manifest into action in reality without any latency. With so
many sensors comes the problem of fast data communication.
The state-of-the-art communication technology like 4G will
run into problems as more and more devices will start sharing
the limited radio-frequency spectrum. 5G technology with
a wider frequency range might accommodate many more
devices but that requires communication at much higher
frequencies (30-300GHz) compared to the currently used
frequencies by our mobile network. Such high frequencies
waves calledMillimeterWaves [447] can not penetrate obsta-
cles readily and hence more and more miniaturized base
stations called Small Cells operating on low power will be
placed spanning the whole relevant area. These base stations
can also support hundreds of ports for many more antennas.
The technology is called Massive MIMO. The large number
of antennas mean more signal interference which will be
corrected using the Beamforming technology [447] which is
a traffic-signaling system for the cellular base station which
optimizes the data-delivery route to a particular user. Finally,
for multiple communication at the frequency full duplexing
is being looked into. The 5G technology will form the back-
bone of any digital twin owing to their ultralow latency and
unprecedented speed and is already being used in the world’s
first 5G cinema in Oslo.

Long Range Wide Area Network (LoRaWAN) technology
has been gaining a great attention for IoT applications, while
keeping network structures and management simple [448]–
[450]. Unmanned Aerial Systems (UAS) cooperations have
also recently attracted considerable attention to assist ground
base stations in the case of crowded public events, natural dis-
asters, or other temporal emergencies that require additional
needs for network resources [451]–[453]. For example, UAS
based sensing systems have demonstrated value for flexible
in-situ atmospheric boundary layer observations to improve
weather forecasting [454]–[456].

4) COMPUTATIONAL INFRASTRUCTURES
According to Moore’s Law, the performance and functional-
ity of computers/processors can be expected to double every
two years due to the advances in digital electronics. There-
fore, in scientific computing applications, the speeds of both
computation and communication have substantially increased
over the years. However, the communication becomes more
challenging as the number of processing elements increases
and/or the number of grid points decreases within a process-
ing elements, which constitutes a major bottleneck at upcom-
ing exascale computing systems [457]–[459]. Unless we face
up to a new transistor technology (e.g., see [460]) to replace
current metal-oxide semiconductor transistor technologies,
this doubling trend saturates as chip manufacturing sector
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reaches the limits of the atomic scale. This leads to more
effective use of transistors through more efficient architec-
tures (e.g., see [461] for a recent discussion in extreme hetero-
geneity). The HPC community has started to move forward to
incorporate GPU based accelerators and beyond (e.g., TPUs
[462]) for not only graphics rendering but also scientific
computing applications. This heterogeneity shift becomes
even more crucial in future since there is a rapid increase in
the usage of high-productivity programming languages (e.g.,
Matlab, R, Python, Julia) among engineers and scientists. In a
recent article [463], the authors reviewed synergistic activities
among major software development organizations consider-
ing challenges such as productivity, quality, reproducibility,
and sustainability.

As an enabling technology for digital twins, cloud com-
puting utilizes computing power at remote servers hosted on
the Internet to store, manage, and process information/data,
rather than a local server or a personal computer [464]–[466].
Edge computing utilizes computing power at the edge/nodes
of the networks, to completely or partly to store, manage,
and process information/data locally [467]–[470]. Fog com-
puting is a blend of cloud and edge computing where it is
unknown to the user where in the network the data is stored,
managed and processed, and the load is distributed auto-
matically between remote servers and local resources [471],
[471]. In [472], the authors developed a simulator to model
IoT using fog environments and measured the impact of
resource management techniques in latency, network conges-
tion, energy consumption, and cost. We refer to [473] for the
energy management and scalability of IoT systems using fog
computing. In [474], the authors reviewed offloading in fog
computing in IoT applications. The use of time sensitive net-
working (TSN) protocol service as a deterministic transport
for the network layer of fog computing in industrial automa-
tion has been discussed in [475], especially considering their
use in real-time control applications. Furthermore, granular
computing paradigm [476] offers a general framework based
on granular elements such as classes, clusters, and intervals
and might be quite useful in big data applications [477]–
[479]. It is also anticipated that emerging quantum computing
systems will offer phenomenal capabilities for solving data-
intensive complex problems (e.g., computational sciences,
communication networks, artificial intelligence [480]).

