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Abstract: Contemporary Service Function Chaining (SFC), and the requirements arising from privacy
concerns, call for the increasing integration of security features such as encryption and isolation across
Network Function Virtualisation (NFV) domains. Therefore, suitable adaptations of automation and
encryption concepts for the development of interconnected data centre infrastructures are essential.
Nevertheless, packet isolation constraints related to the current NFV infrastructure and SFC protocols,
render current NFV standards insecure. Accordingly, the goal of our work was an experimental
demonstration of a new SFC packet forwarding standard that enables contemporary data centres to
overcome these constraints. This article presents a comprehensive view of the developed architecture,
focusing on the elements that constitute a new forwarding standard of encrypted SFC packets.
Through a Proof-of-Concept demonstration, we present our closing experimental results of how the
architecture fulfils the requirements defined in our use case.
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1. Introduction

The current Service Function Chaining (SFC) architecture suggested by the European
Telecommunications Standards Institute (ETSI) [1] lacks the capability to encrypt and isolate end-user
traffic between Service Functions (SFs) in Network Function Virtualisation (NFV). End-to-end
encryption of end-user traffic is by design impossible when middleboxes such as SFs require access
to the data content of the packets. This constraint in NFV questions how confidentiality can be
integrated into an SFC. The scope of our work is to cover this gap, by enabling automated hop-by-hop
encryption in an SFC. We aim for contemporary data centre networks to support an architecture of
nested SFC tunnels in order to support hop-by-hop encryption within the current NFV [1] and SFC [2]
standards. As presented in our previous work [3,4], the current packet forwarding standards do not
support SFC forwarding of encrypted packets because the relevant packet headers for SFC routing
are also encrypted. Accordingly, our work explicitly focused on these constraints, aiming initially to
provide a Proof-of-Concept for the capacity to deploy a secure architecture as an overlay to the existing
NFV infrastructures.

Under this scope, our security-related studies followed five consecutive steps (Figure 1), following
the Design Science Research Methodology (DSRM) defined by Peffers et al. [5]. Initially (A),
the operational constraints and the NFV forwarding standards were surveyed [6]. Consequently
(B), the security requirements have been identified aiming to accommodate the requirements extracted
from the aforementioned studies [4]. Thirdly (C), an automated forwarding architecture has been
developed based on a web service architecture, aiming to accommodate the requirements and the
constraints [3]. The fourth step (D) in our studies was to develop a security protocol for exchanging
encryption keys between SFs [7]. This article (E) integrates the previous results into a customised NFV
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environment and combines it with SFC routing [8]. In order to overcome the network constraints, we
developed a customised virtual switch by the use of P4 [9] in order to support a new SFC packet header
based on Network Service Headers (NSH). Accordingly, we aim to verify that this implementation
fulfils the requirements we have developed in our previous work.

Section 2 summarises the related work to this research. Section 3 presents the operational context
under which the developed architecture was designed. Sections 4 and 5 present the architecture
and implementation, while Section 6 gives a verification of the presented scenarios for a closing
demonstration. Through defining three episodes in this scenario, we seek to highlight how the
elements presented in this paper are supporting a secure SFC implementation in NFV.

Figure 1. Research method.

2. Related Work

In recent years, NFV based solutions have become a very active research area, due to the benefits
promised by cost-effective solutions when virtualising network equipment. Within the research area of
NFV, SFC forwarding protocols and their corresponding control plane mechanisms are NFV research
areas that have gained attention [10–12]. Nevertheless, the security research on these networking
standards is limited, where none of the SFC standards are protecting the privacy and the integrity the
data plane traffic [13]. This is a complex problem that consists of data protection problems on multiple
levels; the orchestration plane, the control plane and the data plane. Hence, our work aims to cover
this research gap, by providing a new packet forwarding standard that is reflected on all these planes.

From a data plane perspective, the Internet Engineering Task Force (IETF) workgroup NVO3 [14]
have considered multiple overlay protocol for use in data centres. Generic UDP Encapsulation [15],
Geneve [14], VXLAN-GPE [16], and NSH [17] are all protocol competing to be the next standard. They
all have limitations related to multi-vendor and multi-domain interoperability and they also have a lack
of security extensions. MPLS-SR [18] does support multi-domain topologies, but, in an SFC context,
they all rely on the underlying protocol, such as IPSec tunnels, to provide encryption. However, such a
tunnel can be perceived as a wire between data centres. Multiples of these tunnels constitute a virtual
overlay network that is unprotected from all data threats that reside within the network. Then, there is
no protection of the integrity of the headers of the data-flow across multiple domains. In IPv6, Segment
Routing (SR) [8] is supported; however, during encryption, the header is replaced and the segments
become invisible for intermediate routers. We aim to solve this by introducing a new overlay packet
header that supports encryption inside the overlying network protocols, such as NSH.

With respect to interconnected control planes, we have earlier showed [6] that there are two
orchestration methods across multiple service provider domains. (1) A top-down approach by utilising
a hierarchy of orchestration planes [19] or control planes [20] or (2) by using an east–west control
plane approach such as SDNi [21] or BGP [22]. Both interconnection methods try to overcome the
problem of multiple forwarding standards and multiple types of network controllers. The industry
has responded by providing tenant-based data centres, where each tenant extends their data centre
across multiple sites and omits the need for control plane interconnections. Networking by NSX-T [23]
from VMWare is one example of such multi-tenant data centre technologies where a micro-segmented
infrastructure can span over multiple sites. However, most of the underlying network protocols, such
as Geneve [14] in NSX-T, are not capable of combining SR with micro-segmentation and flow-based
encryption. Hence, we have in our previous work [3] suggested a new SFC header, based on an NSH
extension that adds more granularity to the security aspect of an SFC. Correspondingly, we have in
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this paper developed a RESTconf based control plane for distributing the forwarding decisions of this
new packet header.

Introducing a new packet header has historically been problematic with respect to the
adoption into existing hardware. When a new network protocol was suggested, the network
operators had to wait for a set of standardisation documents from organisations such as IETF and
ONF [24]. Furthermore, they also had to wait for the switch vendors to develop a new software
version. Sometimes, a new network standard also required new hardware. The Programming
Protocol-independent Packet Processors (P4) [25] language aims to solve this issue by defining a
framework that directly programs packet parsing and packet forwarding instructions to a switch in
runtime. Then, network operators themselves can program their switches and add new protocols and
features to them. The ONF group is currently aiming for standardising P4 as a part of SDN through
the Stratum project [24]. In this research, we run P4 inside a Virtual Machine in order to simulate a
virtual switch. Due to the lack of OpenFlow implementations in our P4 framework, we used RESTconf
for the control plane protocol.

