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A B S T R A C T

Computer-aided scene analysis has drawn much attention, especially in autonomous navigation and advanced
navigation assistance systems for surface vessels. In ice-infested waters, multilabel ice object classification and
segmentation form the core of these systems, which are required for path-planning and collision avoidance al-
gorithms. This study focuses on the interpretation of ice conditions from close-range optical imagery. It presents a
model for multilabel ice object classification that builds on state-of-the-art open source libraries and deep learning
platforms. This work explores the generalization ability of open source models to differentiate between nine
categories of surface ice features: level ice, deformed ice, broken ice, icebergs, floebergs, floebits, ice floes,
pancake ice, and brash ice. The results demonstrate the ability of the models to classify these nine categories from
optical close-range images, which were gathered online and during a research cruise to the Fram Strait on the RV
Lance in 2012. We tested a variety of classification algorithms on the collected ice imagery and compared the
results against randomly selected test cases representing different ice features with different degrees of local
texture distortion. In doing so, we can evaluate the effectiveness of the classification of different classes and
compare different levels of information presented for the classification. In addition, we provide a model imple-
mentation: a GitHub repository, ICEXPERT, that is suitable for ice object classification from close-range ice
imagery.
Introduction

Currently, all navigation of surface vessels in ice-infested waters is
done largely as a manual task that requires much training and experience
from sailing in icy waters. The latter includes consideration of ice among
other factors such as topography, currents, metrology, etc., that are
described in [1] and schematically shown in Fig. 1. To determine the
safest route, the captain must consider ice types and overall ice
conditions.

The World Meteorological Organization [2] developed
well-established nomenclature for classifying sea ice. A trained ice
navigator is required to identify various shapes and forms of ice, to
reliably recognize ice and, when possible, to avoid the most dangerous
forms of sea ice (e.g., massive ice features such as ice ridges).
for data split between training, v
). Thus, small variations in the r
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Fig. 1. An example of a human decision process when transiting in ice, adapted from Snider [1]; p. 88–89 with some modifications to highlight (in green) the
importance of ice identification when transiting in ice.

Fig. 2. Examples of typical labeling inconsistencies from ImageNet [26]; what shown is thumbnails with corresponding URLs of original images.
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as the understanding of severity of ice conditions is essential for a suc-
cessful ice navigation. The surface ice features need to be correctly
detected, classified, and accurately segmented, and the path needs to be
carefully planned to avoid excessive ice loads on the ship hull or the ship
besetting in ice.

Although considerable research has been devoted to autonomous
shipping technology for aspects such as navigation support, equipment
monitoring, and safety improvements, less attention has been paid to
computer-aided scene assessment from ships that are travelling in ice.
Examples of relevant works are given in Muramoto et al. [4]; Hall et al.
[5]; Lu and Li [6]; Ji et al. [7]; Zhang and Skjetne [8]; Lu et al. [9]; Heyn
2

et al. [10]; and Kjerstad et al. [11]. These papers describe techniques and
sensor systems for analysis of ice concentrations, floe-size distributions,
and drift speeds using shipborne images from optical cameras and/or
marine radars. Despite recent progress in machine learning, the methods
and standards for processing and analyzing sea ice imagery remain un-
derdeveloped. There is a need for robust and efficient methods enabling
the automated classification of sea ice imagery to aid in the derivation of
useful characteristics of sea ice cover, and efforts have been made to
address this. While most of the methods use low-to high-resolution sat-
ellite imagery or airborne imagery [8,12–16], none of these techniques
capitalize on deep learning architecture for optical imagery classification
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that is essential for navigation in ice. To the best of our knowledge, none
of the currently available models can discriminate between ice types
using optical images from a surface vessel. This issue must be addressed
to enable automated image processing and the use of close-range imagery
to support ice navigation tasks (i.e., interpretation of ice conditions and
finding weak ice).

Motivated by the progress in deep-learning-based algorithms, the aim
of this work is to study whether the state-of-the-art machine learning
models can correctly identify ice surface features from close-range im-
agery (i.e., optical images predominantly taken from onboard the
vessels).

