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Abstract—Two different single-phase synchronisation schemes
based on orthogonal system generation (OSG) are modelled in the
linear, time-periodic framework. The frequency adaptive Hilbert
phase locked loop (PLL) and the frequency-fixed second-order-
generalised-integrator (SOGI) PLL fit smoothly into existing
models for the synchronous reference frame PLL, due to the
linear and decoupled nature of the orthogonal system generation.
The harmonic transfer functions are established, and shown
to accurately capture the frequency coupling properties of
the synchronisation techniques. This modelling approach is a
milestone towards the ultimate goal of assessing the impact of
synchronisation on single-phase converter small-signal stability.
The analytic models are compared to simulations, through use
of a chirp input signal instead of the typical frequency sweeping
technique. The conceptual differences between the Hilbert PLL
and SOGI PLL are highlighted, yet without attempts at asserting
superiority of either scheme.

Index Terms—Synchronisation, PLL, Hilbert, SOGI, harmonic
transfer function, single-phase systems

I. INTRODUCTION

Orthogonal system generator (OSG) based phase detector
(PD) is a prevalent class of single-phase grid synchronisation
techniques [1], dedicated to real-time phase estimation of a
sinusoidal signal. The majority of power converters contain
control loops that depend on the grid voltage angle, and
accurate modelling of the phase estimation plays a vital role in
assessing the stability of the converter circuit. The impact of
the OSG is often ignored, justified by the fast response of the
OSG compared to the PD - when the PD is achieved through
a phase locked loop (PLL). Although this is sufficient for
describing its transient response, a detailed model is necessary
to enable our understanding of single-phase synchronisation
techniques in the frequency domain. In essence, two concerns
need additional consideration: quadrature signal generation
filter effects and change of reference frame. The latter is
the root cause of the frequency coupling phenomenon in the
synchronisation techniques and together they make the SISO
linear time-invariant model an insufficient tool for frequency
domain modelling [2].

A better approach is to apply linear, time-periodic (LTP)
theory and use harmonic transfer functions (HTFs) [2], which

can capture the dynamics caused by the change in reference
frame and gain inequality between the in-phase and quad-
rature voltage transfer functions. Higher appreciation of the
HTF approach can be found by contemplating the impedance
modelling of converter systems, see [3] [4] for examples of
three-phase VSC analysis. Impedance analyses of single-phase
converters including the OSG-PD can be found in [5] and [6],
which derive analytic models for the frequency-fixed second
order generalised integrator (SOGI) PLL based on harmonic
linearisation.

In power electronics based single-phase converters, several
control layers require accurate phase estimation for their inten-
ded purpose. In Figure 1, a simple voltage source converter is
depicted with a proportional-resonant current controller, where
the phase is needed to convert the dq current reference to the
stationary reference frame. The input/output relation of the
synchronisation scheme, i.e. from ua to θ, must be determined

Figure 1. Single-phase VSC with OSG-PD synchronisation and proportional-
resonant current control



to include its dynamics in a stability evaluation.
Two types of OSG based single-phase synchronisation

schemes are considered in this article. Hilbert transformers are
often the go-to for applications in need of orthogonal signal
generation. This paper will consider the finite impulse response
(FIR) realisation of the Hilbert transform, although the infinite
impulse response (IIR) version may prove to be a promising
candidate as well [7]. Unjustly disregarded in literature due to
their complexity, FIR Hilbert transformers (from here on the
FIR prefix is omitted) offer an inherent robustness to frequency
changes which eliminates the need for a frequency feedback to
the OSG. This, combined with a completely linear process of
orthogonal system generation, enables a straightforward model
in the frequency domain. A practical introduction to the design
and implementation of a Hilbert OSG-PD can be found in [8].

The Hilbert PLL is compared with the standard SOGI-
PLL without frequency feedback to the OSG, as originally
designed in [9]. The latter does not adapt to frequency changes
in the input voltage, which may be impractical for some
applications. The frequency adaptive version, along with other
intricate single-phase synchronisation techniques, are the real
competitors of the Hilbert-PLL; all frequency adaptive OSG-
PD’s sacrifice performance for robustness. Since most of the
advanced OSG-PLLs have a feedback from the PLL to the
OSG, or have extra nonlinear feedback paths, they pose a
considerable greater challenge to model in the same frame-
work. However, recent efforts towards removing the OSG-
PD feedback have been made for different synchronisation
schemes. In [10], the frequency feedback of the SOGI-PLL
could have been completely removed had it not been for the
amplitude compensation in the quadrature signal. In [11], the
decoupling is achieved for the transport-delay based PLL. The
SOGI frequency locked loop (FLL) also shares the decoupling
trait, and some attempts at modelling the SOGI FLL in the LTP
framework have been conducted in [12] and [13], although
with different objectives than frequency domain modelling.
Continued efforts in this direction can hopefully lead to
comparable competitors for the Hilbert PLL.

