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Abstract. Many recent medical developments rely on image analysis,
however, it is not convenient nor cost-efficient to use professional image
acquisition tools in every clinic or laboratory. Hence, a reliable color
calibration is necessary; color calibration refers to adjusting the pixel
colors to a standard color space.
During a real-life project on neonatal jaundice disease detection, we
faced a problem to perform skin color calibration on already taken im-
ages of neonatal babies. These images were captured with a smartphone
(Samsung Galaxy S7, equipped with a 12 Mega Pixel camera to capture
4032x3024 resolution images) in the presence of a specific calibration pat-
tern. This post-processing image analysis deprived us from calibrating
the camera itself. There is currently no comprehensive study on color
calibration methods applied to human skin images, particularly when
using amateur cameras (e.g. smartphones). We made a comprehensive
study and we proposed a novel approach for color calibration, Gaus-
sian process regression (GPR), a machine learning model that adapts to
environmental variables. The results show that the GPR achieves equal
results to state-of-the-art color calibration techniques, while also creating
more general models.
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1 Introduction

Medical imaging is the core of recent medical science and the accuracy of the
information highly relies on the environmental parameters such as light sources
and camera sensors [1] which cause image inconsistencies. To overcome these
issues (i.e., to make images illumination, camera sensors, and actual pixel values
independent), we study, implement, and improve the state-of-the-art of color
calibration techniques and we propose a novel approach for color calibration;
the Gaussian process regression (GPR), a machine learning model that adapts
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to environmental variables. The results show that the GPR achieves equal results
to state-of-the-art color calibration techniques, while also creating more general
models. We had faced this problem while working on a dataset of already taken
images of neonates for jaundice disease detection.

1.1 Paper Structure

In the rest of this section, an introduction on human skin’s light absorption, re-
lated color theory, colorcheckers, and color calibration preliminaries is presented.
Then, the proposed solutions on color calibration and related machine learning
regression techniques are presented in Section 2. In Section 3, the performance
of color calibration techniques are presented and evaluated in terms of ∆E∗a,b
using colorcheckers as ground truth and the results are compared. Finally, based
on the given results, a conclusion is given in Section4.

1.2 Light Absorption on Human Skin

To understand optical skin diagnosis, we must first understand human skin and
how each component’s concentration alters the perceived color of skin. The per-
ceived color of an object is due to the light that is reflected off the object.
Molecules only reflect a subset of in-coming frequencies [2]. Skin, a layered organ
protecting the human organism against environmental stress (e.g. heat, radia-
tion, and infections) contains light-absorbing substances.

Skin consists of three main layers; epidermis, dermis, and the hypodermis.
The visual features of skin captured by a camera recording the RGB values and
their pattern can reveal a lot of information about the underlying substances,
by different lightening and camera sensors. In practice, these RGB values are
always dependent to each other (which they should not), hence, having a robust
color calibration technique can solve this issue.

1.3 Delta E (∆E)

While comparing results, a unified metric for color difference is required to ex-
press the difference between two colors correctly. The idea is that a color differ-
ence of 1∆E is the smallest color difference a human eye can detect. ∆E was
first presented alongside the CIE L*a*b* color space in [3]. Given two colors in
the CIE L*a*b* color space, (L∗

1, a
∗
1, b

∗
1) and (L∗

2, a
∗
2, b

∗
2), the simplest formula of

∆E is the Euclidean distance between these colors, as follows.

∆E∗
ab =

√
(L∗

2 − L∗
1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2 (1)

It is estimated that a human regards a ∆E∗
ab ≈ 2.3 difference as ‘just notice-

able’ [3].
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1.4 CIE Illuminant

The quality and energy of a light source is not always consistent and are often
seen as unreliable and cannot technically be reproduced. To create light suited
for colorimetric calculations, the CIE introduced the concept of standard illu-
minants. A standard illuminant is a theoretical source of visible light where
its spectral power distribution is explicitly defined. Illuminants are divided into
series describing source characteristics such as: Incandescent/Tungsten, Direct
sunlight at noon, Average/North sky Daylight, Horizon Light, Noon Daylight,
etc. Full list can be found on [4] and [5].

