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A B S T R A C T

To achieve high performing emergency medical services (EMS), planning is of vital importance. EMS planners
face several challenges when managing ambulance stations and the fleet of ambulances. In this paper, three
strategic cases for EMS planners are presented together with potential solutions. In the first case, the effects of
closing down a local emergency room (ER) are analyzed together with how adding an ambulance station and an
ambulance to the area affected by the closing of the ER can be used to mitigate the negative consequences from
the closing. The second case investigates a change in the organization of EMS. Currently, many non-urgent
transport assignments are performed by ambulances which make them unavailable for more urgent calls. The
potential for a more effective utilization of the ambulances is explored through transferring these assignments to
designated transport vehicles. The third case is more technical and challenges the common practice regarding
how time dependent demand is handled. Looking at the busiest hour or the average daily demand, is compared
with taking time varying demand into account. The cases and solutions are studied using a recently developed
strategic ambulance station location and ambulance allocation model for the Maximum Expected Performance
Location Problem with Heterogeneous Regions (MEPLP-HR). The model has been extended to also include
multiple time periods. This article demonstrates an innovative use of the model and how it can be applied to find
and evaluate solutions to real cases within the field of strategic planning of EMS. The model is found to be a
useful decision support tool when analyzing the cases and the expected performance of potential solutions.

1. Introduction

The general challenge for emergency medical services (EMS) is to
provide the best possible service to the public. Thus, a variety of
planning problems arises. Within strategic planning, the main problem
has been where to locate ambulances or ambulance stations. Tactical
problems include dimensioning the ambulance fleet and allocating
ambulances to stations. Within operational planning, there are pro-
blems such as which ambulance to dispatch to a call, if and where to
relocate ambulances, and if the patient should be treated at the scene or
brought to the emergency room (ER) of a hospital. To be able to make
the best possible decisions for strategic, tactical and operational pro-
blems, operations researchers have been developing decision support
tools for several decades. In recent years, computational power has
increased and EMS has tracked more data. This has created tremendous
opportunities for using Operations Research (OR) to provide decision
support for EMS management.

This paper shows how the model for the Maximum Expected
Performance Location Problem for Heterogeneous Regions (MEPLP-HR)
from Leknes et al. [1] can be applied as a decision support tool. Three
cases experienced by the county of Sør-Trøndelag are presented. In the
first case, the consequences of closing down a local ER, and how this
action can be partly mitigated by adding more ambulances, are ana-
lyzed. To do this, a new performance measure based on the time to ER is
used. In the second case, the potential for a more effective utilization of
ambulances is explored through transferring non-urgent transport as-
signments to designated transport vehicles. Finally, the importance of
taking several time periods into account when locating stations is ex-
plored. Common approaches is to look at the busiest hour or the
average daily demand when analyzing station locations, which might
give rise to suboptimal locations for some other time periods [2]. For
this analysis, the model has been extended to include time periods.
Thus, the paper contributes to the literature and EMS practice by
showing how one single optimization model can be used to do different
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kinds of analyses for real problems.
The region of study is the county of Sør-Trøndelag in Norway. The

county of Sør-Trøndelag is shown as the black area in Fig. 1. In Sør-
Trøndelag there are approximately 300,000 inhabitants, with two
thirds living in urban areas [3]. There are approximately 30,000 calls
for EMS yearly, with one third being red, one third being yellow, and
one third being green non-urgent transport calls. The red calls are the
most urgent and time critical calls. The number of calls from a zone is
also referred to as the demand in the zone. It is the EMS administrator
of Sør-Trøndelag, the Emergency Medical Communication Central
(AMK), that receives the calls. When the AMK receives a call, the
general response process is as follows:

i. Call is received by trained personnel and then screened, classified
and allocated to one or more available ambulance(s).

ii. Ambulance departs for incident scene.
iii. Ambulance arrives at scene and intervention by paramedics starts.
iv. Ambulance returns to hospital, station or is dispatched to new in-

cident.

However, this is just an overview of the key operational EMS pro-
cess. In addition, there are several other key processes for EMS, such as
planning and training. All these processes are important for the AMK to
be performing well. As the scope of work for the AMK contains several
different processes, the performance of the AMK is divided into several
performance objectives, listed below sorted by relative importance:

1. The patient should receive timely and correct treatment.
2. Partners and the public should have confidence in the organization.
3. The employees should have a good working environment and pro-

fessional development.
4. The organization should appear transparent and be cost-effective.

All these performance objectives are important to achieve high
performing EMS. However, OR has traditionally been used to optimize
the system with respect to response time and survival. Response time is
easy to measure and understand, and is often given as political targets.
The National guidelines for Norway are that 90% of red calls should be
responded to within 12min in urban areas and 25min in rural areas
[4]. Nevertheless, these are just guidelines, and the local EMS planners
are free to decide on other targets.

The rest of the paper is outlined as follows: Section 2 presents se-
lected related research. Section 3 contains a brief overview of the model
used. In Section 4 the data and the case region are presented, while
Section 5 presents and discusses the three cases. Finally, Section 6
concludes on the results and proposes further research.

