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a b s t r a c t

Spatial differentiation of phenotypes is assumed to be determined by a combination of fluctuating
selection producing adaptations to the local environment and a homogenizing effect of migration. We
present a model with density regulation and a density-dependent fitness function affected by spatio-
temporal variability in population size driven by spatially correlated fluctuations in the environment
causing fluctuating r- and K -selection on a set of traits. We derive the variance in local mean
phenotypes and show how the spatial scales of the correlations between the components of the mean
phenotype depend on ecological parameters. The degree of spatial differentiation of phenotypes is
strongly influenced by parameters affecting ecological dynamics. In the case of a one-dimensional
character the geographical scale of variation in the mean phenotype has simply an additive term
corresponding to the Moran effect in population dynamics as well as a term determined by dispersal
and strength of local selection. The degree of phenotypic differentiation increases with decreasing
strength of local density dependence and decreasing strength of local selection. These results imply
that the form of the spatial autocorrelation function can reveal important information about ecological
and evolutionary processes causing phenotypic differentiation in space.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One striking biological phenomenon is the decrease in sim-
ilarity in many characteristics of populations with increasing
geographical distance. For example, a large number of studies
covering a wide array of taxa have revealed that genetic differ-
entiation increases with increasing distance between localities
(e.g. Rousset, 1997; Templeton, 2006; Aguillon et al., 2017). Sim-
ilarly, mean phenotypes including both morphological and life
history traits of individuals from populations located close to
each other in space are more similar than when individuals
sampled from distantly located populations are compared (Gould
and Johnston, 1972; Zink and Remsen, 1986; Linhart and Grant,
1996; Conover et al., 2006). Finally, another general pattern that
has emerged is that the degree of temporal synchrony in popula-
tion fluctuations decreases with increasing distance (Myers et al.,
1997; Ranta et al., 2006; Sæther et al., 2007).

Despite these general patterns of isolation by distance in
a wide range of population characteristics, the underlying
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processes affecting the degree of differentiation with distance
between the localities are poorly known (Zink and Remsen,
1986; Linhart and Grant, 1996). This occurs even though many
classical models in population genetics focus on how geographical
structure affects spatial differentiation of genotypes or pheno-
types. Haldane (1930), considering a single population receiving
immigrants from a large neighboring population with an allele
that was deleterious in homozygotes, showed that for a suffi-
ciently high dispersal rate the locally adapted allele would be
lost. Wright (1932) also formulated his shifting balance theory in
a spatial context, proposing that natural selection will, together
with random perturbations in gene frequencies due to random
genetic drift, produce adaptive changes (see Svensson and Cals-
beek, 2012). Gene flow also constitutes a critical element of
this theory because under natural selection alone the population
would be trapped at one of the adaptive peaks (Slatkin, 1987;
Goodnight, 2012). These early models encapsulated the basic
idea that spatial differentiation is the outcome of two opposing
processes: natural selection causing adaptations to local environ-
mental conditions and gene flow reducing the mean fitness of the
population (Felsenstein, 1976; Lenormand, 2002).

Several results are known for small scale genetic differen-
tiation by analysis of models with no selection. An important
extension of the earliest theories in population genetics was
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provided by Wright (1943), who proposed that spatial similarity
in genetic composition between populations should increase with
increasing migration. Wright derived this relationship by a model
in which all populations (demes) had constant size and equal
probability of exchanging individuals with each other, but con-
sidered also continuous populations. Kimura (1953) introduced a
more realistic spatial structure than the island model, assuming
that populations exchanged migrants only with their immediate
neighbors. In this stepping stone model the expected divergence
between alleles sampled from different populations also increases
with distance between the populations (Slatkin, 1993; Barton
et al., 2013). In general, differences between populations increase
rather fast at short distances for then to become almost in-
dependent of distance. Such a pattern of isolation by distance
in genetic divergence has also received considerable empirical
support (Rousset, 1997; Templeton, 2006; Aguillon et al., 2017).

An important advance in our understanding of processes af-
fecting phenotypic differentiation in space was provided by
Lande’s (1991) model of isolation by distance in a quantitative
trait. He showed that at equilibrium the geographic pattern of
phenotypic variation depended on genetic drift, amount of ge-
netic variance, strength of stabilizing selection and the spatial
scale of dispersal, but was independent of the form of the disper-
sal function. He was also able to derive the covariance between
expected phenotypes of individuals as a function of distance for
both one- and two-dimensional habitats. However, this approach
was based on several simplifying assumptions (e.g. a constant
optimal phenotype, the same strength of selection anywhere
in space and constant population size and environment). As in
the early theories in population genetics (Slatkin, 1985, 1987),
important ecological processes such as the effects of density
dependence and stochastic fluctuations in the environment were
ignored.

In spatial ecology, Moran (1953) derived one of the few quan-
titative predictions in population ecology. He showed that the
temporal correlation in fluctuations of the size of two populations
at different locations was equal to the correlation in the common
environmental noise in population growth rates if the popula-
tions were subject to the same linear form of density regulation.
In this model only environmental noise affecting all individual
equally is considered which is reasonable for large population
(Lande et al., 2003). For smaller populations demographic noise
affecting individuals independently (Engen et al., 1998) must
be included and will make correlations smaller. In a different
approach, Lande et al. (1999) included density dependence and
dispersal to derive a very simple formula for the spatial scale
of population synchrony, measured as the standard deviation of
the spatial autocorrelation function for population density when
this is scaled to become a distribution. The squared scale has a
minimum occurring under no migration equal to the correspond-
ing squared scale of the environmental noise. With migration a
term ml2m/γ is added, where m is the dispersal rate, l2m is the
variance of the dispersal distance, and γ is the local strength
of density regulation. The Moran (1953)-effect then becomes a
special case (m = 0) of this more general model (see also Engen
et al. (2002) and Engen and Sæther (2005)). These theoretical
results have in turn provided a framework for empirical analyses
of factors affecting the degree of population synchrony over larger
distances (Engen et al., 2005; Grøtan et al., 2005; Sæther et al.,
2006, 2007, 2008a).

Here we use the ecological model of Lande et al. (1999) as a
basis for analyzing the variance and the spatial scale of the au-
tocorrelation of mean phenotype of a multinormally distributed
character in a fluctuating environment. This provides an exten-
sion of the approach by Engen and Sæther (2016a) and Hadfield
(2016), who derived expressions for the degree of spatial dif-
ferentiation under the influence of dispersal of phenotypes and

fluctuations in fitness optima, but assuming constant popula-
tion densities and no density-dependent selection. In the present
model we also include density dependence and fluctuating popu-
lation densities affecting fitness, generating continued fluctuating
r- and K -selection (Lande et al., 2009; Engen et al., 2013), mean-
ing that there is selection for fast growth at small densities and
for competitive ability at large densities. In our model the pop-
ulations are continuously tending to increase their mean fitness
or the Malthusian parameter (Sæther and Engen, 2015), relative
to the given density, according to Fisher’s (1930) fundamental
theorem of natural selection. However, variation in population
density due to a fluctuating environment creates changes in the
vital rates and the Malthusian parameter generating phenotypic
change in addition to that given by Fisher’s theorem (Frank and
Slatkin, 1992; Edwards, 1994; Frank, 1997; Kirkpatrick, 2009).
Under weak local selection this will create stationary but slow
fluctuations in mean phenotypes and hence affect the magnitude
of adaptive divergence recorded in space.

The aim of the present model is to analyze how fluctua-
tions in local population size, local density dependence, local
selection and dispersal affect the spatial distribution of mean phe-
notype. We derive scaling results for mean phenotypes valid over
large distances, ignoring minor local fluctuations in mean pheno-
types due to genetic drift. We argue, based on previous results
(Engen and Sæther, 2016a,b) summarized in Appendix A, that
demographic stochasticity in the population dynamics and local
genetic drift can be ignored when population densities exceed
certain values determined by the spatial scale of environmental
fluctuations.