1.5 ColorChecker

A colorchecker, also known as a calibration card, is a physical set of colors defined
in the CIE L*a*b* color space. The colors are, thus, defined regardless of light
source or image capturing device5. If a colorchecker is included in an image, the
RGB errors at each color patch can be calculated and provides information about
the RGB variations in the image, which again can be used to correct the color
errors. Here, we introduce two colorcheckers; the Macbeth generic colorcheckers
and the Picterus skin colorchecker.

Macbeth Generic Colorcheckers The classic Macbeth colorchecker by [6]
(Fig.1a) is one of the most commonly used reference targets in photographic
work. The checker is designed to approximate colors found in nature. Six patches
are different neutral gray, from black to white, where the spectral response of
each patch is constant at all wavelengths and differ only in intensity. We referred
to these six patches as the grayscale of the colorchecker. Other adaptations of
McCamy’s colorchecker have since been produced, here we present Datacolor’s
SpyderCHECKR 24. SpyderCHECKR 24 and its all target values are given
in Fig. 2a and 2c.

Picterus Skin ColorChecker For jaundice detection on neonatal babies, we
designed a custom colorchecker (Fig. 1b) targeted for human skin6. We will refer
to this colorchecker as the SkinChecker, and all target values are given in Fig.
2b and 2d. The colors on the SkinChecker are based on simulated reflection
spectra of neonate’s skin with varying skin parameters. These reflection spectra
have been printed using spectral printing, a technique which attempts to recreate
the whole reflection spectrum instead of just the RGB color values [7].

Fig. 3 shows the color diversity of a SpyderCHECKR 24 and a SkinChecker.
The figure highlights the difference between general and specialized color correc-
tion, drawing triangles to visualize the RGB color sub-spaces defined by the two
color checkers. For general color correction, a model must be able to reproduce a

5 However, by specifying a light source from CIE illuminant list, one can approximately
define a colorchecker in RGB, but such generic RGB values are not to be fully trusted.

6 For further information please contact Picterus AS at www.picterus.com.

http://www.picterus.com/
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(a) The classic Macbeth ColorChecker (b) The SkinChecker by Picterus AS

Fig. 1: The Macbeth ColorChecker Classic and the SkinChecker.

wide range of colors, as reflected by the SpyderCHECKR 24. The SkinChecker,
on the other hand, contains substantially more data points in its focus area,
allowing a model to optimize for more accurate color correction of human skin.

1.6 Color Calibration; Preliminaries and Related Works

Variations in digital cameras’ color responses (RGB values), caused by inaccu-
rate sensors, result in device dependent values of R, G, and B. The task of
correcting errors, in the captured RGB values, is referred to as color calibration
(or color correction7). More precisely, color calibration refers to adjusting the
pixel colors to a default/known/standard color space [9]. Color calibration in-
volves mapping device dependent RGBs to corresponding independent color
values (e.g. RGB or CIE XYZ) usually by using a colorchecker as reference. The
device independent color values are often referred to as tristimulus values, and
represent the same color regardless of visual system.

Look-up tables, least-squares linear and polynomial regression and neural
networks are some of the methods described in literature regarding the mapping
between RGB and tristimulus values.

Look-Up Tables The trivial look-up table is a large collection of camera RGB
examples and the corresponding target values, manually created to define a
mapping between the two color spaces.