This paper lays foundation for the automated identification of ice for
surface vessels, and it provides a model for multilabel ice object classi-
fication that builds on state-of-the-art open source libraries and machine
learning platforms. It then demonstrates the ability of this model to
classify ice surface features from close-range optical imagery gathered
online and during a research cruise to the Fram Strait on the RV Lance in
March 2012. Different algorithms were tested on the collected ice im-
agery. The results were compared against randomly selected test cases
representing different ice classes with varying degrees of distortion. In
doing so, the effectiveness of the classification of different classes is
evaluated and different levels of information presented for the classifi-
cation are compared.

Background

Floating ice covers are complex and a very mixed medium. An
increasing number of studies reports similarities in the way large neural
networks and a human visual system process the objects Geirhos et al.
[17]. provides an overview on this. This suggests that large neural net-
works may as well model human visual recognition of ice conditions.
Currently, no universally accepted procedure exists for the automated
interpretation of ice conditions using close-range ice imagery.
Table 1
Ice object categories (the numbers in brackets are the number of objects in each cate

Ice Object (ImageNet/this
study)

ImageNet WMO Sea Ice Nomenc

Growler (129/none) A small iceberg or ice floe just
large enough to be hazardous for
shipping

Piece of ice [glacier or
surface. A growler gen
transparent or blue-gre
sea surface and normal
growlers are difficult to
high sea states.

Iceberg, berg (1050/51) A large mass of ice floating at sea,
usually broken-off of a polar
glacier

A massive piece of ice o
5 m above sea level, th
afloat or aground.

Ice field (75/none) A large flat mass of ice (larger
than an ice floe) floating at sea

Area of floating ice, wh
floes of any size.

Ice floe, floe (655/15) Flat mass of ice (smaller than an
ice field) floating at sea

Any contiguous piece o

Broken ice (none/135) – –

Pancake ice (none/28) – Predominantly circular
and up to approximate
the pieces striking aga

Brash ice (none/100) – Accumulations of float
2 m across, the wrecka

Floebit (none/26) – A relatively small piec
across composed of a h
of a ridge (or more tha
from any surroundings
level.

Floeberg (none/24) – A large piece of sea ice
hummocks frozen toge
It typically protrudes u

Deformed ice (ice ridges,
rubble, hummocks) (none/
153)

– A general term for ice t
forced upwards (and d
ice and hummocked ic

Level ice (none/86) – Sea ice that has not be
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Convolutional neural networks (CNNs), introduced by LeCun et al. [18];
have demonstrated an excellent performance in tasks such as image
analysis, speech recognition, document analysis, and spam detection; see,
e.g., Krizhevsky et al. (2012a,b [19,20]; Abdel-Hamid et al. [21]; and
Ciresan et al. [22]. In recent years, several papers have shown that CNNs
can also achieve an impressive performance on more challenging tasks,
such as in the colorization of black and white images [23], remote
sensing [24], and medical diagnostics (e.g., refer to an overview in Ravi
et al. [25].

Despite this growing number of successful applications, the classifi-
cation of ice objects from close-range imagery remains challenging.
Available datasets from academic and Kaggle communities are limited to
a few ice categories (e.g., icebergs, growlers, ice floes, and ice fields) and
have many incorrectly labeled images, especially in the categories of ice
fields, ice floes, and growlers (see Fig. 2 for a few examples).

In this paper, we classify ice surface features into nine categories:
icebergs, floebergs, floebits, floes, broken ice, level ice, brash ice, pancake ice,
and deformed ice (see Table 1). However, the presented model is suitable
for classifying any number of categories and may be adopted for imagery
from other sources, provided that the availability of close-range ice im-
agery continues to increase.

The following section introduces the deep machine learning method
used in this study.

Method

The model builds on the fastai [27] version 1.0.57 and PyTorch [28]
version 1.1.0 libraries. Image processing tasks are high-dimensional
problems that require many matrix operations. Almost all of the com-
putations in this study were performed on an NVIDIA TITAN X GPU
(12GB) located at UNINETT Sigma2 AS in Norway.

