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Preface

The phrase “A picture is worth a thousand words” is an adage that resonate
throughout this thesis and my academic work. Creating properly made figures
to explain scientific work is both crucial and time consuming, but nevertheless
very satisfactory in the end. Several opinions exist for how to write good articles,
especially when it comes to the length. In the spirit of Thomas Hughes quote
“Don’t tell me; show me”, this work contains a lot of figures. Moreover, much of
the work is self-contained, resulting in an even longer thesis. Not only does it
ease the workflow for the reader, but it also makes the work more accessible to a
greater audience.

I was introduced to isogeometric analysis (IGA) by my main supervisor Trond
Kvamsdal in the first year of my master’s degree, right after an introductory
course in the finite element method. My co-supervisor Trond Jenserud proposed to
combine IGA with acoustic scattering in my master’s thesis entitled “Isogeometric
Analysis of Acoustic Scattering”. This work set the stage for my continued work
on the topic for this PhD thesis.

Countless hours have been used programming in Matlab resulting in a com-
prehensive toolbox I have named ASIGA (Acoustic Scattering using IsoGeometric
Analysis). I’m an advocate for open research, and for this reason the ASIGA
toolbox is open source. The toolbox is far from complete, but it will most likely
be improved in future projects.

I would like to thank Trond Kvamsdal for guiding me through every stage of
my career as a research scientist. I am not only grateful for Kvamsdal’s scientific
supervision, but also for giving me so many great life experiences abroad. I
would also like to thank Trond Jenserud for his supervision and feedback on my
work. I have very much enjoyed my stay at IMF1, both as a student and as a
PhD-candidate. Moreover, I would like to thank FFI2 for the support and the
opportunity to work on the topic of acoustics in two summer jobs, the second of
which (supervised by Jenserud) gave me a head start for my PhD. Thanks to Karl
Thomas Hjelmervik not only for supervising my first summer job at FFI and his

1Department of Mathematical Sciences.
2Norwegian Defence Research Establishment.
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interest for my work, but also for including me into the research community with
countless hours of board games. Thanks also to Kjetil André Johannessen for his
scientific supervision and inspiration throughout the last 6 years. I would also
like to thank Torbjørn Ringholm, Sølve Eidnes, Hallvard Norheim Bø, Morten
Andreas Nome, Charles Curry, Winston Heap, Petter Kjeverud Nyland, Tale
Bakken Ulfsby, H̊avard Bakke Bjerkevik, Fredrik Arbo Høeg, Ingeborg Gullikstad
Hem, Fredrik Hildrum, Kristoffer Varholm, Torstein Fjeldstad, Thea Roksv̊ag,
Sondre Tesdal Galtung, Nicky Cordua Mattsson, Vanje Rebni Kjer, Maria Lie
Selle, Mathias Nikolai Arnesen, Erik Rybakken, Alexander Sigurdsson, Ola Isaac
Høg̊asen Mæhlen, and many others for their support and entertainment making
my PhD-study truly enjoyable. Finally, I would like to thank my family for their
support and patience throughout this work.
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Notation

This thesis follows the following general notation conventions (inspired by the
ISO-80000-2 standard).

• The usage of bars always indicates complex conjugation. For example, p̄.

• Indices are denoted by i, j, l,m, n.

• The usage of breve indicates the time-dependent equivalent function of
the corresponding function in the frequency domain. For example, p̆(x, t),
p(x, ω).

• The usage of marks always indicates derivative. For example, f ′(ξ) = df
dξ .

• The usage of tildes indicates an alternative variable. For example, σij , σ̃ij .

• The usage of hats over vectors indicates normalized vectors. For example,
x̂ = x/|x|.

• Bold notation is used for vectors, matrices and tensors. For example, x, C
and σ. The components should not be written in bold notation, i.e. xi, Cij ,
σij .

• Units, fundamental constants and fundamental functions should be in upright
mode (Euler’s number e, kilograms kg, meter m, spherical Bessel function
jn, spherical Hankel function hn, etc.).

• Descriptive text is written in right mode i.e. pinc (the incident pressure field).

General notation

A Global matrix of linear equations
Bε(x) Ball of radius ε centered at x
B(p, q) Bilinear form
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Bi,p̌,t The ith B-spline basis function of degree p̌ and with knot vector t
Bn Radial integral in infinite elements
Cn Space of continuous functions that have continuous first n derivatives
Cn Coefficients for manufactured solution
C Space of complex numbers
cf Sound speed in fluid
d Differential
dinc Unit vector pointing in the direction of the incident plane wave
d Spatial dimension
Dmm̃ Coefficients for radial basis functions in the solution space of the

infinite elements
D̃nñ Coefficients for radial basis functions in the test space of the infinite

elements
e Unit basis vector
ei Standard Cartesian basis vector
er, eϑ, eϕ Basis vectors for the spherical coordinate system
e Euler’s number e = 2.718 281 828 459 045 . . .
E Young’s modulus
En Exponential integral
f Frequency
F Fourier transform
g Neumann data
G Shear modulus
Gn Geometric continuity of order n (G0 being a geometry with kinks)
h, hmax Maximal element size
Hn Global matrix for the linear system of equations for the nth mode
h(i)
n The nth spherical Hankel function of ith kind

i Imaginary unit i =
√
−1

J Jacobian matrix
J Jacobian determinant
jn The nth spherical Bessel function of first kind
Jn The nth Bessel function of first kind
k (km) Angular wave number (in the mth fluid layer)
ǩ Continuity
K Bulk modulus
K Stiffness matrix
L(p) Linear form
M Mass matrix
MIGA

m,p̌,ǩ
IGA mesh number m with polynomial order p̌ and continuity ǩ

MFEM
m,p̌,i Isoparametric FEM mesh number m with polynomial order p̌

MFEM
m,p̌,s Subparametric FEM mesh number m with polynomial order p̌
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N Space of non-negative integers
N∗ Space of positive integers
N Number of basis functions in the radial direction for infinite elements
nξ Number of basis functions in the ξ-direction
nη Number of basis functions in the η-direction
nζ Number of basis functions in the ζ-direction
ndof Number of degrees of freedom
n Outward pointing (unit) normal vector
Pn Legendre polynomial
Pmn Associated Legendre functions
p0 Far field pattern
p, p̆ Scattered pressure field
pinc The incident wave
Pinc Amplitude of incident wave
ptot Total pressure field ptot = p+ pinc
p̌ Polynomial degree (or degree of NURBS functions)
p̌ξ Degree of basis functions in the ξ-direction
p̌η Degree of basis functions in the η-direction
p̌ζ Degree of basis functions in the ζ-direction
r Radius in the spherical (or prolate spheroidal) coordinate system
ra Radius at artificial boundary in the spherical (or prolate spheroidal)

coordinate system
R Space of real numbers
R Distance between the arguments of Φk, R = |x− y|
Ri NURBS basis function (with global index i)
Ri,j,l NURBS basis function (with local indices i, j and l)
S Solution space
Sh Finite dimensional solution space
t Time variable
tξ Knot vector in the ξ-direction
tη Knot vector in the η-direction
tζ Knot vector in the ζ-direction
T Period
T Exterior traction vector
TS Target strength
x Spatial variable in Cartesian coordinates
X Geometric parameterization
u, ŭ Displacement in the solid domain
V Test space
Vh Finite dimensional test space
yn The nth spherical Bessel function of second kind
Yn The nth Bessel function of second kind
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yn Source points for manufactured solution
Z Space of integers
α (αs) Aspect angle (for the source point)
Γ Boundary of scatterer
Γp̌ Outer boundary of BeTSSi submarine (p̌ > 2)
γ Euler-Mascheroni constant γ = 0.577 215 664 901 532 861 . . .
δij Kronecker delta
∆ Triangle constructor ∆(x1,x2,x3) ⊂ Rd
∆ Difference operator
ε Machine epsilon precision
εij Strain field in Cartesian coordinates
η Second parameter of the parameter space
ζ Third parametric NURBS parameter
ϑ (ϑs) Polar angle in the spherical coordinate system (at the source point)
κ Set of indices (for NURBS functions in solution/test space)
λ Wavelength
ν Poisson’s ratio
ξ First parameter of the parameter space
ξ1, ξ2, ξ3 Area coordinates (barycentric coordinates) of a triangle
π Archimedes’ constant (pi) π = 3.141 592 653 589 793 . . .
ρ Substitution variable % = r/ra
%1 Simplifying notation variable %1 = Υ/ra
%2 Simplifying notation variable %2 = kra
%3 Simplifying notation variable %3 = kΥ
ρf Mass density of fluid
ρs Mass density of solid
σij Stress field in Cartesian coordinates
τ Minimal number of degrees of freedom per wavelength
Υ Focus in the elliptic/prolate spheroidal coordinate system
ϕ (ϕs) Azimuth angle in the spherical coordinate system (at the source

point)
Φk Fundamental solution of Helmholtz equation
ω Angular frequency
Ωs Solid domain
Ω+ Unbounded exterior fluid domain
Ω− Interior fluid domain
∂ Partial derivatives

Notation for paper I

a (am) Longitudinal angular wave number (in the mth shell)
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A
(i)
n Coefficients of potential function φ in the solid domain

b (bm) Transverse angular wave number (in the mth shell)
B

(i)
n Coefficients of potential function ψϕ in the solid domain

B Bandwidth
Bm,n Local vector of unknown coefficients in the linear system of equations

for the nth mode
cs,1 The longitudinal wave velocity in a solid
cs,2 The transverse wave velocity in a solid
Cε Upper bound for scaled frequency, regarding round-off error with

precision ε
C Linear elasticity matrix
Cn Vector of unknown coefficients in the system of equation for the nth

mode
Cm,n Local vector of unknown coefficients in the system of equations for

the nth mode
C

(i)
n Coefficients of the scattered pressure p
D Stress coordinate transformation matrix
Dn Right hand side vector for the linear system of equation for the nth

mode
fc Center frequency in wavelet
F

(i)
n Coefficients of the incident wave expanded in Legendre functions at

the outer surface
Gm,np,q Meijer G-function
hr, hϑ, hϕ Scale factors for the spherical (or prolate spheroidal) coordinate

system
H

(i,j)
m,n Submatrices of Hn

M Number of spherical shells
N Number of terms in Fourier sum
Nε Infinite series truncation number
Q

(i)
n Derivatives of Legendre polynomials with cosine argument

R0,m Outer surface radius of mth spherical shell
R1,m Outer surface radius of mth spherical shell
S

(i)
j,n Simplifying notation. Superposition of Bessel functions with argu-

ment ξ = ar

T
(i)
j,n Simplifying notation. Superposition of Bessel functions with argu-

ment η = br

Z
(i)
n Spherical Bessel functions

αij Cosine between two basis vectors in a coordinate transformation
ζ Simplifying notation ζ = kr
η Simplifying notation η = br
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ξ Simplifying notation ξ = ar
Υε Simplifying parameter for the upper bound Cε
υ Order of Bessel function
φ First potential function in solid
ψ Second potential function in solid
Ψ , Ψ General scalar or vector function
ωc Center angular frequency in wavelet
ϕ Azimuth angle in the spherical coordinate system
ϕs Azimuth (or aspect) angle for the source point

Notation for paper II

d1, d2 Distances from foci in prolate coordinate system
R0 Outer surface radius of spherical shell
R1 Inner surface radius of spherical shell
w Weights for weighted Sobolev spaces in Ω+ for the trial space
w∗ Weights for weighted Sobolev spaces in Ω+ for the test space
p1 Scattered pressure in exterior domain Ω+

p2 Scattered pressure in interior domain Ω−

Qm Polynomial function of the radial shape functions φ
Q̃n Polynomial function of the radial shape functions ψ
Γa Artificial boundary
Γ0 Outer boundary of scatterer
Γ1 Inner boundary of scatterer
φn Basis function in radial direction in infinite elements for the trial

space
ψn Basis function in radial direction in infinite elements for the test

space
Ωa Fluid domain inside artificial boundary Γa
Ω+

a Fluid domain outside the artificial boundary Γa

Notation for paper III

C± Jump-term in the exterior (+) or interior (−) problem
ft NACA profile function of foil with width t
l Distance from the center of an element to a source point
neqp,1 Number of extra quadrature points in BEM formulation (in addition

to the standard p̌+ 1 points) in elements not containing singularity
neqp,2 Number of extra quadrature points in BEM formulation (in addition

to the standard p̌+ 1 points) in elements containing singularity
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N Number of terms in manufactured solution
s1 Parameter controlling adaptivity of quadrature integration
γ+ Trace operator in Ω+

γ− Trace operator in Ω−

α Coupling parameter in BM formulation
Ψ Jump-term in the exterior (+) or interior (-) problem

Notation for paper IV

f(·) Amplitude function in oscillatory integrals
F (·) Non-oscillatory exponentially integral
g(·) Oscillator function in oscillatory integrals
hξ Path in the complex plane at which the oscillatory integral is not

oscillatory
α Exponent of weight factor in GGL quadrature

Notation for addendum

f(·) Right hand side function for the Poisson equation
li,t The ith Lagrange basis function defined over the interpolation points

in t
Φn Generating polynomial

Notation for appendices

a Longitudinal angular wave number for the first potential function
(in the solid)

b Transverse angular wave number for the second potential function
(in the solid)

Ej Energy of beam Bj
h Solid layer thickness
N Number of rays/beams
R Reflection coefficient
s Parameter for parameterizing rays
T Transmission coefficient
θ1 Angle of incidence
θ2 Angle of refraction
θ3 Angle of transmission
τ Phase function in ray series
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Introduction

Wave phenomena occur throughout nature in many forms. As Nikola Tesla puts it:
“If you want to find the secrets of the universe, think in terms of energy, frequency
and vibration”. Examples include:

• Electromagnetic waves [1] with application into dental radiography (X-rays),
microwave ovens, television, radios, just to name a few.

• Seismic waves with application including predicting tsunamis [2] and volcano
eruptions [3].

• Structural vibrations with applications into noise prediction and control,
architectural and musical acoustics.

• Acoustic waves with applications in ocean acoustics and acoustical oceanog-
raphy [4, 5].

In this thesis the focus is mainly on acoustic waves, but also in combination
with structural vibration, namely how sound and structures interact [6]. The
study of acoustic-structure interaction (ASI) is the topic of the first two papers
while the latter two are restricted to the fluid part. Acoustic waves are used to
detect and localize objects [7], for underwater communication, and for remote
sensing of the ocean: to remotely classify distributions of biological organisms
such as fish [8] and plankton [9], for the purpose of fish supply management and
ecological studies [10]; to characterize the seafloor micro relief, with application in
sound propagation, geological studies and mining; to remotely measure physical
properties of the ocean such as temperature, flow and turbulence, with applications
in climate monitoring [11] and the study of bottom boundary layer dynamics and
hydrocarbon seeps.

Common for all applications above is the possibility to linearize the governing
equations such that the problems may be modeled by the much simpler wave
equation

∇2p̆ = 1
c2

f

∂2p̆

∂t2
(1)
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Elastic materialHomogeneous fluid

Γ0Γ1

pinc(x)

Ωs

Ω−

Ω+

p(x)

Figure 1: Illustration of the physical problem. A plane incident wave, pinc(x),
is scattered by the scatterer, Ωs, in an unbounded domain, Ω+, resulting in the
scattered wave, p(x). The scatterer, which is bounded by the boundaries Γ0 and
Γ1, envelops a fluid domain, Ω−.

with wave speed cf . Looking for solutions of the form p̆(x, t) = e−iωtp(x) (with
angular frequency ω) the wave equation may be analyzed in the frequency domain
as the Helmholtz equation

∇2p+ k2p = 0 (2)

with the wave number k = ω/cf .
Figure 1 illustrates the general problem setup considered in this thesis. For

subsurface acoustics, the unbounded domain Ω+ is modeled as water whereas
internal fluid domains may either be water or air (i.e. pressure hulls in submarines).
Sound signals is the only practical way of transmitting sound in water [12], and
so an understanding of the physical properties of such signals are important, not
only for sonar (sound navigation ranging) technologies, but also the study of
marine life. The precise behavior of subsurface sound waves is dependent on a
vast set of parameters including the temperature, the salinity and the depth. In
this work, however, linearized equations like the wave equation in Eq. (1) will be
used with constant sound speed, cf . That is, the fluid domains are assumed to be
homogeneous.

Solution of the time dependent wave equation in Eq. (1) may be found by trans-
forming solutions of the Helmholtz equation for a range of frequencies f = ω/(2π)
using an inverse Fourier transformation [12]. This approach is advantageous for
several reasons. First, the dimension of the problem is reduced by one, enabling
trivial parallelization over the frequencies. Second, the Fourier transformations
step may be computed by a fast Fourier transform with a reduced complexity
from O(N2) to O(N logN) with N being the data size. Third, working with
elliptic equations is often easier than hyperbolic equations, especially for exterior
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Helmholtz problems. Finally, many acoustic applications are of narrow-band
nature [12] leading to a reduction of the spectrum of frequencies in which solutions
of the Helmholtz equation are needed.

In three dimensions the scattering problem in Figure 1 only admits analytic
solutions on closed form for very simple geometries. The scarcity of such solutions
makes the existing solution very valuable and is the subject of the first paper.

For slightly more complex geometries, however, numerical methods are required.
To this end, a vast set of methods are available. Finite element analysis is the
subject of the second paper, the boundary element method is the subject of
the third paper and Kirchhoff approximation is the subject of the fourth paper.
Additionally, the ray/beam tracing method is investigated in the appendices.
Most of these methods fit very well in the isogeometric framework which will be
introduced more thoroughly in the introduction part. Finally, the finite difference
method (FDM) should be mentioned as an alternative [13]. The FDM is not very
suited for the present 3D problem setup (in the frequency domain) due to tedious
handling of general geometries. However, it is commonly used for discretizing the
time dimension when solving the time-dependent wave equation in Eq. (1) (where
the spatial dimensions are discretized with finite elements).

The main application studied in this thesis is acoustic scattering on submarines.
In this regards the quantity of interest is the target strength defined by

TS = 20 log10

( |p0(x̂)|
|Pinc|

)
(3)

where Pinc is the amplitude of the incident wave at the geometric center of the
scatterer (i.e. the origin) and the far field pattern of the scattered pressure, p, is
given by

p0(x̂) = lim
r→∞ re

−ikrp(rx̂), (4)

with r = |x| and x̂ = x/|x| being the far field observation point. The observation
point can be represented in terms of the aspect angle α and elevation angle β
(see Figure 2)

x̂ =




cosβ cosα
cosβ sinα

sin β


.

TS models are also used to discriminate man-made objects, such as mines, toxic
waste containers, from natural objects such as rocks. The method known as acoustic
resonance scattering utilizes the differences of target strength at low frequencies of
natural irregular objects and man-made regular elastic objects [14, 15].
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x
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y

z

dinc

αs

βs

Figure 2: Illustration of the aspect angle α and the elevation angle β describing
an observation point x. The direction of the incident wave can be represented in
terms of the aspect angle αs and the elevation angle βs.

1. Background

The target strength of a submarine is considered highly classified and is typically
kept within each nation. The desire to simulate scattering on classified submarines
has led to the need of benchmarks not subject to military classification that can
be shared such that results could be compared between institutes.

The BeTSSi1 community gives a solid basis for the benchmarking exercise
which is very important for code development. The first BeTSSi workshop was
initiated by FWG2 in 2001 where several models (some of which are illustrated in
Figure 3) were presented as benchmark problems to be analyzed. The first and
second workshop were held in Kiel in 2002 and 2012, respectively. The third was
held in the Hague in 2016.

The objective is to compute the target strength of submarine structures. More
specifically the analysis of the scattered pressure from a plane wave

pinc(x) = Pinceikdinc·x (5)

incident on the models. Here, dinc is the traveling directing of the plane wave
which can be represented in terms of the aspect angle αs and elevation angle βs

1Benchmark Target Strength Simulation.
2Die Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik. Integrated with

WTD 71 (Wehrtechnische Dienststelle für Schiffe und Marinewaffen, Maritime Technologie und
Forschung) in 2009.
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(see Figure 2)

dinc = −




cosβs cosαs
cosβs sinαs

sin βs


.

Results from the BeTSSi workshops appears in several publications e.g. [16–20].
An example of a test case that was presented on the workshop in the Hague
was a monostatic3 sweep over the elevation angles β ∈ [−30◦, 60◦] at α = 90◦
of the full BeTSSi submarine (illustrated in Figure 4) at given frequencies, f ∈
[1, 3, 10, 30] kHz. The institutes that contributed to this benchmark were the DRDC
(Defence Research and Development Canada), LR (Lloyd’s Register), RAFAEL
(Rafael Advanced Defense Systems, Israeli defense technology company), Tel Aviv
University, Thales Group, TKMS (ThyssenKrupp Marine Systems), TNO (the
Netherlands Organisation for applied scientific research) and WTD 71.

The results are illustrated in Figure 5. Clearly such a complex benchmark
requires advanced software to obtain accurate solutions which are arguably lacking
in this benchmark test case. The state-of-the-art is not satisfactory, which is a
motivation for the research in the BeTSSi community. To first obtain accurate
solutions for simpler benchmark examples is crucial in order to advance to this
level of complexity. It is recommended by the community that the participants
first obtain good results on spherical shells which admits analytic solutions [23],
before advancing to the BeTSSi models which do not have exact reference solutions
available. A benchmark that will be used throughout this thesis is a plane wave
incident in the positive z-axis

pinc(x) = Pinceikx3

scattering by a rigid unit sphere (R0 = 1 m). The analytic solution is given by4

(expressed in spherical coordinates)

p(r, θ) = −Pinc

∞∑

n=0
in(2n+ 1) j′n(kR0)

h′n(kR0)Pn(cos θ)hn(kr) (6)

Due to axis symmetry, this solution can be generalized for arbitrary incident wave
direction (Eq. (5)) with a simple orthogonal transformation. The advantage of
having several models with different complexity is to have a gradual increase
in complexity to be able to run simulations on the full BeTSSi submarine. In
particular, the BeTSSi model 1 represents a convex model, model 4 represents a
triple reflector (which can be found in the more advance BeTSSi model 2) and

3For monostatic scattering we have αs = α and βs = β as opposed to bistatic scattering where
both the aspect angle and elevation angle in general do not coincide.

4Where jn(x) is the nth spherical Bessel function of the first kind and hn(x) is the nth spherical
Hankel function of the first kind.
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(a) The BeTSSi model 1 - air filled

(b) The BeTSSi model 2 - air filled

(c) The BeTSSi model 3 - water filled

(d) The BeTSSi model 4 (e) The BeTSSi model 5A
(f) The BeTSSi model 5B

(g) The outer hull of the BeTSSi submarine

Figure 3: BeTSSi models: The BeTSSi model 3 is described and analyzed in [21]
and the BeTSSi submarine is described and analyzed in [22].
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Figure 4: The full BeTSSi submarine has internal structures including 8 torpedo
tubes, cylindrical hydrophone array, and bulkheads.

−30◦ −15◦ 0◦ 15◦ 30◦ 45◦ 60◦
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Figure 5: Monostatic scattering of the full BeTSSi submarine at f = 1 kHz
sweeping through the elevation angle β at α = 90◦.
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model 5 represent disjoint geometries. The natural start would be to consider rigid
scattering (with hard walled boundary condition) such that only fluid domains need
to be modeled. Next, more realistic boundary conditions can be considered which
incorporates interaction with elastic shells. The BeTSSi model 1 or 2 may then be
embedded in BeTSSi model 3 to check the ability to simulate internal structures.
This approach sets the stage for simulating on the full BeTSSi submarine.

2. Isogeometric analysis

IGA is basically an extension of the FEM using either B-splines or non-uniform
rational B-splines (NURBS) as basis functions not only representing the geometry,
but also the solution space. Being introduced in 2005 by Hughes et al. [24],
followed by the book [25] in 2009, IGA tries to bridge the gap between finite
element analysis and computer aided design (CAD) tools. The important feature
of IGA is that it uses the same basis as CAD software for describing the given
geometry, and thus exact representation of the model is possible. It is therefore
natural to include a section considering this basis in the beginning before we set
up the IGA for the problem at hand.

The isogeometric framework is illustrated in Figure 6, where a wine glass is
used as an example. Products are often designed in CAD software which enables
rendering (or image synthesis) functionality for a photorealistic view of the product.
Before producing a visually satisfactory product it is often of interest to do some
analysis to check whether or not the product serves its purpose. For decades the
finite element method (FEM) has been a crucial framework where this analysis
has been obtained. FEM requires an analysis suitable discretization of the model
before analysis can be performed. The isogeometric analysis (IGA) framework
tries to avoid this discretization step as it uses the parametrization directly from
the CAD model. A significant amount of time has traditionally been needed
in this step (∼80%), and so the potential of the isogeometric framework is for
this reason alone very intriguing. In the realm of local refinement, it should be
mentioned that creating an analysis suitable model is a hot research topic also
in the IGA community [26–32]. The IGA framework may also be used in the
post processing step where the visualization is computed using the same NURBS
basis from analysis [33]. Finally, it turns out that the spline basis functions are
particularly suited to solve elliptical problems [34, 35]. This effect is arguably the
main motivator for using IGA in this work as numerical dispersion and dissipation
errors are reduced in wave propagation problems [36–39]. One can then conclude
that IGA is particularly well suited to solve acoustic scattering problems.

The classical p̌-refinement and h-refinement are often obtained for more accurate
solutions in FEA. IGA comes with an additional refinement feature called the
ǩ-refinement with not only an increase in polynomial order, but also the continuity.
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IGA refinement

FEM discretization FEM refinement

Redesign based on analysis

CAD model Analysis suitable model Analysis

Rendered model Final product

Figure 6: The isogeometric framework: Isogeometric analysis (IGA) avoids
the creation of an analysis suitable discretization step of the finite element method
(FEM) as it uses the discretization given by the computer aided design (CAD)
system.
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This is the beauty of IGA as it allows control of the continuity in the discretization
spaces. The mathematical potential of the ǩ-refinement is presented in [34], and
the application of this technique will be illustrated in paper II and paper III.

Since IGAs conception in 2005, it has obtained an impressive growth in terms
of published articles, citations and active researchers in the field. IGA has excelled
in a number of applications including continuum damage models [40], blood
flow [41–43], free surface flow [44], wind energy [45, 46], fracture mechanics [47–49],
topology optimization [50], shape optimization [51, 52], shell theory [53], contact
problems [54, 55], structural vibrations [56], immersed boundary methods [57],
sliding interfaces [58], and phase-field modeling [59]. The academic interest of
IGA has so far been a huge success, and it remains to see when the industry
fully incorporates this progress into modeling software. Classical finite element
technologies are deeply rooted into comprehensive software, but we can already
see several major software companies showing interest (i.e. Abaqus [60]).

2.1. B-splines

The NURBS basis is constructed using B-splines. Therefore, an understanding of
B-splines is crucial to understanding NURBS. Let p̌ be the polynomial order5, let n
be the number of basis functions and define a knot vector t = {ξ1, ξ2, . . . , ξn+p̌+1}
to be an ordered vector with non-decreasing elements, called knots. Then, the n
B-splines, {Bi,p̌,t}i∈[1,n], are recursively defined by

Bi,p̌,t(ξ) = ξ − ξi
ξi+p̌ − ξi

Bi,p̌−1,t(ξ) + ξi+p̌+1 − ξ
ξi+p̌+1 − ξi+1

Bi+1,p̌−1,t(ξ)

starting with

Bi,0,t(ξ) =
{

1 if ξi 6 ξ < ξi+1

0 otherwise.
(7)

This formula is referred to as Cox-de Boor formula, and the derivative of a B-spline
may be computed by

d
dξBi,p̌,t(ξ) = p̌

ξi+p̌ − ξi
Bi,p̌−1,t(ξ)−

p̌

ξi+p̌+1 − ξi+1
Bi+1,p̌−1,t(ξ). (8)

Throughout this work, we shall use open knot vectors (in order to easily handle
boundary conditions). That is, the first and last element in the vector are repeated
p̌ + 1 times. Moreover, a knot is said to have multiplicity m if it is repeated m
times in t.

Some important properties of B-splines are given by the following (for proof,
cf. [61]).

5The usage of a check sign above the polynomial order p is to avoid ambiguity between the
polynomial order and the scattered pressure.
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1. Bi,p̌,t are piecewise polynomials.

2. Bi,p̌,t depends only on the knots ξi, ξi+1, . . . , ξi+p̌+1.

3. In general Bi,p̌,t(ξ) > 0, and if ξ 6∈ [ξi, ξi+p̌+1) then Bi,p̌,t(ξ) = 0.

4. If ξ ∈ [ξj , ξj+1) then Bi,p̌,t(ξ) = 0 if i < j − p̌ or i > j.

5. If ξ ∈ (ξi, ξi+p̌+1) then Bi,p̌,t(ξ) > 0.

6. If ξ̃ = ξj+1 = · · · = ξj+p̌ < ξj+p̌+1 then Bi,p̌,t
(
ξ̃
)

= δij .

7. If a knot ξ̃ ∈ {ξi, . . . , ξi+p̌+1} has multiplicity m then Bi,p̌,t is p̌−m differen-
tiable at ξ̃.

8. B-splines satisfies the partition of unity property. That is,
n∑

i=1
Bi,p̌,t(ξ) = 1 ∀ξ, p̌.

9. B-splines forms a stable basis for piecewise polynomials.

To ease the understanding of B-splines we shall construct an illustrative example.
Consider quadratic B-splines (p̌ = 2) with the knot vector t = {0, 0, 0, 1, 2, 2, 3, 3, 3}.
Note that the use of a non-normalized knot vector is only for convenience and
carries no importance; the B-splines would have had the same characteristics if we
divided all knots by 3. Since |t| = 10, the number of basis functions is given by
n = |t| − p̌− 1 = 6. In Figure 7, Figure 8 and Figure 9, we have plotted not only
the 6 basis functions of second order, but also the functions of order zero and one
needed to evaluate these basis functions. By property 7 in the previous list, we
see that B1,2 and B6,2 are discontinuous at ξ = 0 and ξ = 3, respectively (p̌ = 2
and m = 3 yields C−1 continuity in the endpoints). This is characteristic for all
open knot vectors. Also note that the repeated knot at ξ = 2 forces the function
to have the Kronecker delta property; that is, Bi,p̌(ξj) = δij if ξj has multiplicity
m = p̌.

We may now define a spline curve by

P (ξ) =
n∑

i=1
Bi,p̌(ξ)Pi

where {Pi}i∈[1,n] are the control points of the curve. To continue the example,
consider the control points P1 = (5, 2), P2 = (3, 2), P3 = (1, 6), P4 = (4, 3),
P5 = (7, 6) and P6 = (7, 1). Using the same basis functions {Bi,2}i∈[1,6] as in the
previous example, we get the curve depicted in Figure 10. In addition to the curve,
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Figure 7: Plot of the non-zero B-splines of order zero, where the knot vector is
given by t = {0, 0, 0, 1, 2, 2, 3, 3, 3}. Note that Bj,0 ≡ 0 for j ∈ {1, 2, 5, 6, 7, 8}.
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Figure 8: Plot of the non-zero B-spline basis functions (of first degree), where the
knot vector is given by t = {0, 0, 0, 1, 2, 2, 3, 3, 3}. Note that Bj,1 ≡ 0 for j ∈ {1, 7}.
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Figure 9: Plot of the 6 different B-spline basis functions (of second degree), where
the knot vector is given by t = {0, 0, 0, 1, 2, 2, 3, 3, 3}.
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(b) Curve and location of knots.

Figure 10: Plot of a spline curve. Since P1 = (5, 2), this is the point where the
curve starts (ξ = 0).
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the control polygon is drawn, which is simply the piece wise linear curve between
the ordered control points. Note that the smoothness of the curve degrades at
the point (4, 3). This is the result of the repeated knot ξ = 2 which yields an
interpolation effect, such that the control point lies on the curve (which is also the
case at the end points).

2.2. B-spline knot insertion

Knot insertion is a process for which knots are inserted into the knot vector, which
would create more basis function without changing the geometry. This is a very
important concept as it allows us to enrich the basis and corresponds for this
reason to the classical h-refinement procedure in FEM (refining the mesh). This is
because the knot vector defines the mesh; such that when more knots are inserted,
we get a more refined mesh.

The goal is to insert more knots into t without changing the shape of the curve.
We shall do this by Böhm’s method (cf. [61]) which does knot insertion by inserting
one knot at a time. Let t̃ be the new knot vector after a knot have been inserted
into t. Let {Bi,p̌,t}i∈[1,n] be the old basis (corresponding to t) and {Bi,p̌,t̃}i∈[1,n+1]
the new basis after a knot has been inserted (note that since t̃ is known, the basis
is completely determined). We then want to find the new set of control points{
P̃i
}
i∈[1,n+1]

(here P̃i ∈ Rd where d is the dimension of the space for which the
spline curve belongs) such that

P (ξ) =
n∑

i=1
Bi,p̌,t(ξ)Pi

!=
n+1∑

i=1
Bi,p̌,t̃(ξ)P̃i.

This results in a linear system of equations which could be solved by brute force.
However, Böhm method exploits the support property of B-splines to improve
efficiency. Assume that the new knot ξ̃ is inserted in the interval [ξj , ξj+1]. Then

P̃i =





Pi, if 1 6 i 6 j − p̌
ξ̃−ξi

ξi+p̌−ξiPi + ξi+p̌−ξ̃
ξi+p̌−ξiPi−1, if j − p̌+ 1 6 i 6 j

Pi−1, if j + 1 6 i 6 n+ 1.

Let’s continue our example by inserting the knots ξ = 0.5 and ξ = 1.5 into our
knot vector. We then simply use Böhms method twice to calculate the new control
points. The curve with the mesh before and after the knot insertion is depicted in
Figure 11. In Figure 12 we see that the control polygon has changed. Indeed, it
has moved towards the curve where the refinement has occurred, which is another
nice property of knot insertion.
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(a) Curve with mesh before refinement.
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(b) Curve with mesh after refinement.

Figure 11: Mesh comparison for knot refinement.
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(a) Control polygon before refinement.
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(b) Control polygon after refinement.

Figure 12: Control polygon comparison for knot insertion.
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2.3. B-spline degree elevation

Having a basis of a higher order creates more accurate solution in FEM/IGA.
Thus, we want to have an algorithm which increases the order from p̌ to p̌+m
without changing the geometry and the parametric space. Since the continuity at
each knot must be preserved, it follows from property 7 on page 12 that we must
increase the multiplicity of each knot by m. We also need to find the new set of
control points. As for knot insertion, we must find the new set of control points
{Qi}i∈[1,ñ] such that

P (ξ) =
n∑

i=1
Bi,p̌,t(ξ)Pi

!=
ñ∑

i=1
Bi,p̌+m,t̃(ξ)Qi =: Q(ξ).

Let S be an integer such that S + 1 is the number of unique knots in t. Since t is
open (ξ1 = · · · = ξp̌+1 and ξn+1 = · · · = ξn+p̌+1), it may be written on the form

t = {ξ1, . . . , ξp̌+1︸ ︷︷ ︸
p+1

, ξp̌+2, . . . , ξn, ξn+1, . . . , ξn+p̌+1︸ ︷︷ ︸
p̌+1

}

= {u0, . . . , u0︸ ︷︷ ︸
p̌+1

, u1, . . . , u1︸ ︷︷ ︸
z1

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1

, uS , . . . , uS︸ ︷︷ ︸
p̌+1

}

where zi denotes the multiplicity of the knot with value ui for i = 1, . . . , S − 1. If
we now want to elevate the degree m times (from p̌ to p̌ + m), we get the new
knot vector

t̃ = {ξ̃1, . . . , ξ̃p̌+1+m︸ ︷︷ ︸
p̌+1+m

, ξ̃p̌+2, . . . , ξ̃ñ, ξ̃ñ+1, . . . , ξ̃ñ+p̌+1+m︸ ︷︷ ︸
p̌+1+m

}

= {u0, . . . , u0︸ ︷︷ ︸
p̌+1+m

, u1, . . . , u1︸ ︷︷ ︸
z1+m

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1+m

, uS , . . . , uS︸ ︷︷ ︸
p̌+1+m

}.

It is also easy to observe that the new number of basis functions is given by
ñ = n + S · m. What remains to be found is the new set of control points
{Qi}i∈[1,ñ]. Several efficient algorithms exist for this purpose, but we shall follow
the idea presented by Huang et al. in [62]. Since the notation of the article does not
correspond to the notation presented here, a complete derivation of the algorithm
will be presented here. Denote by P (l) the l’th derivative of the spline curve of
degree p̌ (which will have degree p̌ − l) such that (using an inductive argument
and Eq. (8))

P (j)(ξ) =
n−j∑

i=1
Bi+l,p̌−j,t(ξ)P j

i and Q(j)(ξ) =
ñ−j∑

i=1
Bi+j,p̌+m−j,t̃(ξ)Q

j
i
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where the coefficients P j
i are defined recursively by

P j
i =





p̌+1−j
ξi+p̌+1−ξi+j

(
P j−1
i+1 − P j−1

i

)
if ξi+p̌+1 > ξi+j

0 if ξi+p̌+1 = ξi+j
(9)

for j > 0, starting with P 0
i = Pi for j = 0. Correspondingly we have,

Qj
i =





p̌+m+1−j
ξ̃i+p̌+m+1−ξ̃i+j

(
Qj−1
i+1 −Qj−1

i

)
if ξ̃i+p̌+m+1 > ξ̃i+j

0 if ξ̃i+p̌+m+1 = ξ̃i+j .
(10)

Note that this implies the following useful formula we shall use later

Qj−1
i+1 = Qj−1

i + ξ̃i+1+p̌+m − ξ̃i+j
p̌+m+ 1− j Q

j
i if ξ̃i+p̌+m+1 > ξ̃i+j . (11)

Since u0 = ξj+1 = ξj+1+1 = · · · = ξj+1+p̌−j < ξp̌+2 for 0 6 j 6 p, property 6 on
page 12 implies that

Bi+j,p̌−j,t(u0) = δi+j,j+1.

Hence,

P (j)(u0) =
n−j∑

i=1
Bi+j,p̌−j,t(u0)P j

i =
n−j∑

i=1
δi+j,j+1P

j
i = P j

1 .

We have a corresponding result for Q(j) such that

P (j)(u0) = P j
1 and Q(j)(u0) = Qj

1.

Moreover, P (ξ) and Q(ξ) have the same geometry and parameterization (that is,
P (j)(ξ) = Q(j)(ξ)), and we must therefore have

Qj
1 = P j

1 (12)

for 0 6 j 6 p.
Define

βi =
i∑

l=1
zl,

such that we have ui = ξβi+p̌+1 (the last of the repeated knot). Let p̌+1−zi 6 j 6 p̌
and 1 6 i 6 S − 1, such that we only consider the case when the degree of P (j)

satisfy p− j 6 zi − 1. Since the knot ui is repeated zi times, property 6 on page
12 now implies that

Bĩ,p̌−j,t(ui) = δĩ,βi+1+j ,
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such that

P (j)(ui) =
n−j∑

ĩ=1
Bĩ+j,p̌−j,t(ui)P

j

ĩ
=

n−j∑

ĩ=1
δĩ+j,βi+1+jP

j

ĩ

= P j
βi+1

for p̌+ 1− zi 6 j 6 p and 1 6 i 6 S − 1.
We note that ui = ξ̃βi+p̌+1+m+im and that this knot has multiplicity zi + m

in t̃. Again, we consider the indices i and j to satisfy p̌ + 1 − zi 6 j 6 p̌ and
1 6 i 6 S − 1, such that we only consider the case when the degree of Q(j) satisfy
p̌+m− j 6 zi +m− 1. Using once again property 6 on page 12 we have

Bĩ,p̌+m−j,t̃(ui) = δĩ,βi+1+j ,

such that

Q(j)(ui) =
ñ−j∑

ĩ=1
Bĩ+j,p̌+m−j,t̃(ui)Q

j

ĩ
=

ñ−j∑

ĩ=1
δĩ+j,βi+1+jQ

j

ĩ

= Qj
βi+1

for p̌+ 1− zi 6 j 6 p̌ and 1 6 i 6 S − 1. Using the fact that P (j)(ξ) = Q(j)(ξ),
we have obtained the formula

Qj
βi+1+im = P j

βi+1, p̌+ 1− zi 6 j 6 p̌, 1 6 i 6 S − 1. (13)

Since P (ξ) has degree p̌, its (p̌ + 1)’th derivative must be zero, and thus also
the (p̌ + 1)’th derivative of Q(ξ). Using property 4 on page 12 and letting
ξ ∈ [ui, ui+1) = [ξ̃βi+p+1+m+im, ξ̃βi+p̌+1+m+im+1), we have

0 = P (p̌+1)(ξ) = Q(p̌+1)(ξ) =
ñ−(p̌+1)∑

ĩ=1
Bĩ+p̌+1,m−1,t̃(ξ)Q

p̌+1
ĩ

=
βi+m+im∑

ĩ=βi+1+im
Bĩ+p̌+1,m−1,t̃(ξ)Q

p̌+1
ĩ

,

which implies, that

Qp̌+1
ĩ

= 0, βi + 1 + im 6 ĩ 6 βi +m+ im,

for 0 6 i 6 S − 1. Using Eq. (11) with j = p̌+ 1, we therefore have

Qp̌

ĩ+1 = Qp̌

ĩ
, βi + 1 + im 6 ĩ 6 βi +m+ im, 0 6 i 6 S − 1,
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(a) Curve and control polygon after degree ele-
vation.

1 2 3 4 5 6 7

1
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3
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6

(b) Control polygon comparison showing the
corner cutting effect.

Figure 13: Control polygon comparison for degree elevation of a spline curve.

or equivalently

Qp̌
βi+1+im+l = Qp̌

βi+1+im, 1 6 l 6 m, 0 6 i 6 S − 1. (14)

In addition, we see from Eq. (10) that Qp̌

ĩ
= 0 whenever ξ̃ĩ+p̌+m+1 = ξ̃ĩ+p̌. Since

the knots ui+1 are repeated zi+1 +m times in t̃ (starting at ξ̃βi+1+p̌+im+m+1) we
have

Qp̌
βi+1+im+l = 0, m+ 1 6 l 6 m− 1 + zi+1, 0 6 i 6 S − 1.

It turns out that these points are not needed.
So, in summary, the algorithm does the following steps

1. Set P 0
i = Pi for 1 6 i 6 n.

2. Compute P j
1 for 0 6 j 6 p̌ and P j

βi+1 for p̌+1−zi 6 j 6 p and 1 6 i 6 S−1
using Eq. (9).

3. Compute Qj
1 for 0 6 j 6 p̌ using Eq. (12)

4. Compute Qj
βi+1+im for p+ 1− zi 6 j 6 p̌ and 1 6 i 6 S − 1 using Eq. (13).

5. Compute Qp̌
βi+1+im+k for 1 6 k 6 m and 0 6 i 6 S − 1 using Eq. (14).

6. Compute the new control points Qi = Q0
i backwards from Eq. (11).

This algorithm may be optimized as discussed in [62] but will not be presented
here as the efficiency of this algorithm is not of great importance for this thesis.

Continuing our example, let’s elevate the degree of the original spline curve
by one (from 2 to 3). As we can see in Figure 13a, the geometry of the curve has
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P 0
1 (5, 2) P 1

1 (−4, 0) P 2
1 (2, 4)

P 0
2 (3, 2) P 1

2 (−2, 4) P 2
2 (8,−10)

P 0
3 (1, 6) P 1

3 (6,−6) P 2
3 (0, 0)

P 0
4 (4, 3) P 1

4 (6, 6) P 2
4 (−6,−16)

P 0
5 (7, 6) P 1

5 (0,−10)

P 0
6 (7, 1)

Figure 14: Graph of differential coefficients of P (ξ) in the example.

not changed but the control polygon has changed. As we can see in Figure 13b
only non-interpolating control points in the control polygon have changed. Two
new control points replaces each of these control points such that we get a corner
cutting effect in the control polygon. Therefore, degree elevation of spline curves
is called corner cutting.

In Figure 14 we have a graph which illustrates this process. The points which
are colored are used directly to compute coefficients in the set {Qj

i}i,j (which have
corresponding colors in the graph in Figure 15). Except for P 2

3 (0, 0) (which is set
to zero because ξ6 = ξ5) all points are thus needed.

In Figure 15 we illustrate how the differential coefficients of Q(ξ) are computed.
The coefficients in red are first computed (step 3), the coefficients in green are
then computed (step 4) such that the coefficients in yellow may be computed (step
5). The rest of the coefficients are computed by Eq. (11). Note that Q2

5 is not
really needed.
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Figure 15: Differential coefficients of Q(ξ) in the example.
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(a) Spline volume. (b) Knots inserted in the ξ-direction.

(c) Knots inserted in the η-direction. (d) Knots inserted in the ζ-direction.

Figure 16: Spline volume and its knot insertions. We here choose to first insert
knots in the ξ-direction followed by the η- and ζ-direction, respectively.

2.4. Spline volumes

The extension to bivariate spline surfaces and trivariate spline volumes is straight
forward (we shall only here consider volumes). Let

{
Bi,p̌ξ

}
i∈[1,nξ],

{
Bj,p̌η

}
j∈[1,nη]

and
{
Bl,p̌ζ

}
l∈[1,nζ]

be the set of B-spline basis functions in ξ-, η- and ζ-direction,
respectively. These sets have their own degree (p̌ξ, p̌η and p̌ζ, respectively) and
knot vectors (tξ, tη and tζ, respectively). A spline volume is then defined by

X(ξ, η, ζ) =
nξ∑

i=1

nη∑

j=1

nζ∑

l=1
Bi,p̌ξ(ξ)Bj,p̌η(η)Bl,p̌ζ(ζ)Pi,j,l.

We may extend our spline curve example into a volume by adding the knot vectors
tη = {0, 0, 1, 1} and tζ = {0, 0, 1, 1}. By adding appropriate control points, we get
the spline volume in Figure 16. We have here in addition to the volume drawn the
mesh on top showing three elements.

Once again, we want to be able to refine this mesh into more elements without
changing the geometry. For spline volumes, this is done by refining the mesh in
each parameter direction (in the ξ-, η- and ζ-direction). This refining process thus
involves refining in each direction separately. For each knot vector, we do knot
insertion by Böhms method once again. Here, we have to order the structure of
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the control points {Pi,j,l} in a specific way. As an example, say we want to insert
s knots in the tξ direction for a spline object living in a d-dimensional space using
Böhms method. We then want to find the new set of control points

{
P̃i,j,l

}
such

that

X(ξ, η, ζ) =
nξ∑

i=1

nη∑

j=1

nζ∑

l=1
Bi,p̌ξ,tξ(ξ)Bj,p̌η,tη(η)Bl,p̌ζ,tζ(ζ)Pi,j,l

!=
nξ+s∑

i=1

nη∑

j=1

nζ∑

l=1
Bi,p,t̃ξ(ξ)Bj,p̌η,tη(η)Bl,p̌ζ,tζ(ζ)P̃i,j,l.

We shall use the ordering Qi = {Pi,1,1,Pi,2,1, . . . ,Pi,nη,1,Pi,1,2, . . . ,Pi,nη,nζ}. We
create a new fictitious spline curve given by

Q(ξ) =
nξ∑

i=1
Bi,p̌ξ,tξ(ξ)Qi

!=
nξ+s∑

i=1
Bi,p̌ξ,t̃ξ(ξ)Q̃i

where Q̃i is to be determined using Böhms method s times. Note that this spline
curve is in a (d · nη · nζ)-dimensional space. Reordering {Q̃i} back to the old
structure, we obtain the resulting {P̃i,j,l}. A similar procedure is done if knots are
inserted in η- and ζ-direction.

Let’s say we want to insert the knots {0.5, 1.5} in the ξ-direction (as we did for
the spline curve) and the knots {0.5} and {0.25, 0.5, 0.75} for the η- and ζ-direction,
respectively. The result (in Figure 16) is a refined mesh from 3 elements to 40
elements.

A corresponding procedure is done for degree elevation in spline volumes.

2.5. NURBS

With the B-splines in our arsenal, we are ready to present Non-Uniform Rational
B-Splines (NURBS). Although B-splines may represent many complex curves, there
are a class of curves that may not be represented exactly by B-splines, namely,
conic sections like circles. Such shapes are often used in engineering, and thus, an
extension, which enables this, would be valuable. NURBS enables us to tackle
such geometries as well.

Let {wi}i∈[1,n] be a set of weights, and define the weighting function by

W (ξ) =
n∑

ĩ=1
Bĩ,p̌,t(ξ)wĩ.

The one-dimensional NURBS basis functions can now be defined by

Rp̌i (ξ) = Bi,p̌,t(ξ)wi
W (ξ) ,
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−1 0 1

−1

0

1

Figure 17: NURBS representation of a unit circle with the corresponding control
polygon. The curve goes counterclockwise around the unit circle (which is a result
of the corresponding ordering in the control points), starts at (1, 0) and ends at
(1, 0).

such that a NURBS curve may be expressed by

P (ξ) =
n∑

i=1
Rp̌i (ξ)Pi

where Pi are the control points of the curve.
There are several ways to construct a circle using NURBS (but we need p̌ > 2).

For example, consider the knot vector t = {0, 0, 0, 1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 , 1, 1, 1}, the degree

p̌ = 2, the weights given by {wi}i∈[1,9] where

wi =





1√
2 for i even

1 otherwise

and the control points P1 = (0, 0), P2 = (1, 1), P3 = (0, 1), P4 = (−1, 1),
P5 = (−1, 0), P6 = (−1,−1), P7 = (0,−1), P8 = (1,−1) and P9 = (1, 0). This
will produce the unit circle, which is depicted in Figure 17. Note that there are no
non-repeated knots in the knot vector, so we will have interpolation between the
location of the knots and the control polygon (since p̌ = 2).

2.6. NURBS knot insertion

A d-dimensional NURBS curve is a projection of a (d+ 1)-dimensional B-spline
curve (cf. [25]). We may exploit this property to insert new knots into a NURBS.

Let’s say we want to insert s new knots into a NURBS curve defined by the
knot vector t, the control points {Pi}i∈[1,n] = {(xi, yi)}i∈[1,n], and the weights
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(a) Knot locations after refinement.

−1 0 1

−1

0

1

(b) Control polygon after refinement.

Figure 18: Knot insertion for a NURBS circle.

{wi}i∈[1,n]. We then construct a 3D B-spline curve with control points given by

{Qi}i∈[1,n] = {(wixi, wiyi, wi)}i∈[1,n].

We now have a B-spline curve in 3D defined by t (the same knot vector) and
the control points {Qi}i∈[1,n]. We may now insert knots using Böhms method
as before, which yields the extended knot vector t̃ and the new control points{
Q̃i

}
i∈[1,n+s]

= {(x̃i, ỹi, w̃i)}i∈[1,n+s]. Projecting this B-spline curve back to a 2D
NURBS with control points given by

{
P̃i
}
i∈[1,n+s]

=
{(

x̃i
w̃i
,
ỹi
w̃i

)}

i∈[1,n+s]

and weights given by {w̃i}i∈[1,n+s], we get the refined NURBS. To insert knots
in a 3D NURBS curve, we apply an analogous procedure to the control points
{Pi}i∈[1,n] = {(xi, yi, zi)}i∈[1,n].

In Figure 18 we have inserted the knots {0.5, 0.5, 1.5, 2.25, 2.5, 2.75} into the
NURBS circle in Figure 17. Note that many of the same properties of B-spline
curves are preserved for the NURBS curve. Also note that the mesh is not changed
by adding an extra knot at ξ = 0.5, but we still have added a new basis function.
A reduction of continuity in the basis functions will here occur, but the geometric
continuity of the curve remains the same.

The extensions to bivariate NURBS surfaces and trivariate NURBS volumes
are straightforward. For NURBS volumes, let

{
Bi,p̌ξ,tξ

}
i∈[1,nξ],

{
Bj,p̌η,tη

}
j∈[1,nη]

and
{
Bl,p̌ζ,tζ

}
k∈[1,nζ]

be the sets of B-spline basis functions in ξ-, η- and ζ-direction,
respectively. These sets have their own order (p̌ξ, p̌η and p̌ζ, respectively) and



28 Introduction

knot vectors (tξ, tη and tζ, respectively). The trivariate NURBS basis functions
are then defined by

Ri,j,l(ξ, η, ζ) =
Bi,p̌ξ,tξ(ξ)Bj,p̌η,tη(η)Bl,p̌ζ,tζ(ζ)wi,j,l

W (ξ, η, ζ) (15)

where the weighting function is now given by

W (ξ, η, ζ) =
nξ∑

ĩ=1

nη∑

j̃=1

nζ∑

l̃=1

Bĩ,p̌ξ,tξ(ξ)Bj̃,p̌η,tη(η)Bl̃,p̌ζ,tζ(ζ)wĩ,j̃,l̃.

In the next section, the single index notation (global indexing system) is used
RI = Ri,j,l, where for a single patch (with no collapsed control points) we have
I = i+ nξ(j − 1) + nξnη(l − 1).

The partial derivatives of these functions are then given by the quotient rule.
For example, we have

∂Ri,j,l
∂ξ

=
W (ξ, η, ζ)B′i,p̌ξ,tξ(ξ)−Wξ(ξ, η, ζ)Bi,p̌ξ,tξ(ξ)

(W (ξ, η, ζ))2 Bj,p̌η,tη(η)Bl,p̌ζ,tζ(ζ)wi,j,l
(16)

where

Wξ(ξ, η, ζ) =
nξ∑

ĩ=1

nη∑

j̃=1

nζ∑

l̃=1

B′
ĩ,p̌ξ,tξ

(ξ)Bj̃,p̌η,tη(η)Bl̃,p̌ζ,tζ(ζ)wĩ,j̃,l̃

and
B′i,p̌ξ,tξ(ξ) =

dBi,p̌ξ,tξ(ξ)
dξ .

Analogous expressions may be found for the partial derivatives with respect to η
and ζ.

A 3D NURBS volume is now defined by

X(ξ, η, ζ) =
nξ∑

i=1

nη∑

j=1

nζ∑

l=1
Ri,j,l(ξ, η, ζ)Pi,j,l

Knot insertion into such an object is once again done by inserting knots into a 4D
B-splines volume with control points

Qi,j,l = (wi,j,lxi,j,l, wi,j,lyi,j,l, wi,j,lzi,j,l, wi,j,l)

for i ∈ [1, nξ], j ∈ [1, nη] and l ∈ [1, nζ]. Using the same procedure as in Sub-
section 2.4 we obtain the new set of control points Q̃i,j,l = (x̃i,j,l, ỹi,j,l, z̃i,j,l, wi,j,l)
which after the projection yields our new set of control points for the NURBS
volume given by

{
P̃i,j,l

}
i,j,l

=
{(

x̃i,j,l
w̃i,j,l

,
ỹi,j,l
w̃i,j,l

,
z̃i,j,l
w̃i,j,l

)}

i,j,l
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and a set of weights given by {w̃i,j,l}i,j,l.
A corresponding procedure is done for degree elevation in NURBS volumes.

2.7. The weak form and Galerkin’s method

The foundation for finite element technologies is the Galerkin’s method. Most
partial differential equations may not be solved by analytic expressions in closed
forms, and one must then resort to numerical methods implemented on some
computational resource. As computational resources are limited, the infinitely
dimensional function space (in which the solution lies) must be reduced to a
finite dimensional function space (where the approximate solution is to be found).
Galerkin’s method yields the framework for this transition.

For illustrative purposes, consider the interior Helmholtz equation (in strong
form)

∇2p+ k2p = 0 in Ω ⊂ Rd, (17)
∂np = g on Γ = ∂Ω, (18)

where ∂n denotes the partial derivative in the normal direction, n, on the surface
Γ pointing out from the interior domain Ω. Note that this problem is not well
posed for certain wave numbers k (corresponding to the eigenfrequencies of the
problem).

The weak form of the problem is derived from the strong form. Typically, one
defines two classes of functions: S denotes the solution space and V denotes the
test space. Here, S is a subspace of the Sobolev space H1(Ω) defined by

H1(Ω) =
{
p ∈ L2(Ω) : ∂p

∂xi
∈ L2(Ω), ∀i = 1, . . . , d

}

where L2(Ω) is the set of square integrable functions. The test space is usually
defined to be the same as the solution space, S = V , which is the Bubnov–Galerkin
formulation. When these spaces differ, we have the Petrov–Galerkin formulation
which will be investigated in depth in the context of the infinite element method
in the second paper.

The Helmholtz equation is first written in weak form. Multiply (17) by a test
functions q ∈ V

q∇2p+ k2qp = 0
and integrate over Ω ∫

Ω

[
q∇2p+ k2qp

]
dΩ = 0.

Using Greens first identity this can be written as

−
∫

Ω
∇q · ∇pdΩ +

∫

∂Ω
q∇p · ndΓ + k2

∫

Ω
qpdΩ = 0.
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Thus, ∫

Ω
∇q · ∇p dΩ − k2

∫

Ω
qpdΩ =

∫

∂Ω
qg dΓ. (19)

The weak formulation then becomes:

Find p ∈ S such that B(q, p) = L(q), ∀q ∈ V, (20)

where the bilinear form is given by

B(q, p) =
∫

Ω

[
∇q · ∇p− k2qp

]
dΩ (21)

and the corresponding linear form is given by

L(q) =
∫

Γ
qg dΓ.

We now want to transform this weak statement into a system of algebraic
equations. We here apply Galerkin’s method and turn to a finite-dimensional
subspace Sh ⊂ S (and Vh ⊂ V for the test space). In the IGA context the basis for
this subspace is represented by the same splines that parameterizes the domain Ω.
The Galerkin approximation of the weak form is now given by:

Find ph ∈ Sh such that B(qh, ph) = L(qh), ∀qh ∈ Vh. (22)

To find the system of algebraic equations we need to write ph and qh as a linear
combination of the basis functions (here, the NURBS basis functions, Ri)

qh =
∑

i

Rici and ph =
∑

j

Rjdj ,

respectively. Insertion of these function representations in Eq. (22) yields

B


∑

i

Rici,
∑

j

Rjdj


− L

(∑

i

Rici

)
= 0

which using the bilinearity of B and the linearity of L may be written as

∑

i

ci


∑

j

B(Ri, Rj)di − L(Ri)


 = 0.