Least-Squares Linear Regression A linear mapping from camera RGBs to
CIE L*a*b* triplets can be achieved through a 3×3 linear transform. If we let ρ
define a three element vector representing the three camera responses (R, G, B)
and q define the three corresponding L*, a*, b* values, a simple linear transform
can be written as: q = Mρ,

7 It’s worth mentioning that a device (e.g. camera) is to be calibrated while images are
to be corrected, hence, color calibration and color correction are slightly different.
However, the concept is the same and here we consider them equivalent.
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(a) The SpyderCHECKR 24
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(b) The SkinChecker by Picterus AS

L*a*b* sRGB
Patch Name L* a* b* R G B

1A Card White 96.04 2.16 2.60 249 242 238
2A 20% Gray 80.44 1.17 2.05 202 198 195
3A 40% Gray 65.52 0.69 1.86 161 157 154
4A 60% Gray 49.62 0.58 1.56 122 118 116
5A 80% Gray 33.55 0.35 1.40 80 80 78
6A Card Black 16.91 1.43 -0.81 43 41 43
1B Primary Cyan 47.12 -32.52 -28.75 0 127 159
2B Primary Magenta 50.49 53.45 -13.55 192 75 145
3B Primary Yellow 83.61 3.36 87.02 245 205 0
4B Primary Red 41.05 60.75 31.17 186 26 51
5B Primary Green 54.14 -40.76 34.75 57 146 64
6B Primary Blue 24.75 13.78 -49.48 25 55 135
1C Primary Orange 60.94 38.21 61.31 222 118 32
2C Blueprint 37.80 7.30 -43.04 58 88 159
3C Pink 49.81 48.50 15.76 195 79 95
4C Violet 28.88 19.36 -24.48 83 58 106
5C Apple Green 72.45 -23.57 60.47 157 188 54
6C Sunflower 71.65 23.74 72.28 238 158 25
1C Aqua 70.19 -31.85 1.98 98 187 166
2D Lavender 54.38 8.84 -25.71 126 125 174
3D Evergreen 42.03 -15.78 22.93 82 106 60
4D Steel Blue 48.82 -5.11 -23.08 87 120 155
5D Classic Light Skin 65.10 18.14 18.68 197 145 125
6D Classic Dark Skin 36.13 14.15 15.78 112 76 60

(c) Values from the SpyderCHECKR 24 by [8]

L*a*b* sRGB
Patch L* a* b* R G B

1A 88.38 1.51 -3.32 221 221 228
2A 70.14 2.72 -0.74 175 169 172
3A 51.97 1.43 0.66 126 123 122
4A 38.53 -0.15 0.93 91 90 89
5A 30.25 -1.12 2.06 70 71 68
6A 26.02 -1.50 0.71 59 62 60
1B 48.32 1.82 1.49 119 113 112
2B 28.82 12.48 13.19 92 60 48
3B 74.93 8.10 45.14 223 177 100
4B 42.03 39.70 31.89 166 67 48
5B 86.81 2.21 3.52 224 215 210
6B 47.62 0.74 1.01 115 112 111
1C 67.77 15.92 20.13 205 153 129
2C 52.60 24.83 47.00 182 107 42
3C 47.52 2.17 1.81 117 111 109
4C 66.73 8.33 40.28 198 155 89
5C 51.02 32.66 35.69 185 97 61
6C 81.35 4.01 5.79 214 199 191
1D 75.98 5.20 26.58 214 182 138
2D 68.04 8.81 63.77 209 157 39
5D 46.63 1.55 1.91 114 109 107
6D 58.96 19.64 44.55 193 127 62
1E 76.70 16.15 22.70 232 177 148
2E 46.84 2.26 2.76 116 109 106
5E 75.25 20.00 13.09 229 171 162
6E 59.69 29.13 18.90 201 123 112
1F 36.42 24.92 17.63 129 68 58
2F 77.67 10.08 49.47 236 182 99
3F 64.09 31.40 6.45 211 133 145
4F 46.33 2.08 3.07 115 108 104
5F 72.85 15.48 70.20 234 165 35
6F 52.44 38.26 16.14 191 96 99
1G 48.53 2.43 2.41 121 113 111
2G 46.97 26.89 23.61 163 92 73
3G 68.04 26.16 12.62 218 147 144
4G 56.56 32.21 55.49 205 110 33
5G 73.81 14.00 64.45 234 169 55
6G 47.21 1.44 3.02 116 110 106

(d) Values from SkinChecker

Fig. 2: SpyderCHECKR 24 and Picterus’ SkinChecker.
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Fig. 3: The CIE xy Chromaticity diagram with the SpyderChecker 24 and
SkinChecker’s colors individually positioned. The SkinChecker contains skin re-
lated colors and resides only in the red-yellow part of the color space while the
SpyderChecker 24 is a diverse colorchecker and is spread in a wider range.