It has been experimentally shown [29,30] that models trained on
large datasets produce representations that are transferable to other
gory).

lature This study

igin] floating less than 1 m above the sea
erally appears white but is sometimes
en in color. Extending less than 1 m above the
ly occupying an area of approximately 20 m2,
distinguish when surrounded by sea ice or in

–

f greatly varying shape, protruding more than
at has broken away from a glacier and may be

A piece of ice of glacier origin, floating
at sea

ich is greater than 10 km across, consisting of –

f sea ice. From the WMO

Predominantly flat ice cover broken by
gravity waves or due to melting decay

pieces of ice from 30 cm to 3 m in diameter,
ly 10 cm in thickness, with raised rims due to
inst one another.

From the WMO

ing ice made up of fragments not more than
ge of other forms of ice.

From the WMO

e of sea ice, normally not more than 10 m
ummock (or more than one hummock) or part
n one ridge) frozen together and separated
. It typically protrudes up to 2 m above sea

From the WMO

composed of a hummock, or a group of
ther, and separated from any ice surroundings.
p to 5 m above sea level.

From the WMO

hat has been squeezed together and, in places,
ownwards). Subdivisions are rafted ice, ridged
e.

From the WMO

en affected by deformation. From the WMO



Fig. 3. Example of a CNN model (adopted from a figure from www.towardsdatascience.com).

Fig. 4. Architecture of the ResNet18 model.

Fig. 5. Typical ice images in the dataset with labels.

Fig. 6. Object distribution per class.
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Table 2
Overview of the model hyperparameters.

Hyperparameter Value

Weight decay 0.2 (top layer), 0.1 (whole model)
Number of epoch 12 (top layer), 8.0 (whole model)
Dropout rate 0.1, 0.2 and 0.5
Batch size 32
Learning rate 10�2 (top layer), [10�6 10�3] (whole model)
Image size 224 and 299

Table 3
Accuracy (%) and the F-beta score in the validation dataset.

Model architecture Accuracy % F-
beta

Misclassified Reference

ResNet18 90 0.70 12 out of 82 He et al. [31]
ResNet34 91 0.72 6 out of 82 He et al. [31]
ResNet50 92 0.78 8 out of 82 He et al. [31]
SE_ResNet50 91 0.68 9 out of 82 Hu et al. [41]
Xception-Cadene 91 0.71 9 out of 82 Chollet [42]
Inception-v4 90 0.68 11 out of 82 Szegedy et al.

[43]
Inception-ResNet-
v2

84 0.71 17 out of 82 Szegedy et al.
[43]
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datasets. We start with a pertained residual neural network model
(ResNet18) that is able to recognize thousands of categories of objects.
This model has already been trained by analyzing approximately 1.5
million images (ImageNet), including various images containing ice;
thus, this ResNet18 model ‘knows’ what ice looks like and can work with
the little data we had available for training. The model takes ice images
as input and predicts the probability of each of the nine categories listed
in Table 1.

Basics

A typical CNN model has input-, hidden-, and output layers (Fig. 3).
The input layer (in our case, the input data are optical images of ice
conditions) provides information from the outside world to the network.
The hidden layers perform computations and transfer information from
the input layer to the output layers. The output layers are part of a densely
connected network that takes input from the CNN network, which is a
learned representation of the input images, and produces probabilities of
the abovementioned classes.

The information in the network can be fed in the forward direction
(from the input, through the hidden layers, to output) or there can be
feedback loops between the layers (Fig. 4). The latter is used in our case.
Once the forward pass is completed, the loss is calculated based on the
cross-entropy function, and the model weights are updated to make the
prediction better for the next pass. This forward/-backward pass is per-
formed over many epochs to find the minimum loss point.

Given a set of features in x, and a desired output y, the model can
learn the relationship between the feature and the target by minimizing
the error between the model prediction and the desired output.
Fig. 7. ResNet18 model performance on

5

Model architecture

The architecture of the ResNet18 model is adopted from the PyTorch
library and schematically shown in Fig. 4. The residual neural network
(or ResNet) architecture was originally proposed by He et al. [31] to
address the training accuracy issues that arose upon increasing the depth
of deep neural networks. Since then, ResNets have been one of the most
stable methods for training large CNNs.