2. Related research

For more than four decades operations researchers have developed
decision support for strategic, tactical and operational problems for
EMS. Researchers have also put an effort in determining what should be
measured to obtain the desired performance. In this section we review a
selection of the literature within strategic decision support for EMS.
Three recent review papers give a good overview of other OR, logistics
and planning studies within EMS [5–7].

One of the earliest models, the maximal covering location problem
(MCLP), was introduced by Church and ReVelle [8]. The MCLP max-
imizes the demand covered within a certain response time. This model
with the covering performance measure has served as a basis for many
strategic location models. Schilling et al. [9] developed a model that
maximizes the demand covered by two different types of vehicles, while
Hogan and ReVelle [10] created models that maximized the number of
zones covered by two or more ambulance stations, i.e. provided double
coverage.

The earliest models were pure strategic models that did not consider
the operational aspects. One of the major challenges with locating
ambulance stations is to create a model that in some way incorporates
these. The most important one might be the risk that all ambulances
allocated to a station are busy. Different locations will affect the
workload of the ambulances, and hence the risk of an ambulance being
busy when an incident occurs. To cope with this, Daskin [11] presented
the maximum expected covering location problem (MEXCLP). In the
MEXCLP there is a certain probability p that an ambulance is busy. This
busy probability is in the earliest models set to a constant for all am-
bulances, while newer models such as the ones in [12] use iterative
methods to find more realistic busy probabilities.

Knight et al. [2] extended the model by Erkut et al. [12] with
multiple performance measures, and used an iterative procedure to
calculate and update the busy probabilities. Instead of using different
busy probabilities, van den Berg [13] developed an integer linear model
allowing for fractional coverage, which can be interpreted as the
probability of reaching a call within the specified time standard. An-
other approach is to use stochastic programming, like, e.g. Boujemaa
et al. [14] who developed a two-stage stochastic programming ambu-
lance location-allocation model and showed that it outperforms a de-
terministic model. Sung and Lee [15] also used stochastic programming
to solve a model with stochastic call arrivals, taking into account that
the frequency of ambulance calls typically varies both spatially and
temporally during the day and night.

To evaluate a certain location and allocation of ambulances, both
simulation and stochastic models can be used. Simulation is applied by
Davis [16], Goldberg et al. [17] and Ünlüyurt and Tunçer [18] among
others, while the stochastic hypercube queuing model (HQM) was in-
troduced by Larson [19]. Both simulation and stochastic models have
their pros and cons, but as argued by Ingolfsson [20], a primary ad-
vantage of stochastic models is that they can be solved analytically.
HQM is used by Erkut et al. [12], Knight et al. [2] and Ansari et al. [21]
among others to find the busy probabilities (or equivalent factors) for
the ambulances at different stations.

In addition to having a realistic simulation or stochastic model, it is
important to know what characterizes a good solution to be able to
evaluate a certain location and allocation. The earliest models, such as
the MCLP, evaluated locations based on the covering performance
measure. A problem with this performance measure is however that as
long as the origin of the call is outside the cover threshold, it does not
contribute to the objective function. Hence, it does not matter how far

Fig. 1. Map of Norway in grey and the county of Sør-Trøndelag in black.
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the demand zone is away from a station as long as it is outside the cover
threshold. The covering performance measure does not differentiate
between response times within the threshold either. This is a challenge
as the outcome of some calls is highly dependent on a short response
time.

As a response to these challenges, Erkut et al. [12] introduced the
maximum survival location problem (MSLP). The MSLP maximizes the
probability of survival for cardiac arrest patients. The objective is based
on the probability of survival given a specific response time. Fig. 2 il-
lustrates the difference between the survival and cover measure. The 1/
0 cover measure is seen as the grey square. For all demand within
12min, the probability of positive outcome is 100%. For demand out-
side 12min, the probability for a positive outcome is 0%. The black line
is the survival function from De Maio et al. [22]. The probability for
positive outcome from cardiac arrest is about 35% at the time the
cardiac arrest occurs. It is assumed that there is no interaction from
bystanders. The function decreases with the response time, and after
12min the probability for a positive outcome is about 3%. Erkut et al.
[12] investigated different survival functions. However, the functions
were found to give approximately the same locations of the ambulance
stations. The conclusion was that the important characteristic is the
exponential slope of the function. Knight et al. [2] and McCormack and
Coates [23] built on the work of Erkut et al. [12], but also included
standard cover performance measures in the objective function. Knight
et al. [2] show that heterogeneous outcome measures can provide ad-
ditional decision support. He et al. [24] also incorporate multiple ob-
jectives, when studying how to locate rural EMS stations for managing
traffic accidents in South Dakota, US. They have one coverage com-
ponent, and then minimize the average response time for the calls that
are not covered.