5) DIGITAL TWIN PLATFORMS
Kongsberg Digital is a company delivering PaaS and SaaS
services for energy, oil and gas, and maritime industries.
Kongsberg is partner with some key cloud vendors, including
Microsoft Azure, to provide enabling information technology
services [481]. In 2017, Kongsberg launched its open digital
ecosystem platform, called KognifAI [482]. It combines a
group of applications on the cloud focusing on optimal data
accessibility and processing. KognifAI is built on cyberse-
curity, identity, encryption, and data integrity [483]. More-
over, its main infrastructure can be utilized to easily scale
applications and services [484]. KognifAI offers digital twin

solutions in maritime, drilling and wells, renewable energies,
etc [485]. Kongsberg dynamic digital twin combines safety
with fast prototyping and implementation, and connects off-
shore and onshore users in oil and gas industry [486]. It can
provide a model not only to represent an existing physical
system, but also a planned installation (e.g., greenfield digital
twin [487]) ormaintenance and repair (e.g, brownfield [488]).

In 2018, MapleSim, a product of MapleSoft, added new
features for developing digital twins [489]. MapleSim is pow-
erful in creating an accurate dynamic model of the machine
based on CAD data, with all forces and torques included.
The major focus of MapleSim digital twin module is to
implement virtual plant models that do not necessarily require
expert knowledge. To test motor sizing in a new screwing
machine at Stoppil Industrie, a digital twin of the machine
was created usingMapleSim [490]. The initial motor size was
found to be undersized by a factor of 10, which would have
caused machine failure and excessive losses. MapleSim was
integrated into B&R automation studio to facilitate the use
of digital twin for machine development [491]. MapleSim in
conjunction with B&R software were used to build model-
based feedback during motor sizing for an injection molding
machine [492].

Cognite provides the full-scale digital transformation ser-
vices to heavy industries such as oil and gas, power [493],
original equipment manufacturers (OEMs), and shipping
companies. Cognite has built a software package named Cog-
nite Data Fusion that extracts useful information from the
data. One of the main features of Cognite Data Fusion is its
APIs, SDKs, and libraries that are open-source to its cus-
tomers. Developers and analysts can build applications and
ML models that best suit the operation needs. These applica-
tions can include large CADmodels, complex asset plans, and
can be run on phones and tablets. Cognite Data Fusion also
offers to customize permissions hierarchies for sharing data
with partners and suppliers. For example, the Cognite Digital
Platform has helped Framo (an OEM for pumping systems)
and their customer Aker BP to communicate and share the
live operational data of equipment more efficiently [494].
This enabled Framo to create their applications and moni-
tor the status of equipment to plan the maintenance. Using
the operational data of their equipment, OEMs can inform
their customers about how to improve the performance of
the equipment. The integration of the Siemens information
management system (IMS) and Cognite data platform has
benefited Aker BP in optimizing the offshore maintenance
and reduce costs [495]. With the availability of live data
and using artificial intelligence,ML algorithms, Siemens pre-
sented a powerful analysis of each equipment with advanced
visualizations.

Siemens digital twin leads the industry by offering diverse
computational tools in CAE, CAD, manufacturing and elec-
tronic design and connect information from all of these
domains using a seamless digital thread to give companies
tremendous insight into products and designs [496], [497].
Siemens plant simulation (PS) digital tool was successfully
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interfaced (digital copy) with production line involving man-
ufacturing of pneumatic cylinders within automotive indus-
try to promote the concept of Industry 4.0. The production
line simulation model was optimized by genetic algorithm
provided by Siemens PS tool which adjusted the simulation
model and then simulated the digital twin [498]. Smart facto-
ries are designed with machines that can operate based on
manufacturing environments, control production processes
and share information with each other in the form of knowl-
edge graphs. Generally, knowledge graphs are incomplete
and missing data has to be inferred. Siemens digital twin
powered bymachine learning tools (e.g., recurrent neural net-
works) was demonstrated to complete the knowledge graph
and synchronize the digital and the physical representations
of a smart factory [499].

