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Abstract: In future 5G systems, the millimeter wave (mmWave) band will be used to support a large
capacity for current mobile broadband. Therefore, the radio access technology (RAT) should be made
available for 5G devices to help in distinct situations, for example device-to-device communications
(D2D) and multi-hops. This paper presents ultra-wideband channel measurements for millimeter
wave bands at 19, 28, and 38 GHz. We used an ultra-wideband channel sounder (1 GHz bandwidth)
in an indoor to outdoor (I2O) environment for non-line-of-sight (NLOS) scenarios. In an NLOS
environment, there is no direct path (line of sight), and all of the contributed paths are received from
different physical objects by refection propagation phenomena. Hence, in this work, a directional
horn antenna (high gain) was used at the transmitter, while an omnidirectional antenna was used at
the receiver to collect the radio signals from all directions. The path loss and temporal dispersion
were examined based on the acquired measurement data—the 5G propagation characteristics.
Two different path loss models were used, namely close-in (CI) free space reference distance and
alpha-beta-gamma (ABG) models. The time dispersion parameters were provided based on a mean
excess delay, a root mean square (RMS) delay spread, and a maximum excess delay. The path loss
exponent for this NLOS specific environment was found to be low for all of the proposed frequencies,
and the RMS delay spread values were less than 30 ns for all of the measured frequencies, and the
average RMS delay spread values were 19.2, 19.3, and 20.3 ns for 19, 28, and 38 GHz frequencies,
respectively. Moreover, the mean excess delay values were found also at 26.1, 25.8, and 27.3 ns for
19, 28, and 38 GHz frequencies, respectively. The propagation signal through the NLOS channel at
19, 28, and 38 GHz was strong with a low delay; it is concluded that these bands are reliable for 5G
systems in short-range applications.
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1. Introduction

The spectrum with a range of 1–100 mm (3–300 GHz band) wavelengths can be classified as
millimetre-Wave (mm-Wave) bands [1,2]. There is an excellent interest in short range communications
using mm Waves (mmWave) [3–6]. Because of their mainly unaccredited or light-licensed bandwidth,
these bands are now promising applicants for next-generation wireless communication, such as
device-to-device (D2D) communications [7]. Millimeter wave spectrum bands for 5G were also
identified by the World Radio Conference (WRC) 2015 [8], and are expected to be finalized by
WRC 2019.

Many researchers have studied the characteristics of the wideband channel in different frequency
bands in order to meet high data-rate demands. For a wideband channel at a low frequency band,
in the early 2000s, Durgin et al. [9] studied angle delaying and dispersion characteristics in the case
of an indoor peer-to-peer (P2P) channel centered at 1920 MHz. In the work, the omnidirectional
and directional antennas for measuring the angles of arrival and delay propagation statistics have
been used. The typical results for the root mean square (RMS) delay spreads were 17–219 ns for the
outdoor cross-campus measurements, and three indoor-to-indoor locations exhibited 27–34 ns RMS
delay spreads and normalized angular spreads of multipath power between 0.73 and 0.90 [9]. Recent
measurement campaigns were conducted to obtain propagation measurements and channel modeling
at 28, 38, 60, and 73 GHz in an urban microcell, urban macrocell, rural area, indoor hotspot, and vehicle
scenarios, respectively [10–13]. In the literature [14], the measurements were carried out in rural and
urban locations at frequency bands of 50 MHz–6 GHz. Alvarez et al. [15] used an indoor radio channel
over a range of 1–9 GHz, using omnidirectional antennas and four environments (line-of-sight (LOS),
soft non-LOS (NLOS), hard NLOS, and a corridor). The path loss exponents (PLEs) with verity reference
distances were high in the hard-NLOS scenario compared with the others [13,15,16]. Additionally,
Shu Sun et al. studied indoor propagation measurements at 2–73 GHz in LOS and NLOS for offices and
shopping malls, and the measured path loss as a function of distances [13]. They have carried through
measured information and ray tracking of 28 to 73.5 GHz in the mmWave frequency bands, comparing
trajectory models. Their work revealed that the studied path-loss models were very comparable in
their prediction accuracy, given large datasets, even though some of these models required more model
parameters and lacked a physical basis for their floating intercept value. Indoor channel propagation
studies are reported in [17–19], while outdoor channel propagation studies are reported in [20–22],
as listed in Table 1. Wang et al. [16] carried out 26 GHz open office LOS measurements of the wideband
channel. In the literature [18], the first sounding channel and the original outcomes are provided for
synthesized omnidirectional findings of the 28 GHz band. In the literature [19], in a line-of-sight (LOS)
situation, mmWave propagation features were studied in 6.5, 10.5, 15, 19, 28, and 38 GHz bands in the
indoor corridor setting. For outdoor cellular propagation, the world’s first empirical measurements
were conducted at 28, 38, and 73 GHz in New York [20–22].