From the encryption perspective, no protocols have been found for providing micro-segmented
and flow-based encryption per SFC. However, our previous work [7] that originated from
Software-Defined IPsec Flow Protection in SDN [26] and IPsec Key Exchange using a Controller [27],
showed how encryption and Software-Defined Security Associations (SD-SA) could be adapted to an
NFV domain.

In this paper, we combine this SD-SA encryption architecture [7] with our new SFC header [3]
and a new flow distribution control plane. The security features of the architecture are verified by
demonstrating how the requirements such as isolation and encryption comply with a use case scenario.

3. Operational Context of Proof-of-Concept Scenarios

This section presents a use case scenario of SFC isolation and encryption. Furthermore, we show
three episodes of this scenario that are developed based on a set of architectural security requirements.

3.1. Use Case

The verification scenario for our Proof-of-Concept demonstration is based on a fictional Internet
Service Provider (ISP) that wants to extend their NFV portfolio and their data centre resources.
The ISP located in country A, named ISP-A, wants to lower their costs on their Customer Premise
Equipment (CPEs) by virtualising them and consequently more efficiently extending their service
delivery. They have limited resources in their data centre and want to offload parts of their services
to remote data centres. They have found two cooperative partners in country B (ISP-B) and country
C (ISP-C) that can provide them with data centre resources. They want all data centres to contribute
to delivering and extending their virtual CPE (vCPE) services. They are aiming to provide this by
chaining SFs across all data centres by the use of the SFC protocol NSH.

The IETF has defined a variety of SFC use cases [28], but, for our Proof-of-Concept demonstration,
we limit the SFC use case to the following: ISP-A aims to provide three SFs to their customers. Two of
the SFs are mandatory, while one additional SF is optional for the end-users to choose. The basic SFs
are a vCPE (SF-1) and a firewall (SF-3), while the optional SF is a video caching service (SF-2). Due to
the cost of data centre resource consumption and SF security policies, the ISP-A policy is defined
to require that the vCPE runs at ISP-A, the video caching service at ISP-B and the firewall at ISP-C.
The vCPE is the first element in the SFC. The additional video caching service is placed in the middle
of the SFC in order to let the first two services be protected by the last element in the SFC, which is a
virtual firewall (SF-3) (Figure 2). Hence, from a service plane perspective, the firewall is protecting the
inner SFs and the end-user from the outside world.



Future Internet 2019, 11, 183 4 of 21

Figure 2. Proof-of-Concept scenario.

The data centres operate with multi-tenants where ISP-A has interconnected all their tenant
instances in an overlay network. In this setup, ISP-A is concerned about the privacy of their customers
and they do not know if ISP-B is eavesdropping the end-user traffic traversing them. Neither are they
sure whether ISP-B is malicious. ISP-C is, on the other hand, a trusted partner. In order not to let ISP-B
being capable of eavesdropping all end-user traffic, all traffic that is traversing ISP-B, except video
streaming traffic, must be encrypted. Note: for Proof-of-Concept purposes, the video caching service
is categorised as a non-privacy sensitive service.

We simplified the SFC isolation problem by omitting a full mesh topology of the interconnected
data centres in the Proof-of-Concept scenario. However, the components in a full mesh topology are
also vulnerable to eavesdropping. Corrupt intermediate virtual switches or faulty SFs can modify,
intercept and manipulate SFC traffic inside an overlay network. Hence, the protection of the Virtual
Link (VL) [2] is relevant both between the Compute Nodes in one data centre and for the VLs between
multiple data centres.

3.2. Requirements

We have in our previous work presented the NFV security requirements [4] for the
encryption and the isolation of the VLs. We summarise these requirements in the context of the
aforementioned scenario:

i. Hop by hop encryption—In order to prevent eavesdropping of the VLs, the VLs must be
encrypted per SFC.

ii. Micro-segmented isolation—The SFC specification [2] does not allow micro-segmentation within
one SFC. However, we state that the end-user requires that they must be able to specify what
data traffic the SFs are allowed to handle on a flow-based level. Hence, it is required that the
associated data plane components are capable of isolating different packet flows with different
encryption keys within one single SFC.

iii. Header visibility—When encrypting VLs, the SFC packet header must be non-encrypted in order
to enable SFC routing of the encrypted packets. We define that a new SFC header extension
must be able to both allow and specify when the inner data-content of an SFC packet header
is encrypted.
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iv. Control plane flow distribution—Multiple encryption-flows within one SFC require that the
control plane is capable of distributing route information about each of these encrypted flows.
These flow-rules must be securely distributed. Hence, secure and trusted intra- and inter-domain
communication channels from the virtual network devices to the network controllers must
be established.

v. Key distribution—Due to a non-bidirectional data plane between the SFs in an SFC [2], a new
hop-by-hop key distribution mechanism is required. The key distribution mechanism must
respond to a dynamic SFC behaviour such as an SFC modification. It must also support future
encryption standards or protocol extensions. The key distribution mechanism must ensure
confidentiality, integrity and availability of the keys.

vi. Compliance and adoption—A new SFC header and the corresponding provisioning architecture
must be compliant with the current NFV standards. In addition, adding encryption to the VLs
should not degrade the end-to-end throughput performance more than traditional end-to-end
encrypted channels. Another important factor for the architecture to be adopted is that the
end-users do not perceive a significant increase in service provisioning times when they apply
VL encryption.

vii. Resilience and availability—The architecture must provide resilience towards components
failing without reducing the level of security.

viii. Security integrity—An attacker should not be able to manipulate the routing tables or to modify
the packet headers in order to enforce access to non-encrypted data packets.

We aggregated these requirements and defined the following episodes from the
aforementioned scenario.