ANSYS introduced digital twin builder in its ANSYS
19.1 version. ANSYS twin builder provides the developer
with several features such as creating a multi-domain system,
multiple fidelity and multiphysics solver, efficient ROM con-
struction capabilities, third-party tool integration, embedded
software integration, as well as system optimization [500].
ANSYS along with other companies built the digital twin for
a pump that can use the real-time sensor data to improve its
performance and to predict failures [501]. General Electric
also used a customized version of ANSYS digital twin to
design megawatt-sized electric circuit breakers [502].

Akselos, founded in 2012, offers instantaneous physics
based simulations and analyses of critical infrastructures cal-
ibrated with sensor data in an asset-heavy industry. The key
benefits of Akselos digital twin are the asset performance
optimization and life extension, failure prediction and pre-
vention, as well as contingency planning. Akselos owns a
structural analysis tool that’s fast enough to integrate, re-
calibrate, and re-analyze the sensor data. Their framework
uses a reduced basis finite element analysis (RB-FEA) tech-
nology, a state-of-the-art reduced order modeling approach
which is quite faster than conventional FEA and higher accu-
racy is ensured by using a posteriori accuracy indicators
and automated model enrichment. Akselos provides a cloud
based platform to develop the digital twin framework for any
number of users from any geographic locations or organiza-
tions. The structural models developed by Akselos have the
capacity to incorporate the localized nonlinearities as well.
Among the existing case studies, Akselos digital twin is used
for offshore asset life extension, optimizing floating produc-
tion storage and offloading, inspection, return on investment,
and ship loader life extension. Akselos unlocked 20 years of
structural capacity for the assets operated by Royal Dutch
Shell in the North Sea. Details about the Akselos and their
work agenda can be found in [503] and [504].

General Electric (GE) has been developing a digital twin
environment integrated with different components of the
power plant that takes into account customer defined Key
Performance Indicator (KPIs) and business objectives by
measuring asset health, wear and performance. Their Digital
Twin runs on the Predix platform, designed to operate large

volumes of sensor data at an industrial scale. Their platform
offers advanced distribution management solutions, geospa-
tial network modeling solutions, grid analytics, and asset
performance management for power and utility services such
as next generation sensing technologies, digital threading,
artificial intelligence, advanced control and edge computing.
Many world renowned companies have been applied these
technologies for diverse industrial fields like automotive,
food and beverage, chemicals, digital energy, steel manufac-
turing, equipment manufacturing, pulp/paper manufacturing,
and semiconductors. Details on GE digital can be found
in [505] and [506].

Oracle IoT Cloud offer Digital Twin through three pil-
lars, (i) virtual twin where the physical asset or device is
represented virtually in the cloud, (ii) predictive twin using
either physics based models (FEM/CFD) or statistic/ML
models having support fromOracle’s products such as Oracle
R Advanced Analytics for Hadoop (ORAAH) and Oracle
Stream Explorer, and (iii) twin projections where the insights
generated by digital twin is projected to the backend applica-
tion and supported by Oracle ERP (supply chain, manufac-
turing, maintenance applications) and CX (service) [6].

E. HUMAN-MACHINE INTERFACE
As the demarcation between humans and machine starts to
fade in the context of Digital Twin, there will be a need for
more effective and fast communication and interaction.While
augmented/virtual reality, without doubt will be required to
create a detailed visualization of the assets, natural language
processing and gesture control will be a very common mode
of interaction. We detailed the current state-of-the-art in
human machine interface and their potential usage in a DT
context.

1) AUGMENTED AND VIRTUAL REALITY
Augmented Reality (AR) and Virtual Reality (VR) can be
considered among the key technologies that promise to add
new perspectives in many sectors [507]. We refer to sev-
eral review articles on the state-of-the-arts in engineeing
and design [508]–[512], medicine [513]–[517] and education
[518]–[521]. In [3], Escorsa highlighted numerous patented
developments within the digital twin context in arrangements
for interaction with the human body such as, for example,
‘‘haptics’’ touch feedback technologies as computer gener-
ated output to the user developed by Immersion Inc.