Table 1. Overview of some outdoor and indoor studies at millimeter wave bands.

Source Environment Frequency
(GHz)

Bandwidth
(MHz) Distance (m) Parameters of Study

Wang et al. [17] Indoor 26 1000 2–67 Path loss, delay, and angular
spreads

Hur et al. [18] Indoor 28 250 – Power delay profile
Al-samman et al. [19] Indoor 6.5–38 GHz 1000 1–40 Path loss and delay spread

Azar et al. [20] Outdoor 28 400 30–500 Path loss and power delay
profile

MacCartney et al. [21] Outdoor 28 and 38 400 50–200 Path loss
Sun et al. [22] Outdoor 28 and 73 400 27–190 Path loss
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While propagation studies for the coexistence of 5G in the mmWave bands have been aggressively
performed for some time, the characterization of the 5G channel model still requires further investigation.
This is because most of the measurement campaigns are conducted using different settings, including
measurement environments; morphologies; equipment like channel sounder, antennas, and clock
synchronization; and even the post-processing method, which may influence the propagation
characteristics. As a result, more mmWave channel measurements and characterizations are still
needed in order to fully characterize and later develop a unified channel model framework for large
mmWave bands. To fill the aforementioned gaps, we carried out an extensive mmWave channel
measurement campaign on a particular NLOS indoor-to-outdoor (I2O) scenario, covering frequencies
of 19, 28, and 38 GHz. The contributions of this paper are threefold. First, this work compares the
propagation characteristics of different mmWave frequency bands, where the 19, 28, and 38 GHz
channel measurements are carried out with the same configuration. In addition, the measurement
campaign is conducted using a 1000 mega chips-per-second (Mcps) high-band correlation channel
with a greater chip-rate than the measurement conducted in the literature [2,16,23,24]. The second
contribution of the paper is the study of path loss for a single frequency based on the close-in (CI)
space-lost reference path model, while the path loss for the multi-frequency is based on CI and
alpha–beta–gamma (ABG) models. Finally, the third contribution constitutes of the computation of the
root mean square (RMS), the average excess (MN-EX), and the maximum excess delays (MAX-EX),
to characterize the time dispersion parameters for all of the measured frequencies.

The rest of this article is structured accordingly. The measurement method and environment
are described in Sections 2 and 3, respectively. The post processing of the data is explained in
Section 4. Sections 5 and 6 discuss and analyze the path-loss patterns and time dispersion parameters,
and provides the outcomes and discussions, respectively. In Section 7, this work is compared with the
state of art. The conclusion of the paper is drawn in Section 8.

2. Measurement Technique

This section describes the configuration of the equipment of the 5G channel sounder that was used
for our experiment. The time domain measurements were conducted in an I2O NLOS environment at
19, 28, and 38 GHz frequencies. The block diagram of the measurement equipment is shown in the
Figure 1. An arbitrary waveform generator (AWG) was applied to a transmitter (Tx). The receptor
(Rx) was equipped with a 12-bit (1 GHz bandwidth) high-speed digitizer (Rx) for the acquisition of a
sound signal. At the transmitter, the AWG transformed a radio frequency (RF; up to 44 GHz) carrier
with broad modulation bandwidth from the produced differential basis band in-phase quadrature (IQ),
using an E8267D PSG up converter. The down-converter M9362AD01 PXIe was used to convert the RF
frequencies (up to 40 GHz) to the intermediate frequency, the IF signal was amplified by an M9352A
hybrid amplifier/attenuator (500 MHz), and the IF signal was lastly acquired using the interlocking
mode with the M9703A 12-bit 1 GHz bandwidth high-speed numbers. The local down converter
oscillator (LO) was used with an N5173B EXG. Two rubidium clock devices (one for Tx and one for
Rx) were used to synchronize the transmitter with the receiver, providing a high generation l0 MHz
referring signal for all of the devices with ≤ 10−11 accuracy and ≤ 3 × 10−11 stability. The function
generation system (Trigger box) was used to derive the trigger signals. Additional details of the
measurement hardware can be found in the literature [25]. A 12-bit high speed digitizer M9703A
was used for the sounding signal acquisition, which can provide one channel 1.6 G Sa/s (625 MHz
bandwidth), or four channels 3.2 G Sa/s interleaving acquisition (1 GHz bandwidth) [26].
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Figure 1. Block diagram of transmitter (Tx) and receptor (Rx) components for a 5G channel sounder.