Although the model is based on several simplifying assump-
tions, it still includes a number of basic ecological and evolu-
tionary processes and can be considered as a theoretical null
model for how different parameters are expected to affect the
large scale pattern of spatial differentiation in mean phenotypes
in stationary fluctuating populations spread out over a large area.
This also provides a theoretical foundation for analyzing how
different ecological processes will affect the form of the spatial
autocorrelation of phenotypes, which has a long history in anal-
yses of phenotypic and genetic differentiation in a variety of taxa
(e.g. Slatkin and Arter, 1991; Sokal and Jacquez, 1991; Sokal and
Oden, 1991; Sokal et al., 1998).

2. Outline of the modeling approach

We shall consider population density N(x, t) at location x =

(x1, x2) at time t as well as the vector of mean phenotypes
z̄(x, t) as continuous spatio-temporal fields, neglecting demo-
graphic stochasticity and random genetic drift. In Appendix A
we summarize the main results of two previous papers (Engen
and Sæther, 2016a,b) on demographic noise in continuous spa-
tial population models, defining two crucial parameters. Writing
ρe(h) for the spatial autocorrelation of the environmental noise
in growth rates at locations at separation h, the characteristic
area A0 =

∫
ρe(h)dh can be considered as an area in which

individuals are similarly affected by the environment. The spatial
demographic effect sd = σ 2

d /(KA0σ
2
e ) is an expression of the

importance of demographic noise relative to environmental noise.
Here σ 2

d and σ 2
e are the demographic and environmental vari-

ances in population growth, respectively, and K is the carrying
capacity at the density scale. The main conclusion is that if sd is
small compared to 1, then demographic noise and the random
genetic drift it generates can be neglected. Typical values of σ 2

d
and σ 2

e are of order 1 and 0.01 (Lande et al., 2003; Sæther et al.,
2013), respectively, giving an sd of order 100/(KA0), where KA0 is
the mean number of individuals in A0, so that large density K or
large spatial scale of the environmental noise is required to give
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a small sd. In the following we assume that the carrying capacity
and the environmental spatial scale are large enough for using
a continuous spatial population model with environmental noise
only.

Even if drift operating over relatively small distances is ig-
nored, the problem is extremely difficult to analyze in general.
There are two spatial fields in two dimensions, one for population
densities and one for multivariate mean phenotypes that interact
by temporally correlated environmental noise and dispersal, and
undergo stochastic fluctuations in time. However, we avoid using
time in the formulas writing N(x) and z̄(x) for the spatial fields
to simplify the notation when this is not required. So, if there are
q different phenotypes to be studied jointly, there is altogether a
(q + 1)-dimensional field in two spatial dimensions. In order to
find any transparent results that can give some general insight
into this complex process it is crucial that some assumptions of
weak selection are made. If selection is sufficiently weak, the
temporal and spatial variation in mean phenotypes will be slow
and often not observable in ecological time, but faster and observ-
able at an evolutionary time scale over thousands of years. The
population densities, however, fluctuate very fast in evolutionary
time, commonly with a return time to equilibrium from some
months up to some few decades, although there is less variation
among species if time is measured in generations. The coupling
between the fields can then be dealt with by assuming that the
genetics is fixed in many mathematical arguments concerning
fluctuations in ecological time. In this way, the fluctuations in the
density field can be considered as stochastic noise in the evolu-
tionary process, and can even be approximated by a noise with
no temporal but a spatial correlation at the evolutionary time
scale, determined by the spatial population dynamics governed
by local density regulation, dispersal and spatially correlated
environmental noise.

3. Ecological dynamics

The logistic model for population density N in continuous time
with environmental noise and no spatial or genetic components
takes the form dN = N(r − ηN)dt + σeNdB(t), where σ 2

e is the
environmental variance and informally dB(t) are increments of
standard Brownian motions during time dt with zero mean and
variance dt . Writing γ = Kη, where K = r/η is the mean pop-
ulation size in the corresponding deterministic model (σ 2

e = 0),
yields dN = N(r −γN/K )dt +σeNdB(t). In this initial formulation
with no genetics it appears that γ = r , but as we later want
to study genetic variation in r and γ (introducing r(z) and γ (z),
where z is the phenotype vector) it is required that we keep the
intrinsic growth rate r and the strength of density regulation γ as
distinct parameters. The characteristic return time to equilibrium
is then 1/γ (May, 1974). Expressing the model in terms of n =

N/K−1 then yields dn = −n(n+1)γ dt+σe(n+1)dBe. Linearizing
at n = 0 (N = K ) and approximating the stochastic term by
its average σedBe (approximating N/K by 1), yields an accurate
approximation for small and moderate population fluctuations
(Engen, 2017) as dn = −γ ndt + σedB(t).

Following Lande et al. (1999) we write N(x, t) for the popu-
lation density at location x = (x1, x2) at time t , assuming that
mean densities are large enough for demographic noise to be
ignored. Under small fluctuations in local population density and
density independent dispersal at rate m the linearized dynamics
of the proportional deviation from carrying capacity K , n(x, t) =

N(x, t)/K − 1, are given by

dn(x, t) = −(γ + m)n(x, t)dt

+ mdt
∫

n(x − h, t)f (h)dh + σedBe(x, t), (1)

where f (h) is the distribution of dispersal distance and the last
term is the noise. The factor dBe(x, t) = Be(x, t+dt)−Be(x, t) is the
increment of a standard Brownian Be(x, t) so that E[dBe(x, t)] = 0
and var[dBe(x, t)] = dt . The noise is assumed to have a spatial
autocorrelation ρe(h) defined by E[dBe(x, t)dBe(x+h, t)] = ρe(h)dt
with ρe(0) = 1.

Based on this model Lande et al. (1999) derived a remarkably
simple formula for the spatial scale of population synchrony.
Scaling autocorrelation or autocovariance functions to become
distributions, they defined the spatial scale along a given direc-
tion in space as the standard deviation of these distributions in
that direction. Writing this spatial scale for the autocorrelation of
population density as ln (n and N have the same spatial scale), for
the noise as le, and the standard deviation of dispersal distance as
lm, this yields

l2n = l2e + ml2m/γ . (2)

This scaling result based on linearization of the dynamics is
formally only valid in the limit that σ 2

e approaches zero, but
Engen (2017) analyzed its accuracy and showed that it is very
accurate under moderate and even rather large population fluc-
tuations. The Fourier transform of the spatio-temporal covariance
function cn(h, t) = cov[n(x, u), n(x + h, u + t)] derived by Lande
et al. (1999) is given in Appendix B.

Here, we analyze a rather similar but a bit more complex spa-
tial model for mean phenotypes. In this model the process n(x, t)
appears as noise and we show in Appendix C that it can be ap-
proximated by a temporally uncorrelated noise σwdBw(x, t) with
spatial autocovariance function cw(h) = σ 2

wE[dBw(x, t), dBw(x +

h, t)]. The Fourier transform of this autocovariance function,
which is what is required to perform numerical calculations, is
given by Eq. (C.2) in Appendix C. We also show in this appendix
that the spatial scale of this noise term is l2e + 2ml2m/γ . The fact
that this is larger than the spatial scale of n(x, t) is due to the
temporal autocorrelations in n(x, t).

4. Quantitative genetic model

Let z = (z1, z2, . . . , zq)T , where T denotes matrix transpo-
sition, be a phenotypic vector with a multinormal distribution
p(z; x) among individuals at location x with mean z̄(x) varying in
space and time and phenotypic covariance matrix P and additive
genetic matrix G , which are both assumed to be constant in
space and time. The time variable has been omitted in the mean
phenotype to simplify the notation.

