

Bioinformatics, YYYY, 0–0
doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY
Manuscript Category

Genome Analysis

PyRanges: efficient comparison of genomic

intervals in Python

Endre Bakken Stovner1,2,3,4* and Pål Sætrom1,2,3,4
1Department of Computer Science, Norwegian University of Science and Technology, Trondheim, 7013,
Norway,
2Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology,
Trondheim, 7013, Norway,
3Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, 7013, Norway
4K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian
University of Science and Technology, Trondheim, Norway
*To whom correspondence should be addressed.

Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Summary: Complex genomic analyses often use sequences of simple set operations like intersection,
overlap, and nearest on genomic intervals. These operations, coupled with some custom programming,
allow a wide range of analyses to be performed. To this end, we have written PyRanges, a data
structure for representing and manipulating genomic intervals and their associated data in Python. Run
single-threaded on binary set operations, PyRanges is in median 2.3-9.6 times faster than the popular
R GenomicRanges library and is equally memory efficient; run multi-threaded on 8 cores, our library is
up to 123 times faster. PyRanges is therefore ideally suited both for individual analyses and as a
foundation for future genomic libraries in Python.
Availability: PyRanges is available open-source under the MIT license at https://github.com/biocore-
NTNU/pyranges and documentation exists at https://biocore-NTNU.github.io/pyranges/
Contact: endrebak85@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1. Introduction
Comparing sets of intervals is a fundamental task in genomics, and a few
basic operations allow for answering many scientific questions. For
example, to find genes potentially targeted by a transcription factor, one
can intersect the sets of intervals representing gene positions and
representing transcription factor binding sites to identify those that
overlap.

Several toolboxes of genomic operations exist, such as bedtools
(Quinlan and Hall, 2010) and bedops (Neph et al., 2012) for the command
line and GenomicRanges (Lawrence et al., 2004) for the R programming
environment.

GenomicRanges is a data structure for representing and operating on
genomic intervals and their metadata, which are stored as a 2D-table in

memory. By providing methods for access and for set operations on
genomic intervals, programmers can use the R programming language to
manipulate and analyse the contents of GenomicRanges. Consequently,
GenomicRanges is a powerful tool for writing complex and custom
genome analyses. Indeed, in R, GenomicRanges is a foundational library,
and a cornerstone of genomics packages in the R Bioconductor project
(Gentleman et al., 2004).

Python is currently ranked as the most popular programming language
in the world (according to IEEE Spectrum’s compound metric; Cass and
Bulusu, 2018, https://spectrum.ieee.org/static/interactive-the-top-
programming-languages-2018) and is much used in data science and
bioinformatics, yet it lacks a GenomicRanges implementation. Instead, the
current way to do genomics in Python is to use pybedtools, a Python
wrapper for bedtools (Dale et al., 2011). This solution has several
drawbacks including relying on external software, heavy I/O and disk use
for each operation, lack of position-based querying, the inability to use the

E.B. Stovner et al.

Python data science stack on pybedtools objects, and limiting users to
working with a few bioinformatics file formats instead of arbitrary
genomic data (see Supplementary Discussion for details). The PyRanges
library remedies this situation by providing a Python GenomicRanges
implementation which is multithreaded, fast, and memory-efficient.

2. Library

1. Implementation

The PyRanges data structure is logically represented as a 2D-table. Each
row represents an interval, and the columns each describe either a part of
the location (chromosome, start position, end position, and optionally,
strand) or metadata (name, score, exon number or any arbitrary value
desired by the user). The underlying implementation uses a dictionary that
maps chromosome and strand pairs to their respective 2D-tables; however,
this division is largely invisible to the user. The data in the 2D-tables are
stored in Pandas DataFrames, thus allowing the vast Python science stack
to be used seamlessly with PyRanges. Furthermore, DataFrames allow for
storing the data contiguously in native data types, such as integers, floats,
or categoricals, to ensure memory-efficiency.