Since the coefficients ci are arbitrary (the relation should hold for all qh ∈ Vh, and
in particular qh = Ri for all i) the term in the parentheses must vanish. That is,

∑

j

B(Ri, Rj)dj = L(Ri), ∀i.
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The resulting system of equation may then be written as

Ad = F

with components

Aij = B(Ri, Rj),
Fi = L(Ri).

The matrix A is usually written as a combination of the stiffness matrix, K and
the mass matrix, M , as A = K − k2M .

2.8. Assembly

One typically does not loop through the basis functions. Rather, one loops through
the elements constructing local stiffness/mass matrices and successfully place their
contribution in the global stiffness/mass matrix. The next step is thus to build
the global matrices from the local element matrices, often referred to as assembly.

Let Ωe be the domain of a given element, where the index e loops over all
elements. The support of the spline basis functions is highly localized. To reduce
computations, we should only integrate over functions which have support in Ωe.
Denote by nen the number of local shape functions, Rea, with support in Ωe, and
let a and b iterate over these functions, we may calculate the entries in the local
stiffness matrix as

keab =
∫

Ωe
∇Rea · ∇Reb dΩ.

Similarly, for the local mass matrix and the local force vector we have

me
ab =

∫

Ωe
ReaR

e
b dΩ and fea =

∫

Γ e
Reag dΓ, (23)

respectively. The integration is done by quadrature formulas. One first maps to
the parametric domain, and then maps this domain to a parent domain. The
element in the parametric domain (corresponding to Ωe) is given (in 3D) by

Ω̂e = [ξi, ξi+1]× [ηj , ηj+1]× [ζl, ζl+1].

We want to linearly map this domain into the parent domain Ω̃e = [−1, 1]d. So
given (ξ̃, η̃, ζ̃) ∈ Ω̃e, we calculate (ξ, η, ζ) ∈ Ω̂e by

ξ = ξi + (ξ̃ + 1)ξi+1 − ξi
2 ,

η = ηj + (η̃ + 1)ηj+1 − ηj
2 ,

ζ = ζk + (ζ̃ + 1)ζk+1 − ζk
2 .
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The Jacobian determinant for the parent to parametric mapping is thus given by

J2 =

∣∣∣∣∣∣∣∣

∂ξ

∂ξ̃

∂ξ
∂η̃

∂ξ

∂ζ̃
∂η

∂ξ̃

∂η
∂η̃

∂η

∂ζ̃
∂ζ

∂ξ̃

∂ζ
∂η̃

∂ζ

∂ζ̃

∣∣∣∣∣∣∣∣
= 1

8(ξi+1 − ξi)(ηj+1 − ηj)(ζk+1 − ζk).

Similarly, we need the Jacobian for the mapping from the parametric domain into
the physical domain. Given (ξ, η, ζ) ∈ Ω̂e, we calculate X ∈ Ωe by

X =



x1
x2
x3


 =

nξ∑

i=1

nη∑

j=1

nζ∑

l=1
Ri,j,l(ξ, η, ζ)Pi,j,l =

nen∑

a=1
Rea(ξ, η, ζ)Pa

where Pi,j,k are the control points and R
p̌ξ,p̌η,p̌ζ
i,j,l are the NURBS basis functions

which are computed by Eq. (15). We shall denote this mapping by X : Ω̂ → Ω.
Note that the last equality again comes from the highly localized support of the
NURBS basis. The Jacobian matrix is then given by

J =




∂x1
∂ξ

∂x1
∂η

∂x1
∂ζ

∂x2
∂ξ

∂x2
∂η

∂x2
∂ζ

∂x3
∂ξ

∂x3
∂η

∂x3
∂ζ


 =

[
P1, P2, · · · , Pnen

]




∂R1
∂ξ

∂R1
∂η

∂R1
∂ζ

∂R2
∂ξ

∂R2
∂η

∂R2
∂ζ

...
...

...
∂Rnen
∂ξ

∂Rnen
∂η

∂Rnen
∂ζ




(24)

such that the Jacobian determinant of this mapping is given by

J1 = det(J)

where the derivatives of the NURBS basis functions are computed by Eq. (16). The
local stiffness matrix contains derivatives of the NURBS functions w.r.t. physical
coordinates, and so we need to find expressions for ∂Ri

∂xj
. By the chain rule we have

∂Ri
∂ξ

= ∂Ri
∂x1

∂x1
∂ξ

+ ∂Ri
∂x2

∂x2
∂ξ

+ ∂Ri
∂x3

∂x3
∂ξ

∂Ri
∂η

= ∂Ri
∂x1

∂x1
∂η

+ ∂Ri
∂x2

∂x2
∂η

+ ∂Ri
∂x3

∂x3
∂η

∂Ri
∂ζ

= ∂Ri
∂x1

∂x1
∂ζ

+ ∂Ri
∂x2

∂x2
∂ζ

+ ∂Ri
∂x3

∂x3
∂ζ

.

And thus, we may write
[
∂Ri
∂x1

, ∂Ri
∂x2

, ∂Ri
∂x3

]
J =

[
∂Ri
∂ξ ,

∂Ri
∂η ,

∂Ri
∂ζ

]
. (25)
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Multiplying with the inverse of the Jacobian, J−1, from the right, and taking the
transpose on each side of the equation finally yields




∂Ri
∂x1
∂Ri
∂x2
∂Ri
∂x3


 = J−>




∂Ri
∂ξ
∂Ri
∂η
∂Ri
∂ζ


. (26)

With these expressions in mind the local mass matrix can be computed in the
parent domain as

me
ab =

∫

Ω̃e
ReaR

e
bJ1J2 dΩ̃.

Collecting the basis functions Rea being non zero on the element, Ωe, into a vector
Re = [Re1, Re2, . . . , Renen ]> enables us to write the full local element mass matrix in
terms of an outer product

me =
∫

Ω̃e
Re[Re]>J1J2 dΩ̃,

with corresponding expressions for the local stiffness matrix and the local force
vector.

The integrals are approximated with quadrature rules. If we want to approxi-
mate the integral ∫

Ω̃
g(ξ̃, η̃, ζ̃) dΩ̃,

the approximation by Gaussian quadrature is given by
∫

Ω̃
g(ξ̃, η̃, ζ̃) dΩ̃ ≈

nq∑

i=1
ρig(ξ̃i, η̃i, ζ̃i),

where nq are the number of quadrature points, and (ξ̃i, η̃i, ζ̃i) and ρi are given
quadrature points and weights, respectively.

2.9. Error analysis

In developing the ASIGA6 toolbox (developed in Matlab) for this PhD the error
analysis has been a crucial debugging and researching approach. It is not only
crucial to obtain numerical evidence for the correctness of the implemented code,
but it can be used in research to compare methods. It is typically done by finding
an analytic solution and analyze the convergence of the numerical solution towards
this analytic solution in some suitable norm. What norm to compute the error in
is not obvious and is very much problem dependent. For V-elliptic problems like

6The ASIGA (Acoustic Scattering using IsoGeometric Analysis) toolbox is available at the
Zetison/ASIGA GitHub repository.
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the Poisson problem it is natural to use the energy norm defined by the H1-semi
norm

|||u|||Ω =
√
B(u, u) = |u|H1 , with B(v, u) =

∫

Ω
∇v · ∇udΩ

as Galerkin’s method minimizes the error in this norm. In [63] we find the following
result: Let p̌ be the highest degree of a complete polynomial in the FE basis and
denote by ‖u‖H p̌+1 the Sobolev norm of order p̌ + 1. For problems where the
solution is not sufficiently smooth, u 6∈ H p̌+1 we have the error bound

|||u− uh|||Ω 6 Chα‖u‖Hα+1

where the constant C is among other things dependent of the transformation from
the parametric space to the physical space. It is not however depending on the
maximal element size7, h. So, as h become smaller, we expect the convergence to
be of order α which is defined by

α = min{p̌, λ}

where λ is the strength of the singularity. Such that λ < p̌ limits the rate of
convergence to the strength of singularity, rather than the polynomial order. This
problem may be resolved by using adaptive mesh refinement to obtain α = p̌.
That is, one can obtain the same convergence as for sufficiently smooth solutions
u. Adaptive mesh refinement (AMR) using T-splines was investigated in [26, 28].
Moreover, the recent LR B-splines was introduced in [64] followed by AMR analysis
in [65–68]. Other AMR techniques include THB-splines [69, 70] and U-splines [31].
As suggested in [71], the need for AMR applies to solving Helmholtz problems as
well.

The Helmholtz equation (with B defined in Eq. (21)) is not, however, V-
elliptic [72, p. 46]. In fact, B does not even induce a semi-norm. Moreover, for
comparison with the boundary element method using volumetric norms is not only
unfeasible, but these methods obtain super convergence in appropriate negative
fractional Sobolev norms [73]. Each method may have a preferred norm in which it
excels and a priori error estimates often exist in such cases and it certainly makes
sense to use these norms for code development. For research purposes it is not
clear in which norm the comparison should be made. In the context of acoustic
scattering with the target strength being the quantity of interest, it is natural
to consider a norm over the boundary of the scatterer, Γ , since the far field is
computed based on the Helmholtz integral (Eq. (33)) over the same domain. The
L2(Γ )-norm then represent an arguably good compromise in this context and has
been used frequently in this thesis.

7The element size is defined as the smallest ball in which the element can be inscribed.
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3. Helmholtz problems

Recall that the Helmholtz problem is given by

∇2p+ k2p = 0 in Ω, (27)
∂np = g on Γ, (28)

where ∂n denotes the partial derivative in the normal direction, n, on the surface Γ .
For the exterior problem we must impose the Sommerfeld radiation condition [74]

∂p

∂r
− ikp = o

(
r−1

)
with r = |x| (29)

in order to restrict the field in the limit r →∞ uniformly in x̂ = x
r , such that no

waves originate from infinity (to obtain uniqueness of the solution p).
A common approach for solving unbounded scattering problems with the FEM

is to introduce an artificial boundary that encloses the scatterer. On the artificial
boundary some sort of absorbing boundary condition (ABC) is prescribed. The
problem is then reduced to a finite domain problem, and the bounded domain
between the scatterer and the artificial boundary can be discretized with finite
elements. Several methods exist for handling the exterior Helmholtz problem (on
unbounded domain), including

• the infinite element method (IEM) [75, 76]

• local differential ABC operators [77–80]

• the perfectly matched layer (PML) [81, 82]

• the boundary element method (BEM) [83–86]

• Dirichlet to Neumann-operators (DtN-operators) [87].

The initial formulation of the IEM assumed the artificial boundary to be a sphere.
This restriction results in unnecessary large computational domains for elongated
scatterers and is somewhat relaxed in the ellipsoidal formulation after Burnett [88,
89], in which the infinite elements are attached on an ellipsoid as in Figure 19.
These formulations are the ones used in the second paper of this thesis. A further
generalization of the artificial boundary was attempted in the work of Shirron and
Dey [90] where the artificial boundary may be any convex surface. For convex
scatterer this enables the infinite elements to be attached directly onto the scatterer
as in Figure 20. It is stated that this infinite element formulation preserves “the
accuracy (and convergence characteristics)” of the IEM. A statement which can
arguably be disputed as illustrated in the appendices as it very much so relies
on the geometry of the artificial boundary. However, the reduced computational



36 Introduction

r = r2

r = r3

r = γ

∞

Base of infinite element
at r = r1 = ra

Artificial boundary, Γa,
encapsulating the scatterer

Figure 19: An infinite element in a prolate spheroidal coordinate system.

Figure 20: An infinite element attached directly onto the scatterer (which is here
the BeTSSi model 3).
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domain and simpler construction of the artificial boundary may be a sufficient
compromise for the accuracy loss.

The approach based on ABC operators has developed in much the same way
as for the infinite elements with for example an artificial boundary of cigar shape
presented in [80]. Engineering precision (∼1%) may be obtained by simple second
order operators, but for higher accuracy the formulations becomes arguably more
tedious to implement compared to the IEM as higher order derivatives are required.
On the other hand, the conditioning of the system matrices for this approach
is better than that of the infinite element method. Several attempts have been
presented for the IEM to resolve the conditioning problem including [91–93]. In [93]
Safjan and Newman present basis functions with compact support (in the radial
direction) also outside of the artificial boundary. Combining this approach with
that of Shirron and Dey would be an approach to solve the conditioning problem
while at the same time having lots of freedom to construct the artificial boundary.

The problems outlined above are not present for the BEM approach. Addition-
ally, BEM comes with several advantages including reduction of problem dimension
(3D volume to 3D surface), no need to do surface-to-volume parametrization (thus,
especially suited for IGA), and automatic incorporation of the Sommerfeld radia-
tion condition. However, a host of new challenges arises. This includes fictitious
eigenfrequencies, singular integrals and fully dense system matrices. All of which
are presented in the third paper.

3.1. Far field pattern

The target strength (the quantity of interest) is defined in the far field and we
are only solving for the near field. The Helmholtz integral equation gives us a
convenient way to link these two fields.

If the field at the scatterer is known (i.e. after obtaining the solution nu-
merically), one can compute the solution in the exterior domain, Ω+, using the
following integral equation (cf. [86, Theorem 2.21])

p(x) =
∫

Γ

[
p(y)∂Φk(x,y)

∂n(y) − Φk(x,y)∂p(y)
∂n(y)

]
dΓ (y), x ∈ Ω+ (30)

where y is a point on the surface Γ , n lies on Γ pointing “into” Ω+ at y, and Φk
is the free space Green’s function for the Helmholtz equation in Eq. (27) given (in
3D) by

Φk(x,y) = eikR

4πR, where R = |x− y| (31)

with
∂Φk(x,y)
∂n(y) = Φk(x,y)

R
(ikR− 1) ∂R

∂n(y) .
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Using the limits (with x = x̂/r and r = |x|)

lim
r→∞ re

−ikrΦk(rx̂,y) = 1
4πe−ikx̂·y

lim
r→∞ re

−ikr ∂Φk(rx̂,y)
∂n(y) = − ik

4πe−ikx̂·yx̂ · n(y)
(32)

the formula in Eq. (30) simplifies in the far field to (cf. [72, p. 32])

p0(x̂) = − 1
4π

∫

Γ

[
ikp(y)x̂ · n(y) + ∂p(y)

∂n(y)

]
e−ikx̂·y dΓ (y). (33)

from which the target strength in Eq. (3) may be computed.

4. Spectral methods

One of the cornerstones for IGA is the ability to control the continuity, and it has
been proven to significantly increase the accuracy per degree of freedom (compared
to classical C0 FEM). The natural follow up question is then if it makes sense
to increase the continuity even further. This results in spectral methods and are
investigated in the following.

The main characteristics of the spectral methods considered in this section
is the spectral convergence properties. That is, instead of an error decreasing
algebraically as a function of the number of degrees of freedom (classical FEM
result), spectral convergence is exponential. However, this is strongly contingent
on the smoothness of the analytic solution. For this reason, spectral methods
would excel in the solution on scattering from a sphere compared to finite element
methods. The method of fundamental solution (MFS) involves basis functions
that are in C∞(Ω+) and will perform poorly on geometries with G0 continuities
(with kinks). The spectral element method is a hybrid version in the sense that it
may incorporate C0 continuities on the G0 lines of the geometry while maintaining
the C∞ continuity within each patch.

4.1. Spectral element method

The spectral element method [94] is investigated in more detail in the addendum
of this thesis where a comparison is made with IGA.

4.2. Method of fundamental solutions

Writing the solution as a sum of fundamental solutions of the Helmholtz equation
(given by Eq. (31)) with singular points at a set of unique points yj for j = 1, . . . , nsp
we have

p(x) =
nsp∑

j=1
CjΦk(x,yj) (34)
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where the source points yj will have to be located inside the scatterer. Note
that p will solve the Helmholtz equation in Ω+ and the Sommerfeld equation by
construction. Collocating the equation

∂p

∂n
= −∂pinc

∂n

at nsp collocation points xi, i = 1, . . . , n, we arrive at a system of equations

∂p

∂n(xi)

∣∣∣∣
x=xi

=
ncp∑

j=1
Cj

∂Φk
∂n(xi)

(xi,yj) = − ∂pinc
∂n(xi)

(xi) (35)

namely AC = B where the entries of A and B are given by

Aij = ∂Φk
∂n(x) (xi,yj) and Bi = −∂pinc

∂n
(xi).

Note that a convenient formula for the far field pattern is obtained for the pressure
in Eq. (34), namely (using the limits in Eq. (32))

p0(x̂) = 1
4π

ncp∑

j=1
Cje−ikx̂·yj .

That is, for the MFS there is no need to evaluate the far field through the Helmholtz
integral in Eq. (30).

The MFS is reviewed in [95]. The main advantages of MFS is the ease of
implementation as it requires no meshing and no handling of singular integrals. As
for the boundary element method, there is no need for introducing any artificial
boundary using the MFS. One of the main challenges with the MFS is the placement
of the source points yj which has impact on the conditioning of the system matrix
and the accuracy of the numerical solution. For smooth domains the accuracy
is increased by moving the source points away from the boundary with the cost
of increasing the condition number (as the source points will then need to be
clustered closer together). For well-behaved boundaries like the sphere, the location
of the source points can be placed uniformly along the boundary at some given
distance. For non-smooth boundaries these points would need to be adapted to
the behavior of the boundary. The location of the source points could be found
by solving Eq. (35) as a non-linear system of equation with unknowns yj and Cj .
Although the non-linearity of this approach is a weakness it can be handled by
existing software (for example MINPACK-1 [96]).

In Figure 21 the spectral convergence is illustrated and compared to the
algebraic convergence of finite elements. The finite element solution is here
represented as the best approximation (BA) solution where the analytic solution is
projected onto the solution space (here with polynomial order p̌ = 4). The method
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Figure 21: Rigid scattering on a unit sphere: A comparison between a spectral
method solution (method of fundamental solution) and a finite element solution
(best approximation).

of fundamental solution excels in such smooth problems but falls behind for more
complex non-smooth geometries like the BeTSSi submarine. Optimal accuracy is
obtained when the continuity of the solution space mirrors that of the physical
problem. The cost of such an approach is however less sparse global matrices (in
the case of MFS the global matrices are fully dense).

5. Summary of Papers

5.1. Paper I: Exact 3D scattering solutions for spherical symmetric scatterers

The first paper sets the stage for proper code development for acoustic scattering
problems as it presents a very general exact solution for spherical symmetric scat-
terers. These scatterers can consist of an arbitrary number of (concentric) elastic
shells, each shell with its own material parameters (outer and inner radii, mass
density, Youngs modulus and Poisson ratio). Correspondingly, the intermediate
fluid layers also have its own material parameters (mass density and speed of
sound). Moreover, in addition to the full acoustic structure interaction boundary
condition three other boundary conditions (BC) are implemented including sound
hard BC (rigid scattering), sound soft BC and a boundary condition modeling an
elastic sphere. All in all, the implemented program (in Matlab) enables a vast
range of benchmark tests for acoustic structure interaction problems.
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Several numerical examples are presented including verification to existing
benchmark examples. Numerical experiments of the residual error of the exact
solution are also performed showing that the error only originates from round-off
errors. Finally, two acoustic structure interaction problems in the time domain
are presented using a Fourier transform.

5.2. Paper II: Isogeometric Analysis of Acoustic Scattering using Infinite Elements

The second paper investigates the contribution of isogeometric analysis (IGA) to
acoustic structure interaction problems with the infinite element method. Four
infinite element formulations are investigated including the conjugate and unconju-
gated versions of both the Petrov–Galerkin formulation and the Bubnov–Galerkin
formulation.

Several numerical experiments on a spherical shell are performed and compared
to the exact solution presented in the first paper. In this test setting, the power of
the k-refinement strategy, unique to IGA, is clearly demonstrated. For resolved
meshes k-refinement leads to significantly higher accuracy with only a small increase
in the number of degrees of freedom.

A comparison between C0 finite element method (FEM) and IGA is also
performed. The exact geometry is of less importance in comparison with higher
order FEM, as the increase of inter-element continuity plays a much more significant
role in the accuracy improvement as a function of the number of degrees of freedom.

Finally, the performance of IGA with the infinite element using a prolate
ellipsoidal coordinate system is investigated on a stripped BeTSSi submarine
model.

5.3. Paper III: Isogeometric boundary element method

The third paper continues the active research on isogeometric boundary element
method (IGABEM), where the focus is to analyze the approximability of IGABEM
and application to complex geometries.

The usage of the infinite element method for handling the unbounded domain in
the second paper is by no means an obvious choice in acoustic scattering problems.
Indeed, many good candidates exist, and the boundary element method (BEM)
is such an option. The BEM is in particular intriguing in combination with IGA
as the bridging of CAD and analysis is improved; there is no need to mesh the
geometry between the scatterer and an artificial boundary since BEM only require
surface representation.

The approach in the numerical experiments taken in the second paper is also
used in this paper, as it establishes convincing results where analytic solutions
exist before moving onto more complex cases. Since BEM only require surface
representation, it is much easier to investigate complex geometries. And the outer
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hull of the BeTSSi submarine is in this regard investigated in depth and compared
to independent reference solutions.

The main conclusions from the usage of IGA in combination with the infinite
element method in the second paper also holds true for IGABEM. Moreover,
proper numerical integration of weakly singular integrals is investigated and shown
to be crucial for obtaining results close to the best approximation. Both the
collocation and Galerkin approach are used in combination with several boundary
integral equations (BIEs) including the conventional BIE (CBIE) and the Burton-
Miller formulation. The application of the latter formulation removes fictitious
eigenfrequencies with the cost of somewhat reduced accuracy compared to the
CBIE formulation. The application of IGABEM to the BeTSSi submarine posed
some problems for non-Lipschitz areas in the model but results with engineering
precision (< 1% error) are still obtained.

5.4. Paper IV: Isogeometric Kirchhoff approximation using numerical steepest
descent

The oscillatory nature of acoustic scattering problems is an intrinsic problem for
classical finite element technologies. The usual rule of thumb is a requirement of
10-12 degrees of freedom per wavelength. For high frequencies this requirement
becomes too restrictive, especially for 3D scattering problems. This problem is also
present for IGA even though it uses slightly less degrees of freedom per wavelength.
As a reference, requiring engineering precision at 30 kHz for the BeTSSi submarine
would require an estimate of 27 · 109 dofs of 3D IGA elements. Which is more
than a factor one thousand of the computational limit of the clusters available to
the author both in terms of memory and computational time. Clearly another
approach is needed.

The idea of enriching the basis functions with the same oscillatory nature
as the given problem has shown promising results [86, 97–99]. A big challenge
remaining on this front is the numerical integration (for 3D problems) as classical
quadrature also becomes too computationally expensive. As a step in the direction
of solving this problem, the fourth paper considers the simpler8 problem of using the
numerical steepest descent to evaluate the integrals of the Kirchhoff approximation
method.

The Kirchhoff approximation method is a high frequency approximation where
the solution at the boundary is approximated using a physical optics approximation.
The classical way of using this method is to tessellate the model into triangles
which enables exact integration. However, the number of required triangles is
not independent of the frequency, and results in high memory consumption at
high frequencies. This problem is avoided entirely with the proposed isogeometric

8Although it should be mentioned that the problem of integrating around the shadow boundary
with the numerical steepest descent is not present for the boundary element method.
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Kirchhoff approach where the boundary data are calculated on the exact CAD
model.
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[69] C. Giannelli, B. Jüttler, H. Speleers, THB-splines: The truncated basis for
hierarchical splines, Computer Aided Geometric Design, 29:485–498 (2012),
Geometric Modeling and Processing 2012.

[70] X. Wei, Y. Zhang, T. J. Hughes, M. A. Scott, Truncated hierarchical Cat-
mull–Clark subdivision with local refinement, Computer Methods in Applied
Mechanics and Engineering, 291:1–20 (2015).

[71] K. Gerdes, L. Demkowicz, Solution of 3D-Laplace and Helmholtz equations
in exterior domains using hp-infinite elements, Computer Methods in Applied
Mechanics and Engineering, 137:239–273 (1996).

[72] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, vol. 132 of
Applied Mathematical Sciences, Springer, New York, USA, 1998.

[73] J. Dölz, H. Harbrecht, M. Peters, An interpolation-based fast multipole method
for higher-order boundary elements on parametric surfaces, International
Journal for Numerical Methods in Engineering, 108:1705–1728 (2016).

[74] A. Sommerfeld, Partial differential equations in physics, vol. 1, Academic
press, 1949.

[75] P. Bettess, Infinite elements, International Journal for Numerical Methods in
Engineering, 11:53–64 (1977).

[76] P. Bettess, O. C. Zienkiewicz, Diffraction and refraction of surface waves using
finite and infinite elements, International Journal for Numerical Methods in
Engineering, 11:1271–1290 (1977).

[77] J. J. Shirron, Solution of exterior Helmholtz problems using finite and infinite
elements, Ph.D. thesis, University of Maryland College Park (1995).

[78] A. Bayliss, M. Gunzburger, E. Turkel, Boundary conditions for the numerical
solution of elliptic equations in exterior regions, SIAM Journal on Applied
Mathematics, 42:430–451 (1982).

[79] T. Hagstrom, S. Hariharan, A formulation of asymptotic and exact boundary
conditions using local operators, Applied Numerical Mathematics, 27:403–416
(1998), Special Issue on Absorbing Boundary Conditions.



References 51

[80] R. Tezaur, A. Macedo, C. Farhat, R. Djellouli, Three-dimensional finite
element calculations in acoustic scattering using arbitrarily shaped convex
artificial boundaries, International Journal for Numerical Methods in Engi-
neering, 53:1461–1476 (2001).

[81] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic
waves, Journal of Computational Physics, 114:185–200 (1994).

[82] J.-P. Berenger, Perfectly matched layer for the FDTD solution of wave-
structure interaction problems, IEEE Transactions on Antennas and Propa-
gation, 44:110–117 (1996).

[83] S. A. Sauter, C. Schwab, Boundary Element Methods, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011, pp. 183–287.

[84] M. Schanz, O. Steinbach, Boundary Element Analysis: Mathematical Aspects
and Applications, Lecture Notes in Applied and Computational Mechanics,
Springer Berlin Heidelberg, 2007.

[85] S. Marburg, B. Nolte, Computational Acoustics of Noise Propagation in
Fluids-Finite and Boundary Element Methods, vol. 578, Springer, 2008.

[86] S. N. Chandler-Wilde, I. G. Graham, S. Langdon, E. A. Spence, Numerical-
asymptotic boundary integral methods in high-frequency acoustic scattering,
Acta Numerica, 21:89–305 (2012).

[87] D. Givoli, Numerical methods for problems in infinite domains, vol. 33, Else-
vier, 2013.

[88] D. S. Burnett, A three-dimensional acoustic infinite element based on a
prolate spheroidal multipole expansion, The Journal of the Acoustical Society
of America, 96:2798–2816 (1994).

[89] D. S. Burnett, R. L. Holford, An ellipsoidal acoustic infinite element, Computer
Methods in Applied Mechanics and Engineering, 164:49–76 (1998).

[90] J. J. Shirron, S. Dey, Acoustic infinite elements for non-separable geometries,
Computer Methods in Applied Mechanics and Engineering, 191:4123–4139
(2002).

[91] D. Dreyer, O. von Estorff, Improved conditioning of infinite elements for exte-
rior acoustics, International Journal for Numerical Methods in Engineering,
58:933–953 (2003).

[92] A. Safjan, M. Newman, The ill-conditioning of infinite element stiffness
matrices, Computers & Mathematics with Applications, 41:1263–1291 (2001).



52 Introduction

[93] A. Safjan, M. Newman, Three-dimensional infinite elements utilizing basis
functions with compact support, Computers & Mathematics with Applications,
43:981–1002 (2002).

[94] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in
a channel expansion, Journal of Computational Physics, 54:468–488 (1984).

[95] G. Fairweather, A. Karageorghis, P. Martin, The method of fundamental
solutions for scattering and radiation problems, Engineering Analysis with
Boundary Elements, 27:759–769 (2003), Special issue on Acoustics.
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Abstract
In this paper, exact solutions to the problem of acoustic scattering by elastic
spherical symmetric scatterers are developed. The scatterer may consist of an
arbitrary number of fluid and solid layers and scattering with single Neumann
conditions (replacing Neumann-to-Neumann conditions) is added. The solution
is obtained by separation of variables, resulting in an infinite series which must
be truncated for numerical evaluation. The implemented numerical solution is
exact in the sense that numerical error is solely due to round-off errors, which
will be shown using the symbolic toolbox in MATLAB. A system of benchmark
problems is proposed for future reference. Numerical examples are presented,
including comparisons with reference solutions, far-field patterns and near-field
plots of the benchmark problems, and time-dependent solutions obtained by Fourier
transformation.

1. Introduction

Acoustic scattering by elastic objects is a continuing area of study. Most phenomena
in the scattering process can be adequately described by linear elasticity theory,
and by further restricting the analysis to homogeneous, isotropic bodies of simple
geometries, the mathematical formalism becomes simple enough to be handled by
conventional analytic methods.

The problems fall into mainly three categories: scattering of acoustic waves
from elastic objects, scattering of elastic waves from fluid-filled cavities and solid
inclusions, and inverse scattering, i.e., obtaining properties of a scattering object
from the remotely sensed field. In the first category, the classical problems include
scattering by spheres and infinite cylinders: fluid spheres [1], solid spheres and
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cylinders [2–7], and spherical and cylindrical shells with various combinations of
material properties [8–15]. Much of the work in this field up to around 1980, is
summarized in Flax et al. [16].

The surrounding medium is usually considered to be a lossless fluid, but viscous
fluids [17] and viscoelastic media and materials [18] are also considered.

The acoustic illumination is often taken to be a plane wave which is relevant
for far-field sources, otherwise point sources are applied in the near-field. For
the infinite cylinder, the incident field is in most cases applied normal to the
cylinder, but obliquely incident fields are also considered [19, 20]. More recently,
the problem of scattering of beams has received much attention [21, 22].

Solutions to some non-symmetric problems are also given; e.g. partially fluid
filled spheres [23], spheres with eccentric cavities [18], and open spheres with
internal point sources [24].

The studies mentioned above consider a single object in the free field. It is also
of interest to study interactions between objects, and between an object and a
boundary. The problem of multiple scattering is studied in e.g. [25] for two elastic
spheres, and in [26] for many fluid spheres, while the scattering by objects close to
boundaries, and by partially buried objects is addressed in [27].

Applications of the theory are numerous, and include scattering from marine
life [1, 28, 29], various aspects of sonar, nondestructive testing, seismology, detection
of buried objects [30], medical imaging [31], determination of material properties
by inverse scattering [32], and acoustic cloaking. Acoustic cloaking, i.e., making
an object acoustically ’invisible’, requires acoustic metamaterials and is difficult
to realize in practice, but reducing the backscattering strength of an object is
an important issue, and can be realized either passively by coating or actively
as suggested in e.g. [33]. A recent area of research is noise control in aerospace-
and automotive engineering, where sound transmission through cylindrical shells
constructed from new composite materials [34] and functionally graded materials
[20] are studied in order to reduce noise level inside the cabin. The latter problem
requires a full 3D solution.

The method referred to as classical scattering theory starts with the linearized
elasto-dynamic equation of motion (also called Naviers equation). For the intended
applications, nonlinear effects are negligible, which justifies the use of the linear
approximation. For a certain class of coordinate systems, the field can be expressed
in terms of three scalar potentials, which satisfy scalar Helmholtz equations, and
admit solutions in the form of infinite series, termed normal modes or partial
waves. The formal series expansions contain all the physical features of the solution,
i.e., the reflected, transmitted and circumferential (or creeping) waves. The most
general problems on finite scatterers in free space are scattering by the spherical
shells which requires all three potentials and give solutions in terms of double
sums. However, assuming axisymmetric illumination there is no loss of generality
in aligning the coordinate axis of the sphere with the axis of the incident field,
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resulting in an axisymmetric problem. This results in a single infinite series which
is much more computational efficient than the general case. This is the approach
taken here.

As the solution is in the form of an infinite series, it needs to be truncated
at some point. The summation is terminated when the relative magnitude of
the last term is less than some prescribed tolerance, such that no computational
parameters are introduced if this tolerance is chosen to be the precision used in the
calculations (typically double precision). It is shown, by using symbolic precision
in MATLAB, that the computational errors in the implementation are due to
round-off errors. This is a natural definition of a computational exact solution.

The work reviewed above solves a host of different problems, and several
reference solutions are available, with complexity up to three layers. What the
present work provides is the explicit solution for a fully general multilayered sphere,
and with corresponding analysis of the computational residual errors. This allows
easy design and modeling of reference solutions for the purpose of validating
numerical methods. More specific, the model solves the problem of scattering by
an incident plane wave, or wave from a point source, by spherical objects consisting
of an arbitrary number of layers. Any combinations of fluid and solid layers can be
handled, and the special cases of replacing the Neumann-to-Neumann condition
by a single Neumann condition is also included.

An early work on scattering from multilayered spheres and infinite cylinders
is Jenserud and Tollefsen [35]. The method employed here is referred to as the
global matrix method [36] and is a systematic way of assembling local solutions
for the individual layers into a global matrix for the total problem. The present
work uses the same approach and builds mainly upon the work of Chang and
Demkowicz [13], which is generalized to multilayered spherical objects.

2. Governing equations

In this section the governing equations for the problem at hand will be presented.
In [37, pp. 13-14] Ihlenburg briefly derives the governing equations for the acoustic-
structure interaction problem. As the physical problem of interest is a time
dependent problem, it is natural to first present the governing equations in the
time-domain before presenting the corresponding equations in the frequency domain
(obtained by Fourier transformation). It is noted right away that the fields described
in this paper (both in the time-domain and frequency-domain) are all perturbation
fields.

2.1. Governing equations in the time domain

Einstein’s summation convention will be used throughout this work, such that
repeated indices in products imply summation. For example, any vector x ∈ R3
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Outermost (unbounded) fluid domain with

parameters ρf,1, cf,1

First solid domain with
parameters ρs,1, E1, ν1, R0,1, R1,1

Second fluid domain with
parameters ρf,2, cf,2

Second solid domain with
parameters ρs,2, E2, ν2, R0,2, R1,2

Third fluid domain with
parameters ρf,3, c3

Third solid domain with
parameters ρs,M , EM , νM , R0,M , R1,M

Innermost fluid domain with
parameters ρf,M+1, cf,M+1

Figure 1: A model with M = 3 steel shells with different thicknesses (clip view),
illustrating the distribution of the physical parameters over the different domains.

can be expressed as

x =



x1
x2
x3


 =

3∑

i=1
xiei = xiei, (1)

where ei ∈ R3 is the standard basis vectors in a three-dimensional Euclidean space.
Let ŭ = ŭiei be the time-dependent displacement field in a given solid domain,

and σ̆ the corresponding stress tensor (see Appendix B for details). Each of the
components depend on the spatial variable x and the time variable t, such that
ŭ = ŭ(x, t). The solid domain is then governed by Navier’s equation of motion [15]
(derived from Newton’s second law)

G∇2ŭ+
(
K + G

3

)
∇(∇ · ŭ) = ρs

∂2ŭ

∂t2
, (2)

which is equivalent to [38, p. 223]

∂σ̆ij
∂xj

= ρs
∂2ŭi
∂t2

, i = 1, 2, 3. (3)

The bulk modulus, K, and the shear modulus, G, can be defined by the Young’s
modulus, E, and Poisson’s ratio, ν, as

K = E

3(1− 2ν) and G = E

2(1 + ν) . (4)
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Correspondingly, denote by p̆ the time-dependent scattered pressure field in a
given fluid domain, which is governed by the wave equation

∇2p̆ = 1
c2

f

∂2p̆

∂t2
. (5)

2.2. Governing equations in the frequency domain

The dimension of the governing equations may be reduced by one using a time–
frequency Fourier1 pair [40, p. 71]

Ψ(x, ω) =
(
F Ψ̆(x, ·)

)
(ω) =

∫ ∞

−∞
Ψ̆(x, t)eiωt dt (6)

Ψ̆(x, t) =
(
F−1 Ψ(x, ·)

)
(t) = 1

2π

∫ ∞

−∞
Ψ(x, ω)e−iωt dω (7)

where Ψ represents the scattered pressure field p or the displacement field u. The
frequency f and the angular frequency ω is related by ω = 2πf , and the angular
wave number is given by k = ω/cf .

Consider first the scattered pressure. By differentiating Eq. (7) twice with
respect to time, such that

∂2

∂t2
p̆(x, t) = −ω2p̆(x, t), (8)

the following is obtained (using Eq. (5))

∇2p(x, ω) + k2p(x, ω) =
∫ ∞

−∞
∇2p̆(x, t)eiωt dt+

∫ ∞

−∞
k2p̆(x, t)eiωt dt

=
∫ ∞

−∞

[
∇2p̆(x, t)− 1

c2
f

∂2

∂t2
p̆(x, t)

]
eiωt dt = 0.

That is, p(x, ω) satisfies the Helmholtz equation

∇2p+ k2p = 0. (9)

A corresponding argument shows that the displacement field u(x, ω) satisfies

G∇2u+
(
K + G

3

)
∇(∇ · u) + ρsω

2u = 0. (10)

The scattered pressure, p, must in addition to the Helmholtz equation satisfy the
Sommerfeld radiation condition for the outermost fluid layer [42]

∂p(x, ω)
∂r

− ikp(x, ω) = o
(
r−1

)
r = |x| (11)

1The sign convention in the Fourier transform differs from the classical Fourier transform [39],
but agrees with most literature on the subject, for example [15, 37, 40, 41].
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as r →∞ uniformly in x̂ = x
r .

The coupling conditions (Neumann-to-Neumann) between the solid and the
fluid boundaries are given by [37, pp. 13-14]

ρfω
2uini −

∂ptot
∂n

= 0 (12)

σijninj + ptot = 0 (13)

where n is the normal vector at the surface, and ptot is the total pressure2 (scattered
pressure with the incident pressure field added for the outermost fluid). In addition,
since the fluid is assumed to be ideal, there is no tangential traction at the surfaces.
For spherical symmetric objects n = er, such that the coupling equations reduces
to

ρfω
2ur −

∂ptot
∂r

= 0 (14)

σrr + ptot = 0 (15)

in the spherical coordinate system (see Appendix A). The tangential traction free
boundary conditions become [13, p. 15]

σrϑ = 0 (16)
σrϕ = 0. (17)

3. General solution in the solid domain

It turns out that Navier’s equation can be reduced to a set of Helmholtz equations.
Since the fluid domain also is governed by the Helmholtz equation, both solid and
fluid domains share the same fundamental solutions, and it thus suffices to present
the general solution in the solid domain.

3.1. Lamé solution

Fender [15] shows that the solution of Eq. (10) can be written in terms of a scalar
potential φ and a vector potential ψ as follows

u = ∇φ+∇×ψ. (18)

Such a solution of Navier’s equation is called a Lamé solution. The potentials φ
and ψ satisfy the scalar and vector Helmholtz equation, respectively. That is,

∇2φ+ a2φ = 0 (19)
∇2ψ + b2ψ = 0 (20)

2Since only perturbation fields are considered, ptot does not include the static background
pressure (and does therefore not represent the physical total pressure field).
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where

a = ω

cs,1
, b = ω

cs,2
, cs,1 =

√
3K + 4G

3ρs
, cs,2 =

√
G

ρs
. (21)

Here, the parameters cs,1 and cs,2 are the longitudinal and transverse (elastic) wave
velocities, respectively, and a and b are the corresponding angular wave numbers
in the solid.

Throughout this work, axisymmetry around the x3-axis is assumed. Assuming
symmetry around this particular axis causes no loss of generality, as both the
incident wave and the spherical shell share this symmetry property (a simple or-
thogonal transformation restores the generality of axisymmetry about an arbitrary
axis). In the spherical coordinate system, the pressure p and the displacement
u are then independent of the azimuth angle ϕ in the fluid and solid domains,
respectively. Moreover, the solid component in the azimuth angle direction is zero,
uϕ = 0. This is a result of the axisymmetry of the problem.

3.2. Series representation using separation of variables

Using these assumptions Fender [15] shows that ψ = ψϕeϕ, such that when
Eqs. (19) and (20) are expanded in terms of spherical coordinates, the following is
obtained (using Eqs. (A.22) and (A.24))

∂

∂r

(
r2∂φ

∂r

)
+ 1

sinϑ
∂

∂ϑ

(
sinϑ∂φ

∂ϑ

)
+ (ar)2φ = 0 (22)

∂

∂r

(
r2∂ψϕ

∂r

)
+ 1

sinϑ
∂

∂ϑ

(
sinϑ∂ψϕ

∂ϑ

)
+
[
(br)2 − 1

sin2 ϑ

]
ψϕ = 0. (23)

Using separation of variables, each of these equations can be reduced to a couple of
spherical Bessel and Legendre equations, with the associate Legendre polynomials
of zero and first order (described in Subsection C.1) and spherical Bessel functions
(described in Subsection C.2) as solutions. More explicitly,

φ(r, ϑ) =
∞∑

n=0
Pn(cosϑ)

[
A(1)
n jn(ar) +A(2)

n yn(ar)
]

(24)

ψϕ(r, ϑ) =
∞∑

n=0
P1
n(cosϑ)

[
B(1)
n jn(br) +B(2)

n yn(br)
]

(25)

where the coefficients A(i)
n , B

(i)
n ∈ C, i = 1, 2, are chosen such that the boundary

conditions are satisfied.
By using Eq. (C.6) these functions and their partial derivatives will have their

ϑ-dependency contained in functions of the form (the ones relevant for this work
are listed in Eq. (C.8))

Q(j)
n (ϑ) = dj

dϑj Pn(cosϑ). (26)
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That is, there is no need for the associated Legendre polynomials.
For ease of notation, the function Z(i)

n (ζ), i = 1, 2, is introduced (as in [13, 14]),
where

Z(1)
n (ζ) = jn(ζ), Z(2)

n (ζ) = yn(ζ). (27)
Moreover, the notation ξ = ξ(r) = ar and η = η(r) = br is used for convenience.
Using the Einstein summation convention, Eqs. (24) and (25) may now be rewritten
as

φ(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)A(i)

n Z
(i)
n (ξ) (28)

ψϕ(r, ϑ) =
∞∑

n=0
Q(1)
n (ϑ)B(i)

n Z(i)
n (η). (29)

3.3. Expressions for the displacement and stress field

By expanding Eq. (18) in spherical coordinates (using Eqs. (A.21) and (A.25))
yields

u = ∇φ+∇×ψ = ∂φ

∂r
er + 1

r

∂φ

∂ϑ
eϑ + 1

r sinϑ
∂

∂ϑ
(ψϕ sinϑ)er−

1
r

∂

∂r
(rψϕ)eϑ (30)

such that
ur = ∂φ

∂r
+ 1
r

∂ψϕ
∂ϑ

+ 1
r
ψϕ cotϑ (31)

and
uϑ = 1

r

∂φ

∂ϑ
− ∂ψϕ

∂r
− 1
r
ψϕ. (32)

Insertion of Eqs. (28) and (29) (using Eqs. (C.4), (C.6) and (C.27)) yields

ur = 1
r

∞∑

n=0
Q(0)
n (ϑ)

[
A(i)
n S

(i)
1,n(ξ) +B(i)

n T
(i)
1,n(η)

]
(33)

and
uϑ = 1

r

∞∑

n=0
Q(1)
n (ϑ)

[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]
(34)

where

S
(i)
1,n(ξ) = ξ

d
dξ Z

(i)
n (ξ) = nZ(i)

n (ξ)− ξZ(i)
n+1(ξ)

T
(i)
1,n(η) = −n(n+ 1)Z(i)

n (η)

S
(i)
2,n(ξ) = Z(i)

n (ξ)

T
(i)
2,n(η) = −Z(i)

n (η)− η d
dη Z

(i)
n (η) = −(n+ 1)Z(i)

n (η) + ηZ
(i)
n+1(η).
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To compute the stresses defined in Appendix A, the partial derivatives of the
displacement field in the spherical coordinate system are needed. These derivatives
are found to be (using Eqs. (C.14), (C.26) and (C.27))

∂ur
∂r

= 1
r2

∞∑

n=0
Q(0)
n (ϑ)

[
A(i)
n S

(i)
3,n(ξ) +B(i)

n T
(i)
3,n(η)

]
(35)

∂uϑ
∂r

= 1
r2

∞∑

n=0
Q(1)
n (ϑ)

[
A(i)
n S

(i)
4,n(ξ) +B(i)

n T
(i)
4,n(η)

]
(36)

∂ur
∂ϑ

= 1
r

∞∑

n=0
Q(1)
n (ϑ)

[
A(i)
n S

(i)
1,n(ξ) +B(i)

n T
(i)
1,n(η)

]
(37)

∂uϑ
∂ϑ

= 1
r

∞∑

n=0
Q(2)
n (ϑ)

[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]
(38)

where

S
(i)
3,n(ξ) = ξ

d
dξ S

(i)
1,n(ξ)− S(i)

1,n(ξ) = (n2 − ξ2 − n)Z(i)
n (ξ) + 2ξZ(i)

n+1(ξ)

T
(i)
3,n(η) = η

d
dη T

(i)
1,n(η)− T (i)

1,n(η) = −n(n+ 1)
[
(n− 1)Z(i)

n (η)− ηZ(i)
n+1(η)

]

S
(i)
4,n(ξ) = ξ

d
dξ Z

(i)
n (ξ)− Z(i)

n (ξ) = (n− 1)Z(i)
n (ξ)− ξZ(i)

n+1(ξ)

T
(i)
4,n(η) = η

d
dη T

(i)
2,n(η)− T (i)

2,n(η) = (η2 − n2 + 1)Z(i)
n (η)− ηZ(i)

n+1(η).

Using Eqs. (B.8) and (B.9), and the relation3

1
2

(
b

a

)2
= 2

3 + K

2G (39)

the following formulas for the stress field components are obtained4

σrr = 2G
r2

∞∑

n=0
Q(0)
n (ϑ)

[
A(i)
n S

(i)
5,n(ξ) +B(i)

n T
(i)
5,n(η)

]
(40)

σϑϕ = 0 (41)
σrϕ = 0 (42)

3This relation is obtained by inserting the definition of the angular wave numbers a and b
(Eq. (21)) into the left-hand side.

4One can save some work by observing the similarities between σϑϑ and σϕϕ

σϑϑ = 2
r

(
K + G

3

)
ur +

(
K − 2G

3

)
∂ur

∂r
+ 3K − 2G

3r

(
uϑ cotϑ+ ∂uϑ

∂ϑ

)
+ 2G

r

∂uϑ
∂ϑ

σϕϕ = 2
r

(
K + G

3

)
ur +

(
K − 2G

3

)
∂ur

∂r
+ 3K − 2G

3r

(
uϑ cotϑ+ ∂uϑ

∂ϑ

)
+ 2G

r
uϑ cotϑ.
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σϑϑ = 2G
r2

∞∑

n=0

{
Q(0)
n (ϑ)

[
A(i)
n S

(i)
6,n(ξ) +B(i)

n T
(i)
6,n(η)

]

+Q(2)
n (ϑ)

[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]}
(43)

σϕϕ = 2G
r2

∞∑

n=0

{
Q(0)
n (ϑ)

[
A(i)
n S

(i)
6,n(ξ) +B(i)

n T
(i)
6,n(η)

]

+Q(1)
n (ϑ) cot(ϑ)

[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]}
(44)

σrϑ = 2G
r2

∞∑

n=0
Q(1)
n (ϑ)

[
A(i)
n S

(i)
7,n(ξ) +B(i)

n T
(i)
7,n(η)

]
(45)

where

S
(i)
5,n(ξ) = 1

2G

[(
K + 4G

3

)
S

(i)
3,n(ξ)−

(
K − 2G

3

)
n(n+ 1)Z(i)

n (ξ)

+2
(
K − 2G

3

)
S

(i)
1,n(ξ)

]

=
[
n2 − n− 1

2

(
b

a

)2
ξ2
]
Z(i)
n (ξ) + 2ξZ(i)

n+1(ξ)

T
(i)
5,n(η) = 1

2G

[(
K + 4G

3

)
T

(i)
3,n(η)−

(
K − 2G

3

)
n(n+ 1)T (i)

2,n(η)

+2
(
K − 2G

3

)
T

(i)
1,n(η)

]

= −n(n+ 1)
[
(n− 1)Z(i)

n (η)− ηZ(i)
n+1(η)

]

S
(i)
6,n(ξ) = −

(
K

2G −
1
3

)
n(n+ 1)S(i)

2,n(ξ) +
(1

3 + K

G

)
S

(i)
1,n(ξ) +

(
K

2G −
1
3

)
S

(i)
3,n(ξ)

=
[
n− 1

2

(
b

a

)2
ξ2 + ξ2

]
Z(i)
n (ξ)− ξZ(i)

n+1(ξ)

T
(i)
6,n(η) = −

(
K

2G −
1
3

)
n(n+ 1)T (i)

2,n(η) +
(1

3 + K

G

)
T

(i)
1,n(η) +

(
K

2G −
1
3

)
T

(i)
3,n(η)

= −n(n+ 1)Z(i)
n (η)

S
(i)
7,n(ξ) = 1

2
[
S

(i)
1,n(ξ) + S

(i)
4,n(ξ)− S(i)

2,n(ξ)
]

= (n− 1)Z(i)
n (ξ)− ξZ(i)

n+1(ξ)

T
(i)
7,n(η) = 1

2
[
T

(i)
1,n(η) + T

(i)
4,n(η)− T (i)

2,n(η)
]

= −
(
n2 − 1− 1

2η
2
)
Z(i)
n (η)− ηZ(i)

n+1(ξ).

(46)
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3.4. Validation of the displacement and stress formulas

The correctness of the formulas may be controlled by considering Navier’s equation
(Eq. (10)) in spherical coordinates. The three components of Navier’s equation
in spherical coordinates are given in Eqs. (B.10) to (B.12), the last of which is
automatically satisfied due to the symmetry assumptions. The first two equations
simplify to

∂σrr
∂r

+ 1
r

∂σrϑ
∂ϑ

+ 1
r

(2σrr − σϑϑ − σϕϕ + σrϑ cotϑ) + ω2ρsur = 0 (47)

and
∂σrϑ
∂r

+ 1
r

∂σϑϑ
∂ϑ

+ 1
r

[(σϑϑ − σϕϕ) cotϑ+ 3σrϑ] + ω2ρsuϑ = 0. (48)

Differentiation of the stress field components yields

∂σrr
∂r

= 2G
r3

∞∑

n=0
Q(0)
n (ϑ)

[
A(i)
n S

(i)
8,n(ξ) +B(i)

n T
(i)
8,n(η)

]

∂σϑϑ
∂ϑ

= 2G
r2

∞∑

n=0

{
Q(1)
n (ϑ)

[
A(i)
n S

(i)
6,n(ξ) +B(i)

n T
(i)
6,n(η)

]

+Q(3)
n (ϑ)

[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]}

∂σrϑ
∂r

= 2G
r3

∞∑

n=0
Q(1)
n (ϑ)

[
A(i)
n S

(i)
9,n(ξ) +B(i)

n T
(i)
9,n(η)

]

∂σrϑ
∂ϑ

= 2G
r2

∞∑

n=0
Q(2)
n (ϑ)

[
A(i)
n S

(i)
7,n(ξ) +B(i)

n T
(i)
7,n(η)

]

where

S
(i)
8,n(ξ) = −2S(i)

5,n(ξ) + ξ
d
dξ S

(i)
5,n(ξ)

=
[
n3 − 3n2 + 2n− n

2

(
b

a

)2
ξ2 + 2ξ2

]
Z(i)
n (ξ)

+
[
−n2 − n− 6 + 1

2

(
b

a

)2
ξ2
]
ξZ

(i)
n+1(ξ)

T
(i)
8,n(η) = −2T (i)

5,n(η) + η
d
dη T

(i)
5,n(η)

= n(n+ 1)
[(
−n2 + 3n− 2 + η2

)
Z(i)
n (η)− 4ηZ(i)

n+1(η)
]

S
(i)
9,n(ξ) = −2S(i)

7,n(ξ) + ξ
d
dξ S

(i)
7,n(ξ)

=
[
n2 − 3n+ 2− ξ2

]
Z(i)
n (ξ) + 4ξZ(i)

n+1(ξ)
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T
(i)
9,n(η) = −2T (i)

7,n(η) + η
d
dη T

(i)
7,n(η)

=
(
−n3 + 2n2 + n− 2 + n

2 η
2 − η2

)
Z(i)
n (η)

+
(
n2 + n+ 2− 1

2η
2
)
ηZ

(i)
n+1(η).

Inserting these expressions (alongside the stress components in Eqs. (40) to (45))
into Eqs. (47) and (48) and using Eqs. (C.14) and (C.15), and observing that

∂σϑϑ
∂ϑ

+ (σϑϑ − σϕϕ) cotϑ = 2G
r2

∞∑

n=0
Q(1)
n (ϑ)

{
A(i)
n S

(i)
6,n(ξ) +B(i)

n T
(i)
6,n(η)

+
(
−n2 − n+ 1

)[
A(i)
n S

(i)
2,n(ξ) +B(i)

n T
(i)
2,n(η)

]}
,

the left-hand side of Eq. (47) and Eq. (48) are indeed equal to zero.

4. Establishing constraints from boundary conditions

As the solution is represented as an infinite sum, the coefficients A(i)
m,n, B(i)

m,n and
C

(i)
m,n (coefficients from the fluid domains described below) must be computed

for each n (see Figure 2). By enforcing the boundary conditions in Eqs. (14)
and (15) at each surface, constraints are developed to establish expressions for
these coefficients.

4.1. Notation for the solution in layered domains

For the mth solid shell the displacement field from Eqs. (33) and (34) is written as

um = ur,mer + uϑ,meϑ (49)

where

ur,m(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)ur,m,n(r) (50)

uϑ,m(r, ϑ) =
∞∑

n=0
Q(1)
n (ϑ)uϑ,m,n(r) (51)

and

ur,m,n(r) = 1
r

[
A(i)
m,nS

(i)
1,n(amr) +B(i)

m,nT
(i)
1,n(bmr)

]
(52)

uϑ,m,n(r) = 1
r

[
A(i)
m,nS

(i)
2,n(amr) +B(i)

m,nT
(i)
2,n(bmr)

]
. (53)
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Outermost (unbounded) fluid domain with

coefficients C
(1)
1,n

First solid domain with

coefficients A
(i)
1,n and B

(i)
1,n, i = 1, 2

Second fluid domain with

coefficients C
(i)
2,n, i = 1, 2

Second solid domain with

coefficients A
(i)
2,n and B

(i)
2,n, i = 1, 2

Third fluid domain with

coefficients C
(i)
3,n, i = 1, 2

Third solid domain with

coefficients A
(i)
3,n and B

(i)
3,n, i = 1, 2

Innermost fluid domain with

coefficients C
(1)
M+1,n

Figure 2: A model with M = 3 steel shells with different thicknesses (clip view),
illustrating the distribution of the coefficients A(i)

m,n, B(i)
m,n and C

(i)
m,n over the

different domains.

Corresponding expressions for the stress field in Eq. (46) are obtained as

σrr,m(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)σrr,m,n(r) (54)

σϑϑ,m(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)σ(1)

ϑϑ,m,n(r) +Q(2)
n (ϑ)σ(2)

ϑϑ,m,n(r) (55)

σϕϕ,m(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)σ(1)

ϕϕ,m,n(r) +Q(1)
n (ϑ) cot(ϑ)σ(2)

ϕϕ,m,n(r) (56)

σrϕ,m(r, ϑ) = 0 (57)
σϑϕ,m(r, ϑ) = 0 (58)

σrϑ,m(r, ϑ) =
∞∑

n=0
Q(1)
n (ϑ)σrϑ,m,n(r) (59)

where

σrr,m,n(r) = 2Gm
r2

[
A(i)
m,nS

(i)
5,n(amr) +B(i)

m,nT
(i)
5,n(bmr)

]

σ
(1)
ϑϑ,m,n(r) = 2Gm

r2

[
A(i)
m,nS

(i)
6,n(amr) +B(i)

m,nT
(i)
6,n(bmr)

]

σ
(2)
ϑϑ,m,n(r) = 2Gm

r2

[
A(i)
m,nS

(i)
2,n(amr) +B(i)

m,nT
(i)
2,n(bmr)

]
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σ
(1)
ϕϕ,m,n(r) = 2Gm

r2

[
A(i)
m,nS

(i)
6,n(amr) +B(i)

m,nT
(i)
6,n(bmr)

]

σ
(2)
ϕϕ,m,n(r) = 2Gm

r2

[
A(i)
m,nS

(i)
2,n(amr) +B(i)

m,nT
(i)
2,n(bmr)

]

σrϑ,m,n(r) = 2Gm
r2

[
A(i)
m,nS

(i)
7,n(amr) +B(i)

m,nT
(i)
7,n(bmr)

]
.

The solution to the Helmholtz equation in the mth fluid domain (for 2 6 m 6
M) has the same general form as φ in Eq. (28)

pm(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)C(i)

m,nZ
(i)
n (kmr) (60)

where the coefficients C(i)
m,n ∈ C are chosen such that the boundary conditions are

satisfied. As the spherical Hankel functions of first and second kind (described in
Subsection C.2) are linear combinations of the spherical Bessel functions of first and
second kind, the general solution can be written in terms of these functions. For
the outer (unbounded) fluid the Hankel function of the second kind is eliminated
due to the Sommerfeld radiation condition in Eq. (11) [37, p. 26]. Thus, for the
outermost fluid, the scattered pressure field is given by

p1(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)C(1)

1,nh(1)
n (k1r). (61)

Moreover, it is required that the pressure in the innermost fluid domain is
bounded [15, p. 10]. Hence, the coefficients C(2)

M+1,n must be set to zero as
the spherical Bessel function of second kind is unbounded at the origin. The
pressure in the innermost fluid is therefore given by (cf. [15, p. 10])

pM+1(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)C(1)

M+1,njn(kM+1r). (62)

The total pressure in the mth fluid domain shall be denoted by

ptot,m =
{
p1 + pinc m = 1
pm otherwise

(63)

where pinc is the incident wave.
If the coefficients A(i)

m,n, B(i)
m,n and C(i)

m,n can be determined, the solution is fully
determined in all domains. Hence, a system of equations will be developed to find
these coefficients. Indeed, at the boundaries (at a fixed radius) the series can all
be written in terms of the Legendre functions Pn(cosϑ), such that the resulting
coefficients can be compared for each n. A term in the solution is often referred to
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as a mode, such that the resulting constraints from the boundary conditions form
a set of modal equations. The terminology comes from the vibration analysis [13],
where each of these modes represent vibration modes. For example, ur,m,n is
referred to be the radial displacement in the mth solid domain in the nth mode.