For all these models, response time is considered the main para-
meter to use when evaluating a potential location configuration. The
validity of response time as a parameter for patient outcomes has been
the background for several articles. Weiss et al. [25] and Pons and
Markovchick [26] found that response time did not play an important
role for patient survival after traumatic injuries. However, by using
distance from ambulance station to patient as a proxy for response time,
Wilde [27] showed that response time significantly affects mortality of
patients in need of emergency services. By studying patient data,
Peyravi et al. [28] show that using temporary locations for ambulances
will decrease the response times and also the pre-hospital mortality
rate, compared to using permanent stations. In some research, e.g. in
[29], the cost/benefit of response time has been investigated. However,
most of the existing related research has focused on determining the
minimum number of ambulances needed to fulfill some requirements,
or how to best use the existing resources [30].

Alongside with the progress on model development and solution

methods, numerous case studies have been performed, where OR is
utilized when analyzing specific real world problems. Su and Shih [31]
used computer simulation to study the EMS system in Taiwan. By
varying input parameters such as staffing levels and number of rescue
units assigned to hospitals, they were able to analyze the effectiveness,
care quality and cost-efficiency for many different ways of organizing
the operations. Su et al. [32] used a refined double coverage model to
produce a new plan for ambulance deployment in Shanghai that could
potentially lower the operation cost with 10 million RMB per year.
Andrade and Cunha [33] suggested moveable ambulance stations for
São Paulo in Brazil, and use an artificial bee colony algorithm to
get allocation and reposition suggestions. Based on the results, the
ambulance managers in São Paulo decided to increase the number of
bases, using the model to get the appropriate decision support. Both
Amorim et al. [34] and He et al. [24] focused on traffic accidents, but
Amorim et al. [34] for urban areas (Porto city) and He et al. [24] for
rural. Liu et al. [35] used a double coverage model to locate stations
and allocate ambulances in the Songjiang District, Shanghai, China.
Dibene et al. [36] calculated the optimal locations for ambulances in
Tijuana, Mexico using a double standard model, where all demand
should be covered within one time standard, and a fraction of the de-
mand also within another, shorter time standard. They show that the
coverage can be significantly improved without adding new resources,
compared with the current real locations. Fritze et al. [37] use a variant
of the MCLP to determine locations for EMS stations in Lower Austria.
Their study was motivated by a call for bids to restructure the locations,
having very specific instructions for the analysis, e.g. that 95% of the
population should be reachable by a physician within 20min, that an
ambulance speed of 1.25 times the maximum allowed speed should be
used, and that no double coverage had to be considered. The results
showed that it was possible to improve the coverage substantially, even
while reducing the resources. However, the authors also report that the
final decision by the government, which was made before the study was
finished, was to keep all the present locations.

3. Mathematical model

To analyze the cases in this paper, the model for the Maximum
Expected Performance Location Problem for Heterogeous Regions
(MEPLP-HR) is used. Given a set of possible locations for ambulance
stations and a set of zones with demand for EMS, the model locates
ambulance stations and allocates ambulances to these stations based on
a set of given performance measures. Each performance measure has a
certain weight, and the model maximizes the total performance with a
limited number of ambulances and stations at disposal (see Section 4).
The model incorporates operational aspects by calculating the prob-
ability that there is an available ambulance at a station. The model is
explained in depth in Leknes et al. [1].

The problem analyzed in this paper combines both strategic (lo-
cating ambulance stations), and tactical (allocating ambulances to the
stations) decisions. To reflect that the tactical decisions can be adopted
to different demands, the model in Leknes et al. [1] is extended with
multiple scenarios representing different demand situations. These
scenarios represent different time periods of a week and are henceforth
called time periods. The problem thus resembles a two-stage problem
[38]. In the first stage, the stations are located, and in the second stage
the available ambulances are allocated to the stations for each time
period. In the following subsection, the model is presented and briefly
explained.

3.1. Model formulation

Indices and sets �∈j zones where ambulance stations can be lo-
cated �∈i zones with a demand for EMS �∈q ranking of sta-
tions �∈l performance measures of the EMS provider �∈t time
periodsParametersWlweight of performance measure lDiltnumber of

Fig. 2. Comparison of survival and cover performance measure.
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calls in zone i relevant for performance measure l in time period
tHijlperformance value per call of zone i being covered by a station in
zone j, given performance measure lAtnumber of available ambulances
in time period tSnumber of stations that can be locatedĀmaximum
number of ambulances at a stationλitrate of calls from zone i in time
period tTijaverage time for an ambulance at a station in zone j to serve
calls from zone iVariableszj1 if a station is located in zone j, 0 other-
wisexjtnumber of ambulances allocated to a station in zone j in time
period tyijqtproportion of demand in zone i at time period t covered by a
station in zone j ranked as the qth station for zone iρijt1 if station in zone
j is the primary station for zone i in time period t, 0 otherwiseθjtarrival
rate of calls to the station in zone j in time period tμjtservice rate of the
station in zone j in time period t
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The model includes variables for where a station can be located (zj),
and how many ambulances that are located in each station at each time
period (xjt). yijqt is the required minimum probability that an ambulance
from a station in zone j will be able to respond to a call in zone i at time
period t, given that the station is qth ranked station for zone i. A station
can be ranked as primary or secondary station, i.e. q can be 1 or 2, and
each zone has to have exactly one primary station. ρijt is 1 if the station
in zone j is the primary station for zone i. The arrival rate of calls to a
station, θjt, is variable, depending on how much of the demand that is
handled by the surrounding stations, while the average service rate for
a station, μjt, depends on the number of calls served and the average
service time.