II. HILBERT AND SOGI PLL

The concept of an OSG-PD is to generate a 90-degree shif-
ted version of a sinusoidal signal, and determine the phase as
the angle of the rotating vector in the complex plane. Several
methods that adopt this approach are outlined in [1], with
phase detection realised through a PLL. Figure 2 and Figure
3 show the structure of the frequency adaptive SOGI-PLL
and the Hilbert-PLL. One of the striking differences between
the two is the independent orthogonal system generator in
the Hilbert-PLL. The SOGI-OSG is described in the Laplace
domain by the transfer functions

hα(s) =
uα(s)

ua(s)
=

kωfs

s2 + kωfs+ ω2
f

(1)

hβ(s) =
uβ(s)

ua(s)
=

kω2
f

s2 + kωfs+ ω2
f

(2)

Figure 2. SOGI-PLL with frequency feedback

Figure 3. Hilbert-PLL with delay compensation

where k is the SOGI gain, ωf is the resonance (fundamental)
frequency and ua is the input voltage. As mentioned, the basic
SOGI-PLL with fixed resonance frequency is adopted in this
paper. This is equivalent to replacing the feedback in Fig 2
with a constant term - resulting in a linear and decoupled OSG.
Still, it is worth noting that hα is a bandpass filter, while hβ
provides lowpass filter capabilities. Although the two signals
are orthogonal to one another in the whole frequency range, the
gain mismatch results in frequency couplings and subsequently
increased complexity in the modelling and analysis stage.

The Hilbert OSG has no dependency of the frequency
in the care-band, i.e. the assumed frequency range of the
grid fundamental harmonic. Yet this does not come without
drawbacks. The Hilbert-PLL (Figure 3) in its most general
form has: little to no filtering capabilities in the stationary
αβ reference frame; a constant time delay in the range of
5-10ms (depending on the filter design); and, compensation
for the steady-state error as the PLL locks to a time-delayed
signal. The compensation term θdelay is the angle difference
caused by the time delay - at the fundamental frequency w.
To qualitatively determine the value of this trade in terms of
stability seems a daunting task, as the final performance is
determined by the complete system - included PLL, converter
and grid dynamics. Another aspect with the FIR filter is that it
is designed for a specific sampling rate. Although two filters
designed for different rates have similar frequency responses,
the computational effort increases with the rate and demands
attention at higher than 20 kHz.

A Hilbert filter designed as in [8], has the amplitude
response of Figure 4. The phase delay is - according to
standard FIR filters - linearly increasing with frequency, yet
with an additional 90° in the whole frequency range. The
transfer functions for the Hilbert OSG are presented in (3)



Figure 4. Amplitude response of a FIR Hilbert filter designed as a tradeoff
between speed and frequency independence

and (4). Since the FIR filter is digital, the transfer functions
are given in the discrete domain as

hα(z) =
uα(z)

ua(z)
=z−

L−1
2 (3)

hβ(z) =
uβ(z)

ua(z)
=

L∑
k=1

hk · z−k (4)

where hk is the kth filter coefficient in a FIR filter of length
L. The Hilbert filter shown in Figure 4 is designed with L =
265 for sampling frequency fs = 20 kHz, which yields a time
delay of tdelay = 6.6 ms and consequently a phase delay of
φd = 0.66π rad at ω = 2π · 50 rad s−1.

III. MODELLING IN THE LINEAR TIME PERIODIC
FRAMEWORK

To achieve a model that describes the relation between
the input voltage and output phase, the change in reference
frame requires additional attention. The following approach is
valid for OSG-PLLs based on Parks transformation without
feedback from the PLL to the OSG. The αβ/dq transform
returns the q-axis voltage

uq = −sin(θpll)ûα + cos(θpll)ûβ (5)

Note that (5)-(7) are given in the time domain. Linearise uq
as a function of the independent variables θpll, ûα and ûβ

uq = uq(θ0, ûα0, ûβ0) +∇uq(θ0, ûα0, ûβ0) · (∆θ,∆ûα,∆ûβ)
(6)

where ∇ denotes the gradient. Rearranging (6) yields

∆uq = −Ud0∆θpll − sin(θ0)∆uα + cos(θ0)∆uβ (7)

where Ud0 = cos(θ0)ûα0 + sin(θ0)ûβ0.