4.2. Tangential traction conditions

Eq. (17) is automatically fulfilled due to the axisymmetric assumption. For the mth

shell, evaluating Eq. (16) at both the inner and outer radius, yields two equations

σrϑ,m,n(Rj,m, ϑ) = 0, j = 0, 1. (64)

As Q(1)
0 (ϑ) = 0, these equations are automatically satisfied for n = 0. In addition,

since T (i)
1,0(η) = 0 and T

(i)
6,0(η) = 0, the coefficients B(i)

m,0 are redundant (which is
convenient, as two constraints are lost in this case).

Denote by H(1)
m,n, m = 1, . . . ,M , the eigenfrequency matrix5 [13, p. 17] of the

mth shell

H(1)
m,n =




S
(1)
5,n(amR0,m) S

(2)
5,n(amR0,m) T

(1)
5,n(bmR0,m) T

(2)
5,n(bmR0,m)

S
(1)
7,n(amR0,m) S

(2)
7,n(amR0,m) T

(1)
7,n(bmR0,m) T

(2)
7,n(bmR0,m)

S
(1)
7,n(amR1,m) S

(2)
7,n(amR1,m) T

(1)
7,n(bmR1,m) T

(2)
7,n(bmR1,m)

S
(1)
5,n(amR1,m) S

(2)
5,n(amR1,m) T

(1)
5,n(bmR1,m) T

(2)
5,n(bmR1,m)



, (65)

for n > 0, and

H
(1)
m,0 =

[
S

(1)
5,0(amR0,m) S

(2)
5,0(amR0,m)

S
(1)
5,0(amR1,m) S

(2)
5,0(amR1,m)

]
, (66)

for n = 0. From Eqs. (54) and (59) one observes that the first and the last row
of H(1)

m,n correspond to σrr,m,n(r) at r = R0,m and r = R1,m, respectively, and
the second and third row (for n > 0) correspond to σrϑ,m,n(r) at r = R0,m and
r = R1,m, respectively. The notation H

(1)
ij,m,n, will be used for the elements of the

matrices H(1)
m,n.

For n > 0, the two conditions in Eq. (64) may be written as

H
(1)
21,m,nA

(1)
m,n +H

(1)
22,m,nA

(2)
m,n +H

(1)
23,m,nB

(1)
m,n +H

(1)
24,nB

(2)
m,n = 0 (67)

H
(1)
31,m,nA

(1)
m,n +H

(1)
32,m,nA

(2)
m,n +H

(1)
33,m,nB

(1)
m,n +H

(1)
34,m,nB

(2)
m,n = 0. (68)

This gives (for each n) 2M equations in terms of the 6M unknown coefficients
A

(i)
m,n, B(i)

m,n and C
(i)
m,n, i = 1, 2. Thus, an additional 4M equations are needed to

5As illustrated in [13], the matrix H
(1)
m,n represent the modal characteristic equations of the

mth shell. That is, the eigenfrequencies of each shell can be found by solving detH(1)
m,n = 0 in

terms of the frequency.
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determine these coefficients. These equations come from the coupling conditions
in Eqs. (14) and (15) (displacement condition and pressure condition, respectively)
which are applied at the outer and inner radius of each shell. The outermost and
innermost fluid domains will have to be considered separately.

4.3. Displacement and pressure condition in intermediate fluid layers

Consider the mth fluid domain, with 2 6 m 6 M , where the pressure field is
given by Eq. (60). Inserting Eqs. (50) and (60) into the displacement condition in
Eq. (14) at r = R1,m−1, R0,m, yields

ρf,mω
2

Rj,m−j

[
A

(i)
m−j,nS

(i)
1,n(am−jRj,m−j) +B

(i)
m−j,nT

(i)
1,n(bm−jRj,m−j)

]

− km
[
C(1)
m,nj′n(kmRj,m−j) + C(2)

m,ny
′
n(kmRj,m−j)

]
= 0

which yield the relation

H
(4,j)
1,m−j,nA

(1)
m−j,n +H

(4,j)
2,m−j,nA

(2)
m−j,n +H

(4,j)
3,m−j,nB

(1)
m−1,n +H

(4,j)
4,m−j,nB

(2)
m−1,n

+H
(3,j)
i,m,nC

(i)
m,n = 0, (69)

for j = 0, 1, where

H
(4,j)
1,m,n = S

(1)
1,n(amRj,m), H

(4,j)
2,m,n = S

(2)
1,n(amRj,m),

H
(4,j)
3,m,n = T

(1)
1,n(bmRj,m), H

(4,j)
4,m,n = T

(2)
1,n(bmRj,m),

(70)

and (using Eq. (C.27) to rewrite the derivative of the Bessel functions)

H
(3,j)
i,m,n = − 1

ρf,mω2

[
nZ(i)

n (ζ)− ζZ(i)
n+1(ζ)

]∣∣∣
ζ=kmRj,m−j

. (71)

Correspondingly, inserting Eqs. (54) and (62) into Eq. (15) at r = R1,m−1, R0,m
yields

2Gm−j
R2
j,m−j

[
A

(i)
m−j,nS

(i)
5,n(am−jRj,m−j) +B

(i)
m−j,nT

(i)
5,n(bm−jRj,m−j)

]

+ C(i)
m,nZ

(i)
n (kmRj,m−j) = 0

which can be rewritten as

H
(1)
11,m−j,nA

(1)
m−j,n +H

(1)
12,m−j,nA

(2)
m−j,n +H

(1)
13,m−j,nB

(1)
m−j,n +H

(1)
14,m−j,nB

(2)
m−j,n

+H
(2,j)
i,m,nC

(i)
m,n = 0 (72)

where
H

(2,j)
i,m,n =

R2
j,m−j

2Gm−j
Z(i)
n (kmRj,m−j). (73)
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4.4. Displacement and pressure condition in the outermost fluid

It is assumed that the incident wave, pinc(x, ω), and its normal derivative at the
outermost solid surface can be written on the form

pinc
∣∣∣
r=R0,1

=
∞∑

n=0
F (1)
n Pn(cosϑ),

∂pinc
∂r

∣∣∣
r=R0,1

=
∞∑

n=0
F (2)
n Pn(cosϑ),

(74)

respectively. The coefficients F (1)
n and F

(2)
n are discussed in Appendix D.

Inserting Eqs. (50) and (61) into the displacement condition in Eq. (14) yields

ρf,1ω
2

R0,1

[
A

(i)
n,1S

(i)
1,n(a1R0,1) +B

(i)
n,1T

(i)
1,n(b1R0,1)

]
− k1C

(1)
1,n

dh(1)
n

dζ
∣∣∣
ζ=k1R0,1

= F (2)
n ,

which yields the relation

H
(4,0)
1,1,nC

(1)
1,n +H

(4,0)
2,1,nC

(2)
1,n +H

(4,0)
3,1,nC

(3)
1,n +H

(4,0)
4,1,nC

(4)
1,n +H

(3,0)
1,1,nC

(1)
1,n = D1,n, (75)

where H(4,0)
i,1,n for i = 1, 2, 3, 4, are given by Eq. (70) and (using Eq. (C.34))

H
(3,0)
1,1,n = − 1

ρf,1ω2

[
nh(1)

n (ζ)− ζh(2)
n+1(ζ)

]∣∣∣
ζ=k1R0,1

(76)

and
D1,n = R0,1

ρf,1ω2F
(2)
n . (77)

Correspondingly, by inserting Eqs. (54) and (61) into Eq. (15) one obtains

2G1
R2

0,1

[
C

(1)
n,1S

(1)
5,n(a1R0,1) + C

(2)
n,1T

(1)
5,n(b1R0,1) + C

(3)
n,1S

(2)
5,n(a1R0,1) + C

(4)
n,1T

(2)
5,n(b1R0,1)

]

+ C
(1)
1,nh(1)

n (k1R0,1) = −F (1)
n ,

which yields the relation

H
(1)
1,1,nC

(1)
1,n +H

(1)
2,1,nC

(2)
1,n +H

(1)
3,1,nC

(3)
1,n +H

(1)
4,1,nC

(4)
1,n +H

(2,0)
1,1,nC

(1)
1,n = D2,n, (78)

where
H

(2,0)
1,1,n =

R2
0,1

2G1
h(1)
n (k1R0,1) (79)

and
D2,n = −R

2
0,1

2G1
F (1)
n . (80)
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4.5. Displacement and pressure condition in the innermost fluid

For the innermost fluid the pressure field is given by Eq. (62). Inserting Eqs. (50)
and (62) into the displacement condition in Eq. (14) at r = R1,M yields

ρf,M+1ω
2

R1,M

[
A

(i)
M,nS

(i)
1,n(aMR1,M ) +B

(i)
M,nT

(i)
1,n(bMR1,M )

]

− kM+1C
(1)
M+1,nj′n(kM+1R1,M ) = 0,

which yields the relation

H
(4,1)
1,M,nA

(1)
M,n +H

(4,1)
2,M,nA

(2)
M,n +H

(4,1)
3,M,nB

(1)
M,n +H

(4,1)
4,M,nB

(2)
M,n +H

(3,1)
1,M+1,nC

(1)
M+1,n = 0,

(81)
where H(4,1)

i,M,n for i = 1, 2, 3, 4, are defined in Eq. (70), and

H
(3,1)
1,M+1,n = − 1

ρf,M+1ω2 [njn(ζ)− ζjn+1(ζ)]
∣∣∣
ζ=kM+1R1,M

. (82)

Correspondingly, by inserting Eqs. (54) and (62) into Eq. (15) at r = R1,M the
following is obtained

2GM
R2

1,M

[
A

(i)
M,nS

(i)
5,n(aMR1,M ) +B

(i)
M,nT

(i)
5,n(bMR1,M )

]
+ C

(1)
M+1,njn(kM+1R1,M ) = 0,

which yields the relation

H
(1)
11,M,nA

(1)
M,n+H(1)

12,M,nA
(2)
M,n+H(1)

13,M,nB
(1)
M,n+H(1)

14,M,nB
(2)
M,n+H(2,1)

1,M+1,nC
(1)
M+1,n = 0,

(83)
where

H
(2,1)
1,M+1,n =

R2
1,M

2GM
jn(kM+1R1,M ). (84)

5. Assembling the linear system of equations

In the previous section, 6M equations for the 6M unknowns A(i)
m,n, B(i)

m,n and C(i)
m,n

for all n > 0 and 4M equations for the 4M unknowns for n = 0 was established.
So far, the solution has been presented for M elastic spherical shells with standard
displacement and pressure conditions; the default case with Neumann-to-Neumann
conditions. By some matrix manipulations of the global matrix, one can implement
other cases as well, including solid spheres, and single Neumann conditions replacing
the Neumann-to-Neumann conditions on the innermost domain.



Assembling the linear system of equations 73

5.1. The default case with Neumann-to-Neumann conditions

For the default case all equations can be collected into one single linear system of
equations

HnCn = Dn (85)
where6

Hn =




H
(3,0)
1,1,n H

(4,0)
1,n

H
(2,0)
1,1,n

H
(1)
1,n

H
(2,1)
2,n

H
(4,1)
1,n H

(3,1)
2,n

H
(3,0)
2,n H

(4,0)
2,n

H
(2,0)
2,n

. . .

H
(2,1)
M,n

H
(4,1)
M−1,n H

(3,1)
M,n

H
(3,0)
M,n H

(4,0)
M,n

H
(2,0)
M,n

H
(1)
M,n

H
(2,1)
1,M+1,n

H
(4,1)
M,n H

(3,1)
1,M+1,n




with submatrices H(1)
m,n has entries given in Eq. (65) and Eq. (66). The submatrices

H(2,j)
m,n =

[
H

(2,j)
1,m,n H

(2,j)
2,m,n

]

has entries given in Eq. (73). The submatrices

H(3,j)
m,n =

[
H

(3,j)
1,m,n H

(3,j)
2,m,n

]

has entries given in Eq. (71). The submatrices

H(4,j)
m,n =

[
H

(4,j)
1,m,n H

(4,j)
2,m,n H

(4,j)
3,m,n H

(4,j)
4,m,n

]

6Note that the matrix pattern is scaled for the case n > 0, as H
(1)
m,n ∈ R4×4 and H

(4,j)
m,n ∈ R1×4

for n > 0, as opposed to H
(1)
m,n ∈ R2×2 and H

(4,j)
m,n ∈ R1×2 when n = 0 (for j = 1, 2).
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for n > 0, and
H(4,j)
m,n =

[
H

(4,j)
1,m,n H

(4,j)
2,m,n

]

for n = 0, has entries given in Eq. (70). The entries H(3,0)
1,1,n, H(2,0)

1,1,n, H(3,1)
1,M+1,n and

H
(2,1)
1,M+1,n, are given in Eqs. (76), (79), (82) and (84), respectively.

Finally, the column vectors in Eq. (85) are given by

Cn =




C
(1)
1,n

A1,n
B1,n
C2,n

...
AM−1,n
BM−1,n
CM,n

AM,n

BM,n

C
(1)
M+1,n




Am,n =
[
A

(1)
m,n

A
(2)
m,n

]
Bm,n =

[
B

(1)
m,n

B
(2)
m,n

]
Cm,n =

[
C

(1)
m,n

C
(2)
m,n

]
Dn =




D1,n
D2,n

0
0
...
0




.

where the entries D1,n and D2,n, are given in Eqs. (77) and (80), respectively.

5.2. Alternative boundary conditions

By removing the last five (three) rows and columns of Hn for n > 0 (n = 0),
the Neumann-to-Neumann boundary condition (NNBC) is replaced by a single
Neumann condition7

∂ptot,M
∂r

= 0 (86)

at the innermost solid domain. This Neumann boundary condition may be
replaced by other boundary conditions, for example the Robin boundary condition
(impedance boundary condition) by corresponding manipulation of the matrix Hn.
By removing the last row and column of the matrix Hn a Neumann condition
(σrr = 0) is obtained on the inside of the innermost shell8. Moreover, one can
model scattering on solid spheres9 (such that the innermost domain is no longer
fluid, but solid) by removing the three last rows (corresponding to the boundary
conditions at R1,M ) and three columns (corresponding to the coefficients A(2)

M,n,
B

(2)
M,n and C

(1)
M+1,n) of the matrix Hn (and corresponding entries of Cn and Dn).

The reason for not using the coefficients A(2)
M,n and B(2)

M,n is that the corresponding
7That is, the normal velocity component of the fluid at the surface is zero, such that ur = 0 in

Eq. (14). This is often referred to as a sound-hard boundary condition, SHBC.
8This is often referred to as a sound-soft boundary condition, SSBC.
9This type of boundary conditions is named elastic sphere boundary conditions, ESBC.
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spherical Bessel functions of second kind are unbounded at the origin, such that
these coefficients must be set to zero. The displacement of the inner solid sphere
is then given by

uM = ur,Mer + uϑ,Meϑ (87)

where

ur,M (r, ϑ) = 1
r

∞∑

n=0
Q(0)
n (ϑ)

[
A

(1)
M,nS

(1)
1,n(aMr) +B

(1)
M,nT

(1)
1,n(bMr)

]
(88)

uϑ,M (r, ϑ) = 1
r

∞∑

n=0
Q(1)
n (ϑ)

[
A

(1)
M,nS

(1)
2,n(aMr) +B

(1)
M,nT

(1)
2,n(bMr)

]
. (89)

It should be noted that the solution is well defined also at the origin due to the
formulas in Eqs. (C.24) and (C.25). In fact, on can show that (using Eq. (A.19))

lim
r→0

uM (r, ϑ) = 1
3
[
aMA

(1)
M,1 − 2bMB(1)

M,1

]
e3,

and (using Eq. (A.20))

lim
r→0

∂u1,M
∂x1

(r, ϑ) = GM
9KM

(
4a2

M − 3b2M
)
A

(1)
M,0 −

1
15
(
a2
MA

(1)
M,2 − 3b2MB

(1)
M,2

)

lim
r→0

∂u2,M
∂x2

(r, ϑ) = GM
9KM

(
4a2

M − 3b2M
)
A

(1)
M,0 −

1
15
(
a2
MA

(1)
M,2 − 3b2MB

(1)
M,2

)

lim
r→0

∂u3,M
∂x3

(r, ϑ) = GM
9KM

(
4a2

M − 3b2M
)
A

(1)
M,0 + 2

15
(
a2
MA

(1)
M,2 − 3b2MB

(1)
M,2

)

lim
r→0

∂ui,M
∂xj

(r, ϑ) = 0 for i 6= j

where ui,M is the ith Cartesian component of u. The stress field can then be
computed in the origin as (using Eq. (B.7))

lim
r→0

σ11,M (r, ϑ) = GM
15
[
5
(
4a2

M − 3b2M
)
A

(1)
M,0 − 2a2

MA
(1)
M,2 + 6b2MB

(1)
M,2

]

lim
r→0

σ22,M (r, ϑ) = GM
15
[
5
(
4a2

M − 3b2M
)
A

(1)
M,0 − 2a2

MA
(1)
M,2 + 6b2MB

(1)
M,2

]

lim
r→0

σ33,M (r, ϑ) = GM
15
[
5
(
4a2

M − 3b2M
)
A

(1)
M,0 + 4a2

MA
(1)
M,2 − 12b2MB

(1)
M,2

]

lim
r→0

σ23,M (r, ϑ) = 0

lim
r→0

σ13,M (r, ϑ) = 0

lim
r→0

σ12,M (r, ϑ) = 0
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p1
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p2
u2

pM
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Figure 3: Illustration (clip view) of a model (to the left) with 3 steel shells and a
model (to the right) with 2 steel shells surrounding a solid steel sphere, illustrating
the distribution of functions (in the case M = 3). The model to the left models a
fluid as the innermost domain, while the model to the right models a solid domain
as the innermost domain (note that the expression uM is slightly altered in this
case).

where σij,M is the stress field in the solid sphere in Cartesian coordinates. If the
innermost domain is a fluid, then

lim
r→0

pM+1(r, ϑ) = C
(1)
M+1,0

lim
r→0
∇pM+1(r, ϑ) = kM+1

3 C
(1)
M+1,1e3

lim
r→0
∇2pM+1(r, ϑ) = −k2

M+1C
(1)
M+1,0.

Finally, note that one can model connected fluid or solid layers by manipulating
the the matrix Hn to match the pressure and displacement condition between
these domains. An example of such an application is air bubbles in water [15].

5.3. Summary of solution formulas

In this sub section, the final expressions have been summarized (see Figure 3).
Recall that h(i)

n , Z(i)
j,n, S(i)

j,n and T
(i)
j,n are all derived from spherical Bessel functions

(jn and yn), while Q(i)
n are derived from Legendre functions. All coefficients (A(i)

m,n,
B

(i)
m,n and C

(i)
m,n) are found by solving the linear system of equations in Eq. (85).

The scattered pressure field in the outermost (unbounded) fluid domain, the mth

fluid layer (for 2 6 m 6M), and the innermost fluid domain (if present), are given
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by

p1(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)C(1)

1,nh(1)
n (k1r) (90)

pm(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)C(i)

m,nZ
(i)
n (kmr) (91)

pM+1(r, ϑ) =
∞∑

n=0
Q(0)
n (ϑ)C(1)

M+1,njn(kM+1r), (92)

respectively. The displacement field in the mth solid domain is given by

um = ur,mer + uϑ,meϑ (93)

where

ur,m(r, ϑ) = 1
r

∞∑

n=0
Q(0)
n (ϑ)

[
A(i)
m,nS

(i)
1,n(amr) +B(i)

m,nT
(i)
1,n(bmr)

]
(94)

uϑ,m(r, ϑ) = 1
r

∞∑

n=0
Q(1)
n (ϑ)

[
A(i)
m,nS

(i)
2,n(amr) +B(i)

m,nT
(i)
2,n(bmr)

]
. (95)

If the inner domain is a solid domain, the terms involving S(2)
1,n and T

(2)
1,n in uM ,

are not present.

6. Computational aspects

Several computational issues arise when implementing the exact solution (which
has been implemented in Matlab). The source code can be downloaded from
GitHub at https://github.com/Zetison/e3Dss. In this section, a discussion of some
of these issues will be presented.

6.1. Matrix manipulations

Note that the only complex valued matrix entries of Hn are the first two entries
in the first column. So instead of using a complex matrix solution routine to solve
the system, one can exploit this fact to solving a real valued linear system of
equations with two right hand sides. Refer to Fender [15, pp. 18-20] for details.
Moreover, Fender shows that some further matrix manipulation may reduce the
overall computational time by 30% (when doing a frequency sweep). By using the
same ideas, the size of Hn can be reduced from 6M to 4M .

Note that for n > 0, column number 2l, l = 1, 2, . . . , 3M , of Hn contains entries
which are linear combinations of jn and jn+1 (and no spherical Bessel functions
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Figure 4: Illustration of the asymptotic behavior, of the spherical Bessel functions
of first (jn(x)) and second (yn(x)) kind, as a function of n, for a fixed argument
x = 500.

of second kind), while column number 2l − 1, l = 1, 2, . . . , 3M , of Hn contains
entries which are linear combinations of yn and yn+1. So since

lim
n→∞ |jn(ζ)| = 0 and lim

n→∞ |yn(ζ)| =∞, (96)

(which is illustrated in Figure 4) the matrix Hn becomes poorly scaled for large n.
This issue can be solved by scaling the matrix with a (diagonal) preconditioning
matrix Pn where the diagonal entries are given by the maximal modulus of
the corresponding column vectors of Hn. Defining the vector C̃n = PnCn and
solving the system H̃nC̃n = Dn with H̃n = HnP

−1
n , the solution is obtained

by Cn = P−1
n C̃n. In Figures 5a and 5b the magnitude of the entries in Hn is

visualized before and after preconditioning, respectively. This example is the
matrix H300 of the S135 benchmark problem (described in Subsection 7.4) at
f = 30 kHz. The condition number was improved from cond(H300) ≈ 7.4 · 10278

to cond(H̃300) ≈ 9.4 · 104.

6.2. Series evaluation

As the series involves summation over infinitely many terms, the series needs to
be truncated at some number n = Nε. Denote by p(N)

1 , the truncated sum for the
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Figure 5: Matrix manipulations: Plot of the magnitude of the matrix entries
of H300 and H̃300.
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scattered pressure in the outer domain (Eq. (91)),

p
(N)
1 (r, ϑ) =

N∑

n=0
Q(0)
n (ϑ)C(1)

1,nh(1)
n (k1r), (97)

and correspondingly for the other fields in Eqs. (91) to (93). In [37, pp. 32-35],
Ihlenburg discusses such a value based on the decay of Bessel functions, in which
he suggests using N ≈ 2kr. In this work, however, the summation is terminated
whenever the magnitude of term n = Nε divided by the magnitude of the partial
sum (based on the first Nε + 1 terms) is less than some prescribed tolerance ε.
Typically machine epsilon is used for this number, i.e. ε ≈ 2.220446 · 10−16. As
with the suggestion of Ihlenburg, the number of terms, Nε, grows linearly with the
frequency. The computational complexity of the problem is thus O(ω).

The solution is often needed at several points, or frequencies (or a combination
of both). In this case, one should compute the solutions at all points at once, such
that the calls to the implemented Bessel functions are minimized.

6.3. Round-off errors

Although the products A(2)
m,nS

(2)
j,n(ζ), B(2)

m,nT
(2)
j,n (ζ) and C(2)

m,nZ
(2)
n (η) all goes to zero

as n→∞, the functions S(2)
j,n(amr), T (2)

j,n (ζ) and Z
(2)
n (η) does not. In fact, these

functions become unbounded when n→∞ because they are all superposition of
Bessel functions of second kind with this property. So, since the floating point
number has an upper bound10, there is a limit to the number of terms that can be
used.

A naive solution to this problem is to try higher precision, which can easily be
done with MATLAB symbolic class. This, however, increases the computational
time drastically.

In Figure 6 several round-off phenomena which typically arises are illustrated.
The specific example used here is the S135 benchmark problem with SSBC (de-
scribed in Subsection 7.4). The incident wave, pinc, is a plane wave traveling in
the direction given by ϑ = 60◦ and ϕ = 240◦ (see Section 7). An uniform (relative
to the spherical coordinate system) set of sample points are distributed in all
domains11 where the residual error in the Helmholtz equation (Eq. (9)), the 1st and
2nd component of Navier’s equation in spherical coordinates (Eqs. (47) and (48),
respectively), the displacement condition (Eq. (14)) and the pressure condition
(Eq. (15)), is measured. By using the infinity norm, ‖ · ‖∞, for each residual, and
dividing by the magnitude of the terms involved, the relative residual error is

10For double precision this is typically Vmax ≈ 1.797693134862316 · 10308.
11It is placed 32 points in each domain except for the inner domain with 25 points. The

distribution of point in the radial direction in the exterior domain is limited to the interval
[R0,1, 2R0,1].
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Figure 6: Round-off errors: Residual errors for the governing equations and
boundary conditions. The use of symbolic precision in MATLAB illustrate that the
errors are due to round-off errors. The relative residual formulas for the Helmholtz
equation, the first and second components of the Navier equation, the displacement
condition and the pressure conditions are given by Eqs. (98) to (102), respectively.
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obtained. The maximal relative residual in all domains can then be calculated. In
particular, these relative residual errors are given by

max
16m6M+1

∥∥(∇2 + k2
m

)
pm
∥∥
∞

‖k2
mpm‖∞

(98)

max
16m6M

∥∥∥∂σrr,m
∂r + 1

r
∂σrϑ,m
∂ϑ + 1

r (2σrr,m − σϑϑ,m − σϕϕ,m + σrϑ,m cotϑ) + ω2ρs,mur,m
∥∥∥
∞

‖ω2ρs,mur,m‖∞
(99)

max
16m6M

∥∥∥∂σrϑ,m
∂r + 1

r
∂σϑϑ,m
∂ϑ + 1

r [(σϑϑ,m − σϕϕ,m) cotϑ+ 3σrϑ,m] + ω2ρs,muϑ,m
∥∥∥
∞

‖ω2ρs,muϑ,m‖∞
(100)

max
16m6M

∥∥∥ρfω
2ur − ∂ptot

∂r

∥∥∥
∞∥∥∥∂ptot

∂r

∥∥∥
∞

(101)

max
16m6M

‖σrr + ptot‖∞
‖ptot‖∞

. (102)

By comparing these error results for both double precision and symbolic precision in
MATLAB, one can conclude that the errors indeed originate from round-off errors.
When using double precision, the summation is ended whenever |yn(η)| > 10290,
such that invalid solutions is obtained for sufficiently large n. Since one needs to
have enough terms for the solution to converge, and at the same time have to avoid
computing yn(η) for low η (and large n), the following bound on the frequency
based on experimental data is suggested

f .
100
C
, C =

(
R0,1
cf,1

) 3
2 1√

Υ
(103)

with
Υ = min

{
min

16m6M

R1,m
max{cs,1,m, cs,2,m}

, min
16m6M

R0,m
cf,m

}

where cs,1,M and cs,2,M is the transverse and longitudinal wave velocity for the M th

spherical shell, respectively. The constant Υ corresponds to the lowest argument
η used for the Bessel functions of second kind. An addendum will be given to
yield more numerical evidence for this bound. In particular, plots similar to the
ones in Figure 6 will be presented for all benchmarks and corresponding boundary
conditions in Subsection 7.4. However, it would certainly be possible to construct
models in which this bound is not valid.

One can also observe significant round-off errors for very low frequencies which
is again due to the evaluation of the spherical Bessel functions of the second kind
with the property

lim
ζ→0
|yn(ζ)| =∞. (104)
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Finally, observe that problems for higher frequencies also occur when using the
symbolic class in MATLAB (even though the summation is not terminated prema-
turely), which calls for a more mathematically sound way of solving this issue. To
avoid evaluating the Bessel functions directly, one could include a scaling such that
one need to evaluate products of the form jn(ξ)yn(η), jn+1(ξ)yn(η), jn(ξ)yn+1(η)
and jn+1(ξ)yn+1(η) (which will be 0 · ∞ type products). One would then probably
need to use relations like [43, 03.21.26.0047.01 and 03.21.26.0049.01]

jn(
√
z)yn(

√
z) = −

√
π

2 G2,0
1,3

(
z

∣∣∣∣∣
0

−1
2 , n,−n− 1

)
(105)

jn+1(
√
z)yn(

√
z) =

√
π

2 G2,1
2,4

(
z

∣∣∣∣∣
0,−1

2
0, n+ 1

2 ,−1,−n− 3
2

)
(106)

where G is the Meijer G-function. This investigation is left as future work.

7. Numerical examples

To give further evidence for the correctness of the implemented code, comparison
to existing benchmark solutions by Chang [14], Ihlenburg [37] and Fender [15],
will be presented. A final benchmark problem in the time-domain will be added.

It is customary to present results in the far-field. For the scattered pressure
p1, it is defined by

p0(x̂, ω) = re−ik1rp1(x, ω), r = |x| → ∞, (107)

with x̂ = x/|x|. As a side note, using Eq. (C.31), the far-field pattern of the
scattered pressure in Eq. (61), is given by (in the axisymmetric case)

p0 = 1
k1

∞∑

n=0
i−n−1Q(0)

n (ϑ)C(1)
1,n (108)

which yields a very efficient way of computing the far-field pattern.
From the far-field pattern, the target strength, TS, can be computed. It is

defined by
TS = 20 log10

( |p0(x̂, ω)|
|Pinc(ω)|

)
(109)

where Pinc is the amplitude of the incident wave at the geometric center of the
scatterer (i.e. the origin). Note that TS is independent of Pinc.

The directional vector, ds, in spherical coordinates, is given by

ds = −




sinϑs cosϕs
sinϑs sinϕs

cosϑs


. (110)
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Table 1: Chang parameters: Parameters for the examples in figure 16 and figure
17 in [14].

Parameter Description
E = 2.0 · 1011 Pa Young’s modulus
ν = 0.3 Poisson’s ratio
ρs = 7800 kg m−3 Density of solid
ρf = 1000 kg m−3 Density of water
cf,1 = 1460 m s−1 Speed of sound in fluid
R0,1 = 1.005 m Outer radius of spherical shell
R1,1 = 0.995 m Inner radius of spherical shell

If the source of the incident wave is located at

xs = −rsds, (111)

the far-field pattern of an incident wave from the point source

pinc(x, ω) = Pinc(ω)eik1|xs−x|

|xs − x|
, (112)

is actually a plane wave

lim
rs→∞

rse−ik1rspinc(x, ω) = Pinc(ω)eik1ds·x. (113)

Unless stated otherwise, plane waves will be used for the incident wave. Note that
the direction of plane waves and location of far-field points is often expressed in
the aspect angle, α = ϕ, and the elevation angle, β = 90◦ − ϑ.

7.1. Chang benchmark problem

Chang [14] considers a single spherical shell, with a single homogeneous Neumann
condition (sound-soft boundary conditions, SSBC) on the inside of the shell,
scattering an incident plane wave (with amplitude Pinc = 1 Pa). Chang sends the
incident plane wave along the positive x3-axis, and uses the parameters in Table 1.
Moreover, the total pressure (Eq. (63)) is measured at the surface. In Figures 7a
and 7b the results are found with k = 15 m−1 and k = 20 m−1, respectively12. In
both cases, the shadow region of the scatterer, ϑ ∈ [0, 90◦], is clearly visible (with
total pressure significantly lower than Pinc).

A simple convergence analysis is shown in Figure 8 where the error in the trun-
cated series in Eq. (97) is plotted. As discussed in Subsection 6.2 the convergence

12The discrepancies probably comes from the fact that the data set is collected by the software
WebPlotDigitizer where a digital scan of figure 16 and figure 17 [14, pp. 32-33] has been made.
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(a) Wave number k1 = 15 m−1 and series truncation at Nε = 46.
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(b) Wave number k1 = 20 m−1 and series truncation at Nε = 54.

Figure 7: Chang benchmark problem: Predicted total pressure as a function
of the polar angle ϑ.
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Figure 8: Chang benchmark problem: Relative error (with 2000 sample points
uniformly placed in the ϑ-direction) of the truncated series in Eq. (97) as a function
of N .

is delayed by the increased frequency from k1 = 15 m−1 to k1 = 20 m−1. To obtain
machine epsilon precision (double precision) Nε = 45 and Nε = 53 is needed for
these frequencies, respectively.

7.2. Ihlenburg benchmark problem

Ihlenburg [37] considers a single spherical shell with a single homogeneous Neumann
condition (sound-soft boundary conditions, SSBC) on the inside of the shell,
scattering an incident plane wave.

Building upon this example, the corresponding rigid scattering (sound-hard
boundary conditions, SHBC) case and scattering with fluid fill will be presented
(Neumann-Neumann boundary conditions, NNBC). The parameters in Table 2 are
here used.

Frequency sweeps of the target strength (in Eq. (109)) are plotted in Figures 13a
and 13b at the polar angles ϑ = 180◦ and ϑ = 0◦, respectively.

Convergence plots for the three different cases are plotted in Figures 10 to 12,
respectively. The linear computational complexity discussed in Subsection 6.2 is
revealed. Moreover, by comparing the SHBC case in Figure 10 to the SSBC and
NNBC cases in Figures 11 and 12, it is clear that the eigenmodes requires more
terms (larger N) in order to achieve better than 1% error precision (this is in
particular the case for eigenmodes at higher frequencies).
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Figure 9: Ihlenburg benchmark problem: Plots of the target strength, TS.
The backscattered pressure will correspond to ϑ = 180◦, which is also the specific
case considered by Ihlenburg [37, p. 192] (note that Ihlenburg plots the far field
instead of the target strength).
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Table 2: Ihlenburg parameters: Parameters for the Ihlenburg benchmark
problem.

Parameter Description
E = 2.07 · 1011 Pa Young’s modulus
ν = 0.3 Poisson’s ratio
ρs = 7669 kg m−3 Density of solid
ρf = 1000 kg m−3 Density of water
cf = 1524 m s−1 Speed of sound in fluid
R0,1 = 5.075 m Outer radius
R1,1 = 4.925 m Inner radius

Table 3: Fender parameters: Parameters for the examples in figure 2 and figure
3 in [15].

Parameter Description
cs,1 = 6412 m s−1 Longitudinal wave velocity
cs,2 = 3043 m s−1 Transverse wave velocity
ρs,1 = 2700 kg m−3 Density of solid
ρf,1 = 1026 kg m−3 Density of outer fluid (water)
ρf,2 = 1.21 kg m−3 Density of inner fluid (air)
cf,1 = 1500 m s−1 Speed of sound in water
cf,2 = 343 m s−1 Speed of sound in air
R0,1 = 1 m Outer radius of spherical shell
R1,1 = 0.95 m Inner radius of spherical shell

However, the eigenmodes has no need of more terms in order to reach machine
epsilon precision. So in the case of elastic scattering, the series termination strategy
described in Subsection 6.2 is more rigorous than termination of the series at a
given N linearly depending on the frequency.

7.3. Fender benchmark problem

Fender [15] consider a single air-filled spherical shell scattering an incident plane
wave (with amplitude Pinc = 1 Pa). The parameters in Table 3 are here used,
where the following conversion formulas is of convenience

E = ρsc
2
s,2

3c2
s,1 − 4c2

s,2
c2

s,1 − c2
s,2

and ν = 1
2
c2

s,1 − 2c2
s,2

c2
s,1 − c2

s,2
. (114)

Fender also sends the incident plane wave along the x3-axis, but in negative
direction. The frequency sweep results of the total pressure (in Eq. (63)) are
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Figure 10: Ihlenburg benchmark problem - the sound-hard case: Relative
error in the l2-norm (with two sample points at ϑ = 0◦ and ϑ = 180◦) of the
truncated series in Eq. (97) as a function of N . The “exact” solution, p1, is
obtained as described in Subsection 6.2.
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Figure 11: Ihlenburg benchmark problem - the sound-soft case: Relative
error in the l2-norm (with two sample points at ϑ = 0◦ and ϑ = 180◦) of the
truncated series in Eq. (97) as a function of N . The “exact” solution, p1, is
obtained as described in Subsection 6.2.
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Figure 12: Ihlenburg benchmark problem - the Neumann-Neumann case:
Relative error in the l2-norm (with two sample points at ϑ = 0◦ and ϑ = 180◦) of
the truncated series in Eq. (97) as a function of N . The “exact” solution, p1, is
obtained as described in Subsection 6.2.

measured at the surface. In Figures 13a and 13b the results are found at polar
angles ϑ = 0◦ and ϑ = 180◦, respectively13.

In Figure 14, another convergence study is illustrated. The Fender benchmark
problem was run with increasing frequency until a Bessel function was evaluated
to be above 10290 (the termination criterion as described in Subsection 6.3). Due
to the linear behavior of N as a function of ω needed for convergence (computa-
tional complexity) and the concave behavior of the smallest number N such that
|yN (ωΥ )| > 10290 (where Υ is given by Eq. (103)), prematurely termination of the
series is inevitable for large enough frequencies.

7.4. Benchmark problems

Let S1, S3 and S5 be benchmark models of spherical shells characterized by the
outer radius R0,1 and the inner radius R1,1 of the shell. The shells are filled with
the given fluid (Table 4) and embedded in water. The remaining parameters are
given in Table 5. These models can be combined into a new set of benchmark

13The discrepancies again probably comes from the fact that the data set is collected by the
software WebPlotDigitizer where a digital scan of Figure 2 and Figure 3 [15, pp. 30-31] has been
made. Moreover, the spectrum has been sampled rather closely, revealing small (less significant)
eigenmodes not shown by Fender.
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(a) Measured at ϑ = 0◦.
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(b) Measured at ϑ = 180◦.

Figure 13: Fender benchmark problem: Predicted total pressure as a function
of k1R0,1 at the surface of the shell.
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Figure 14: Fender benchmark problem: The intersection of these to graphs
marks the largest frequency for which the algorithms presented in this work will
give satisfactory results. Here, Υ is given by Eq. (103) and the truncated series
p

(Nε)
1 is given by Eq. (97).

Table 4: Benchmark problems: Parameters for S1, S3 and S5.

S1 S3 S5
Outer radius, R0,1 1 m 3 m 5 m
Inner radius, R1,1 0.95 m 2.98 m 4.992 m
Fluid fill air air water

Table 5: Benchmark problems: Common parameters for the benchmark prob-
lems.

Parameter Description
E = 2.10 · 1011 Pa Young’s modulus
ν = 0.3 Poisson’s ratio
ρs = 7850 kg m−3 Density of solid
ρf,water = 1000 kg m−3 Density of water
ρf,air = 1.2 kg m−3 Density of air
cf,water = 1500 m s−1 Speed of sound in water
cf,air = 340 m s−1 Speed of sound in air
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problems: S13 (S1 inside S3 with air in between), S15 (S1 inside S5 with water
in between), S35 (S3 inside S5 with water in between) and S135 (S1 inside S3
inside S5 with air in between S1 and S3 and water in between S3 and S5). These
benchmark problems are illustrated in Figure 15.

By default, all benchmarks have acoustic structure interaction (ASI) on all
of the interfaces between fluid and solid domains (with Neumann-to-Neumann
boundary conditions, NNBC, in Eqs. (14) and (15)). As described in Subsection 5.2,
the boundary conditions on the innermost shell may be replaced by other boundary
conditions like the sound-soft (SSBC) and sound-hard boundary condition (SHBC).
The elastic sphere boundary condition (ESBC) results from filling the innermost
shell with the given elastic material.

In Figure 16, the near field is plotted for some of these benchmarks. In
Figure 16b the classical interference pattern emerging behind the rigid scatterer
S5 (with SHBC) can be observed. In contrast, the corresponding case with NNBC
in Figures 16c and 16d gives a different picture entirely because most of the energy
simply passes straight through the thin spherical shell. The example is expanded
further in Figures 16e to 16h. For the latter case, the energy transmitted is
greatly reduced due to air-filled fluid inside the second shell. The S135 benchmark
was visually identical to this benchmark due to this fact (that is, it is hard to
reveal objects inside air-filled domains). However, it is clear that sound-hard
boundary conditions are not a good approximation of NNBC in this case. The
more natural approximation would be to use SSBC. Indeed, the SSBC approximate
the innermost fluid with pM+1 = 0, which is clearly a good approximation in this
case.

7.5. Benchmark problems in the time domain

Finally, the application of the work in the time domain will be presented. In
particular, consider scattering by a single wavelet given by (from [40, p. 633])

P̆inc(t) =





4
3
√

3

[
sin(ωct)− 1

2 sin(2ωct)
]

0 < t < 1
fc

0 otherwise,
(115)

with ωc = 2πfc and kc = ωc/cf,1, and where fc is the center frequency (Figure 17a).
The corresponding frequency spectrum (using the definition of the Fourier transform
in Eq. (6)), is given by (Figure 17b)

Pinc(ω) =
(
F P̆inc

)
(ω) =





4
3
√

3
iπ
ω eiπω/ωc ω ∈ {±ωc,±2ωc}

4√
3

ω3
c

(ω2−ω2
c )(ω2−4ω2

c )

(
1− e−2πiω/ωc

)
otherwise.

(116)
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(a) S1 (b) S3 (c) S5

(d) S13 (e) S15 (f) S35

(g) S135 (h) S13 with ESBC (i) S15 with ESBC

Figure 15: Benchmark problems: The first row (S1, S2, S3) represent the
default set of benchmarks from which the others are built (clip view). The model
S5 and S3 is, respectively, 5 and 3 times the size of S1 (the figures are thus not to
scale). S13 is a combination of S1 and S2, S13 is a combination of S1 and S3, and
S23 is a combination of S2 and S3. S123 is a combination of S1, S2 and S3. The
final two figures are derived models with a solid sphere as the innermost domain.
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(a) S5 with SHBC: Plot of Re ptot.
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(b) S5 with SHBC: Plot of |ptot|.
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(c) S5 with NNBC: Plot of Re ptot.
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(d) S5 with NNBC: Plot of |ptot|.
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(e) S35 with SHBC: Plot of Re ptot.
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(f) S35 with SHBC: Plot of |ptot|.
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(g) S135 with NNBC: Plot of Re ptot.
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(h) S135 with NNBC: Plot of |ptot.

Figure 16: Benchmark problems: Plots of the near field of some benchmark
problems. The shells are cut open whenever a domain inside the shell is present.
The visualization was done in Paraview.
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(b) Wavelet in frequency domain.

Figure 17: Benchmark problems in the time domain: Wavelet P̆inc(t) and
corresponding frequency spectrum |Pinc(ω)|. The wavelet has compact support on
the interval [0, 1/fc], where fc = 1.5 · 103 Hz. The frequency spectrum is plotted
for positive frequencies to the end of the bandwidth, f = B/2 = 6.4 · 103 Hz (with
B = Ň/T ).
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A plane wave with this wavelet in the time-domain then takes the form

p̆inc(x, t) = P̆inc

(
t− x3

cf,1

)
, (117)

with corresponding field in the frequency domain given by

pinc(x, ω) = (F p̆inc(x, ·))(ω) = Pinc(ω)eik1x3 . (118)

An alternative to plane waves, is waves due to point sources. Using the wavelet in
Eq. (115), these waves are given by

p̆inc(x, t) = P̆inc

(
t− |xs − x|

cf,1

)
rs

|xs − x|
(119)

and
pinc(x, ω) = Pinc(ω) rs

|xs − x|
eik1|xs−x|

where xs is location of the point source given in Eq. (111) (at a finite distance
rs = |xs|).

As Ψ(x, ω) cannot be computed for infinitely many frequencies, an approxima-
tion of the time dependent fields in Eq. (7) by [40, p. 614] can be used

Ψ̆(x, tm) ≈ 2
T

Re





Ň/2−1∑

n=1
Ψ(x, ωn)e−2πinm/Ň



 (120)

where
tm = m∆t, ∆t = T

Ň
, ωn = n∆ω, ∆ω = 2π

T
. (121)

Note that the contribution from the static case (n = 0) has not been included
as the incident wave, pinc(x, 0) = 0, results in the trivial solution Ψ(x, 0) = 0.
The Fourier series approximation results in periodic time-dependent fields, with
period T , sampled in the interval [0, T ] with Ň time steps. The parameter Ň
also quantifies the number of terms in the Fourier series approximation, such
that it also controls the error (aliasing). By choosing Ň to be powers of two, the
approximation can be very efficiently evaluated by the fast Fourier transformation.

In Figure 18 an example based on the S5 benchmark problem with ESBC is
illustrated; An elastic sphere (with parameters given in Table 5) is impinged by
the incident wave in Eq. (117). In this example, the following parameters has
been used: fc = 1.5 kHz, Ň = 210 = 1024 and T = 120/fc. In Figure 18, the total
pressure is plotted in the fluid, and the von Mises stress given by

σv =

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2 + 6(σ2

23 + σ2
13 + σ2

12)
2 (122)
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Figure 18: Benchmark problems in the time domain: Visualization of a
wavelet (from a far-field point) in the time domain which transmits (the 1st

transmitted wave) and reflects (the 1st reflected wave) an elastic sphere (which is
cut open for visualization purposes). The 2nd transmitted wave through the elastic
sphere takes a lead of the direct wave as the wave speed in the elastic material
is larger than that of the fluid. Aliasing is also visible. Two transparent planes
have been inserted to visualize the total pressure field. The von Mises stress, σ̆v,
is visualized in the solid. The visualization was done in Paraview.

is plotted in the solid domain.
For the benchmark problems, the longitudinal speed and transverse speed in

the solid is cs,1 ≈ 6001 ms−1 and cs,2 ≈ 3208 ms−1, respectively. So since, cs,1 ≈ 4cf
and cs,2 ≈ 2cf , the waves traveling through the elastic sphere with the longitudinal
wave speed will transmit through the solid 4 times as fast as the waves in the
surrounding fluid (this wave corresponds to the 1st transmitted wave in Figure 18).
Correspondingly for the waves traveling with the transverse wave speed. This can
indeed be observed as well, but the amplitude of the transverse wave traveling at
the speed cs,1 is only about 2% of the amplitude of the incident wave Pinc and is
therefore barely visible. Much more energy is transmitted through the wave with
the transverse wave speed (the amplitude is approximately 14% of Pinc).

Consider finally the S15 benchmark problem with ESBC; A thin shell sur-
rounding a solid sphere is impinged by the incident wave in Eq. (119) (that is, the
incident wave originates from a point source in the near field). The point source is
located at a radius of rs = 10 m away from the center of the scatterer (the origin).
All other parameters remain the same as in the previous example.

In Figure 19 the effects from previous example can again be observed. In
addition, waves traveling in the thin shell are reflected backwards through a
head wave in the intermediate fluid. In addition, the corresponding waves are
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Figure 19: Benchmark problems in the time domain: Visualization of
a wavelet (from a point source) in the time domain which transmits (the 1st

transmitted wave) and reflects (the 1st reflected wave) the outermost thin shell
(which is cut open for visualization purposes), and is then scattered (the 2nd

reflected wave) by the innermost solid sphere. The 2nd transmitted wave through
the elastic sphere takes a lead of the direct wave as the wave speed in the elastic
material is larger than that of the fluid. Aliasing is also visible. Two transparent
planes have been inserted to visualize the total pressure field. The displacement
field is here not visualized. The visualization was done in Paraview.

transmitted through the shell denoted as “Wave from shell”.
It should be pointed out that aliasing (pollution of the solution from the

previous incident waves due to periodicity) is present, although not visible in
these plots. The aliasing can be decreased further by increasing the period T . To
preserve the size of the bandwidth B = Ň/T , Ň must be correspondingly increased.
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8. Conclusions

An exact solution to 3D scattering problems on spherical symmetric scatterers has
been presented. From a computational point of view, the solution is exact in the
sense that round-off errors are the only source of errors. However, these round-off
errors play a crucial role for higher frequencies (and also for very low frequencies)
when implementing the solution naively. In any case, the computational complexity
of the solution is O(ω).

A set of benchmark problems have been presented for future references. Results
have been presented for some of these benchmarks in both the far-field (frequency
domain) and the time domain (near-field). The exact solution presents a vast set
of parameters for large ranges, which makes it a good reference solution, as many
numerical phenomena can occur for different combinations of these parameters.
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A. The spherical coordinate system

The spherical coordinate system is defined by the transformation x(r, ϑ, ϕ) =
xi(r, ϑ, ϕ)ei, where ei are the standard basis vectors in the Cartesian coordinate
system and (see Figure A20)

x1 = r sinϑ cosϕ (A.1)
x2 = r sinϑ sinϕ (A.2)
x3 = r cosϑ. (A.3)

The inverse relation is then found to be

r = |x|, with |x| =
√
x2

1 + x2
2 + x2

3 (A.4)

ϑ = arccos
(
x3
|x|

)
(A.5)

ϕ = atan2(x2, x1), (A.6)
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where

atan2(x2, x1) =





arctan(x2
x1

) if x1 > 0
arctan(x2

x1
) + π if x1 < 0 and x2 ≥ 0

arctan(x2
x1

)− π if x1 < 0 and x2 < 0
π
2 if x1 = 0 and x2 > 0
−π2 if x1 = 0 and x2 < 0
undefined if x1 = 0 and x2 = 0.

(A.7)

Hence, the Jacobian matrix of the spherical transformation is given by

Js =




∂x1
∂r

∂x1
∂ϑ

∂x1
∂ϕ

∂x2
∂r

∂x2
∂ϑ

∂x2
∂ϕ

∂x3
∂r

∂x3
∂ϑ

∂x3
∂ϕ


 =




sinϑ cosϕ r cosϑ cosϕ −r sinϑ sinϕ
sinϑ sinϕ r cosϑ sinϕ r sinϑ cosϕ

cosϑ −r sinϑ 0


 (A.8)

with inverse given by

J−1
s =




∂r
∂x1

∂r
∂x2

∂r
∂x3

∂ϑ
∂x1

∂ϑ
∂x2

∂ϑ
∂x3

∂ϕ
∂x1

∂ϕ
∂x2

∂ϕ
∂x3


 =




sinϑ cosϕ sinϑ sinϕ cosϑ
1
r cosϑ cosϕ 1

r cosϑ sinϕ −1
r sinϑ

−1
r

sinϕ
sinϑ

1
r

cosϕ
sinϑ 0


. (A.9)

So, for a scalar valued function Ψ the following is obtained (using the chain rule)



∂Ψ
∂r
∂Ψ
∂ϑ
∂Ψ
∂ϕ


 = J>s




∂Ψ
∂x1
∂Ψ
∂x2
∂Ψ
∂x3


. (A.10)

The scale factors in the spherical coordinate system are given by

hr =
∣∣∣∣
∂x

∂r

∣∣∣∣ = 1, hϑ =
∣∣∣∣
∂x

∂ϑ

∣∣∣∣ = r, hϕ =
∣∣∣∣
∂x

∂ϕ

∣∣∣∣ = r sin θ, (A.11)

from which the following basis vectors are derived (see Figure A20)

er = 1
hr

∂x

∂r
= e1 sinϑ cosϕ+ e2 sinϑ sinϕ+ e3 cosϑ (A.12)

eϑ = 1
hϑ

∂x

∂ϑ
= e1 cosϑ cosϕ+ e2 cosϑ sinϕ− e3 sinϑ (A.13)

eϕ = 1
hϕ

∂x

∂ϕ
= −e1 sinϕ+ e2 cosϕ. (A.14)

This can be written in the following matrix form
[
er eϑ eϕ

]
= J>e

[
e1 e2 e3

]
= J>e (A.15)
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where

Je =




sinϑ cosϕ sinϑ sinϕ cosϑ
cosϑ cosϕ cosϑ sinϕ − sinϑ
− sinϕ cosϕ 0


 (A.16)

and inverse given by

J−1
e =




sinϑ cosϕ cosϑ cosϕ − sinϕ
sinϑ sinϕ cosϑ sinϕ cosϕ

cosϑ − sinϑ 0


. (A.17)

So, for any vector field

Ψ = Ψ1e1 + Ψ2e2 + Ψ3e3 = Ψrer + Ψϑeϑ + Ψϕeϕ (A.18)

the following relation is found (by comparing each component)



Ψ1
Ψ2
Ψ3


 = J>e



Ψr
Ψϑ
Ψϕ


, (A.19)

and the Jacobian of Ψ is given by (using the chain rule)




∂Ψ1
∂x1

∂Ψ1
∂x2

∂Ψ1
∂x3

∂Ψ2
∂x1

∂Ψ2
∂x2

∂Ψ2
∂x3

∂Ψ3
∂x1

∂Ψ3
∂x2

∂Ψ3
∂x3


 =




∂Ψ1
∂r

∂Ψ1
∂ϑ

∂Ψ1
∂ϕ

∂Ψ2
∂r

∂Ψ2
∂ϑ

∂Ψ2
∂ϕ

∂Ψ3
∂r

∂Ψ3
∂ϑ

∂Ψ3
∂ϕ


J−1

s

=


J1Ψr + J2Ψϑ + J3Ψϕ + J>e




∂Ψr
∂r

∂Ψr
∂ϑ

∂Ψr
∂ϕ

∂Ψϑ
∂r

∂Ψϑ
∂ϑ

∂Ψϑ
∂ϕ

∂Ψϕ
∂r

∂Ψϕ
∂ϑ

∂Ψϕ
∂ϕ





J−1

s

(A.20)

where

J1 =




0 cosϑ cosϕ − sinϑ sinϕ
0 cosϑ sinϕ sinϑ cosϕ
0 − sinϑ 0


, J2 =




0 − sinϑ cosϕ − cosϑ sinϕ
0 − sinϑ sinϕ cosϑ cosϕ
0 − cosϑ 0


,

J3 =




0 0 − cosϕ
0 0 − sinϕ
0 0 0


.
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Using Eqs. (A.10), (A.15) and (A.19), the following formulas are obtained

∇Ψ = ∂Ψ

∂r
er + 1

r

∂Ψ

∂ϑ
eϑ + 1

r sinϑ
∂Ψ

∂ϕ
eϕ (A.21)

∇2Ψ = 1
r2

∂

∂r

(
r2∂Ψ

∂r

)
+ 1
r2 sinϑ

∂

∂ϑ

(
sinϑ∂Ψ

∂ϑ

)
+ 1
r2 sin2 ϑ

∂2Ψ

∂ϕ2 (A.22)

∇ · Ψ = 1
r2
∂(r2Ψr)
∂r

+ 1
r sinϑ

∂(Ψϑ sinϑ)
∂ϑ

+ 1
r sinϑ

∂Ψϕ
∂ϕ

(A.23)

∇2Ψ =
(
∇2Ψr −

2
r2Ψr −

2
r2 sinϑ

∂(Ψϑ sinϑ)
∂ϑ

− 2
r2 sinϑ

∂Ψϕ
∂ϕ

)
er

+
(
∇2Ψϑ −

1
r2 sin2 ϑ

Ψϑ + 2
r2
∂Ψr
∂ϑ
− 2 cosϑ
r2 sin2 ϑ

∂Ψϕ
∂ϕ

)
eϑ

+
(
∇2Ψϕ −

1
r2 sin2 ϑ

Ψϕ + 2
r2 sinϑ

∂Ψr
∂ϕ

+ 2 cosϑ
r2 sin2 ϑ

∂Ψϑ
∂ϕ

)
eϕ

(A.24)

∇× Ψ = 1
r sinϑ

(
∂

∂ϑ
(Ψϕ sinϑ)− ∂Ψϑ

∂ϕ

)
er + 1

r

( 1
sinϑ

∂Ψr
∂ϕ
− ∂

∂r
(rΨϕ)

)
eϑ

+ 1
r

(
∂

∂r
(rΨϑ)−

∂Ψr
∂ϑ

)
eϕ.

(A.25)

B. Linear elasticity

In this section the needed formulas from linear elasticity used in this paper are
listed. A more comprehensive introduction to linear elasticity may be found in [44].
From the displacement field u = uiei the strain field, εij , is defined by

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(B.1)

from which the stress field, σij , can be obtained through the constitutive relation14

(derived from the generalized Hooke’s law)




σ11
σ22
σ33
σ23
σ13
σ12




= C




ε11
ε22
ε33
2ε23
2ε13
2ε12




with C =




K + 4G
3 K − 2G

3 K − 2G
3 0 0 0

K − 2G
3 K + 4G

3 K − 2G
3 0 0 0

K − 2G
3 K − 2G

3 K + 4G
3 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G




(B.2)

14This representation is often referred to as the Voight notation.
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where it has been assumed that the elastic material is isotropic. Note that

C−1 = 1
E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)



. (B.3)

In [44, p. 19] the transformation formula for the stress tensor from an arbitrary
coordinate system to another can be found. If ei and ẽi represents the basis
vectors of these two coordinate systems and the stress field is known in the first
coordinate system, then the stress field in terms of the second coordinate system
is found by

σ̃ij = αikαslσkl, (B.4)

where
αij = cos(ẽi, ej) = ẽi · ej (B.5)

represents the cosine of the angle between the axes corresponding to the vectors
ẽi and ei. Letting ẽ1 = er, ẽ2 = eϑ and ẽ3 = eϕ (the basis vectors in the spheri-
cal coordinate system), and {e1, e2, e3} the standard basis vectors in Cartesian
coordinates, one gets (using Eq. (A.15))

[αij ] =




sinϑ cosϕ sinϑ sinϕ cosϑ
cosϑ cosϕ cosϑ sinϕ − sinϑ
− sinϕ cosϕ 0


 = Je. (B.6)

This yields the relation



σrr
σϑϑ
σϕϕ
σϑϕ
σrϕ
σrϑ




= D




σ11
σ22
σ33
σ23
σ13
σ12




(B.7)

where

D =




sin2 ϑ cos2 ϕ sin2 ϑ sin2 ϕ cos2 ϑ sin 2ϑ sinϕ sin 2ϑ cosϕ sin2 ϑ sin 2ϕ
cos2 ϑ cos2 ϕ cos2 ϑ sin2 ϕ sin2 ϑ − sin 2ϑ sinϕ − sin 2ϑ cosϕ cos2 ϑ sin 2ϕ

sin2 ϕ cos2 ϕ 0 0 0 − sin 2ϕ
−1

2 cosϑ sin 2ϕ 1
2 cosϑ sin 2ϕ 0 − sinϑ cosϕ sinϑ sinϕ cosϑ cos 2ϕ

−1
2 sinϑ sin 2ϕ 1

2 sinϑ sin 2ϕ 0 cosϑ cosϕ − cosϑ sinϕ sinϑ cos 2ϕ
1
2 sin 2ϑ cos2 ϕ 1

2 sin 2ϑ sin2 ϕ −1
2 sin 2ϑ cos 2ϑ sinϕ cos 2ϑ cosϕ 1

2 sin 2ϑ sin 2ϕ



.
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The inverse relation is found by inverting the matrix D, which takes the form

D−1 =




sin2 ϑ cos2 ϕ cos2 ϑ cos2 ϕ sin2 ϕ − cosϑ sin 2ϕ − sinϑ sin 2ϕ sin 2ϑ cos2 ϕ
sin2 ϑ sin2 ϕ cos2 ϑ sin2 ϕ cos2 ϕ cosϑ sin 2ϕ sinϑ sin 2ϕ sin 2ϑ sin2 ϕ

cos2 ϑ sin2 ϑ 0 0 0 − sin 2ϑ
1
2 sin 2ϑ sinϕ −1

2 sin 2ϑ sinϕ 0 − sinϑ cosϕ cosϑ cosϕ sinϕ cos 2ϑ
1
2 sinϑ sin 2ϕ −1

2 sin 2ϑ cosϕ 0 sinϑ sinϕ − cosϑ sinϕ cos 2ϑ cosϕ
1
2 sin2 ϑ sin 2ϕ 1

2 cos2 ϑ sin 2ϕ −1
2 sin 2ϕ cosϑ cos 2ϕ cos 2ϕ sinϑ 1

2 sin 2ϑ sin 2ϕ



.