The AWG yielded a 1-ns multipath resolution from a 1000 Mcps with sample rate of 7.2 GHz.
We used a signal generator (up-converter) to generate the center frequencies at 19, 28, and 38 GHz
with a transmitted power of 0 dBm. The signal was transmitted through a 11.6 dBi gain (39.9◦/49.9◦

azimuth/elevation half-power beamwidth (HPBW)), a 11.6 dBi gain (39.7◦/49.7◦ azimuth/elevation
HPBW), and a 15.2 dBi gain (29.6◦/29.7◦ azimuth/elevation HPBW) ETS-Lindgren horn antenna for the
19, 28, and 38 GHz frequencies, respectively. At the receiver, an omnidirectional antenna (3 dBi gain)
with a relatively high gain power amplifier of 37 dB was used to collect the received signal.

3. Testbed of Experiment

The measurements were carried out at the Universiti Teknologi Malaysia, Kuala Lumpur (UTM-KL)
campus, in an indoor to outdoor setting at the Menara Tun Razak Building. The specific I2O environment
consisted of corridors surrounded by open and closed offices, conference rooms, and meeting rooms.
The floor plan and pictures of the measurement environment are shown in Figure 2a,c. The study
environment contained corridors that had two open ends (to the north and the south), as shown in
Figure 2a. Figure 2b shows corridor A, where the the Tx antenna was placed, which was open from
the north side, and curved to corridor B from the other side. Corridor B, where the Rx was placed,
extended from corridor A, and was open from the south side, as shown by Figure 2c. Each of the
corridor’s walls were made up of a multitude of materials, including concrete, colored glass, and
wood. The floor was coated with glazed ceramic tiles, and ribbed metal was formed on the ceilings
of the hallways. The Tx antenna (1.7 m in height) was located in corridor A beside a concrete pillar.
The direction of the Tx horn antenna is indicated in Figure 2b (toward corridor A, in the direction
of the stairs and concrete pillar beside it). The Rx antenna (1.5 m in height) was an omnidirectional
antenna located in corridor B at the back of the Tx antenna, as shown in Figure 2c, which rendered the
environment completely NLOS. The first location of the Rx antenna was 3.7 m away from the Tx horn
antenna. The Rx was then moved by 1 m to the end of corridor B; the Tx–Rx separation distance was
then 13.5 m. The measurement configuration is shown in Figure 2a (left side).



Appl. Sci. 2020, 10, 335 5 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 17 

 

 
(a): Floor Plan 

  

(b): Corridor A (c): Corridor B 

Figure 2. Measurement environment. (a) floor plan, (b) Tx location in Corridor A, and (c) Rx location 

in Corridor B. 

4. Post Processing 

This section explains the post processing of the raw data that were collected from the ultra-

wideband channel sounder measurement. It includes the extraction of the channel impulse responses 

from the received waveforms. The data were subjected to post processing using SystemVue software 

[27] and MATLAB Toolbox. The channel impulse response (CIR) was extracted by cross correlation 

between the received waveform and the transmitted arbitrary waveform signal. the space-alternating 

generalized expectation-maximization (SAGE) algorithm [28,29] was used to extract the parameters 

of the MPCs, including the path delay and path gain. It allowed an iterative determination of the 

maximum-likelihood estimation. The SAGE algorithm resolved the MPCs by an interference-

cancellation, where the MPCs that were already estimated were subtracted from the considered 

signal. 