The local change in mean phenotype will have two additive
terms, dz̄(x) = dmz̄(x)+dRz̄(x), where the first is due to dispersal
and the second is the response to local selection. It is shown in
Appendix D that

dmz̄(x) = mdt
∫

[z̄(x − h) − z̄(x)]f (h)dh, (3)

with an additional stochastic term (when conditioned on the field
of mean phenotypes) that is small compared to the stochastic
term in the response to be defined by Eq. (4) below. Hence, in
the following we neglect the stochastic term in the migration
component.

We now consider the quantitative genetic model where r(z)
and η(z) vary among individuals at a given location x according
to the multivariate normal density p(z; x). For simplicity we as-
sume that each individual is equally affected by the environment
so that the environmental variance σ 2

e is constant. The mean
deterministic growth rate for small densities is then r̄(z̄) =∫
r(z)p(z; x)dz and similarly for η̄(z̄), while the corresponding

long-run growth rate, the expected growth rate on the log scale, is
s̄(z̄) = r̄(z̄)−σ 2

e /2 (Lande, 2007). These are functions of the mean
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phenotype z̄ at location x since p(z; x) has mean z̄ not shown in
the notation.

Introducing γ (z) = Kη(z) for individuals with phenotype z as
we did in the non-evolutionary Eq. (1), we show in Appendix E
that the response to selection takes the form

dRz̄ = Gγ̄∇Q (z̄)dt − G∇γ̄ ndt, (4)

where n = n(x, t) is the spatio-temporal process given by Eq. (1)
and γ̄ and ∇γ̄ are evaluated at the stable equilibrium phenotype
z∗ which maximizes the average density Q (z̄) = s̄(z̄)/γ̄ (z̄).
Actually, to obtain a realistic model this function must have a
maximum in the genetic model for fluctuating r- and K -selection
because expected population size would otherwise evolve to-
wards infinity (see Appendix E and Engen et al., 2013 for details).
There is no simple transparent formula for the autocovariance
function for the noise, but in Appendix C an approximation for
its Fourier transform is given by Eq. (C.2). This enables numerical
calculation of the autocovariance function by the backward trans-
formation (see Appendix B). From Eqs. (3) and (4) the total change
in mean phenotype dz̄ = dmz̄ + dRz̄ has three terms. The first
term in Eq. (4) is deterministic, representing expected response to
selection towards z∗ by the adaptive topography Q (z̄). Next, there
is second deterministic term expresses the effect of migration
by Eq. (3), while the third appearing in Eq. (4) is a stochastic noise
term with zero mean generated by fluctuations in population
density that are fast compared to those of z̄ .

Assuming weak selection we can approximate Q to the second
order at its maximum writing

Q (z̄) = Q (z∗) −
1
2

∑
i,j

H−1
ij (z̄i − z∗

i )(z̄j − z∗

j ), (5)

where the H−1
ij = −∂2Q (z)/(∂zi∂zj) evaluated at z̄ = z∗ are the

elements of the Hessian matrix H−1 for the function −Q . Using
this approximation we find ∇Q (z̄) = −H−1(z̄ − z∗). Inserted into
the equation for the response to selection which is averaged over
the stochastic fluctuations in n (and are fast compared to those of
z̄ and considered as noise in the genetic model) and conditioned
on the field z̄(x) can be written as

EdRz̄ = −Γ(z̄ − z∗)dt,

where Γ = γ̄GH−1 is a matrix expressing the strength of local
stabilizing selection. The total change in mean phenotype is now
the sum of the dispersal and response component, that is, dz̄(x) =

dmz̄(x) + dRz̄(x), giving the full model

dz̄ = −Γ(z̄−z∗)dt+mdt
∫

[z̄(x−h)− z̄(x)]f (h)dh−G∇γ̄ ndt, (6)

The dynamic equation (6) has striking similarities with Eq. (1)
(with n replaced by z̄) although z̄ is in general a vector while n is
a scalar. First there is a linear term sending the mean phenotype
towards z∗, then a linear dispersal term of the same form as in (1),
and finally a noise term which as in Eq. (1) can be approximated
by white noise with spatial autocorrelation that has spatial scale
l2e + 2ml2m/γ̄ (see Appendix C).

5. The scale of spatial autocorrelations of mean phenotypes

In Appendix F we give the general expression for the spatial
scale lij of all covariances/variances between z̄i and z̄j, that is,
the spatial scale of the autocovariance function cov[z̄i(x, t), z̄j(x+

h, t)], in any direction. The expression is complex and not trans-
parent, so here we focus on the analysis of a single trait z with

additive genetic variance G. Provided that trade-offs between
rapid growth expressed by large r , and ability to compete under
large densities, expressed by a small γ , has evolved so that
individuals with large r tend also to have large γ (Engen et al.,
2013), Q (z) will have a maximum at z∗ with a second derivative
−H−1 at z∗.

Eq. (F.4) in Appendix F for a one-dimensional trait then yields
only one eigenvalue λ1 = G/H . Omitting the subscript 1 the
squared spatial scale of cov[z̄(x), z̄(x + h)] takes the form

l2 = l2e +
ml2m
γ̄

(2 + G/H) = l2e +
2ml2m

γ̄
+

ml2m
Γ

, (7)

where Γ = γ̄GH−1 is the strength of stabilizing selection in the
sense that the local response is dRz̄(x) = −Γ [z̄(x) − z∗

]. The first
two terms at the right side of Eq. (6) represent the direct effect of
fluctuations in population size N , which has a spatial scale larger
than that of N itself (exactly by a factor 2) given by Eq. (2) due
to the temporal autocovariances in N as outlined in Appendix C.
In other words, these two terms correspond to the Moran-effect
(Moran, 1953) in population dynamics as it is the squared spatial
scale of the noise in the evolutionary process. The last term is the
component generated by dispersal through local selection, and is
the analogy of the term ml2m/γ in the expression for the scale
of N(x, t) given by Eq. (2). This shows that dispersal may have a
large effect on the spatial scale of mean phenotype if the local
selection is weak.

5.1. The magnitude of fluctuations in mean phenotypes

In Appendix G we show how to compute the spatial autoco-
variance function by Fourier analysis, first deriving the Fourier
transform for autocovariance functions such as cij(h) = cov[z̄i(x),
z̄j(x + h)] and then performing the backward transformation by
numerical integration. For an isotropic model the autocovariance
function cz(v) for a single trait, where v is the Euclidian distance,
is given by a simple one-dimensional integral (Eq. (F.1) in Ap-
pendix F). Plugging in v = 0 this yields the stationary variance of
the mean phenotype z̄ as

var(z̄) =
G2σ 2

e (∇γ̄ )2

2π

×

∫
∞

0

Fe(u)udu
2{m[1 − Fm(u)] + Γ }{m[1 − Fm(u)] + γ̄ }2

, (8)

where Fe(u) and Fm(u) are the Fourier transforms of ρe(v) and
the distribution f (v) of dispersal distance, respectively, in the
isotropic case (see Appendix B for definitions).