Moreover, 


σrr
σϑϑ
σϕϕ
σϑϕ
σrϕ
σrϑ




= C




εrr
εϑϑ
εϕϕ
2εϑϕ
2εrϕ
2εrϑ



, (B.8)

where (cf [38, p. 150])

εrr = ∂ur
∂r

εϑϑ = 1
r

(
∂uϑ
∂ϑ

+ ur

)

εϕϕ = 1
r sinϑ

(
∂uϕ
∂ϕ

+ ur sinϑ+ uϑ cosϑ
)

εϑϕ = 1
2r

( 1
sinϑ

∂uϑ
∂ϕ

+ ∂uϕ
∂ϑ
− uϕ cotϑ

)

εrϕ = 1
2

( 1
r sinϑ

∂ur
∂ϕ

+ ∂uϕ
∂r
− uϕ

r

)

εrϑ = 1
2

(1
r

∂ur
∂ϑ

+ ∂uϑ
∂r
− uϑ

r

)
.

(B.9)

Finally, note that Navier’s equation of motion (Eq. (10)) in spherical coordinates
are given by (cf. [38, p. 189])

∂σrr
∂r

+ 1
r

∂σrϑ
∂ϑ

+ 1
r sinϑ

∂σrϕ
∂ϕ

+ 1
r

(2σrr − σϑϑ − σϕϕ + σrϑ cotϑ) + ω2ρsur = 0 (B.10)
∂σrϑ
∂r

+ 1
r

∂σϑϑ
∂ϑ

+ 1
r sinϑ

∂σϑϕ
∂ϕ

+ 1
r

[(σϑϑ − σϕϕ) cotϑ+ 3σrϑ] + ω2ρsuϑ = 0

(B.11)
∂σrϕ
∂r

+ 1
r

∂σϑϕ
∂ϑ

+ 1
r sinϑ

∂σϕϕ
∂ϕ

+ 1
r

(2σϑϕ cotϑ+ 3σrϕ) + ω2ρsuϕ = 0. (B.12)
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C. Fundamental functions

Exact solutions for scattering problems on spherical symmetric scatterers are
heavily based on the spherical coordinate system defined in Appendix A. Some fun-
damental functions then naturally arise, and the notation will briefly be presented
in the following.

C.1. Legendre polynomials

The Legendre polynomials are defined recursively by (cf. [45, p. 332])

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (C.1)

starting with P0(x) = 1 and P1(x) = x. From orthogonality property [43,
05.03.21.0006.01]

∫ 1

−1
Pm(x)Pn(x) dx = 2

2n+ 1δmn, (C.2)

with δmn being the Kronecker delta function, one can do a simple substitution to
obtain the following expression

∫ π

0
Pm(cosϑ)Pn(cosϑ) sinϑ dϑ = 2

2n+ 1δmn. (C.3)

Note the following identity from the expanded Legendre equation

d2

dϑ2 Pn(cosϑ) + cotϑ d
dϑPn(cosϑ) = −n(n+ 1)Pn(cosϑ). (C.4)

The associated Legendre polynomials is a generalization of the Legendre polyno-
mials as they are defined by

Pmn (x) = (−1)m(1− x2)
m
2
∂m

∂xm
Pn(x). (C.5)

A convenient result of this is the following relation

P1
n(cosϑ) = d

dϑPn(cosϑ). (C.6)

Let
{
Q

(j)
n

}
j∈N

be a set of functions defined by

Q(j)
n (ϑ) = dj

dϑj Pn(cosϑ), (C.7)



108 Exact 3D Scattering Solutions for Spherical Symmetric Scatterers

the first four of which are given by

Q(0)
n (ϑ) = Pn(cosϑ)

Q(1)
n (ϑ) = −P′n(cosϑ) sinϑ

Q(2)
n (ϑ) = −P′n(cosϑ) cosϑ+ P′′n(cosϑ) sin2 ϑ

Q(3)
n (ϑ) = P′n(cosϑ) sinϑ+ 3

2P′′n(cosϑ) sin 2ϑ− P′′′n (cosϑ) sin3 ϑ

(C.8)

where the derivatives are found by the recursion relations

(n+ 1)P′n+1(x) = (2n+ 1)
[
Pn(x) + xP′n(x)

]− nP′n−1(x) (C.9)
(n+ 1)P′′n+1(x) = (2n+ 1)

[
2P′n(x) + xP′′n(x)

]− nP′′n−1(x) (C.10)
(n+ 1)P′′′n+1(x) = (2n+ 1)

[
3P′′n(x) + xP′′′n (x)

]− nP′′′n−1(x) (C.11)

starting with

P′0(x) = 0, P′1(x) = 1, P′2(x) = 3x
P′′0(x) = 0, P′′1(x) = 0, P′′2(x) = 3, P′′3(x) = 15x
P′′′0 (x) = 0, P′′′1 (x) = 0, P′′′2 (x) = 0, P′′′3 (x) = 15, P′′′4 (x) = 105x.

Note that the formulas in Eq. (C.8) can be rewritten in the following way

Q(1)
n (ϑ) = n

sinϑ [Pn(cosϑ) cosϑ− Pn−1(cosϑ)] (C.12)

Q(2)
n (ϑ) = n

sin2 ϑ

[
−
(
n sin2 ϑ+ 1

)
Pn(cosϑ)− Pn−1(cosϑ) cosϑ

]
. (C.13)

From Eq. (C.4) the following relations can be obtained

Q(2)
n (ϑ) = −Q(1)

n (ϑ) cotϑ− n(n+ 1)Q(0)
n (ϑ) (C.14)

Q(3)
n (ϑ) = −Q(2)

n (ϑ) cotϑ+Q(1)
n (ϑ) cot2 ϑ+ (−n2 − n+ 1)Q(1)

n (ϑ). (C.15)

C.2. Spherical Bessel and Hankel functions

The Bessel functions of the first kind can be defined by [45, p. 360]

Jυ(x) =
∞∑

m=0

(−1)m
m!Γ(m+ υ + 1)

(
x

2

)2m+υ
, (C.16)

while the Bessel functions of the second kind are defined by

Yυ(x) = Jυ(x) cos(υπ)− J−υ(x)
sin(υπ) , (C.17)
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where
Yn(x) = lim

υ→nYυ(x) (C.18)

whenever n ∈ Z (cf. [45, p. 358]). These definitions may be used to define the
spherical Bessel functions. The spherical Bessel functions of the first kind are
defined by (cf. [45, p. 437])

jn(x) =
√
π

2xJn+ 1
2
(x) (C.19)

and the second kind are defined by

yn(x) =
√
π

2xYn+ 1
2
(x). (C.20)

Some important limits of the spherical Bessel function of the first kind at the
origin are [43, 03.21.20.0016.01 and 03.21.20.0017.01]

lim
x→0

j0(x) = 1, lim
x→0

jn(x) = 0 ∀n ∈ N∗ (C.21)

lim
x→0

d
dx j1(x) = 1

3 , lim
x→0

d
dx jn(x) = 0 ∀n ∈ N \ {1} (C.22)

lim
x→0

d2

dx2 j0(x) = −1
3 , lim

x→0

d2

dx2 j2(x) = 2
15 , lim

x→0

d2

dx2 jn(x) = 0 ∀n ∈ N \ {0, 2}.
(C.23)

From this the following limits are obtained

lim
x→0+

jn(x)
x

=





∞ n = 0
1
3 n = 1
0 n > 1

(C.24)

and

lim
x→0+

jn(x)
x2 =





∞ n = 0, 1
1
15 n = 2
0 n > 2.

(C.25)

A couple of convenient identities involving the derivatives of the spherical Bessel
functions are given by [43, 03.21.20.0007.01 and 03.21.20.0008.01]

d
dxZ

(i)
n (x) = Z

(i)
n−1(x)− n+ 1

x
Z(i)
n (x) (C.26)

d
dxZ

(i)
n (x) = n

x
Z(i)
n (x)− Z(i)

n+1(x) (C.27)
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for i = 1, 2. By combining these two formulas, one can compute higher order
derivatives. For example

d2

dx2Z
(i)
n (x) =

[
n(n− 1)

x2 − 1
]
Z(i)
n (x) + 2

x
Z

(i)
n+1(x). (C.28)

The spherical Hankel functions of the first and second kind can now be expressed
by

h(1)
n (x) = jn(x) + iyn(x) (C.29)

and
h(2)
n (x) = jn(x)− iyn(x). (C.30)

respectively. Two important limits for spherical Hankel functions are [37, p. 25]

lim
x→∞xe−ixh(1)

n (x) = i−n−1 (C.31)

lim
x→∞xeixh(2)

n (x) = in+1 (C.32)

One can trivially show that the Eqs. (C.26) to (C.28) holds for spherical Hankel
functions as well

d
dxh(i)

n (x) = h(i)
n−1(x)− n+ 1

x
h(i)
n (x) (C.33)

d
dxh(i)

n (x) = n

x
h(i)
n (x)− h(i)

n+1(x) (C.34)

d2

dx2 h(i)
n (x) =

[
n(n− 1)

x2 − 1
]
h(i)
n (x) + 2

x
h(i)
n+1(x), (C.35)

for i = 1, 2.

D. The incident wave

The coefficients F (1)
n and F

(2)
n in Eq. (74) may be computed by using the orthog-

onality property of the Legendre polynomials in Eq. (C.3). In fact, any square
integrable function Ψ(ϑ) on the interval [0,π] can be written as (see [37, p. 27])

Ψ(ϑ) =
∞∑

n=0
ΨnPn(cosϑ) (D.1)

where
Ψn = 2n+ 1

2

∫ π

0
Ψ(ϑ)Pn(cosϑ) sinϑ dϑ. (D.2)
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For example, a plane wave traveling along the x3-axis can be expanded as [45,
10.1.47]

pinc(x, ω) = Pinc(ω)eik1x3 = Pinc(ω)eik1r cosϑ

= Pinc(ω)
∞∑

n=0
(2n+ 1)injn(k1r)Pn(cosϑ)

(D.3)

such that

F (1)
n = Pinc(ω)(2n+ 1)injn(k1R0,1) (D.4)

F (2)
n = Pinc(ω)(2n+ 1)ink1j

′
n(k1R0,1). (D.5)

Another example of an incident wave satisfying the axisymmetry property, is a
wave due to a point source located at xs = −rse3. The incident wave can then be
expressed with the fundamental solution of the Helmholtz equation

pinc(x, ω) = Pinc(ω) rs
|xs − x|

eik1|xs−x|, |xs − x| =
√
r2 + 2rsr cosϑ+ r2

s . (D.6)

By a simple substitution v = cosϑ in Eq. (D.2) one gets

F (1)
n = Pinc(ω)2n+ 1

2 rs

∫ 1

−1

eik1q(v)

q(v) Pn(v) dv

F (2)
n = Pinc(ω)2n+ 1

2 rs

∫ 1

−1
(R0,1 + rsv)eik1q(v)

q3(v) [ik1q(v)− 1]Pn(v) dv
(D.7)

where
q(v) =

√
R2

0,1 + 2rsR0,1v + r2
s .

One can obtain simple expressions for some of these coefficients, for example

F
(1)
0 = Pinc(ω) sinc(k1R0,1)eik1rs .

But in general, one needs to use a numerical routine to evaluate the integrals in
Eq. (D.7).
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Abstract

Isogeometric analysis (IGA) has proven to be an improvement on the classical
finite element method (FEM) in several fields, including structural mechanics and
fluid dynamics. In this paper, the performance of IGA coupled with the infinite
element method (IEM) for some acoustic scattering problems is investigated. In
particular, the simple problem of acoustic scattering by a rigid sphere, and the
scattering of acoustic waves by an elastic spherical shell with fluid domains both
inside and outside, representing a full acoustic-structure interaction (ASI) problem.
Finally, a mock shell and a simplified submarine benchmark are investigated. The
numerical examples include comparisons between IGA and the FEM. Our main
finding is that the usage of IGA significantly increases the accuracy compared to
the usage of C0 FEM due to increased inter-element continuity of the spline basis
functions.

1. Introduction

Acoustic scattering is the physical phenomena of how sound interacts with objects
and medium fluctuations. When an acoustic wave hits a rigid object, it is totally
reflected, and the object is left in a quiescent state. In the case of an elastic object,
part of the sound is transmitted into the object, which is set into motion and
starts radiating sound. This leads to a coupled acoustic-structure interaction (ASI)
problem. Applications include underwater acoustics [1] and noise propagation
in air [2]. Inverse problems are also of interest, such as shape optimization of
membranes [3] and the problem of designing submarines with low scattering
strength. Assuming harmonic time dependency, the fluid and solid media can be

∗Corresponding author.
Email addresses: Jon.Venas@ntnu.no (J.V. Ven̊as), Trond.Kvamsdal@ntnu.no (T. Kvamsdal),
Trond.Jenserud@ffi.no (T. Jenserud).
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Elastic materialHomogeneous fluid

Γ0Γ1

pinc(x)

Ωs

Ω−

Ω+

p(x)

Figure 1: Illustration of the physical problem. A plane incident wave, pinc(x),
is scattered by the scatterer, Ωs, in an unbounded domain, Ω+, resulting in the
scattered wave, p(x). The scatterer, which is bounded by the boundaries Γ0 and
Γ1, envelops a fluid domain, Ω−.

modeled using the scalar and vector Helmholtz equations, respectively. The vector
Helmholtz equation can be used to model electromagnetic waves [4], such that the
work presented herein can also be used for electromagnetic scattering.

Herein, the acoustic scattering characterized by sound waves reflected by man-
made elastic objects will be addressed. Shape optimization for optimal acoustic
scattering on man-made objects, e.g. antennas, submarines etc., is a typical
problem facing design engineers.

Isogeometric analysis (IGA) is basically an extension of the finite element
method (FEM) using non-uniform rational B-splines (NURBS) as basis functions
not only representing the solution space, but also the geometry. Being introduced
in 2005 by Hughes et al. [5], followed by the book [6] in 2009, IGA tries to bridge
the gap between finite element analysis (FEA) and computer aided design (CAD)
tools. The important feature of IGA is that it uses the same basis as CAD software
for describing the given geometry, and thus exact representation of the model is
possible.

The physical problem is illustrated in Figure 1 where the incoming sound waves,
pinc, originate from a point source far from this object, such that the (spherical)
sound waves are quite accurately approximated by plane waves when the waves
reaches the proximity of the object. For rigid objects of irregular shape, the
incoming wave may be reflected multiple times before leaving the object. When
the object is elastic a coupled ASI problem results. The goal is then to calculate
the scattered wave p at an arbitrary far field point. Finally, to use the FEM or
IGA the domain must be finite. A fictitious boundary is thus introduced, which
must be implemented in such a way that outgoing waves reaching this boundary
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Figure 2: Exact geometry of a spherical shell using 8 elements.

are absorbed.
The problem at hand is time dependent. However, harmonic time depen-

dency will be assumed, such that all time dependent functions may be written
as F̆ = F̆ (x, t) = F (x)e−iωt where ω is the angular frequency and i =

√
−1 the

imaginary unit. This enables us to model the pressure p in the fluid with the
Helmholtz equation given by

∇2p+ k2p = 0 (1)

with the wave number k = ω
cf

(where cf is the wave speed in the fluid). Other
important quantities include the frequency f = ω

2π and the wavelength λ = 2π
k .

The geometry of the elastic object may be quite complex but is typically exactly
represented using NURBS. This fact is one of the motivating factors for using IGA,
as it uses the same functions as basis functions for analysis. The spherical shell
depicted in Figure 2 is an example of a geometry that has an exact representation
using NURBS but is outside the space of standard (Lagrangian) FEM geometries.

It has been shown that the continuity of the basis functions plays an important
role for the accuracy of solving elliptical problems (for instance the Helmholtz
equation), see [7] and [8]. This motivates the use of IGA even further, as IGA
enables control of the continuity of the basis function up to Cp−1 (in contrast with
the C0-continuity restriction in FEA). IGA has proven to be promising in a host
of areas related to the problem at hand, which yields further motivation in the
use of IGA. For instance, in [9] the method was shown to be suited for the more
complex scenario of sound propagation through laminar flow.

In addition to IGA, the so-called infinite element method (IEM) has been
chosen to handle the boundary conditions at the artificial boundary. Typically, the
boundary element method (BEM) [10, 11] has been used for this purpose. However,
for higher frequencies and complex geometries, BEM becomes computationally
expensive (although improvement in performance has been done in the recent
decades [12]). The main motivation for the infinite element method is computa-
tional efficiency as reported by Burnett [13] and Gerdes and Demkowicz [14].
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Before starting on the full ASI problem, it is important to establish good
results for the IEM. This method only applies for the outer fluid, and it would thus
be natural to first investigate the scattering problem on rigid objects (that is, no
acoustic-structure interaction occurs). An introduction to the IEM is presented in
Section 2. The extension to ASI problems (presented in Section 3) naturally follows
from the implementation of rigid scattering using IEM. In Section 4 the results
obtained for both rigid and elastic scattering on a spherical shell is presented.
Results for rigid scattering from a mock shell are included to investigate condition
numbers. Moreover, results for a simplified submarine is presented to illustrate the
performance of the implementation on complex geometries. Finally, conclusions
and suggested future work can be found in Section 5.

2. Exterior Helmholtz problems

Scattering problems involve unbounded exterior domains, Ω+. A common method
for solving such problems with the FEM is to introduce an artificial boundary that
encloses the scatterer. On the artificial boundary some sort of absorbing boundary
condition (ABC) is prescribed. The problem is then reduced to a finite domain, and
both the elastic scatterer and the bounded domain between the scatterer and the
artificial boundary can be discretized with finite elements. Several methods exist
for handling the exterior Helmholtz problem (on unbounded domain), including

• the perfectly matched layer (PML) method after Bérenger [15, 16]

• the boundary element method [10, 11, 17, 18]

• Dirichlet to Neumann-operators (DtN-operators) [19]

• local differential ABC operators [20–23]

• the infinite element method. [24, 25]

Herein, the infinite element method is chosen. For the IEM, the unbounded
domain Ω+ is partitioned into two domains by the artificial boundary Γa; Ωa and
Ω+

a (see Figure 3). These domains are discretized by finite and infinite elements,
respectively. A convergence analysis of a coupled FEM-IEM can be found in [26].

The exterior Helmholtz problem is given by

∇2p+ k2p = 0 in Ω+, (2)
∂np = g on Γ0, (3)

∂p

∂r
− ikp = o

(
r−1

)
with r = |x| (4)

where the Sommerfeld condition [27] in Eq. (4) restricts the field in the limit
r → ∞ uniformly in x̂ = x

r , such that no waves originate from infinity. The
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Γ0Γ1 Γa

Ωs

Ω−

Ωa
Ω+

a

Figure 3: An artificial boundary Γa is introduced such that the exterior domain
Ω+ is decomposed by the two domains Ωa (which is bounded by Γ0 and Γa) and
Ω+

a . Thus, Ω+ = Ωa ∪Ω+
a .

Neumann condition given by the function g will in the case of rigid scattering
be given by the incident wave pinc. Zero displacement of the fluid normal on the
scatterer (rigid scattering) implies that ∂n(p + pinc) = 0 where ∂n denotes the
partial derivative in the normal direction on the surface Γ0 (pointing “out” from
Ω+), which implies that

g = −∂pinc
∂n

. (5)

Plane incident waves (with amplitude Pinc) traveling in the direction ds can be
written as

pinc = Pinceikds·x. (6)

The normal derivative on the surface of any smooth geometry may then be
computed by

∂pinc
∂n

= n · ∇pinc = ikds · npinc. (7)

2.1. Weak formulation for the Helmholtz equation

In order to choose the correct solution space in the infinite element method, the
asymptotic behavior of the scattered pressure p at large radii1 r must be examined.
In [28], Wilcox shows that the scalar pressure field p(x) satisfying the Helmholtz

1Here, r is referred to as the radius even though it does not necessarily represent the radius in
spherical coordinates.
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equation and the Sommerfeld radiation conditions can be written in the form2

p(x) = eikr

r

∞∑

n=0

pn(ϑ, ϕ)
rn

, (8)

which implies that |p| = O(r−1) asymptotically for large r. Considering a function
which represents this asymptotic property

Ψ(r) = eikr

r
, (9)

one can observe that the L2 Hermitian inner product does not exist. Indeed, if Γ0
is the unit sphere then

(Ψ, Ψ)L2 =
∫

Ω+

eikr

r

e−ikr

r
dΩ = 4π

∫ ∞

1

1
r2 r

2 dr,

which is not finite. The solution to the problem is to introduce weighted norms by
defining the inner product

(p, q)w =
∫

Ω+
wpq̄ dΩ, with w = 1

r2 . (10)

The following norm may then be induced

‖p‖1,w =
√

(p, p)w + (∇p,∇p)w (11)

such that the trial functions satisfy ‖p‖1,w <∞. The integrals
∫

Ω+
pq̄ dΩ and

∫

Ω+
∇p · ∇q̄ dΩ (12)

are well defined if the test functions q are such that

(q, q)w∗ <∞ and (∇q,∇q)w∗ <∞ (13)

with the inner product

(p, q)w∗ =
∫

Ω+
w∗pq̄ dΩ, with w∗ = r2, (14)

and the corresponding norm

‖p‖1,w∗ =
√

(p, p)w∗ + (∇p,∇p)w∗ . (15)
2In some appropriate coordinate system (r, ϑ, ϕ) with the “radial variable”, r, extending to

infinity. Typically, some degeneration of the ellipsoidal (in 3D) coordinate system.
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Define now the following weighted Sobolev spaces for the trial- and test spaces

H1
w(Ω+) = {p : ‖p‖1,w <∞} and H1

w∗(Ω+) = {q : ‖q‖1,w∗ <∞}, (16)

respectively. These definitions will not ensure that all trial function satisfy the
Sommerfeld condition. Leis solved this problem in [29] by modifying the trial
space to be

H1+
w (Ω+) = {p : ‖p‖+1,w <∞} (17)

where

‖p‖+1,w =

√

‖p‖21,w +
∫

Ω+

∣∣∣∣
∂p

∂r
− ikp

∣∣∣∣
2

dΩ. (18)

For a more detailed discussion of the functional analysis involved in these spaces
refer to the book by Ihlenburg [30, pp. 41-43].

The weak form of the Helmholtz equation may now be found by multiplying
Eq. (2) with a test function and integration over the domain

∫

Ω+

[
q∇2p+ k2qp

]
dΩ = 0.

Using Greens first identity this can be written as

−
∫

Ω+
∇q · ∇pdΩ +

∫

∂Ω+
q∇p · ndΓ + k2

∫

Ω+
qpdΩ = 0.

Thus, ∫

Ω+
∇q · ∇p dΩ − k2

∫

Ω+
qp dΩ =

∫

∂Ω+
qg dΓ. (19)

The weak formulation then becomes:

Find p ∈ H1+
w (Ω+) such that B(q, p) = L(q), ∀q ∈ H1

w∗(Ω+), (20)

where the bilinear form is given by

B(q, p) =
∫

Ω+

[
∇q · ∇p− k2qp

]
dΩ

and the corresponding linear form is given by

L(q) =
∫

Γ0
qg dΓ.
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2.2. Infinite elements

In the following, a derivation of the weak formulation for infinite elements using a
prolate spheroidal coordinate system is presented (cf. [13]). The IEM is typically
presented with four infinite element formulations:

• Petrov–Galerkin conjugated (PGC)

• Petrov–Galerkin unconjugated (PGU)

• Bubnov–Galerkin conjugated (BGC)

• Bubnov–Galerkin unconjugated (BGU)

The Petrov–Galerkin formulations are based on the weighted Sobolev spaces after
Leis [29]. It turns out that it is possible to create Bubnov–Galerkin formulations
as well when the integration in the weak formulation is understood in the sense
of the Cauchy principal value (consider [13] and [31] for details). These spaces
differ compared to the Petrov–Galerkin counterpart in that the test space and
trial space are equal. The difference between the conjugated formulations and the
unconjugated formulations is simply conjugations of the test functions in the weak
formulation. The accuracy of these formulations has been assessed in the overview
in [32].

The idea of the IEM is to partition the unbounded domain Ω+ into Ωa and
Ω+

a separated by an artificial boundary Γa (cf. Figure 3). These two domains can
then be discretized with finite elements and infinite elements, respectively. The
boundary of the scatterer is assumed to be parameterized using 3D NURBS surface
patches, such that the domain Ωa can be parameterized using 3D NURBS volume
patches. Denote by Vh(Ωa), the space spanned by these trivariate NURBS-basis
functions. As the 3D NURBS volume representation of Ωa reduces to a NURBS
surface parametrization at Γa, a natural partition of Γa into surface elements arises.
Denote by Vh(Γa), the space spanned by the resulting bivariate basis functions.
Consider now the following basis of the radial shape functions which is motivated
by the Wilcox expansion in Eq. (8)

I+
N,w = span



{

eikr

rn

}

n=1,...,N


. (21)

Moreover, define corresponding spaces for the test-space

I+
N,w∗ =





I+
N,w for Bubnov–Galerkin formulations

span
({

eikr

rn+2

}
n=1,...,N

)
for Petrov–Galerkin formulations.

(22)
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The trial- and test spaces for the infinite elements can then be defined by

I+
h,w = Vh(Γa)× I+

N,w, (23)
I+
h,w∗ = Vh(Γa)× I+

N,w∗ , (24)

respectively. Finally, the trial- and test spaces for the coupled FEM-IEM can be
written as

F+
h,w =

{
p ∈ H1+

w (Ω+); p
∣∣
Ωa
∈ Vh(Ωa) and p

∣∣
Ω+

a
∈ I+

h,w

}
, (25)

F+
h,w∗ =

{
q ∈ H1+

w∗ (Ω+); q
∣∣
Ωa
∈ Vh(Ωa) and q

∣∣
Ω+

a
∈ I+

h,w∗

}
, (26)

respectively. Note that F+
h,w∗ = F+

h,w for Bubnov–Galerkin formulations.
For the unconjugated formulations the Galerkin formulations now takes the

form:

Find ph ∈ F+
h,w such that Buc(qh, ph) = L(qh), ∀qh ∈ F+

h,w∗ (27)

where the bilinear form and linear form are respectively given by

Buc(q, p) = lim
γ→∞

(∫

Ωγ

[
∇q · ∇p− k2qp

]
dΩ −

∫

Sγ
q∂np dΓ

)
, (28)

L(q) =
∫

Γ0
qg dΓ.

Here, Sγ is the surface at r = γ (and Ωγ is the domain bounded by Γ0 and Sγ ,
such that limγ→∞Ωγ = Ω+) and the full domain can then be recovered by letting
γ →∞ (see Figure 4). Recall that ∂np = ∂p

∂n = n · ∇p where n is pointing “out”
of Ωγ . In the conjugated formulations the test functions qh are conjugated.

Let ra be the radius in the prolate spheroidal coordinate system at the artificial
boundary Γa. Moreover, let the radial shape functions φ be defined by

φm(r) = eik(r−ra)Qm

(
ra
r

)
, m = 1, . . . , N (29)

where

Qm(x) =
N∑

m̃=1
Dmm̃x

m̃ (30)

is a set of polynomial functions defined on the half open interval (0, 1]. To obtain
optimal sparsity of the global matrix, one should choose the polynomials such that
Qm(1) = δm1, with the Kronecker delta function defined by

δij =
{

1 if i = j

0 if i 6= j
(31)
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r = r2

r = r3

r = γ

∞

Base of infinite element
at r = r1 = ra

Artificial boundary, Γa,
encapsulating the scatterer

Figure 4: Illustration of an infinite element (with N = 3) where the radial shape
functions have the Kronecker delta property at radii r1 = ra, r2 = 5

4ra and r3 = 6
4ra.

The (green) scatterer inside Γa is the BeTSSi submarine which originates from the
BeTSSi workshops [1]. Note that the volume elements discretizing the domain Ωa
(bounded by the scatterer and the artificial boundary) are not shown here.

which implies that φm(ra) = δm1. In [13] Burnett includes the restrictions φm(rn) =
δmn with radii rn, n = 1, . . . , N (see Figure 4). Alternatively, one could use
the shifted Chebyshev polynomials as done by Shirron and Dey in [33]. These
polynomials are defined by the three-term recurrence relation

T̃m+1(x) = 2(2x− 1)T̃m(x)− T̃m−1(x) (32)

for m > 1 starting with

T̃0(x) = 1 and T̃1(x) = 2x− 1. (33)

Let

Qm(x) =




x
(
T̃m−1(x)− 1

)
m > 1

x m = 1.
(34)

Then the coefficients Dmm̃ in Eq. (30) can be collected in the matrix (for N 6 6)

D =




1 0 0 0 0 0
−2 2 0 0 0 0
0 −8 8 0 0 0
−2 18 −48 32 0 0
0 −32 160 −256 128 0
−2 50 −400 1120 −1280 512



.
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For the Petrov–Galerkin formulations, a second set of shape functions (for the test
space) must be created, namely

ψn(r) = eik(r−ra)Q̃n

(
ra
r

)
, n = 1, . . . , N (35)

using

Q̃n(x) =
N∑

ñ=1
D̃nñx

ñ+2 (36)

where it is natural to choose D̃nñ = Dnñ. The Bubnov–Galerkin formulations use
the same shape functions for the test space, i.e., ψn = φn.

Alternatively, the polynomials Q can be based upon the Bernstein basis of
order p̌ = N − 1 by

Qm(x) = xbp−m+1,p̌(x) m = 1, . . . N (37)

where

bi,p̌(x) =
(
n

i

)
(1− x)p̌−ixi =

p̌−i∑

j=0
(−1)j

(
p̌

i

)(
p̌− i
j

)
xi+j , i = 0, . . . , p̌. (38)

For completeness, note that the coefficients for the radial shape functions used
by Burnett [13] (for the Bubnov–Galerkin formulations) can be found by solving
DB = E where

B =




x1 x2 . . . xN
x2

1 x2
2 . . . x2

N
...

... . . . ...
xN1 xN2 . . . xNN



, E =




1
eik(ra−r2)

. . .
eik(ra−rN )



, xn = ra

rn
.

The coefficients Dmm̃ are thus given by D = EB−1. For Petrov–Galerkin for-
mulations, the coefficients D̃nñ are found in the same way, but now with the
matrix

B̃ =




x3
1 x3

2 . . . x3
N

x4
1 x4

2 . . . x4
N

...
... . . . ...

xN+2
1 xN+2

2 . . . xN+2
N




instead of B. So, with the notation presented, these basis functions are based on
the Lagrange polynomials with polynomial order3 p̌ = N − 1

ln(x) =
∏

06n6p̌
n6=m

x− xn
xm − xn

, (39)

3The usage of a check sign above the polynomial order p is to avoid ambiguity between the
polynomial order and the scattered pressure.
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since the polynomials Qm can be written as

Qm(x) = eik(ra−rm) rm
ra
xlm(x)

such that
φm(r) = eik(r−rm) rm

r
lm

(
ra
r

)
.

The radial shape functions in the test space for the Petrov–Galerkin formulations
take the form

ψn(r) = eik(r−rn)
(
rn
r

)3
ln

(
ra
r

)
.

As all these sets of basis functions span the same space, they should only affect
the conditioning of the system. Note that the sets of basis functions are identical
for N = 1.

The trial- and test functions now take the form

ph(x) =





∑

J∈κa

N∑

m=1
dm,Jφm(r)RJ(ξ, η, ζ)

∣∣
Γa

x ∈ Ω+
a

∑

J∈κ
d1,JRJ(ξ, η, ζ) x ∈ Ωa

(40)

and

qh(x) =





∑

I∈κa

N∑

n=1
cn,Iψn(r)RI(ξ, η, ζ)

∣∣
Γa

x ∈ Ω+
a

∑

I∈κ
c1,IRI(ξ, η, ζ) x ∈ Ωa,

(41)

respectively. Here, κ is the collection of the global indices of the NURBS basis
functions and κa the corresponding indices of the non-zero NURBS function at
the surface Γa. Moreover, RI(ξ, η, ζ) is the set of NURBS basis functions. The
system of equations will now be obtained by inserting the functions in Eq. (40)
and Eq. (41) into the bilinear form (or sesquilinear form for the BGC and PGC
formulations, i.e. the bilinear form with conjugated test functions).

Before the insertion, it is advantageous to split the bilinear form in Eq. (28) as

Buc(q, p) = Ba(q, p) +B+
uc,a(q, p) (42)

where

Ba(q, p) =
∫

Ωa

[
∇q · ∇p− k2qp

]
dΩ

B+
uc,a(q, p) = lim

γ→∞

(∫

Ωγa

[
∇q · ∇p− k2qp

]
dΩ −

∫

Sγ
q∂np dΓ

)
. (43)
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Insertion of Eq. (40) and Eq. (41) into Eq. (27) (using the splitting in Eq. (42))
results in the following system of equations

(Aa +A+
uc,a)d = F (44)

with components

Aa[I, J ] = Ba(RI , RJ) I,J = 1, . . . , |κ|
F [I] = L(RI) I = 1, . . . , |κ|
d[J ] = d1,J J = 1, . . . , |κ|

and

A+
uc,a[Ĩ , J̃ ] = B+

uc,a(RIψn, RJφm)
d[J̃ ] = dm,J

where I = κa [̃i] and J = κa[j̃] for ĩ, j̃ = 1, . . . , |κa| and m,n = 1, . . . , N , and

Ĩ =
{
κa [̃i] n = 1
|κ|+ (n− 2)|κa|+ ĩ n > 1

J̃ =
{
κa[j̃] m = 1
|κ|+ (m− 2)|κa|+ j̃ m > 1.

Note thatAa and F are independent of the IEM and that there are |κ|+|κa|(N−1)
linear equations. The matrices are assembled as in the classical FEM. That
is, instead of looping through the indices, one loops through the elements. A
formula for B+

uc,a(RIψn, RJφm) for the Petrov Galerkin formulation is derived in
Appendix A and the final bilinear form is given in Eq. (A.19). The final formulas
for the other three formulations are also added in this appendix.

2.3. Far field pattern

The problem is solved inside an artificial boundary, computing the so-called near
field. However, the far field is also often of interest. To solve this issue, one uses
the integral solution given by4 (cf. [18, Theorem 2.21])

p(x) =
∫

Γ0

[
p(y)∂Φk(x,y)

∂n(y) − Φk(x,y)∂p(y)
∂n(y)

]
dΓ (y) (45)

4For the conjugated formulations one may also compute the far field using the radial shape
functions in the infinite elements, but for the unconjugated formulations it is mentioned in [34, p.
137] that the expansion does not converge in the far field, such that it must be computed by
other means.
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where y is a point on the surface Γ0, n lies on Γ0 pointing “into” Ω+ at y and Φk
is the free space Green’s function for the Helmholtz equation in Eq. (2) given (in
3D) by

Φk(x,y) = eikR

4πR, where R = |x− y|. (46)

The derivative of both Green’s function and the numerical solution for the pressure
is therefore needed

∂Φk(x,y)
∂n(y) = Φk(x,y)

R
(ikR− 1) ∂R

∂n(y) , where ∂R

∂n(y) = −(x− y) · n(y)
R

.

(47)
Note that for sound-hard scattering (where ∂n(p+ pinc) = 0) the values for ∂np are
known at the boundary Γ0 (given by Eq. (3)). To use the exact expression for the
derivative seems to give better results and is for this reason used in the sound-hard
scattering cases when computing the field outside the artificial boundary.

The far field pattern for the scattered pressure p, is now defined by

p0(x̂) = lim
r→∞ re

−ikrp(rx̂), (48)

with r = |x| and x̂ = x/|x|. Using the limits

lim
r→∞ re

−ikrΦk(rx̂,y) = 1
4πe−ikx̂·y (49)

and
lim
r→∞ re

−ikr ∂Φk(rx̂,y)
∂n(y) = − ik

4πe−ikx̂·yx̂ · n(y) (50)

the formula in Eq. (45) simplifies in the far field to (cf. [30, p. 32])

p0(x̂) = − 1
4π

∫

Γ0

[
ikp(y)x̂ · n(y) + ∂p(y)

∂n(y)

]
e−ikx̂·y dΓ (y). (51)

From the far field pattern, the target strength, TS, can be computed. It is defined
by

TS = 20 log10

( |p0(x̂)|
|Pinc|

)
(52)

where Pinc is the amplitude of the incident wave at the geometric center of the
scatterer (i.e. the origin). Note that TS is independent of Pinc, which is a result of
the linear dependency of the amplitude of the incident wave in scattering problems
(i.e. doubling the amplitude of the incident wave will double the amplitude of the
scattered wave).
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3. Acoustic-structure interaction

In [30, pp. 13-14] Ihlenburg briefly derives the governing equations for the ASI
problem. Building upon this the formulas are generalized to include an interior
fluid domain Ω−. The pressure in the exterior and interior fluid domain are now
denoted by p1 and p2 (see Figure 3).

∇2p1 + k2
1p1 = 0 in Ω+ (53)

∂p(x, ω)
∂r

− ikp(x, ω) = o
(
r−1

)
with r = |x| (54)

ρf,1ω
2uini −

∂p1
∂n

= ∂pinc
∂n

on Γ0 (55)

σijninj + p1 = −pinc on Γ0 (56)
σij,j + ω2ρsui = 0 in Ωs (57)

ρf,2ω
2uini −

∂p2
∂n

= 0 on Γ1 (58)

σijninj + p2 = 0 on Γ1 (59)
∇2p2 + k2

2p2 = 0 in Ω−. (60)

The first two equations represent the Helmholtz equation and Sommerfeld con-
ditions, respectively, for the exterior domain. The wave numbers in the exterior
and interior fluid domain are denoted by k1 and k2. The elasticity equation
in Eq. (57) comes from momentum conservation (Newton’s second law), while
Eqs. (55), (56), (58) and (59) represent the coupling equations and come from the
continuity requirement of the displacement and pressures at the boundaries Γm.
The final formula is simply the Helmholtz equation for the internal fluid domain.
The function pinc represents the incident plane wave in Eq. (6) (in the exterior
domain). The mass densities of the solid and the fluid are denoted by ρs and
ρf , respectively, and σij(u) represents the stress components as a function of the
displacement u = uiei in the solid.

For the domain of the scatterer, Ωs, it can be shown that the following weak
formulation is obtained from the strong form in Eq. (57) (see for example [30])

∫

Ωs

[
vi,jσij − ρsω

2uiv̄i
]

dΩ =
∫

Γ0
vi(σijnj) dΓ +

∫

Γ1
vi(σijnj) dΓ. (61)

where the normal vectors point out of Ωs. The integrands on the right-hand side
may be rewritten using Eqs. (56) and (59) in the following way. Consider a point P
on Γ0 or Γ1, with normal vector n = niei. Let Ti be the components (in Cartesian
coordinates) of the exterior traction vector T . That is to say, Ti = σijnj . One can
then create a local orthogonal coordinate system at this point with unit vectors e⊥,
e‖1 and e‖2 , where the latter two vectors represent basis vectors for the tangential
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plane of the surface at P (and e⊥ represents the normal unit vector on this plane
at P ).

As the scalar product is invariant to orthogonal transformations, the following
holds

Tivi = Txvx + Tyvy + Tzvz = T⊥v⊥ + T‖1v‖1 + T‖2v‖2 .

Since the acoustic pressure from the fluid only exerts forces normal to the surfaces
Γ0 and Γ1, the static equilibrium conditions for the traction at P are given by

T‖1 = 0, T‖2 = 0, and T⊥ = −ptot,m,

where the total pressure is given by

ptot,m =
{
pinc + p1 m = 1
p2 m = 2.

The scalar product may therefore be written as
Tivi = −ptot,mv⊥ = −ptot,mvini.

Eq. (61) can thus be rewritten as
∫

Ωs

[
vi,jσij − ρsω

2uivi
]

dΩ = −
∫

Γ0
(pinc + p1)vini dΓ −

∫

Γ1
p2vini dΓ. (62)

Moreover, from Eq. (19) one obtains
∫

Ω+

[
∇q1 · ∇p1 − k2

1q1p1
]

dΩ = −
∫

Γ0
q1
∂p1
∂n

dΓ

and ∫

Ω−

[
∇q2 · ∇p2 − k2

2q2p2
]

dΩ = −
∫

Γ1
q2
∂p2
∂n

dΓ

where the sign of the right-hand side must be changed in order to get a normal
vector that points out of Ωs. Using now Eqs. (55) and (58)

1
ρf,1ω2

∫

Ω+

[
∇q1 · ∇p1 − k2

1q1p1
]

dΩ = −
∫

Γ0
q1

(
uini −

1
ρf,1ω2

∂pinc
∂n

)
dΓ (63)

and
1

ρf,2ω2

∫

Ω−

[
∇q2 · ∇p2 − k2

2q2p2
]

dΩ = −
∫

Γ1
q2uini dΓ. (64)

Adding Eqs. (62) to (64)
1

ρf,1ω2

∫

Ω+

[
∇q1 · ∇p1 − k2

1q1p1
]

dΩ +
∫

Γ0
[q1uini + p1vini] dΓ

+ 1
ρf,2ω2

∫

Ω−

[
∇q2 · ∇p2 − k2

2q2p2
]

dΩ +
∫

Γ1
[q2uini + p2vini] dΓ

+
∫

Ωs

[
vi,jσij − ρsω

2uivi
]

dΩ =
∫

Γ0

[
1

ρf,1ω2 q1
∂pinc
∂n

− pincvini

]
dΓ
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where n = {n1, n2, n3} points outwards from the solid. Defining the Sobolev
spaces Hw = S×H1+

w (Ω+)×H1(Ω−) and Hw∗ = S×H1
w∗(Ω+)×H1(Ω−) where

S = {u : ui ∈ H1(Ωs)}, the weak formulation for the ASI problem then becomes
(with the notation U = {u, p1, p2} and V = {v, q1, q2}):

Find U ∈Hw such that BASI(V,U) = LASI(V ), ∀V ∈Hw∗ (65)

where

BASI(V,U) = 1
ρf,1ω2

∫

Ω+

[
∇q1 · ∇p1 − k2

1q1p1
]

dΩ +
∫

Γ0
[q1uini + p1vini] dΓ

+
∫

Ωs

[
vi,jσij − ρsω

2uivi
]

dΩ

+ 1
ρf,2ω2

∫

Ω−

[
∇q2 · ∇p2 − k2

2q2p2
]

dΩ +
∫

Γ1
[q2uini + p2vini] dΓ

and

LASI(V ) =
∫

Γ0

[
1

ρf,1ω2 q1
∂pinc
∂n

− pincvini

]
dΓ.

Let Sh = {u : ui ∈ V(Ωs)} ⊂ S where V(Ωs) is the space spanned by the NURBS
basis functions used to parameterize V(Ωs), and correspondingly for F−h = {p2 :
p2 ∈ V(Ω−)} ⊂ H1(Ω−). Moreover, define the spaces Hh,w = Sh × F+

h,w × F−h
and Hh,w∗ = Sh × F+

h,w∗ × F−h . The Galerkin formulation for the ASI problem
then becomes:

Find Uh ∈Hh,w such that BASI(Vh, Uh) = LASI(Vh), ∀Vh ∈Hh,w∗ . (66)

As the bilinear forms treated in this work are not V -elliptic [30, p. 46], they do
not induce a well-defined energy-norm. For this reason, the energy norm for the
fluid domains Ωa are defined by

|||p1|||Ωa =
√∫

Ωa
|∇p1|2 + k2

1|p1|2 dΩ and |||p2|||Ω− =
√∫

Ω−
|∇p2|2 + k2

2|p2|2 dΩ

(67)
and for the solid domain (using Einstein summation convention)

|||u|||Ωs =
√∫

Ωs
u(i,j)cijklū(k,l) + ρsω2|u|2 dΩ (68)

where

u(i,j) = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
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and elastic coefficients expressed in terms of Young’s modulus, E, and the Poisson’s
ratio, ν, as [6, p. 110]

cijkl = νE

(1 + ν)(1− 2ν)δijδkl + E

2(1 + ν)(δikδjl + δilδjk).

The energy norm for the coupled problem with Ω = Ωa ∪Ωs ∪Ω− is then defined
by

|||U |||Ω =
√

1
ρf,1ω2 |||p1|||2Ωa + |||u|||2Ωs + 1

ρf,2ω2 |||p2|||2Ω− . (69)

As the unconjugated formulations do not converge in the far field, the norm in the
exterior domain is taken over the Ωa instead of Ω+.

4. Numerical examples

Rigid scattering on a sphere and elastic scattering on a spherical shell are in-
vestigated in the following. These problems possess analytic solutions [35] and
are for this reason often used to verify numerical methods in acoustic scattering,
e.g. [14, 30, 31, 36–38].

The mock shell is analyzed to investigate the infinite element formulations,
and we end this section by analyzing a simplified submarine benchmark.

In this work, the test setting is chosen so that the present approach can be
compared to other methods. In particular, the scattering on a rigid sphere example
found in [36] and the scattering on a spherical shell used in [30] are addressed. The
latter problem will be investigated in depth and we shall build upon this problem
to include both rigid scattering and scattering with full ASI on both sides of the
shell.

The direction of the incident wave is along the x-axis while the symmetry of
the parametrization of the domain is around the z-axis (to avoid exploitation of
the symmetry of the problems).

We define the SAV index by

ISAV = LΓa

2
|Γ0|
|Ωa|

(70)

where LΓa is the characteristic length of the artificial boundary, |Γ0| is the surface
area of the scatterer and |Ωa| is the volume of the discretized fluid between Γ0 and
Γa. The SAV index is based on a scaled surface-area-to-volume ratio (SA/V) such
that the domain of computation is fitted in a unit sphere. It can be thought of as
an efficiency index for the IEM compared to BEM, as problems with low ISAV will
be more suited for BEM, while high values of ISAV will be more suited for IEM. If



Numerical examples 137

(a) Mesh Miga
1,p̌,ǩ (b) Mesh Miga

2,p̌,ǩ (c) Mesh Miga
3,p̌,ǩ

Figure 5: Numerical examples: Illustration of the first three meshes, using two
successive refinements from the coarse mesh Miga

1,p̌,ǩ.

we for the sphere example place the artificial boundary, Γa, at ra = sR0, where R0
is the outer radius of the scatterer, then the SAV index is given by

ISAV = 3s
s3 − 1 . (71)

The IEM is optimal for the sphere problem in the sense that the SAV index can
be arbitrarily large. In fact, the infinite elements can be attached directly onto
the scatterer (such that ISAV =∞) as done in [33]. This, however, is not the case
for more complex geometries.

A typical SAV index for submarines like the one depicted in Figure 4 is
approximately 5, so by choosing s > 1, the SAV index can be adjusted for a fairer
comparison with methods like BEM. In the numerical experiments on spherical
shells we use s = 32+π

32−π ≈ 1.2 (such that the aspect ratio of the elements in the
tensor product meshes are minimal), resulting in ISAV ≈ 4.5.

The meshes will be generated from a standard discretization of a sphere
using NURBS as seen in Figure 5. We shall denote by Miga

m,p̌,ǩ
, mesh number m

with polynomial order p̌ and continuity ǩ across element boundaries5. For the
corresponding FEM meshes we denote by Mfem

m,p̌,s and Mfem
m,p̌,i the subparametric

and isoparametric FEM meshes, respectively. The construction of NURBS meshes
are illustrated in Figure 5. The initial mesh is depicted as meshMiga

1,p̌,ǩ in Figure 5a
and is refined only in the angular directions for the first 3 refinements (that is, mesh
Miga

4,p̌,ǩ only have one element thickness in the radial direction). Mesh Miga
m,p̌,ǩ

,
m = 5, 6, 7, have 2, 4 and 8 elements in its thickness, respectively. This is done to
obtain low aspect ratios for the elements. All the meshes will then be nested and
the refinements are done uniformly. We shall use the same polynomial order in all
parameter directions; p̌ξ = p̌η = p̌ζ.

Unless otherwise stated, we shall use the BGU formulation and N = 4 basis
functions in the radial direction of the infinite elements.

5Except for some possible C0 lines in the initial CAD geometry.
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Figure 6: Simpson benchmark: The relative error in the modulus of the
pressure is plotted on a circle (azimuth direction, ϕ) in the xy-plane at r = 5 m.
All simulations were computed on mesh Miga

3,3,2. The IGAIE formulations here
produce roughly the same result.

4.1. Simpson benchmark

The configuration presented by Simpson et al. [36] is considered: a rigid sphere of
radius R0 = 0.5 m is impinged by an incident plane wave and the total pressure is
measured at a distance r = 5 m from the origin.

This is a low frequency problem with k = 2 m−1. It is emphasized that the
trace of the NURBS discretization of the domain Ωa at the surface Γ0 reduces to
the exact same NURBS discretization used in [36] to discretize the boundary Γ0.

From Figure 6 we observe that the IGA infinite element method (IGAIE)
exploits the available degrees of freedom at Γ0 more effectively than the IGA
boundary element method (IGABEM) in [36]6.

By projecting the analytic solution onto this set of NURBS basis functions at
Γ0 (the best approximation in the L2-norm by least squares projection, IGA best
approximation, IGABA), it is revealed that even more accuracy can potentially be
made. This is an inherent problem for Galerkin FEM when solving the Helmholtz
equation and is related to the pollution effect [39]. All IEM formulations (PGU,
PGC, BGU and BGC) gave approximately the same result in this case.

6Due to low resolution of the plots in [36, Fig. 17], the results were reproduced and sampled
at 3601 points (rather than 30 points) using our own IGABEM implementation.
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Table 1: Ihlenburg benchmark: Parameters for the Ihlenburg benchmark
problems.

Parameter Description
Pinc = 1 Pa Amplitude of incident wave
E = 2.07 · 1011 Pa Young’s modulus
ν = 0.3 Poisson’s ratio
ρs = 7669 kg m−3 Density of solid
ρf = 1000 kg m−3 Density of water
cf = 1524 m s−1 Speed of sound in water
R0 = 5.075 m Outer radius
R1 = 4.925 m Inner radius

4.2. Ihlenburg benchmark

Three benchmark solutions based on the model problem after Ihlenburg [30, p.
191] with parameters given in Table 1, are investigated. The parameters for the
fluid domains are the speed of sound in water cf and the fluid density ρf , and the
parameters for the solid domain are the Young’s modulus, E, the Poisson’s ratio ν
and the solid density ρs. The first benchmark is a simple rigid scattering case (with
sound-hard boundary conditions, SHBC) on a sphere with radius R0. The second
benchmark problem on a spherical shell has ASI conditions at the outer radius,
R0, and homogeneous Neumann condition at the inner radius, R1 (sound-soft
boundary conditions, SSBC). This case can be thought of as an approximation of a
scattering problem on a spherical shell with an internal fluid with very low density.
The third and final benchmark is a further extension with ASI conditions on both
sides of the spherical shell (Neumann-Neumann conditions on both surfaces of the
shell, NNBC). All of these benchmarks have analytic solutions [35] (see Figures 7
and 8), which enables computation of the error in the energy norm. As we use
the same parameters in both fluids, we denote the common wave number in these
fluids by k = k1 = k2. For each experiment, we use the same NURBS order
everywhere. Denote by p̌ξ = p̌ξ,f = p̌ξ,s the common NURBS order in the fluid
and the solid in the ξ-direction. Similarly p̌η = p̌η,f = p̌η,s and p̌ζ = p̌ζ,f = p̌ζ,s.
Moreover, we denote by p̌ = p̌ξ = p̌η = p̌ζ the common polynomial orders in all
domains.

In order to compare C0 FEM and IGA on the scattering problem, we shall
transform the NURBS mesh to a C0 FEM mesh. We use the technique described
in Appendix D to get an isoparametric B-spline approximation of the geometry
(isoparametric FEM). This parametrization will have C0 continuity at element
boundaries and correspondingly G0 continuity of the geometry representation (i.e.
with kinks). The geometric approximation error is of one order higher than the
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Figure 7: Ihlenburg benchmark: Analytic solutions to the scattering problem
on a spherical shell with parameters given in Table 1. The far field pattern of
backscattered pressure is plotted against the wave number k. A single Neumann
condition at the outer radius, R0, corresponds to the rigid scattering case with
u = 0 and p2 = 0. ASI at R0 and Neumann at R1 models p2 = 0. Note that
Ihlenburg [30, p. 192] plots the far field pattern in Eq. (48) instead of the target
strength, TS, in Eq. (52).
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Figure 8: Ihlenburg benchmark with NNBC: The analytic solution with ASI
at both R0 and R1 with kR0 = 10.15 is plotted in the xy-plane. The solid domain
is cut open for visualization purposes.



Numerical examples 141

finite element approximation of the solution [40], so one could expect the C0-IGA
meshes (with ǩ = 0) to produce the same accuracy as the isoparametric FEM
meshes of higher order (p̌ > 2). It should be noted that the FEM analysis would
then use the Bernstein basis instead of the classical Lagrange basis. However, both
of these set of functions spans the same spaces, such that the results should be
identical in the absence of round-off errors.

In Figure 9 we illustrate h-refinement through the error in the energy norm
for the first benchmark example (rigid scattering). Predicted convergence rates
are not obtained until the aspect ratio of the elements are reduced sufficiently
(that is, from mesh M4 and onward). By comparing the results of mesh Mfem

m,2,i
and mesh Miga

m,2,0 it can be concluded that the geometry error of mesh Mfem
m,2,i has

almost no impact on the accuracy. However, when using maximum continuity,
we get significantly better results. Expected convergence rates are visualized in
Figure 10 where we now plot the energy norm against λ/hmax (corresponding to
the number of elements per wave) with λ being the wavelength λ = 2π/k. A key
observation is that the number of elements per wave (needed to obtain a given
accuracy) is greatly reduced with higher order IGA methods compared to the
classical linear FEM (where 10 elements per wavelength is typically desired for
engineering precision, [30, p. 182]). The result for the subparametric meshes
Mfem

m,2,s indicates that the convergence rate is reduced due to the reduced accuracy
in the geometric representation. This is to be expected as shown in [40, p. 202].

Approaching the ASI problems, we illustrate some meshes in Figure 11 for
the full ASI problem. The corresponding meshes for the SSBC problem (with
p2 = 0) are obtained by removing the mesh inside the solid domain. In Figures 12
to 17 the target strength, TS, and the error in the energy norm is plotted against
the scaled wave number, kR0, in all of the three Ihlenburg benchmarks. As each
frequency sweep is computed with a different number of degrees of freedom, one
should draw the conclusions based on comparing both the accuracy of the results
and the related computational costs.

Some data from simulations at k = 1 m−1 are reported in Table 2 (simulation
run with 12 processors of the type Intel(R) Xeon(R) CPU E5-4650 2.70GHz). It
should be noted that all simulations were done using the same code, such that the
computational time for the FEM simulations can be optimized. However, this is
actually the case for the IGA code as well since the implementation does not utilize
optimized quadrature rules. The integration is done with (p̌ + 1)3 quadrature
points per element when building the system. For higher order splines spaces this
is significantly more quadrature point than what is needed for exact integration
(on meshes with affine geometry mapping7). In [42, 43], it is shown that the
optimal number of quadrature points is half the number of degrees of freedom of

7Using the same quadrature scheme on truly isoparametric elements will according to [41, p.
256] give a numerical integration error of the same order as the finite element discretization error.
Thus, the argument for optimal quadrature scheme also holds for isoparametric elements as well.
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Figure 9: Ihlenburg benchmark with SHBC: Convergence analysis on the
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The relative energy error (Eq. (67)) is plotted against the degrees of freedom.
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(a) Mesh Miga
4,p̌,ǩ (b) Mesh Miga

5,p̌,ǩ (c) Mesh Mfem
6,1,i

Figure 11: Ihlenburg benchmark with NNBC: Illustration of some meshes
for the full ASI problem in the xz-plane (x > 0), where the mesh lines for the solid
domain is colored red. The full mesh is obtained by rotation around the z-axis.
Mesh Mfem

5,2,i is visually indistinguishable from Miga
5,p̌,ǩ.

the splines space under consideration. That is, the number of quadrature points
in the IGA 3D tensor product meshes can be reduced by a factor up to 23(p̌+ 1)3

for meshes with maximal continuity. Thus, the efficiency of the IGA simulation
may be improved significantly.

A particular interesting observation is that IGA obtains roughly the same
accuracy as FEM when the same number of elements is used, even though this
corresponds to far less degrees of freedom for the IGA simulation. Moreover, even
better result can be obtained with less degrees of freedom if the polynomial degree
is increased in the IGA simulations. This, however, only occurs when the mesh
resolves the number of waves per element. When the mesh is sufficiently resolved,
one order of magnitude improvement in the accuracy is obtained by increasing
the polynomial degree. Since another magnitude of accuracy is obtained by using
higher order elements in FEM/IGA, the IGA offers several orders of magnitude
better accuracy than classical linear FEM.