There are three basic components in the architecture: (1) convolution
layers, (2) pooling layers, and (3) fully connected layers. The following
paragraphs briefly summarize these concepts. For more details refer to
Goodfellow et al. [32].

In the first layer, the convolution is applied to the input data (x) using
a convolution filter/kernel (w) to produce a feature map (s). For each
pixel location (i, j), new pixel values are determined according to the
following formula:

si;j ¼
Xm

k¼1

Xm

l¼1

wk;lxiþk�1;jþl�1; (1)

where m is the kernel width and height.
Typically, a convolution layer consists of several kernels, andmultiple

convolutions on the input are performed (for details on ResNets, see He et
al. [31]). Each convolution operation uses a different kernel and results
in a distinct feature map. The obtained feature maps are then stacked
the validation and training datasets.



Fig. 8. Validation results (probability output), image source https://www.flickr.com/photos/globalgreenusa/2613534477.

Table 4
Confusion matrix for ResNet50: discrimination threshold 0.5 (TN – true negatives, FP – false positives, FN – false negatives, TP – true posi-
tives).

Table 5
Confusion matrix for ResNet50: discrimination threshold 0.9 (TN – true negatives, FP – false positives, FN –

false negatives, TP – true positives).

E. Kim et al. Results in Engineering 4 (2019) 100036
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Fig. 9. Original image and the visual explanations generated by Grad-CAM on a given image. The heatmaps highlight the important regions of the image for pre-
dicting different ice objects: from the most important (red) to the least important (blue). These explanations are for decisions made by the ResNet50 architecture.

Fig. 10. Original image, the probability output and the visual explanation for the decisions. The heatmaps highlight the important regions of the image for predicting
different ice objects: from the most important (red) to the least important (blue). These explanations are for decisions made by the ResNet50 architecture.
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together to become the final output of the convolution layer. With more
convolutional layers added, the model can learn features in a hierarchical
manner (gradients, lines, edges, basic shapes, complex shapes, etc.) as
shown in Zeiler and Fergus [33].

Another operation that is typically performed is a pooling operation,
which maps a subregion to its maximum value (maximum pooling) or to
its average value (average pooling). This operation makes the convolu-
tion output less sensitive to variance in the image (e.g., in object trans-
lations). Equation (2) is a mathematical expression of the maximum
pooling operation:
7

si;j ¼max xiþk�1;jþl�1 for 1� k�m and 1� l � m: (2)

� �

Yet another important operation is using an activation function, such
as the rectified linear unit (ReLU). ReLU adds nonlinearity to deep
learning models. It takes an input value and replaces negative values with
zeros. Mathematically, ReLU is expressed as y ¼ max (0, x). By not
applying this function, the image classification problemwill be treated as
linear. This layer helps reduce the number of parameters in the system.

The flatten layer converts a matrix into a column vector. To increase
the computational efficiency and stabilize the network during training,



Table 6
Confusion matrix for ResNet50 with discrimination threshold of 0.9 (test set).

Fig. 11. Examples of misclassified images (original image source, from left to
right: https://www.flickr.com/photos/polarnix/5641749102/in/album
-72157626422325235/, http://research.iarc.uaf.edu/~jenny/ShipObs2010/p
obedy.php.
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the inputs are normalized (see the batch normalization layer in Fig. 3).
The dropout operation proposed by Srivastava et al. [34] has been

implemented in this study to achieve a better performance and gener-
alization of the model. This operation enables models to avoid overfitting
and to generalize the results better to images that were not used during
training. The overfitting issue is discussed in Section 6.