Episode 1: Packet forwarding and provisioning (Req: i, iii, iv, vi)
This episode is created from an end-user perspective. An end-user orders a new virtual service
according to our scenario. The end-user expects that his broadband service is not affected during
service provisioning. A service provisioning demonstration can monitor the provisioning time by
measuring network outage. However, demonstrating a full service provisioning also provides evidence
of how the architecture provides the setup of the encrypted VLs. In addition, in a fully provisioned
SFC, an end-to-end traffic test shows how the encrypted data packets are routed and if the traffic flow
is satisfying the security requirement of flow-distribution.
Episode 2: Resilience and availability (Req: v, vii)
In this episode, we simulate hardware failure. From an availability and resilience perspective,
the architecture must be resilient to components failing without compromising the network encryption
policy. During service recovery, this demonstration also shows the dynamic behaviour of the key
distribution during failovers.
Episode 3: Security integrity (Req: ii, viii)
For our third episode, we simulate that one of our data centres (ISP-B) is attacked and that a subset
of the components is compromised. When simulating a set of basic network attacks, the architecture
must be resistant to this. This also includes a demonstration of how flow-based encryption can protect
the end-user data from being compromised by a malicious ISP (ISP-B).

Aiming to highlight a selected subset of the functionalities supported by our developed security
architecture, we next present the architecture and the implementation of our Proof-of-Concept
demonstration. Section 6 evaluates how the following architecture fulfils these episodes.

4. Encrypted SFC Architecture

In this section, we describe the architectural components and the network topology for enabling
encrypted and isolated VLs. This work follows the design guidelines from our previous work [3] where
we presented an architecture consisting of a tiered structure of data plane and control plane components.
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This architectural section summarises this work and focuses on the implementation-specific elements
of the design. The main objective of the design is to structure a layered networking architecture
into a data centre environment. Specifically, this includes a design of interconnected Compute Node
components that are capable of forwarding encrypted SFC packets by the use of two layers of NSH
headers. Accordingly, we have provided three data plane components running on the Compute Nodes
(Figure 3); a new Service Function Forwarder (SFF), a new Encryption Function (EF) and a
new forwarding framework for the Service Functions (SF). These components are based on the
programmable switch language P4 [9]. Figure 3 shows that these data plane components also have
their corresponding control plane units, following the Software-Defined Networking paradigm of
centralised control and network programmability. We used a micro-service design principle and
implemented each of these components as Virtual Machines (VMs). According to our previous
work [3], we used RESTConf web services to exchange messages between these components.

Figure 3. Top-level architecture.

The following subsections discuss the functionalities of these data plane components
(Sections 4.2, 4.4 and 4.6), the infrastructure that they are connected to (Section 4.1) and the control
plane units they interact with (Sections 4.3, 4.5 and 4.7).

4.1. The Infrastructure

The nature of an SFC accommodates Segment Routing (SR) [18,29,30], which implies that the
sender of an IP packet specifies the packet path. Specifically, SR implies that the packet header contains
SFC state information of how to route a specific packet for a selection of intermediate routers. We use
NSH as a data plane enabler for SR in order to steer the traffic in such SR paths between the SFs
and the EFs (Section 4.1.1). Two layers of NSH headers constitute two overlay networks. One layer
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addressing the communication between the SFs and one additional layer addressing the point to point
communication between the EFs (Figure 4).

Currently, SR by NSH is not widely supported by routers and neither is the new NSH encryption
header extension that we have suggested. Therefore, in order to ensure packet forwarding through
legacy network devices, we define that the NSH packet must be encapsulated by an outer transport
network between the NSH-aware routers. Figure 4 shows that we use VXLAN-GPE for this underlying
network. Each of these network layers accommodates the different communication layers in the
architecture. For example, an NSH header is only valid between two SFs, while the new additional
NSH header is only valid between two EFs. Hence, the structured packet header (Figure 4) is also
reflected in a structured design of the networking components (Figure 3), where each data plane
component is responsible for each layer.

Figure 4. The layered network architecture.

4.1.1. Overlay Network Topologies

This structured setup of the networking components ensures that the routing of the data
packets is not only controlled by flow-rules, but it is also controlled by how the network topology is
designed. This is the main objective behind the design of the structured hierarchy of the NSH headers.
The structured network topology disallows unencrypted data traffic between an SF and an EF to be
routed out of the Compute Node and out on the network.

Figure 5 shows the main difference between using and not using an additional NSH header.
Within the current NSH RFC [17] (no additional NSH header), the EF must be treated as a regular SF
on one NSH layer (Figure 5 (1, 2)). The VL is perceived as encrypted and protected if both the EF and
SF is located on the same Compute Node. However, if the EF is migrated to another host (Figure 5 (2)),
the non-encrypted traffic (between SF-A and EF-X) is in fact allowed to flow both between different
Compute Nodes or between different infrastructure domains. Hence, enabling the EF in a separate
network layer (Figure 5 (3)) makes the network topology more secure. Using two NSH layers ensures
that the SF never can be distributed in a way where non-encrypted traffic can leave the Compute Node.
The VM, such as the EF-X (Figure 5 (3)), is in this case also open for VM migration, but, if the VM
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EF-X is migrated to another Compute Node, the next-hop network destination is unavailable due to a
header mismatch between the two types of NSH headers. Hence, the VM’s EF-X and SF-A must be
migrated in pairs for allowing the communication between them.

Figure 5. An additional encryption overlay.

Dedicated networking components per Compute Node that are responsible for the inner and the
outer NSH headers logically separate the EFs and the SFs. Therefore, we implemented two separate
virtual switches on each compute node that is responsible for the routing of the two NSH layers. This
structured setup of Compute Node components (Figure 3) ensures that the EFs must be co-located
with the SF.

4.1.2. Underlay Network

A threat to this structured networking model is an underlying VXLAN-GPE network.
In traditional data centres with no NSH overlay, VXLAN is not defined as an underlay network,
but it constitutes an overlay network by abstracting the physical network into one big distributed
virtualised switch. This implies that, if all the components in our architecture are running as VMs on
one underlying distributed virtual switch, the overlaying NSH switches are unaware of the underlying
Compute Node location. This compromises the structured setup of networking components on
the Compute Node. We solved this problem by combining VXLAN and NSH networks into one
customised virtual switch. In addition, we adopted the architectural networking principles from
VMware NSX [23] and pinned the virtual switch to the Compute Node and perceived it as a hypervisor
component. We simulated this structure by locking the virtual switch VM to the Compute Node and
pretending that the virtual switch was not available in the hypervisor user space. According to the SFC
RFC [2], introducing NSH/SFC-awareness to a virtual switch makes it a Service Function Forwarder
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(SFF). Hence, we defined two underlying SFFs to be responsible for each NSH layer respectively and
let them also to be responsible for handling the VXLAN-GPE tunnels.