If there is no dispersal, m = 0, so that the correlated noise is
the only effect that combine locations, using ∇γ̄ /γ̄ = ∇ ln γ̄ and
the backward transformation (2π )−1

∫
∞

0 Fe(u)J0(uv)udu = ρe(v)
(see Appendix B) which is 1 at v = 0, we find that

var(z̄) =
1
2
G2(∇ ln γ̄ )2σ 2

e /Γ . (9)

Because G is a factor in Γ this variance is proportional to G as
well as to σ 2

e . The factor (∇ ln γ̄ )2 represents density dependent
selection by expressing how strongly γ̄ (z̄) depends on z̄ at z̄ =

z∗. However, both density independent and density dependent
selection has additional effects by determining the factor −Q ′′(z∗)
of Γ . Notice that Eq. (8) for the variance in mean phenotype refers
to the simple model with no dispersal. By inspection of Eq. (7) we
see that increased dispersal makes the integral in the equation
smaller and hence induce reduction in the variance correspond-
ing to a smoothing effect of dispersal that tends to reduce the
magnitude of spatial variation (Hadfield, 2016).
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5.2. A univariate illustrating example

We now illustrate the application of this theory by a simplified
univariate linear model. First notice that if γ (z) represents a local
density regulation in the sense that increased local density yields
a decrease in population growth rate. Then γ (z) > 0 so that
ln γ (z) may take any real value just like the intrinsic growth
rate r(z). Accordingly, as an illustration of the univariate model
we consider the linearizations of r(z) = r0 + αz giving s(z) =

s0 + αz, and ln γ (z) = ln γ0 + βz at the equilibrium z∗ as a
first order approximation to more general models valid for small
fluctuations of z̄ in time and space. The results are independent
of K if we scale the density by choosing γ0 so that γ̄ (z∗) = s̄(z∗)
giving Q (z∗) = 1. We also choose to scale z by a factor so that
the additive genetic variance G = 1. Then, from (8) under no
dispersal var(z̄) =

1
2β

2σ 2
e /Γ , where Γ = −γ̄Q ′′(0). Here, Q (z) =

s̄(z̄)/γ̄ (z̄), with s̄(z̄) = s0 + αz̄ and γ̄ (z̄) = γ0eβ z̄+Vβ2/2, where
V = G + Ve = 1 + Ve is the phenotypic variance of z and Ve the
environmental variance component of the scaled phenotypes. The
equilibrium is given by Q ′(z∗) = 0 giving z∗

= 1/β − s0/α while
the intrinsic growth rate at the equilibrium phenotype is s∗ =

α/β . Furthermore, since −Q ′′(z∗) = H−1
= αβe−βz∗−β2V/2/γ0 =

αβ/γ̄ (z∗) and Γ = γ̄ (z∗)GH−1
= −γ̄ (z∗)Q ′′(z∗) = αβ for G = 1

we get in the absence of dispersal

var(z̄) =
βσ 2

e

2α
=

σ 2
e

2s∗
=

σ 2
e

2γ ∗
. (10)

In this model, the standard deviation SD(z̄) =
√
var(z̄), relative

to its maximum at m = 0 given by Eq. (9), decreases as the
dispersal rate m increases for different values of the local strength
of selection Γ (Fig. 1). This illustrates that the smoothing effects
on the mean phenotype of dispersal are dependent upon the
strength of selection. Similarly, the spatial autocorrelation for
the mean phenotype is also dependent on the strength of local
selection (Fig. 2). Strong local selection decreases the scaling of
the spatial autocorrelation function. However, the actual value
of the autocorrelation, shown in Fig. 2, decreases with the scale
shown as vertical lines. This occurs because the form of the
autocorrelations deviates more from Gaussian curves towards
functions with heavier tails under very weak strength of selection
due to the larger effect of dispersal.

6. Discussion

The major conclusion of our model is that processes affecting
the magnitude of spatial synchrony in population dynamics such
as environmental covariation in space, migration and strength of
local density dependence (Lande et al., 1999) will influence the
variance and spatial scale of covariances for mean phenotypes.
This occurs even though the model is homogeneous in space and
therefore does not account for adaptations to permanent local
environments varying in space (e.g. Hereford, 2009). Hence, the
results should be viewed as a theoretical null model in the same
way as for example the spatial model of Lande et al. (1999).
However, as such, it gives considerable insight into how dif-
ferent parameters affecting the population dynamics influence
the variance of the mean phenotype in space as well as the
spatial scale of its autocorrelation function. Thus, this provides a
theoretical framework for interpretation of differences in patterns
of variation in spatial autocorrelation functions that are often
used in analyses of phenotypic differentiation (Slatkin and Arter,
1991; Sokal et al., 1996).

The present model is an analysis of variation and large scale
synchrony in covariances of mean phenotypes. Based on previ-
ous results we have argued that demographic stochasticity and
random genetic drift can be ignored in the calculations provided

Fig. 1. The standard deviation SD(z̄) =
√
var(z̄) of mean phenotype z̄ (relative

to its value under no dispersal (m = 0)) as function of the dispersal rate m
for different values of the strength of local selection Γ . The other parameters
are γ̄ (z∗) = 0.3, le = 1000, and lm = 100. The dispersal distance has normal
distribution (with zero mean) and the environmental autocorrelation has a
Gaussian form.

Fig. 2. The spatial autocorrelation function ρ(v) = c(v)/c(0) for the mean
phenotype as function of distance r in the isotropic model for different values of
the strength Γ of local selection. The other parameters are le = 1000, lm = 100,
γ̄ (z∗) = 0.3 and m = 0.5. The dispersal distance has normal distribution
(with zero mean) and the environmental autocorrelation has a Gaussian form.
The vertical lines show the spatial scale of these autocorrelation functions
computed from Eq. (6). The spatial covariance function c(v) is ρ(v)c(0), where
c(0) =

1
2 (∇ ln γ̄ )2σ 2

e /Γ is the variance of mean phenotype. The autocovariances
cz (v) are computed using the backward transformation of its Fourier transform
given by Eq. (F.1) in Appendix F, and the spatial correlations finally as ρz (v) =

cz (v)/cz (0). Notice that the actual value of the autocorrelation at the spatial
scale, shown as vertical lines, decreases with the scale. This is because the form
of the autocorrelations deviates more from Gaussian curves towards functions
with heavier tails under very weak strength of selection due to the larger effect
of dispersal.

that the mean number of individuals in characteristic areas de-
fined by the spatial scale of environmental fluctuations, is large.
For example, the spatial scale of environmental fluctuations in
population dynamics of butterflies in the tropics is of order 2
km (Lande et al., 2003), giving a characteristic area of A0 =

2π l2e ≈ 25 square kilometers. Although there is a number of rare
species, most species will have a very large number of individuals
within A0 so that the demographic coefficient sd is very small
compared to 1. Similarly, for species with very large spatial scales
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of covariation in the population dynamics, such as marine fishes
(Myers et al., 1997), a typical spatial scale may be as large as
500 km, corresponding to A0 close to a million square kilometers
that also, for most species, contains a huge number of individuals
making sd small. Birds (Sæther et al., 2007) and mammals (Grøtan
et al., 2005, 2008) represent species with typical intermediate
spatial scale of covariation in the population dynamics, at the
order of 10 km, giving A0 at about 600 square kilometers. Many
species will then have a number of individuals within such an
area that will make sd sufficiently small to ignore demographic
noise, although some rare species will not. In accordance, based
on extensive comparative analyses of geographical variation in
quantitative genetic (QST and neutral FST ) markers Leinonen et al.
(2008) concluded that spatial divergence due to natural selection
and local adaptation was mainly the norm.