The objective function (1) calculates the total performance of the

locations and allocations. Depending on the type of call (red or yellow),
different performance measures, �∈l are used, as specified in Table 1,
where each measure is weighed by Wl. Thus, as an example, for yellow
calls, if zone i is an urban zone, a station in zone j covers 70% of the
demand and the response time from j to i is less than 12min, the ob-
jective function contribution is WlDiltHijlyijqt=1 ·Dilt · 1 ·0.7.

The deployment constraints are given by constraints (2)–(4). Con-
straints (2) and (3) make sure that no more than the number of avail-
able stations and ambulances are located and allocated, respectively.
The logical restriction that an ambulance cannot be allocated to a zone
without a station is handled by constraints (4). The covering constraints
(5)–(9) keep track of which zones the different stations cover, as well as
the primary station for each zone. All calls from each zone have to be
covered by a station. This is taken care of by constraints (5). For each
zone there is one primary station and one or more secondary station(s).
The secondary station(s) cannot be the same as the primary station.
These properties are handled through constraints (6)–(8). In addition,
constraints (9) ensure that the primary station receives a higher pro-
portion of calls than the secondary station(s).

A station receives all the calls from a zone that has the station as its
primary station, as well as the respective proportion of calls it covers
from a zone that has it as secondary station. This constitute the arrival
rate and is given by constraints (10). It should be noted that a station
typically will not serve all arriving calls, as all ambulances at one sta-
tion at times might be busy. In those cases, the calls are served by the
secondary stations. The average service rate of ambulances at a station
is given by constraints (11). The numerator is the number of calls
served by the station, and the denominator is the time it takes to serve
all calls. This expression is nonlinear and therefore linearized as de-
scribed in Leknes et al. [1]. The proportion of calls covered by a station
has to be less than or equal to the long time probability that there is an
ambulance available at the station, expressed through the function f(θjt,
μjt, xjt). This is given by constraints (12). The long time probability that
there is an ambulance at a station depends on the arrival rate of calls to
the station, the service rate of the ambulances at the station, as well as
the number of ambulances at the station. This expression is nonlinear
and based on queuing models. The full explanation and linearization of
this expression is given in Leknes et al. [1]. Finally, constraints
(13)–(18) are the variable definitions.

4. Data

The basis for the case studies is AMK data from a time period of four
years. The dataset contains the time, date, location and severity (red,
yellow and green) of each call. For Sør-Trøndelag today, there are no
formalized performance measures for the different types of calls.
However, AMK's objective is to give the best possible service to the
public. For response time, this can be summarized by performance
objective 1 and 2 from Section 1. As the criticality of time is different
for red, yellow and green calls, the performance measures should be
different for these calls. For the time critical red calls, the survival
measure from De Maio et al. [22] is used. For yellow calls, the response
time is not critical for the condition of the patient, but still important
for the service level and for the population to maintain a confidence in

Table 1
Performance measures used in the cases.

Performance measure Function Wl Dilt

Survival =
+ − +

H t( )R

e tR
1

1 0.679 0.262
20 Red calls

Cover urban
= ⎧

⎨⎩
≤ ≤

>
H t t

t
( ) 1 for 0 12

0 for 12
R

R

R

1 Yellow calls

Cover rural
= ⎧

⎨⎩
≤ ≤

>
H t t

t
( ) 1 for 0 25

0 for 25
R

R

R

1 Yellow calls
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the organization. Still, it is sufficient that the ambulance arrives within
a given threshold, and thus, it is reasonable to use a cover measure for
these calls. There is no performance measure for green calls as these are
mostly non-urgent transport assignments. However, as ambulances are
used also for these, they indirectly affect the other performance mea-
sures, and have to be taken into account in the analysis. The weights for
the different performance measures are based on the weights in Knight
et al. [2]. The summarized performance measures are given in Table 1,
where tR is the response time in minutes.

The region contains 139 zones with demand for EMS and 76 of these
are potential locations for ambulance stations. The zones are postcode
areas, and thus vary somewhat both in size, resident population and
number of historical calls, with rural zones typically being larger with a
sparser population distribution. Partitioning the county into just 139
zones will of course induce some aggregation errors [39]. However, the
strategic nature of the problem, along with the fact that it is impossible
to exactly forecast where and when future calls will occur, makes it a
reasonable trade-off between model accuracy and the amount of effort
required to collect data and solve the model. The region can be seen in
Fig. 3, where the blue dots represent the population center in each zone
and the orange dots indicate where the hospitals with ER are located
today. The driving distance from the south east to the north west of the
county is approximately 350 km with an estimated driving time of 5 h.
The hospital located to the west is Orkdal hospital and the easternmost
hospital is the regional hospital of Sør-Trøndelag. The area within the
dashed line is the urban area of Trondheim and Malvik. The Trondheim
and Malvik area consists of 67 zones out of which 44 are potential lo-
cations for stations. This smaller area has also been used for some of the
tests.