4.2. The Service Function Forwarders

In order to support the new NSH packet header formats [3], we created a new customised
virtual switch, based on P4. The programming language P4 enables programmers to customise packet
forwarding rules in switches. We made a very simple switch that constitutes an SFF, with VXLAN-GPE
and NSH forwarding support. The SFF has the following functionality:

• It can parse the new encryption attributes in the NSH header (MD-type = 3, E-SPI, E-SI [3]).
• It classifies IPv4 traffic in order to apply NSH headers.
• The SFF can act as a forwarder for NSH packet destined to other SFFs.
• It can act as an NSH packet forwarder inside an SF in order to make the SF NSH-aware.
• It can provide Layer 2 mac-address resolution based NSH packets instead of using IP and ARP

(see Section 4.4).
• It can provide VXLAN-GPE support.

4.3. The Service Function Forwarder Controller

In our previous work [3], we have suggested using BGP as a control plane mechanism in order to
have a standardised method of exchanging NSH routes. However, we identified concerns related to
scalability and security of using BGP. Applying route security in BGP includes that each route has to
be authorised on a per-peer basis and all viable routes need to be pre-enumerated. In addition, with no
route aggregation, route propagation and exponential growth of BGP routes for EFs, we question the
scalability of BGP as an NSH control plane protocol. Hence, we changed the control plane component
from our previous work [3] from BGP to distributed RESTconf. This opened up for more efficiently
giving the exact routing instructions to the specific Compute Nodes only. RESTconf also enabled
a more flexible authorisation of the NSH routes, by authenticating the RESTconf connection by the
Secure Socket Layer (SSL).

However, we also selected RESTconf as the control plane protocol due to interoperability reasons.
In federated multi-tenant NFV environments, an overlay network is created with virtual forwarding
devices such as an SFF. This opens up for customising the virtual network devices and the network
controller. This enables network operators to deploy customised networking software in an agile and
fast manner. By utilising P4, it is also possible to specify customised flow rules when configuring these
network devices. Hence, we utilised the feature of SDN-based network programmability, by specifying
customised network configuration by the use of P4 flow rules over RESTconf. The need for customised
flow rules is reasoned by the new NSH header extension.

For Proof-of-Concept purposes, we created a very simple RESTconf based network controller with
a set of predefined P4 flow-entries. It consists of a simple HTTP client that distributes flow rules over
RESTconf by using Linux shell scripts.

4.4. Service Functions

The Service Functions (SFs), applied as VMs, are intended to manipulate the end-user data packets.
We simulated that we used SFs acting as a vCPE, video caching service and a virtual firewall by using
dummy services. Therefore, all SFs are configured to simply forward all data traffic according to the
flow-specification rules we apply. The SFC RFC 7665 [2] defines that an SF has primarily two data
plane interfaces: one for incoming and one for outgoing traffic. Inside the SF, the packet forwarding is
explicitly set to follow the SFC directions and not the standard routing table. Specifically, data traffic
coming in on one interface must go out on the other interface and vice versa. We solved this SF routing
problem by making the SF NSH-aware. This implies that the NSH header is not removed when a
packet enters an SF. Due to the lack of NSH state capabilities in operating systems such as native
Linux systems, we introduce a new virtual NSH network stack inside the SF. This new network stack
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is an NSH-aware P4 switch which acts as a front-end network stack inside the SF. This principle of
NSH-awareness in the SF is extracted from the VXLAN-tool [31] implementation and adopted to a P4
environment in order to support the new NSH header. We defined the following features in the SF:

• One SF can appear multiple times in one single SFC. Hence, the SF is NSH-aware by using an
underlying P4 switch in the SF. The P4 switch is connected to two virtual veth interfaces facing
the SF application and two native interfaces facing network interfaces of the VM.

• According to the SFC specification, the SF should be independent of the IP subnet topology
between the SFs. This means that the IP subnets connected to VM interfaces do not follow standard
IP subnetting topologies. For example, when an SFC changes, the mac-address of the next-hop SF
are also changing. From an SF perspective, this mac-address has to correspond to the next NSH
hop. Hence, the virtual P4 switch in the SF must be able to map interface mac-addresses to SFs.
For outgoing traffic from an SF, we use dummy static destination mac-addresses. For incoming
traffic to an SF, it is the responsibility of the P4 switch to set the correct destination mac-address to
the IP interface of the SF. This mac-address is based on next hop in the SFC. Hence, instead of using
standard ARP as a binding between layer 2 and layer 3, we introduce a new mac-address mapping
scheme between mac-addresses and NSH Service Function Identifiers. This is implemented as P4
flow-rule actions. A dynamic side effect of this is that the IPv4 addresses of the SF application
theoretically can be reused for each hop in an SFC.

4.5. Service Function Provisioner

The Service Function Provisioner component corresponds to the Virtual Infrastructure Manager
(VIM) in the NFV reference model [32]. It is responsible for maintaining the lifecycle management of
all virtual network functions. We simplified this function and used Vagrant [33] and Vagrant scripts as
a provisioning tool for all VMs per Compute Node. As an overlay to multiple Vagrant nodes, we used
RESTconf to instantiate the Vagrant scrips.

4.6. The Encryption Service Function

This component is responsible for both encrypting and decrypting the data traffic in front of
the SF. This functionality is realised with a data encryption application in a customised SF that we
named the Encryption Service Function (EF). From a network infrastructure perspective, the EF is a
copy of the SF, except for being responsible for a different network layer (the additional NSH layer).
In addition to the P4 networking functionalities, the EF adopts the Software-Defined IPsec application
(SD-SA) functionality that we have presented in our previous work [7]. In summary, this application
has the following features:

• We use the Linux based IP XFRM application to encrypt and decrypt IP packets and encapsulates
them with an IPsec Encapsulating Security Payload (ESP) header.

• The encryption application runs inside a Linux network namespace (netns) that separates the
encryption application from the P4 switch.

• IPsec Internet Key Exchange (IKE) is replaced with a new web service application that exchanges
the encryption keys and the integrity keys in a separate control plane channel.

• The EF is instantiated with a set of preshared keys. These keys are used to establish a secure
connection to a centralised Authentication Center (AuC) that manages the key distribution.