The peaks in the frequency sweeps represent eigenmodes. The quality of the
numerical approximation of the corresponding frequencies is reduced for higher
frequencies, resulting in fictitious modes. This typically does not pose that much
of a problem as the bandwidth of these eigenmodes becomes very small, with a
corresponding reduction in the energy they represent. Note that mesh Miga

4,3,2
performs particularly poorly on the partial ASI problem due to a fictitious mode
at k = 1 m−1 for this mesh. The improvement offered by IGA concerning the
accuracy in the eigenmodes is investigated in [44].

It should be noted that the meshes used throughout this work are not optimal.
This is in particular the case for the full ASI problem where the density of elements
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becomes large at the origin. These meshes were used as they naturally arise from
tensor product NURBS meshes of spherical shells and spheres. One could thus
obtain increased performance for the FEM solutions using standard meshing of
the domain. However, locally refined meshes can also be obtained with the IGA
method, for example using LR B-splines [45].

In Figure 18 we visualize the distribution of the error of the full ASI problem.
The error is observed to be largest at element boundaries where the continuity
is reduced. Since second order basis functions are used and the error in the
velocity/stress dominates the error in the pressure/displacement, the results are in
agreement with what was observed in [46], i.e., that the error in the derivative of
the primary solution is largest at the element boundaries.

4.3. Radial pulsation from a mock shell

By construction of the fundamental solution of the Helmholtz equation (Φk(x,y)
in Eq. (46)), the function p(x) = Φk(x,y) is a solution to Eqs. (2) to (4) whenever
y ∈ R3 \Ω+ and for the Neumann boundary condition g(x) = ∂nΦk(x,y) on Γ0.
Hence, we have an exact reference solution for the exterior Helmholtz problem
for arbitrary geometries Γ0 which encloses the point y. It is emphasized that this
solution is non-physical for non-spherical geometries Γ0. General solutions may be
constructed by separation of variables (cf. [30, p. 26])

p(x) =
∞∑

n=0

n∑

m=−n
Cnmh(1)

n (kR)P|m|n (cosϑ)eimϕ (72)

with

R = |x− y|, ϑ = arccos
(
x3 − y3
R

)
, ϕ = atan2(x2 − y2, x1 − y1)

where h(1)
n is the nth spherical Hankel function of first kind and Pmn are the

associated Legendre functions. In fact, the solution p(x) = Φk(x,y) is a special
case of this general form with

Cnm =
{ ik

4π n = 0, m = 0
0 otherwise.

(73)

The complexity of this problem setup does not scale with the complexity of the
model as it is independent of Γ0. However, it preserves two important properties of
acoustic scattering, namely the radial decay and the oscillatory nature. Thus, this
problem setup represents a general way of constructing manufactured solutions,
that can be utilized to verify the correctness of the implemented code for solving
the Helmholtz equation. A special case of this general setup is the pulsating sphere
example in [36].
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Table 2: Ihlenburg benchmark: Data for some simulations on the rigid scatter-
ing problem with k = 1 m−1. The errors are given in the energy norm (Eq. (69)).
For each simulation, the mesh number, the polynomial order, p̌, the number of
mesh elements nel (not including the infinite elements) and the number of degrees
of freedom ndof , is reported. The elapsed times for building the system tsys and
for solving the system tsol (using LU-factorization) are also included (times in
seconds). Finally, the relative error in the energy norm is given in percentage.

(a) Sound-hard boundary conditions (SHBC).

nel ndof tsys [s] tsol [s] Relative energy error [%]
Mesh Mfem

6,1,i 32 768 56 462 7.7 26.5 5.04
Mesh Mfem

5,2,i 4096 56 462 5.1 20.5 0.62
Mesh Miga

5,2,1 4096 13 476 4.8 4.3 0.64
Mesh Miga

4,3,2 512 4572 3.1 1.6 0.38
Mesh Miga

5,3,2 4096 17 654 14.8 8.3 0.05

(b) Sound-soft boundary conditions (SSBC).

nel ndof tsys [s] tsol [s] Relative energy error [%]
Mesh Mfem

6,1,i 40 960 104 858 13.7 75.3 7.66
Mesh Mfem

5,2,i 6144 129 056 15.9 106.1 1.35
Mesh Miga

5,2,1 6144 33 690 13.4 34.7 0.99
Mesh Miga

4,3,2 1024 13 716 11.8 9.0 41.30
Mesh Miga

5,3,2 6144 47 918 52.0 69.9 0.09

(c) Neumann-Neumann boundary conditions (NNBC).

nel ndof tsys [s] tsol [s] Relative energy error [%]
Mesh Mfem

6,1,i 172 032 233 915 27.8 429.5 6.55
Mesh Mfem

5,2,i 22 528 258 113 31.1 462.7 0.53
Mesh Miga

5,2,1 22 528 53 905 22.5 64.9 0.71
Mesh Miga

4,3,2 3072 18 289 17.1 17.3 1.47
Mesh Miga

5,3,2 22 528 73 139 93.2 145.7 0.05
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Figure 12: Ihlenburg benchmark with SHBC: The target strength (TS) in
Eq. (52) is plotted against kR0.
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Figure 13: Ihlenburg benchmark with SHBC: The relative energy norm
(Eq. (69)) is plotted against kR0.
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Figure 14: Ihlenburg benchmark with SSBC: ASI problem with the internal
pressure modeled to be p2 = 0. The target strength (TS) in Eq. (52) is plotted
against kR0.
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Figure 15: Ihlenburg benchmark with SSBC: ASI problem with the internal
pressure modeled to be p2 = 0. The relative energy norm (Eq. (69)) is plotted
against kR0.
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Figure 16: Ihlenburg benchmark with NNBC: The target strength (TS) in
Eq. (52) is plotted against kR0.
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Figure 17: Ihlenburg benchmark with NNBC: The relative energy norm
(Eq. (69)) is plotted against kR0.
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Figure 18: Ihlenburg benchmark with NNBC: Simulation of the full ASI
problem on mesh Miga

5,2,1. Pointwise evaluation of the square root of the integrand
of the volume integrals in the energy norm |||U − Uh|||Ω in Eq. (69) with k = 2 m−1

(error in the infinite elements in Ω+
a is not shown) is here visualized, where U

is the set of analytic solutions in both fluid domains and the solid domain, and
Uh is the corresponding numerical solution. The values are scaled by the square
root of the maximum of the corresponding integrand values of |||U |||Ω. Both fluid
domains are cut open at the xy-plane (at z = 0), and the solid domain is cut open
at z = 1.1 m.
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(a) Mesh 1. (b) Mesh 3.

(c) Mesh 4. (d) Mesh 6.

Figure 19: Radial pulsation from a mock shell: Meshes for the fluid domain
between the scatterer and the artificial boundary. The meshes are constructed
from the initial mesh 1, which is rotated around the axis of symmetry using four
elements. Mesh 2 and 3 are refined only in the angular direction, while the more
refined meshes also refine in the radial direction to obtain smallest aspect ratio.
The meshes are nested.

From the first limit of Eqs. (49) and (50), the far field is given by p0(x̂) =
1

4πe−ikx̂·y. Thus, the target strength is a constant, TS = −20 log10(4π) ≈ −21.984
(where we define Pinc = 1 Pa in Eq. (52) for this problem).

Consider the case y = R0
4 (1, 1, 1) and the boundary Γ0 given by a mock shell

composed of a cylinder with hemispherical endcaps (with axis of symmetry along
the x-axis such that the center of the spherical endcaps are located at x = 0 and
x = −L). The cylinder has radius R0 = 1 m and length L = π

2R0. The analytic
solution is given by

p(x) = eikR

4πR, R = |x− y| (74)

and the Neumann condition is then

g(x) = eikR

4πR3 (ikR− 1)(x− y) · n(x). (75)

This example is used to illustrate the differences of the infinite element for-
mulations using the prolate ellipsoidal elements after Burnett [13]. The mesh
construction is illustrated in Figure 19, and an illustration of the solution is pre-
sented in Figure 20. Convergence plots are shown in Figure 21. Gerdes did a
similar comparison in [31] where scattering on a sphere was investigated. Our
results verify these findings, namely lower errors for the unconjugated formulations
(cf. Figure 21). Good results can be obtained using only a single radial shape
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Figure 20: Radial pulsation from a mock shell: Visualization of numerical
solution in the xy-plane using BGU with N = 6 on mesh 5.

function in case of unconjugated formulations. For the conjugated versions, on
the other hand, N > 6 functions are needed to obtain similar accuracy and more
degrees of freedom are required to get an asymptotic behavior.

In Figure 22 and Figure 23 the condition number is investigated for the different
formulations and basis functions in the radial shape functions. The condition
number for the unconjugated versions increases more rapidly as a function of N
compared to the corresponding formulations in the conjugated case. The condition
number of the Lagrange basis increases particularly fast with N , making it useless8

for the conjugated formulations. However, the Lagrange basis yields the best
result for the unconjugated formulations for small N . The Chebyshev basis seems
to give the best condition numbers for the conjugated formulations for large N
(which is required for acceptable results). The unconjugated formulations perform
quite similar, both in terms of the condition numbers and the error. The BGU
formulation has the additional advantage of producing symmetric matrices and
reduces the memory requirement.

It is clear that the choice of basis functions in the infinite elements plays a
crucial role for the condition number, and more research is required to find the
optimal set of basis functions. Based on the findings in this work, it is recommended
to use the BGU formulation alongside the Lagrange basis (in the radial direction)
in the infinite elements. However, if larger N is needed for accuracy, the Chebyshev
basis is recommended.

4.4. Stripped BeTSSi submarine

Finally, we consider the stripped BeTSSi submarine9 described in Appendix C.
8In the case of rn = nra.
9Based upon the BeTSSi submarine which originates from the BeTSSi workshops [1].
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(c) PGC
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Figure 21: Radial pulsation from a mock shell: Convergence plots for the
four infinite element formulations. The relative error in the energy norm (Eq. (67))
is plotted against the number of degrees of freedom.
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(a) BGC with the shifted Chebyshev basis

102 103 104 105 106
100

105

1010

Degrees of freedom

C
o
n
d
it
io
n
n
u
m
b
er

N = 1

N = 2

N = 3

(b) BGU with the shifted Chebyshev basis
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(c) BGC with the Bernstein basis
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(d) BGU with the Bernstein basis
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(e) BGC with the Lagrange basis
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Figure 22: Radial pulsation from a mock shell: Convergence plots for the
BGC and BGU formulations using three different sets of radial shape functions
(Chebyshev, Bernstein and Lagrange). The condition number (1-norm condition
number estimate provided by condest in Matlab) is plotted against the number
of degrees of freedom.
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(a) PGC with the shifted Chebyshev basis

102 103 104 105 106
100

105

1010

Degrees of freedom

C
o
n
d
it
io
n
n
u
m
b
er

N = 1

N = 2

N = 3

(b) PGU with the shifted Chebyshev basis
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(c) PGC with the Bernstein basis
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(d) PGU with the Bernstein basis
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(e) PGC with the Lagrange basis
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Figure 23: Radial pulsation from a mock shell: Convergence plots for the
PGC and PGU formulations using three different sets of radial shape functions
(Chebyshev, Bernstein and Lagrange). The condition number (1-norm condition
number estimate provided by condest in Matlab) is plotted against the number
of degrees of freedom.
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Let a plane wave, with the direction of incidence given by

ds = −




cosβs cosαs
cosβs sinαs

sin βs


, where αs = 240◦, βs = 0◦, (76)

be scattered by this submarine. The CAD model is given in Figure 24 alongside
computational meshes. Again, we shall denote by Miga

m,p̌,ǩ
, mesh number m with

polynomial order p̌ and continuity ǩ across element boundaries of the NURBS
parametrization.

The near field at f = 1000 Hz is visualized in Figure 25. The low frequency
problem at f = 100 Hz is considered in Figure 26. In this case, mesh MIGA

1,2,1
resolves this frequency, but the solution slightly deviates from the reference solution
computed by IGABEM on a fine mesh. The reason for this is that N is too low.
Although N = 3 was enough for engineering precision (below 1%) in the mock shell
example, it does not suffice for the more complicated geometry like the stripped
BeTSSi submarine. Consider the relative error for the far field at the well resolved
meshMIGA

2,3,2. In this case the error will originate from the low resolution (governed
by N) in the radial direction for the infinite elements. As illustrated in Figure 27
an order of magnitude in accuracy is gained by increasing N . This effect was
also observed by the verification test in Subsection 4.3 applied to the stripped
BeTSSi submarine. In Figure 28 the target strength is plotted for f = 500 Hz and
f = 1000 Hz. A reference solution (using IGABEM) is added for the f = 500 Hz
case, and illustrates again the pollution of low N . The IGA mesh 1 resolves the
frequency f = 500 Hz quite well using only about 5 elements per wavelength. This
corresponds to about 5 dofs per wavelength in each dimensional direction compared
to the classical 10-12 dofs per wavelength needed for FEM methods.
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(a) CAD model.

(b) Surface mesh for mesh MIGA
1,p̌,ǩ

(c) Surface mesh for mesh MIGA
2,p̌,ǩ.

(d) Cross section in the xz-plane for mesh MIGA
1,p̌,ǩ.

(e) Cross section in the xz-plane for mesh MIGA
2,p̌,ǩ.

Figure 24: Stripped BeTSSi submarine: CAD model and meshes used for
computations.
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(a) Real part of the incident wave pinc(x) = Pinceikds·x.
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(b) Real part of the scattered pressure p(x).
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(c) Real part of the total pressure ptot(x) = pinc(x) + p(x).
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(d) Modulus of the total pressure ptot(x) = pinc(x) + p(x).

Figure 25: Stripped BeTSSi submarine with SHBC: The simulation at
f = 1000 Hz is visualized in the xy-plane, and is computed on meshMIGA

2,3,2 and the
BGU formulation with N = 4. The numerical evaluations outside the (transparent)
prolate ellipsoidal artificial boundary are evaluated with Eq. (45).
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Figure 26: Stripped BeTSSi submarine with SHBC: Computation of target
strength (Eq. (52)) at f = 100 Hz as a function of the azimuth angle in the
spherical coordinate system. The two IGA results (both using N = 3) are visually
indistinguishable meaning that mesh MIGA

1,2,1 is well resolved for this frequency.

0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ 360◦

10−3

10−2

10−1

100

101

102

ϕ

|p
−
p
re

f
|

|p
re

f
|

[%
]

N = 3

N = 4

N = 5

N = 6

N = 7

N = 8

Figure 27: Stripped BeTSSi submarine with SHBC: Computation of the
relative error in the far field (Eq. (45)) compared to a reference solution at
f = 100 Hz. The computations are done using IGA on mesh MIGA

2,3,2 using the
BGU formulation.
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Figure 28: Stripped BeTSSi submarine with SHBC: Computation of target
strength (Eq. (52)) as a function of the azimuth angle in the spherical coordinate
system. The numerical evaluations are evaluated with Eq. (52).
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5. Conclusions

This article addresses acoustic scattering characterized by sound waves reflected
by man-made elastic objects. The present approach is characterized by:

• The fluid surrounding (inside and in the vicinity outside) the solid scatterer
is discretized by using isogeometric analysis (IGA).

• The unbounded domain outside the artificial boundary circumscribing the
scatterer is handled by use of the infinite element method (IEM).

• The elastic scatterer is discretized by using IGA.

• The coupled acoustic structure interaction (ASI) problem is solved as a
monolithic problem.

The main finding of the present study is that the use of IGA significantly
increases the accuracy compared to the use of C0 finite element analysis (FEA)
due to increased inter-element continuity of the spline basis functions.

Furthermore, the following observations are made

• IGA and the four presented IEM formulations work well on acoustic scat-
tering for low frequencies. Among the infinite element formulations, the
unconjugated version seems to give the best results.

• IGA’s ability to represent the geometry exactly was observed to be of less
importance for accuracy when comparing to higher order (p̌ > 2) isopara-
metric FEA. However, a more significant improvement offered by IGA is due
to higher continuity of the spline basis functions in the solution space.

• The IGA framework enables roughly the same accuracy per element (com-
pared to higher order isoparametric FEA) even though the number of degrees
of freedom is significantly reduced.

• IGA is more computationally efficient than FEA to obtain highly accurate
solutions. That is, when the mesh is sufficiently resolved, a given accuracy is
obtained computationally faster using IGA.

• As for the FEA, IGA also suffers from the pollution effect at high frequencies.
This will always be a problem, and for the higher frequency spectrum, the
methods must be extended correspondingly. The XIBEM [47, 48] (extended
isogeometric boundary element method) is such an extension for the boundary
element method. This technique (and similar enrichment strategies) could
be applied to IEM as well and is suggested as future work.
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• The IEM suffers from high condition numbers when the number of radial
shape functions in the infinite elements (N) is large. This becomes a problem
for more complex geometries as N must be increased to achieve higher
precision.

The main disadvantages of using IGA with IEM is the need for a surface-to-volume
parametrization between the scatterer and the artificial boundary, Ωa. In this
paper, the scatterer has been simple enough to discretize Ωa using a single 3D
NURBS patch. For more complex geometries, this becomes more involved, and
is a topic of active research to this date in the IGA community [49–51]. The
surface-to-volume parametrization and the conditioning are the main open issues
of IGA with IEM and should be explored in future research.
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A. Derivation of bilinear form in infinite elements

In this appendix, the integrals in the bilinear forms for the infinite elements will be
separated for the PGU case10. For generality, the derivation is done in the prolate
spheroidal coordinate system.

A.1. The prolate spheroidal coordinate system

The prolate spheroidal coordinate system is an extension of the spherical coordinate
system. It is defined by the relations

x =
√
r2 − Υ 2 sinϑ cosϕ (A.1)

y =
√
r2 − Υ 2 sinϑ sinϕ (A.2)

z = r cosϑ (A.3)

with foci located at z = ±Υ and r > Υ . Note that the coordinate system reduces
to the spherical coordinate system when Υ = 0. the following inverse formulas
may be derived

r = 1
2(d1 + d2)

ϑ = arccos
(
z

r

)

ϕ = atan2(y, x)

(A.4)

where

d1 = d1(x, y, z) =
√
x2 + y2 + (z + Υ )2

d2 = d2(x, y, z) =
√
x2 + y2 + (z − Υ )2

and

atan2(y, x) =





arctan( yx) if x > 0
arctan( yx) + π if x < 0 and y ≥ 0
arctan( yx)− π if x < 0 and y < 0
π
2 if x = 0 and y > 0
−π2 if x = 0 and y < 0
undefined if x = 0 and y = 0.

10The other three formulations have been derived in [44]. For the more general ellipsoidal
coordinate system, refer to [52].
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The derivatives are found to be
∂x

∂r
= r sinϑ cosϕ√

r2 − Υ 2 ,
∂y

∂r
= r sinϑ sinϕ√

r2 − Υ 2 ,
∂z

∂r
= cosϑ

∂x

∂ϑ
=
√
r2 − Υ 2 cosϑ cosϕ, ∂y

∂ϑ
=
√
r2 − Υ 2 cosϑ sinϕ, ∂z

∂ϑ
= −r sinϑ

∂x

∂ϕ
= −

√
r2 − Υ 2 sinϑ sinϕ, ∂y

∂ϕ
=
√
r2 − Υ 2 sinϑ cosϕ, ∂z

∂ϕ
= 0

(A.5)
and

∂r

∂x
= x(d1 + d2)

2d1d2
,

∂r

∂y
= y(d1 + d2)

2d1d2
∂r

∂z
= z(d1 + d2) + Υ (d2 − d1)

2d1d2
∂ϑ

∂x
= xz

d1d2
√
r2 − z2 ,

∂ϑ

∂y
= yz

d1d2
√
r2 − z2

∂ϑ

∂z
= 1√

r2 − z2

(
z2

d1d2
+ Υz(d2 − d1)
d1d2(d1 + d2) − 1

)

∂ϕ

∂x
= − y

x2 + y2 ,
∂ϕ

∂y
= x

x2 + y2 ,
∂ϕ

∂z
= 0.

(A.6)

The general nabla operator can be written as

∇ = er
hr

∂

∂r
+ eϑ
hϑ

∂

∂ϑ
+ eϕ
hϕ

∂

∂ϕ
(A.7)

where

er = 1
hr

[
∂x

∂r
,
∂y

∂r
,
∂z

∂r

]>
, eϑ = 1

hϑ

[
∂x

∂ϑ
,
∂y

∂ϑ
,
∂z

∂ϑ

]>
, eϕ = 1

hϕ

[
∂x

∂ϕ
,
∂y

∂ϕ
,
∂z

∂ϕ

]>

and

hr =
√
r2 − Υ 2 cos2 ϑ

r2 − Υ 2

hϑ =
√
r2 − Υ 2 cos2 ϑ

hϕ =
√
r2 − Υ 2 sinϑ.

The Jacobian determinant (for the mapping from Cartesian coordinates to prolate
spheroidal coordinates) may now be written as

J1 = hrhϑhϕ =
(
r2 − Υ 2 cos2 ϑ

)
sinϑ. (A.8)

As any normal vector at a surface with constant radius r = γ can be written as
n = eϑ × eφ = er

∂np = n · ∇p = er · ∇p = 1
hr

∂p

∂r
. (A.9)
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The surface Jacobian determinant at a given (constant) r = γ is

JS = hϑhϕ =
√
r2 − Υ 2 cos2 ϑ

√
r2 − Υ 2 sinϑ, (A.10)

such that

q∂npJS = O
(
r−3

)
whenever q = O

(
r−3

)
and p = O

(
r−1

)
. (A.11)

That is, for the Petrov–Galerkin formulations

lim
γ→∞

∫

Sγ
q∂npdΓ = lim

γ→∞

∫ 2π

0

∫ π

0
q∂npJS dϑ dϕ = 0. (A.12)

A.2. Bilinear form for unconjugated Petrov–Galerkin formulation

The bilinear form (in the domain outside the artificial boundary) in Eq. (43) (in
the unconjugated case) can in the Petrov–Galerkin formulations be simplified to

Bpgu(RIψn, RJφm) = lim
γ→∞

∫

Ωγa

[
∇(RIψn) · ∇(RJφm)− k2RIψnRJφm

]
dΩ

=
∫

Ω+
a

[
∇(RIψn) · ∇(RJφm)− k2RIψnRJφm

]
dΩ

(A.13)

as the mentioned surface integral in the far field vanishes (this is however not the
case for the Bubnov–Galerkin formulations). Recall that the radial shape functions
are given by

φm(r) = eik(r−ra)Qm

(
ra
r

)
, m = 1, . . . , N

ψn(r) = eik(r−ra)Q̃n

(
ra
r

)
, n = 1, . . . , N

such that the derivative can be computed by
dφm
dr =

[
ikQm

(
ra
r

)
− ra
r2Q

′
m

(
ra
r

)]
eik(r−ra)

and corresponding expression for ψn. Using the expression for the nabla operator
found in Eq. (A.7)

∇(RIψn) · ∇(RJφm) = 1
h2

r

∂(RIψn)
∂r

∂(RJφm)
∂r

+ 1
h2
θ

∂(RIψn)
∂ϑ

∂(RJφm)
∂ϑ

+ 1
h2
ϕ

∂(RIψn)
∂ϕ

∂(RJφm)
∂ϕ

= 1
h2

r

∂ψn
∂r

∂φm
∂r

RIRJ + 1
h2
θ

ψnφm
∂RI
∂ϑ

∂RJ
∂ϑ

+ 1
h2
ϕ

ψnφm
∂RI
∂ϕ

∂RJ
∂ϕ
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which multiplied with the Jacobian J1 yields

∇(RIψn) · ∇(RJφm)J1 =
[(
r2 − Υ 2

)∂ψn
∂r

∂φm
∂r

RIRJ + ψnφm
∂RI
∂ϑ

∂RJ
∂ϑ

+ r2 − Υ 2 cos2 ϑ

(r2 − Υ 2) sin2 ϑ
ψnφm

∂RI
∂ϕ

∂RJ
∂ϕ

]
sinϑ

Combining all of this into Eq. (A.13) yields

Bpgu(RIψn, RJφm) =
∫ 2π

0

∫ π

0
K(ϑ, ϕ) sinϑ dϑ dϕ (A.14)

where

K(ϑ, ϕ) =
∫ ∞

ra

{(
r2 − Υ 2

)∂ψn
∂r

∂φm
∂r

RIRJ + ψnφm
∂RI
∂ϑ

∂RJ
∂ϑ

+ r2 − Υ 2 cos2 ϑ

(r2 − Υ 2) sin2 ϑ
ψnφm

∂RI
∂ϕ

∂RJ
∂ϕ

−k2(r2 − Υ 2 cos2 ϑ)ψnφmRIRJ
}

dr.

Inserting the expressions for the radial shape functions φ and ψ (with Einstein’s
summation convention) with their corresponding derivatives one obtains the fol-
lowing expression using the substitution ρ = r

ra
and the notation %1 = Υ/ra (the

eccentricity of the infinite-element spheroid), %2 = kra and %3 = kΥ

K(ϑ, ϕ) =
{
RIRJ

[
−2%2

2B
(1)
ñ+m̃ − i%2(ñ+ m̃+ 2)B(1)

ñ+m̃+1

+
[
m̃(ñ+ 2) + %2

3
]
B

(1)
ñ+m̃+2 + i%2

1%2(ñ+ m̃+ 2)B(1)
ñ+m̃+3

− m̃(ñ+ 2)%2
1B

(1)
ñ+m̃+4 + %2

3 cos2 ϑB
(1)
ñ+m̃+2

]

+ ∂RI
∂ϑ

∂RJ
∂ϑ

B
(1)
ñ+m̃+2

+ ∂RI
∂ϕ

∂RJ
∂ϕ

1
sin2 ϑ

(
B

(2)
ñ+m̃+1 − %2

1 cos2 ϑB
(2)
ñ+m̃+3

)}
rae−2i%2D̃nñDmm̃

where the radial integrals

B(1)
n =

∫ ∞

1

e2i%2ρ

ρn
dρ B(2)

n =
∫ ∞

1

e2i%2ρ

(ρ2 − %2
1)ρn−1 dρ, n > 1

can be evaluated according to formulas in Appendix B.
Assume that the artificial boundary Γa is parameterized by ξ and η. As Γa is

a surface with constant radius, r = ra, in the prolate spheroidal coordinate system,
it may also be parameterized by ϑ and ϕ. Therefore,

dϑdϕ =
∣∣∣∣∣
∂ϑ
∂ξ

∂ϕ
∂ξ

∂ϑ
∂η

∂ϕ
∂η

∣∣∣∣∣dξdη (A.15)
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where

∂ϑ

∂ξ
= ∂ϑ

∂x

∂x

∂ξ
+ ∂ϑ

∂y

∂y

∂ξ
+ ∂ϑ

∂z

∂z

∂ξ
,

∂ϑ

∂η
= ∂ϑ

∂x

∂x

∂η
+ ∂ϑ

∂y

∂y

∂η
+ ∂ϑ

∂z

∂z

∂η

∂ϕ

∂ξ
= ∂ϕ

∂x

∂x

∂ξ
+ ∂ϕ

∂y

∂y

∂ξ
+ ∂ϕ

∂z

∂z

∂ξ
,

∂ϕ

∂η
= ∂ϕ

∂x

∂x

∂η
+ ∂ϕ

∂y

∂y

∂η
+ ∂ϕ

∂z

∂z

∂η

and the inverse partial derivatives with respect to the coordinate transformation
(from the prolate spheroidal coordinate system to the Cartesian coordinate system)
is found in Eq. (A.6). This Jacobian matrix may be evaluated by

J3 =
[
∂ϑ
∂ξ

∂ϑ
∂η

∂ϕ
∂ξ

∂ϕ
∂η

]
=
[
∂ϑ
∂x

∂ϑ
∂y

∂ϑ
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

]


∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂z
∂ξ

∂z
∂η


 (A.16)

and the derivatives of the basis functions may then be computed by

[
∂RI
∂ϑ
∂RI
∂ϕ

]
= J−>3

[
∂RI
∂ξ
∂RI
∂η

]
. (A.17)

Defining the angular integrals

A
(1)
IJ =

∫ 2π

0

∫ π

0
RIRJ sinϑ dϑ dϕ, A

(2)
IJ =

∫ 2π

0

∫ π

0

∂RI
∂ϑ

∂RJ
∂ϑ

sinϑ dϑ dϕ

A
(3)
IJ =

∫ 2π

0

∫ π

0
RIRJ cos2 ϑ sinϑ dϑ dϕ, A

(4)
IJ =

∫ 2π

0

∫ π

0

∂RI
∂ϕ

∂RJ
∂ϕ

1
sinϑ dϑ dϕ

A
(5)
IJ =

∫ 2π

0

∫ π

0

∂RI
∂ϕ

∂RJ
∂ϕ

cos2 ϑ

sinϑ dϑ dϕ
(A.18)

the bilinear form may then finally be written as (Einstein’s summation convention
is used for the indices ñ and m̃)

Bpgu(RIψn, RJφm)

=
{
A

(1)
IJ

[
−2%2

2B
(1)
ñ+m̃ − i%2(ñ+ m̃+ 2)B(1)

ñ+m̃+1 +
[
(ñ+ 2)m̃+ %2

3
]
B

(1)
ñ+m̃+2

+i%1%3(ñ+ m̃+ 2)B(1)
ñ+m̃+3 − %2

1(ñ+ 2)m̃B(1)
ñ+m̃+4

]

+A(2)
IJB

(1)
ñ+m̃+2 + %2

3A
(3)
IJB

(1)
ñ+m̃+2

+A(4)
IJB

(2)
ñ+m̃+1 − %2

1A
(5)
IJB

(2)
ñ+m̃+3

}
rae−2i%2Dmm̃D̃nñ.

(A.19)
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For completeness, the formulas for the other three formulations are included

Bbgu(RIψn, RJφm)

=
{
A

(1)
IJ

[
−2%2

2B
(1)
ñ+m̃−2(1− δñ1δm̃1)− i%2(ñ+ m̃)B(1)

ñ+m̃−1 +
(
ñm̃+ %2

3
)
B

(1)
ñ+m̃

+i%1%3(ñ+ m̃)B(1)
ñ+m̃+1 − %2

1ñm̃B
(1)
ñ+m̃+2

]

+A(2)
IJB

(1)
ñ+m̃ + %2

3A
(3)
IJB

(1)
ñ+m̃

+A(4)
IJB

(2)
ñ+m̃−1 − %2

1A
(5)
IJB

(2)
ñ+m̃+1

}
rae−2i%2Dmm̃D̃nñ

− i%2raDm1D̃n1A
(1)
IJ

(A.20)
Bpgc(RIψn, RJφm)

=
{
A

(1)
IJ

[
−i%2(ñ− m̃+ 2)B(1)

ñ+m̃+1 +
[
(ñ+ 2)m̃− %2

3
]
B

(1)
ñ+m̃+2

+i%1%3(ñ− m̃+ 2)B(1)
ñ+m̃+3 − %2

1(ñ+ 2)m̃B(1)
ñ+m̃+4

]

+A(2)
IJB

(1)
ñ+m̃+2 + %2

3A
(3)
IJB

(1)
ñ+m̃+2

+A(4)
IJB

(2)
ñ+m̃+1 − %2

1A
(5)
IJB

(2)
ñ+m̃+3

}
raDmm̃D̃nñ

(A.21)

Bbgc(RIψn, RJφm) =
{
A

(1)
IJ

[
−i%2(ñ− m̃)B(1)

ñ+m̃−1 +
(
ñm̃− %2

3
)
B

(1)
ñ+m̃

+i%1%3(ñ− m̃)B(1)
ñ+m̃+1 − %2

1ñm̃B
(1)
ñ+m̃+2

]

+A(2)
IJB

(1)
ñ+m̃ + %2

3A
(3)
IJB

(1)
ñ+m̃

+A(4)
IJB

(2)
ñ+m̃−1 − %2

1A
(5)
IJB

(2)
ñ+m̃+1

}
raDmm̃D̃nñ

− ira%2Dm1D̃n1A
(1)
IJ

(A.22)

where δij is the Kronecker delta function in Eq. (31).

B. Evaluation of radial integrals

The exponential integral

En(z) =
∫ ∞

1

e−zρ
ρn

dρ, Re(z) > 0 (B.1)

is of great importance for the unconjugated formulations in the IEM. It is therefore
important to be able to evaluate the integral accurately and efficiently, also for large
(absolute) values of z (which will correspond to high frequencies). In [53, p. 229,
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5.1.12] the series representation for evaluation of these functions can be found11

En(z) = (−z)n−1

(n− 1)!

[
− ln z − γ+

n−1∑

m=1

1
m

]
−

∞∑

m=0
m 6=n−1

(−z)m
(m− n+ 1)m! (B.2)

with the empty sum interpreted to be zero. Moreover, using the continued fraction
notation

b0 + a1
b1+

a2
b2+

a3
b3+ · · · = b0 +

a1

b1 +
a2

b2 +
a3

b3 + · · ·

(B.3)

the continued fraction representation of these functions is given by [53, p. 229,
5.1.22]

En(z) = e−z
( 1
z+

n

1+
1
z+

n+ 1
1+

2
z+

n+ 2
1+

3
z+ · · ·

)
. (B.4)

In [54, p. 222] Press et al. present an even faster converging continued fraction
given by

En(z) = e−z
( 1
z + n−

1 · n
z + n+ 2−

2(n+ 1)
z + n+ 4−

3(n+ 2)
z + n+ 6− · · ·

)
. (B.5)

It is here suggested to use Eq. (B.2) when |z| . 1 and Eq. (B.4) or Eq. (B.5) when
|z| & 1. Press et al. then continue to present efficient algorithms for evaluation of
these formulas.

Using series expansions at infinity

1
ρ2 − %2

1
= 1
%2

1

∞∑

j=1

(
%1
ρ

)2j
, (B.6)

the radial integrals for 3D infinite elements may be computed by
∫ ∞

1

1
ρn

dρ = 1
n− 1 (B.7)

∫ ∞

1

1
(ρ2 − %2

1)ρn−1 dρ =
∞∑

j=0

%2j
1

2j + n
(B.8)

11Here, γ is the Euler-Mascheroni constant which is defined by

γ = lim
n→∞

[
− ln(n) +

n∑

m=1

1
m

]
= 0.577215664901532860606512090082 . . . .
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Figure C29: Outer pressure hull for BeTSSi submarine.

Figure C30: The stripped BeTSSi submarine model.

in the conjugated case and
∫ ∞

1

e2i%2ρ

ρn
dρ = En(−2i%2) (B.9)

∫ ∞

1

e2i%2ρ

(ρ2 − %2
1)ρn−1 dρ =

∞∑

j=0
%2j

1 E2j+n+1(−2i%2) (B.10)

in the unconjugated case.

C. The stripped BeTSSi submarine model

In this section a simplified version of the BeTSSi submarine model (depicted in
Figure C29) will be presented. Namely a stripped BeTSSi submarine model without
sail and rudders as in Figure C30. The relevant BeTSSi parameters for the work
presented herein are given in Table 3. The model is symmetric about the xz-plane
and has rotational symmetry for the lower part as described in Figure C31. The
transition from this axisymmetric part to the deck is described in Figure C32.
This transition as well as the deck itself, contains a set of rectangular panels of
length L. The polynomial P (y), is uniquely defined by the requirement that it
defines a smooth transition between the hull and the deck. More precisely, the
following requirement must be satisfied:

P (s) = c, P

(
b sin β2

)
= −b cos β2

P ′(s) = 0, P ′
(
b sin β2

)
= tan β2
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Table 3: BeTSSi submarine: Parameters for the BeTSSi submarine benchmark.

Parameter Description
Pinc = 1 Pa Amplitude of incident wave
E = 2.10 · 1011 Pa Young’s modulus
ν = 0.3 Poisson’s ratio
ρs = 7850 kg m−3 Density of solid
ρf = 1000 kg m−3 Density of water
cf = 1500 m s−1 Speed of sound in water
t = 0.01 m Thickness of pressure hull
α = 18◦ Arc angle of transition to the tail cone
β = 240◦ Rotational angle for the axisymmetric lower part
g2 = 6.5 m Distance in x-direction of transition to the tail cone
g3 = 6.5 m Distance in x-direction of the tail cone
L = 42 m Length of the deck
a = 7 m Semi-major axis of bow
b = 3.5 m Semi-major axis of bow
c = 4 m Height from x-axis to the deck
s = 1.2 m Half of the width of the deck

g3 g2 L a

b

α

x

z

Figure C31: The sideline of the lower part of the BeTSSi submarine. The sidelines
are formed (from the right) by an ellipse with semi-major axis a and semi-minor
axis b, followed by a straight line of length L, then an arc of angle α and finally
two straight lines. The latter two straight lines (in red) are rotated about the
x-axis and the remaining part (in green) are rotated an angle β around the x-axis.
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β
2

y

z

s

c

Figure C32: The transition (red line) from the axisymmetric hull (green line) to
the deck (blue line) is given by sampling a cubic polynomial, P (y), at 6 equidistant
points in the y-direction and connecting the resulting points with straight lines
(corresponding 6 points are found for negative values y-values, (0, y, P (|y|))).
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(a) Illustration of upper bow part. (b) Illustration of upper transition part.

Figure C33: Final patches for the stripped BeTSSi submarine.

which gives the polynomial

P (y) = c+ C1(y − s)2 + C2(y − s)3 (C.1)

where

C1 = −3C4 + C3 tan β
2

C2
3

, C2 =
2C4 + C3 tan β

2
C3

3
,

C3 = b sin β2 − s, C4 = c+ b cos β2 .

The upper part of the bow (highlighted in Figure C33a) is obtained by linear
lofting of elliptic curves from the 12 points described in Figure C32 to the tip of the
bow. The upper part of the tail section (highlighted in Figure C33b) is connected
using a tensor NURBS surface of degree 2 such that it defines a smooth transition
from the axisymmetric cone to the deck. More precisely, the upper part of the cone
tail is divided into 12 arcs with angle 2π−β

12 , and the resulting points are connected
to corresponding points on the transition to the deck from the axisymmetric hull.
As illustrated in Figure C34a, the NURBS patch is given by 22 elements. Thus,
4 ·23 = 92 control points, Pi,j , is needed as shown in Figure C34b (23 and 4 control
points in the ξ direction and η direction, respectively). The control points P1,j
and P23,j for j = 1, 2, 3, 4 must be defined as in Figure C35b, while the control
points Pi,1 must be defined as in Figure C35a (with corresponding weights). For
2 6 i 6 22 the weights are defined by wi,j = wi,1 for j = 2, 3, 4. That is,

wi,j =





1 i odd
cos
(

2π−β
24

)
i even, i 6= 12

cos
(

2π−β
12

)
i = 12

(C.2)

The location of the control points Pi,j , j = 2, 3 and 2 6 i 6 22, are determined by
the requirement that the x component is the same as P1,j and the fact that the
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(a) Illustration of the mesh.
P1,1

ξ

η
P2,1

P1,4

(b) Illustration of the control polygon mesh.

Figure C34: Illustration of the upper transition part of the tail.

θ

P1

P2

P3

w1 = w3 = 1

w2 = cos θ
2

(a) NURBS parametrization of arc of angle
θ using three control points {Pi}3i=1, the
weights {wi}3i=1 and the open knot vector
tξ = {0, 0, 0, 1, 1, 1}.

θ

P̃1 = P1

P̃2 = P1+w2P2
1+w2

P̃3 = w2P2+P3
1+w2

P̃4 = P3

w̃1 = w̃4 = 1

w̃2 = w̃3 = 1
2
(1 + w2)

(b) NURBS parametrization of arc of angle θ using
four control points {P̃i}4i=1, the weights {w̃i}4i=1 and
the open knot vector t̃ξ = {0, 0, 0, 0.5, 1, 1, 1}.

Figure C35: Two ways of parametrizing an arc using NURBS [55, p. 315].

control polygon lines must be tangential to the surface both at the deck and the
cone tail.

The inner surface of the BeTSSi submarine is generated by scaling a copy of
the outer surface with the following change in the parameters a→ a− t, b→ b− t,
c → c − t, s → s − t/2, g2 → g2 − t/2 and g3 → g3 − t/2 (α, β and l remain
unchanged).
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D. Approximating NURBS parametrizations with B-
spline parametrizations

Starting with any NURBS parametrizations of a geometry where every internal
knot has multiplicity m = p̌ξ in the ξ-direction and correspondingly in the other
two parameter directions, we want to transform the NURBS parametrization of
the exact geometry, to a B-spline representation. This representation approximates
the geometry by interpolating the geometry at nξ · nη · nζ (not necessarily unique)
physical points resulting from a grid in the parametric space.

Let X be the NURBS parametrization of the geometry

X(ξ, η, ζ) =
nξ∑

i=1

nη∑

j=1

nζ∑

l=1
Ri,j,l(ξ, η, ζ)Pi,j,l, (D.1)

with knot vectors tξ, tη and tζ, polynomial order p̌ξ, p̌η and p̌ζ. For each control
point Pi,j,l we will need a corresponding interpolating point Qi,j,l which will be
located at the grid point

(
ξ̃i, η̃j , ζ̃l

)
. These points in the parameter domain are

chosen to be the Greville abscissae

ξ̃i = 1
p̌ξ

i+p̌ξ∑

ĩ=i+1
ξĩ, i = 1, . . . , nξ (D.2)

η̃j = 1
p̌η

j+p̌η∑

j̃=j+1
ηj̃ , j = 1, . . . , nη (D.3)

ζ̃l = 1
p̌ζ

l+p̌ζ∑

l̃=l+1

ζl̃, l = 1, . . . , nζ, (D.4)

where ξi, ηj and ζl are the knots of the knot vectors tξ, tη and tζ, respectively.
We can now compute the interpolation points Qi,j,l by

Qi,j,l = X(ξ̃i, η̃j , ζ̃l). (D.5)

To find a B-spline approximation of the geometry which interpolates the points
Qi,j,l, we want this new parametrization X̃ to be based on X such that their
order and knot vectors are equal. As all weights will be set to 1 (to get a B-spline
parametrization), we are only left with dofs in the control points, P̃i,j,l, of the
B-spline parametrization. To find these points we require

X̃(ξ̃i, η̃j , ζ̃l) =
nξ∑

ĩ=1

nη∑

j̃=1

nζ∑

l̃=1

Bĩ,p̌ξ,tξ(ξ̃i)Bj̃,p̌η,tη(η̃j)Bl̃,p̌ζ,tζ(ζ̃l)P̃ĩ,j̃,l̃ = Qi,j,l (D.6)
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(a) Exact geometry. (b) Approximation using
p̌ξ = p̌η = 2.

(c) Approximation using
p̌ξ = p̌η = 3.

Figure D36: Transformation of an exact NURBS parametrization of a spherical
shell to a B-spline approximation of the same geometry.

for all i = 1, . . . , nξ, j = 1, . . . , nη and l = 1, . . . , nζ. We may therefore find P̃i,j,l
by solving a system of 3nξ · nη · nζ equations.

Application of this algorithm to the spherical shell parametrization using
NURBS is illustrated in Figure D36.
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Abstract

Isogeometric analysis with the boundary element method (IGABEM) has recently
gained interest. In this paper, the approximability of IGABEM on 3D acoustic
scattering problems will be investigated and a new improved BeTSSi submarine
will be presented as a benchmark example. Both Galerkin and collocation are
considered in combination with several boundary integral equations (BIE). In
addition to the conventional BIE, regularized versions of this BIE will be considered.
Moreover, the hyper-singular BIE and the Burton–Miller formulation are also
considered. A new adaptive integration routine is presented, and the numerical
examples show the importance of the integration procedure in the boundary element
method. The numerical examples also include comparison between standard BEM
and IGABEM, which again verifies the higher accuracy obtained from the increased
inter-element continuity of the spline basis functions. One of the main objectives
in this paper is benchmarking acoustic scattering problems, and the method of
manufactured solution will be used frequently in this regard.

1. Introduction

Isogeometric analysis (IGA) was introduced in 2005 by Hughes et al. [1], followed
by the book [2] in 2009. Since then, IGA has received a great deal of attention in
the effort of bridging the gap between finite element analysis (FEA) and computer
aided design (CAD) tools. The initial problem that sparked the IGA movement
was the cumbersome mesh generating process when converting the design models
from CAD into the FEA programs, and the analysis could often imply a rerun
of this tedious process. The problem being that the geometry is represented
differently in CAD and FEA.

∗Corresponding author.
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(a) A sphere with 8 elements. (b) A torus with 16 elements.

Figure 1: Examples of exact NURBS geometries of second degree.

An example is the geometries illustrated in Figure 1 which can be represented
exactly using NURBS but is outside the space of standard (Lagrangian) FEM
geometries. Using the same geometry representation as in CAD, IGA features
exact geometry, which remains true in all mesh refinement procedures. Moreover,
it turns out that using the non-uniform rational B-splines (NURBS) as basis
functions not only for representing the geometry, but also the solution space,
greatly enhances the numerical accuracy, see [3] and [4]. This motivates the use of
IGA even further, as IGA enables control of the continuity of the basis function
up to C p̌−1 where p̌ is the polynomial degree (in contrast with the C0-continuity
restriction in classical FEA).

For exterior problems, one can introduce an artificial boundary to obtain a
bounded domain introducing the difficulty of surface-to-volume parametrization.
The boundary element method (BEM) avoids this issue entirely as it only relies on
a computational domain on the surface of the scatterer. Moreover, solid domains
are usually represented by surfaces in CAD-systems, such that if modeling of an
elastic scatterer is required, the BEM solves this problem as well without the
need of surface-to-volume parametrization. This then represents an even further
improvement of the quality of the design-analysis bridging development.

This work is only concerned with 3D acoustic scattering (with d = 3). The
main objective is scattering by plane waves, pinc, as illustrated in Figure 2. In
scattering problems, it is often of interest to compute the target strength, TS, of
the scatterer in the far field. As an application of this work, the target strength is
the quantity of interest for the acoustical aspects of constructing a submarine and
is for this reason investigated in this work.

Assuming harmonic time dependency, all time dependent functions may be
written as F̆ = F̆ (x, t) = F (x)e−iωt where ω is the angular frequency and i =

√
−1

the imaginary unit. This enables us to model the pressure p in the fluid with the
Helmholtz equation given by

∇2p+ k2p = 0 (1)
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Γ

pinc(x)

Ω+

p(x)

Figure 2: Illustration of the physical problem. A plane incident wave, pinc(x), is
scattered by the scatterer, represented by the closed boundary Γ , in an unbounded
domain, Ω+ ⊂ Rd, resulting in the scattered pressure, p(x).

with the wave number k = ω
cf

(where cf is the wave speed in the fluid1). Other
important quantities include the frequency f = ω

2π and the wavelength λ = 2π
k .

Some literature already exists for solving acoustic problems using IGABEM
including [5–15]. Arguably there is a lack of work in the approximability for
IGABEM simulations for more complex geometries, and one of the aims of this
work is to contribute to fill this gap.

The exterior Helmholtz problem is presented in Section 2, and the corresponding
boundary integral equations are given in Section 3. Discretization of these integral
equations either with the use of collocation or a Galerkin approach yields the
boundary element method which is presented in Section 4. The weakly singular
boundary integral equation requires care when using numerical quadrature and is
discussed in Section 5. In Section 6 the results for several benchmark problems are
presented. Not only are these benchmark problems important in bug testing for
code development, but it is also important to establish reliable results for several
geometries ranging in complexity. Finally, conclusions and suggested future work
can be found in Section 7.

2. Helmholtz problems

The Helmholtz problem is given by

∇2p+ k2p = 0 in Ω, (2)
∂np = g on Γ, (3)

1Throughout this work we shall use cf = 1500 m/s.
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where ∂n denotes the partial derivative in the normal direction, n, on the surface
Γ . Throughout this work, n is always pointing “into” Ω+. If Ω = Ω− is inside
a closed boundary Γ , the problem is referred to as an interior problem. If, on
the other hand, Ω = Ω+ is the unbounded domain outside Γ (as illustrated in
Figure 2), the problem is referred to as an exterior problem where we must impose
the Sommerfeld condition [16]

∂p

∂r
− ikp = o

(
r−1

)
with r = |x| (4)

in order to restrict the field in the limit r →∞ uniformly in x̂ = x
r , such that no

waves originate from infinity (to obtain uniqueness of the solution p).
A common approach for solving unbounded scattering problems with the FEM

is to introduce an artificial boundary that encloses the scatterer. On the artificial
boundary some sort of absorbing boundary condition (ABC) is prescribed. The
problem is then reduced to a finite domain problem, and the bounded domain
between the scatterer and the artificial boundary can be discretized with finite
elements. Several methods exist for handling the exterior Helmholtz problem (on
unbounded domain), including

• the perfectly matched layer (PML) method after Bérenger [17, 18]

• the boundary element method [19–22]

• Dirichlet to Neumann-operators (DtN-operators) [23]

• local differential ABC operators [24–27]

• the infinite element method. [28, 29]

Due to the complexity of the BeTSSi geometry considered in this work we conve-
niently consider the boundary element method to solve the Helmholtz problem in
order to avoid the surface-to-volume parametrization discussed in the introduction.

The Neumann condition (in Eq. (3)), given by the function g, will in the case
of rigid scattering be given in terms of the incident wave pinc. Zero displacement of
the fluid normally on the scatterer (rigid scattering) implies that ∂n(p+ pinc) = 0,
and hence

g = −∂pinc
∂n

. (5)

Plane incident waves (with amplitude Pinc) traveling in the direction ds can be
written as

pinc = Pinceikds·x. (6)
The normal derivative on the surface of any smooth geometry may then be
computed by

∂pinc
∂n

= n · ∇pinc = ikds · npinc. (7)



Helmholtz problems 187

2.1. Far field pattern

If the field at the scatterer is known, one can compute the solution in the exterior
domain, Ω+, using the following integral solution (cf. [22, Theorem 2.21])

p(x) =
∫

Γ

[
p(y)∂Φk(x,y)

∂n(y) − Φk(x,y)∂p(y)
∂n(y)

]
dΓ (y), x ∈ Ω+ (8)

where y is a point on the surface Γ , n lies on Γ pointing “into” Ω+ at y, and Φk
is the free space Green’s function for the Helmholtz equation in Eq. (2) given (in
3D) by

Φk(x,y) = eikR

4πR, where R = |x− y|. (9)

For later convenience, we note that
∂Φk(x,y)
∂n(y) = Φk(x,y)

R
(ikR− 1) ∂R

∂n(y)
∂Φk(x,y)
∂n(x) = Φk(x,y)

R
(ikR− 1) ∂R

∂n(x)
∂2Φk(x,y)
∂n(y)∂n(x) = −Φk(x,y)

R2

[
n(x) · n(y)(ikR− 1)

+
(
k2R2 + 3(ikR− 1)

) ∂R

∂n(x)
∂R

∂n(y)

]

where
∂R

∂n(x) = (x− y) · n(x)
R

and ∂R

∂n(y) = −(x− y) · n(y)
R

.

The far field pattern for the scattered pressure p, is defined by

p0(x̂) = lim
r→∞ re

−ikrp(rx̂), (10)

with r = |x| and x̂ = x/|x|. Using the limits

lim
r→∞ re

−ikrΦk(rx̂,y) = 1
4πe−ikx̂·y

lim
r→∞ re

−ikr ∂Φk(rx̂,y)
∂n(y) = − ik

4πe−ikx̂·yx̂ · n(y)
(11)

the formula in Eq. (8) simplifies in the far field to (cf. [30, p. 32])

p0(x̂) = − 1
4π

∫

Γ

[
ikp(y)x̂ · n(y) + ∂p(y)

∂n(y)

]
e−ikx̂·y dΓ (y). (12)

From the far field pattern, the target strength, TS, can be computed. It is defined
by

TS = 20 log10

( |p0(x̂)|
|Pinc|

)
(13)
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where Pinc is the amplitude of the incident wave at the geometric center of
the scatterer (i.e. the origin). Note that the TS is independent of Pinc, which
is a result of the linear dependency of the amplitude of the incident wave in
scattering problems (i.e. doubling the amplitude of the incident wave will double
the amplitude of the scattered wave).

3. Boundary integral equations

We adopt the following notation from [22]. The single- and double layer potential
operator are given by

Skφ(x) =
∫

Γ
Φk(x,y)φ(y) dΓ (y) x ∈ Rd \ Γ,

and
Dkφ(x) =

∫

Γ

∂Φk(x,y)
∂n(y) φ(y) dΓ (y) x ∈ Rd \ Γ,

respectively. Here, the normal vector n at the surface Γ always points from the
interior domain Ω− into the exterior domain Ω+.

For D ⊂ Rd, define the spaces (for details see [22])

L2
loc(D) =

{
u|G ∈ L2(G) : ∀G ⊂ D, G bounded and measurable

}

H1
loc(D) =

{
u ∈ L2

loc(D) : vu ∈ H1(D), v ∈ C∞comp(D)
}

H1
loc(D;∇) =

{
u ∈ L2

loc(D) : ∇u ∈
[
L2

loc(D)
]d
, ∇2u ∈ L2

loc(D)
}

Hs(Rd) =
{
u ∈ L2(Rd) : F−1

[(
1 + |ξ|2

)s
F u

]
∈ L2(Rd)

}

Hs(D) =
{
u|D : u ∈ Hs(Rd)

}

Hs(Γ ) =
{
φ ∈ L2(Γ ) : φf ∈ Hs(Rd−1)

}

with the Fourier transform

(F u)(ξ) = (2π)−d/2
∫

Rd
e−ix·ξu(x) dΩ(x), ξ ∈ Rd.

By defining γ± to be the trace operator from Hs(Ω±)→ Hs−1/2(Γ ) for 1
2 < s < 3

2
and ∂±n to be the normal derivative from H1(Ω±;∇)→ H1/2(Γ ), we restate two
important theorems for BEM analysis from [22], namely theorem 2.20 and 2.21:

Theorem 1. If p ∈ H1(Ω−) ∪ C2(Ω−) and, for some k > 0, ∇2p + k2p = 0 in
Ω−, then

Sk∂−n p(x)−Dkγ−p(x) =
{
p(x), x ∈ Ω−,
0 x ∈ Ω+.
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Theorem 2. If p ∈ H1
loc(Ω+) ∪ C2(Ω+) and, for some k > 0, ∇2p+ k2p = 0 in

Ω+ and p satisfies the Sommerfeld radiation condition in Ω+, that is,

∂p(x)
∂r

− ikp(x) = o
(
r−

d−1
2
)

r = |x|

as r →∞ uniformly in x̂ = x
r , then

−Sk∂+
n p(x) +Dkγ+p(x) =

{
p(x), x ∈ Ω+,

0 x ∈ Ω−.

The acoustic single- and double layer potential operator are respectively given
by

Skφ(x) =
∫

Γ
Φk(x,y)φ(y) dΓ (y) x ∈ Γ

and
Dkφ(x) =

∫

Γ

∂Φk(x,y)
∂n(y) φ(y) dΓ (y) x ∈ Γ

and the acoustic adjoint double-layer operator and the hypersingular operator are
respectively given by

D′kφ(x) =
∫

Γ

∂Φk(x,y)
∂n(x) φ(y) dΓ (y) x ∈ Γ

and
Hkφ(x) =

∫

Γ

∂2Φk(x,y)
∂n(y)∂n(x)φ(y) dΓ (y) x ∈ Γ.

By following the notation in [22, p. 117] we let

Mk =
[
Dk −Sk
Hk −D′k

]
and c±p =

[
γ±p
∂±n p

]

such that the boundary integral equations (BIE) for the exterior- and interior
problem are respectively given by

∓1
2c
±p = Mkc

±p.

We can write this more explicitly as

∓ 1
2p(x) +

∫

Γ

∂Φk(x,y)
∂n(y) p(y) dΓ (y) =

∫

Γ
Φk(x,y)∂p(y)

∂n(y) dΓ (y)

∓ 1
2
∂p(x)
∂n(x) +

∫

Γ

∂2Φk(x,y)
∂n(y)∂n(x)p(y) dΓ (y) =

∫

Γ

∂Φk(x,y)
∂n(x)

∂p(y)
∂n(y) dΓ (y)
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for almost all x ∈ Γ . These integral equations need a modification if Γ is not
smooth at x. With the jump term defined as (cf. [31])

C±(x) =





−1
2(1± 1) x ∈ Ω+

−1
2(1± 1)− ∫Γ

∂Φ0(x,y)
∂n(y) dΓ (y) x ∈ Γ

1
2(1∓ 1) x ∈ Ω−

(14)

the conventional BIE (CBIE) and hypersingular BIE (HBIE) are respectively given
by

C±(x)p(x) +
∫

Γ

∂Φk(x,y)
∂n(y) p(y) dΓ (y) =

∫

Γ
Φk(x,y)∂p(y)

∂n(y) dΓ (y) (15)

C±(x)∂p(x)
∂n(x) +

∫

Γ

∂2Φk(x,y)
∂n(y)∂n(x)p(y) dΓ (y) =

∫

Γ

∂Φk(x,y)
∂n(x)

∂p(y)
∂n(y) dΓ (y). (16)

Note that using the divergence theorem it is possible to show the following (cf. [19, p.
126])

∫

Γ

∂Φ0(x,y)
∂n(y) dΓ (y) =





0 x ∈ Ω+

−1
2 x ∈ Γ, if Γ is smooth at x
−1 x ∈ Ω−.

This result may be generalized for the case that Γ is not smooth at x, namely in
terms of the solid angle [32]

∫

Γ

∂Φ0(x,y)
∂n(y) dΓ (y) = − c0

4π (17)

where the solid angle c0 can be computed by

c0 = lim
ε→0+

|∂Bε(x) ∩Ω−|
ε2

where Bε(x) is a ball of radius ε centered at x. In other words, the integral in
Eq. (17) is given by the negative relative size of the surface of a infinitesimal small
sphere centered at x that is inside Ω−. This enables simple exact calculation of
this integral for most standard geometries. For example, if Ω− is a cube, the
integral in Eq. (17) takes the value −1

4 and −1
8 if x is at an edge or at a vertex,

respectively. This can be used to test the numerical integration involved in solving
BIEs.

Combining the CBIE in Eq. (15) and the HBIE in Eq. (16) yields the Burton–
Miller (BM) formulation which can conceptually be written as

CBIE + α ·HBIE = 0
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with the usual choice of the coupling parameter α = i
k [33]. More precisely, the

BM formulation is given by

C±(x)p(x) +
∫

Γ

∂Φk(x,y)
∂n(y) p(y) dΓ (y) + α

∫

Γ

∂2Φk(x,y)
∂n(y)∂n(x)p(y) dΓ (y)

=
∫

Γ
Φk(x,y)∂p(y)

∂n(y) dΓ (y) + α

∫

Γ

∂Φk(x,y)
∂n(x)

∂p(y)
∂n(y) dΓ (y)− αC±(x)∂p(x)

∂n(x) .