In a very simplistic form, a residual neural network model can be
mathematically expressed as

y¼ f
�
hðxÞþ gpðxÞ

�
(3)

where (x, y) is the input-output data, p are the tunable parameters of the
function gp, and f and h arefixed functions. The input data in our case are an
image represented as a three-dimensional array containing the image's
pixels and color channels. The output is the probability that this image
contains ice objects belonging to a certain category listed in Table 1. The
procedure for finding unknown parameters of the functions in Eq. (3) is an
optimization process. In this work, a stochastic gradient descent-based
method (AdamW) with deployed backpropagation is used. Details of this
method can be found in the work by Loshchilov and Hutter [35]. The
original parameters of the network along and the parameters of the batch
normalization layer, are learned during training. The objective of the
method is to minimize the cross-entropy loss function over multiclass
classifications.

We implement themodel using the standard PyTorch and fastai libraries,
and reference is made to the source code files of ICEXPERT. Next, we train
our model using the ice object dataset and use the accuracy of the model to
evaluate the performance. The dataset contains close-range photographs of
ice cover, where the objective is to recognize ice objects in these images.

Data

The training, validation, and testing datasets, 404 unique images in
total, consist of the following:
8

a) Ice imagery from Internet collected by querying the Google, Yandex,
Baidu search engine in different languages.

b) Imagery gathered during the research cruise to the Fram Strait on the
RV Lance in 2012.

All the images were labeled manually in accordance with the defi-
nitions provided in Table 1. We then asked an ice expert to verify
whether each image contains ice objects in the label list. Fig. 5 shows
examples of images in the dataset. Several ice images have multiple la-
bels (a varying number per sample).

The object distribution per class in the training, validation, and
testing sets are shown in Fig. 6. The distribution of the number of cate-
gories in each image is as follows: 171 images have only one category,
193 images have two categories, 39 images have three categories, and
one image has four categories.

The original dataset (404 images) is imbalanced, as there is an uneven
distribution of ice classes within the dataset (Fig. 6, top). The ratio of “ice
floe” to “deformed ice” is approximately 1:10, and thus the class “ice
floe” is under-represented as well as the “floebit”, “floeberg”, “pancake
ice”, and “iceberg” classes. To improve this uneven class distribution, we
used random minority oversampling method proposed by Buda et al.
[36]. We replicated randomly-selected samples from the minority classes
and added those to the original dataset resulting in a total of 654 images.
It has been shown [37,38] that this method is effective, but can lead to
overfitting.

Training details

The classifier was trained on the balanced dataset comprising 533
images (see Section Data), which were labeled in accordance with the
object definitions provided in Table 1.

Our aim was to train a CNNmodel to correctly identify ice objects in a
given image. Our strategy was to use transfer learning during which we
initially kept all the convolution layers with their weights, which were
pretrained on ImageNet, and define only custom set of fully connected
linear layers on top with weights randomly initialized using the Kaiming
initialization method [39].

We trained the model in two phases. First, we trained only the linear
layers on the top for our ice data, whereas the rest of the model had no
change in the weights (as we froze the weights of the bottom layers).
Then, we unfroze the remaining layers of the model and fine-tuned the
whole model using differential learning rates [40]. The best weights from
the first phase were chosen as the starting point for the training in the
second phase. The optimum learning rate was determined by finding the
value in which the learning rate was highest, and the loss was still
descending. For the upper layer, it was set to 10�2, whereas for the whole
model it ranged between 10�6 and 10�3. As the bottom layers have their
pre-learned weights, we wanted to fine-tune only them in our task, and,
hence the learning rate for the lower layers was a fewmagnitudes smaller
than the learning rate for the upper layers.

https://github.com/PolarLabs/ICEXPERT
https://www.flickr.com/photos/polarnix/5641749102/in/album-72157626422325235/
https://www.flickr.com/photos/polarnix/5641749102/in/album-72157626422325235/
http://research.iarc.uaf.edu/%7ejenny/ShipObs2010/pobedy.php
http://research.iarc.uaf.edu/%7ejenny/ShipObs2010/pobedy.php


Fig. 12. Visualization of the synthetically modified test data by applying Photoshop filters to an original test image of deformed ice. After applying the filters, the
global shape tends to be retained.
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To handle a small amount of training samples, we exposed the model
to more aspects of the data. More training data were generated from the
available training samples using data augmentation. For each image in
the dataset, random geometric and color augmentation were performed,
including zooming, cropping, horizontal flipping, rotation, lightening
and contrast changes, and symmetric warping. This data augmentation
increases the breadth of information the model can analyze to learn a
given dataset. The dataset was better suited to recognize target objects in
images of varied contrast, size, angles, and so on.