Our evolutionary model is also based on several other sim-
plifying assumptions. First, we assume that the phenotype is
normally distributed among individuals with a constant covari-
ance matrix (Lande, 1976) as in the model for r- and K -selection
of Engen et al. (2013). There are many factors, including dispersal,
that will affect this distribution and its covariance matrix, but we
assume that the deviations from normality and fluctuations in
covariances are small. Second, the local dynamics of population
size N is assumed to have small or moderate fluctuations so
that the dynamics can be approximated by a linear model in
n = N/K − 1. Third, we assume weak local selection so that
changes in mean phenotype are much slower than changes in
population size. Comparative analyses indicate that directional
selection coefficient on phenotypic traits in natural populations
often are significant but quite small (Kingsolver et al., 2001, 2012;
Hendry, 2017) and consistent over time (Morrissey and Hadfield,
2012). Fourth, we assume that the environmental variance σ 2

e is
constant, independent of the mean phenotype. With these ap-
proximations we argue that the stochastic term in the increment
of z̄(x) due to dispersal can be ignored. Fifth, we approximate
temporal fluctuations in local population size, which has a tem-
poral autocorrelation depending on the local density regulation
as well as the dispersal, by a noise process with no temporal
correlations considered as noise in the evolutionary process. The
spatial autocorrelation of this noise has squared spatial scale
l2e + 2ml2m/γ̄ , while the spatial scale of the autocorrelations in
population size N is l2e + ml2m/γ̄ (Lande et al., 1999). Sixth, we
assume no phenotypic plasticity in the environmental response,
which can influence the spatial scaling of the mean phenotype
(Hadfield, 2016).

In spite of these simplifying assumptions, our model provides
an extension towards increased ecological realism of previous
models that have analyzed how spatial differentiation of phe-
notypes depends on distance (Lande, 1991; Engen and Sæther,
2016a; Hadfield, 2016) because it includes density dependent
selection as well as stochastic fluctuations in the environment
generating stationary fluctuations in mean phenotype. For ex-
ample, in the model of Engen and Sæther (2016a) population
densities are constant (like in Lande, 1991) but the optima of
the fitness function θ (x) fluctuate both in time and space. In
that model we obtained some simple scaling result for spatial
variation in the mean phenotype: fluctuations in θ have spatial
scale lθ and the temporal process for θ has an average return
time to equilibrium of 1/γθ so that γθ represents the strength of
the force driving θ towards its spatial and temporal equilibrium
value. Writing Γ for the strength of local selection in that model,
we found that the squared spatial scale of the mean phenotype
was l2θ + ml2m/(Γ + γθ ). Here it appears that a short return time
to equilibrium of θ reduces the scaling effect of local selection
through Γ , since selection then continuously is disturbed by the
fast fluctuations in θ . Still, there are some links between the

results of the two models: dispersal increases the scale while
increased strength of local selection decreases it. Including all
ecological effects in a single model would be interesting, but
challenging, and is unlikely to provide general transparent results.

Although we have given the general solution for a multivariate
character, we have chosen to focus the discussion on the results
for a single character only because the multivariate results are
rather complex with little transparency. However, even if the
parameters r(z) and γ (z) determining the Malthusian fitness
(Sæther and Engen, 2015) in this model are functions of a mul-
tivariate phenotype, their variation may often be determined by
some function of phenotypes, for example a linear combination
(corresponding to a first order Taylor expansion), so that the
univariate model with this single phenotype used as the only
single trait affecting fitness may often be realistic. Hence, the
more transparent univariate results illustrate well the links be-
tween the spatio-temporal variation in population dynamics and
the evolutionary processes.

The univariate analysis yields two major observations, sum-
marized in the expression for the autocovariance function cz(v)
in the isotropic model given in Appendix F. Plugging in distance
v = 0 this yields an expression for the spatial variance in z̄
as expressed by Eq. (8). A special case of this yields the simple
expression for the variance when there is no dispersal (m = 0)
given by Eq. (9). Integrating Eq. (F.1) under no dispersal shows
that for v ≥ 0

cz(v) =
1
2
G2(∇ ln γ̄ )2σ 2

e ρe(v)/Γ .

Even under no dispersal we can draw some interesting con-
clusions. First, in order to obtain a variable mean phenotype
there must be some environmental variance σ 2

e generating fluc-
tuations in local population size. Second, in order to have any
local response to selection the trait must have some additive
genetic variance G so that it actually has some heritability. Third,
there must be some gradient in the local strength of density
regulation γ̄ (z̄) (and its log) at the phenotype z∗ maximizing
Q (z̄) = s̄(z̄)/γ̄ (z̄). This means that the effect of density on vital
rates of individuals must depend on the phenotype (see Sæther
et al., 2016a for an empirical example), which is a requirement for
continued fluctuating balance between r- and K -selection. Finally,
the (co)variance is inversely proportional to the local strength
of stabilizing selection Γ so that large spatial fluctuations in
mean phenotype may indicate weak local selection. This effect
of Γ is intuitive from simple results in first order autoregressive
models in discrete time or the Ornstein–Uhlenbeck model in
continuous time. If such a process ξ has infinitesimal mean and
variance a− bξ and σ 2, the stationary variance is σ 2/(2b), where
b corresponds to our strength of selection Γ , always making the
mean phenotype approach its temporal mean (see also Chevin
et al., 2015, 2017).

Our model yields a particularly simple result for the spatial
scale of the autocorrelation of mean phenotype given by Eq. (7).
As in the ecological model of Lande et al. (1999), if weak density
regulation is weak, dispersal can generate a very large spatial
scale for the autocorrelations of population size Eq. (2). Our
formula provides a similar result with respect to local strength of
stabilizing selection. If the strength Γ is small, dispersal will have
a large effect on the spatial scale of the autocorrelation in mean
phenotype, in addition to the general effects of dispersal as ho-
mogenizing agent for phenotypic variation in space as expressed
by Eq. (8) and illustrated in Fig. 2 (see references in Engen and
Sæther, 2016a; Hadfield, 2016).

The univariate model with linearization of s(z) = s0 + αz and
ln γ (z) = ln γ0 + βz represents a simple decomposition of the
local selection into a density independent component expressed
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by α and density dependent selection expressed by β . When z
is scaled so that the mean is at zero and the additive genetic
variance is 1, the local strength of selection Γ is simply the
product αβ . The intrinsic growth rate s∗ at the equilibrium is
α/β and the variance of the mean phenotype in space and time
under no dispersal is 1

2σ
2
e β/α =

1
2σ

2
e /s∗. Thus, the variance

will increase with increasing density dependent selection, which
is actually the link between the fluctuations in z̄ and those in
population size N . When α gets very small so that there is only
density dependent selection, there will in the limit (α = 0) be
no genetic equilibrium. Comparative studies have revealed large
spatial variation in directional selection in natural populations
(Siepielski et al., 2013), but the mechanisms involved in generat-
ing the geographical patterns in selection are still poorly known
(Kingsolver et al., 2012).

To illustrate further the relationship between phenotypic dif-
ferentiation and population dynamics, it may be illustrative to
consider some typical parameter values. Environmental stochas-
ticity is often referred to based on analyses of vertebrate pop-
ulation dynamics (Sæther and Engen, 2002; Lande et al., 2003;
Sæther et al., 2013, 2016b) as being moderate when σ 2

e = 0.01
reflecting a standard deviation of 0.1 in the intrinsic growth rate,
while σ 2

e = 0.04 with standard deviation 0.2 represents rather
large fluctuations. The value of s∗, the intrinsic growth rate of the
species, that is, the growth rate in the absence of density reg-
ulation, varies considerably even among closely related species
(Sæther and Engen, 2002; Sæther et al., 2008b, 2013, 2016b).
Similarly, the deterministic growth rate is often correlated with
the generation time (Sæther et al., 2005, 2013; Bjørkvoll et al.,
2012), expressing the slow–fast continuum of life history vari-
ation (Sæther and Bakke, 2000). For example, s∗ = 0.5 may
represent a small fast organism while s∗ = 0.02 is in the typical
range of large species with long generation times. The largest
variance in mean phenotypes under no dispersal is expected for
such species in highly fluctuating environments, exemplified by
1
2σ

2
e /s∗ =

1
2 · 0.04/0.02 = 1 so that the variance equals the

additive genetic variance of the character under no dispersal. In
general, dispersal decreases the variance (Fig. 1). A fast growing
species in a moderately fluctuating environment will at the other
end have variance 1

2 · 0.01/0.5 = 0.01 so that the standard
deviation of the mean phenotype is only 10% of the standard
deviation of the breeding values under no dispersal.