4.7. The Authentication Centre (AuC)

The EFs are controlled by an Authentication centre that distributes the encryption keys and the
integrity keys. Due to the non-bidirectional NSH communication channel between EFs [2], an IPsec
IKE channel is not possible to establish on the data plane. Hence, we adopt the aforementioned SD-SA
application from our previous work [7] in order to replace IKE in IPsec. In summary, this application
includes the following functionality. The initial step is to pre-configure an authentication key for every
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EF during EF instantiation. Second, all EFs establish a secure channel to the AuC. Third, the AuC
sends the integrity and confidentiality key to the encryption function over the authenticated and
secured RESTconf channel. This last step is a periodic event that is repeated for every key change.
An important requirement for this concept to work is that all EFs are connected to one common AuC.
This also requires a shared control plane VPN between all data centre tenants. This control plane VPN
is established by using site-to-site IPsec VPN tunnels between the data centres.

5. Implementation

Based on the aforementioned scenarios (Section 3), we constructed a network topology consisting
of three simple SFs and two underlying pairs of encrypted channels. Figure 6 shows the components
that are involved in the data plane forwarding of the NSH packets.

Figure 6. Service plane topology.

This network topology setup implements the use case scenario (Figure 2) and also reflects the
tiered network topology (Figure 3). We implemented this topology by running one Compute Node per
ISP where each Compute Node had one inner and one outer SFF. We also configured an Edge gateway
per network domain that was responsible for interconnecting the data centre domains. We used one
Compute Node per NFV domain. Correspondingly, there is one Edge gateway per Compute Node.

Figure 7 shows the categorisation, the enumerations and the virtual bridge connections of the
VMs running on each Compute Node. The SFs, the EFs and the classifiers are instantiated as multiple
instances of VMs. These VMs are instantiated per SFC during service provisioning. The SFFs are
statically deployed VMs that are pinned to the hypervisor. The control plane components are also
categorised as a special group of VMs. This is because they are only instantiated at one of the Compute
Nodes and because they are not connected to the data plane.

Figure 7. Virtual Machines and networks per Compute Node.
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From a networking perspective, Figure 7 also shows that each VM is connected to different
Linux-bridge domains. We used virtual Linux interfaces (veth) to interconnect VMs to virtual bridges.
Furthermore, these virtual bridges are also connected to the physical network interfaces. This network
construction follows the principle of virtual network infrastructures in Linux that is also used in,
for example, OPNFV [34] and OpenStack [35].

For local Virtual Infrastructure Management (VIM), we ran the VM provisioning tools and the
local network/bridge management as non-virtual function alongside the Kernel-based Virtual Machine
(KVM) environment. We used Linux scripts and Vagrant to control the instantiation of VMs and to
control the mapping the virtual network interfaces to the underlying VXLAN-GPE infrastructure.
The local VIM is orchestrated by a simple top-level RESTconf based orchestrator. Figure 8 shows the
hierarchy of both this orchestrator and the other control plane components. For proof-of-concept
purposes, we only used one Compute Node per domain controller.

Figure 8. Hierarchy of network control.

The NFV implementation is developed by the use of Vagrant, Linux bash scripting and the switch
programming language P4. The source code, the demonstrations and the test results are available at
https://github.com/gunleifsen/encNSHinP4.

Lab Setup and Tools

We set up our experiment by using four HP Proliant DL380 G7 servers. All servers had two
3.47 GHz Intel Xeon X5690 processors with six cores each, 196 GB of DDR3 memory and 1 Gbit
network adaptors (In a testbed provided by Eidsiva broadband, Oslo, Norway). The servers ran
Ubuntu 18.04.2 LTS with kernel 4.15.0-47-generic. We used Vagrant 2.2.4 and qemu-kvm 1:2.11 with
virtual network adapters by libvirt. For every Compute Node, we disabled Hyper-Threading, Turbo
Boost, and power saving.

We simplified the instantiation of the VMs by only using one VM template for every VM.
This VM template was set up with Ubuntu Linux 18.04.2 LTS, 2 GB RAM and one virtual CPU.
The pre-installation of the template included the P4 framework (https://github.com/jafingerhut/p4-
guide) where we used the P4 version P4_16 with the behavioural model 2 (BMv2) from Barefoot [36].
For running the P4 code, we used the inner virtualisation software from Barefoot named the
“simple_switch”.

For all communication between the VMs, we simulated RESTconf by the use of simple web
services running over secure netcat (socat) [37].

According to the scenario and the service plane topology, we created 21 VMs for data plane
forwarding, including two endpoints (Figure 6). In addition, for the federated top-level controller,

https://github.com/gunleifsen/encNSHinP4
https://github.com/jafingerhut/p4-guide
https://github.com/jafingerhut/p4-guide
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we combined the network controller, the service provisioner and the AuC in one common VM (22 VMs
in total).

For end-to-end traffic testing, we used Iperf 3.0.11 for measuring the performance and
provisioning time. By sending a fixed stream of packets per seconds, we measured the network
outage time by counting the packet loss. For packet injection tests, we used the Python tool scapy [38]
and, for packet monitoring, we used Tcpdump on the virtual Compute Node interfaces (veth).

6. Verification and Results

This section presents the results of the three verification episodes we introduced in Section 3.
This includes (1) a packet forwarding and provisioning episode, (2) a resilience and availability episode
and (3) a security integrity episode.

6.1. Episode 1: Packet Forwarding and Provisioning (req: i, iii, iv, vi)

This episode aims to provide a demonstration of the service provisioning. It also aims to show
that the data packets are routed correctly and that end-to-end traffic tests and throughput tests are
satisfying the requirements.

6.1.1. Service Provisioning Times

From an end-user perspective, it is expected that their NFV ISP provides them with on-demand
service provisioning and a secure infrastructure. We developed episode 1 in order to provide a
Proof-of-Concept demonstration of the implemented architecture with respect to service provisioning.
This demonstration also shows that the layered NSH header architecture is capable of forwarding
encrypted SFCs according to a network forwarding policy in a relatively fast and reliable manner.
Specifically, we developed a test that demonstrates that the designed architecture is able to set up an
SFC according to the requirement of hop-by-hop encryption with a new NSH header (req: i, iii) and by
the use of RESTconf flow distribution (req: iv). We provide these demonstrations by monitoring the
provisioning time of a subset of the services in the architecture.