(18)
As in [5], we restrict our analysis to direct IGABEM formulations (indirect IGA-
BEM formulations are considered in [10, 13, 15]).

3.1. Regularization techniques

Using Eq. (14) the CBIE can be regularized as follows

−1
2p(x)(1± 1)+

∫

Γ

∂Φk(x,y)
∂n(y) p(y)− ∂Φ0(x,y)

∂n(y) p(x) dΓ (y)

=
∫

Γ
Φk(x,y)∂p(y)

∂n(y) dΓ (y).
(19)

The regularization of the HBIE is slightly more comprehensive. Let vj (cf. [5, Fig.
2]) be an orthonormal set of (unit) vectors at x such that v3 = n, v1 = eξ and
v2 = v3 × v1 with the following notation

eξ = 1
hξ

∂x

∂ξ
, eη = 1

hη

∂x

∂η
, hξ =

∣∣∣∣
∂x

∂ξ

∣∣∣∣, hη =
∣∣∣∣
∂x

∂η

∣∣∣∣.

Here, ξ and η are the parameters for the surface parametrization. Note that [34, p.
219]

∂p(x)
∂v1

= 1
hξ

∂p(x)
∂ξ

∂p(x)
∂v2

= − 1
hξ

cos θ
sin θ

∂p(x)
∂ξ

+ 1
hη

1
sin θ

∂p(x)
∂η

where θ is the angle between eξ and eη.
With the identities [35]
∫

Γ

∂2Φ0(x,y)
∂n(y)∂n(x)(y − x) dΓ (y) =

∫

Γ

∂Φ0(x,y)
∂n(x) n(y) + ∂Φ0(x,y)

∂n(y) n(x) dΓ (y)

and ∫

Γ

∂2Φ0(x,y)
∂n(y)∂n(x) dΓ (y) = 0
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the regularization of the HBIE is now given by
∫

Γ

[
∂2Φk(x,y)
∂n(y)∂n(x) −

∂2Φ0(x,y)
∂n(y)∂n(x)

]
p(y) dΓ (y)

+
∫

Γ

∂2Φ0(x,y)
∂n(y)∂n(x)

[
p(y)− p(x)− ∂p(x)

∂vj
vj · (y − x)

]
dΓ (y)

+ ∂p(x)
∂vj

∫

Γ

∂Φ0(x,y)
∂n(x) vj · n(y) + ∂Φ0(x,y)

∂n(y) vj · n(x) dΓ (y)

=
∫

Γ

[
∂Φk(x,y)
∂n(x) + ∂Φ0(x,y)

∂n(y)

]
∂p(y)
∂n(y) dΓ (y)

−
∫

Γ

∂Φ0(x,y)
∂n(y)

[
∂p(y)
∂n(y) −

∂p(x)
∂n(x)

]
dΓ (y) + 1

2
∂p(x)
∂n(x) (1± 1)

− ∂p(x)
∂n(x)

[∫

Γ

∂Φ0(x,y)
∂n(x) n(x) · n(y) + ∂Φ0(x,y)

∂n(y) dΓ (y)

−
∫

Γ

∂2Φ0(x,y)
∂n(y)∂n(x)n(x) · (y − x) dΓ (y)

]

(20)

where the summation over the indices j = 1, 2 is implied. The integrals in Eqs. (19)
and (20) are at most weakly singular.

In practice [34], the integrals in the BIEs are discretized individually using the
same quadrature points making several terms cancel.

Another approach for regularizing the CBIE in Eq. (15) is presented in [32].
Consider the function

Ψ(y) = p(x)Ψ1(y) + ∂p

∂n

∣∣∣
y=x

Ψ2(y)

where Ψ1(y) and Ψ2(y) solve

∇2Ψ1(y) + k2Ψ1(y) = 0, Ψ1(x) = 1 ∇Ψ1(x) · n(x) = 0

and
∇2Ψ2(y) + k2Ψ2(y) = 0, Ψ2(x) = 0 ∇Ψ2(x) · n(x) = 1.

The idea is that Ψ(y) also solves BIEs such that a subtraction of two such BIEs
yields regularization of the integrand. There exist a lot of freedom in choosing
functions Ψ1 and Ψ2 that satisfy these constraints. The original ones suggested
by [32] are given by

Ψ
(1)
1 (y) = C1 cos[k(R1 − C1)]

R1
+ sin[k(R1 − C1)]

kR1

Ψ
(1)
2 (y) = C2

1 sin[k(R1 − C1)]
C2kR1

(21)
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where
R1(y) = |y − x1|, C1 = |x− x1|, C2 = (x− x1) · n(x).

The point x1 must lie outside the solution domain and chosen such that C2 6= 0
(for the sphere and the torus geometry in this work, we use x1 = x − n(x)).
However, these functions do not satisfy an exterior problem (as they do not
satisfy the Sommerfeld radiation condition). This problem is resolved by adding a
non-vanishing integral at infinity as described in [32].

One can easily create functions that also satisfy the Sommerfeld radiation
condition, simply by basing the functions on the fundamental solutions in Eq. (9)

Ψ
(2)
1 (y) = 1

C1

Φk(x1,y)
Φk(x1,x) +

(
1− 1

C1

)
Φk(x2,y)
Φk(x2,x)

Ψ
(2)
2 (y) = 1

C2

[
Φk(x1,y)
Φk(x1,x) −

Φk(x2,y)
Φk(x2,x)

] (22)

where

C1 = 1− r2
2(ikr1 − 1)(x1 − x) · n(x)
r2

1(ikr2 − 1)(x2 − x) · n(x) , C2 = C1
r2

2
(ikr2 − 1)(x2 − x) · n(x)

and
r1 = |x1 − x|, r2 = |x2 − x|.

The points x1 and x2 must lie outside the solution domain and chosen such that
C1 6= 0 and C2 6= 0 (for the sphere and the torus geometry in this work, we use
x1 = x− 1

2n(x) and x2 = x− n(x), respectively).
Alternatively, for the interior problem one could choose

Ψ
(3)
1 (y) = k2 · n(x)eik1·(y−x) − k1 · n(x)eik2·(y−x)

(k2 − k1) · n(x)

Ψ
(3)
2 (y) = eik2·(y−x) − eik1·(y−x)

i(k2 − k1) · n(x)

where k2 = kd2 and k1 = kd1 are the wave vectors for the plane wave in the
direction of the unit vectors d1 and d2, respectively. Choosing d2 = d1 + n(x) we
get (with |n(x)| = 1)

Ψ
(3)
1 (y) = (d1 · n(x) + 1)eikd1(y−x) − d1 · n(x)eik(d1+n(x))(y−x)

and
Ψ

(3)
2 (y) = i

k

(
eikd1·(y−x) − eik(d1+n(x))·(y−x)

)



194 Isogeometric Boundary Element Method for Acoustic Scattering . . .

where

d1 =





√
3

2
√

1−n1(x)2




(1− n1(x)2) cos θ1

−n1(x)n2(x) cos θ1 + n3(x) sin θ1

−n1(x)n3(x) cos θ1 − n2(x) sin θ1


− 1

2n(x) |n1(x)| < 1√
2

√
3

2
√

1−n2(x)2




−n1(x)n2(x) sin θ2 − n3(x) cos θ2

(1− n2(x)2) sin θ2

−n2(x)n3(x) sin θ2 + n1(x) cos θ2


− 1

2n(x) otherwise,

(23)
for some free parameters θ1 and θ2. Choosing θ1 = −π/2 and θ2 = −π yields

d1 =





√
3

2
√

1−n1(x)2e1 × n(x)− 1
2n(x) |n1(x)| < 1√

2√
3

2
√

1−n2(x)2e2 × n(x)− 1
2n(x) otherwise.

(24)

Then, d1 · n(x) = −1
2 and

Ψ
(3)
1 (y) = 1

2
(
eikd1(y−x) + eikd2(y−x)

)

Ψ
(3)
2 (y) = i

k

(
eikd1·(y−x) − eikd2·(y−x)

)
.

(25)

The advantage of this choice over the former two choices is that it does not
require finding points (x1 and x2) outside the solution domain that satisfy a given
criterion.

If
Ψ(y) = p(x)Ψ (1)

1 (y) + ∂p

∂n

∣∣∣
y=x

Ψ
(1)
2 (y)

then2 (cf. [32])
1
2p(x)

[
1∓ 1−

(
1 + i

kC1

)(
1− e2ikC1

)]

+
∫

Γ

(
p(y)− p(x)Ψ1(y)− ∂p

∂n

∣∣∣
y=x

Ψ2(y)
)
∂Φk(x,y)
∂n(y) dΓ (y)

= iC1
2kC2

(
1− e2ikC1

)∂p
∂n

∣∣∣
y=x

+
∫

Γ

(
∂p(y)
∂n(y) − p(x)∂Ψ1(y)

∂n(y) −
∂p

∂n

∣∣∣
y=x

∂Ψ2(y)
∂n(y)

)
Φk(x,y) dΓ (y).

(26)

We refer to this integral equation as the first regularized CBIE (RCBIE1). If

Ψ(y) = p(x)Ψ (2)
1 (y) + ∂p

∂n

∣∣∣
y=x

Ψ
(2)
2 (y)

2Recall that the upper plus sign in ± (and negative sign for ∓) is chosen for the exterior
problem while the negative sign in ± (and positive sign for ∓) is chosen for the interior problem.
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then Ψ(y) solves the exterior problem of Eq. (15) such that

1
2p(x)(1∓ 1) +

∫

Γ

(
p(y)− p(x)Ψ1(y)− ∂p

∂n

∣∣∣
y=x

Ψ2(y)
)
∂Φk(x,y)
∂n(y) dΓ (y)

=
∫

Γ

(
∂p(y)
∂n(y) − p(x)∂Ψ1(y)

∂n(y) −
∂p

∂n

∣∣∣
y=x

∂Ψ2(y)
∂n(y)

)
Φk(x,y) dΓ (y).

(27)

We refer to this integral equation as the second regularized CBIE (RCBIE2). If

Ψ(y) = p(x)Ψ (3)
1 (y) + ∂p

∂n

∣∣∣
y=x

Ψ
(3)
2 (y)

then Ψ(y) solves the interior problem of Eq. (15) such that

− 1
2p(x)(1± 1) +

∫

Γ

(
p(y)− p(x)Ψ1(y)− ∂p

∂n

∣∣∣
y=x

Ψ2(y)
)
∂Φk(x,y)
∂n(y) dΓ (y)

=
∫

Γ

(
∂p(y)
∂n(y) − p(x)∂Ψ1(y)

∂n(y) −
∂p

∂n

∣∣∣
y=x

∂Ψ2(y)
∂n(y)

)
Φk(x,y) dΓ (y).

(28)

We refer to this integral equation as the third regularized CBIE (RCBIE3). These
integrals have bounded integrands [36] and are thus a further regularization of
Eq. (19).

3.2. Rigid scattering problems

For rigid (exterior) scattering problems the boundary integral equations are sim-
plified somewhat. Consider an incident plane wave

pinc(x) = Pinceik·x

scattered by the boundary Γ . Here, Pinc is the amplitude, and k is the wave vector.
Combining Theorem 1 and Theorem 2 we can write

ptot(x) = pinc(x) +Dkγ+ptot(x)− Sk∂+
n ptot(x)

where ptot = p + pinc is the total field and p is the scattered field satisfying the
assumptions of Theorem 2.

For rigid scattering we have ∂+
n ptot(x) = 0, such that the regularized CBIE in

Eq. (19) and HBIE in Eq. (20) reduce to3

− ptot(x) +
∫

Γ

∂Φk(x,y)
∂n(y) ptot(y)− ∂Φ0(x,y)

∂n(y) ptot(x) dΓ (y) = −pinc(x) (29)

3Note that this CBIE formulation no longer contains weakly singular integrals (only integrals
with bounded integrands).
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and
∫

Γ

[
∂2Φk(x,y)
∂n(y)∂n(x) −

∂2Φ0(x,y)
∂n(y)∂n(x)

]
ptot(y) dΓ (y)

+
∫

Γ

∂2Φ0(x,y)
∂n(y)∂n(x)

[
ptot(y)− ptot(x)− ∂ptot(x)

∂vj
vj · (y − x)

]
dΓ (y)

+ ∂ptot(x)
∂vj

∫

Γ

∂Φ0(x,y)
∂n(x) vj · n(y) + ∂Φ0(x,y)

∂n(y) vj · n(x) dΓ (y) = −∂pinc(x)
∂n(x) ,

respectively. In a similar fashion Eq. (26), Eq. (27) and Eq. (28) can be reformulated
as

− 1
2ptot(x)

(
1 + i

kC1

)(
1− e2ikC1

)

+
∫

Γ
(ptot(y)− ptot(x)Ψ1(y))∂Φk(x,y)

∂n(y) + ptot(x)∂Ψ1(y)
∂n(y) Φk(x,y) dΓ (y)

= −pinc(x),

∫

Γ
(ptot(y)− ptot(x)Ψ1(y))∂Φk(x,y)

∂n(y) + ptot(x)∂Ψ1(y)
∂n(y) Φk(x,y) dΓ (y) = −pinc(x)

and

− ptot(x) +
∫

Γ

[
(ptot(y)− ptot(x)Ψ1(y))∂Φk(x,y)

∂n(y)

+ptot(x)∂Ψ1(y)
∂n(y) Φk(x,y)

]
dΓ (y) = −pinc(x),

respectively.

4. Collocation and Galerkin formulations

For the discretization procedure we consider a finite dimensional trial space
Vh ⊂ V = H1/2(Γ ) which is built up by the same NURBS basis functions used
to represent the CAD geometry. In this work, the geometry is assumed to be
constructed by tensorial NURBS patches such that the geometry for each patch
can be written as

X(ξ, η) =
n∑

i=1

m∑

j=1
Rp̌,q̌i,j (ξ, η)

with notation taken from and explained in [37, p. 51]. For convenience we simplify
the notation Rp̌,q̌i,j to Rĩ where the index ĩ represents a map from local indices to
global indices (over all patches).
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For the collocation formulations, we evaluate the BIEs at ndofs collocation
points, xi ∈ Γ . This forms an algebraic system of equations which can be solved
to obtain the numerical solution. Throughout this work, the collocation points are
chosen to be the Greville abscissae as described in [34].

The Galerkin formulations are obtained by multiplying the BIEs with a test
function qtot(x) and integrating over Γ . For brevity we only here consider rigid
scattering problems with the CBIE formulation in Eq. (29)

−
∫

Γ
ptot(x)qtot(x) dΓ (x)

+
∫

Γ
qtot(x)

∫

Γ

∂Φk(x,y)
∂n(y) ptot(y)− ∂Φ0(x,y)

∂n(y) ptot(x) dΓ (y) dΓ (x)

= −
∫

Γ
pinc(x)qtot(x) dΓ (x).

Letting

ptot(x) =
ndofs∑

j=1
ujRj(x),

we get (by choosing qtot(x) = Ri(x))

−
ndofs∑

j=1
uj

[∫

Γ
Rj(x)Ri(x) dΓ (x) +

∫

Γ
Ri(x)

∫

Γ

∂Φk(x,y)
∂n(y) Rj(y) dΓ (y) dΓ (x)

−
∫

Γ
Ri(x)Rj(x)

∫

Γ

∂Φ0(x,y)
∂n(y) dΓ (y) dΓ (x)

]

= −
∫

Γ
pinc(x)Ri(x) dΓ (x), ∀i = 1, . . . , ndofs,

which results in a linear system of ndofs equations. Instead of looping through all
basis functions Ri(x), it is advantageous to loop through the elements as done in
finite element methods [5].

For the collocation formulations we prepend a letter “C” (i.e. CCBIE, CBM,
CRCBIE1, etc.) and for the Galerkin formulations we prepend a letter “G” (i.e.
GCBIE, GBM, GRCBIE1, etc.).

5. Numerical evaluation of the boundary integrals

In [5, p. 286] an adaptive integration technique is used around the collocation
points in order to resolve the singular behavior of the integrand. Every element
not containing the source point is divided into4

ndiv =
(

1 +
⌊
s1h

l

⌉)d−1
(30)

4Here, b·e is the rounding function, i.e. bxe =
⌊
x+ 1

2

⌋
, where bxc = max{n ∈ Z : n 6 x}.
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sub elements at which standard quadrature is applied. Here, l is the distance from
the center of the element to the source point5, h is the element size (largest diagonal
of the element) and s1 is a user defined parameter controlling the adaptivity in
terms of quadrature point density. For the element containing the source point,
the element is divided into 2 to 4 (triangular) sub elements (depending on the
location of the source point; at a corner, on an edge, or within an element) as
described in [34]. A polar integration is then applied to each triangle such that
the weakly singular integrands are regularized.

We use p̌ξ + 1 + neqp,1 quadrature points within each sub-element in the ξ-
direction, and p̌η + 1 + neqp,1 in the η-direction. In the polar integration we use
p̌max + 1 + neqp,2 in each parameter direction where p̌max = max{p̌ξ, p̌η} for the
Simpson method.

In this work we present a modification to this routine inspired by Taus et al. [11,
38]. For each element not containing the source point, each (sub) element is divided
into 4 until s1h/l < 1 where h is the size of the (sub) element and l is the distance
from the (sub) element center to the source point. Whenever a (sub) element
fulfills this requirement, standard quadrature is used with b(p̌ξ + 1)(s1h/l + 1)e
quadrature points in the ξ-direction and b(p̌η + 1)(s1h/l + 1)e quadrature points in
the η-direction. An alternative approach to the polar integration is here used. It is
based on the transformation in [39] (for details see [40]), which avoids the problem of
awkward integration limits opposite to the triangle vertex containing the singularity.
Each triangular sub element is bilinearly transformed into the unit square. Consider
the ith triangular sub element with vertices {(ξx, ηx), (ξv,i, ηv,i), (ξv,i+1, ηv,i+1)}
in the parameter domain where (ξx, ηx) is the parametric coordinate of x and
(ξv,1, ηv,1) = (ξv,5, ηv,5), (ξv,2, ηv,2), (ξv,3, ηv,3) and (ξv,4, ηv,4) are the parametric
coordinates for the four vertices of the element (see Figure 3). The transformation
is then given by (ρ, θ ∈ [0, 1])

ξ = ξx + ρ(ξv,i − ξx + (ξv,i+1 − ξv,i)θ)
η = ηx + ρ(ηv,i − ηx + (ηv,i+1 − ηv,i)θ)

(31)

with Jacobian determinant given by

J2 = ρ[(ξv,i − ξx + (ξv,i+1 − ξv,i)θ)(ηv,i+1 − ηv,i)
− (ηv,i − ηx + (ηv,i+1 − ηv,i)θ)(ξv,i+1 − ξv,i)].

The factor ρ in the Jacobian determinant is responsible for regularizing the weakly
singular integral. Note that J2 = 0 for the collapsed triangle(s) when x lies on the
edge (vertex) of the element. Each triangular sub element is divided into n(i)

div,θ

5Arguably, a better choice for l would be the minimal distance between the source point and
any point in the element as outlined in [11]. It is not clear to the authors if this is an optimization
as it requires additional computational effort.
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η

ξ

θ

θ

θ

θ

ρ

ξx

ηx

(ξv,4, ηv,4) (ξv,1, ηv,1) = (ξv,5, ηv,5)

(ξv,2, ηv,2)(ξv,3, ηv,3)

Figure 3: Numerical evaluation of the boundary integral equations: The
element containing the source point x is divided in (up to) 4 triangles in the
parameter domain.

sub elements (in the ith triangle) in the θ-direction and ndiv,r sub elements in the
radial direction, where

n
(i)
div,θ =

⌈
s2
θ

(i)
dir

90◦

⌉
, ndiv,r = ds2e, s2 = p̌max + 1 + neqp,2

2(p̌max + 1) .

Here, θ(i)
dir is the interior angle (in the parent domain) neighboring the source

point of the initial sub triangle i. The reason for the subdivision of the triangles
(as opposed to use high order quadrature) is that a high number of quadrature
points is here needed (which will later be illustrated). This subdivision maps each
sub element (in the (ρ, θ)-domain) to the reference domain [−1, 1]2 by the linear
transformation

ρ = ρj + 1
2(ρj+1 − ρj)(ρ̃+ 1), ρj = j

ndiv,r
, j = 0, . . . , ndiv,r − 1

θ = θl + 1
2(θl+1 − θl)(θ̃ + 1), θl = l

n
(i)
div,θ

, l = 0, . . . , n(i)
div,θ − 1

(32)

with Jacobian determinant J3 = 1/(4n(i)
div,θndiv,r). Each of these sub elements are

now evaluated using 2(p̌max + 1) quadrature points in both parametric directions.
For the Galerkin formulations the integral integrating the BIEs uses (p̌ξ + 1 +

neqp,1)× (p̌η + 1 + neqp,1) quadrature points over each element. If not otherwise
stated, we shall use neqp,1 = 0 throughout this work.



200 Isogeometric Boundary Element Method for Acoustic Scattering . . .

In Figures 4 and 5 the locations of the quadrature points are illustrated on the
third uniform mesh refinement of the coarse mesh in Figure 1a (with p̌ = 2).

6. Numerical examples

Acoustic scattering problems on a sphere are investigated in the following. These
problems possess analytic solutions [41] and are for this reason often used to
verify numerical methods in acoustic scattering, e.g. [5, 10, 30, 42–44]. In order
to analyze convergence properties of IGABEM we also consider a torus, which
can be represented by NURBS of polynomial order p̌ > 2 with no poles in the
parametrization. Also, a cube geometry will be investigated to check the behavior of
the BIEs at G0-geometries. We then continue be analyzing the BeTSSi6 submarine.
Before we consider the rigid scattering problem on this complex geometry, we
present the method of manufactured solution. This method enables us to get
some quality insurance of the underlying mesh to be used in the full scattering
problem. Moreover, to some extent, the method can be used for quality insurance
of the numerical solution of the scattering problem. Together with the benchmark
problem on the sphere, these methods yield a solid basis for testing the correctness
of the implemented code.

In this work, the test setting is chosen so that the present approach can be
compared to other methods. In particular, the scattering on a rigid sphere example
and the torus example is found in [5]. Scattering on the BeTSSi submarine has
been addressed at three workshops in the past 18 years [45]. FWG7 initiated
the first workshop in 2001 (held in Kiel 2002) and delivered the generic BeTSSi
submarine (for which the outer hull is described in Appendix C). The second
workshop took place in Kiel in 2014 and the third in the Hague in 2016. The best
of these results will be used as reference solutions in this work. Additionally, we
create our own reference simulations using Comsol Multiphysics R© [46]. This
benchmarking exercise is a crucial step to obtain reliable solutions for even more
complex models.

The aim of these numerical examples is to investigate the approximability of
IGABEM and its formulations. Moreover, we aim to establish highly accurate
solutions for the BeTSSi submarine for benchmarking purposes and compare the
accuracy and computational complexity of these results to existing simulations.

With the use of the Galerkin method the following quasi-optimal error estimate
exists for the BEM [22, Theorem 2.49] (with the Burton–Miller formulation)

‖p− ph‖L2(Γ ) 6 C1 inf
qh∈Vh

‖p− qh‖L2(Γ ) 6 C2(hk)p̌+1 (33)

6Benchmark Target Strength Simulation.
7Forschungsanstalt für Wasserschall und Geophysik.
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(a) The 317th collocation point is at a vertex shared by four elements.

(b) The 319th collocation point is on an element edge shared by two elements.

Figure 4: Numerical evaluation of the boundary integral equations: The
figures to the left are the integration procedure in [5] (with s1 = 2). The sub
element divisions are here shown by blue lines (the black lines are the element
edges). The red points are the quadrature points. Here, neqp,1 = 0 and neqp,2 = 8,
and we thus get (p̌max +1+neqp,2)×(p̌max +1+neqp,2) = 11×11 quadrature in each
sub element around the source point, and (p̌ξ+1+neqp,1)×(p̌η+1+neqp,1) = 3×3
in the remaining elements. The figures to the right are the new integration routine
presented in this work with s1 = 1.



202 Isogeometric Boundary Element Method for Acoustic Scattering . . .

(a) The 392th collocation point is at the center of an element.

(b) The source point is the corner quadrature point for Galerkin formulations inside an element.

Figure 5: Numerical evaluation of the boundary integral equations: The
figures to the left are the integration procedure in [5] (with s1 = 2). The sub
element divisions are here shown by blue lines (the black lines are the element
edges). The red points are the quadrature points. Here, neqp,1 = 0 and neqp,2 = 8,
and we thus get (p̌max +1+neqp,2)×(p̌max +1+neqp,2) = 11×11 quadrature in each
sub element around the source point, and (p̌ξ+1+neqp,1)×(p̌η+1+neqp,1) = 3×3
in the remaining elements. The figures to the right are the new integration routine
presented in this work with s1 = 1.
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Table 1: Overview of the boundary integral equation (BIE) formulations considered
in this work.

Abbreviation Name Definition
CBIE Conventional BIE Eq. (15)
RCBIEi The ith regularized CBIE Eqs. (26) to (28)
HBIE Hypersingular BIE Eq. (16)
BM Burton–Miller Eq. (18)

where Vh is the finite dimensional subspace in which the solution is sought and
the constants C1 and C2 may depend on the analytic solution p, the boundary Γ
and the wave number k. In this work we also aim to give numerical evidence for
similar estimates for the other BEM formulations.

The simulations are based on the ASIGA8 library written in Matlab [47]. The
integration is here vectorized over the quadrature points, such that the effect of
increasing the number of quadrature points is of less significance due to the efficiency
of vectorization in Matlab. For this reason, we take the liberty of over integration
the BIEs without suffering to much from computational cost. For optimization
purposes, the library could be written in C/C++ which would require an accuracy-
cost tradeoff study in this respect. Additionally, acceleration techniques exist for
the boundary element method which have not been implemented in the ASIGA
library. We refer to [12, 13, 48] for details. These optimizations are suggested as
future work.

The BIE formulations listed in Table 1 will be investigated both in terms of
approximability and the presence of fictitious eigenfrequencies.

The meshes will be generated from a coarse CAD model mesh (for example
Figure 8a for the sphere) with mesh number m = 1. We shall denote by Migabem

m,p̌,ǩ
,

mesh number m with polynomial order p̌ and continuity ǩ across element bound-
aries9. For the corresponding FEM meshes we denote by Mfembem

m,p̌,s and Mfembem
m,p̌,i

the subparametric and isoparametric FEM meshes, respectively. These meshes are
constructed by the procedure outlined in [49, p. 191].

6.1. Pulsating sphere

Consider a pulsating unit sphere centered at the origin (cf. [5, 33]) with analytic
solution given by

p(x) = eikR

4πR, R = |x|, x ∈ Ω+ (34)

8The ASIGA (Acoustic Scattering with IsoGeometric Analysis) library can be found at
https://github.com/Zetison/ASIGA.

9Except for (potentially) some C0 lines in the initial CAD geometry.
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and with the (constant) Neumann condition

g(x) = eik

4π (ik − 1), x ∈ Γ. (35)

This problem serves as a patch test for IGA as the analytic solution lies in the
numerical solution space (p(x) is constant at Γ ). Contrary to FEM with affine
mappings, (proper) Gaussian quadrature does not integrate the integrals in BEM
exactly. Therefore, this example may be used to give some indication of the
quality of the integration procedure. In Figures 6 and 7 we compare the two
adaptive quadrature schemes (described in Section 5), where we set neqp,2 = 100
to avoid error originating from the integration over the element containing the
source points. The L2-error of the numerical solution is here plotted against nqp,1;
the total number of quadrature points, excluding quadrature points in elements
containing the source point. The simulations are done on the coarsest mesh of the
second NURBS parametrization in Figure 8b (with p̌ = 4). The BM and HBIE
formulations (for both collocation and Galerkin) have more round-off errors and
are for this reason further away from machine epsilon precision results compared to
the other formulations. In all cases, the new adaptive quadrature scheme obtains
better results. Interestingly CBIE obtains slightly better results using the new
adaptive quadrature scheme compared to RCBIE3, the latter being the regularized
version of the former. This might be due to the reduction of symmetry in the
RCBIE3 compared to CBIE for this problem.

Note that for this problem using RCBIE1 or RCBIE2 (Eqs. (26) and (27)),
results with machine epsilon precision are always obtained since the integrands
are zero. This is due to the spherical symmetry of the problem and the functions
involved.

Based on this study, a proper choice for the parameter s1 is s1 = 1.4 for the new
adaptive method. If not otherwise stated, we shall use s1 = 1.4 and neqp,2 = 50,
which in most cases results in over integration. As was mentioned before, the cost
of this is not significant due to the current implementation in Matlab.

6.2. Rigid scattering on a sphere

Consider a plane wave, with the direction of incidence given by

ds = −




cosβs cosαs
cosβs sinαs

sin βs


, (36)

with10 αs = 240◦ and βs = 30◦, scattered by a rigid sphere with radius R0 = 1 m.
10The angles α and β are the so-called aspect and elevation angle, respectively. Note that the

aspect angle is equal to the spherical coordinate ϕ (the azimuth angle).
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(f) CRCBIE2

Figure 6: Pulsating sphere: Surface error as a function of the total number
of quadrature points nqp,1 at kR0 = 1. The old adaptive quadrature scheme
presented by Simpson in [5] is compared to the new adaptive quadrature scheme
presented in this work. The sample points correspond to s1 ∈ {1, 2, . . . , 12} and
s1 ∈ {1, 2, . . . , 12}/5 for the old and new method, respectively.
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Figure 7: Pulsating sphere: Surface error as a function of the total number
of quadrature points nqp,1 at kR0 = 1. The old adaptive quadrature scheme
presented by Simpson in [5] is compared to the new adaptive quadrature scheme
presented in this work. The sample points correspond to s1 ∈ {1, 2, . . . , 12} and
s1 ∈ {1, 2, . . . , 12}/5 for the old and new method, respectively.
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(a) Parametrization 1. (b) Parametrization 2.

Figure 8: Two exact NURBS parametrizations of the sphere. Parametrization 1
uses a single patch with 8 elements of degree p̌ > 2 while parametrization 2 uses
6 patches of degree p̌ > 4. Parametrization 1 is described in Subsection A.1 and
parametrization 2 is described in Subsection A.2.

For the rigid scattering problems considered in this work, the error is computed
of ptot and the best approximation (BA) is obtained by performing an L2-projection
of ptot onto the discretized solution space.

Continuing the study of numerical quadrature, we investigate the parameters
s1 and neqp,2 also for rigid scattering. The study for the parameter s1 uses
neqp,2 = 100 and the study for neqp,2 uses s1 = 0.7.

For FEM/IGA using p̌+1 quadrature points in each parametric direction in each
element ensures accurate numerical integration regardless of the computational
mesh. As can be observed from Figures 9 to 11 this is not the case for BEM.
Separate choices for the parameters neqp,2 and s1 need to be made for each
formulation.

Contrary to FEM/IGA, the optimal quadrature rule seems to be depending
on h-refinement (not only p̌-refinement). Although the integrals in the CBIE
formulation are regularized to contain no singular integrals, the parameter s1 may
still not be set to zero. This could be expected due to the gradients around the
source points.

For convenience we perturb the collocation points at the north and the south
pole of the parametrization in Figure 8a in the HBIE and BM formulation for the
ease of implementation. The perturbation is taken to be a distance 1

2 |∆ηe|/p̌η in
the η-direction (in the parametric space), where |∆ηe| is the element interval in
the parametric domain in the η-direction. A similar strategy will be employed for
the corresponding problematic areas on the BeTSSi submarine. This may be a
sub optimal placement of collocation points, and as we can see from Figure 12b,
the CBM formulation does not obtain the accuracy of the Galerkin formulation
(Figure 12a). But this is also true for parametrization 2 (which contains no poles),
and so this calls for an investigation of better placement of collocation points in
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Figure 9: Rigid scattering on a sphere: Surface error as a function of the
parameters neqp,2 and s1 to the left and right, respectively, on the mesh Migabem

5,2,1 .
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Figure 10: Rigid scattering on a sphere: Surface error as a function of the
parameters neqp,2 and s1 to the left and right, respectively, on the mesh Migabem

4,5,4 .



Numerical examples 209

0 50 100

10−7

10−6

10−5

10−4

10−3

neqp,2

R
el

at
iv

e
L
2
(Γ

)-
er

ro
r
[%

]

CCBIE
CBM
GCBIE
GBM
BA

0.2 0.4 0.6

10−7

10−6

10−5

10−4

10−3

10−2

s1

R
el

at
iv

e
L
2
(Γ

)-
er

ro
r
[%

]

CCBIE
CBM
GCBIE
GBM
BA

Figure 11: Rigid scattering on a sphere: Surface error as a function of the
parameters neqp,2 and s1 to the left and right, respectively, on the mesh Migabem

5,5,4 .

general for the CHBIE and CBM than that of the Greville abscissae. The CBM
formulation for parametrization 1 is visibly polluted by round-off errors similar to
those seen in Subsection 6.1.

In Figure 13 we can observe that CBM loses one order of convergence for
the odd degree p̌ = 3, which is similar to the effect discussed in [50]. However,
this effect does not come into play in the same way for the CCBIE formulation,
although it is still a significant difference between this simulation and the best
approximation. This is in stark contrast to the CCBIE simulations of even degree
which approaches the best approximation solution.

The plots in Figure 12 also show the impact a sub optimal parametrization may
have. Parametrization 1 has roughly 8% higher errors compared to parametrization
2 in terms of degrees of freedom.

In Figure 14 we compare the classical boundary element method (FEMBEM)
with IGA. For the subparametric second order FEMBEM mesh a full convergence
order (see Figure 15) is lost in comparison with the best approximation for the
same mesh (FEMBA). In fact, little is to be gained by increasing the polynomial
order when using a linear approximation of the geometry. The exactness of the
geometry is of less importance for isoparametric FEMBEM, which can be observed
by comparing the results for mesh Mfembem

m,2,i and mesh Migabem
m,2,0 . Increasing the

continuity (ǩ-refinement) of the basis functions, however, improves the accuracy
significantly as obtained for infinite isogeometric finite elements [49].

As we can see from Figure 16a, the dimensionless fictitious eigenfrequencies
in Tables 2 and 3 appear quite clearly for the CBIE and the HBIE, respectively,
while the eigenvalues for the Burton–Miller formulation are shifted away from the
real axis into the complex plane [33]. The fictitious eigenfrequencies are of course
not present in the best approximation (BA) solution.
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(a) Galerkin formulations
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Figure 12: Rigid scattering on a sphere: Convergence analysis with p̌ = 4 and
kR0 = 1.
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Figure 13: Rigid scattering on a sphere: Convergence analysis with kR0 = 1.
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Figure 14: Rigid scattering on a sphere: Convergence analysis with the CCBIE
formulation on parametrization 1 for kR0 = 1.
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Figure 15: Rigid scattering on a sphere: Convergence analysis with the CCBIE
formulation on parametrization 1 for kR0 = 1.

Table 2: The non-zero dimensionless eigenvalues below kR0 = 10 for the interior
Dirichlet problem [33].

n Roots of jn(kR0)
0 π, 2π, 3π, . . .
1 4.49340945790907, 7.72525183693771, . . .
2 5.76345919689455, 9.09501133047635, . . .
3 6.98793200050052, . . .
4 8.18256145257124, . . .
5 9.35581211104275, . . .
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Figure 16: Rigid scattering on a sphere: The plots show the instabilities
around eigenfrequencies of the corresponding interior Dirichlet problem. All
computations are done using the parametrization in Figure 8b refined uniformly
three times with NURBS degree 4 (resulting in 384 elements and 728 degrees of
freedom).
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Table 3: The non-zero dimensionless eigenvalues below kR0 = 10 for the interior
Neumann problem [33].

n Roots of j′n(kR0)
0 4.49340945790907, 7.72525183693771, . . .
1 2.08157597781810, 5.94036999057271, 9.20584014293667, . . .
2 3.34209365736570, 7.28993230409335, . . .
3 4.51409964703228, 8.58375495636577, . . .
4 5.64670362043680, 9.84044604304014, . . .
5 6.75645633020413, . . .
6 7.85107767947440, . . .
7 8.93483887835284, . . .

6.3. Torus interior acoustic problem

Consider the Torus problem presented in [5]. This example sets the stage for
optimal conditions for the a priori error estimate in Eq. (33) to be fulfilled. The
geometry of the torus (with parametrization described in Appendix B) has G∞
continuity and contains no polar singularities in the exact NURBS parametrization
illustrated in Figure 1b (as opposed to the sphere parametrization in Figure 8a).
The torus considered here has major radius ro = 2 and minor radius ri = 1.

Consider the exact solution

p(x) = sin kx1√
3

sin kx2√
3

sin kx3√
3

with corresponding Neumann boundary conditions at the boundary Γ

∂p

∂n
= k√

3




cos kx1√
3 sin kx2√

3 sin kx3√
3

sin kx1√
3 cos kx2√

3 sin kx3√
3

sin kx1√
3 sin kx2√

3 cos kx3√
3


 · n.

From Figure 17, the sharpness (C1 ≈ 1) of the a priori error estimate in Eq. (33)
is demonstrated. The convergence rates for the best approximation (IGABA) are
revealed quite clearly here.

Results for the same study using collocation formulation are given in Figure 18.
The CCBIE formulation obtains very good results as it approaches the best
approximation during refinement. Correct convergence rates are also obtained for
the CBM formulation, but with a somewhat higher constant C1 in Eq. (33).

In [5] Simpson projects the Neumann data onto the same basis used for the
solution space. The accuracy for collocation formulations may be increased in
some cases using this projection, but for Galerkin formulations projecting the
Neumann data yields worse results. Moreover, if Γ is G0 sub optimal results are
obtained also for the collocation formulations.
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Figure 17: Torus interior acoustic problem: Convergence analysis at wave
number k = 2 m−1.
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Figure 18: Torus interior acoustic problem: Convergence analysis at wave
number k = 2 m−1.
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6.4. Manufactured solutions for complex geometries

In this section we shall consider the method of manufactured solutions (MMS).
The idea behind MMS is explained in detail in [51].

By construction of the fundamental solution (Φk(x,y) in Eq. (9)), the function
p(x) = Φk(x,y) is a solution to Eqs. (2) to (4) whenever y ∈ R3 \ Ω+ and for
the Neumann boundary condition g(x) = ∂nΦk(x,y) on Γ . Hence, we have an
exact manufactured solution for the exterior Helmholtz problem for arbitrary
geometries Γ which encloses the point y. It is emphasized that this solution is
non-physical for non-spherical geometries Γ (for the sphere, the solution represents
a pulsating sphere [5]). General solutions may be constructed by separation of
variables (cf. [30, p. 26])

p(x) =
∞∑

n=0

n∑

m=−n
Cnmh(1)

n (kR)P|m|n (cosϑ)eimϕ (37)

with

R = |x− y|, ϑ = arccos
(
x3 − y3
R

)
, ϕ = atan2(x2 − y2, x1 − y1)

where h(1)
n is the nth spherical Hankel function of first kind and Pmn are the

associated Legendre functions. In fact, the solution p(x) = Φk(x,y) is a special
case of this general form with

Cnm =
{ ik

4π n = 0, m = 0
0 otherwise.

(38)

Inspired by the method of fundamental solutions [52], we can also use the solution

p(x) =
N∑

n=1
CnΦk(x,yn) (39)

for a set of N source points {yn}Nn=1. To increase the complexity of the solution,
we use Cn = cos(n− 1) in this work.

The complexity of this problem setup does not scale with the complexity of the
model as it is independent of Γ . However, it preserves two important properties of
acoustic scattering, namely the radial decay and the oscillatory nature. Thus, this
problem setup represents a general way of constructing manufactured solutions that
can be utilized to verify the correctness of the implemented code for solving the
Helmholtz equation. Moreover, as the boundary condition is the only condition that
is altered from the original problem, one can solve the original system of equation
with an extra appended column vector on the right-hand side (corresponding to
the problem of finding the manufactured solution) with a small computational
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(a) Mesh 1. (b) Mesh 4.

Figure 19: Parametrization of a cube using 6 patches of degree p̌ > 1.

effort. This gives some control over the correctness of the computed solution to
the original problem. Since the fictitious eigenfrequencies are the same for both
solutions, one can compute the error for the manufactured solution to give an
indication whether the solution is polluted by such a frequency. If this is the case,
one should resort to the somewhat more costly Burton–Miller formulation.

Note that from the first limit of Eq. (11), the far field of Eq. (39) is given by

p0(x̂) = 1
4π

N∑

n=1
Cne−ikx̂·yn .

Whenever ∂nptot 6= 0 we must deal with an integral which is weakly singular,
and the manufactured solution thus does not give the optimal test for the rigid
body scattering problem as the CBIE formulation is free from such integrals in
this case.

6.5. Manufactured solution with a cube

Consider a cube of side length a centered at the origin. Its interior Dirichlet
problem has eigenfunctions (cf. [53, p. 52])

p(x) =
d∏

i=1
sin niπ(xi + a/2)

a
, x ∈ Ω−

and the interior Neumann problem has eigenfunctions

p(x) =
d∏

i=1
cos niπ(xi + a/2)

a
, x ∈ Ω−

where
d∑

i=1
n2
i =

(
ka

π

)2
and Ω− =

[
−a2 ,

a

2

]d
.
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Figure 20: Manufactured solution with a cube: The plots show the instabili-
ties around eigenfrequencies of the corresponding interior Dirichlet problem. All
computations are done using the parametrization in Figure 19a refined uniformly
three times with NURBS degree 4 (resulting in 384 elements and 728 degrees of
freedom) as highlighted in Figure 19b.

The dimensionless eigenfrequencies are thus given by

ka = π

√√√√
d∑

i=1
n2
i ,

where ni ∈ N∗ for the interior Dirichlet problem and ni ∈ N for the inte-
rior Neumann problem. For the exterior problem these eigenfrequencies cor-
respond to the fictitious eigenfrequencies for the CBIE formulation and the HBIE
formulation, respectively. The dimensionless fictitious eigenfrequencies below
ka = 10 are then π

√
3, π
√

6 and 3π for the CBIE formulation, and π
√
n with

n ∈ {0, 1, 2, 3, 4, 5, 6, 8, 9, 10} for the HBIE formulation.
Consider the manufactured solution Eq. (39) with N = 33 = 27 source points

yn = a

4 [ci, cj , cl], n = i+ 3(j − 1) + 32(l − 1), i, j, l = 1, 2, 3

where c1 = −1, c2 = 0 and c3 = 1. In Figure 20 we again show a frequency sweep
to illustrate the instability around the fictitious eigenfrequencies of the CBIE and
HBIE formulations. From Figure 21a, the sharpness of the a priori error estimate
in Eq. (33) is again demonstrated. Remarkably, the G0 continuity of the cube
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poses no problems for the Galerkin Burton–Miller formulation using p̌ > 2, despite
the problematic mathematical nature of the formulations with basis functions that
are C0 continuous [35]. Poor results are obtained for the BM formulation using
p̌ = 1 for both collocation and Galerkin formulation. This is in stark contrast to
the CBIE which performs optimally for p̌ = 1 in both cases. The CCBIE obtains
good results in all cases and outperforms the CBM formulation.

6.6. Manufactured solution with the BeTSSi submarine

Consider now the BeTSSi submarine described in Appendix C. The BeTSSi meshes
considered in this work are denoted by Migabem

m,p̌,ǩ
, where m is the mesh number,

and are illustrated in Figure 22 where m = 1 is the coarsest mesh, and m = 2
and m = 3 are uniformly refined meshes iterated on the coarsest mesh. Again, p̌
denotes the polynomial order and ǩ the continuity.

Consider the manufactured solution Eq. (39) on the BeTSSi submarine with
N = 16 and where 16 source points are uniformly placed at the x-axis starting
at x = b and ending at x = −L − 2b (parameters taken from Table 8). The
analytic real part of the pressure, Re p, is visualized on the surface of the scatterer
in Figure 23. A simulation at f = 100 Hz on mesh Migabem

1,2,1 yields the error plots
in Figure 24, which show good agreement between the best approximation and
the BEM simulation. For more refined meshes in Figures 25 to 27 (especially
Figure 27) the numerical quadrature around the source points is too inaccurate.
At this level of numerical accuracy, one quickly runs into issues due to round-
off errors. The non-Lipschitz domains do not in and of itself pose any analysis
suitable issues as described in Appendix D, so the effect seen here is due to the
numerical integration in the boundary element method. At f = 1000 Hz it is clear
from Figure 28 that the IGABEM CCBIE simulation is polluted from a fictitious
eigenfrequency. The remedy for this is to use the CBM formulation which obtains
results with maximal error roughly twice the size of the best approximation. The
meshes for the BeTSSi submarine in Figure 22 might give the impression of evenly
distributed control points in some areas, in particular the area behind the sail
(−L < x < xs − lls). In this case there are additional knot insertions around
the submarine to obtain the C0 lines, which results in “bands” of slightly larger
errors along the submarine. This effect will be larger for higher polynomial orders,
particularly for mesh Migabem

2,5,4 in Figure 28a.
To assess the parameter s1 in Eq. (30), a low frequency of 100 Hz is now

considered. In Figure 29 we illustrate the effect of different choices of the pa-
rameter s1 for the more complex geometry of the BeTSSi submarine. Again, the
optimal choice for s1 is polynomial dependent. Moreover, even the regularized
formulations CRCBIE1 and CRCBIE3 must have s1 > 0 contrary to what was
proposed in [32] (stating that the singular free integrals “can be evaluated by any
convenient integration quadrature”). Whenever care is not taken for the numerical
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Figure 21: Manufactured solution with a cube: Convergence analysis at
k = 2 m−1.
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(a) Migabem
1,6,5 - 3718 elements

(b) Migabem
2,6,5 - 14872 elements

(c) Migabem
3,6,5 - 59488 elements

Figure 22: The BeTSSi submarine: Computational IGA meshes for Γp̌ with
p̌ = 6.
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Figure 23: Manufactured solution with the BeTSSi submarine: Analytic
manufactured solution. Mesh 1 and mesh 2 are added to visualize elements to
wavelength ratio for 100 Hz and 1000 Hz, respectively.
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Figure 24: Manufactured solution with the BeTSSi submarine: Relative
error on the surface of the scatterer at f = 100 Hz on the mesh Migabem

1,2,1 .
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Figure 25: Manufactured solution with the BeTSSi submarine: Relative
error on the surface of the scatterer at f = 100 Hz on the mesh Migabem
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Figure 26: Manufactured solution with the BeTSSi submarine: Relative
error on the surface of the scatterer at f = 100 Hz on the mesh Migabem
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Figure 27: Manufactured solution with the BeTSSi submarine: Relative
error on the surface of the scatterer at f = 100 Hz on the mesh Migabem

2,5,4 .

quadrature, incorrect conclusions may arise. This example illustrates the power of
the manufactured solution as it enables computation of the best approximation
such that the numerical integration may be controlled.

6.7. Rigid scattering on the BeTSSi submarine

Consider now a plane wave scattered by a rigid BeTSSi submarine. Throughout
this section (motivated by the previous section) we use the CCBIE formulation at
f = 100 Hz and the CBM formulation at f = 1000 Hz. To verify our simulations,
we compare with corresponding simulations done in Comsol Multiphysics R©, with
mesh and parameters as illustrated and described in Figure 30. Comparisons
are also made with simulations done by WTD 7111. The polar plot in Figure 31
illustrates bistatic scattering where the incident wave is fixed, and the observation
points for the far field computations sweep the aspect angles. A very good
match is obtained, although some discrepancies are observed around the aft angles
(around α = 180◦). One can argue that the logarithmic scale of the target
strength (TS) yields a somewhat misguided conception of the numerical error
in the pressure. The pressure at these angles is very low such that the global
relative error in the pressure is not as bad as the plot may suggest. In Figure 32a

11Wehrtechnische Dienststelle für Schiffe und Marinewaffen, Maritime Technologie und
Forschung.
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Figure 28: Manufactured solution with the BeTSSi submarine: Relative
error on the surface of the scatterer at f = 1000 Hz on the mesh Migabem
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226 Isogeometric Boundary Element Method for Acoustic Scattering . . .

0 0.2 0.4 0.6 0.8

10−1

100

s1

R
el
a
ti
ve
L
2
(Γ

)-
er
ro
r
[%

]

CCBIE

CRCBIE1

CRCBIE3

CBM

BA

(a) p̌ = 2

0 0.2 0.4 0.6 0.8

10−3

10−2

10−1

s1

R
el
a
ti
ve
L
2
(Γ

)-
er
ro
r
[%

]

CCBIE

CRCBIE1

CRCBIE3

CBM

BA

(b) p̌ = 5

Figure 29: Manufactured solution with the BeTSSi submarine: Surface
error as a function of the parameter s1, on the mesh Migabem

1,p̌,p̌−1.

and Figure 32b the corresponding xy-plots are given at 100 Hz and 1000 Hz,
respectively. In Figure 32a (at 100 Hz) the IGA and Comsol Multiphysics R©
simulations are visually indistinguishable, such that error plots are in order. Let
the simulation from Migabem

3,6,5 , Mcomsol
4,2,0 and Mwtd

6 be a reference solution for
IGABEM, Comsol Multiphysics R© and WTD71, respectively. In Figure 33 we
compare the IGA results for lower resolved meshes. Convergence throughout
the aspect angles is observed. In Figure 34 a corresponding comparison is done
with the Comsol Multiphysics R© simulations. Better convergence rates for higher
polynomial degrees in the IGA simulations are not present. This is probably due to
the problem of numerical integration over the non-Lipschitz domains as discussed
in Subsection 6.6. Another reason could be the need for adaptive refinement, for
example using LR B-splines [54] based on a posteriori error estimates, e.g. by
exploiting k-refinement as presented in [55]. This might also be the reason that
the Comsol Multiphysics R© simulations converge to a different solution around
ϕ = 280◦ as illustrated in Figure 35. In Table 4 we present the computational
complexity of the different simulations. The number of degrees of freedom per
wavelength is denoted by τ . We shall use another definition of τ compared to the
definition found in [9, p. 767]12, namely the minimal number of degrees of freedom
per wavelength (instead of an average). This is arguably a better definition as it
more precisely captures how well the frequency is resolved. We compute τ by

τ = λ

dmax
, dmax = max

x∈X
min
y∈X\x

‖x− y‖

12Here, τ is defined as τ = λ
√
ndof/|Γ |.



Numerical examples 227

Figure 30: Rigid scattering on the BeTSSi submarine: Mesh used in Com-
sol Multiphysics R© simulations. The mesh consists of 27 614 929 second order
finite elements including the elements in the PML (resulting in 43 431 671 degrees
of freedom). This corresponds to 80 and 8 elements per wavelength for 100 Hz and
1000 Hz, respectively. The PML domain consists of a cylinder with two spherical
end caps and are discretized by 10 layers of prismatic elements. The domain inside
this PML is discretized with tetrahedral elements. The distance between the PML
and the scatterer at the x-axis is ta = 1 m at both ends. The thickness of the
PML is the same as the maximal tetrahedral diameter hmax = 0.1875 m. The
PML cylinder starts at x = −L− g2 − g3 + a and ends at x = 0. The radius of
the PML cylinder and the PML spherical end caps are ra = a+ ta. The PML uses
a polynomial coordinate stretching type with scaling factor and scaling curvature
equal to 1. The simulations use Comsol Multiphysics R© version 5.4 with the
acoustics module (to enable the PML method) and the design module (to import
the CAD model).
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Figure 31: Rigid scattering on the BeTSSi submarine: Polar plot of the
bistatic target strength (TS) plotted against the azimuth angle ϕ at f = 1000 Hz.
Direction of incident wave, pinc is given by Eq. (36) with αs = 240◦ and βs = 0◦.
The IGA mesh here used isMigabem

3,5,4 . The Comsol Multiphysics R© simulation used
3.8 hours on mesh Mcomsol

4,2,0 . The WTD 71 simulation was made using a direct
BEM collocation method with the Burton–Miller formulation on mesh Mwtd

5
described in Appendix E with constant basis functions over each element.
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Figure 32: Rigid scattering on the BeTSSi submarine: The bistatic target
strength (TS) plotted against the azimuth angle ϕ.



230 Isogeometric Boundary Element Method for Acoustic Scattering . . .

0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ 360◦

10−6

10−5

10−4

10−3

10−2

10−1

ϕ

||p
|−

|p
re

f
||

m
a
x
ϕ
|p

re
f
|
[%

]

Migabem
1,2,1

Migabem
2,2,1

Migabem
3,2,1

Migabem
1,6,5

Migabem
2,6,5

Figure 33: Rigid scattering on the BeTSSi submarine: The relative error in
the far field absolute pressure plotted against the azimuth angle ϕ at f = 100 Hz,
with the simulations from Migabem

3,6,5 as reference solution.
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Figure 34: Rigid scattering on the BeTSSi submarine: The relative error in
the far field absolute pressure plotted against the azimuth angle ϕ at f = 100 Hz,
with the simulations from Mcomsol

4,2,0 as reference solution.
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Figure 35: Rigid scattering on the BeTSSi submarine: The relative error in
the far field absolute pressure plotted against the azimuth angle ϕ at f = 100 Hz,
with the simulations from Migabem

3,6,5 as reference solution.

where X is the set of nodes in the mesh. For IGA these nodes are chosen to be
the Greville points in the physical domain (as the control points do not lie on
the geometry). For the Comsol Multiphysics R© simulations we get τ = λ

hmax/2
and for constant triangular elements (WTD 71 simulations) we get τ = λ

2hmax/3 .
Considering the error as a function of τ , IGA outperforms the simulations from
both Comsol Multiphysics R© and WTD 71. Even considering the error as a
function of time usage, the IGA simulations obtain comparable results despite the
sub-optimal implementation discussed earlier.

A monostatic13 polar plot is shown in Figure 36 at f = 1000 Hz. The results for
Migabem

3,5,4 andMigabem
3,6,5 are practically indistinguishable in this plot. A comparison

is made with a simulation done by WTD 71 showing good agreement. The l2-
error of the absolute far field pressure for Migabem

3,5,4 (with Migabem
3,6,5 as reference

solution) is about 0.052%. The corresponding error for the WTD simulation is
5.5%. Using a direct solver for the IGA simulations, monostatic scattering can
easily be solved with multiple right-hand sides (in the present case 3601 column
vectors that correspond to 3601 distinct azimuth angles ϕ ∈ [0, 180◦] with steps of
0.5◦). The time consumption for monostatic scattering is then increased by less
than 1% compared to bistatic scattering since the most computationally complex
operation here is to build the system of equations. The WTD 71 simulation solves

13The incident wave has the same origin as the far field point in a monostatic sweep.
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Table 4: Rigid scattering on the BeTSSi submarine: Data for the meshes
used in the BeTSSi simulations at f = 100 Hz. The error is a relative l2-error
of the absolute far field pressure with the simulation from Migabem

3,6,5 , Mcomsol
4,2,0

and Mwtd
6 as a reference solution for IGABEM, Comsol Multiphysics R© and

WTD71, respectively. The IGABEM and Comsol Multiphysics R© simulations
were computed on 28 Intel CPUs (2× 24-core Xeon 2.6 GHz) with 768 GB RAM
available and the WTD71 simulations were computed on a 32 core Xeon computer
with 2.3 GHz.

Mesh nel ndofs hmax[m] τ [m−1] Error [%] ttot [s]
Migabem

1,2,1 3718 6725 1.65 17.0 0.1176 227
Migabem

2,2,1 14 872 20 521 0.83 30.6 0.0466 2611
Migabem

3,2,1 59 488 70 421 0.43 52.9 0.0185 34 244
Migabem

1,6,5 3718 27 537 1.65 25.5 0.0394 1789
Migabem

2,6,5 14 872 52 293 0.83 34.1 0.0122 11 860
Migabem

3,6,5 59 488 124 113 0.43 61.5 - 108 741
Mcomsol

1,2,0 100 436 250 638 2.21 13.6 3.3481 10
Mcomsol

2,2,0 550 300 1 167 195 1.14 26.3 0.1703 38
Mcomsol

3,2,0 3 729 303 6 654 972 0.60 50.0 0.0569 375
Mcomsol

4,2,0 27 614 929 43 431 671 0.32 93.8 - 5650
Mwtd

1 4140 4140 1.89 11.9 2.4013 2
Mwtd

2 10 406 10 406 1.00 22.4 1.8815 8
Mwtd

3 31 104 31 104 0.50 45.1 1.2824 25
Mwtd

4 106 888 106 888 0.26 87.6 1.0328 38
Mwtd

5 400 886 400 886 0.13 173.0 0.6598 112
Mwtd

6 1 584 014 1 584 014 0.07 325.4 - 400
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Figure 36: Rigid scattering on the BeTSSi submarine: Polar plot of the
monostatic target strength (TS) at f = 1000 Hz plotted against the azimuth angle
ϕ. All simulations use the CBM formulation.

the 3601 cases individually, resulting in a time consumption increase of about
1392% (the computations used 43.3 hours on a 32 core Xeon computer with 2.3
GHz). The reason that number is not 7201% (WTD 71 timings are here for all
angles in [0, 360◦]) is because WTD 71 uses a precondition matrix based on the
result from 5 neighboring monostatic angles.

Finally, the near field at f = 1000 Hz is visualized in Figure 37. From Figure 37d
one can observe that the incident wave is reflected multiple times beneath the
right depth rudder.

7. Conclusions

This article addresses acoustic scattering characterized by sound waves reflected
by man-made elastic objects. The present approach is characterized by:

• The scatterer is discretized using isogeometric analysis (IGA), which enables
discretization directly from the basis functions used in the computer aided
design (CAD) description of the model.

• Both collocation and Galerkin method are considered in combination with
several boundary integral equation (BIE) formulations including the conven-
tional (CBIE) formulation and the Burton–Miller (BM) formulation.

• The method of manufactured solution is used as a quality insurance.
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(c) Real part of the total pressure ptot(x) = pinc(x) + p(x).
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(d) Modulus of the total pressure ptot(x) = pinc(x) + p(x).

Figure 37: Rigid scattering on the BeTSSi submarine: The simulation at
f = 1000 Hz is visualized in the xy-plane (and on the scatterer), and is computed
on meshMigabem

3,5,4 . For visualization purposes, the meshMigabem
1,5,4 is here visualized.
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The main finding of the present study is that the use of IGA significantly
increases the accuracy compared to the use of C0 finite element analysis (FEA)
due to increased inter-element continuity of the spline basis functions.