To summarize, our model indicates that there should be a
relationship between the pattern of spatio-temporal variation
in population dynamics and degree of spatial differentiation in
phenotypes (Kirkpatrick and Barton, 1997). These patterns should
be analyzed using spatial variation of individual phenotypes z
rather than mean phenotypes z̄. Because the phenotype z of an
individual equals the mean phenotype z̄ plus a deviation from
this, which is independent among individuals, the spatial auto-
covariance in z̄ must be the same as the spatial autocovariance
in the individual phenotypes z and can therefore be estimated by
standard methods in spatial statistic (Sokal et al., 1998), e.g. using
variograms based on individual observations (Cressie, 1993).
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Appendix A. Effects of demographic noise and random genetic
drift

We describe population density N(x, t) at location x = (x1, x2)
at time t as well as mean phenotypes z̄(x, t) as continuous spatio-
temporal fields, neglecting demographic stochasticity affecting
changes in population size in small areas with finite number of
interacting individuals, as well as random genetic drift in such
subpopulations. Therefore, our theory can only be realistic for
description of fluctuations in density and mean phenotypes over
areas large enough for ignoring such independent stochastic vari-
ation among individuals, and our scaling results are valid only for
spatial covariances between mean phenotypes at large distances.
Hence, we first need to find the characteristics of the spatio-
temporal distribution of population density of different organisms
that determine minimum area and distance for application of
these results.

Demographic noise in continuous spatio-temporal processes is
difficult to model accurately, requiring that we deal with each
individual separately and their position in space. We have pre-
viously developed a theory for analyzing population dynamics
including demographic and environmental noise as well as dis-
persal (Engen and Sæther, 2016a). We have also examined se-
lection and genetic drift under fluctuations in optimal phenotype
in a spatio-temporal model ignoring density-dependence (Engen
and Sæther, 2016b). In both cases there is density independent
dispersal of individuals at a given rate m (a fraction mdt disperse
during time dt) and a specified distribution of dispersal distance.
The present model has considerably higher degree of complexity
because it uses two fields, N(x, t) and z̄(x, t), interacting through
a common dispersal of individuals, while in our genetic model
(Engen and Sæther, 2016a), the field of optimal phenotypes is
not affected by dispersal. This makes it impossible to derive
any transparent analytical results in the present model in the
presence of demographic noise, but still the above papers con-
tain some results that can be used to address how demographic
stochasticity may affect the spatial scaling of phenotypic variation
. In simple population models with no spatial structure the noise
in the dynamics of population size N , defined as the variance of
the yearly relative change in population size ∆N/N , is σ 2

e +σ 2
d /N .

Here σ 2
e is the environmental variance affecting all individuals in

a similar way, whereas σ 2
d is the demographic noise representing

independent variation in vital rates among individuals (Lande
et al., 2003). In spatial models the environmental effects at two
locations at spatial distance h will have a spatial correlation
ρe(h) that usually decreases with increasing distance. Engen and
Sæther (2005) showed that the importance of demographic noise
in spatio-temporal population dynamics can be expressed by a
parameter sd = σ 2

d /(KA0σ
2
e ) called the spatial demographic effect

determined by mean population density K and the characteristic
area A0 =

∫
ρe(h)dh, provided that the environmental correla-

tion vanishes at infinity. If the environmental autocorrelation is
isotropic with a Gaussian form with variance l2e in any direction,
then A0 = 2π l2e . Roughly we can say that individuals within a
circle with area A0 are typically affected in approximately the
same way by the environment. The demographic noise can be
ignored in computations of the spatial scale of population density
if sd is small compared to 1 (Engen and Sæther, 2016a). The effect
of genetic drift in the genetic model is more complex (Eq. (14) in
Engen and Sæther, 2016b), dependent upon several parameters.
A characteristic area in this model for a single trait is defined
by the spatial autocorrelation ρθ (x) for the optimal phenotype θ ,
as A0,θ =

∫
ρθ (x)dx. The effect of drift depends on an effective

characteristic population size defined as Ne = N0,θ/(σ 2
d +m), where

N0,θ is the (constant) number of individuals in A0,θ . From Eq. (4) in
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Engen and Sæther (2016b) we find that, under weak local selec-
tion, drift can be ignored in the spatial scale of mean phenotypes
if
τ 2

G
τ 2

Vθ

(σ 2
d + m)/(2N0,θ ) ≪ 1.

Here τ is the width of the local fitness function with Gaussian
form, G is the additive genetic variance of the trait, and Vθ is the
spatial variance of θ . As a numerical illustration let τ 2/G = 10
(weak selection), τ 2/Vθ = 10 (so that Vθ = G), m = 1 (each
individual disperses on average once during a generation) and
σ 2
d = 1, gives that N0,θ must be large compared to 100.
From these two models it appears that demographic noise

and genetic drift can be ignored in the evaluation of spatial
scale of phenotypic variation when the number of individuals
in the characteristic areas are sufficiently large. Although the
present model is more complex, the results for these two more
simple, but closely related models, give a strong indication that
demographic noise and genetic drift have only a minor influence
on the spatial scale of phenotypic correlations, provided that the
number of individuals affected similarly by the environment is
sufficiently large.

Appendix B. The temporally white noise approximation for
fluctuations in population size

The mathematical problem is most easily solved by using the
Fourier transform of functions f (x1, x2) that may be an autocor-
relation function, an autocovariance function or a distribution,
where (x1, x2) = x are two-dimensional spatial coordinates. The
Fourier transform of f is then

F (ω) =

∫ ∫
ei(ω1xx+ω2x2)f (x1, x2)dx1dx2, (B.1)

where ω = (ω1, ω2) and the integration is taken over the whole
plane R2. The backward transformation is given by

f (x) =
1

(2π )2

∫
e−i(ω1x1+ω2x2)F (ω)dω. (B.2)

For simplicity of illustrations we shall consider isotropic mod-
els where all functions f can be expressed as functions of the
Euclidian distance v =

√
x21 + x22. For such models the Fourier

transforms are functions of u =

√
ω2

1 + ω2
2 . We then use the

notation f (v) for the functions to be transformed and F (u) for
their Fourier transforms. The inverse transformation is then given
by the univariate real integration

f (v) =
1
2π

∫
∞

0
F (u)J0(uv)udu (B.3)

where

J0(x) =
2
π

∫ 1

0
(1 − t2)−1/2 cos(tx)dt =

∞∑
n=0

(−x2/4)n

(n!)2

is the Bessel function of the first kind of order zero.
Lande et al. (1999) showed that the Fourier transform of the

autocovariance function cn(h, u) = cov[n(x, t), n(x+ h, t + u)] for
a given time difference u, when n(x, t) obeys Eq. (1) in the main
text, is

Fn,u(ω) =
σ 2
e Fe(ω)

2m[1 − Fm(ω)] + 2γ
e−{m[1−Fm(ω)]+γ }u. (B.4)

Here Fe(ω) and Fm(ω) are the Fourier transforms of the spatial
autocorrelation of the ρe(h) noise and the dispersal separation,
respectively.