Then, (7) must be transformed to the frequency domain

∆uq = −Ud0∆θpll −Asinθ0∆uα + Acosθ0∆uβ (8)

Ud0, Asinθ0 and Acosθ0 are Toeplitz matrices of Ud0(t),
cos(θ0) and sin(θ0). The Toeplitz matrix is generally repres-
ented by a matrix A on the form

A =



. . . . . . . . . . . . . . .

. . . A0 A−1 A−2
. . .

. . . A+1 A0 A−1
. . .

. . . A+2 A+1 A0
. . .

. . . . . . . . . . . . . . .


(9)

where Ak is the kth fourier coefficient of A(t). Asinθ0 and
Acosθ0 become

Asinθ0 =



. . . . . . . . . . . . . . .

. . . 0 − 1
2i 0

. . .
. . . 1

2i 0 − 1
2i

. . .
. . . 0 1

2i 0
. . .

. . . . . . . . . . . . . . .


,Acosθ0 =



. . . . . . . . . . . . . . .

. . . 0 1
2 0

. . .
. . . 1

2 0 1
2

. . .
. . . 0 1

2 0
. . .

. . . . . . . . . . . . . . .


(10)

For the PLL, the open loop transfer function from ∆uq to
∆θpll consists of a PI-controller with parameters kp and ki,
and an integrator.

Gpll(s) =
kps+ ki

s2
(11)

The open loop transfer function Gpll from ∆uq to ∆θpll is
a diagonal matrix where each element is a frequency shifted
version of the scalar transfer function Gpll in (11).

Gpll =



. . .
Gpll(s− jωf )

Gpll(s)
Gpll(s+ jωf )

. . .

 (12)

Then, the loop is closed by combining (8) and (12). Creating
two frequency shifted diagonal matrices Hα and Hβ (similar
to Gpll, but with hα and hβ as the scalar transfer functions),
yields the final model

∆θpll =
Gpll

I + Ud0Gpll
[Asinθ0Hα + Acosθ0Hβ ]∆ua (13)

Evidently, (13) is composed of the harmonic transfer functions
for the closed loop PLL and the OSG.

∆θpll = Gcl
pllHosg∆ua (14)

The Hilbert-PLL model is extended with the delay com-
pensation term, which is no more than a lead compensator
block.

∆θ∗pll = Gdelay∆θpll

= GdelayG
cl
pllHosg∆ua (15)



Table I
PLL AND OSG PARAMETERS

kp ki ksog Tf

SOGI-PLL 125 6500 1 -

Hilbert-PLL 125 6500 - 10ms

where

Gdelay(s) =
1 + (Tf + td)s

1 + Tfs
(16)

and Gdelay is the frequency shifted diagonal matrix of Gdelay.
Note that due to the high order of the Hilbert FIR filter, it
is convenient to transform Gdelay and Gcl

pll to the discrete
domain and not Hosg to the Laplace domain.

The frequency shifted matrices are doubly infinite and must
be truncated into finite versions for analysis. Restricting the
harmonic order to 2, yields a square 5x5 MIMO transfer
function H from ∆uin to ∆θpll (∆θ∗pll for Hilbert-PLL).


∆θpll(s− 2jωf )
∆θpll(s− jωf )

∆θpll(s)
∆θpll(s+ jωf )
∆θpll(s+ 2jωf )

 = [H]5x5


∆ua(s− 2jωf )
∆ua(s− jωf )

∆ua(s)
∆ua(s+ jωf )
∆ua(s+ 2jωf )

 (17)

Assuming that Ud0 does not contain harmonics, and that
the amplitude of the input voltage is unity, Ud0 becomes the
identity matrix. The diagonal elements of Hosg are always
zero, and Gcl

pll is diagonal as long as Ud0 is purely the
fundamental harmonic. Thus, the diagonal elements of H are
also zero. Through some matrix algebra, one finds that the only
nonzero elements are the upper and lower diagonal elements.

The 3’rd column of H describes the angle response to a
single harmonic perturbation in the input voltage ua. The
parameters of the two OSG-PDs are given in Table I, where
kp and ki are the PI-controller parameters. Due to the above
considerations, the only necessary elements to include are H2,3

and H4,3. The bode plots of these two transfer functions (in
Figure 5 and Figure 6) describe the magnitude and phase
response of the frequency shifted input waves.

Before proceeding with the verification, a consideration
will be made regarding the assumption of ideal orthogonal
rotating vectors. If hβ = jhα, the two terms of Hosg will add
constructively in the upper diagonal, and destructively in the
lower. Thus, the upper diagonal of Hosg will be the frequency
shifted transfer functions of hα, while the lower diagonal will
be zero. In other words, the assumption leads to a complete
neglection of the positive frequency coupling and the impact
of hβ on the negative frequency coupling.