Furthermore, the following observations are made

• IGA’s ability to represent the geometry exactly was observed to be of less
importance for accuracy when comparing to higher order (p̂ > 2) isopara-
metric FEA. However, a more significant improvement offered by IGA is due
to higher continuity of the spline basis functions in the solution space.

• For linear approximation of the geometry using classical boundary element
method (BEM) the convergence order is reduced for higher order sub para-
metric elements.

• For resolved meshes, the IGA framework enables roughly the same accuracy
per element (compared to higher order isoparametric FEA) even though the
number of degrees of freedom is significantly reduced.

• IGA is more computationally efficient than FEA to obtain highly accurate
solutions. That is, when the mesh is sufficiently resolved, a given accuracy is
obtained computationally faster using IGA.

• The collocation simulations have reduced accuracy compared to Galerkin
simulations, especially for the hypersingular BIE (HBIE) formulation and
BM formulation. Better located collocation points may remedy this difference
and is suggested as future work.

• The method of manufactured solution enables a convenient method of check-
ing the mesh quality and to some extent the numerical accuracy of the rigid
body scattering problem. It can be used to check the presence of fictitious
eigenfrequencies.

• The improved adaptive integration procedure presented in this work uses
significantly less quadrature points than the integration procedure presented
in [5] for a given accuracy.

• The presence of non-Lipschitz domain does not in principle cause problems
for the analysis suitability of the problem as the best approximation is
not significantly affected by such areas. However, for the boundary element
method, the integral over singular kernels in such domain may cause problems.
This is especially the case for highly accurate solution as round-off errors
may become significant.

• Regularizing the weakly singular integrands in the BIEs does not eliminate
the need for special quadrature rules around the source points. The small
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reduction in the number of quadrature points needed for the three ver-
sions of the regularized conventional BIE (RCBIE1, RCBIE2 and RCBIE3)
formulations compared to the CBIE formulation is arguable not significant.

• Using the collocation method, an advantage for the CBIE formulation com-
pared with the regularized formulations (RCBIE1, RCBIE2 and RCBIE3)
is that there is no need to compute the normal vector at the collocation
point for the CBIE formulation which could be problematic if the geometric
mapping is singular at that point (as is the case for the north and south pole
of the parametrization in Figure 8a and several locations for the BeTSSi
submarine).

• The Galerkin method obtains results remarkably close to the best approxi-
mation combined with any formulation, illustrating the sharpness of the a
priori error estimate in Eq. (33).

The Burton-Miller formulation yields somewhat reduced accuracy in combination
with the collocation method, which is the cost of removing fictitious eigenfrequen-
cies. Another popular alternative is the combined Helmholtz integral formulation
(CHIEF) framework which does not have this reduction in accuracy but has other
downsides. By adding more constraints to the linear system of equations, the
CHIEF method can remove fictitious eigenfrequencies with the cost of having
to solve an over determined linear system of equations (using for example least
squares). The main disadvantage with the CHIEF framework, however, is arguably
the difficulty of finding interior points at which to evaluate the BIEs. This is
especially problematic for high frequencies. An approach for solving this issue was
made in [56]. The results in this work may be improved even further with the
discontinuous IGABEM [14].

The boundary element method is the method of choice in the BeTSSi community
for obtaining accurate results for the BeTSSi submarine, mainly to avoid surface-to-
volume parametrization. Although IGABEM seems to be a prominent framework
to solve acoustic scattering problems, there are still issues on the BeTSSi submarine
that was not resolved in this paper, in particular the integration procedure over
non-Lipschitz areas on the BeTSSi submarine.
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A. NURBS parametrization of the sphere

Two standard ways of parametrizing a sphere using NURBS are given below for
the unit sphere (a simple scaling generalizes this for spheres of arbitrary radii).
The first is represented by 8 elements in a single patch (only one element is given
below, as the others are obtained by symmetry), and the second is represented by
6 patches (only one patch is given below, as the others are obtained by symmetry).

A.1. Parametrization 1

The sphere can be exactly parametrized by 8 NURBS elements of degree 2. One of
these elements with corresponding control points is illustrated in Figure A38a. The
weights and control points are given in Table 5 (a parametrization of all elements
in a single patch can be found in [57, p. 168]).

A.2. Parametrization 2

The sphere can be exactly parametrized [58, p. 11] by 6 NURBS patches of
degree 4. One of these patches with corresponding control points is illustrated
in Figure A38b. Some of the weights and weighted control points are given in
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Table 5: Parametrization 1: Weights and control points for an element of a unit
sphere.

i j xi,j yi,j zi,j wi,j
1 1 1 0 0 1
2 1 1 1 0 1/

√
2

3 1 0 1 0 1

1 2 1 0 1 1/
√

2
2 2 1 1 1 1/2
3 2 0 1 1 1/

√
2

1 3 0 0 1 1
2 3 0 0 1 1/

√
2

3 3 0 0 1 1

Table 6. The remaining data is found by symmetry about the planes x = 0, y = 0,
y = x and y = −x. In particular (by symmetry about the y = x plane)

xi,j = yj,i, yi,j = xj,i, zi,j = zj,i, wi,j = wj,i

for the pairs (i, j) ∈ {(1, 2), (1, 3), (2, 3)}, and (by symmetry about the y = 0
plane)

xi,j = −x6−i,j , yi,j = y6−i,j , zi,j = z6−i,j , wi,j = w6−i,j

for i = 4, 5 and j = 1, 2, 3, and then (by symmetry about the x = 0 plane)

xi,j = xi,6−j , yi,j = −yi,6−j , zi,j = zi,6−j , wi,j = wi,6−j

for i = 1, 2, 3, 4, 5 and j = 4, 5.

B. NURBS parametrization of the torus

A torus with major radius ro and minor radius ri can be represented by a single
NURBS patch with 16 elements (as visualized in Figure 1b). One of these elements
is shown in Figure B39 with corresponding control polygon. The weights and
control points are given in Table 7.

C. The BeTSSi submarine model

In this section the BeTSSi [45] submarine model (depicted in Figure C40) will
be presented. The BeTSSi submarine contains many standard designing features
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Table 6: Parametrization 2: Weights and weighted control points for a tile of a
unit sphere.

i j wi,jxi,j wi,jyi,j wi,jzi,j wi,j
1 1 4(1−

√
3) 4(1−

√
3) 4(

√
3− 1) 4(3−

√
3)

2 1 −
√

2
√

2(
√

3− 4)
√

2(4−
√

3)
√

2(3
√

3− 2)
3 1 0 4(1− 2

√
3)/3 4(2

√
3− 1)/3 4(5−

√
3)/3

2 2 −(3
√

3− 2)/2 (2− 3
√

3)/2 (
√

3 + 6)/2 (
√

3 + 6)/2
3 2 0

√
2(2
√

3− 7)/3 5
√

6/3
√

2(
√

3 + 6)/3

3 3 0 0 4(5−
√

3)/3 4(5
√

3− 1)/9

Figure B39: NURBS parametrization of the torus: A NURBS parametriza-
tion of a 1/16 of a torus. The control polygon is also shown.
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Table 7: NURBS parametrization of the torus: Weights and control points
for the torus.

i j xi,j yi,j zi,j wi,j
1 1 ro + ri 0 0 1
2 1 ro + ri ro + ri 0 1/

√
2

3 1 0 ro + ri 0 1

1 2 ro + ri 0 ri 1/
√

2
2 2 ro + ri ro + ri ri 1/2
3 2 0 ro + ri ri 1/

√
2

1 3 ro 0 ri 1
2 3 ro ro ri 1/

√
2

3 3 0 ro ri 1

Figure C40: Outer pressure hull for BeTSSi submarine.

including circles, ellipses, straight panels, cylinders and cones. In addition, several
NACA profiles are present giving a very nice benchmark model for sub-surface
scattering. For the analysis part, it contains challenges such as trimming curves
and non-Lipschitz domains [59]. All in all, a challenging benchmark without being
too complex.

The original BeTSSi submarine model presented in [45] contains several dis-
crepancies that is arguably not optimal for a benchmark model. First, the NACA
profiles used to create the sail and the rudders are only given with 5 digits of
accuracy. This in turn, results in for example the sail not being tangent to the
side lines of the deck with an error of around 1 mm. This creates problems for
the meshing procedure as this results in either very small elements in this area,
or element with high aspect ratios. Second, the exact geometry for the upper
transition from the deck to the rotationally symmetric cone tail, is hidden by an
“internal routine in ANSYS”. Not only is this hard to reproduce for anyone without
an ANSYS license, but the available CAD file for this model does not represent
the transition to the lower part exactly (as this curve should be a circular arc and
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g3 g2 L a

b

α
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z

Figure C41: The sideline of the lower part of the BeTSSi submarine. The side lines
are formed (from the right) by an ellipse with semi-major axis a and semi-minor
axis b, followed by a straight line of length L, then an arc of angle α and finally
two straight lines. The latter two straight lines (in red) are rotated about the
x-axis and the remaining part (in green) are rotated an angle β around the x-axis.

is not represented by a NURBS curve). In order to create a watertight model, the
available CAD file approximates the lower transition such that the side curves
match.

The relevant BeTSSi parameters for the work presented herein are given in
Table 8.

C.1. Main body

The model is symmetric about the xz-plane and has rotational symmetry for the
lower part as described in Figure C41. The transition from this axisymmetric part
to the deck is described in Figure C42. This transition as well as the deck itself,
contains a set of rectangular panels of length L. The cubic polynomial Pp(y), is
uniquely defined by the requirement that it defines a smooth transition between
the hull and the deck. More precisely, the following requirement must be satisfied:

Pp(s) = c, Pp

(
b sin β2

)
= −b cos β2

P ′p(s) = 0, P ′p

(
b sin β2

)
= tan β2

which gives the polynomial

Pp(y) = c+ C1(y − s)2 + C2(y − s)3
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Table 8: BeTSSi submarine: Free parameters for the BeTSSi submarine bench-
mark.

Parameter Description
α = 18◦ Arc angle of transition to the tail cone
β = 240◦ Rotational angle for the axisymmetric lower part
g2 = 6.5 m Distance in the x-direction of transition to the tail cone
g3 = 6.5 m Distance in the x-direction of the tail cone
L = 42 m Length of the deck
a = 7 m Semi-major axis of bow
b = 3.5 m Semi-minor axis of bow
c = 4 m Height from the x-axis to the deck
s = 1.2 m Half of the width of the deck
lls = 13 m Length of the lower cross-section of the sail
llm = 2.6 m Length of the lower cross-section of the main rudders
lld = 2.6 m Length of the lower cross-section of the depth rudders
lus = 12.3 m Length of the upper cross-section of the sail
lum = 2.35 m Length of the upper cross-section of the main rudders
lud = 2.35 m Length of the upper cross-section of the depth rudders
blm = 0.4 m Width of the lower cross-section of the main rudders
bus = 2 m Width of the upper cross-section of the sail
bum = 0.3 m Width of the upper cross-section of the main rudders
bud = 0.22 m Width of the upper cross-section of the depth rudders
δs = 0.2 m Parameter for shifting cross-sections of the sail
hs = 3.5 m Height of the sail
hm = 3.5 m Height of the main rudders
xs = −12 m Positioning of the sail
xm = −51.9 m Positioning of the main rudders
xd = −4 m Positioning of the depth rudders
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β
2

y

z

s

c

Figure C42: The transition (red line) from the axisymmetric hull (green line) to the
deck (blue line) is given by sampling a cubic polynomial, Pp(y), at 6 equidistant
points in the y-direction and connecting the resulting points with straight lines
(corresponding 6 points are found for negative values y-values, (0, y, Pp(|y|))).
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(a) Illustration of the upper bow part. (b) Illustration of the upper transition part.

Figure C43: Main body of BeTSSi submarine.

where

C1 = −3C4 + C3 tan β
2

C2
3

, C2 =
2C4 + C3 tan β

2
C3

3

C3 = b sin β2 − s, C4 = c+ b cos β2 .

The upper part of the bow (highlighted in Figure C43a) is obtained by linear
lofting of elliptic curves from the 12 points described in Figure C42 to the tip of
the bow.

The upper part of the tail section (highlighted in Figure C43b) is connected
using a tensor NURBS surface of degree 2 such that it defines a smooth transition
from the axisymmetric cone to the deck. More precisely, the upper part of the cone
tail is divided into 12 arcs with angle 2π−β

12 , and the resulting points are connected
to corresponding points on the transition to the deck from the axisymmetric hull.
As illustrated in Figure C44a, the NURBS patch is given by 24 elements. Thus,
4 · 25 = 100 control points, Pi,j , are needed as shown in Figure C44b (25 and 4
control points in the ξ direction and η direction, respectively). The control points
P1,j and P25,j for j = 1, 2, 3, 4 must be defined as in Figure C45b, while the control
points Pi,1 must be defined as in Figure C45a. The weights are defined by

wi,j =




w̃j i odd
w̃j
3

[
(4− j) cos

(
2π−β

24

)
+ j − 1

]
i even

where

w̃j =
{

1 j = 1, 4
1
2
(
1 + cos α2

)
j = 2, 3.

The locations of the control points Pi,j , j = 2, 3 and 2 6 i 6 24, are determined
by the requirement that the x component is the same as P1,j and the fact that
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(a) Illustration of the mesh.
P1,1

ξ

η
P2,1

P1,4

(b) Illustration of the control polygon mesh.

Figure C44: Illustration of the upper transition part of the tail.

θ

P1

P2

P3

w1 = w3 = 1

w2 = cos θ
2

(a) NURBS parametrization of arc of angle
θ using three control points {Pi}3i=1, the
weights {wi}3i=1 and the open knot vector
tξ = {0, 0, 0, 1, 1, 1}.

θ

P̃1 = P1

P̃2 = P1+w2P2
1+w2

P̃3 = w2P2+P3
1+w2

P̃4 = P3

w̃1 = w̃4 = 1

w̃2 = w̃3 = 1
2
(1 + w2)

(b) NURBS parametrization of arc of angle θ using
four control points {P̃i}4i=1, the weights {w̃i}4i=1 and
the open knot vector t̃ξ = {0, 0, 0, 0.5, 1, 1, 1}.

Figure C45: Two ways of parametrizing an arc using NURBS [60, p. 315].

the control polygon lines must be tangential to the surface both at the deck and
the cone tail.

C.2. NACA profiles

The sail and the rudders are based on the NACA 00xx profiles [61, 62] (the first
two digits indicate a symmetric airfoil, and the second two, the thickness-chord
ratio). The NACA profiles are all based on the function

ft(x) = 5t
(
a0
√
x+ a1x+ a2x

2 + a3x
3 + a4x

4
)

(C.1)

with t being the thickness of the rudder and ai the coefficients determining the
shape of the rudder.
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This function satisfies the condition ft(0) = 0 and should in addition satisfy

ft(0.3) = t

2 , f ′t(0.3) = 0. (C.2)

In [61, 62] the coefficients are computed to be

a0 = 0.2969
a1 = −0.1260
a2 = −0.3516
a3 = 0.2843
a4 = −0.1015.

The conditions in Eq. (C.2) are approximated with a residual error of 0.0029% and
0.013%, respectively. Moreover, the additional condition ft(1) = 0.002 is satisfied
with a residual error of 0.01%. In order to have a zero-thickness trailing edge, i.e.
ft(1) = 0, the original BeTSSi coefficients slightly modify the NACA coefficients
to be

a0 = 0.2969
a1 = −0.1267
a2 = −0.3523
a3 = 0.2843
a4 = −0.1022.

The conditions in Eq. (C.2) are here approximated with a residual error of 0.025%
and 0.013%, respectively. The fact that the conditions in Eq. (C.2) are approxi-
mated so poorly is problematic for an analysis suitable BeTSSi submarine as this
results in tangential curves missing the NACA profiles with a significant error,
resulting in elements with high aspect ratio or a redundant amount of elements in
order to resolve these areas. This fact motivates a more precise definition of these
coefficients.

Note that the leading-edge radius is given by

Rle = lim
x→0+

∣∣∣∣∣

[
1 + f ′t(x)2]3/2

f ′′t (x)

∣∣∣∣∣ = 25
2 a

2
0t

2

and the included angle of the trailing edge by

δte = 2 tan−1 |f ′t(1)|.

Alternative conditions [62]

Rle = 25
2 0.29692t2, δte = 2 tan−1(5t · 0.23385) (C.3)
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Figure C46: Illustration of the NACA profile used for the sail and the rudders.
The five coefficients ai in Eq. (C.1) are restricted by the conditions in Eq. (C.4) as
illustrated here.

yield the coefficients (for usage in double precision)

a0 = 0.2969
a1 ≈ −0.128361732706295
a2 ≈ −0.335670924960620
a3 ≈ 0.251127048040123
a4 ≈ −0.083994390373209.

Using
δte = 2 tan−1(5t · 0.243895)

yields coefficients slightly closer to the original BeTSSi coefficients.
In summary, we shall use the conditions

ft(1) = 0, ft(0.3) = t

2 , f ′t(0.3) = 0, a0 = 0.2969, f ′t(1) = −5t · 0.243895
(C.4)

which are illustrated in Figure C46 and yields the coefficients (in double precision)

a0 = 0.2969
a1 ≈ −0.12651673270629464
a2 ≈ −0.34981592496061949
a3 ≈ 0.28392704804012290
a4 ≈ −0.10449439037320877.

Computing the relative error in the L2-norm of the NACA profile based on
these coefficients and the original NACA profile for the BeTSSi submarine yields
an error of about 0.54%. Note that ft(ξ2) is a polynomial of degree 8, such that
the NACA profile can be exactly represented by a spline curve based on the
parametrization C(ξ) = [ξ2, ft(ξ2)].



248 Isogeometric Boundary Element Method for Acoustic Scattering . . .

Ss
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S−
d

S+
d

Figure C47: Illustration of the parametrizations Ss, Sm and S±d for the sail, the
main rudders and the depth rudders, respectively.

C.3. Sail

Consider the port part (y > 0) of the sail. It can be parametrized by

Ss(ξ, η) = xsex + cez +




−[llsξ2 + η
(
δs − (lls − lus)ξ2)]

llsftls(ξ2) + η
[
lusftus(ξ2)− llsftls(ξ2)

]

ηhs


 (C.5)

where

0 6 ξ 6 1, 0 6 η 6 1, tus = bus
lus
, tls = bls

lls
, and bls = 2s.

This parametrization is illustrated in Figure C47. The starboard part of the sail is
obtained by mirroring the port side of the sail about the xz-plane. Finally, the
roof is obtained by a linear loft between these two surfaces.

C.4. Main rudders

Consider the port part (y > 0) of the upper main rudder. It can be parametrized
by

Sm(ξ, η) = xmex +




−llmξ2 − δmη
(
1− ξ2)

llmftlm(ξ2) + η
[
lumftum(ξ2)− llmftlm(ξ2)

]

ηhm


, (C.6)
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where

0 6 ξ 6 1, g(ξ) 6 η 6 1, δm = llm − lum, tlm = blm
llm

, and tum = bum
lum

for a function g (to be determined) representing the intersection between the
rudder and the cone. The cone can be represented by

y2 + z2 = (x− xc)2 tan2 α, xc = −(L+ g2 + (b− h) cotα). (C.7)

Then, inserting the components of Sm(ξ, η) in Eq. (C.6) into Eq. (C.7) yields an
equation in ξ and η. This equation is quadratic in η and has the solution η = g(ξ)
where

g(ξ) = −Cb(ξ) +
√

[Cb(ξ)]2 − 4Ca(ξ)Cc(ξ)
2Ca(ξ)

and

Ca(ξ) =
[
lumftum(ξ2)− llmftlm(ξ2)

]2
+ h2

m − δ2
m(1− ξ2)2 tan2 α

Cb(ξ) = 2llmftlm(ξ2)
[
lumftum(ξ2)− llmftlm(ξ2)

]

+ 2 tan2 α
(
xm − llmξ2 − xc

)
δm
(
1− ξ2

)

Cc(ξ) = [llmftlm(ξ2)]2 − tan2 α
(
xm − llmξ2 − xc

)2
.

The trimming curve is then given by

rm(ξ) = Sm(ξ, g(ξ)).

The parametrization Sm is illustrated in Figure C47. The starboard side of the
upper main rudder is given by mirroring the port side of the main upper rudder
about the xz-plane, and the top part of the rudder is connected by linear lofting.
The other main rudders are obtained by rotations by angles of 90◦, 180◦ and
270◦ around the x-axis, respectively. Note that this trimming curve may not be
represented exactly by NURBS basis functions, and hence, the BeTSSi submarine
cannot be exactly represented by NURBS patches without trimming curves.

C.5. Depth rudders

Consider the port depth rudder (y > 0). The upper (+) part and lower (−) part
can be parametrized by

S±d (ξ, η) =




xd
s

c− bld
2


+




−lldξ2 − δdη
(
1− ξ2)

ηhd
±lldftld(ξ2)± η[ludftud(ξ2)− lldftld(ξ2)

]


, (C.8)
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where

0 6 ξ 6 1, g±(ξ) 6 η 6 1, δd = lld − lud, tld = bld
lld
, tud = bud

lud
,

hd = b− s and bld = 2
[
c− Pp

(
s+ C3

5

)]
.

The two panels to be trimmed by this surface are given by

D±1 y +D±2 z = D±3 (C.9)

where
D+

1 = bld
2 , D+

2 = C3
5 , D+

3 = D+
1 s+D+

2 c

and

D−1 = c−Pp

(
s+ 2C3

5

)
− bld2 , D−2 = C3

5 , D−3 = D−1

(
s+ C3

5

)
+D−2

(
c− bld

2

)
.

Then, inserting the components of S±d (ξ, η) in Eq. (C.8) into Eq. (C.9) yields an
equation in ξ and η. This equation is linear in η and has the solution η = g±(ξ)
where

g±(ξ) =
D±3 −D±1 s−D±2

(
c− bld

2 ± lldftld(ξ2)
)

D±1 hd ±D±2 [ludftud(ξ2)− lldftld(ξ2)]
.

The trimming curves are then given by

r±d (ξ) = S±d (ξ, g±(ξ)).

The parametrizations S±d are illustrated in Figure C47. The side part is again
obtained by linear lofting. The starboard depth rudder is given by mirroring the
port depth rudder about the xz-plane.

D. An analysis suitable BeTSSi submarine

Most of the BeTSSi submarine can be exactly represented by second order NURBS
basis functions and will need no approximation for our analysis. The areas around
the trimming curves, however, needs special care. Instead of incorporating the
trimming curves in the analysis of the BeTSSi submarine, a reparametrization
of the problematic areas is considered. This enables the possibility to represent
the NACA profile with polynomial orders less than 8, which would otherwise be a
rather significant restriction of the computational efficiency. A third reason for
reparametrizing the submarine is to obtain an analysis suitable mesh around the
non-Lipschitz areas (sides of the sail at the deck and the upper part of the depth
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rudders). The optimal way of parametrizing this area would be to have the same
(we use linear) parametrization for the x-component as done in [59].

The approximations are done by performing least squares of the trimming
curves. For the sail and the depth rudders, the surrounding areas are linear, and
can be exactly represented based on the resulting NURBS-curve. For the main
rudders, the surrounding areas are approximated by interpolation in such a way
that the neighboring (exact) NURBS patches remain unaltered (illustrated in
Figure D48). The interpolation was here preferred above the least squares as it
resulted in more analysis suitable basis functions. The upper and lower curves of
the sail/rudders are lofted linearly. Figures D49 and D50 show the exponential
convergence to the exact geometry.

All NURBS patches are conforming such that there is no need to handle mas-
ter/slave faces by adding constraint equations as described in [37, p. 87-91]. This
results in redundant degrees of freedom, and the optimal mesh certainly requires a
solution to this problem. Two very good alternatives include T-splines [63] and
LR B-splines [54]).

For the sake of brevity, the authors refer to [64] instead of giving an exact
description of every minor detail in constructing this approximation. The exact
BeTSSi submarine as well as the approximate submarines for p̌ = 2, 3, 4 are
presented in the file formats .step, .igs and .3dm format.

By considering the manufactured solution in Subsection 6.6 the numerical
evidence observed from Figure D51 indicates that the presence of non-Lipschitz
domain does not affect the convergence rates (also observed in [59]).

E. Triangulation of the BeTSSi submarine

Triangularized versions of the exact BeTSSi submarine in .stl (both ASCII
and binary) and .bdf format can be found in [64] where the triangulations is
an optimization of meshes created in Comsol Multiphysics R© (surface mesh
corresponding to the Comsol Multiphysics R© volume meshes considered in this
work). An overview of the triangularization meshes can be found in Table 9. Since
these meshes are used by WTD in the simulations they have provided for this
work, they are denoted by Mwtd

m . The resolution (res) parameter λ/h(2)
max (at

f = 1 kHz) is used in the file names. In Table 9, h(1)
max is defined as the maximum

of the diameters of the smallest circle that inscribes the triangular element. For
the ith triangle with side lengths li,1, li,2 and li,3, it is given by

h(1)
max = max

i

2li,1li,2li,3√
(li,1 + li,2 + li,3)(li,1 + li,2 − li,3)(li,1 + li,3 − li,2)(li,2 + li,3 − li,1)

.
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Figure D48: An analysis suitable BeTSSi submarine: The geometric surface
approximation Γp̌ approximates the surface of the exact representation of the
BeTSSi submarine Γ . Surface visualization of the mesh and geometric error for
p̌ = 2. Most parts of the approximation are exact to machine epsilon precision.

Table 9: Triangularization of the BeTSSi submarine: Data for the meshes.

Mesh # triangles # vertices h
(1)
max [m] h

(2)
max [m] Rmax Smin

Mwtd
1 4140 2072 2.109 1.893 28.4 0.0336

Mwtd
2 10 406 5205 1.032 1.005 56.7 0.0168

Mwtd
3 31 104 15 554 0.543 0.499 105.3 0.0091

Mwtd
4 106 888 53 446 0.281 0.257 202.5 0.0047

Mwtd
5 400 886 200 445 0.139 0.130 401.2 0.0024

Mwtd
6 1 584 014 792 009 0.072 0.069 807.6 0.0012
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Figure D49: An analysis suitable BeTSSi submarine: The geometric surface
approximation Γp̌ approximates the surface of the exact representation of the
BeTSSi submarine Γ . Convergence plot showing exponential convergence to the
exact geometry Γ .
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Figure D50: An analysis suitable BeTSSi submarine: Same as Figure D49
but in another norm. Here, the characteristic length of the geometry is given by
LΓ = a+ L+ g2 + g3.
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Figure D51: An analysis suitable BeTSSi submarine: Error of the best
approximation for the manufactured solution presented in Subsection 6.6 on Γp̌.

Comsol Multiphysics R© uses another common definition of the element size,
namely the largest side length of the triangle

h(2)
max = max

i,j
li,j .

The three angles of a triangle may be computed by

αi,1 = cos−1
(
l2i,2 + l2i,3 − l2i,1

2li,2li,3

)
, αi,2 = cos−1

(
l2i,1 + l2i,3 − l2i,2

2li,1li,3

)

αi,3 = cos−1
(
l2i,1 + l2i,2 − l2i,3

2li,1li,2

)
,

such that the maximum and minimum angle are given by

αmax = max
i,j

αi,j and αmin = min
i,j

αi,j ,

respectively. The maximum aspect ratio is defined by

Rmax = max
i

maxj li,j
minj li,j

and the minimum skewness is defined by

Smin = min
i,j

[
1−max

(
αi,j − αe
180◦ − αe

,
αe − αi,j

αe
,

)]
, αe = 60◦.
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The main take-away here is the inevitability of the increase in the aspect ratio
(and the reduction in skewness) during refinement. This is because of the presence
of non-Lipschitz domains.
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Abstract

The Kirchhoff approximation yields an accurate approximation of scattering prob-
lems on convex rigid bodies for high frequencies. The Kirchhoff–Helmholtz integral
has usually been evaluated by discretizing the geometry by triangles, such that
the integral may be evaluated exactly. However, this approach has frequency
dependent accuracy and frequency dependent memory consumption. In this work,
the integrals are evaluated numerically on the exact geometry using the method
of numerical steepest descent. Both problems concerning the decreased accuracy
and the increased memory consumption for higher frequencies are solved by this
approach. The isogeoemtric framework eliminates the tessellation process and
enables computations directly on the computer aided design (CAD) model.

1. Introduction

Acoustic scattering is a large field which has one of its application in the analysis
of scattering on submarines. The scattering problem is by no means limited to
submarines, as the physical phenomena occurs all around in nature. For instance,
acoustic scattering may be used to calculate the number of fish in a fish farming
net [1]. Moreover, the fluid to be analyzed is not limited to be water. For acoustic
scattering problems, the Helmholtz equation represents the governing equation for
the fluid medium. The same equation in vector form can govern electromagnetic
waves (see [2]).

The problem at hand is time dependent. But we shall assume harmonic time
dependency, such that all time dependent functions F̆ = F̆ (x, t) may be written as

F̆ (x, t) = F (x)e−iωt (1)

∗Corresponding author.
Email addresses: Jon.Venas@ntnu.no (J.V. Ven̊as), Trond.Kvamsdal@ntnu.no (T. Kvamsdal).
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(a) Exact CAD model. (b) Triangulation with 3072
triangles.

(c) Triangulation with 5120
triangles.

Figure 1: A CAD model often uses spline-based parametrization for modeling.
Analysis are often made on an approximation of such a geometry. The surface of
a sphere may be modeled by 6 patches using NURBS parametrizations.

where ω is the angular frequency and i =
√
−1 the imaginary unit. This enables

us to model the pressure p in the fluid with the Helmholtz equation given by

∇2p+ k2p = 0 (2)

with the wave number k = ω
cf

(where cf is the wave speed in the fluid). Other
important quantities include the frequency f = ω

2π and the wavelength λ = 2π
k .

By assuming the normal derivative of the total pressure at the boundary to
be given by a physical optics approximation, the Kirchoff approximation enables
efficient computation of the scattered pressure from objects. This approximation is
best suited for smooth convex objects as edges and multiple reflections are not well
approximated using this approach [3]. The Kirchhoff approximation has also been
used to model problems in the time domain [3, 4]. For a more detailed introduction
to this method, we refer to [5].

The geometry of the scatterer may be quite complex but is typically exactly
represented using Non-Uniform Rational B-Splines (NURBS). This fact is one of
the motivations of using the isogeometric analysis (IGA) concept as it uses the
same functions as basis function for analysis. The sphere depicted in Figure 1a
is an example of a geometry which has an exact representation using NURBS. A
triangulation of such a geometry can easily be obtained by refining the CAD model,
and then use the element corners as nodes for the triangulation as in Figure 1b.
This may result in non-optimal triangulation as the triangles should be as close as
possible to equilateral triangles of equal size (Figure 1c).

The approach of triangularization approximation has been used quite exten-
sively in the BeTSSi1 community [7–10] as the integration over triangles can be

1Benchmark Target Strength Simulation [6].
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evaluated exactly. This approach is also taken in [11, 12]. As reported in [10] trian-
gulating a submarine model for 30 kHz might result in a file size of several hundred
GB. This is because the accuracy is frequency dependent when approximating
the geometry. In [11] the integration was done using classical Gauss quadrature
where they suggest the maximal point separation to be λ/6. A similar approach
was taken in [13] where the maximal point separation was taken to be λ/4. This
leads to computationally expensive calculations for high frequencies. An attempt
to solve the problem of high memory consumption and low accuracy for high
frequencies was made in [14] where a hybrid method was proposed using Gaussian
quadrature on curvilinear facets. This approach seems to reduce the number of
required facets by a significant amount (although still having frequency dependent
accuracy). The main disadvantage is here arguably the requirement of tessellation
of the CAD model into curvilinear facets.

In this work we will take the approach of using the exact geometry and using
the numerical steepest descent to perform highly oscillatory integration, which is
an attempt to solve the two problems of memory and accuracy dependency of large
frequencies in addition to avoiding the tessellation process altogether using the
IGA framework. The advantages of using curvilinear facets are covered indirectly
in this work as one can choose to use classical Gauss-Legendre quadrature (on a
refined IGA mesh) to evaluate the oscillatory integrals instead of the numerical
steepest descent.

The integrals investigated in this work are related to the boundary integrals
used in the boundary element method (BEM). Especially the approach by Peake
et al. [15] where the NURBS basis functions are enriched with oscillatory plane
waves. Peake evaluated the resulting integral using high order Gauss Legendre
quadrature, which will be the bottleneck for high frequencies. This work sets a
foundation for solving this problem using NSD.

The problem of highly oscillatory integration has long been an active research
area. Especially integrals of the form

I[f,Ω] =
∫

Ω
f(x)eiωg(x) dΩ (3)

are of major interest. Here Ω ⊂ Rd is usually a bounded open domain with
piece-wise smooth boundary, while the amplitude function f and the oscillator
g are smooth. The integral in Eq. (3), is highly oscillatory for large values of
ω ∈ R. Integration of such highly oscillatory integrals using classical Gaussian
quadrature becomes prohibitively computationally expensive for large ω, and one
should resort to other methods. Alternative methods such as asymptotic methods
and Filon-type methods [16–18], Levin-type methods [19, 20], numerical steepest
descent [21, 22], complex Gaussian quadrature [23, 24] have attained great interest
during the last decade and we refer to the book by Deaño et al. [22] for more
details.
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In Section 2 we start by briefly presenting the Kirchhoff approximation, and
continue by presenting the numerical steepest descent in Section 3. Numerical
examples are presented in Section 4 followed by the conclusions in Section 5.

2. Kirchhoff approximation

The exterior Helmholtz problem is given by

∇2p+ k2p = 0 in Ω+, (4)
∂np = g on Γ, (5)

∂p

∂r
− ikp = o

(
r−1

)
with r = |x| (6)

where the Sommerfeld condition in Eq. (6) restricts the field uniformly in x̂ = x
r ,

such that no waves originate from infinity.
By Kirchhoff’s integral theorem we have (cf. [25, Theorem 2.21])

p(x) =
∫

Γ

[
p(y)∂Φk(x,y)

∂n(y) − Φk(x,y)∂p(y)
∂n(y)

]
dΓ (y) (7)

where y is a point on the surface Γ , n lies on Γ pointing “into” Ω+ at y and Φk
is the free space Green’s function for the Helmholtz equation in Eq. (4) given (in
3D) by

Φk(x,y) = eikR

4πR, where R = |x− y|. (8)

The derivative of Green’s function is given by

∂Φk(x,y)
∂n(y) = Φk(x,y)

R
(ikR− 1) ∂R

∂n(y) , where ∂R

∂n(y) = −(x− y) · n(y)
R

.

Moreover, for an incident wave pinc satisfying the Helmholtz equation we have
(using [25, Theorem 2.20])

∫

Γ

[
pinc(y)∂Φk(x,y)

∂n(y) − Φk(x,y)∂pinc(y)
∂n(y)

]
dΓ (y) = 0.

Thus, we can write Eq. (7) in terms of the total pressure ptot = p+ pinc

p(x) =
∫

Γ

[
ptot(y)∂Φk(x,y)

∂n(y) − Φk(x,y)∂ptot(y)
∂n(y)

]
dΓ (y) (9)

For rigid scattering with ∂nptot = 0 we therefore have

p(x) =
∫

Γ
ptot(y)∂Φk(x,y)

∂n(y) dΓ (y) (10)
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The far field pattern for the scattered pressure p, is defined by

p0(x̂) = lim
r→∞ re

−ikrp(rx̂), (11)

with r = |x| and x̂ = x/|x|. Using the limits

lim
r→∞ re

−ikrΦk(rx̂,y) = 1
4πe−ikx̂·y

lim
r→∞ re

−ikr ∂Φk(rx̂,y)
∂n(y) = − ik

4πe−ikx̂·yx̂ · n(y)
(12)

the formula in Eq. (7) simplifies in the far field to (cf. [26, p. 32])

p0(x̂) = − 1
4π

∫

Γ

[
ikp(y)x̂ · n(y) + ∂p(y)

∂n(y)

]
e−ikx̂·y dΓ (y). (13)

For rigid scattering this is simplified to (from Eq. (10))

p0(x̂) = − ik
4π

∫

Γ
ptot(y)x̂ · n(y)e−ikx̂·y dΓ (y). (14)

From the far field pattern, the target strength, TS, can be computed. It is defined
by

TS = 20 log10

( |p0(x̂)|
|Pinc|

)
(15)

where Pinc is the amplitude of the incident wave at the geometric center of
the scatterer (i.e. the origin). Since the amplitude of the scattered pressure is
proportional to the amplitude of the incident wave (due to the linearity of the
Helmholtz equation), TS is independent of Pinc.

Kirchoff’s diffraction formula is derived by assuming the values of p and ∂np to
be known at the boundary [3]. The value for the pressure p at the boundary Γ can
be modeled by physical optics approximation [25, p. 147]. In this case, we have

ptot =
{

2pinc on illuminated sides
0 on sides in shadow.

By considering plane waves
pinc = Pinceikds·x (16)

and defining Γi as the illuminated sides of Γ , Eq. (14) is then reduced to

p0(x̂) ≈ − ikPinc
2π

∫

Γi
x̂ · n(y)eik(ds−x̂)·y dΓ (y). (17)

For monostatic scattering we have ds = −x̂, such that

p0(x̂) ≈ − ikPinc
2π

∫

Γi
x̂ · n(y)e−2ikx̂·y dΓ (y). (18)



270 Isogeometric Kirchhoff Approximation using Numerical Steepest Descent

(a) The BeTSSi model 3 (b) The BeTSSi model 4

(c) The BeTSSi submarine

Figure 2: The BeTSSi model 3 is described and analyzed in [27] and the BeTSSi
submarine is described and analyzed in [28].

In Figure 3 we illustrate the impact the convexity of a geometry has on two
of the BeTSSi models [6] visualized in Figure 2. The reference solutions are
computed by the ASIGA2 library. The BeTSSi model 3 is nearly convex while the
BeTSSi submarine is not. Despite this, good results are obtained for the BeTSSi
submarine considering the simplicity of the Kirchhoff approximation method. The
BEM simulation on the BeTSSi submarine was computed with 59 488 elements
with basis functions of 6th degree (resulting in 124 113 degrees of freedom) with
the Burton-Miller formulation. The simulation used 126 650 seconds, and the
Kirchhoff diffraction theory (KDT) simulation (with GL quadrature on IGA
mesh) uses only 60 seconds on the same IGA mesh. This is reasonable since the
complexity of a BEM solver is at least O(n2

el) whereas the complexity of the KDT
solver is only O(nel) assuming a given number of elements are needed for a given
frequency and accuracy. Due to the exponential decay of the error in the numerical
integration using Gauss–Legendre quadrature far less elements are needed for the
KDT simulation compared to finite/boundary element methods (with algebraic
convergence rates). The KDT simulation on only 3718 elements using (p̌+1)2 = 49
GL points per element yields visually indistinguishable results for the BeTSSi
submarine simulation with a computational timing of only a few seconds (not
shown in Figure 3).

For the BeTSSi model 4 the results deviate much more as can be seen in Figure 4.

2The ASIGA (Acoustic Scattering with IsoGeometric Analysis) library can be found at
https://github.com/Zetison/ASIGA.
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(a) The BeTSSi model 3
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(b) The BeTSSi submarine

Figure 3: Rigid scattering on BeTSSi models: Comparison of the monostatic
target strength (Eq. (15)) for the Kirchhoff approximation (Eq. (32)) and IGABEM
reference solutions. The Kirchhoff approximation is obtained by classical Gauss-
Legendre integration. This benchmark is one of the BeTSSi test cases with
elevation angle βs = 0◦ and frequency f = 1 kHz.
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Figure 4: Rigid scattering on BeTSSi model 4: Comparison of the monostatic
target strength (Eq. (15)) for the Kirchhoff approximation (Eq. (32)) and a
IGABEM reference solution. The Kirchhoff approximation is obtained by classical
Gauss-Legendre integration. This benchmark is one of the BeTSSi test cases with
elevation angle βs = 30◦ and frequency f = 10 kHz.

This model is a corner reflector which yields high TS for aspect angles that “sees”
this corner (i.e. α, β ∈ (0, 90◦)). Since Kirchhoff approximation does not handle
multiple reflections, this domain yields particularly large discrepancies.

If the domain Γi is polygonal and the boundary of Γi lies on polygonal edges,
the integrals in Eqs. (17) and (18) can be exactly evaluated by subdividing each
polygon into triangles and using barycentric coordinates. On each triangle Γi,n
the barycentric coordinates are given by

y = y(ξ1, ξ2) = (Pn,1 − Pn,3)ξ1 + (Pn,2 − Pn,3)ξ2 + Pn,3 (19)

where Pi are the corners of the triangle. Then the integral in Eq. (18) may be
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written as

p0(x̂) ≈ − ikPinc
π

N∑

n=1
|Γi,n|

∫ 1

0

∫ 1−ξ1

0
x̂ · nne−2ikx̂·y dξ2 dξ1

= − ikPinc
π

N∑

n=1
|Γi,n|x̂ · nn

∫ 1

0

∫ 1−ξ1

0
eDn,0+Dn,1ξ1+Dn,2ξ2 dξ2 dξ1

= − ikPinc
π

N∑

n=1
|Γi,n|x̂ · nng(Dn,1, Dn,2)eDn,0 (20)

with

g(Dn,1, Dn,2) =
∫ 1

0

∫ 1−ξ1

0
eDn,1ξ1+Dn,2ξ2 dξ2 dξ1

= Dn,1(1− eDn,2) +Dn,2(eDn,1 − 1)
Dn,1Dn,2(Dn,1 −Dn,2)

Dn,0 = −2ikx̂ · Pn,3
Dn,1 = −2ikx̂ · (Pn,1 − Pn,3)
Dn,2 = −2ikx̂ · (Pn,2 − Pn,3).

Note that

lim
Dn,1→0

g(Dn,1, Dn,2) = − 1
D2
n,2

(
1 +Dn,2 − eDn,2

)
,

lim
Dn,2→0

g(Dn,1, Dn,2) = − 1
D2
n,1

(
1 +Dn,1 − eDn,1

)
,

lim
Dn,1,Dn,2→0

g(Dn,1, Dn,2) = 1
2 ,

lim
Dn,1→Dn,2

g(Dn,1, Dn,2) = 1
D2
n,2

(
1− eDn,2 +Dn,2eDn,2

)
.

If Γi does not lie on polygonal edges, some geometric errors are introduced which
goes to zero when hmax → 0. Usually, Γ is not only represented by polygonal
surfaces. However, using a tessellation of the model where this approach can be
employed is the most common way of using Kirchhoff approximation.

3. Numerical steepest descent

Consider first the one-dimensional case of the oscillatory integral in Eq. (3). To
illustrate the technique of numerical steepest descent we consider the integral

I =
∫ b

a
f(x)eiωg(x) dx. (21)
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This integral is highly oscillatory for large values of ω and non-constant oscillator
g due to the exponential factor eiωg(x). However, this factor is not oscillatory
along paths z = hx(p) (parameterized with the parameter p) in the complex plane
satisfying

g(hx(p)) = ip+ g(x) (22)

This is because, for a given x we have eiωg(z) = e−ωpeiωg(x), and the factor e−ωp
is not oscillatory. In fact, it is exponentially decaying in the complex plane. The
idea of numerical steepest descent is to evaluate the oscillatory integral along such
paths in the complex plane. For the case of no stationary points where g′(z) = 0
Theorem 2.1 in [29] states that the integral in Eq. (21) may be decomposed as

I = F (a)− F (b) +O(e−ωd0)

where (with the substitution p = q/ω)

F (ξ) =
∫ ∞

0
f(hξ(p))eiω(g(ξ)+ip)h′ξ(p) dp (23)

= eiωg(ξ)

ω

∫ ∞

0
f(hξ(q/ω))e−qh′ξ(q/ω) dq. (24)

Consider now stationary points z = ξ of order r (that is, g′(ξ) = g′′(ξ) = · · · =
g(r)(ξ) = 0 and g(r+1)(ξ) 6= 0). Since the inverse of g is multivalued around these
points, several paths hξ,j , j = 0, . . . , r, exists that all satisfy Eq. (22). Using a
Taylor expansion of g(z) around z = ξ yields

hξ,j(p) ∼ ξ + r+1

√
i (r + 1)!p
g(r+1)(ξ)

, h′ξ,j(p) ∼
1

r + 1
r+1

√
i (r + 1)!
g(r+1)(ξ)

p
1
r+1−1.

That is if we have a stationary point at z = ξ of order r the substitution introduces
weakly singular behavior near the real axis. This can be handled by a generalized
Gauss Laguerre quadrature as explained in [29].

Alternatively, Freud-type Gaussian (GF) quadrature may be applied. With an
additional substitution q = ur+1 we get

hξ,j(p) ∼ ξ + r+1

√
i (r + 1)!
ωg(r+1)(ξ)

u, h′ξ,j(p) ∼
ω

r + 1
r+1

√
i (r + 1)!
ωg(r+1)(ξ)

u−r (25)

since dq = (r + 1)urdu the function Fj(ξ) in Eq. (23) may be written as

Fj(ξ) = (r + 1)eiωg(ξ)

ω

∫ ∞

0
f(hξ,j(ur+1/ω))e−ur+1

h′ξ,j(ur+1/ω)ur du.

The factor ur effectively cancels the singular behavior of h′ξ,j(p) in Eq. (25).
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For the case f(x) = xn and g(x) = xm, the integral in Eq. (21) can be expressed
in terms of the (upper) incomplete gamma function (for integer m)

∫ 1

0
xneiωxm dx = 1

m(−iω)n+1
m

[
Γ

(
n+ 1
m

, 0
)
− Γ

(
n+ 1
m

,−iω
)]

where
Γ (s, z) =

∫ ∞

z
ts−1e−t dt

is implemented in Matlab as igamma(s,z). For integer n and m = 1 we have

Γ (n+ 1, z) = e−z
n∑

m=0

n!
m!z

m

such that ∫ 1

0
xneiωx dx = 1

(−iω)n+1

[
n!− eiω

n∑

m=0

n!
m! (−iω)m

]
.

With g(z) = z we have the two paths h0(p) = ip and h1(p) = ip + 1 starting
from z = 0 and z = 1, respectively. Along these paths we have z = hx(p) and
dz = h′x(p) dp = i dp. Such that the integral in Eq. (21) may be decomposed as

I1 =
∫ 1

0
xneiωx dx

= eiωg(0)
∫ ∞

0
f(h0(p))e−ωph′0(p) dp− eiωg(1)

∫ ∞

0
f(h1(p))e−ωph′1(p) dp

=
∫ ∞

0
i(ip)ne−ωp dp− eiω

∫ ∞

0
i(ip+ 1)ne−ωp dp

= i
ω

[∫ ∞

0
(iq/ω)ne−q dq − eiω

∫ ∞

0
(iq/ω + 1)ne−q dq

]
.

The generalized Gauss-Laguerre (GGL) quadrature rule integrates the integral
∫ ∞

0
f̃(q)xαe−q dq, α = − r

r + 1

exactly for polynomials f̃(q) of order up to 2nqp − 1, and so we should expect
exact results whenever n 6 2nqp − 1. This is indeed observed in Figure 5.

Consider now the case m = 2. The paths are then given by hx(p) = ±
√

ip+ x2.
For the point x = 1 the sign must be chosen to satisfy h1(0) = 1. Thus, the path
starting from z = 1 is given by h1(p) =

√
ip+ 1. For the point x = 0 each of the

signs satisfy h0(0) = 0, and must be chosen such that this paths share the same
branch as the path from x = 1. Hence, the path starting from z = 0 is given
by h0(p) =

√
ip. In Figure 6 these paths are visualized on top of a contour plot

of Im(ig(z)) = (Re z)2 − (Im z)2. Along these two paths we have z = hx(p) and
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Figure 5: Numerical steepest descent: The relative numerical error of the NSD
and Gauss Legendre quadrature applied to the integral I1 with n = 5. Machine
epsilon results is expected for the NSD when using nqp = 3. Correct convergence
rate of −2nqp − α = −4 is observed when using nqp = 2 (note that α = 0 for I1).

dz = h′x(p) dp = i/2(ip + x2)−1/2 dp. Such that the integral in Eq. (21) may be
decomposed as

I2 =
∫ 1

0
xneiωx2 dx

= eiωg(0)
∫ ∞

0
f(h0(p))e−ωph′0(p) dp− eiωg(1)

∫ ∞

0
f(h1(p))e−ωph′1(p) dp

=
∫ ∞

0

i
2(ip)n/2−1/2e−ωp dp− eiω

∫ ∞

0

i
2(ip+ 1)n/2−1/2e−ωp dp

= i
2ω

[∫ ∞

0
(iq/ω)n/2−1/2e−q dq − eiω

∫ ∞

0
(iq/ω + 1)n/2−1/2e−q dq

]

=
[∫ ∞

0
(iu/ω)ne−u2 du− ieiω

ω

∫ ∞

0
u(iu2/ω + 1)n/2−1/2e−u2 du

]
.

In Figure 7 we can again observe convergence rates close to the expected values.
The GGL quadrature and GF quadrature perform very similar here. A heuristic
study was made on these two quadrature techniques and the performance depend
on the oscillator function g. For the oscillators with stationary points of high
order, the GF points seems to be desirable, but for low r the GLL points gave the
best results. Further investigation into this is suggested as future work.
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Figure 6: Numerical steepest descent: Paths in the complex plane at which
the imaginary part of the oscillator g(z) is constant. The paths from z = 0 and
z = 1 are drawn as red dashed lines, with nqp = 5 Gauss Laguerre quadrature
points on top. Note that due to the scaling q = ωp the quadrature points will get
closer to the real axis as ω gets smaller (here, ω = 10).
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Figure 7: Numerical steepest descent: The relative numerical error of the NSD
and Gauss Legendre quadrature applied to the integral I2 with n = 4. Correct
convergence rate of −2nqp − α = −9.5 is observed when using nqp = 5 (note that
α = −0.5 for the path starting from z = 0 and that α = 0 for the path starting
from z = 1 such that GGL points and GF points are identical on this path).

3.1. Starting value for Newton iterations

We use Taylor expansion around ξ to find a starting value for Newton iterations
to obtain the path hξ(p)

g(x) = g(ξ) + g′(ξ)(x− ξ) + 1
2g
′′(ξ)(x− ξ)2 + . . .

where x = hξ(p). Since
g(hξ(p)) = g(ξ) + ip (26)

we get
ip = g′(ξ)(hξ(p)− ξ) + 1

2g
′′(ξ)(hξ(p)− ξ)2 + . . .

So in case of a stationary point of order r we can use

hξ(p) ≈ ξ + e
2πji
r+1 r+1

√
(r + 1)!p
g(r+1)(ξ)

i

= ξ + exp
[

(4j + 1)π− 2 arg g(r+1)(ξ)
2(r + 1) i

]
r+1

√
(r + 1)!p
|g(r+1)(ξ)| .
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where j = 0, 1, · · · , r must be chosen such that the endpoints of to neighboring
paths have the same sign of the imaginary part.

Whenever g′(ξ) 6= 0 and g′′(ξ) = 0 we simply use the linear approximation

hξ(p) ≈ ξ + ip
g′(ξ) .

If g′(ξ) 6= 0 and g′′(ξ) 6= 0, we use a quadratic approximation

hξ(p) ≈ ξ + −g
′(ξ)±

√
g′(ξ)2 + 2ig′′(ξ)p
g′′(ξ)

The sign can be determined (using Eq. (26)) by the following requirement

h′ξ(p) = i
g′(hξ(p))

⇒ h′ξ(0) = i
g′(hξ(0)) = i

g′(ξ) (27)

such that (since z = sgn(Re z)
√
z2)

hξ(p) ≈ ξ −
g′(ξ)− sgn(Re g′(ξ))

√
g′(ξ)2 + 2ig′′(ξ)p

g′′(ξ) .

Slightly more involved formulas can be obtained for the cubic approximation
(requiring g(3)(ξ) 6= 0)

hξ(p) ≈ ξ+W − P

3W −
g′′(ξ)
g(3)(ξ)

, W = e2πij/3


Q

2 +

√
Q2

4 + P 3

27




1/3

, j = 0, 1, 2

where

P = 6g′(ξ)
g(3)(ξ)

− 3
[
g′′(ξ)
g(3)(ξ)

]2
, Q = 6g′(ξ)g′′(ξ)

[
g(3)(ξ)

]2 + 6ip
g(3)(ξ)

− 2
[
g′′(ξ)
g(3)(ξ)

]3
.

The integer j must be determined from Eq. (27).
Alternatively, a Taylor expansion can be obtained by expanding hξ(p) around

p = 0

hξ(p) = ξ + h′ξ(0)p+ 1
2h
′′
ξ (0)p2 + 1

6h
(3)
ξ (0)p3 + 1

24h
(4)
ξ (0)p4 + . . .

where one can compute

h′ξ(0) = i
g′(ξ) , h′′ξ (0) = g′′(ξ)

[g′(ξ)]3
, h

(3)
ξ (0) = g(3)(ξ)g′(ξ)− 3[g′′(ξ)]2

[g′(ξ)]5
i

h
(4)
ξ (0) = −g

(4)(ξ)[g′(ξ)]2 − 10g(3)(ξ)g′′(ξ)g′(ξ) + 15[g′′(ξ)]3

[g′(ξ)]7

with the assumption that g′(ξ) 6= 0. Because of this assumption, this expansion
cannot be used to approximate paths from stationary points.
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3.2. The case of no critical points or resonance points in 2D

Assuming we first integrate in the η-direction, we define the path vη(ξ, q) in the
complex plane defined by

g(ξ, vηj (ξ, q)) = g(ξ, ηj) + iq

such that

I =
∫ ξn

ξ1

∫ ηm

η1
f(ξ, η)eikg(ξ,η) dη dξ

=
∫ ξn

ξ1

[
eikg(ξ,η1)

∫ ∞

0
f(ξ, vη1(ξ, q))e−kq ∂vη1

∂q
(ξ, q) dq

−eikg(ξ,ηm)
∫ ∞

0
f(ξ, vηm(ξ, q))e−kq ∂vηm

∂q
(ξ, q) dq

]
dξ

We continue by defining

g(uξi(p), ηj) = g(ξi, ηj) + ip

such that

I = Fyx(ξ1, η1)− Fyx(ξ2, η1)− [Fyx(ξ1, η2)− Fyx(ξ2, η2)]

where
Fyx(ξ, η) = eikg(ξ,η)

∫ ∞

0

∫ ∞

0
f(uξ(p), vη(uξ(p), q))e−k(q+p)

· ∂vη
∂q

(uξ(p), q)u′ξ(p) dq dp.
(28)

Similar expressions may be found by first integration over the ξ-direction

I = Fxy(ξ1, η1)− Fxy(ξ2, η1)− [Fxy(ξ1, η2)− Fxy(ξ2, η2)]

where
Fyx(ξ, η) = eikg(ξ,η)

∫ ∞

0

∫ ∞

0
f(uξ(p, vη(q)), vη(q))e−k(q+p)

· ∂uξ
∂p

(p, vη(q))v′η(q) dpdq.
(29)

Here, the paths uξi(p, η) solve

g(uξi(p, η), η) = g(ξi, η) + ip

and the paths vη(q) solve

g(ξi, vη(q)) = g(ξi, ηj) + iq.
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3.3. Resonance points

On a rectangular domain [ξ1, ξn] × [η1, ηm] we have a resonance point (ξ, ηj) on
the boundary ξ = ξ1 or ξ = ξn if

∂g(ξ, ηj)
∂η

∣∣∣
ξ=ξ1

= 0 or ∂g(ξ, ηj)
∂η

∣∣∣
ξ=ξn

= 0

respectively. Correspondingly we have a resonance point (ξi, η) on the boundary
η = η1 or η = ηm if

∂g(ξi, η)
∂ξ

∣∣∣
η=η1

= 0 or ∂g(ξi, η)
∂ξ

∣∣∣
η=ηn

= 0,

respectively.
Assume that we have nη1 critical points, ξη1,i, i = 1, . . . , nη1 in the ξ-direction

where η = η1, and nη2 critical points, ξη2,i, i = 1, . . . , nη2 in the ξ-direction where
η = η2. Finally, assume that

∂g(ξ, η)
∂η

6= 0.

Then,

I =
∫ ξ2

ξ1

[
eikg(ξ,η1)

∫ ∞

0
f(ξ, vη1(ξ, q))e−kq ∂vη1

∂q
(ξ, q) dq

−eikg(ξ,ηm)
∫ ∞

0
f(ξ, vηm(ξ, q))e−kq ∂vηm

∂q
(ξ, q) dq

]
dξ

where the paths vηj (ξ, q) solve

g(ξ, vηj (ξ, q)) = g(ξ, ηj) + iq

We may then write

I =
nη1−1∑

i=1
[Fyx(ξη1,i, η1)− Fyx(ξη1,i+1, η1)]−

nη2−1∑

i=1
[Fyx(ξη2,i, η2)− Fyx(ξη2,i+1, η2)]

where

Fyx(ξ, η) = eikg(ξ,η)
∫ ∞

0

∫ ∞

0
f(uξ(p), vη(uξ(p), q))e−k(p+q)∂vη

∂q
(uξ(p), q)u′ξ(p) dq dp

where the paths uξi(p) solve

g(uξi(p), ηj) = g(ξi, ηj) + ip.
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Assume now that we have nξ1 critical points, ηξ1,j , j = 1, . . . , nξ1 in the
η-direction where ξ = ξ1, and nξ2 critical points, ηξ2,j , j = 1, . . . , nξ2 in the
η-direction where ξ = ξ2. Finally, assume that

∂g(ξ, η)
∂ξ

6= 0.

Then,

I =
∫ η2

η1

[
eikg(ξ1,η)

∫ ∞

0
f(uξ1(p, η), η)e−kp∂uξ1

∂p
(p, η) dp

−eikg(ξ2,η)
∫ ∞

0
f(uξ2(p, η), η)e−kp∂uξ2

∂p
(p, η) dp

]
dη

where the paths uξi(p, η) solve

g(uξi(p, η), η) = g(ξi, η) + ip

We may then write

I =
nξ1−1∑

i=1
[Fxy(ξ1, ηξ1,i)− Fxy(ξ1, ηξ1,i+1)]−

nξ2−1∑

i=1
[Fxy(ξ2, ηξ2,i)− Fxy(ξ2, ηξ2,i+1)]

where

Fxy(ξ, η) = eikg(ξ,η)
∫ ∞

0

∫ ∞

0
f(uξ(p, vη(q)), vη(q))e−k(p+q)∂uξ

∂p
(p, vη(q))v′η(q) dp dq

where the paths vη(q) solve

g(ξi, vη(q)) = g(ξi, ηj) + iq.