5. Path-Loss Models and Analysis 

We investigated different path-loss models for single and multiple frequencies. For a single 

frequency, we used the CI free space reference range model [16], as follows: 

   0 10

0

, [ ] ( , ) 10 log
CI

L L

dP f d dB P f d n W
d 

   , (1) 

where  ,LP f d  is the path loss at operating frequencies, with multiple separation ranges; n is the 

path-loss exponent (PLE); 0( , )LP f d  is the path loss in dB at a close-in (CI) range, d0, of 1 m; and W  

is a zero-mean Gaussian-distributed random variable with standard deviation σ dB (shadowing 

impact). 

Figure 2. Measurement environment. (a) floor plan, (b) Tx location in Corridor A, and (c) Rx location
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4. Post Processing

This section explains the post processing of the raw data that were collected from the
ultra-wideband channel sounder measurement. It includes the extraction of the channel impulse
responses from the received waveforms. The data were subjected to post processing using SystemVue
software [27] and MATLAB Toolbox. The channel impulse response (CIR) was extracted by
cross correlation between the received waveform and the transmitted arbitrary waveform signal.
the space-alternating generalized expectation-maximization (SAGE) algorithm [28,29] was used to
extract the parameters of the MPCs, including the path delay and path gain. It allowed an iterative
determination of the maximum-likelihood estimation. The SAGE algorithm resolved the MPCs by
an interference-cancellation, where the MPCs that were already estimated were subtracted from the
considered signal.

5. Path-Loss Models and Analysis

We investigated different path-loss models for single and multiple frequencies. For a single
frequency, we used the CI free space reference range model [16], as follows:

PCI
L ( f , d)[dB] = PL( f , d0) + 10n log10

(
d
d0

)
+ Wσ, (1)

where PL( f , d) is the path loss at operating frequencies, with multiple separation ranges; n is the
path-loss exponent (PLE); PL( f , d0) is the path loss in dB at a close-in (CI) range, d0, of 1 m; and Wσ is a
zero-mean Gaussian-distributed random variable with standard deviation σ dB (shadowing impact).
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The other model, with three parameters, is known as the ABG model. It includes a frequency-
dependent term, γ; a distance-dependent term, α; and an optimization factor, β, to describe the path
loss at various frequencies [13,21,30]. The ABG model equation is given by the following [13]:

PLABG( f , d)[dB] = 10α log10

(
d
d0

)
+ β+ 10γ log10

(
f

fre f

)
+ WABG

σ (2)

The minimum mean square error (MMSE) is the strategy by all of the parameters for the CI and
ABG path-loss models [16].

The CI and ABG path-loss models for all of the measured frequencies are shown in Figure 3a–c.
Figure 3a shows the variation in path loss and the Tx–Rx separation distance (scatter plot and

best-fit CI model at 19 GHz in NLOS environments). The path loss varies as a function of distance, based
on the number of multipath components (MPCs) with their gain. The constructive and destructive
nature of MPCs induces changes in the path loss. Based on the PLEs for CI and ABG (n = 0.4 and
α = 0.2) at 19 GHz, the environment represents a waveguide in which many reflected paths are added
constructively. Moreover, the reflected paths have a higher power because of reflections from the
surrounding environment, which derive from the concrete stairs, walls, and ribbed metal ceiling; the
Tx horn antenna is directed toward the stairs. Figure 3a shows that the CI and ABG models totally
matched at 19 GHz for the last locations (above a 7 m Tx–Rx separation distance).

The path loss variation as a function of the Tx–Rx separation distance at 28 GHz is shown in
Figure 3b. It can be noted that the fluctuations in path loss as a function of distance are the same as
those shown in Figure 3a for 19 GHz. However, the path-loss measurement values increase as the
frequency increases. The value of PLEs for CI and ABG models (n = 0.8 and α = 0.2) are also low, which
indicates that the total power of the received signal is strong and decays minimally with distance
(waveguide effects due to the physical structure of the environment). At 28 GHz, there is divergence
between both CI and ABG models; however, the divergence becomes low above a 7 m separation
distance, as shown in Figure 3b.
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Figure 3. Path loss versus Tx–Rx separation distance using horn-omnidirectional antennas for the soft
non-line-of-sight (NLOS) environment.