2) NATURAL LANGUAGE PROCESSING
Voice has been perhaps the most effective and quickest mode
of communication among humans. For a seamless integration
of the humans and machine in the context of the digital
twin, there is an obvious need for elevating this mode of
communication to a level that humans and machines can
interact seamlessly. With the recent advancements in DL
[115] and LSTM algorithms [522], language translations
and interpretation has reached at least human level accu-
racy and efficiency if not more. A nice discussion on the
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major recent advances inNatural Language Processing (NLP)
focusing on neural network-based methods can be found
in [523]. The blog condenses 18 years (2001-2018) worth
of work into eight milestones that are the most relevant
today. Further insights about the recent trends in NLP can be
found in [524].

3) GESTURE CONTROL
Recent advancement in remote sensing technologies
allows highly accurate gesture recognition capabilities
through RF and mmWave radar [525]–[528], ambient light
[529]–[531], cameras and image processing [532]–[535],
sound [536]–[539] and wearable devices [540]–[542]. Along
with the faster communication in the IoT, such technological
developments in gesture training and control will be crucial
in developing more robust digital twin systems.

VI. SOCIO-ECONOMIC IMPACTS
Digital Twinning will bring about unprecedented automation
in the management of any physical asset. One of the first
concern that can be a stumbling block for the adaptation of
digital twins just like any other automation technologies will
be its acceptability by the work force. The fear of losing jobs
seemed very logical a few decades earlier [543], however
even at that time contrary opinions were prevalent based
on systematic studies [544]. In fact, Sheridan showed that
automation just results in redistribution of workplace without
much impact on employment [545]. Such studies highlights
the vulnerability of the workforce with lower qualification
involved in repeatative jobs. There are also positive aspects
with automation and that is with a careful task allocation
between humans and machines, it can enable greater safety
and creativity at work place by deallocating dirty, dumb
and dangerous (3D) jobs to machines and artificial intel-
ligence. Such task allocation has been extensively studied
in [546]–[548]. Humans should be in the loop not only for
coordinating AI developments but also checking AI results.
At this point it is worth remembering the reflection ‘‘ironies
of automation’’ by Lisanne Bainbridge. It simply states that
the as automation takes over the simpler works, the role
of humans to manage more complicated unpredictable tasks
will become even more critical. How to groom humans to
deal with unexpected events after prolonged phases of inac-
tivity will be a major challenge. Moreover, for economic
reasons, there will be a lesser motivation for recruiting pro-
fessional users of the relevant technologies, a base of non-
professional users might be a natural outcome. This will
require strategies to handle security and hacking [549]. As the
world gears towards greater autonomy resulting from digi-
tal twinning, efforts will have to be made to create oppor-
tunities for all and nor for a selected few. Nevertheless,
with good guiding intentions, the technology will improve
the quality of work at work places and with good training
and career couselling will enable workers to focus on more
creative work.

FIGURE 6. Stakeholders and their potential contributions.

VII. CONCLUSIONS AND RECOMMENDATIONS
Based on our literature survey we present the following defi-
nition of digital twin:

A digital twin is defined as a virtual representation of a
physical asset enabled through data and simulators for
real-time prediction, optimization, monitoring, control-
ling, and improved decision making.

We find the breakdown of digital twin into three pillars as
proposed by Oracle [6] to be useful both in communicating
the concept as well as identify the role we think the different
stakeholders should take in order to fully exploit its potential:
• Virtual Twin: Creation of a virtual representation of a
physical asset or a device in the cloud.

• Predictive Twin: Physics based, data driven or hybrid
models operating on the virtual twin to predict the
behaviour of the physical asset.

• Twin Projection: Integration of insights generated by
the predictive twin into the business operation and
processes.

Despite the challenges, applying digital twin technologies
to various sectors is gaining in popularity. Based on our tech-
nology watch, we would like to conclude our analysis pro-
viding recommendations for each stakeholders group (Fig. 6)
and their most important contributions:
• Industry: The greatest pull for the technology is going
to come from the industry sector. There are three most
important ways in which this sector can make posi-
tive contributions (a) by making asset dataset avail-
able for research and validated model building (b) by
actively participating in research through practical
knowledge sharing (c) by being proactive in ‘project-
ing’ the insights obtained from predictive twins into
their business applications to validate the usefulness of
digital twins.