M holds the coefficients (dij) of the transform that performs the actual color
correction. The linear color correction (LCC) has proved to perform well in
numerous studies, with the advantage of being independent of camera exposure
([10]), hence, we skip the details. It has also been known to produce significant
errors when mapping RGBs to CIE L*a*b* values. Some studies show that LCC
can, for some surfaces, generate errors up to 14∆E∗

ab [11]. However, the same
study shows that on average the 3×3 LCC transform yields an error of 2.47∆E∗

ab

on the 8-bit Professional Color Communicator ([12]).

Least-Squares Polynomial Regression A more modern approach for color
correction is to assume that the relationship between RGB and target values is
polynomial, not linear. This leads to a more complex method for color correction,
polynomial color correction (PCC), where the R, G, and B values at a pixel
are extended by adding additional polynomial terms of increasing degree.

ρ = (R,G,B)T
θk−→ ρ̂k = (R,G,B, ...,m)T (2)

We denote the kth polynomial extension of an RGB-vector (ρ) by ρ̂k. The
extension operator θk transforms a three-element column vector to an m-element
column vector with a set of added polynomial terms, further derails in [11]. For
a simple RGB case i.e. ρ = (R,G,B)T the polynomial expansions of 2nd, 3rd
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and 4th degrees are given below:

ρ̂2 = [r, g, b, rg, rb, gb, r2, g2, b2, 1] (3)

ρ̂3 = [r, g, b, rg, rb, gb, r2, g2, b2,

rg2, rb2, gr2, gb2, br2, bg2, r3, g3, b3, rgb, 1]
(4)

ρ̂4 = [r, g, b, rg, rb, gb, r2, g2, b2,

rg2, rb2, gr2, gb2, br2, bg2, rgb, r3, g3, b3,

r3g, r3b, g3r, g3b, b3r, b3g, r2g2, r2b2, g2b2,

r2gb, g2rb, b2rg, r4, g4, b4, 1]

(5)

Using the extension operator, the three RGB values recorded in a pixel are
extended, represented by 9, 19, and 34 numbers respectively. As apposed to
LCC’s 3 × 3 matrix, PCC is carried out by 9 × 3, 19 × 3, and 34 × 3 matrices.
Similar to LCC, we find the coefficients that minimize M, the m×3 PCC matrix.

Root-Polynomial Color Correction If the correct polynomial fit is chosen,
PCC can significantly reduce the colorometric error from LCC. However, the
PCC fit depends on sensors and illumination, where exposure alters the vector
of polynomial components in a non-linear way. Hence, choosing the right poly-
nomial fit is very important in PCC. To solve the exposure sensitivity of PCC,
([10]) present a polynomial-type regression related to the idea of fractional poly-
nomials. Their method, named root-polynomial color correction (RPCC),
takes each term in a polynomial expansion to its kth root of each k-degree term,
and is designed to scale with exposure. The root-polynomial extensions for k = 2,
k = 3 and k = 4 are defined as:

ρ̄2 = [r, g, b,
√
rg,
√
rb,

√
gb, 1] (6)

ρ̄3 = [r, g, b,
√
rg,
√
rb,

√
gb, 3

√
rg2,

3
√
rb2, 3

√
gr2, 3

√
gb2,

3
√
br2, 3

√
bg2, 3

√
rgb, 1]

(7)

ρ̄4 = [r, g, b,
√
rg,
√
rb,

√
gb,

3
√
rg2,

3
√
rb2, 3

√
gr2, 3

√
gb2,

3
√
br2, 3

√
bg2, 3

√
rgb,

4
√
r3g,

4
√
r3b, 4

√
g3r, 4

√
g3b,

4
√
b3r, 4

√
b3g,

4
√
r2gb, 4

√
g2rb,

4
√
b2rg, 1]

(8)

We denote a root-polynomial extension of an RGB column vector ρ as ρ̄.
As with PCC, the RGB-extension naturally increases the size of the transform
matrix M. Thus, RPCC is performed by a 7× 3, 13× 3, and 22× 3 matrices.