Figure 3c illustrates the path loss variations as a function of the separation distance at 38 GHz.
This figure shows that the path-loss measurement values at 38 GHz exceed those at 19 and 28 GHz, due
to the higher frequency. The PLE for the CI model is higher compared with the PLE for the CI models
at 19 and 28 GHz. However, it is still low compared with the theoretical free-space PLE (FSPL = 2),
due to the constructive phenomena of MPCs and the waveguide effects induced by the concrete walls,
stairs, ribbed metal ceiling, and iron railing of the corridor, which surround the Rx and Tx antennas.

According to above test, it is shown that measured data for a 38 GHz band at an I2O environment
are comparable to the CI and ABG models.
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Here, the ABG model has a high deviation from the CI model at all locations of measurement.
This implies that the ABG model is not recommended for a 38 GHz band at an I2O environment.
Hence, when we lumped different frequencies from different bands (such as from 10, 20, and 30 GHz),
it is recommended to use a CI model as well for the multi-frequency scheme.

Table 2 lists the parameter values for the CI and ABG path-loss models that are used to investigate
the multiple frequencies for the 5G channel propagation in this work. The CI path loss model of
Equation (1) can be used for multi-frequency schemes by putting all of the measurement data for
all of the measured frequencies as one data set to find an overall PLE based on all of the potential
frequencies measured. The PLE for the CI model in multi-frequencies is 0.9, which is calculated based
on the CI model in Equation (1) by using the MMSE approach under multiple regressions with three
independent parameters—frequency, distance, and path loss.

Table 2. Multilateral path loss models 19, 28, and 38 GHz; CI; and alpha–beta–gamma (ABG)
model parameters.

Model PLE σ

CI 0.9 5.2 dB

α β γ σ
ABG 0.2 5.8 5.4 2.5 dB

It can be concluded that the high-frequency propagation channels in this specific I2O environment
experience constructive interference from the ground, wall, and ceiling reflections. Furthermore, one
should note the radical change in the path-loss values for all of the frequencies at the last two Rx
locations, due to reflections from the iron railing of the corridor. The PLE at the proposed frequencies
increases with frequency. The PLE at 28 GHz is double that at 19 GHz, and the PLE at 38 GHz is about
twice that at 28 GHz. This finding indicates that the PLE is frequency-dependent in this specific I2O
environment. The standard deviations of the CI path-loss model are 1.7, 4.2, and 3.4 dB, for 19, 28,
and 38 GHz, respectively. The standard deviation of the CI model is low at 19 GHz, which indicates
that the CI model has the best agreement with the measurement data. The standard deviation values
at 28 and 38 GHz are more due to the rapid fluctuation of the received signal in some constructive
measurement points. The rapid changes in the measured received signals are observed at 28 GHz, as
shown in Figure 3b.

Based on the path-loss models’ parameters, as listed in Figure 3 and Table 2, we can conclude that
the wireless signal can pass through the NLOS environment with a low signal power drop, using the
huge available bandwidth in high frequencies of 19, 28, and 38 GHz.

6. Time Dispersion Parameters and Analysis

We have been investigating the time characteristics of a 5G scheme by using the RMS delay
diffusion, the mean delay (MN-EX), and the maximum delay excess (MAX-EX). The MAX-EX delay is
the delay where the farthest MPCs can be obtained with the gain power above the threshold value
(20 dB less than the maximum power of the MPCs). The time dispersion parameters provide delay
information for the channel, which is very useful for designing a robust 5G system. It is possible to
calculate the RMS delay spread by the square root of the second moment of the power delay spectrum,
as follows [31]:

τrms =
√

E(τ2) − (E(τ))2, (3)

where

E(τ2) =

∑
j p

(
τ j

)
·

(
τ j

)2∑
j p

(
τ j

) , (4)
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and the MN-Ex is given as follows:

E(τ) =

∑
j p

(
τ j

)
· τ j∑

j p
(
τ j

) , (5)

where p
(
τ j

)
is the power of the multipath with delay τ j.