In addition, we adopted an adaptive synthetic sampling approach for
imbalanced learning by artificially generating additional data for cate-
gories with few images, such as pancake ice, ice floe, floebergs, floebits,
and icebergs. We also exposed the model to different image sizes, which
enabled the model to generalize better and handle the small dataset size.

We stopped training after 40 epochs on two different image sizes (20
epoch per size), which took approximately 30 min on a single NVIDIA
GPU (12 GB). The learning rate was manually annealed throughout the
training when the validation error plateaued. The weight decay and
9

dropout rates were adjusted to improve the model performance and
generalization. Table 2 presents a summary of the model
hyperparameters.

To evaluate the performance of the model and to compare the quality
of predictions with different models, two metrics were used: the F-beta
score and the accuracy. F-beta is the harmonic mean of the precision and
recall weighted towards the recall (β ¼ 2, library default). F-beta is
defined as follows:

Fβ ¼
�
1þ β2

� � precision � recall
ðβ2 � precisionÞ þ recall

; (4)

where precision is the fraction of relevant instances (true positives)
among the retrieved instances (true positives þ false positives) and recall
is the fraction of relevant instances (true positives) that are retrieved over
the total number of relevant instances (the number of true positives in the
data). β is the weight given to the recall over the precision, where β > 1
favors the recall over the precision. The F-beta score lies in the range



Fig. 13. Effect of object distortion on eight test images for ResNet50.
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[0,1], with 1.0 being ideal (when both the precision and recall are equal
to 1.0) and 0.0 being unsatisfactory.

Theaccuracy is thepercentageof iceobjects identifiedcorrectly.Boththe
accuracy and the F-beta score are used together with a classification
thresholdof 0.5 (librarydefault). The lattermeans that if theprobability that
animagecontainsaniceobjectbelongingtoacertaincategory isgreater than
0.5, wemake the decision that this image contains this ice object.

Experiments and discussion

First, we analyze the performance of the classifier during training and
validation. The training and validation loss as well as the accuracy for
10
each iteration (epoch) were calculated and plotted (Fig. 6). We present
the accuracy of the classification, as defined by the accuracy threshold
criterion [27]. The F-beta score is calculated as in Eq. (4). Fig. 6 shows the
results obtained by training with the ResNet18 model.

The goal of a machine learning model is to generalize from the
training data to any seen or unseen data from the problem domain, which
will allow predictions on data that the model never has seen. The
behavior of the loss diagrams for the training and validation datasets
(Fig. 7) indicates some degree of overfitting with the model, which
means that ResNet18 models the training data too well by learning the
detail (and noise) in the training data to the extent that it negatively
impacts the performance of the model on the validation dataset.
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Furthermore, the plots of the accuracy and F-beta scores in Fig. 7 show
the importance of looking at the images at different resolutions. A slight
additional increase in the F-beta score is obtained when using higher
resolution images, which is seen in the scores after epoch 25.

Effect of architectural changes

Furthermore, the effect of the architectural changes on the perfor-
mance of the model is analyzed. Images were classified using the
following architectures: ResNet18, ResNet34, ResNet50, SE-ResNet50,
Xception-Cadene, Inception-v4, and Inception-ResNet-v2. The experi-
mental setup is the same as that described in Section Training details,
with the difference being only the CNN architecture used. Table 3 pre-
sents the results (the accuracy, the F-beta score, and the number of
misclassifications).

Comparing the numbers in Table 3, it is evident that the ResNets
models performed slightly better than the other models in classifying ice
images.

Ananalysis of themisclassified images showed thatmost of themodels in
Table 3 have somedifficulties discriminating pancake ice and brash ice. The
latter could be due to a small size of the dataset. This could also indicate that
the high-order feature interactions, which are specific to ice, were not
entirely captured with the studied models. Most of the models failed to
discriminate between an iceberg, a floebit, and a floeberg. On a few occa-
sions, broken and deformed ice was classified only as the broken ice.