At the time of the study, there were 24 ambulances allocated to 16
stations in the region. The travel times between the zones were found
using a tool developed in the Python language that gather the travel
times between each node pair from Google Maps. The average service
times Tij are calculated using the travel times between the zones, sta-
tions and the nearest ER, as well as adding a constant that represents
the time on the scene. For Sør-Trøndelag, 43% of all calls end at an ER,
and the average time spent on the scene is 16 min. Hence, the formula
for Tij is given by Eq. (19), where TT

ji is the travel time from zone j to i,
TT

iE is the travel time from zone i to the nearest ER, and TT
Ej is the travel

time from the ER to zone j. In some specific cases, an ambulance may
take a patient to another ER than the closest one, e.g. for specialized
care. However, it is common practice in Norway to choose the closest
ER, and for a majority of cases this is done. Thus, in the model we
assume that this always happen:

= + + + +T T T T T16 0.43( ) 0.57T T T T
ij ji iE Ej ij (19)

5. Case studies

The cases we present show different analyses that can be done using
the proposed model. In the first case we evaluate the effects of closing
down a local emergency room (ER). We also analyze how adding an
ambulances station and an ambulance to the area affected by the
closing of the ER can be used to mitiage the bad consequences from the
closing. The second case investigates a change in the organization of
EMS. Currently, many non-urgent transport assignments are performed
by ambulances which make them unavailable for more urgent calls. The
potential for a more effective utilization of the ambulances is explored

Fig. 3. The county of Sør-Trøndelag, the blue dots represent the population center in each zone and the orange dots indicate where the hospitals with ER are located
today. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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through transferring these assignments to designated transport vehicles.
The third case is more technical and challenges the common practice
regarding how time dependent demand is handled. The cases are stu-
died using the model for the MEPLP-HR. The model is written in Mosel
and solved by Xpress-Optimizer Version 8.5.6. Each case begins with a
description of the problem and proceeds to show how the model is used
to analyze the case.

5.1. Case 1: Closing down a local emergency room

There are several small local ERs in Norway today. These are con-
troversial as they are expensive, and there are discussions about the
possibility to uphold proper competence in such small facilities com-
pared with the regional hospitals. However, there are substantial local
political forces that want to keep these facilities open, as they fear that
the emergency medical services for their local area will be weakened if
the facility is closed down. For Sør-Trøndelag, the local ER under dis-
cussion is the one located in Orkdal. The ER in Orkdal is approximately
35min from the regional hospital of Sør-Trøndelag. 40 of the 139 zones
has this as its nearest ER, and the accumulated demand in these 40
zones counts for 14.9% of the red and yellow calls in Sør-Trøndelag.

A proposed mitigating action for closing local ERs is to procure
additional ambulances and/or stations for the area affected by the
closing. In this manner, the extra stations and ambulances should weigh
up for the longer distance to the ER. A share of the savings from the
closed ER can finance these additional resources. However, it is im-
portant to emphasize that the closing of local ERs is not solely based on
cost cutting.

The traditional performance measures of the ambulance station lo-
cation are only based on response time. However, if the ambulances
should weigh up for closing down a local ER, it is the time from a call is
received until the patient arrives at the ER that is of greatest interest.
This makes sense when considering, e.g. stroke, where the time until a
CT-scan is performed is of great importance [40]. It is also important for
local politicians, as the time until a person arrives at the ER affects the
perceived safety and convenience for the population.

To analyze the effect of closing the local ER, a new performance
measure based on the time from a call arrives until the patient is at the
ER is added to the model. The idea is that people far from the ER will be
compensated by having an ambulance closer to reduce the time to ER. A
cover measure is used because the objective is to get as many as pos-
sible to the ER within a reasonable time, not to minimize the average
time to ER. However, there are no official guidelines to what should be
defined as a reasonable time to the ER. For Sør-Trøndelag, some interest
groups claim that 60min is reasonable, while others claim that it would
be acceptable to have up to 120min. Based on this, the performance
measure is implemented as being 1 if an ambulance from a specific
station can get a person from a specific zone to the ER within 90min,
and 0 otherwise. The weight is set to be the same as for the response
time cover measure, and the calls relevant for this measure are the red
and yellow. The summarized performance measures used in this case
are given in Table 2. tER is the time to ER and defined as the response
time plus the travel time from the zone to the closest ER.