• Academia and research institutes: It is foreseen that
along with close cooperation with the industry sectors
most of the enabling technologies for both ‘virtual twins’
and ‘predictive twins’ will be developed by the academia
and research institutes. We strongly recommend that
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these developments are made exploitable for the society
at large by means of open source software. Along with
providing the technological know-how, the academia
will also have to take the lead in grooming an altogether
new generation of workforce to serve the reformed
environment. We advocate the MAC-model, i.e. to
educate and train a new generation of researchers in
forming interdisciplinary teams that combine appli-
cation knowledge (A) with expertise and advanced
methodologies from mathematics (M) and computer
science (C).

• Government and policy makers: To ensure that the ben-
efits of the new technology reach every layer of the
society, that humans are still relevant and there is no
compromise with ethics, privacy and security, new inclu-
sive policies and regulations will have to be framed.
There should be a major effort toward the democratiza-
tion of the technology. Data protection and privacy laws
(e.g., the General Data Protection Regulation (GDPR),
agreed upon by the European Parliament and Council
in April 2016) is definitely and encouraging step in
the right direction. The different governmental bodies
should initiate feasibility studies for utilizing digital
twins within their sectors. In particular, investigate dif-
ferent scenarios on how they can profit from ‘projecting’
insights obtained from relevant predictive twins into
their governmental responsibilities. Furthermore, data
generated by means of public funding (e.g. weather
forecast, anonymous health care data) should be openly
available and made easily exploitable for the academia
and the industry.

• Funding agencies: Especially those with a strong mis-
sion focusing on industrial innovation impact, the digital
twinning offers a challenging theme for center projects
(e.g., US NSF Engineering Research Centers and other
international comparators [550]). As a platform for mul-
tidisciplinary research, digital twin concept consists of
a wide spectrum from the fundamental research and
enabling technology development to the system integra-
tion phase. However, funding of open source enabling
technology platforms should be prioritized as the fund-
ing mechanisms of such infrastructure have been scarce
up to now.

• Society: The onus to be well informed about the new
technology is on the society itself. It is not a matter of if
but when the new technology will bring about remark-
able changes in our private and professional lives. Thus,
we recommend that one start develop new skills during
the K12 education which will facilitate embracement of
the emerging technology.

While the definition of a digital twin is unambiguous,
what is not a digital twin is a difficult question to answer.
There is a need to quantify the degree to which a digital twin
resembles its physical counterpart both in terms of appear-
ance and behaviour. As we have discussed in this paper,
the focus so far has mostly been on the former but only

a little has been done to add physical realism. If we were
to define a score of digital twinning on a scale of 1-10,
a score of 10 will correspond to a situation when a digital
twin becomes indistinguishable from its physical counter-
part to an observer. Towards this goal, a hybrid analysis
and modeling methodology can be developed by combining
ML with physics based models to contribute a firm unified
foundation for the computational modeling and simulation of
complex problems that arise in numerous multidisciplinary
applications.

Finally, we would like to highlight the importance of stan-
dardization. It can be argued that in a fully connected and
interactive world, different physical assets will be interacting
with each other and the corresponding digital twins will also
have to interact with each other. In order to facilitate these
interactions there will be a need for standards cutting across
different domain areas. These standards can range from the
file format of the data storage, to the details of how the
data can be compressed, to the data protection requirements
addressing differences in the laws when spread over different
geographical areas.

To conclude, the digital twin concept offers many new
perspectives to our rapidly digitalized society and its seamless
interactions with many different fields. Combining comple-
mentary strengths in physics-based and data-driven modeling
approaches, the hybrid analysis and modeling framework
becomes particularly appealing for developing robust digital
twin platforms, and enables us to make more informed deci-
sions and ask even better questions to mitigate challenges rel-
evant to big data cybernetics, security, digitalization, autom-
atization and intelligentization.
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