To investigate the temporal dispersion, the received power at all of the receiver locations is
depicted in Figure 4a–c, with excess delay. The Rx is indexed from 1 to 11, as shown in Figure 4a–c.
For all of the measurement points at all of the investigated frequencies, most of the received power
arrived at an excess delay of less than 30 ns, and between 50 to 60 ns. It can be shown that the high
received power can be collected at the large excess delay for all of the measured frequencies. As an
example, the Rx 6–Rx 11 have a high received power at an excess delay between 55 ns and 60 ns at
19 and 28 GHz, as shown in Figure 4a,b, and almost all of the Rx 1–Rx 11 received a high power at
38 GHz, as shown in Figure 4c. The maximum excess delay values (the delay of the received signal
with power more than the noise floor of −120 dBm) are less than 93, 85, and 76 ns at 19, 28, and 38 GHz,
respectively. It is worth noting that there is no linear correlation between the Rx distance, excess delay,
and received power. This means that the composition of the setting plays a crucial role in 5G wireless
channel at mm-wave bands. In other words, the reflection and scattering phenomena can be exploited
at mm-wave frequencies to get a strong power from the farthest multipath components.
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From the received power, excess delay, and using Equations (3) and (4), the temporal dispersion
can be investigated based on the RMS delay spread. Figure 5 shows the RMS delay spread variation as a
function of the Tx–Rx separation distance at 19, 28, and 38 GHz. Figure 5a–c shows that the RMS delay
spread variation with a Tx–Rx separation distance is not linear. Moreover, the correlation between
these parameters is weak, if it exists at all. The RMS delay spread at the farthest location (Tx–Rx
separation distance = 13.5 m) has the lowest value at all of the frequencies (Figure 5a–c). This result
implies that the farthest MPCs have less power than the threshold value (20 dB less than the maximum
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power of the MPCs). Table 3 lists the values of the maximum excess delay, the mean values of RMS
delay spread and mean excess delay, and the MN-EX/RMS delay spread for all of the frequencies. The
MAX-EX delay varies between 64 and 90 ns; the lowest value is associated with the highest frequency.
This finding indicates that, at high frequencies within the same threshold, the paths after the MAX-EX
delay are ignored, because the power of these components is less than or identical to that of the noise
floor. The RMS delay spread values for all of the frequencies vary between 9.2 and 29.2 ns, with mean
values of 19.2, 19.3, and 20.3 ns at 19, 28, and 38 GHz, respectively. The MN-EX/RMS delay spread in
this environment was more than 1, and all of the frequencies have the same value of 1.3. Based on
these findings and the results in Figure 4a–c, it can be concluded that many of the strong paths arrived
after the midpoint of the power delay profile and the early excess at less than 30 ns.
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Table 3. Maximum excess delay; mean, minimum (min), and maximum (max) RMS delay spread;
MN-EX delay; and mean/delay spread (MN/RMS) for the measured frequencies.

Frequency
[GHz]

MAX-EX
[ns]

Mean of MN-EX
[ns] (min, max)

Mean of RMS Delay
Spread [ns] (min, max) MNEX/RMS

19 90 26.1 (8.1, 42.7) 19.2 (13.0, 23.3) 1.3
28 83 25.8 (4.2, 57.0) 19.3 (9.2, 29.2) 1.3
38 64 27.4(3.7, 27.4) 20.3 (8.2, 23.4) 1.3

For the RMS delay spread results and spreading factor, it can be concluded that the time dispersion
parameters are more symmetrical in the earliest MPCS compared with the latest MPCs.

Figure 6a–c illustrates the effect of path loss on the RMS delay spread at 19, 28, and 38 GHz. From
these figures, it can be observed that the linear relationship between the RMS delay spread and path
loss is very low. Figure 6a shows that at 19 GHz, the highest path loss is 65.2 dB at an RMS delay
spread of 23.2 ns. The lowest RMS delay spread is 12.9 ns at a path loss of 61.2 ns. The lower path loss
is 58.7 dB at an RMS delay spread of 14.4 ns. Figure 6b shows that at 28 GHz, the lowest RMS delay
spread is 9.2 ns at a path loss of 65.5 dB. The heighest path loss is 74.5 dB at an RMS delay spread of
22.4 ns. The maximum RMS delay spread is 29.2 ns at a path loss of 71.2 dB. Figure 6c shows that the
maximum RMS delay spread is 24 ns at a path loss of 75.8 ns. The maximum path loss is 80.5 dB at an
RMS delay spread of 17.9 ns. The minimum RMS delay spread is 8.2 ns at a path loss of 74.4 dB. It is
worth noting that in some locations, more power is acquired with a low RMS delay spread, which is
very useful for 5G communication systems regarding the high information rate, to avoid intersymbol
interference (ISI).
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7. Comparison with Some Studies