To analyze the mitigating actions, one extra ambulance and one
extra station have been made available for the zones that are affected
by the closing of the local ER and four different scenarios are analyzed.
At first, the model is run with the existing ERs and current location and
allocation to get a current situation. We have solved the problem for the
time period with the highest demand, workdays from 08:00 to 16:00,
and used the corresponding number of ambulances. In the second sce-
nario, the location of ambulance stations from the current state is fixed
and the proposed closed ER is removed from the data. The ambulances
located at the ER are allocated to the stations that had Orkdal as the
closest ER. In the third scenario, the stations are fixed as in the second
scenario and one extra ambulance is added to the stations that had
Orkdal as the closest ER. In the fourth scenario, the stations are fixed as

in the second scenario and one extra station is located within the area
that had Orkdal as the closest ER. One extra ambulance is also added to
the area. The objective values for the different performance measures
and scenarios are shown in Table 3. The scenarios are named Current,
X00, X10 and X11, and refer to the current situation, the scenario
without the ER, the scenario without ER and an extra ambulance, and
the scenario without the ER and an extra ambulance and station, re-
spectively. We treat Cover urban and Cover rural as one measure, called
Cover, and have separated the three performance measures to better
study the effects on each of them. The objective value is the sum of the
values of the performance measures, and thus, a high value is prefer-
able. For instance, the scenario with the highest value for Cover ER is
Current, which means that the largest amount of calls can reach an ER
within 90min in that scenario.

The results in Table 3 show that there is little value in adding an
additional ambulance without any additional stations. When the ER is
removed, the possibility of allocating ambulances to that zone is also
lost. Therefore, the response time to the population in Orkdal increases
and the performance (especially with respect to the survival measure)
deteriorates. With an extra ambulance and ambulance station (X11),
the negative consequences of closing the ER are almost completely
mitigated. A possible explanation for the increase in the survival mea-
sure between the current situation and X11 is that this measures the
time to site, which naturally decreases with extra ambulances. The
Cover ER measure is very marginally affected by the addition of am-
bulance stations and ambulances. The decrease from the current si-
tuation can largely be described by zones that in the current situation
can reach the ER in Orkdal within 90min but not the regional hospital
of Sør-Trøndelag. For most of these zones, an extra ambulance in the
area affected by the closing does not change this. Improved response
time could therefore be seen as a compensation for longer time to ER.

The results in Table 3 are for the entire Sør-Trøndelag. As the af-
fected zones only account for 14.9% of the red and yellow calls in Sør-
Trøndelag, the consequences of the closing do not appear drastic for the
county as a whole. However, for the affected area, the consequences are
significant. To see the effect for the affected area, the cumulative dis-
tribution of the time to ER and the cumulative distribution of the re-
sponse time for each of the tests are calculated. The cumulative dis-
tribution of the time to ER is shown in Fig. 4, while the cumulative
distribution of the response time is seen in Fig. 5. Note that there are
some minor inconsistencies due to that the model was not solved to
optimality. However, the main trends are clear.

Table 2
Performance measures for the first case.

Performance
measure

Function Wl Dilt

Survival =
+ − +

H t( )R

e tR
1

1 0.679 0.262
20 Red calls

Cover urban
= ⎧

⎨⎩
≤ ≤

>
H t t

t
( ) 1 for 0 12

0 for 12
R

R

R

1 Yellow calls

Cover rural
= ⎧

⎨⎩
≤ ≤

>
H t t

t
( ) 1 for 0 25

0 for 25
R

R

R

1 Yellow calls

Cover ER
= ⎧

⎨⎩
≤ ≤

>
H t t

t
( ) 1 for 0 90

0 for 90
ER

ER

ER

1 Red and yellow
calls

Table 3
Performance values and optimality gap for the scenarios tested in the first case.

Survival Cover Cover ER Objective value

Current 101.8 17.2 29.3 148.3
X00 95.2 16.1 28.4 139.8
X10 96.1 16.2 28.4 140.7
X11 102.5 17.2 28.4 148.0
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As seen in Fig. 4, 25% of the calls in the current situation are able to
get to the ER in 10min or less. 72% of the calls is within 60min or less,
and 82% are able to get to the ER within 90min. Closing the local ER
significantly affects the cumulative distribution. For X00, X10 and X11,
none of the calls in the affected area are able to get to the ER within
30min. With no extra station, less than 8% of the calls can get to the ER
within 60min, a drastic decrease in the quality of service. The same
measure with an extra station is 43%. Even at 90min, there is a dif-
ference of almost 10 percentage points, and the extra station does not
help.

As expected, adding an additional ambulance and station cannot
mitigate the effect that removing a local ER has on the time to ER. The
model however gives valuable information about how severe the con-
sequences will be, and a quantitative evaluation of the benefits of
adding an ambulance to compensate. From a patient perspective, the
time to ER is one thing that might affect the health outcome. Another
factor is the time from the start of the emergency, until the ambulance
arrives, i.e. the response time, which is expected to decrease when an
ambulance is added.

Another aspect is the increase in workload for the surrounding ERs,
when an ER is closed down. Here, it is assumed that they can handle the
increased demand, but in reality, this may be a problem.