Machine Learning Approaches An alternative approach for color correc-
tion is the use of machine learning approaches. The most used techniques are
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Support Vector Machines (SVMs) and fully-connected feed-forward neural net-
works. Artificial neural network (ANN) have shown to be robust when optimized
correctly, and achieve equally good results as a well fitted polynomial approach
([13]). However, both SVMs and fully-connected neural networks require exten-
sive hyperparameter-tuning, a tedious process performed through trial and error,
or using the computational expensive grid-search with cross-validation.

On the other hand, Gaussian processes (GPs) are widely recognized as a
powerful, yet practical tool for solving both classification and non-linear regres-
sion ([14]). A GP has not been applied to the field of color calibration. A GP
can be thought of as a generalization of the Gaussian probability distribution
over a finite vector space to a function space of infinite dimensions ([15]). The
processes are probabilistic models of functions and are used for solving both clas-
sification and non-linear regression problems. To be more precise, a GP is used
to describe a distribution over functions f(x) such that any finite set of function
values f(x1), f(x2), ..., f(xn) have a joint Gaussian distribution [16, Chapter 2].

2 Color Calibration Techniques and Results

This section presents the color calibration techniques which are performed on
our dataset. The dataset is a collection of 564 images acquired from St. Olav’s
hospital8 depicting neonates. In each image, a SkinChecker is placed on the chest,
exposing the skin color within the SkinChecker. This dataset is collected from 141
unique neonates by smartphones, where four images were taken with different
ranges and lightening (e.g. with or without flash) from each neonate. For each
image (Fig. 4a), illumination varies, and inconsistently shifts RGB values. Then
the SkinChecker segment is extracted (Fig. 4b). With the SkinChecker as the
reference point for the color correction solutions, our goal is to apply pixelwise
color correction (Fig. 4c), trying to restore the original colors.

For fieldwork applications, we require the color correction algorithm to be
device independent and show high robustness towards illumination. We used
SkinChecker9 to compare these methods using an evaluation method as follows.

2.1 Leave-one-out cross-validation evaluation method (EM)

For each individual color (on the in-scene colorchecker), we exclude 10% of the
sample area on all sides, to eliminate potentially faulty segmentation, and sample
the average RGB value. The resulting average RGBs and corresponding CIE
L*a*b* values (from the colorchecker) are used to create color correction models.

To evaluate the performance of a model, we perform leave-one-out cross-
validation which is an iterative approach where one color patch is withheld every
run. For each iteration, the remaining colors are used to build a color correction
model, predicting the CIE L*a*b* value of the withheld color patch. By the end
of the iteration, all color patches have been withheld and the ∆E∗

ab is calculated.

8 NTNU’s hospital located in Trondheim, Norway.
9 We also performed the same evaluation on SpyderCHECKR achieving similar results.

https://stolav.no
https://stolav.no
https://stolav.no
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(a) Raw image
(censored)

(b) Raw segmented
SkinChecker

(c) Color corrected
SkinChecker

Fig. 4: Color calibration pipeline. The visible skin patch within the SkinChecker
(highlighted by the red square in Fig. 4c), represents the color calibrated image.