In this section, the path loss model extracted parameters and RMS delay spread are compared with
some previous studies of 5G propagation channel models for different environments and scenarios.
Because of the inherent differences in the modeling methodology—for example, the threshold employed
in the algorithms of post processing and the measurements range—these parameters may not be
directly comparable. However, the effect of the environments on the channel characteristics can be
observed from the similarities and contrasts in different propagation models. The path loss exponent,
standard deviation, RMS delay spread, and some auxiliary parameters in this work are compared
with some literature in Table 4. In Table 4, the values of the propagation parameters are reported
within range (lower–upper), implying that the propagation studies of the listed works provide different
LOS and NLOS scenarios (single frequency, multi-frequencies, vertical and horizontal and combined
antenna polarizations, environment partitioning, and directional and omnidirectional model). The
lower range of PLEs (n) is identical for all of the studies. In this study, the lower range of PLE is 0.4 in
the outdoor environment (LOS scenario) at a 19 GHz frequency, indicating that the MPCs added up
constructively from both side walls along the outdoor office (a waveguiding effect), and the antenna
has a wide-beam at this frequency, which can collect more paths. The upper range of the PLE is 1.5 at
38 GHz for the NLOS scenario in the outdoor environment. In the literature [32], the largest upper
PLE (n = 4.6) is reported at 38 GHz for an NLOS outdoor environment. In the literature [27], the PLE
(n = 1.89) is reported at 28 GHz for a LOS outdoor environment. In the literature [15], the largest
upper PLE (n = 4) is reported at 73 GHz for vertical-horizontal polarization in an open plan (large hall)
indoor environment. However, in this work, the upper PLE (n = 1.5) is investigated at 38 GHz for
an I2O environment. This value indicates that the PLEs for all of the frequencies are lower than the
FSPL exponent of 2, because of constructive interference and the wave guiding effects of the radio
wave propagation along the studied environment. Note that the reported values of the ABG model
parameter results are in consonance with the reported values in the literature [15]. Similarly, the RMS
delay spread values are also in consonance with the mean values of the RMS reported results in the
literature [33].

Table 4. Comparison of propagation studies for path loss models and RMS delay spread for 5G channels
at mmWave bands.

Source
Frequency

Range
(GHz)

Distance
(m) PLE (n) α β γ

σCI, σABG
(dB) τrms (ns)

Deng et
al. [33] 28, 73 4.1

21.3 1.1–3.5 – – – 1.7–9 4.1–21.2

MacCartny
et al. [15] 28, 73 4.1

21.3 1.1–3.5 0.9
1.1 17.7–47.1 2.5–3.5 1.8–8.6,

1.8–14.2 0.5–143.8

Rappaport
et al. [32] 38, 60 19–265 1.9–4.6 – – – – <122

Rajagopal
et al. [27] 28, 40 ≤100 1.89 – – – –

Ours 19, 28, 38 <15 0.4–1.5 0.2 5.8 5.4 1.7–4.1, 2.5 8.2−29.2

8. Conclusions

We have described the large-scale path loss in a 5G network for a wideband channel, in a
specific indoor to outdoor environment measurement campaign conducted at the UTM-KL campus.
We investigated path loss based on the CI and ABG path-loss models for single and multiple
frequencies. For all of the measured frequencies, we provided an RMS delay spread, mean excess
delay, and maximum excess delay. We recovered a good value for the PLE for all of the frequencies,
using the CI path-loss model. The smaller value of the distance-dependent factor indicates that the
drop in the received power is low for the measured distance in this particular NLOS-I2O environment.
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The PLE values are 0.4, 0.8, and 1.5 at measurement frequencies of 19, 28, and 38 GHz, respectively.
The average RMS delay spread values are 19.2, 19.3, and 20.3 ns at 19, 28, and 38 GHz, respectively.
The presented results showed that the path loss and RMS delay spread are not linearly dependent.
The strong received signal can be detected at a low delay spread. Finally, our results from this study,
together with other propagation studies in the literature, contributes to the development of a more
precise and unified channel model framework for the studied mmWave bands of 19, 28, and 38 GHz.
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