Looking at the cumulative distribution of the response times (see
Fig. 5), we see that a new station is crucial for maintaining the response
times. With an extra station and an extra ambulance, the response times
are actually improved compared with the current situation. The new
station is placed in the zone where the ER was and the extra ambulance

then helps to improve the response times. Without the new station, the
response times increase considerably and about 50% of the calls are
reached within 30min, compared with 75% in the current situation and
the scenario with an extra station.

For the affected area, the consequences of closing the local ER and
adding an ambulance at a new ambulance station is a significantly in-
crease in the time to ER while the response time are only marginally
affected. To fully analyze the value of the proposed solution, there
needs to be a proper weighting between the response time and the time
to ER. However, as there is a stronger focus on treating patients on
scene [41], the solution of introducing extra ambulances and stations as
mitigating actions is interesting.

5.2. Case 2: Designated non-urgent transport vehicles

Ambulances in Norway are used for almost every type of transport
to and from hospitals. Ambulances are expensive vehicles, with trained
staff that are specialists in handling emergencies. However, for Sør-
Trøndelag in the busiest period, 57% of the calls are categorized as
green calls, mainly consisting of normal transport assignments without
any need for advanced medical treatment. These assignments may be
planned or unplanned, but they are not urgent.

To cut cost and utilize the resources effectively, a proposed solution
is to transfer the green calls from the ambulances to specialized trans-
port vehicles. These vehicles may be administered by the emergency
medical communication central or a designated transport organization.
The main idea is that it is inefficient to use specially trained paramedics

Fig. 4. Cumulative distribution of the time to ER for the affected area.

Fig. 5. Cumulative distribution of the response time for the affected area.
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with expensive EMS equipment for normal transport assignments. To
efficiently utilize the resources, expensive ambulances could be re-
placed by cost effective transport vehicles. This means that fewer ve-
hicles would be used for the urgent calls, but that these vehicles also
would have less calls to handle. To be able to handle the urgent calls
without any decrease in mean response time, the number of ambulances
that are removed must not be too large.

To analyze the benefit of introducing designated non-urgent trans-
port vehicles, we investigate how many ambulances that can be re-
moved while still keeping the same performance level. All the green
calls are removed from the dataset, as they are assumed to be handled
by the specialized transport vehicles. The analysis is carried out on the
busiest period, workdays from 08:00 to 16:00. The problem is solved for
the busiest time period and the current number of ambulances. The
station locations found are then fixed and used when the number of
ambulances is decreased.

The relative impact on the objective value from removing ambu-
lances is presented in Fig. 6. The solid line marked with × is the best
objective function value without the green calls included and the da-
shed line marked with × is the corresponding upper bound since the
instances are not solved to proven optimality. The dotted line marks the
current situation, i.e. including the green calls and with no ambulances
removed. As seen in Fig. 6, five ambulances can be removed while still
keeping the same total expected performance level as with the green
calls. The relatively low level of improvement in objective function
value when removing the green calls indicates that with the current
fleet, the best (closest or close enough) station will almost always have
available ambulances. In fact, with the green calls included, the pri-
mary stations cover approximately 92% of all calls, and without, this
number increases to around 97%, which is a relatively small increase.
Thus, it is not possible to improve the situation much by removing
demand.

By removing 57% of the calls, 5 out of 24 ambulances can be re-
moved while still keeping the same performance level. This seems a bit
low, but can be explained by the fact that each station requires at least
one ambulance to contribute to the performance measures. For the
busiest period, 57% of the calls represents 22 calls each day. Hence, for
designated non-urgent transport vehicles to be an interesting option,
these vehicles need to be able to handle at least 22 calls each day and
cost less than five ambulances. However, the analysis presented here is
just an indication of what is possible. To fully explore the potential of
designated non-urgent transport vehicles, more research on the green
calls as well as the specialized vehicles is needed.

5.3. Case 3: Time varying demand and resources

For EMS districts, both the demand for EMS and the available EMS
resources vary throughout the day. The demand for EMS is typically
highest in the daytime of workdays and lowest during the night of the
workdays. The areas with demand may also change as most people are
at work during the day and at home at night. This presents a challenge
for EMS managers when they are locating resources. Some of the re-
sources, such as the ambulances, can be moved during the day, but the
station locations are of course fixed. For the county of Sør-Trøndelag,
the week is divided in 6 time periods based on the demand. The periods
are 00–08, 08–16 and 16–24 for workdays and weekends. These periods
have different resources at disposal, as shown in Table 4. The demand is
also significantly different, where workdays 08–16 is the busiest period
and accounts for 44.6% of the total number of calls.

Common approaches when locating ambulance stations are to focus
on the busiest period of the week, use an average demand, or base the
demand on where people have their homes. This gives a simpler pro-
blem to solve, than when taking all periods into account. However, it is
not certain that the solutions obtained using this strategy give locations
that are good for all time periods, especially if the demand is shifting
spatially. As explained in Section 2, one strategy to handle this problem
is to use dynamic relocations, or to have time dependent temporary
locations for the ambulances. Another, and the one used here, is to take
all time periods, and their varying demand, into account when solving
the strategic model.