Appendix C. The white noise approximation to the spatio-
temporal process n(x, t)

The last term in Eq. (6) determined by ndt = [g(N) − Q (z̄)]dt
is a noise term in the evolutionary process z̄ . In the spatial
evolutionary process n(x, t) represents a temporally and spatially
autocorrelated noise. By the assumption of weak selection the
mean phenotype will be a process with much slower fluctuations
than the n(x, t) so that a long interval ∆T relative to fluctuations
in population size is a short interval in the evolutionary process.
The effects of n(x, t) during successive intervals ∆T1, ∆T2, . . . can
then be considered as independent so that the noise in the
evolutionary process can be approximated by a temporally white,
but spatially autocorrelated noise. To find this approximation
consider an interval ∆T during which the effects of the noise
at locations x and x + h are a(x) and a(x + h) where a(x) =∫ ∆T
0 n(x, t)dt . Provided that

∫
∞

0 cn(h, t)dt is finite we find that

lim
∆T→∞

(∆T )−1cov[a(x), a(x + h)] = 2
∫

∞

0
cn(h, t)dt = σ 2

wρw(h),

(C.1)

where ρw(0) = 1 and subscript w indicates the use of the
white noise approximation. Hence, under weak selection we can
approximate cov[a(x), a(x + h)] by σ 2

wρw(h)∆T so that the noise
n(x, t) can be replaced by a noise σwdBw(x, t) with no temporal
autocorrelation, but a spatial correlation given by E[dBw(x, t)
dBw(x + h, t)] = ρw(x)dt . The Fourier transform of the spatial
autocovariance function cw(h) = σ 2

wρw(h) is

Fw(ω) = 2
∫

∞

0
Fn,t (ω)dt =

σ 2
e Fe(ω)

{m[1 − Fm(ω)] + γ }2
. (C.2)

Using the approach of Engen (2001) the spatial scale of this au-
tocovariance function along the first axis is most easily computed
as

l2w = −
∂2Fw(ω)

∂ω2
1

|ω=0= l2e + 2ml2m/γ . (C.3)

Appendix D. The dispersal component

Now consider the smoothing effect of dispersal on the field
z̄(x) by first considering the increment of the sum of phenotypes
T (x) = N(x)z̄(x) over all individuals at location x. We assume that
the probability that an individual disperse during time dt is mdt ,
not depending on its phenotype. Dispersal out of location x during
time dt yields a reduction mdtT (x) of the sum of phenotypes
at x, while dispersal in from the surrounding locations yields an
addition mdt

∫
T (x − h)f (h)dh giving

dT (x) = mdt
∫

[N(x − h)z̄(x − h) − N(x)z̄(x)]f (h)dh. (D.1)

Here the time variable has been omitted to simplify the no-
tation. Similarly, N(x) is reduced by mdtN(x) and increased by
mdt

∫
N(x − h)f (h)dh giving

dN(x) = mdt
∫

[N(x − h) − N(x)]f (h)dh. (D.2)

Now, z̄(x) = T (x)/N(x) and the increment due to migration
during dt is

dmz̄(x) =
N(x)dT (x) − T (x)dN(x)

N(x)2
=

dT (x) − z̄(x)dN(x)
N(x)

.

Inserting the above expressions for dT (x) and dN(x) then yields

dmz̄(x) = mdt
∫

[z̄(x − h) − z̄(x)]
N(x − h)
N(x)

f (h)dh.
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Inserting N(x − h)/N(x) = 1 + [N(x − h) − N(x)]/N(x) then
splits the increment in mean phenotype conditioned on the field
of mean phenotypes into a deterministic part

Edmz̄(x) = mdt
∫

[z̄(x − h) − z̄(x)]f (h)dh, (D.3)

and a stochastic component

dmz̄(x)−Edmz̄(x) = mdt
∫

[z̄(x−h)− z̄(x)]
n(x − h) − n(x)

1 + n(x)
f (h)dh

(D.4)

where n(x) = N(x)/K − 1.
This stochastic component will generally be very small com-

pared to the deterministic component given by (D.1) for several
reasons. First we have based the analysis of a population density
field using the linearization given by Eq. (1) in the main text,
which is valid only under small or moderate fluctuations in n(x),
say with standard deviations smaller than about 0.3. From Lande
et al. (1999) and the results in Appendix C it appears that n(x),
when studying its effect over long intervals in ecological time,
can be approximated by a field with no temporal autocorrelations
but a spatial correlation with scale

√
l2e + 2ml2m/γ . If either the

density regulation is weak (small γ ) or spatial scale of environ-
mental noise is large (large le), then this is much larger than the
scale lm of the dispersal. Accordingly, over the area contributing to
dz̄(x) by dispersal the spatial correlations for the scaled densities
are approximately 1 so that the density is approximately constant
and n(x− h)− n(x) in (D.4) is approximately zero, in spite of the
moderate environmental temporal fluctuations in n(x). Finally,
because evolution is weak and slow, z̄(x) will vary very little over
the migration area so that the factor z̄(x − h) − z̄(x) in (D.4) also
is very small.

The stochastic component given by (D.4) is also a stochastic
term in the total increment dRz̄(x) + dmz̄(x) that in general is
added to the stochastic term −G∇γ̄ n(x)dt in Eq. (4) in the main
text. This term is proportional to n(x) which can have moderate
standard deviation and will dominate the stochasticity in the total
fluctuations of mean phenotype. Hence, in the analysis of the
spatial field z̄(x) we use the deterministic component given by
Eq. (D.3) to express the effect of migration.

Appendix E. Quantitative genetic theory

Now consider the local selection at some given location x and
time t . In order to simplify the notation the symbols x and t
are omitted when not required. The selection will vary in space,
but only through the value of z̄ at each spatial location x. Engen
et al. (2013) analyzed a quantitative genetic model for r- and
K -selection in a fluctuating environment using continuous time
and ignoring spatial effects. Under logistic dynamics the deter-
ministic growth rate of a hypothetical sub-population Nsub(z)
with individuals of phenotype z in a population in which den-
sity regulation is governed by the total population size N , was
assumed to have the form [r(z) − η(z)N]Nsub(z). Environmental
stochasticity is in general described by the density-independent
infinitesimal covariance between the changes in sizes of subpop-
ulations of type z and w due to selection only as c(z, w)Nsub(z)
Nsub(w) (see Lande, 2007 for details). The infinitesimal mean and
variance for the total population size are then [r̄(z̄)−η̄(z̄)N]N and
σ 2
e (z̄)N2, where

r̄(z̄) =

∫
r(z)p(z)dz, σ 2

e (z̄) =

∫ ∫
c(z, w)p(z)p(w)dzdw,

with a similar definition for η̄(z̄), are the population means.
Hence, the dynamics of N is determined by the mean values

of r(z) and η(z) as well as c(z, w) across the individuals in the
population, more precisely after transforming to log scale

d lnN = [s̄(z̄) − η̄(z̄)N]dt + σe(z̄)dB(t),

where s̄(z̄) = r̄(z̄) − σ 2
e (z̄)/2. Assuming perfect correlations

between the environmental stochastic effects on phenotypes by
assuming a constant c(z, w) = σ 2

e , Engen et al. (2013) showed
that the response to selection by this model for a given population
size N is

d(z̄|z̄,N) = G[∇ s̄(z̄) − N∇η̄(z̄)]dt, (E.1)

where s̄(z̄) = r̄(z̄) − σ 2
e /2 is the long-run growth rate of the

population in the absence of density regulation.
Since we assume weak selection the parameters determining

the dynamics of N in space will show very little variation, al-
though N itself may fluctuate considerably. Remembering that
the stochastic field of population densities only acts as noise in
the genetic model, it can be approximated by its average proper-
ties, which are those at the equilibrium phenotype. This is exactly
the spatio-temporal model for fluctuations in density analyzed
by Lande et al. (1999) with linearized dynamics as expressed
by Eq. (1) in the main text.