The creation of VMs, the altering of the routing paths and the reestablishment of the encryption
keys, result in network outage from an end-user perspective. Hence, we measured this time by
monitoring network outage during service provisioning. We set up a simple Iperf measuring test
between the client and server and experimented with altering the SFC. We altered the SFC from SF1
− > SF3 to SF1 − > SF2 − > SF3. This simulated turning on and off the SF located at ISP-B and
implicitly adding and removing a service from the SFC.

By sending a fixed stream of 64 packets per seconds from the client to the server, we measured the
network provisioning time by monitoring the packet loss during these service alternations. One packet
loss of 64 packets corresponds to approximately 15,63 ms of a network outage. The measurements
were aiming to measure seconds. Therefore, we set the packet rate at 64 pps. This also ensured a
minimisation of a potential packet loss due to unrelated reasons such as collisions, traffic congestion or
buffers overflows.

We differentiated the measurements (Table 1) in three types. Full provisioning (1a) with no traffic
flow during provisioning, Soft provisioning (1b) where the data traffic runs while new services are
instantiating and (1c) we also measured the periodic key change provisioning times.

Setting up an additional SF with encrypted links includes; (1.a-1) instantiating the SF VM, (1.a-2)
instantiating two EF VMs, (1.a-3) authenticating the EFs and distribute the encryption keys and (1.a-4)
distribute the new flow routes. Hence, we measured the provisioning time for each of the sub-processes
and summarized the total provisioning time (1.a).

The instantiation of the SFs (1.a-1) and the EFs (1.a-2) are the most time-consuming processes.
However, these processes can be instantiated before the traffic flows are redirected into the new
VMs. This also includes the setup and authentication of the EFs (1.a-3). We refer to this process
as soft provisioning (1.b). It is expected that such a planned provisioning is most common. Here,
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the distribution of the flow rules is not assigned before the VMs are fully provisioned and EFs are
authenticated. This scheduling of network provisioning significantly decreases the network outage
time. However, for non-controlled events, such as hardware failure, the re-provisioning time increases
due to the failure detection time and due to the lack of pre-instantiated VMs (see Section 6.2).

The periodic key change provisioning time is the most frequent provisioning process. It is assumed
that the encryption keys are set up to change once every hour. However, for measurement purposes,
we set the periodic key change interval to 5 s. Our previous work [7] indicated that the periodic key
change provisioning had limited effects on the network outage time. This is also confirmed by these
measurements where the network outage time for each key change is about 0.1 s (1c).

From an end-user’s perspective, the most relevant network outage times are the outages during
the soft provisioning and during periodic key changes. It is expected that most web applications based
on TCP, such as Youtube and Netflix, are resistant to these network outage times that are less than
100 ms. Re-using an EF in order to reconnect it to a different EF peer has a provisioning time of 1.2 s
(1.b-1). Hence, this result indicates that it is more efficient to pre-instantiate and pre-authenticate a
new pair of EFs instead of reusing any existing EFs during re-provisioning. This pre-authentication
consequently sets the soft provisioning time and the network outage time to only include the time
it takes to distribute the flow rules. It is assumed that the network outage time caused by the
re-distribution of the flow rules is not perceived as network outage by most end-users.

Table 1. Provisioning times.

Episode Test Name Packet Rate Packets Lost Outage Time

1.a Full provisioning 64 pps 13,184 206.0 s
1.a-1 -SF instantiation 64 pps 3049 47.6 s
1.a-2 -EF instantiation 64 pps 10,176 159.0 s
1.a-3 -Auth and encr. setup 64 pps 81 1.2 s
1.a-4 -Distribution of flow rules 64 pps 0 0.0 s
1.b Soft provisioning 64 pps 154 1.2 s
1.b-1 -Auth and encr. setup 64 pps 81 1.2 s
1.b-2 -Distribution of flow rules 64 pps 0 0.0 s
1.c Periodic keychange (every 5 s) 64 pps 7 0.1 s

2.a Failover with protection 64 pps 326 5.0 s
2.a-1 -Detection time 5.0 s
2.a-2 -Distribution of flow rules 64 pps 0 0.0 s
2.b Failover without protection 64 pps 13,504 211.0 s
2.b-1 -Detection time 5.0 s
2.b-2 -Full provisioning 64 pps 13,184 206.0 s

pps = packet per second.

6.1.2. Throughput

According to the requirement of adoption (req: vi), we argue that the architecture fulfils this
requirement by using fully virtualised overlay networks. The new NSH header only needs to be
implemented in virtualised environments and therefore it is also easily deployed in fully isolated,
autonomous and customer-specific environments. However, other important factors for adopting the
architecture are scalability and throughput performance. The TCP throughput is a product of bit rate,
packet-size and latency. Hence, the latency factor for throughput performance is highly dependent
on the number of NSH forwarders, their latency in processing packets and the latency between them.
Hence, we measured the throughput by varying the number of SF and EF hops (Figure 9). We tested the
throughput from the client to the server by using an Iperf TCP bandwidth test with window-size 512.

The results (Figure 9) show a decreasing throughput when the number of SF hops increases.
The main reason behind this result is the increased latency that the virtual machines introduce.
We measured that a VM with a P4 enabled switch in average used 6 ms to process a packet.
The virtualisation software we used for P4 is based on CPU processing without any network accelerator
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driver. This lack of suitable software drivers for P4 explains this latency. However, it is expected that
new generations of OVS, IPAC and other P4 runtime environments will decrease the packet processing
latency in future releases of the P4 runtime frameworks.

However, the most important factor with respect to NFV adoptability (req: vi) is how much
degradation in throughput the encrypted links introduce. Hence, we measured the difference between
EF and SF hops, by creating multiple SFCs with and without encrypted Virtual Links. The graphs
(Figure 9) show that there is no significant difference in the throughput between an SFC with EFs only
and an SFC with SFs only. This confirms that it is the P4 switch that introduces the latency and that the
performance degradation is due to the P4 hypervisor or the effectiveness of the P4 program.
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Figure 9. TCP throughput per SF/EF hop.