The decision was to work further with the ResNet50 giving the
highest performance metrics. Examples of detections and precision-recall
matrices (also known as confusion matrices) for each object class are
shown in Figs. 8‒10 (detections) and Tables 4 and 5 (precision-recall
matrices for discrimination thresholds of 0.5 and 0.9). Each row of the
matrix represents the instances in the actual class (ice class, non-ice class)
while each column represents the instances in the predicted class (pre-
dicted ice class, predicted non-ice class). The rows and columns in Ta-
bles 4 and 5 report the number of false positives (FP), false negatives
(FN), true positives (TP), and true negatives (TN). For example, the
number of real “brash ice” instances in the validation dataset is 24, while
the rest of the images (58) do not contain any brash ice. The model was
able to recognize brash ice in 18 instances (TP ¼ 18) with 6 mis-
classifications (FN ¼ 6) and negatively predicted brash ice with correct
rejection in 56 instances (TN ¼ 56) and 2 false detections (FP ¼ 2).

In addition, Figs. 9 and 10 present additional results on the visual
explanations for typical images containing brash ice, level ice, deformed
ice, and an iceberg. The heatmaps in Figs. 9 and 10 were produced using
the Grad-CAM technique [44] and show which parts of an input image
that were looked at by the CNN for assigning a label for the predicted
categories. Note that this technique does not necessarily capture the
entire object but serves as a visual explanation of the CNN predictions.

The analysis of the predictions in Figs. 8 and 9, and the scores in
Tables 4 and 5 indicate that the ResNet50 model performs poorer in
predicting icebergs than broken ice, or deformed ice. Despite a seemingly
correct activation (Fig. 9, iceberg instance), the predicted probability is
below 50%. One possible explanation for this model behavior is the small
size of the training dataset for the ‘iceberg’ class (54), compared with
broken ice (125) and deformed ice (161).

Overall, the numbers in Tables 4 and 5 indicate a correlation between
the model performance and the number of images in each ice class.
ResNet50 performed better in classifying broken ice, deformed ice, and
brash ice, whereas the performance for minority classes (floebit, floeberg,
iceberg, ice floe, and pancake ice) is lower. We expect that the classifi-
cation ability of the model will improve when supplied with more
training data.

Testing

Herein we present further experimental results to confirm the effec-
tiveness of the ResNet50 model. The performance of the model is
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estimated on the randomly selected test set described in Section 4. The
achieved accuracy is 92% with 6 misclassified samples out of 39 images
in the test dataset. Among the misclassified samples was an image con-
taining a part of a foreign object (a vessel bow). The F-beta score was
0.76, and the confusion matrix for each object class is shown in Table 6.

Examples of misclassified images are presented in Fig. 11. The model
was not able to correctly distinguish between the level ice and the broken
ice when melting ponds were present on the former (see the example
image in Fig. 11). This result is not surprising since the dataset was
limited to a few images of decayed level ice. A careful examination of the
image suggests uncertainty that the ice cover is a continuous ice sheet
(level ice). If a pond melts through the entire thickness of the ice, the
color of the pond turns dark. The color of the melt ponds at the horizon is
slightly darker than that of the melt ponds in the front part of the image;
therefore, there is no clear visual confirmation that this image is of a
continuous ice sheet.

Similar to the performance in the validation set, the model experi-
enced difficulties in detecting pancake and brash ice. Furthermore, in few
instances, level ice and deformed ice was classified as the broken ice and
vice versa.
Effect of object distortion

Recent experiments by Geirhos et al. [45] showed that object recog-
nition with ResNets trained on ImageNet can be biased towards recog-
nizing textures rather than shapes. To test the robustness of the
developed algorithm for ice objects (presumably one ‘ice’ texture), we
created an additional set of test data. Eight representative images from
the original test dataset were converted in Photoshop (version 2017.1.1)
using the following filters: grayscale, oil paint, solarize, wind, and
emboss (resulting images samples are shown in Fig. 12). After applying
the filters, the local textures and/or color were removed while main-
taining the global shape of the ice objects.