IV. VERIFICATION WITH CHIRP INPUT SIGNAL

To verify the HTF model, the frequency response in the
low frequency range is investigated. Here, the dynamics due

Figure 5. Bode plot for H2,3 in the low frequency range

Figure 6. Bode plot for H4,3 in the low frequency range

to the OSG and frequency couplings emerge, whereas high fre-
quencies are suppressed by the PLL low-pass characteristics.
A chirp perturbation is applied to the input voltage signal, as
an alternative method to the established frequency sweeping
with single-tone injections. Validation through a chirp signal
is not trivial, as steady-state conditions are not guaranteed. A
critical question that should be answered in future research is
how fast the chirp can be without exceeding a pre-described
deviation limit from the steady state assumption. Although this
approach certainly deserves a thorough analysis, in this case
it is justified by an excellent fit with the analytic model.

A chirp is a constant amplitude sinusoid with linearly
increasing frequency. With proportional coefficient ρ and amp-
litude of 0.01, the perturbation is given as

∆ua(t) = 0.01cos(

∫ t

0

2πρτdτ) (18)

Setting ρ = 1 - i.e. frequency is equal to time - the input
voltage becomes

ua = cos(ωf t) + 0.01cos(πt2) (19)

The response for the analytic model is the sum of the
response for two frequency shifted sinusoids through H2,3 and
H4,3. [

∆θpll(s− jωf )
∆θpll(s+ jωf )

]
=
[
H2,3
H4,3

]
∆ua(s) (20)



Figure 7. SOGI-PLL chirp

Figure 8. Hilbert-PLL chirp



In the time domain, the response is given by

∆θpll(t) = 0.01

(
|H2,3(j2πt)|cos(t(πt−ωf )+∠H2,3(j2πt))

+ |H4,3(j2πt)|cos(t(πt+ ωf ) + ∠H4,3(j2πt))

)
(21)

Time domain simulations are compared to (21) both for the
SOGI-PLL and for the Hilbert-PLL in Figure 7 and Figure
8, respectively. Both models fit accurately with the simulated
waveforms, which is a convincing argument for the HTF
approach as well as for chirp perturbation.

Both figures are dominated by the lip-shaped magnitude
response of H2,3, i.e for negative shifted frequencies. For
frequencies lower - and to some degree higher - than 50 Hz,
the positive shifted frequency component contributes to the
response. A small comparison of the two PLL schemes can
be conducted for the given setup. The lack of filtering in the
Hilbert OSG becomes evident in the bode plots. The differ-
ences in phase are quite small, particularly for H2,3. Again
it is emphasised that this article does not aim to conclude
on the superiority of either PLL, but rather to highlight the
traits that appear in the HTF model. Since Hilbert-PLL is
frequency adaptive, and this implementation of SOGI-PLL is
non-adaptive, they may also have different uses and a direct
comparison would not be fair. For example, by adding a notch
filter before the Hilbert OSG, one might improve the filtering
capabilities of the Hilbert PLL significantly, yet additional care
must be taken to ensure the frequency independence. As the
employed PLL is in its most basic form for OSG techniques,
one might also consider to modify this for a desired effect on
the frequency response.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

Two OSG-PLLs, one frequency adaptive and the other
frequency dependent, have been accurately modelled in the
linear, time-periodic framework. Harmonic transfer functions
have been demonstrated to encompass the frequency shifting
properties of the change in reference frame, as well as include
the OSG filter effects. The structured HTF approach results in
a frequency domain description that traditional SISO models
can never provide. The harmonic transfer function may in
turn be used in full converter models, to enable quantitative
evaluation of synchronisation performance in terms of stability.

Only after unveiling the true impact of synchronisation
on stability, can we make sound performance evaluation of
the different synchronisation schemes. The pursuit for this
objective is eased by decoupling the OSG from the PD, which
is the main advantage of the Hilbert PLL compared to other
advanced single-phase synchronisation schemes. Perhaps some
day, the nonlinear synchronisation techniques with OSG-PD
feedback may be modelled through linearisation approaches
within the harmonic transfer function description.

The sacrifice the Hilbert OSG makes for its frequency
independence manifests as higher gain in the low frequency
range. Time domain simulation through the use of a chirp input
wave demonstrates an impeccable fit with the analytic model.

Harmonic transfer function identification through chirp signals
could prove useful for OSG-PD systems, if additional efforts
are made to extract the frequency coupled bode diagrams from
the time-domain response. Also, it has been shown that the
OSG filters affect both the positive and negative frequency
couplings, which counters the common modelling assumption
of ideal orthogonal signals.
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