2.2 Color Calibration Frameworks

Literature describes a wide range of polynomial and root-polynomial fits to per-
form color correction. We are, however, unaware of previous work that proposes
a solution as to which extension is to be applied in a given scenario. To over-
come the practical issues related to color correction, first, we create two color
correction frameworks, polynomial color correction framework (PCCF) and root-
polynomial color correction framework (RPCCF), that are implementations of
widely used polynomial and root-polynomial extensions. Finally, we test our
framework, the novel GPR for color correction. Due to its extreme modeling
flexibility, and added noise kernels, in the section 3, we show that the GPR
well compete and even outperforms state-of-the-art approaches, creating highly
complex models without overfitting. These frameworks are defined by their set
of extension operators that transform sensor RGB values to m-element column
vectors of an arbitrary combination or power. We will refer to these extension

operators as internal methods θk (e.g. (r, g, b)T
θk−→ ρ̂2(r, g, b, r2, g2, b2)T ). Each

framework builds a color correction model for each of its internal methods (i.e.
polynomial expansion) using least-squares regression to solve. Doing so, results
in an m× 3 matrix M, mapping

ρ̂
M−→ (L∗, a∗, b∗). (9)

Polynomial Color Correction Framework Solution (PCCF) To create
the set of polynomial extension operators (i.e., the set of internal methods),
we apply an iterative scaling approach, increasing the complexity of internal
methods for each iteration. We start off by adding a constant term to the LCC:

ρ = (r, g, b)T
θ1−→ ρ̂1 = (r, g, b, 1)T (10)

While not a significant alteration, the added term gives the least-squares
regression some leeway. Continuing, we follow the polynomial orders, and com-
binations of R, G, and B, and create the following collection of RGB-extension
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operators. The first subscript denotes the polynomial order, and the second sub-
script denotes the method id within the polynomial order.

ρ̂1,1 = [r, g, b, 1] (11)

ρ̂2,1 = [r, g, b, rg, rb, gb, 1] (12)

ρ̂2,2 = [r, g, b, r2, g2, b2, 1] (13)

ρ̂3,1 = [r, g, b, rg, rb, gb, r2, g2, b2, rgb, 1] (14)

ρ̂3,2 = [r, g, b, r2g, r2b, g2r, g2b, b2r, b2g, rgb, 1] (15)

ρ̂3,3 = [r, g, b, rg, rb, gb, r2, g2, b2,

r3, g3, b3, rgb, 1]
(16)

ρ̂3,4 = [r, g, b, rg, rb, gb, r2, g2, b2,

r2g, r2b, g2r, g2b, b2r, b2g, rgb, 1]
(17)

ρ̂3,5 = [r, g, b, rg, rb, gb, r2, g2, b2,

r2g, r2b, g2r, g2b, b2r, b2g, r3, g3, b3, rgb, 1]
(18)

Root-Polynomial Color Correction Framework Solution (RPCCF) For
a fixed exposure, PCC has shown significantly better results than a 3×3 LCC [11].
However, as pointed out by [10], exposure changes the vector of polynomial
components in a nonlinear way, resulting in hue and saturation shifts. Their
solution, RPCC, claims to fix these issues by expanding the RGB terms with
root-polynomial extensions instead. We adopt their idea and create the RPCCF.
The framework includes the root-polynomial extensions suggested in their paper,
where the subscript of ρ̄ denotes the root-polynomial order.

ρ̄2 = [r, g, b,
√
rg,
√
rb,

√
gb, 1] (19)

ρ̄3 = [r, g, b,
√
rg,
√
rb,

√
gb, 3

√
rg2,

3
√
rb2, 3

√
gr2, 3

√
gb2,

3
√
br2, 3

√
bg2, 3

√
rgb, 1]

(20)

ρ̄4 = [r, g, b,
√
rg,
√
rb,

√
gb,

3
√
rg2,

3
√
rb2, 3

√
gr2, 3

√
gb2,

3
√
br2, 3

√
bg2, 3

√
rgb,

4
√
r3g,

4
√
r3b, 4

√
g3r, 4

√
g3b,

4
√
b3r, 4

√
b3g,

4
√
r2gb, 4

√
g2rb, 4

√
b2rg, 1]

(21)

Gaussian Process Regression Solution GPR is a very flexible machine
learning technique that requires no explicit tuning of hyperparameters (other
than the choice of kernel). For color correction, we train three separate GPs, one
for each color channel (R, G, B). To predict a new color, the three GPR models
take the RGB input color and predicts their respective CIE L*a*b* intensity
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value (e.g., L* or a* or b*). The three individual results are combined to create
the new CIE L*a*b* color coordinate.

