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Abstract. We construct a holomorphic embedding φ : B3 → C3 such that φ(B3) is not Runge
in any strictly larger domain. As a consequence, S 6= S1 for n = 3.

1. Introduction

Recall that a Loewner chain is a family ft : Bn → Cn of holomorphic injections, ft(0) =
0, f ′(0) = et · id, t ∈ [0,∞), with ft(Bn) ⊆ fs(Bn) for t ≤ s. We let S denote the set of all
univalent maps f : Bn → Cn with f(0) = 0, f ′(0) = id, we let S1 denote the set of all f ∈ S such
that f embeds into a Loewner chain, i.e., f = f0 where (ft)t≥0 is a Loewner chain, and finally
we let S0 denote the set of all f ∈ S1 for whom we require that the family (e−tft)t≥0 is normal.

In one variable, the three sets coincide, and they are all compact. On the other hand, in
higher dimensions, the sets S and S1 are certainly not compact, as can by seen as a consequence
of the automorphism group of Cn being huge for n ≥ 2. On the other hand, it is known that S0

is compact, and so we get the chain of inclusions

S0 ( S1 ⊆ S. (1.1)

However, if f ∈ S1, there exist ψ ∈ I(Cn) (the set of entire injective maps), and g ∈ S0 such
that f = ψ ◦ g, and so we may say that S1 splits (see e.g. [2], Theorem 2.6.),

S1 = I(Cn) ◦ S0. (1.2)

The background for this article is that it has been unknown whether it is also the case that
S = I(Cn) ◦ S0, or equivalently, whether S = S1 (this problem was mentioned and discussed in
[1]). In this context, the following closely related problem was recently posed by F. Bracci: Let
f ∈ S. Does there exist a Fatou-Bieberbach domain Ω ⊂ Cn such that f(Bn) is Runge in Ω?
This turns out not to be the case.

Theorem 1.1. For any ε > 0 there exists a continuous injective map φ : B3 → C3 with
φ ∈ O(B3), and such that

(i) ‖φ− id‖B3 < ε, and

(ii) if φ(B3) ⊂ Ω is a Runge pair, then φ(B3) = Ω.

Since the conditions in Docquier-Grauert [3] (Definition 20) are satisfied for the increasing
family (ft(Bn))0≤t≤t0 for any fixed t0, and for any Loewner chain, it follows from [3] (Satz 17–19)
that each pair (f0(Bn), ft(Bn)) is a Runge pair, and we get our second theorem as a corollary:
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Theorem 1.2. For n = 3 we have that S 6= S1.

2. Prelimiaries

The problem mentioned above was recently studied by Gaussier and Joiţa [4]. In particular,
they studied the map

φ(z) = (z1, z1z
2
2 + 2z3z2, z1z2 + z3), (2.1)

although we have here changed coordinates to have a fixed point at the origin. (This map was
constructed by John Wermer [5],[6] to produce a non Runge embedded polydisk in C3.) It is
straight forward to check that the map φ is injective holomorphic on the half space

H := {z ∈ C3 : Re(z3) < 0}.
For 0 < p < 1/4 we set

Dp := {z ∈ C3 : 2Re(z3) + |z3|2 + p(|z1|2 + |z2|2) < 0}. (2.2)

Then Dp is biholomorphic to the unit ball, 0 ∈ bDp, and Dp ⊂ H.
The result obtained by Gaussier and Joiţa is the following: For r > 0 sufficiently small there

exists 0 < α < r such that the set

Sr,α := {z ∈ C3 : |z1| = r, z2 = 0, z3 = α}
is contained in φ(Dp). Note however that none of the disks

Dr,α := {z ⊂ C3 : |z1| < r, z2 = 0, z3 = α}

are contained in φ(Dp); more specifically the point (0, 0, α) is not contained in φ(Dp), since φ
restricted to the z3-coordinate line is the identity. The following is a consequence.

Proposition 2.1. (Gaussier-Joiţa) If φ(Dp) ⊂ Ω and if Ω contains an open neighbourhood of
q, then φ(Dp) is not Runge in Ω.

Our approach to prove Theorem 1.1 is to produce an embedding which has similar ”bad”
boundary points everywhere on the boundary of the embedded ball. More specifically, by a
”bad” boundary point we will mean the following.