To evaluate the value of including all demand information, we have
tested three different strategies for solving the problem:

– Solve the full model and then solve all single time period problems
with the station locations fixed to the locations found in the full
model. Solving the full model means including all six time periods,
with their varying demand and number of resources. Ambulance
allocations can vary between time periods, but not the station lo-
cations. This is called Full.

Fig. 6. Objective function value without green calls relative to the situation with green calls and the current number of ambulances when ambulances are removed.

Table 4
Time periods, ambulances at disposal and demand.

Period Ambulances Calls/h

Workday 00:00–08:00 17 1.06
Workday 08:00–16:00 24 4.97
Workday 16:00–24:00 19 2.37
Weekend 00:00–08:00 17 1.52
Weekend 08:00–16:00 22 3.00
Weekend 16:00–24:00 19 2.33

H. Andersson, et al. International Journal of Medical Informatics 133 (2020) 103975

8



– Solve the model only for the busiest time period and then use the
station locations of this solution for all single time period problems.
This is called Max.

– Aggregate the demand from all time periods, solve this problem
with the number of ambulances given by the busiest period and then
use the station locations of this solution for all single time period
problems. This is called Total.

The location problem in each strategy is solved for 24 h and the
single time period problems are solved for 10 h each. In a single period
problem, the station locations are fixed, and the problem is to find the
allocation of ambulances, the covers and the ranks given the demand
for that period.

Table 5 summarizes the results. ST in the first column refers to the
large area (Sør-Trøndelag), while TM is the smaller (Trondheim-
Malvik). The column LB† shows the lower bound from the full model.
The column LB is the lower bound from the solutions of the single time
period problems and UB† is the upper bound from the full model. Gap is
calculated as Gap= (UB†− LB)/LB.

Some of the single period models of ST are not solved to proven
optimality, but the difference between the lower and upper bounds in
these cases is less than 0.1%. Table 5 shows that taking all demand
information into consideration, either through the full model or by
aggregating the demand, gives better station locations than only con-
sidering the busiest period. The differences are however rather small. In
Fig. 7, the locations of the ambulance stations in the three cases are
shown. The left figure shows the whole county, the green dots represent
locations common in all three strategies and the blue dots show loca-
tions appearing in at most two strategies. The right figure is zoomed in
on Trondheim, the largest city in the county. The green dots still re-
present locations common in all three strategies. To highlight the dif-
ference between the max strategy (only taking the busiest period into

account) and the other strategies, we have used blue squares for the
locations suggested by the max strategy (and possibly the other stra-
tegies) and blue dots for locations only suggested by the other strate-
gies. From the figure it is clear that there is consensus about the loca-
tions in the rural areas, while there are differences in the urban areas.
One reason for the differences might be that the location problems are
not solved to optimality. The ST Max location problem ended with a
gap of 1.2% after 24 h (the gap was 0.9% after 100 hours with no
change in the solution). For TM, all strategies give the same station
locations and they are therefore considered as equal.

6. Conclusions

In this work, three managerial cases of EMS are studied using a
strategic ambulance station location and ambulance allocation model.
In particular, the effect and mitigating actions of closing down a local
emergency room, the benefit of introducing designated non-urgent
transport vehicles instead of ambulances, as well as the value of taking
multiple time periods into account when planning, are studied.

The case studies are performed on the county of Sør-Trøndelag in
Norway. For the first case, the results show that to close the local ER
will significantly increase the time to ER for the affected area. However,
adding an extra ambulance station and ambulances can at a certain
degree mitigate the consequences, especially by ensuring that the af-
fected population will get a quicker first response and treatment. The
analysis in the second case shows that there is a potential to reduce the
number of ambulances by 20% if designated transport vehicles handle
the non-urgent assignments. For the third case, the key finding is that
taking all demand information into consideration, either through the
full model or by aggregating the demand, gives better station locations
than only considering the busiest period. However, as in most large
strategic cases where OR is used, more analyses are needed for each
case to make evidence based decisions. Despite this, the model can be
used to provide insight when analyzing real cases and potential solu-
tions experienced by EMS planners.

As future research, it would be interesting to formalize what defines
high performing EMS. Then it would be possible to point out where OR
has its greatest potential. There is also a need for new performance
measures in the models that are not solely based on response time. To
build on this, it could be interesting to find a monetary value on the
different levels of performance. Then the decision makers could cal-
culate if extra investments to reduce, e.g. response time are beneficial
from a cost-benefit point of view.

Table 5
Bounds and gaps for the strategies tested in the third case.

Area Strategy LB† LB UB† Gap

ST Full 56.894 57.453 58.479 1.8%
ST Max 56.907 2.8%
ST Total 57.458 1.8%
TM Full 30.652 30.685 30.843 0.5%
TM Max 30.649 0.6%
TM Total 30.649 0.6%

Fig. 7. Location of the ambulance stations using the three strategies tested in Case 3 for the whole county (left figure) and the urban area around Trondheim (right
figure).
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