The GPR implementation is initiated with a prior’s covariance, specified by
a kernel object. The hyperparameters of the kernel are optimized using gradient-
descent on the marginal likelihood function during fitting, equivalent to max-
imizing the log of the marginal likelihood (LML). This property makes GPR
superior to other supervised learning techniques, as it avoids heavy computa-
tional validation approaches, like cross-validation, to tune its hyperparameters.
The LML may have multiple local optima, and trail and error testing is employed
to verify that the optimal or close to the optimal solution is found by starting
the optimizer repeatedly.

Choosing Kernel: GPR is a general method that can be extended to a wide
range of problems. To implement GPs for regression purposes, the prior of the
GP needs to be specified by passing a kernel. Widely used kernels are empirically
tested; RBF, Matérn, and rational quadratic (RQ). Additionally, combinations
of Constant- and White kernel are added to the kernel function, to find the best
performing kernel composition.

3 Experimental Results

In this section, using skinChecker, the proposed color calibration methods are
evaluated. The models are evaluated on all images in the jaundice dataset, thus
testing each solution in terms of skin color correction. Based on the sampled
data and the corresponding CIE L*a*b* triplets, each color correction solution
builds a model, evaluated according EM. Figures 5a and 5b show the results
of the experiment and their bar plot visualization, evaluating the LCC, PCCF,
RPCCF, and GPR. The dataset is collected through fieldwork, and the light
sources are not reproducible in terms of a single CIE illuminant.

(a) EM results. (b) Bar plot visualization.

Fig. 5: Experimental results of LCC, PCCF, RPCCF, and GPR.

To give insight in the proposed color correction frameworks, we present the
results for each internal method. Table 1a shows the internal results for the
PCCF, where ρ̂3,1 is the best performing internal methods in terms of EM. The
RPCCF results are more polarized, where ρ̄2 outperforms the rivaling internal
methods by a large margin.
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method ρ̂11 ρ̂21 ρ̂22 ρ̂31 ρ̂32 ρ̂33 ρ̂34 ρ̂35
size 4x3 7x3 7x3 11x3 11x3 14x3 17x3 20x3
EM 4.84 3.63 3.69 3.53 3.77 4.05 5.04 6.64

(a) EM results for all internal PCCF methods.

method ρ̄2 ρ̄3 ρ̄4
size 4x3 7x3 7x3
EM 4.74 6.04 13.73

(b) Internal RPCCF methods.

Table 1: All color correction evaluation method results for all internal PCCF
methods (a) and all internal RPCCF methods (b). The best performing (i.e.
lowest ∆E∗

ab) internal methods are highlighted in bold.

Four visualizations of color corrected SkinCheckers using LCC, PCCF, RPCCF,
and GPR respectively, are illustrated in Fig. 6. The color corrected image is ran-
domly selected from the dataset.

(a) LCC (b) PCCF (c) RPCCF (d) GPR

Fig. 6: Color correction models are trained on an imaged SkinChecker and evalu-
ated on the same image. Each color patch, in the reconstructed image, is divided
into two parts: left shows the color corrected color, right shows the ground truth
target color. All images are recreated from CIE L*a*b* coordinates to RGB with
CIE D65 illuminant.

4 Conclusion

A reliable color calibration is necessary to avoid using professional image acqui-
sition tools in every clinic or laboratory. To our best knowledge, there is cur-
rently no comprehensive study on color calibration methods applied to human
skin images, particularly when using amateur cameras. In this work, we made a
comprehensive study and we also proposed a novel approach for color calibra-
tion, Gaussian process regression (GPR), a machine learning model that adapts
to environmental variables. The results indicate that our extended version of
Polynomial Color Correction (PCCF) and GPR are viable solutions when color
correcting skin, while GPR also creates more general models. We conclude that
our solution can be used in a variety of human skin analyses and is an affordable
screening alternative to expensive professional image acquisition tools.
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