Definition 2.2. Let Ω ⊂ Cn be a domain. We will say that a point q ∈ bΩ is W(ermer)-
degenerate, if for any δ > 0 there exists an embedded holomorphic disk D ⊂ Bδ(q) such that
bD ⊂ Ω and D 6⊆ Ω.

3. Modification of the Wermer map

We let B ⊂ C3 denote the translated unit ball B = {z ∈ C3 : 2Re(z3) + ‖z‖2 < 0}, and we let
B′ ⊂ C3 denote the ball which is scaled by a factor two, B′ = {z ∈ C3 : 2Re(z3)+(1/2)‖z‖2 < 0}.

Proposition 3.1. Let {α1, ..., αn} ⊂ B \ {0} and let ε > 0. Then there exists an injective

continuous map ψ : B
′ → C3 with ψ ∈ O(B3) such that the following holds

(i) ‖ψ − id‖
B

′ < ε,

(ii) (ψ − id)(z) = O(‖z − αj‖3) for j = 1, ..., n, and
(iii) ψ(0) = 0, and 0 is W-degenerate for ψ(B).
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Proof. We will compose the map

φ(z1, z2, z3) = (z1, z1z
2
2 + 2z3z2, z1z2 + z3) (3.1)

with several holomorphic embeddings to achieve the claims of the theorem.
For N ∈ N we set

fN (z3) =
1

2z3
+ eN(2z3)(1− 1

2z3
),

and

hδN (z3) =
1

2δ

eN(2z3) + (2δ − 1)

1 + (2δ − 1)eN(2z3)
+

1

2δ
.

The maps hδN map the left half space to the disk of radius 1/2δ centred at the point 1/2δ, and

−∞ is mapped to the point 1. So for a fixed δ we have that hδN → 1 uniformly on compact
subsets of the left half space, as N →∞.

Then we set

F δ1 (z) = (δz1, δz2, z3),

FN2 (z) = (z1, z2fN (z3), z3),

FN,δ3 (z) = (z1h
δ
N (z3), z2h

δ
N (z3), z3).

Then we set

FN1,N2,δ1,δ2 = (F δ11 )−1 ◦ φ ◦ FN1
2 ◦ FN2,δ2

3 ◦ F δ11 .

Lemma 3.2. We have that FN1,N2,δ1,δ2 : H → C3 is injective holomorphic for all sufficiently
large N1 ∈ N. Moreover, we have that FN1,N2,δ1,δ converges uniformly to the identity as N1 →∞,
δ1 → 0, δ2 → 0 and N2 → ∞, and we may arrange that 0 is W-degenerate for FN1,N2,δ1,δ2(B).
(We note that the rate of convergence of each of the quantities, depends on the previous one.)

Proof. To prove that FN1,N2,δ1,δ2 : H → C3 is injective, we need to check that fN and hδN are

both non-zero on H̃ = {Re(z3) < 0} for sufficiently large N ∈ N. We leave it to the reader to

check that hδN maps H̃ to the disk of radius 1/2δ centred at the point 1/2δ.
Suppose that fN (z3) = 0. Then z3 6= 1/2. Multiplying by 2z3 we get that

1 + eN(2z3)(2z3 − 1) = 0⇒ 2Nz3 + log(1− 2z3) = 0

⇒ 2z3 + log(1− 2z3)/N = 0.

The last expression converges uniformly to the function 2z3 on compact subsets of {Re(z3) <
1/4}, so for a given compact set K containing z3 = 0, the only zero on K is the point z3 = 0.

Nexy we check the convergence to the identity. We have

G(z) := F δ2 (FN3 (F δ1 (z))) = (δ1z1h
δ2
N2

(z3), δ1z2h
δ2
N2

(z3)fN (z3), z3).

Further

φ(G(z)) = (δ1z1h
δ2
N2

(z3), δ3
1z1z

2
2(hδ2N2

(z3))3fN1(z3)2 + δ1z2h
δ2
N2

(z3)fN1(z3)(2z3),

δ2
1z1z2h

δ2
N2

(z3)2fN1(z3) + z3),
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and

FN1,N2,δ1,δ2(z) = (z1h
δ2
N2

(z3), δ2
1z1z

2
2(hδ2N2

(z3))3fN1(z3)2 + z2h
δ2
N2

(z3)fN1(z3)(2z3),

δ1z1z2h
δ2
N2

(z3)2fN1(z3) + z3).