6.1.3. Summary

The overall results show that the solution is fulfilling the following requirements:
Req i 3: We have shown that the architecture provides hop-by-hop encryption by monitoring the
traffic flows before and after the provisioning of the EFs. In addition, small network outages during
re-keying confirm that the encrypted links are running and that the key change is working.
Req iii 3: The fact that requirement i is fulfilled also confirms that the forwarding of the new packet
header is possible when the Virtual Links are encrypted. Hence, the new SFC header is not encrypted.
This is also confirmed by analysing SFC packets.
Req iv 3: By running provisioning and alternating different network topologies, we have shown that a
RESTconf based control plane in a multi-tenant environment is capable of distributing micro-segmented
flow rules according to the requirements.
Req vi 7: By applying the NSH header in an interconnected multi-tenant data centre, we have shown
that the new NSH header is easily adaptable (Section 4.1). This is because the NSH header is applied
in an overlay network. Throughput tests have shown that a single EF does not degrade the throughput
performance more than a single SF. However, due to the lack of an effective P4 virtualisation platform
in our implementation, the performance significantly degrades when the number of SFs increase.
Hence, the adoption of P4 in NFV is highly dependent on hardware accelerators.

6.2. Episode 2: Resilience and Availability (req: v, vii)

The capacity of the architecture to adapt to controlled network alterations has been demonstrated
earlier with respect to the network provisioning. This episode has been developed in order to highlight
the details of the process and to show how the architecture responds to software or hardware failures
(req: vii). Hence, we simulated that the intermediate ISP-B has a hardware failure and becomes
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unavailable. In addition, we have also simulated the consequences of unavailable control plane
components and tested protection mechanisms in the key distribution method (req: v).

6.2.1. SFC Protection

Our Proof-of-Concept implementation of the P4 data plane did not include any event handlers
of detecting network failures such as link-down or node-down (such as LLDP discovery events
in OpenFlow). However, we simulated an “NFVi fault and management” [1] approach similar to
ceilometer monitoring in OpenStack, by monitoring the VMs instead of the virtual switch interfaces.
Consequently, we assume that the NFV infrastructure is capable of automatically migrating the VMs to
another Compute Node during hardware failures. However, this migration process results in network
outage time for the end-user where network outage time = detection time + VM provisioning + key
distribution + route distribution (Table 1 (2.b)). In order to reduce the network outage time, it is
possible to pre-instantiate redundant VMs. Consequently, the VM provisioning time is removed from
the equation. Hence, we simulated a protection of software and hardware failure by duplicating the
VMs running at ISP-B to also run at ISP-A. By letting the VMs run in both domains, the VM becomes
protected and, consequently, it also creates an SFC protection. In order to simulate a hardware failure,
we manually shut down the VMs running at ISP-B by using KVM virsh directly on the VMs.

Table 1 (2.a, 2.b) shows the failover time when SFC protection is enabled and when it is not.
A network topology with SFC protection enabled provides evidence for a resilient and dynamic SFC
architecture (req: vii). However, it is noted that the SFC protection introduces an additional resource
consumption for all the VMs that are running in standby mode.

A method of reducing the resource consumption is to reduce the number of duplicate EFs.
The aforementioned demonstration duplicated four EFs. Consequently, the additional pairs of
EFs were already authenticated and failover is performed by a distribution of the flow rules only.
By not duplicating EF1 and EF4, these EFs can be reused in order to reconnect to the duplicated
versions of EF2 and EF3. This adds an additional 1.2 s to failover process, but it reduces the overall
resource consumption.

6.2.2. Protection of Invalid VM Migration

The main objective of the architecture is to enable hop-by-hop encryption of VLs (req: i).
This includes protecting the data traffic between two SFs with a pair of EFs. Hence, one of the
most important features of the architecture is to ensure that non-encrypted data between an SF and an
EF reside on the same Compute Node. We demonstrated the feasibility of the hop-by-hop encryption
during the provisioning in episode 1 by running end-to-end traffic tests. Here, we also verified that the
traffic was encrypted by monitoring the data traffic in the SFFs.

However, with respect to resilience, the aforementioned episode did not consider the consequences
of VM migration. A failover of the VMs implies that SFs and their connected EFs must be migrated all
together. A misconfiguration or failure in the VM migrations can result in an irregular topology of
SFs and EFs. Hence, we aim to verify that the layered network topology introduced in Section 4.1.1
is protecting the non-encrypted flows from entering the network. We configured an invalid network
topology by migrating one of the EFs to another Compute Node as we showed in Figure 5 (2). In this
case, our architecture and flow policy disallowed the distribution of the flow rules. This result was
expected. However, we successfully managed to manually override and manipulate the flow rules in
order to allow such traffic flows. In order to accomplish this, we had to (1) manipulate the NSH packet
coming from the SF and (2) define a flow rule that sets the NSH next hop to be a remote SFF destination
for an NSH packet that is tagged for going into an EF for encryption. This is a clear flow-rule policy
violation. This policy violation is easy to detect because the SFFs are pinned to the Compute Node.
Hence, an NSH packet that is heading to an encryption function should never leave the outer SFF.
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The demonstration confirms that the tiered SFF infrastructure and the pinned SFFs make it easy
to control the inner encryption flows. It also shows that there is a need for providing policy rules for
the P4 switches. We enforced this rule only by implementing it in the overlay RESTconf API.

6.2.3. Key Distribution

Due to the lack of a direct data plane communication between two SFs, we developed a new
key exchange mechanism by using centralised key distribution (req: v). Our previous work [7] has
shown that SD-IKE with a centralised key distribution and Authentication centre (AuC) makes key
distribution more efficient in non-NFV environments. The SFC alternations in episode 1 and the SFC
failover protection in SFC episode 2 (Section 6.2.1) provides a Proof-of-Concept demonstration for
integrating this concept in NFV.

6.2.4. Availability of Control Plane Components

The aforementioned key distribution is not only performed during provisioning, while the
encryption keys change periodically. This makes the AuC service a critical component. Killing the
AuC service does not affect the end-user traffic. It only stops the encryption keys from being renewed.
Hence, an additional key monitoring agent must run along with the encryption and decryption services.
This monitoring agent detects if a new key is not received within a certain expire time. If the expiry
time is reached before a new key is received, the EF deletes its’ Security Association.

Instead of shutting down the AuC, we simulated this key protection feature by manipulating the
key expire time in the encryption service. We experimented with setting the expire time to 10 s in the
encryption service and the AuC re-keying time to 20 s. Next, we ran a simple Iperf bandwidth test
for 60 s and used tcpdump to monitor if the packets traversed the intermediate SF. We confirmed the
functionality by observing that the EFs periodically stopped working every for 10 s.