Writing n = N/K − 1 and defining γ (z) = Kη(z), where K
is the equilibrium density as in Eq. (1) that can be considered as
a scaling factor for densities with no genetic variation, Eq. (E.1)
takes the form

dR(z̄|z̄,N) = G[∇ s̄(z̄) − (n + 1)∇γ̄ (z̄)]dt. (E.2)

Defining the function Q (z̄) = s̄(z̄)/γ̄ (z̄) the expected density
is EN = s̄(z̄)/η̄(z̄) = KQ (z̄) which is approximately K under
small environmental fluctuations so that n fluctuates around zero.
Using the relation ∇ s̄−Q∇γ̄ = γ̄∇Q , this yields the response to
local selection

dRz̄ = γ̄ (z)G∇Q (z̄)dt − G∇γ̄ (z)ndt. (E.3)

Hence, the expected evolution, obtained by ignoring the last
stochastic term, will always tend to increase Q (z̄) approaching
an equilibrium value z∗ maximizing Q (z̄), while the noise term
proportional to n = N/K − 1 generates fluctuations in mean
phenotype around z∗ (see Engen et al., 2013 for details).

Appendix F. Solution for the spatial scale of fluctuations in
mean phenotypes

In order to solve the full spatial model for a multivariate char-
acter we assume that GH−1 can be diagonalized writing GH−1

=

M−1ΛM , where Λ is a diagonal matrix with the eigenvalues
λ1, λ2, . . . , λk of GH−1 at the diagonal, and M = (m1,m2 . . . ,mk)
is a square matrix with columns of right eigenvectors mi given by
GH−1mi = λimi, so that the expected response in ū conditioned
on ū is

Ed(ū) = −γ̄Λū (F.1)

where ū(x) = M[z̄(x)− z∗
]. Now, applying this model for the re-

sponse to selection at each location x and adding the infinitesimal
changes due to dispersal using the deterministic approximation
discussed above, and using the relevant transformation of the
deterministic component of Eq. (4) to describe ū rather than z̄ ,
yields the dynamic equation for dū(x) = dmū(x) + dRū(x)

dū(x) = −[mI + γΛ]ū(x)dt

+ mdt
∫

ū(x + h)f (h)dh + σwMG∇γ̄ dBw(x), (F.2)

where the ∇γ̄ (z̄) are approximated by their values at z∗ denoted
∇γ̄ .
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Notice that Eq. (1) for the scaled population size and Eq. (F.2)
for the centered mean phenotype has the same form, although
Eqs. (F.2) and (1) yield a vector and a scalar, respectively. To
find the spatial covariance functions we utilize the assumption
that parameters describing the system has values that ensure
stationarity in population size as well as mean phenotypes. For
example, there must be trade-offs between growth rates and
density regulations that prevent fitness to increase indefinitely.
Writing Cuu(h) = cov[ū(x), ū(x + h)] for the covariance matrix of
mean phenotypes at two locations with distance h, stationarity
implies that cov[ū(x), ū(x + h)] = cov[ū(x) + dū(x), ū(x + h) +

dū(x + h)], giving

cov[ū(x + h), dū(x)] + cov[dū(x + h), ū(x)]

+ cov[dū(x), dū(x + h)] = 0. (F.3)

Inserting dū(x) from Eq. (F.2) then yields, after dividing
throughout by dt ,

2mCuu(h) + γΛCuu(h) + γ Cuu(h)Λ

= 2m
∫

Cuu(h − y)f (y)dy + σ 2
wρw(h)MG∇γ∇γ̄ TGMT ,

where γ is γ̄ (z̄) evaluated at z∗. Utilizing that Λ is a diagonal
matrix this yields an equation for the (ij)-element Cuuij(h) of
Cuu(h) as

Cuuij(h)[2m + γ̄ (λi + λj)] = 2m
∫

Cuuij(h − y)f (y)dy + bijcw(h),

where bij are the elements of the matrix b = MG∇γ̄∇γ̄ TGMT .
Let U be the Fourier transform of Cuu(h) in the sense that

each element in the matrix is transformed separately so that the
(i, j)-element of U is

Uij(ω) =
1
2π

∫∫
ei(h1ω1+h2ω2)Cuuij(h)dh.

Similarly we write F and Fw for the transforms of the distri-
bution of the dispersal distance f (h) and the spatial correlation
ρw(h) of the noise generated by fluctuations in population sizes.
Utilizing that the integral in Eq. (F.2) is a convolution we then
find [2m + γ (λi + λj)]Uij = 2mUijF + bijFw with the solution

Uij = [2m(1 − F ) + γ (λi + λj)]−1bijFw.

This is the Fourier transform of the autocovariance function
Cuuij(h) = cov[ūi(x), ūj(x + h)]. Using that ū = M(z̄ − z∗) the
autocovariance function for z̄ is accordingly M−1Cuu(h)(M−1)T ,
and the matrix of its Fourier transforms with elements Zij is
Z = M−1U (M−1)T . From this we may compute the spatial
autocovariance of the components of z̄ in isotropic models using
the backward transformation given by the univariate integration
shown in Appendix B.

The squared spatial scale of Czz(h) = cov[z̄i(x), z̄ j(x + h)] with
Fourier transform Zij(ω) in the direction of the first coordinate, by
the way we have defined this scale, is

l2ij = −Z−1
ij

∂2Zij
∂ω2

1
= −Z ′′

ij /Zij,

evaluated at ω = (ω1ω2) = 0 (Engen, 2001). Using the relation
Zij =

∑
kl M

−1
ik UklM−1

lj then yields

l2ij = −

∑
kl M

−1
ik M−1

jl U ′′

kl∑
kl M

−1
ik M−1

jl Ukl

where the Ukl and U ′′

kl are evaluated at ω = 0. Because a constant
factor in all Ukl does not affect l2ij we may, for the evaluation of
the scales, replace the common factor Fw(ω) in the expression

for Uij by Fw(ω)/Fw(0) so that this is the Fourier transform of a
distribution. Also using the fact that F ′(0) = F ′

w(0) = 0 this yields

Uij(0) =
bij

γ (λi + λj)

and

−U ′′

ij (0) =
l2wbij

γ (λi + λj)
+

2ml2mbij
γ 2(λi + λj)2

.

Plugging this into the expression for l2ij then gives

l2ij = l2w +
2ml2m

γ

∑
kl M

−1
ik M−1

jl bkl/(λk + λl)2∑
kl M

−1
ik M−1

jl bkl/(λk + λl)
.

Using the result that l2w = l2e + 2ml2m/γ then gives the
alternative expression

l2ij = l2e +
2ml2m

γ

[
1 +

∑
kl M

−1
ik M−1

jl bkl/(λk + λl)2∑
kl M

−1
ik M−1

jl bkl/(λk + λl)

]
. (F.4)

Appendix G. Numerical computations

Although we can find some interesting scaling results an-
alytically, numerical calculations are required to compute the
magnitude of variances and covariances. This is done by the
backward transformation of each of the components of the matrix
Z of Fourier transforms. If the functions used are all isotropic
the backward transformation can be performed by a simple one-
dimensional numerical integration as shown in Appendix B.

Let us consider the simplest case of a univariate character z
and isotropic model. Then

Z = Z11 = U11 = [2m(1 − F ) + 2γ λ1]
−1b11Fw.

where λ1 = G11/H11 = G/H so that γ̄G/H = Γ , and b11 =

G2(∇γ̄ )2. Hence

cz(v) =
1
2π

∫
∞

0

G2(∇γ̄ )2σ 2
e Fe(u)J0(uv)udu

2{m[1 − F (u)] + Γ }{m[1 − F (u)] + γ }2
. (G.1)
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