We now explain how to choose all the constants to get convergence to the identity. Note that
fN1(z3)2z3 is bounded independently of N1 and that fN1(z3)2z3 → 1 uniformly on compact
subsets of B′ \ {0} as N1 → ∞. So fix a large N1. This will cause the other terms containing
fN1(z3) to grow, but this growth may now be eliminated by choosing δ1 small. Next, before
choosing δ2 we consider the image G(B) near the origin after such a choice is made. Note that

fN1(0) = (1−N1) and that hδ2N2
(0) = 1/δ2. This implies that G(B) has a defining function

2Re(z3) + |z3|2 + δ2/δ1|z1|2 + (δ2
2/(N1 − 1)2δ1)|z2|2 +O(|z3|(|z1|2 + |z2|2)) < 0.

So if we choose δ2 sufficiently small, we see that Dp ⊂ G(B), which will cause the origin to be
a W-degenerate point for FN1,N2,δ1,δ2(B). Choosing a small δ2 will cause growth in all the other

terms containing hδ2N2
, but this is finally ”localised” to the origin by choosing a sufficiently large

N2. �

Due to the lemma, we have now proved the proposition except for the claim (ii). However,
it is easy to explicitly construct an interpolation operator depending continuously on the input,
that corrects the map at the points α1, ..., αn.

�

4. Proof of Theorem 1.1

Let {α0, α1, α2, ...} ⊂ bB3 be a dense set of points. For R > 1 we will let B(j, R) denote the
ball in C3 containing B3 with the common boundary point αj . Then, for δ > 0, n ∈ N, we set

Ω(R,n, δ) = B3(δ) \ ∪nj=1B(j, R)c).

We will construct by induction embedded holomorphic disks Dj ∈ C3, δj , εj > 0, and injective

continuous maps φj : Ω(1 + 1/j, j, δj) → C3, ψj ∈ O(Ω(1 + 1/j, j, δj)), such that the following
holds

(an) ‖φj − φj−1‖B3 < εj for j = 1, 2, ..., n (φ0 = id),

(bn) φj(αk) = φj−1(αk) for k = 0, 1, 2, ..., j − 1, j = 1, 2, ..., n,
(cn) Dj ⊂ D(1/2)j (αj−1) for j = 1, ..., n,

(dn) bDj ⊂ φn(B3) for j = 1, ..., n, and

(en) Dj 6⊆ φn(B3) for j = 1, ..., n.

As a preliminary choice of {εj} we set εj = ε · (1/2)j+1. This is just to ensure (i) in the theorem,
as our plan is to define

φ := lim
j→∞

φj , (4.1)

after we explain the inductive procedure. Each εj will however be further decreased throughout
the process. Note in particular, that if the sequence decreases sufficiently fast, then the map
φ : B → C3 will be injective. To start the induction, we let φ1 be the map furnished by
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Proposition 3.1, creating a W-degenerate point at α0, and such that (a1) and (b1) hold. This
means that there exists D1 such that (c1)–(e1) hold.

Assume now that (an)–(en) hold for some n ≥ 1. Decrease εj for j > n such that any limit φ
defined as in (4.1) will satisfy

(d∞) bDj ⊂ φ(B3) for j = 1, ..., n, and

(e∞) Dj 6⊆ φ(B3) for j = 1, ..., n.

Next we let φ̃n+1 : Ω(1 + 1/(n+ 1), n+ 1, δn+1) → Ω(1 + 1/n, n, δn) be a map furnished by
Proposition 3.1, creating a W-degenerate point at αn, and such that (an+1) and (bn+1) holds for

the composition φn+1 = φn ◦ φ̃n+1. Note that Ω(1 + 1/(n+ 1), n+ 1, δn+1) ⊂ Ω(1 + 1/n, n, δn)

as soon as δn+1 < δn, and note that the existence of φ̃n+1 uses both the approximation property
and the interpolation properties at the points α0, ..., αn−1. Finally choose a disk Dn+1 such that
(cn+1)–(en+1) hold.

This completes the induction step, and we now define φ is in (4.1). To complete the proof,
assume that φ(B3) ⊂ Ω, and suppose there exists a point p ∈ bφ(B3) and a δ > 0 such that
Bδ(p) ⊂ Ω. Then by (c∞) there exists a disk Dj ⊂ Bδ(p) which has the properties (d∞)–(e∞),
which implies that φ(B3) is not Runge in Ω. �
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