To make PyRanges fast, its operations are written in Cython or C.
Moreover, by keeping the data belonging to each chromosome in separate
DataFrames, these logically distinct data can easily be independently
processed. In this way we avoid the substantial time costs of splitting and
merging the data for each operation. PyRanges provides parallel
processing through the Ray framework (Moritz et al., 2017), resulting in
a speedup provided the data are sufficiently big (see Performance).

2. Functionality

PyRanges’ main functionality includes functions for reading genomic
intervals from files, and unary and binary functions for manipulating one
and two sets of genomic intervals. File reading functions support common
formats such as bed, GTF/GFF, and bam. Unary functions manipulate
single PyRanges by subsetting, clustering, or computing coverage; that is,
the number of intervals overlapping each genomic position. Binary
functions include operations such as intersection, nearest, and subtract that
create a new set of genomic intervals by comparing two sets of intervals.
See the Supplementary text for a full list of PyRanges’ operations.

PyRanges also uses and provides two stand-alone libraries useful
beyond bioinformatics. One library (pyrle) implements run-length
encoding arithmetic, which is useful to compactly represent and efficiently
do arithmetic on the coverage (or any other nucleotide-associated score)
of sets of regions. The other library (NCLS) implements the Nested
Containment List, which is an immutable interval-tree with better
memory-efficiency and speed than a regular interval-tree both for tree
construction and interval queries (see Supplementary Timings).

3. Performance
The PyRanges library has been extensively benchmarked for both speed
and memory use (Fig 1; Supplementary Timings). We used two types of
data for testing: 1) libraries of reads only, i.e. they included no metadata
and were hence more lightweight and 2) GTF annotations. We used
unsorted test files generated by bedtools random for hg38 to simulate the
read files. To create a large GTF we used sampling with replacement on
the Gencode hg38 GTF.

Fig. 1 (Left) Running time and (Right) memory usage as a function of
the number of intervals for four common binary functions on genomic
intervals; see Supplementary Timings for complete benchmark
results.

For binary operations, PyRanges in single-threaded mode was 6.5 -
31 (median 14) and 9.8 - 36 (median 24) times faster than pybedtools on
1e6 and 1e7 intervals, respectively. Compared to GenomcRanges,
PyRanges was 1.3 - 16 (median 2.3) and 1.9 - 84 (median 9.6) times faster.
Run multi-threaded on 8 cores, the speed-ups for the same operations on
1e7 intervals were 13 - 63 and 1.8 - 123 times compared to pybedtools and
GenomcRanges, respectively. For all operations, PyRanges run single-
threaded on 1e7 intervals had a median speed-up of 26 and 4.0 times and
used a median 5.7 and 5.1 times less memory compared to pybedtools and
GenomicRanges, respectively.

3. Conclusion

PyRanges is an efficient and feature rich library for genomics in the
extremely popular Python programming language, and the only one of its
kind. We therefore expect it to be a boon to current and future
bioinformaticians and researchers working in Python.

Funding
This work was supported by the Research Council of Norway [grant number
230338]; and Stiftelsen K.G. Jebsen.

Conflict of Interest: none declared.

References

Dale R.K. et al (2011) Pybedtools: a flexible Python library for manipulating

genomic datasets and annotations, Bioinformatics, 27, 3423–3424
Gentleman R.C. et al. (2004) Bioconductor: open software development for

computational biology and bioinformatics. Genome Biol., 5, R80.
Lawrence M. et al. (2013) Software for computing and annotating genomic ranges.

PLoS Comput. Biol., 9, 1–10.
Moritz P. et al. (2017) Ray: a distributed framework for emerging AI
applications. arXiv:1712.05889.

Neph S. et al. (2012) Bedops: high-performance genomic feature operations.
Bioinformatics, 28, 1919–1920.

Quinlan A.R., Hall I.M. (2010) Bedtools: a flexible suite of utilities for comparing
genomic features. Bioinformatics, 26, 841–842.