This declarative SDN approach for the AuC also applies to the network controller. When the SDN
controller has distributed the flow rules to the SFFs, it is expected that the SFFs continue forwarding
packets even after the SDN controller becomes unavailable. Consequently, network topology changes
and VM migration together with a non-functional SDN controller results in non-functional SFCs.
We confirmed this behaviour by shutting down the SDN controller.

6.2.5. Summary

This section has shown that the following requirements are satisfied:
Req vii 3: First, the architecture opens up for enabling protection of EF and SF. The measurements
of failover times provide evidence for a resilient architecture towards hardware or software
failure. Second, we have shown that the layered network infrastructure provides resilience towards
misconfiguration of VMs. Third, a security feature of protecting network security during AuC or
network controller outage have been demonstrated.
Req v 3: SFC alternation in Episode 1 and the protected failovers in Episode 2 provides evidence for
an effective key distribution method in NFV environments.

6.3. Episode 3: Security Integrity (req: ii, viii)

For this episode, we simulated that the intermediate ISP (ISP-B) is compromised. The objective
of the demonstration is to show that the integrity of the architecture is maintained for ISP-A and
ISP-C even if ISP-B is compromised. We demonstrate this by showing that the architecture supports
flow-based encryption (req: ii) and by showing that it is resistant to manipulation of the packet headers
or flow injections (req: viii).
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6.3.1. Eavesdropping

In order to demonstrate flow-based isolation and encryption (req: ii), we defined one SFC with
multiple inner encrypted flows. The SFC is defined as SF1 − > SF2 − > SF3 where the flows are
defined as email traffic and video traffic (over HTTP). SF1 is a vCPE that contains multiple network
services. However, in this episode of the scenario, we define it to handle email traffic. Hence, SF1 is set
up to handle all email traffic (port 25,110), while SF2 handles video traffic over HTTP (port 80,443).
SF3 is a firewall that handles both flows. Due to the risk of eavesdropping, we encrypt the email traffic
between SF1 and SF3 and we encrypt the HTTP traffic for SF1 − > SF2 and SF2 − > SF3.

We ran both traffic types simultaneously by running two instances of Iperf on two different ports,
namely flow 1 (port 25) and flow 2 (port 80) (Figure 10). Hence, we classified the traffic into two
different types, in total, three pairs of encrypted links. Flow 1 was defined as SF1 (vCPE) − > EF1
− > EF2 − > SF3 (vFW). Flow 2 was defined as SF1 (vCPE) − > EF3 − > EF4 − > SF2 (vVideo) − >

EF5 − > EF6 − > SF3 (vFW). By using tcpdump, we observed both encrypted and non-encrypted
traffic flows at ISP-B. This confirmed that the architecture was supporting flow-based encryption.

Figure 10. Flow-based encryption test in episode 3.

6.3.2. Route and Packet Injection

The main focus of our contribution was to protect the SFC from being eavesdropped when the
data traffic is traversing ISP-B. However, another attack method of gaining access to unauthorised
traffic is to manipulate the packet forwarding services in order to redirect the traffic path and implicitly
gain access to non-encrypted traffic. Hence, an important feature of the architecture is that it is resistant
to packet injection or route injection (req: viii).

We did not find any method to inject flow rules into the P4 switch without compromising
the network controller. However, for test purposes, we turned off the authentication and SSL on
the RESTconf interface towards to P4 switch. This allowed us to manipulate the flow rules and
consequently also manipulate the SFC.

For packet injection, we simulated that SF2 is compromised in ISP-B. We used an NSH extension
in the Python based scapy tool [38] in order to inject packets into the data plane. We successfully
managed to inject packets from an SF to another SF that was belonging to another SFC. Due to a lack
of security features in the SFF, the SFF was not able to detect the VM source of the injected packets and
simply forwarded the packet according to the packet headers. However, this was only possible for
non-encrypted data flows.

This packet injection problem is similar to spoofing the source address field in IP packets.
A possible solution to this problem is to introduce an integrity attribute in the NSH headers. Extending
the NSH integrity header RFC [39] to support layered NSH can potentially ensure that the NSH packet
originates from a valid VM source.

6.3.3. Summary

The verification of the security integrity objectives is summarised as follows:
Req ii 3: We confirmed that the architecture supports flow-based encryption by observing encrypted
and non-encrypted traffic traversing ISP-B. End-to-end traffic tests also confirmed that each flow was
tagged with two different types of inner NSH encryption headers.
Req viii 3: The architecture is resistant to simple packet injections and to the manipulation of flow
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rules. However, this packet integrity is established by using IPsec over the encrypted links. Hence,
it requires that every Virtual Link is encrypted and that the Compute Nodes are not compromised.
A possible solution in order to ensure packet integrity to non-encrypted data are to add an integrity
key to the NSH header.

7. Conclusions

This paper proposes an architecture for on-demand provisioning of encrypted and isolated SFC
using P4, NFV and SDN architectural principles.

A comprehensive view of the developed security framework for SFC has been presented,
according to the scenarios executed during the concluding system validation demonstrations. A subset
of the security-related functionalities supported by the developed architecture has also been shown in
order to highlight critical architectural details towards its implementation.

Furthermore, this article unifies the publicly available results of our security-related studies,
by highlighting how the distinct components presented earlier interoperate towards providing secure
SFCs. The presented results highlight the capacity of micro-segmented SFC in NFV, given that the
corresponding security requirements are satisfied.

The presented architecture is based on virtualised overlay networks and the upcoming technology
P4. These technologies aim to overcome network protocol standardisation and interoperability issues.
Hence, the architecture is applicable in any IP network and any Infrastructure as a Service (IaaS)
platform. However, this abstraction of physical resources raises new standardisation issues within
the virtualised environment, such as the encryption application in the service function. This puts a
burden on the SF developers and calls for a standardisation of the encryption application interfaces in
the SF and the AuC. Hence, this proof of concept experiment aims to contribute to the standardisation
of NFV application interfaces for enabling encrypted Virtual Links.

Through the executed studies of encrypted SFCs, a variety of future work paths have been
identified. These include the investigation of hardware accelerators, integrated QoS, availability and
security policies, particularly for protected and encrypted SFC. Furthermore, another potentially critical
path of future work refers to the investigation of packed injection between SFCs where encryption
enabled SF is a possible solution.
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