The classification results with the trained ResNet50 are shown in
Fig. 13. The vertical axis is the filter number, where 1 refers to the
original image. The horizontal axis is the ice object categories. The pre-
diction probabilities over the ice classes are color-coded (red represents
1.0, and blue represents 0.0). Despite being trained on the color images,
the model is capable of correctly classifying ice objects from grayscale
images (filter 3); however, predictions over the classes are nosier.

The numerical results indicate that the trained ResNet50 model is
biased towards texture. The sensitivity maps in Fig. 13 show an adverse
effect on the model predictions, specifically with filters numbers 2, 4 and
occasionally 5 or 6. These filters introduce severe stylization of the image
removing the local ice texture.

Conclusions and remarks

Conclusions

This work lays the foundation for the automated identification of ice
objects for surface vessels using convolutional neural networks. In this
study, we have explored the generalization ability of deep learning
models to differentiate between nine categories of surface ice features:
level ice, deformed ice, broken ice, icebergs, floebergs, floebits, ice floes,
pancake ice, and brash ice. Open source frameworks have been used to
develop our models, and we used pretrained models from ImageNet to
overcome the lack of a large dataset. The conclusions are as follows:

� The paper presents a model for multilabel ice object classification that
builds on state-of-the-art open source libraries and machine learning
platforms.

� Using numerical experiments, we showed that the ResNet model does
not require much data to achieve good performance metrics (an ac-
curacy of approximately 90% and an F-beta score of 0.7); however,
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the performance of the model for the minority classes is lower than
that for majority classes and limited to clear photographs.

� For the images with distorted ice textures, the performance is also
lower than that for the other images. Overall, the performance is
expected to improve when supplied with more training data and a
more balanced dataset.

Optical ice images collected at night, during heavy snow, or under
poor visibility conditions (i.e., images with naturally distorted textures)
are scarce, and future efforts should be aimed at collecting such data and
analyzing it.

Remarks

This work presents a model for multilabel ice object classification that
builds on state-of-the-art open source libraries and machine learning
platforms. Similar methods have been used earlier on other image types,
but never for the multilabel classification of sea ice objects from close-
range optical images. The paper demonstrates the ability of the model
to classify ice surface features from close-range optical imagery gathered
online, and during the research cruise to the Fram Strait in 2012. A va-
riety of CNN model architectures has been tested on the collected ice
imagery. The results for the best-performing model were compared
against the test cases representing different ice classes with varying de-
grees of distortion. We evaluated the effectiveness of the classification of
different classes and compared different levels of information presented
for the classification.

In addition to reporting the classification results, we presented
detailed experiments that provide the following new insights:

� ResNet50 outperformed the other tested models.
� Despite little data (404 uniqie images for trainig, validation, and
testing), the trained CNNmodel demonstrated a good performance on
a randomly selected test dataset (39 images), achieving a 92% accu-
racy and an F-beta of 0.76 with ResNet50*.

� The most challenging tasks were to detect and/or to distinguish be-
tween pancake ice and brash ice, as well as to distinguish between
broken ice and partially melted level ice.

� The model is capable of classifying ice objects from greyscale images
with poorer performance on significantly distorted images with a
small degrees of local ice texture.

In the future, one may test the model performance on low-visibility
images (fog, darkness, during snow, etc.), to check whether the model
performance will converge as more training samples become available, as
well as to enhance the model to extract measurable parameters (ice/ridge
concentration, degree of ice decay, etc.) from the ice images.

We hope that the presented findings can stimulate and support the
development of ice navigation support systems. Moreover, the proposed
model can be used on geotagged optical ice images to automatically map,
e.g., icebergs and other ice features from surface vessels. This informa-
tion can later be used as a ground truth for satellite data. The model is
also useful for large-scale automated image processing, such as automatic
annotation of images collected during research expeditions, as well as for
education, for helping people to learn about different ice features beyond
the icebergs and ice floes.
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