4. Numerical examples

Before evaluating the Kirchhoff-Helmholtz integral on a CAD model, we consider
scattering on a rigid sphere which enables a simple parametrization with NSD paths
in closed form. This enables control of the implemented path finding algorithm
using Newtons method.

4.1. Scattering on a rigid sphere

Consider a plane wave (given by Eq. (16)) scattered by a rigid sphere of radius R0.
In the special case of ds = ez the analytic solution [30] to the problem is given by3

3Where jn(x) is the nth spherical Bessel function of the first kind and hn(x) is the nth spherical
Hankel function of the first kind.
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(expressed in spherical coordinates)

p(r, θ) = −Pinc

∞∑

n=0
in(2n+ 1) j′n(kR0)

h′n(kR0)Pn(cos θ)hn(kr) (30)

which can be generalized to arbitrary vectors ds using a orthogonal transformation.
The backscattered (at ϑ = π) far field pressure (Eq. (11)) is given by

p0 = −Pinc
ik

∞∑

n=0
(−1)n(2n+ 1) j′n(kR0)

h′n(kR0) . (31)

In the special case of monostatic scattering (ds = x̂), the far field is independent
of the incident direction ds due to spherical symmetry. For this reason, the integral
in the far field approximation in Eq. (18) is evaluated to be (using ds = ez and
spherical coordinates)

p0 ≈ −
ikPinc

2π

∫

Γi
x̂ · y

R0
e−2ikx̂·y dΓ (y) (32)

= − ikPincR2
0

2π

∫ 2π

0

∫ π
2

0
cosϑe−2ikR0 cosϑ sinϑ dϑ dϕ (33)

= −ikPincR
2
0

∫ 1

0
ue−2ikR0u du = iPinc

4k
[
1− (1 + 2ikR0)e−2ikR0

]
(34)

with the following asymptotic expansion for high frequencies

p0 ∼
PincR0

2 e−2ikR0 . (35)

In the limit k →∞ the target strength in Eq. (15) is thus

TS = 20 log10

(
R0
2

)
(36)

which is the asymptotic limit of the analytic solution in Eq. (31). These formulas
are compared in Figures 8 and 9.

Consider a parametrization of the surface of a sphere given by

Y (ξ, η) = R0




cos η cos ξ
cos η sin ξ

sin η




where ξ ∈ (−π,π] and η ∈ [−π/2,π/2]. The surface element is then computed as

dΓ (Y ) =
∣∣∣∣
∂Y

∂ξ
× ∂Y

∂η

∣∣∣∣ dη dξ = R2
0 cos η dη dξ
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Figure 8: Scattering on a rigid sphere: Comparison of the target strength
(Eq. (15)) for the Kirchhoff approximation (Eq. (32)), the asymptotic limit
(Eq. (35)) and the analytic solution (Eq. (31)).
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Figure 9: Scattering on a rigid sphere: Comparison of the relative error for
the far field backscattered pressure for the Kirchhoff approximation (Eq. (32)) and
the asymptotic limit (Eq. (35)) (compared to the analytic solution in Eq. (31)).
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As the far field expression in Eq. (18) can be written as

p0(x̂) ≈ − ikPinc
2π

∫

Γi
x̂ · n(y)e−2ikx̂·y dΓ (y) (37)

= − ikPincR2
0

2π

∫

Γi
x̂ · n(y)e−2ikx̂·y cos η dη dξ (38)

we define the amplitude function f by

f(ξ, η) = − ikPincR0
2π x̂ · Y (ξ, η) cos η

Moreover, let g(ξ, η) be the oscillator function defined by

g(ξ, η) = d · Y (ξ, η), d = −2x̂.

The derivatives are found by

∂i+jg

∂iξ∂jη
= d · ∂

i+jY

∂iξ∂jη

Along the boundaries where η = ±π2 we have ∂g
∂ξ = 0. That is, there are no

oscillations at all (any point is a resonance point), and the numerical steepest
descent cannot be used for the integral along these boundaries. However, as there
are no oscillations, the integral can be computed with regular Gaussian quadrature.

Solving ∂g
∂ξ = 0 (for η = ±π2 ) yields solutions along tan ξ = d2

d1
(for d1 6= 0). If

d1 = 0 then solutions are found at ξ = ±π2 (for d2 6= 0). For the case d1 = d2 = 0,
∂g
∂ξ = 0 in the whole domain.

Solving ∂g
∂η = 0 yields solutions along cot η = d1 cos ξ+d2 sin ξ

d3
(for d3 6= 0). If

d3 = 0 then solutions are found at η = 0 and tan ξ = −d1
d2

(for d2 6= 0). For the
case d2 = d3 = 0, solutions are found at ξ = ±π2 and η = 0.

Due to the periodicity, if ∇g(−π, η) = 0 for some η, then ∇g(π, η) = 0. Four
boundary SPs (∇g = 0) are found at

(ξ, η) =
(

arctan
(
−d1
d2

)
,±π2

)
, (ξ, η) =

(
arctan

(
−d1
d2

)
− sgn

(
−d1
d2

)
π,±π2

)
,

for d2 6= 0, and at (ξ, η) = (±π/2,±π/2) when d2 = 0. Internal SPs are found at

(ξ, η) =


arctan

(
d2
d1

)
, arccot


sgn(d1)

√
d2

1 + d2
2

d3






and

(ξ, η) =


arctan

(
d2
d1

)
− sgn

(
d2
d1

)
π, arccot


−

sgn(d1)
√
d2

1 + d2
2

d3
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when d1 6= 0 and d3 6= 0. If d3 = 0 and d1 6= 0, SPs are found at

(ξ, η) =
(

arctan
(
d2
d1

)
, 0
)
, (ξ, η) =

(
arctan

(
d2
d1

)
− sgn

(
d2
d1

)
π, 0

)
.

If d1 = d3 = 0, SPs are found at (ξ, η) = (±π/2, 0). If d1 = 0 and d2 6= 0

(ξ, η) =
(
±π2 , arctan

(
±d3
d2

))
.

There are no internal SPs for d1 = d2 = 0.
The paths are found by inversion. If ζ = g(ξ, η) then

η = −i Log




ζ
R ±

√(
ζ
R

)2
− d2

3 − γ2

γ − id3




where γ = d1 cos ξ + d2 sin ξ. Correspondingly

ξ = −i Log




ζ
R − d3 sin η ±

√(
ζ
R − d3 sin η

)2
− (d2

1 + d2
2
)

cos2 η

(d1 − id2) cos η




where it is assumed that cos η 6= 0 and d1 − id2 6= 0 (in these cases there exist no
inverse as ∂g

∂ξ = 0). The function Log is the principal valued natural logarithm
defined by

Log z = ln |z|+i atan2(y, x), atan2(y, x) =





arctan( yx) if x > 0
arctan( yx) + π if x < 0 and y ≥ 0
arctan( yx)− π if x < 0 and y < 0
π
2 if x = 0 and y > 0
−π2 if x = 0 and y < 0
undefined if x = 0 and y = 0

for any non-zero complex number z = x+ iy.
Consider the case of monostatic scattering from a unit sphere with d2 = d3 = 0,

d1 = −2, R0 = 1 m and Pinc = 1 Pa. Then the oscillatory function simplifies to

g(ξ, η) = −2 cos η cos ξ, (39)

and the amplitude function simplifies to

f(ξ, η) = − ik
2π cos ξ cos2 η. (40)
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Figure 10: Scattering on a rigid sphere: Quiver plot of the gradient of g(ξ, η)
in Eq. (39). The stationary points (SPs) are marked by circles.

Moreover, the paths for the integration in the yx-integration order is given by

vη(ξ, q) = arccos
(

cos η − iq
2 cos ξ

)

and

uξ(p) = arccos
(

cos ξ − ip
2 cos ηj

)
.

The paths for the integration in the xy-integration order is given by

uξ(p, η) = arccos
(

cos ξ − ip
2 cos η

)

and

vη(q) = arccos
(

cos η − iq
2 cos ξi

)
.

A quiver plot of the oscillatory function g is given in Figure 10, and the integrand
(of equation Eq. (37)) is visualized in the physical space and the parametric space
in Figures 11 and 12, respectively.

Due to symmetry it suffices to consider the domain [0,π/2]2 (and multiply
the results by four). The integrand over this domain is visualized in Figure 13.
In this domain we have stationary points in the origin and at the upper right
corner (ξ, η) = (π/2,π/2) (see Figure 10). Moreover, ∂g

∂ξ = 0 at the left and
upper boundaries and ∂g

∂η = 0 at the right and lower boundaries. This yields an
integrand around the top right corner which is significantly less oscillatory than
the rest. The domain Γ̃1 = [π/2− δ,π/2− δ]2 is for this reason, integrated with
classical Gauss-Legendre quadrature. For convenience, define ξ1 = 0, ξ2 = π/2− δ,
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Figure 11: Scattering on a rigid sphere: The real part of the integrand (of
equation Eq. (37)) is visualized on a CAD model of a sphere with kR0 = 50.
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Figure 12: Scattering on a rigid sphere: The real part of the integrand (of
equation Eq. (37)) is visualized in the parametric space with kR0 = 50.
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ξ3 = π/2, η1 = 0, η2 = π/2− δ, and η3 = π/2. The integral over Γ̃1 may then be
written as

Ine =
∫ ξ3

ξ2

∫ η3

η2
f(ξ, η)eikg(ξ,η) dη dξ

The size of this domain, governed by δ, should be frequency dependent such that
the number of needed quadrature points can remain fixed for all frequencies.

Consider now the left domain Γ̃2 = [0,π/2 − δ] × [0,π/2]. The integral over
this domain may be decomposed as

Iw =
∫ ξ2

ξ1

∫ η3

η1
f(ξ, η)eikg(ξ,η) dη dξ

=
∫ ξ2

ξ1

[
eikg(ξ,η1)

∫ ∞

0
f(ξ, vη1(ξ, q))e−kq ∂vη1

∂q
(ξ, q) dq

−eikg(ξ,η3)
∫ ∞

0
f(ξ, vη3(ξ, q))e−kq ∂vη3

∂q
(ξ, q) dq

]
dξ

As g(ξ, η3) = 0 the latter integral over ξ is not oscillatory and classical quadrature
may be used to integrate over the variable ξ. On the other hand, the first integral
over ξ is oscillatory and we may use another decomposition to obtain the following

Iw = Fyx(ξ1, η1)− Fyx(ξ2, η1)−Gyx(η3)

with Fyx as defined in Eq. (28) and

Gyx(η) =
∫ ξ2

ξ1

∫ ∞

0
f(ξ, vη(ξ, q))e−kq

∂vη
∂q

(ξ, q) dq dξ.

For the final integral over the domain Γ̃3 = [π/2−δ,π/2]× [0,π/2−δ] we integrate
first over ξ

Iw =
∫ η2

η1

∫ ξ3

ξ2
f(ξ, η)eikg(ξ,η) dξ dη

=
∫ η2

η1

[
eikg(ξ2,η)

∫ ∞

0
f(uξ2(p, η), η)e−kq ∂vη1

∂q
(ξ, q) dq

−eikg(ξ3,η)
∫ ∞

0
f(uξ3(p, η), η)e−kq ∂vηm

∂q
(ξ, q) dq

]
dη.

The latter integral over η is again not oscillatory since g(ξ3, η) = 0 and classical
quadrature may be used here. The first integral over η is oscillatory and we may
use another decomposition to obtain the following

Ise = Fxy(ξ2, η1)− Fxy(ξ2, η2)−Gxy(ξ3)
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Figure 13: Scattering on a rigid sphere: The integration domain over [0,π/2]2
is separated into three parts separated by the dashed lines.

with Fxy as defined in Eq. (29) and

Gxy(ξ) =
∫ η2

η1

∫ ∞

0
f(uξ(p, η), η)e−kp∂uξ

∂p
(p, η) dpdη.

Summing up each contribution yields the far field monostatic pressure

p(x̂) = 4(Ine + Iw + Ise)

In Figures 14 and 15 some results of Kirchhoff approximation using polygonal
approximation of the geometry in Eq. (20) are presented. We here use the
triangulation method based on the exact CAD model in Figure 1a described in
the introduction. The key observation is that the error is not only depending on
the geometrical approximation, but also the frequency resolution of the problem
which is consistent with the results presented in [8] and discussed in [10]. From
Figure 15, we can deduce experimentally that the relative error for the polygonal
approximation of the Kirchhoff approximation goes as Er ∼ 14h2kR0 for high
frequencies. This contradicts the claim made in [7] and [9] that the size limitation
of the triangle only depends on the approximation of the curvature of the object.
However, the number of points is greatly reduced compared to using classical
Gaussian quadrature on the exact geometry.
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Figure 14: Scattering on a rigid sphere: Comparison of Kirchhoff approxima-
tion using a polygonal approximation of the geometry (Eq. (20)) instead of exact
geometric representation by NURBS. The exact Kirchhoff approximation is given
by Eq. (32).
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Figure 15: Scattering on a rigid sphere: Comparison of Kirchhoff approxima-
tion using a polygonal approximation of the geometry (Eq. (20)). The reference
solution is the exact Kirchhoff approximation in Eq. (32).
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Figure 16: Scattering on a rigid sphere: Comparison of Kirchhoff approxi-
mation using standard Gauss-Legendre quadrature and using numerical steepest
descent. The reference solution is the exact Kirchhoff approximation in Eq. (32).

For the hybrid NSD consider a rather large size of the domain Γ̃1 (compared
to the frequency) given by δ = min{π/2, 9/

√
k} (heuristically obtained). The

Gauss-Legendre integrals are evaluated by a (fixed) 100th order quadrature scheme.
The integrals for the numerical steepest descent are computed by a 5th order
Gauss-Laguerre quadrature scheme. Whenever the oscillatory integrals span less
than 5 wavelengths Gauss-Legendre integration is used. For this reason, we call
the method a hybrid numerical steepest descent.

As expected, and illustrated in Figure 16, using classical Gauss-Legendre
quadrature to approximate the integrals in the Kirchhoff approximation yields
poor results for higher frequencies. Combining Gauss-Legendre quadratures with
the numerical steepest descent into the hybrid method resolves the problem for
higher frequencies. This hybrid method will converge for all frequencies as opposed
to the triangular approximation approach as illustrated in Figure 17.

The computational savings for the hybrid NSD method compared to the
triangularized approach is significant. For example, to achieve engineering precision
(<1%) accuracy for kR0 = 103 we can see from Figure 15 that the triangularized
approach needs about 3 · 106 triangles. This single simulation is computed in
roughly 160 second whereas the numerical steepest decent only need about 1
second (and obtaining machine epsilon precision). It is much easier to implement
an efficient triangularized formulation than the NSD formulation, and so we would
like to argue that the computational savings of using the NSD formulation could



Conclusion 293

10−1 100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

104

105

kR0

R
el

at
iv

e
er

ro
r

at
fa

r
fie

ld
po

in
t

[%
]

Hybrid numerical steepest decent
Gauss-Legendre quadrature
12 288 triangles approximation
196 608 triangles approximation
3 145 728 triangles approximation

Figure 17: Scattering on a rigid sphere: Comparison of Kirchhoff approxi-
mation using standard Gauss-Legendre quadrature and using numerical steepest
descent, in addition to the polygon approximation of the geometry. The reference
solution is the analytic solution in Eq. (31).

potentially be even greater.

5. Conclusion

This article addresses acoustic scattering characterized by sound waves reflected
by man-made elastic objects. The present approach is characterized by:

• The scattered pressure is approximated by Kirchhoff approximation.

• The computations are evaluated on the exact computer aided design model.

• The Helmholtz integrals are evaluated by the numerical steepest descent.

The main finding of the present study is that Kirchhoff approximation may
be computed with a complexity independent of the frequency in the isogeometric
analysis framework.

Furthermore, the following observations are made

• The accuracy of the method converges as a function of the frequency, as
opposed to a triangular approximation method where the accuracy diverges.



294 Isogeometric Kirchhoff Approximation using Numerical Steepest Descent

• The computational complexity of the Kirchhoff approximation method is
at least one order less than finite/boundary element methods resulting in
computational savings in orders of magnitudes. The cost of these savings
is reduced accuracy, and for some geometries the Kirchhoff approximation
simply is not applicable.

• The NSD formulation outperforms the triangulation approximation approach
when considering the computational time as a function of the error or
frequency.

The Kirchhoff approximation method in an isogeometric framework has good
potential, but many challenges remains to be resolved before the presented code is
fully automated.

Some challenges remain to be resolved for this work to be applicable to general
CAD geometries. First, for each incident wave and for each element in the
CAD mesh, all resonance and stationary points must be found. This could be
implemented as a preprocessing step. Second, if the shadow boundary does not
coincide with element boundaries, this must be resolved in the NSD algorithm.
The parent domain will in this case not be rectangular, but rather parametrized
boundary which requires special treatment in the NSD algorithm. Moreover, this
challenge will affect the first challenge as potential resonance points may lie on
the shadow boundary. Third, interior stationary points have not been considered
in this work but is discussed in [29]. Finally, rules must be established for the
number of Gauss-Legendre points and Gauss-Laguerre points needed in the hybrid
method.

To have an automated algorithm that tackles all of these challenges is a huge
task. The integrals from the usage of curvilinear facets in [14] contains well behaved
oscillatory functions (g is second order polynomial) and may for this reason be a
simpler approach. Especially since it is easier to discretize the scatterer, Γ , with
curvilinear triangles in such a way that the shadow boundary lies on element edges.
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Abstract

A spectral element method (SEM) solver is presented for acoustic scattering.
The classical 3D scattering benchmark on a sphere impinged by a plane wave
in an unbounded domain is investigated. The unbounded domain is handled by
the infinite element method. In this example the geometry (a spherical shell
between the scatterer and an artificial boundary) is approximated by 6 patches
using Lagrange polynomial interpolation at the Gauss-Lobatto-Legendre nodes.
The results are compared to spectral properties of isogeometric analysis (IGA)
where the conditioning of the system is of particular interest in addition to the
geometrical approximation differences. In particular, the exponential behavior of
the condition number with respect to the polynomial order is observed for the
IGA while an algebraic behavior is observed for the SEM.

1. Introduction

Acoustic scattering problems on unbounded domain has been tackled with a vast
set of methods. For the finite element method in this context, several methods
has been used to solve the problem of unboundedness of the domain, including
the method of perfectly matched layer (PML) [1, 2], local differential absorbing
boundary condition operators [3–6], Dirichlet to Neumann operators [7] and
infinite elements [8–10]. The boundary element method has also been investigated
thoroughly [11–14]. Moreover, high frequency approximation methods like the
Kirchhoff approximation method [15, 16] and ray/beam tracing [17–19] has been of
particular interest for the high frequency spectrum as the classical element methods
becomes too computationally expensive in this realm. An attempt to solve this
problem for element methods in acoustics has been suggested in [14, 20, 21] where
the basis functions are enriched by oscillatory functions.

∗Corresponding author.
Email addresses: Jon.Venas@ntnu.no (J.V. Ven̊as), Trond.Kvamsdal@ntnu.no (T. Kvamsdal).
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Away from non-smooth parts of the scatterer, the solution is smooth, and
it would make sense to exploit this fact by using smooth basis functions in the
analysis. As illustrated in [22], using IGA with C p̌−1 continuity instead of the
classical FEM C0 continuity increases the accuracy. The natural question would
then be if even higher continuity continues to improve the results. The method of
fundamental solution [23] is such an attempt where the C∞ basis functions are
collocated at the boundary to satisfy the boundary condition. This method has
spectral convergence for smooth geometries. However, as these basis functions do
not incorporate the reduced continuity at the non-smooth parts of the scatterer,
sub-optimal results would be obtained in these cases. A remedy for this would
be to use the spectral element method where one naturally incorporates the G0

continuity of the scatterer into the basis functions of C0 continuity across the
element boundaries and maintains the C∞ continuity in the interior of each element.
Surprisingly little work has been done using spectral element methods for solving
acoustic scattering problems. Mehdizadeh et al. [24] investigated the 2D spectral
element method using the PML method and Jørgensson et al. [25] used spectral
element methods for 2D room acoustics. The lacking literature on the usage
of spectral element analysis of 3D scattering problems using infinite elements is
therefore a motivating factor of this work.

2. Lagrange basis functions and GLL nodes

The Lagrange polynomials are given by1

li(ξ) =
n∏

j=1
j 6=i

ξ − ξj
ξi − ξj

where tξ = {ξi}ni=1 are the interpolation nodes. Note the important interpolatory
property of the Lagrange basis functions

li(ξj) = δij (1)

where δij is the Kronecker delta

δij =
{

1 i = j

0 i 6= j.

Also note that the derivative of the Lagrange basis functions are given by

l′i(ξ) =
n∑

l=1
l 6=i

1
ξi − ξl

n∏

j=1
j 6=i,l

ξ − ξj
ξi − ξj

.

1Note that we do not use the conventional notation li(x) for the Lagrange basis functions due
to conflict with the index l.
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In particular,

l′i(ξi) =
n∑

l=1
l 6=i

1
ξi − ξl

(2)

and
l′i(ξl) = 1

ξi − ξl

n∏

j=1
j 6=i,l

ξl − ξj
ξi − ξj

l 6= i. (3)

Definition 1. The Gauss-Lobatto-Legendre (GLL2) nodes, {ξi}ni=1, are the roots
of the completed Lobatto polynomial of degree n. That is, they are the solutions to
the following equation

(1− ξ2)P′n−1(ξ) = 0

where Pp̌(ξ) are the Legendre polynomial of degree p̌.

Note that ξ1 = −1 and ξn = 1. Inspired by [26, p. 305-306] we present the
following theorem3.

Theorem 1. Let {ξi}ni=1 be the GLL nodes. Then the Lagrange polynomials
defined by these nodes have the property

l′i(ξi) =





−n(n−1)
4 i = 1

n(n−1)
4 i = n

0 otherwise.

Proof. Consider the generating polynomial

Φn(ξ) =
n∏

j=1
(ξ − ξj) = (ξ − ξ1)(ξ − ξ2) · · · (ξ − ξn)

and note that (using the product rule)

Φ′n(ξ) =
n∑

l=1

n∏

j=1
j 6=l

(ξ − ξj) ⇒ Φ′n(ξi) =
n∏

j=1
j 6=i

(ξi − ξj) (4)

and

Φ′′n(ξ) =
n∑

l=1

n∑

m=1

n∏

j=1
j 6=l,m

(ξ − ξj) ⇒ Φ′′n(ξi) = 2
n∑

l=1
l 6=i

n∏

j=1
j 6=i,l

(ξi − ξj).

2These nodes also goes by the name Legendre-Gauss-Lobatto (LGL) nodes.
3The converse theorem was proved in [26, p. 305-306].
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Then, by writing the sum of fractions in Eq. (2) as a single fraction (with a common
denominator) we get

l′i(ξi) =
n∑

j=1
j 6=i

1
ξi − ξj

=

n∑

l=1
l 6=i

n∏

j=1
j 6=i,l

(ξi − ξj)

n∏

j=1
j 6=i

(ξi − ξj)
=

1
2Φ
′′
n(ξi)

Φ′n(ξi)
. (5)

Since {ξi}n−1
i=2 are the roots of P′n−1(ξ) we may write

P′n−1(ξ) = C
n−1∏

j=2
(ξ − ξj) (6)

for some non-zero constant C, and thus
(
ξ2 − 1

)
P′n−1(ξ) = CΦn(ξ). (7)

We know that the Legendre polynomials Pn−1(ξ) solves the Legendre differential
equation

d
dξ

[(
1− ξ2

) d
dξPn−1(ξ)

]
+ n(n− 1)Pn−1(ξ) = 0. (8)

Combining Eq. (7) and Eq. (8) yields

−CΦ′n(ξ) = −2ξP′n−1(ξ) +
(
1− ξ2

)
P′′n−1(ξ) = −n(n− 1)Pn−1(ξ)

and then
CΦ′′n(ξ) = n(n− 1)P′n−1(ξ). (9)

This means that Φ′′n(ξi) = 0 for i = 2, . . . , n − 1, and thus, from Eq. (5) we see
that l′i(ξi) = 0 for i = 2, . . . , n− 1.

Using Eqs. (4), (6) and (9) we have

CΦ′′n(ξ1) = n(n− 1)P′n−1(ξ1) = n(n− 1)C
n−1∏

j=2
(ξ1 − ξj)

= C
n(n− 1)
ξ1 − ξn

Φ′n(ξ1) = −Cn(n− 1)
2 Φ′n(ξ1)

and correspondingly
CΦ′′n(ξn) = C

n(n− 1)
2 Φ′n(ξn)

which enables us to write l′1(ξ1) and l′n(ξn) as (using Eq. (5))

l′1(ξ1) = −n(n− 1)
4 and l′n(ξn) = n(n− 1)

4 ,

respectively.
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Remark 2.1. Using Eq. (4) one can rewrite Eq. (3) as

l′i(ξl) = 1
ξi − ξl

n∏

j=1
j 6=i,l

ξl − ξj
ξi − ξj

= 1
ξl − ξi

Φ′n(ξl)
Φ′n(ξi)

l 6= i.

Remark 2.2. Using Eq. (3) one can evaluate the following special cases in closed
form

l′n(ξ1) = (−1)n
2 and l′1(ξn) = −(−1)n

2 .

3. Geometry approximation

Given a patch parameterized by the mapping

X : [−1, 1]3 → R3, (ξ, η, ζ) 7→X(ξ, η, ζ).

Using least squares, we can approximate this mapping by Lagrange polynomials
(of polynomial degrees p̌ξ = nξ − 1, p̌η = nη − 1 and p̌ζ = nζ − 1 in the three
parametric directions) with the mapping

C(ξ, η, ζ) =
nξ∑

i=1

nη∑

j=1

nζ∑

l=1
ci,j,lli,tξ(ξ)lj,tη(η)ll,tζ(ζ)

where

li,tξ(ξ) =
nξ∏

j=1
j 6=i

ξ − ξj
ξi − ξj

and tξ = {ξi}nξi=1 are the GLL nodes, and correspondingly for the other parametric
directions. For the ease of notation, we use

li,tξ(ξ)→ li(ξ), lj,tη(η)→ lj(η), ll,tζ(ζ)→ ll(ζ)

as the sets of basis functions are given by the index symbol (i, j or l).
Consider approximation of the geometry with least squares where the functional

to be minimized is given by

f(c) = 1
2

∫ 1

−1

∫ 1

−1

∫ 1

−1
‖C(ξ, η, ζ)−X(ξ, η, ζ)‖2 dξ dη dζ

= 1
2

∫ 1

−1

∫ 1

−1

∫ 1

−1
C ·C − 2C ·X +X ·X dξ dη dζ
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where c is a multidimensional array containing the coefficients of C. The least
squares solution demands that the partial derivatives of f with respect to the
coefficients ci,j,l (of the mapping C) to be zero

∇ci,j,lf(c) =
∫ 1

−1

∫ 1

−1

∫ 1

−1
[C(ξ, η, ζ)li(ξ)lj(η)ll(ζ)−

X(ξ, η, ζ)li(ξ)lj(η)ll(ζ)] dξ dη dζ = 0

for all i, j, l. We therefore have a linear system of equations as the following
equation

∫ 1

−1

∫ 1

−1

∫ 1

−1
C(ξ, η, ζ)li(ξ)lj(η)ll(ζ) dξ dη dζ

=
∫ 1

−1

∫ 1

−1

∫ 1

−1
X(ξ, η, ζ)li(ξ)lj(η)ll(ζ) dξ dη dζ

(10)

must hold for all i, j, l. Note that, using Eq. (1), we have

C(ξi, ηj , ζl) = ci,j,l.

Approximating these integrals by the GLL quadrature approximation we find
∫ 1

−1

∫ 1

−1

∫ 1

−1
C(ξ, η, ζ)li(ξ)lj(η)ll(ζ)

≈
∑

α,β,γ

ραρβργC(ξα, ηβ, ζγ)li(ξα)lj(ηβ)ll(ζγ)

=
∑

α,β,γ

ραρβργcα,β,γδiαδjβδlγ

= ρiρjρlci,j,l.

Correspondingly for the right side of Eq. (10) we have
∫ 1

−1

∫ 1

−1

∫ 1

−1
X(ξ, η, ζ)li(ξ)lj(η)ll(ζ) dξ dη dζ ≈ ρiρjρlX(ξi, ηj , ζl).

Thus, we can approximate the least squares solution by using the coefficients

ci,j,l = X(ξi, ηj , ζl)

which is equivalent to interpolation at the GLL nodes.
For smooth geometries this approach has spectral convergence to the exact

geometry as illustrated in Figure 1.
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(a) pξ = pη = pζ = 4 (b) pξ = pη = pζ = 9 (c) pξ = pη = pζ = 14

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

1

|‖F ‖−R|
R

∣∣∣
Γ

Figure 1: Geometric error in the approximation of the sphere geometry using 6
patches. Machine epsilon precision is reached for polynomial degrees above 19.
The approximation is based on the exact parametrization of a sphere using 6
NURBS patches.

Γ Γa

Ωa
Ω+

a

pinc(x)

p(x)

Figure 2: An artificial boundary Γa is introduced such that the exterior domain
Ω+ is decomposed by the two domains Ωa (which is bounded by Γ and Γa) and
Ω+

a . Thus, Ω+ = Ωa ∪Ω+
a .
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4. Exterior Helmholtz problems

The exterior Helmholtz problem is given by

∇2p+ k2p = 0 in Ω+, (11)
∂np = g on Γ, (12)

∂p

∂r
− ikp = o

(
r−1

)
with r = |x| (13)

where the Sommerfeld condition [27] in Eq. (13) restricts the field in the limit
r → ∞ uniformly in x̂ = x

r , such that no waves originate from infinity. The
Neumann condition given by the function g will in the case of rigid scattering
be given by the incident wave pinc. Zero displacement of the fluid normal on the
scatterer (rigid scattering) implies that ∂n(p + pinc) = 0 where ∂n denotes the
partial derivative in the normal direction on the surface Γ (pointing “out” from
Ω+), which implies that

g = −∂pinc
∂n

. (14)

Plane incident waves (with amplitude Pinc) traveling in the direction ds can be
written as

pinc(x) = Pinceikds·x. (15)
The normal derivative on the surface of any smooth geometry may then be
computed by

∂pinc
∂n

= n · ∇pinc = ikds · npinc. (16)

The weak formulation for the Helmholtz problem can be shown to be (for
details regarding the involved spaces, cf. [22] and references therein)

Find p ∈ H1+
w (Ω+) such that B(q, p) = L(q), ∀q ∈ H1

w∗(Ω+), (17)

where the bilinear form is given by

B(q, p) =
∫

Ω+

[
∇q · ∇p− k2qp

]
dΩ (18)

and the corresponding linear form is given by

L(q) =
∫

Γ
qg dΓ.

The numerical solution (trial function) is expressed by the same Lagrange basis
functions used to approximate the geometry

p̂(ξ, η, ζ) =
nξ∑

i=1

nη∑

j=1

nζ∑

l=1
p̂i,j,lli(ξ)lj(η)ll(ζ).
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The parametric solution is related to the solution in the physical space by

p̂(ξ, η, ζ) = (p ◦C)(ξ, η, ζ).

The derivatives are then given by the chain rule

∂p̂

∂ξ
= ∂p

∂x1

∂F1
∂ξ

+ ∂p

∂x2

∂F2
∂ξ

+ ∂p

∂x3

∂F3
∂ξ

= ∇p · ∂C
∂ξ

and correspondingly for the other parametric derivatives such that

∇̂p̂ = J>∇p

where

J =
[
∂C
∂ξ

∂C
∂η

∂C
∂ζ

]
=




∂C1
∂ξ

∂C1
∂η

∂C1
∂ζ

∂C2
∂ξ

∂C2
∂η

∂C2
∂ζ

∂C3
∂ξ

∂C3
∂η

∂C3
∂ζ


.

We therefore have
∇p = J−>∇̂p̂.

Insertion of the trial function into the bilinear form (restricted to Ωa) in Eq. (18)
alongside test functions of the form

q̂(ξ, η, ζ) = l̃i(ξ)lj̃(η)ll̃(ζ), 1 6 ĩ 6 nξ, 1 6 j̃ 6 nη, 1 6 l̃ 6 nζ

yields

B(q, p) =
∫

Ωa

(
∇q · ∇p− k2qp

)
dΩ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
(∇̂q̂)>J−1J−>∇̂p̂− k2q̂p̂

)
J dξ dη dζ

=
∑

i,j,l

∫ 1

−1

∫ 1

−1

∫ 1

−1
p̂i,j,l

(
[l′
ĩ
(ξ)lj̃(η)ll̃(ζ), l̃i(ξ)l′j̃(η)ll̃(ζ), l̃i(ξ)lj̃(η)l′

l̃
(ζ)]

G̃[l′i(ξ)lj(η)ll(ζ), li(ξ)l′j(η)ll(ζ), li(ξ)lj(η)l′l(ζ)]>

−k2 l̃i(ξ)lj̃(η)ll̃(ζ)li(ξ)lj(η)ll(ζ)J
)

dξ dη dζ

≈
∑

i,j,l

p̂i,j,l
∑

αβγ

(
[l′
ĩ
(ξα)lj̃(ηβ)ll̃(ζγ), l̃i(ξα)l′

j̃
(ηβ)ll̃(ζγ), l̃i(ξα)lj̃(ηβ)l′

l̃
(ζγ)]

G̃αβγ [l′i(ξα)lj(ηβ)ll(ζγ), li(ξα)l′j(ηβ)ll(ζγ), li(ξα)lj(ηβ)l′l(ζγ)]>

−k2 l̃i(ξα)lj̃(ηβ)ll̃(ζγ)li(ξα)lj(ηβ)ll(ζγ)Jαβγ
)

=
∑

i,j,l

p̂i,j,l
∑

αβγ

(
[Dtξ

ĩα
δj̃βδl̃γ , δĩαD

tη
j̃β
δl̃γ , δĩαδj̃βD

tζ
l̃γ

]G̃αβγ [Dtξiαδjβδlγ , δiαD
tη
jβδlγ , δiαδjβD

tζ
lγ ]>

−k2δĩαδj̃βδl̃γδiαδjβδlγJĩj̃ l̃

)

= −k2ρĩρj̃ρl̃p̂ĩ,j̃,l̃Jĩj̃ l̃ +
∑

i,j,l

p̂i,j,l
∑

αβγ

wijlαβγĩj̃l̃
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where
Jαβγ = J(ξα, ηβ, ζγ), J = detJ , G̃αβγ = ραρβργG̃(ξα, ηβ, ζγ),
G̃ = JG, G = J−1J−> D

tξ
iα = l′i(ξα), D

tη
jβ = l′j(ηβ), D

tζ
lγ = l′l(ζγ)

wijlαβγĩj̃l̃ = [Dtξ
ĩα
δj̃βδl̃γ , δĩαD

tη
j̃β
δl̃γ , δĩαδj̃βD

tζ
l̃γ

]G̃αβγ [Dtξiαδjβδlγ , δiαD
tη
jβδlγ , δiαδjβD

tζ
lγ ]>.

For a set of indices i, j, l, ĩ, j̃, l̃, we have
∑

αβγ

wijlαβγĩj̃l̃ =
∑

αβγ

[Dtξ
ĩα
δj̃βδl̃γ , δĩαD

tη
j̃β
δl̃γ , δĩαδj̃βD

tζ
l̃γ

]G̃αβγ [Dtξiαδjβδlγ , δiαD
tη
jβδlγ , δiαδjβD

tζ
lγ ]>

=
∑

αβγ

([
(G̃11)αβγDtξiαδjβδlγ + (G̃12)αβγδiαDtηjβδlγ + (G̃13)αβγδiαδjβDtζlγ

]
D
tξ
ĩα
δj̃βδl̃γ

+
[
(G̃21)αβγDtξiαδjβδlγ + (G̃22)αβγδiαDtηjβδlγ + (G̃23)αβγδiαδjβDtζlγ

]
δĩαD

tη
j̃β
δl̃γ

+
[
(G̃31)αβγDtξiαδjβδlγ + (G̃32)αβγδiαDtηjβδlγ + (G̃33)αβγδiαδjβDtζlγ

]
δĩαδj̃βD

tζ
l̃γ

)

= δl̃l(G̃12)ij̃lD
tξ
ĩi
D
tη
jj̃

+ δj̃j(G̃13)ijl̃D
tξ
ĩi
D
tζ
ll̃

+ δj̃jδl̃l

nξ∑

α=1
(G̃11)αjlDtξiαD

tξ
ĩα

+ δl̃l(G̃12)̃ijlD
tξ
ĩi
D
tη
j̃j

+ δĩi(G̃23)ijl̃D
tη
j̃j
D
tζ
ll̃

+ δĩiδl̃l

nη∑

β=1
(G̃22)iβlDtηjβD

tη
j̃β

+ δj̃j(G̃13)̃ijlD
tξ
ĩi
D
tζ
l̃l

+ δĩi(G̃23)ij̃lD
tη
jj̃
D
tζ
l̃l

+ δĩiδj̃j

nζ∑

γ=1
(G̃33)ijγDtζlγD

tζ
l̃γ

where we have exploited the symmetry of G̃. Although the 1D stiffness matrix for
an element is fully dense, this is not the case for higher dimensional SEM stiffness
matrices. This is again due to Eq. (1). An upper bound on the number of non-zero
elements in the stiffness matrix can be shown to be nξn2

ηn
2
ζ + n2

ξnηn
2
ζ + nξn

2
ηnζ.

Defining n = max{nξ, nη, nζ}, then an lower bound on the sparsity of the stiffness
matrix is 1 − d/n (with d being the dimension of the problem), meaning the
sparsity is increased as a function of the number of degrees of freedom. This is
in stark contrast to an IGA element matrix which will in general be fully dense
(cf. [28]) when pure p̌-refinement is used.

For the linear form, we simply get (assuming the boundary Γ is parameterized
by ξ and η at ζ = 0)

L(q) =
∫

Γ
qg dΓ = ρĩρj̃ ĝĩj̃Hĩj̃δ0l̃.

where

ĝα,β = (g ◦C)(ξα, ηβ,−1), Hαβ = H(ξα, ηβ), H(ξ, η) =
∥∥∥∥
∂C|Γ
∂ξ

× ∂C|Γ
∂η

∥∥∥∥.

In order to evaluate the derivatives of the mapping C at the GLL nodes we note
that

∂C

∂ξ

∣∣∣∣
(ξα,ηβ ,ζγ)

=
∑

i,j,l

ci,j,ll
′
i(ξα)lj(ηβ)ll(ζγ) =

nξ∑

i=1
ci,β,γl

′
i(ξα).



Exterior Helmholtz problems 311

If we then store the derivatives l′i(ξα) in the matrix Dtξ ∈ Rnξ×nξ all evaluations
may be done efficiently by the matrix-matrix products Dtξc where the multidimen-
sional array c ∈ R3×nξ×nη×nζ is the collection of all coefficients of C. Note that c
must be rearranged in order to make sense of the product with Dtξ . Corresponding
efficient evaluations of the other derivatives at the GLL points can be performed
in a similar procedure.

The contributions from the infinite elements can be correspondingly efficiently
evaluated using the following formulas

A
(1)
ijĩj̃

=
∫ 1

−1

∫ 1

−1
li(ξ)lj(η)l̃i(ξ)lj̃(η) sin[ϑ(ξ, η)]J (3)(ξ, η) dξ dη

≈ δĩiδjj̃ρĩρj̃ sinϑĩj̃J
(3)
ĩj̃

A
(2)
ijĩj̃

=
∫ 1

−1

∫ 1

−1

[
J

(5)
11 l
′
il
′
ĩ
ljlj̃ + J

(5)
12

(
l′i l̃iljl

′
j̃

+ lil
′
ĩ
l′jlj̃
)

+ J
(5)
13 li l̃il

′
jl
′
j̃

]
sinϑ dξ dη

≈ δjj̃
nξ∑

α=1
J

(5)
11,αjD

tξ
iαD

tξ
ĩα

+ J
(5)
12,̃ijD

tξ
ĩi
D
tη
j̃j

+ J
(5)
12,ij̃D

tξ
ĩi
D
tη
jj̃

+ δĩi

nη∑

β=1
J

(5)
13,iβD

tη
jβD

tη
j̃β

A
(3)
ijĩj̃

=
∫ 1

−1

∫ 1

−1
li(ξ)lj(η)l̃i(ξ)lj̃(η) sin[ϑ(ξ, η)]J3(ξ, η) dξ dη

≈ δĩiδjj̃ρĩρj̃ cos2 ϑĩj̃ sinϑĩj̃J
(3)
ĩj̃

A
(4)
ijĩj̃

=
∫ 1

−1

∫ 1

−1

[
J

(5)
21 l
′
il
′
ĩ
ljlj̃ + J

(5)
22

(
l′i l̃iljl

′
j̃

+ lil
′
ĩ
l′jlj̃
)

+ J
(5)
23 li l̃il

′
jl
′
j̃

] 1
sinϑ dξ dη

≈ δjj̃
nξ∑

α=1
J

(5)
21,αjD

tξ
iαD

tξ
ĩα

+ J
(5)
22,̃ijD

tξ
ĩi
D
tη
j̃j

+ J
(5)
22,ij̃D

tξ
ĩi
D
tη
jj̃

+ δĩi

nη∑

β=1
J

(5)
23,iβD

tη
jβD

tη
j̃β

A
(5)
ijĩj̃

=
∫ 1

−1

∫ 1

−1

[
J

(5)
21 l
′
il
′
ĩ
ljlj̃ + J

(5)
22

(
l′i l̃iljl

′
j̃

+ lil
′
ĩ
l′jlj̃
)

+ J
(5)
23 li l̃il

′
jl
′
j̃

]cos2 θ

sinϑ dξ dη

≈ δjj̃
nξ∑

α=1
J

(5)
31,αjD

tξ
iαD

tξ
ĩα

+ J
(5)
32,̃ijD

tξ
ĩi
D
tη
j̃j

+ J
(5)
32,ij̃D

tξ
ĩi
D
tη
jj̃

+ δĩi

nη∑

β=1
J

(5)
33,iβD

tη
jβD

tη
j̃β

where

J
(5)
1j,αβ = ραρβ sin θαβJ (5)

1j (ξα, ηβ), J
(5)
2j,αβ = ραρβ

sin θαβ
J

(5)
2j (ξα, ηβ),

J
(5)
3j,αβ = ραρβ

cos2 θαβ
sin θαβ

J
(5)
2j (ξα, ηβ), J (4) =

[
J

(4)
11 J

(4)
12

J
(4)
21 J

(4)
22

]
:=
[
J (3)

]−>

J (5) =
[
J

(5)
11 J

(5)
12 J

(5)
13

J
(5)
21 J

(5)
22 J

(5)
23

]
:= J (3)

[
J

(4)
11 J

(4)
11 J

(4)
12 J

(4)
11 J

(4)
12 J

(4)
12

J
(4)
21 J

(4)
21 J

(4)
22 J

(4)
21 J

(4)
22 J

(4)
22

]

where θαβ is the polar angle (evaluated using [22, Equation (A.4)]) at the GLL
point X(ξα, ηβ, 1).
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5. Numerical examples

5.1. Poisson 1D problem

As a motivational example, consider first the simplest 1D Poisson problem given
by

∇2u = −f, in Ω = (−1, 1)
u(−1) = u(1) = 0

with f(x) =
(
x2 + 4x+ 1

)
ex and analytic solution given by u(x) =

(
1− x2)ex.

We solve this problem using the spectral element method with one element, and
compare with IGA using one and five elements (where the former is equivalent to
FEM using the Bernstein basis and the latter is refined with ǩ-refinement). The
relative error in the energy norm (H1-seminorm for Poisson) is plotted in Figure 3.
Note first the expected spectral convergence. Using IGA with nel = 1 one should
obtain identical results in the absence of round off errors and errors in the integral
approximations as the Bernstein and Lagrange basis functions both span Pp̌ in this
case. The integrals are computed by n = p̌+ 1 quadrature points such that both
SEM and IGA obtains exact integration of the bilinear form. This is because the
integrand in the bilinear form has polynomial degree 2p̌− 2 = 2n− 4 and Lobatto
(for SEM) and Legendre (for IGA) quadrature rules integrates exactly polynomials
up to degree 2n− 3 and 2n− 1, respectively. The integral for the right-hand side,
however, is not evaluated exactly (as the integrand is not a polynomial) and gives
slightly different results for the two methods (in favor of IGA). Using more elements
in IGA reduces the continuity of the basis functions to C p̌−1 which reduces the
quality of the solution, suggesting using maximum continuity wherever the solution
is smooth (in this case in the whole domain). Finally, we observe instabilities
for the IGA method for high polynomial orders which can be explained by the
exponential increase of the condition number of the stiffness matrix illustrated
in Figure 4 as opposed to the algebraic increase of the condition number for the
SEM. Similar results are presented in [28]. In fact, they present the behavior of
the condition number for the stiffness matrix as

SEM: Cond(K) ∼ h−2p̌3 (19)

C0-IGA: Cond(K) ∼



h−2p̌2 if h <

√
p̌2+d/24−dp̌

p̌−d/24dp̌ otherwise
(20)

C p̌−1-IGA: Cond(K) ∼





h−2p̌ if h < e−dp̌/2

p̌edp̌ if e−dp̌/2 < h < 1/p̌
( e

4
)d/h

p̌−d/2h−d/2−14dp̌ otherwise.
(21)

In other words, degree elevation are more restricted using IGA compared to SEM.
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Figure 3: Poisson 1D problem: Illustration of the spectral convergence for SEM
and IGA.
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Figure 4: Poisson 1D problem: An exponential behavior of the condition
number is obtained for IGA, but only algebraic order is obtained for SEM when
considering p̌-refinement and ǩ-refinement, respectively. The behavior estimates
for the two methods (found in Eqs. (19) and (21), respectively) has been added
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Figure 5: Rigid scattering on a sphere: Plots of the near field of the scattered
pressure resulting from a plane wave incident on a sphere at f = 10 kHz. The
plot to the left is the full solution, whereas the plot to the right is the solution
resulting from the three first terms in the series expansion of the exact solution.
The visualization was done in Paraview.

5.2. Rigid scattering on a sphere

Consider the S1 benchmark problem in [29] where a unit sphere (R0 = 1 m) is
impinged by the plane wave in Eq. (15). In the special case of ds = ez the analytic
solution to the problem is given by4 (expressed using spherical coordinates)

p(r, θ) = −Pinc

∞∑

n=0
in(2n+ 1) j′n(kR0)

h′n(kR0)Pn(cos θ)hn(kr) (22)

which can be generalized to arbitrary vectors ds using a orthogonal transformation.
In the S1 benchmark problem the incident plane wave travels in the direction

ds = −




cosβs cosαs
cosβs sinαs

sin βs


, where αs = 240◦, βs = 30◦. (23)

We shall use the same number of terms in the analytic series in Eq. (22) as the
number of basis functions in the radial direction in the infinite elements to eliminate
pollution from the infinite elements (cf. [30]). In the experiments we choose the
Bubnov–Galerkin unconjugated (BGU) formulation and we only use N = 3 radial
basis functions in the infinite elements to lower the conditioning of the system.
The differences in the solutions are illustrated in Figure 5, where it is apparent
that using only three terms in the series of the analytic solution is not even close
to represent the full solution. But for the sake of convergence analysis it makes
sense to consider this case to remove redundant noise from the infinite elements.

4Where jn(x) is the nth spherical Bessel function of the first kind and hn(x) is the nth spherical
Hankel function of the first kind.



Numerical examples 315

(a) IGA mesh (b) SEM mesh

Figure 6: Rigid scattering on a sphere: The exact IGA meshing of the spherical
shell domain is visually identical to the SEM approximation of the same geometry
using only p̌ = 4.

We use the following definition of the energy norm (as in [22])

|||p|||Ωa =
√∫

Ωa
|∇p|2 + k2|p|2 dΩ (24)

and compute the integral by high order Gaussian quadrature (as the error should
be more accurately computed than using the GLL nodes)

∫

Ωa
|∇p|2 + k2|p|2 dΩ =

nel∑

e=1

∫

Ωea

|∇p|2 + k2|p|2 dΩ

=
nel∑

e=1

∫ 1

−1

∫ 1

−1

∫ 1

−1

(
|∇p|2 + k2|p|2

)
J dξ dη dζ.

The meshes for both IGA and SEM are made based on 6 patches as illustrated
in Figure 6. In Figure 7 we can again observe the expected spectral convergence
for both IGA and SEM. Two simulations have been added for low and high
frequencies5, f = 1 kHz and f = 10 kHz, respectively. For the high frequency case,
it is apparent that the geometry approximation is of less importance compared to
the low frequency case as the error from resolving the wavelength is dominating the
error in the geometry approximation. We can again here observe the instabilities
for IGA for high polynomial orders. This is again due to the large condition
numbers in the stiffness and mass matrices for the IGA as illustrated in Figure 8.

5Given by f = kcf/(2π) with cf = 1500 m/s.
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Figure 7: Rigid scattering on a sphere: Illustration of the spectral convergence
for SEM and IGA.
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Figure 9: Rigid scattering on a sphere: The relative energy error is plotted
against the total time spent on building the mass matrix, the stiffness matrix and
the right-hand side vector.

The timings for building and solving the system for SEM and IGA are reported
in Figure 9 and Figure 10, respectively. These figures are added to show the total
timings in Figure 11. Here the key takeaway is the difference in convergence rate
as a function of the time spent for both building and solving the system. The
patch matrix construction is faster for SEM as the patch matrix sparsity goes as
O(n−1), which is in contrast to the corresponding IGA matrices which are fully
dense. This is also the reason for better timings for solving the system using SEM
as the global matrices are much sparser compared to the global matrices for IGA.

It should be mentioned that many improvements are here possible for both SEM
and IGA. An iterative method (GMRES, BiCGstab, etc.) would be preferable for
the SEM to reduce memory requirement and increase the computational efficiency.
The tensor product structure in the IGA method could be exploited better instead
of looping through every quadrature points individually [31].

6. Conclusions

The usage of Lagrange polynomials yields a convenient method of obtaining a
geometry approximation as interpolation and least squares (approximated with
Lobatto quadrature) are equivalent. The geometry approximation is then obtained
simply by evaluating the geometry parametrization in the GLL nodes in the
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Figure 10: Rigid scattering on a sphere: The relative energy error is plotted
against the computational time required to solve the system using a direct solver.
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Figure 11: Rigid scattering on a sphere: The relative energy error is plotted
against the total computational time (sum of the figures in Figure 9 and Figure 10).
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parametric space. Thus, using this procedure, any tensor IGA mesh with exact
geometry can easily be transformed to a SEM mesh with spectral convergence to
the same exact geometry.

The spectral properties of IGA and SEM are similar, but IGA has instability
with respect to high polynomial orders due to conditioning of the system. More-
over, due to the Kronecker delta property of the Lagrange basis functions, the
computational times for both building and solving the system is favorable for SEM
compared to IGA in the p̌-refinement case.

The usage of Lagrange polynomials as basis functions in the SEM increases
the sparsity of the global matrices compared to any other set of basis functions for
finite element analysis when pure p̌-refinement is used. Moreover, the choice of
the GLL nodes as the nodes both for the Lagrange polynomials and integrational
approximation increases the stability and computational efficiency, respectively.

Whenever there is a need to resolve the wavelength in acoustic scattering
problems the geometry approximation becomes of less importance, as the error
from the mesh resolution of the waves dominated the geometrical errors.

The examples illustrated in this work have C∞-continuity which are ideal
for SEM, as the basis functions are maximally smooth within each patch. Such
problems would be optimally solved by spectral methods in the sense of convergence
order. In the context of engineering, however, not only is an error of 0.1% (where
IGA is competitive anyways) satisfactory results, we do not necessarily have
smooth solutions. One must then turn to adaptive techniques, which is more
suited for FEM than SEM.

A. A note on the infinite element method

The following problem occurs only in the very special scenario when quadrature
points are placed at the poles (for the coordinate system used by the infinite
elements) of the artificial boundary (refer to [22] for details and notations).

The integrand of the angular integrals [22, Eq. (A.18)] must be evaluated by
limiting expressions at the poles (ϑ→ 0+ and ϑ→ π−). For the integrals

A
(1)
IJ =

∫ 2π

ϕ=0

∫ π

ϑ=0
RIRJ sinϑ|J3|dη dξ

and
A

(3)
IJ =

∫ 2π

ϕ=0

∫ π

ϑ=0
RIRJ cos2 ϑ sinϑ|J3| dη dξ

the problematic factors at the poles can be evaluated to be (using Maple)

lim
ϑ→0+

sinϑ|J3| =
J1,1J2,2 − J1,2J2,1

r2
a − Υ 2 = − lim

ϑ→π−
sinϑ|J3|.
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where Ji,j are the components of the matrix

J =




∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂z
∂ξ

∂z
∂η


.

Note that

lim
ϑ→0+

J3,1 = 0, lim
ϑ→π−

J3,1 = 0, lim
ϑ→0+

J3,2 = 0, lim
ϑ→π−

J3,2 = 0.

The remaining angular integrals must be resolved by considering the limit of the
sum of the integrals. Consider

A
(2)
IJ l

(1)
ñ+m̃+j +A

(4)
IJ l

(2)
ñ+m̃+j−1 − %2

1A
(5)
IJ l

(2)
ñ+m̃+j+1

=
∫ ∞

1

e2i%2ρ

ρñ+m̃+j

∫ 2π

ϕ=0

∫ π

ϑ=0

(
∂RI
∂ϑ

∂RJ
∂ϑ

+ρ2 − %2
1 cos2 ϑ

ρ2 − %2
1

∂RI
∂ϕ

∂RJ
∂ϕ

1
sin2 ϑ

)
sinϑ|J3| dη dξ dρ

where j = 0 for Bubnov Galerkin formulations and j = 2 for Petrov Galerkin
formulations. The limit values at the poles for the integrand of this integral is
given by (using Maple)

lim
ϑ→0+

(
∂RI
∂ϑ

∂RJ
∂ϑ

+ ρ2 − %2
1 cos2 ϑ

ρ2 − %2
1

∂RI
∂ϕ

∂RJ
∂ϕ

1
sin2 ϑ

)
sinϑ|J3|

=

(
J2

1,1 + J2
2,1
)
∂RJ
∂η

∂RI
∂η − (J1,1J1,2 + J2,1J2,2)

(
∂RJ
∂η

∂RI
∂ξ + ∂RJ

∂ξ
∂RI
∂η

)
+
(
J2

1,2 + J2
2,2
)
∂RJ
∂ξ

∂RI
∂ξ

J1,1J2,2 − J1,2J2,1

= − lim
ϑ→π−

(
∂RI
∂ϑ

∂RJ
∂ϑ

+ ρ2 − %2
1 cos2 ϑ

ρ2 − %2
1

∂RI
∂ϕ

∂RJ
∂ϕ

1
sin2 ϑ

)
sinϑ|J3|

Computationally, if a quadrature point is placed at one of the poles, this limiting
value should be added to the computation of the integral A(2)

IJ , while A(4)
IJ and A(5)

IJ

gets no contribution from this quadrature point.
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Appendices

A. Derivation of bilinear form for the infinite elements

In this appendix, a derivation of the bilinear form for the infinite elements for
non-separable geometries (IENSG) after Shirron and Dey [1] is presented (as
these formulas are left out in [1]). Continuing the notation from [2, Appendix
A] the bilinear form (in the domain outside the artificial boundary) can in the
Petrov–Galerkin formulations be simplified to (in the unconjugated case)

Bpgu(RIψn, RJφm) = lim
γ→∞

∫

Ωγa

[
∇(RIψn) · ∇(RJφm)− k2RIψnRJφm

]
dΩ

=
∫

Ω+
a

[
∇(RIψn) · ∇(RJφm)− k2RIψnRJφm

]
dΩ.

(A.1)

As the artificial boundary is no longer given at a constant radius ra in the prolate
spheroidal coordinate system, it must be given as a function of the angular
parameters, that is, ra = ra(ϑ, ϕ). This function is the radius in the prolate
spheroidal coordinate system of the intersecting point of the boundary Γ and the
prolate radial curve at the angles ϑ and φ. The boundary Γ is parametrized by
X = X(ξ, η) and the prolate spheroidal radius has the expression

r(x, y, z) = 1
2(c1 + c2)

where

c1 =
√
T − 2zΥ , c2 =

√
T + 2zΥ , and T = x2 + y2 + z2 + Υ 2.

Then,
ra(ϑ, ϕ) = r(X[ξ(ϑ, ϕ), η(ϑ, ϕ)]).

By noting that

∂r

∂x
= x

2

( 1
c1

+ 1
c2

)
,

∂r

∂y
= y

2

( 1
c1

+ 1
c2

)
, and ∂r

∂z
= 1

2

(
z − Υ
c1

+ z + Υ

c2

)
,
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we can compute the partial derivatives of ra w.r.t. ϑ and ϕ by

[
∂ra
∂ϑ

∂ra
∂ϕ

]
=
[
∂r
∂x

∂r
∂y

∂r
∂z

]



∂x
∂ϑ

∂x
∂ϕ

∂y
∂ϑ

∂y
∂ϕ

∂z
∂ϑ

∂z
∂ϕ




where 


∂x
∂ϑ

∂x
∂ϕ

∂y
∂ϑ

∂y
∂ϕ

∂z
∂ϑ

∂z
∂ϕ


 =




∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂z
∂ξ

∂z
∂η



[
∂ξ
∂ϑ

∂ξ
∂ϕ

∂η
∂ϑ

∂η
∂ϕ

]
.

and
[
∂ξ
∂ϑ

∂ξ
∂ϕ

∂η
∂ϑ

∂η
∂ϕ

]
= J−1

3 , J3 =
[
∂ϑ
∂ξ

∂ϑ
∂η

∂ϕ
∂ξ

∂ϕ
∂η

]
=
[
∂ϑ
∂x

∂ϑ
∂y

∂ϑ
∂z

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

]


∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂z
∂ξ

∂z
∂η


.

The “radial shape” functions are given by

φm(r, ϑ, ϕ) = eik(r−ra(ϑ,ϕ))Qm

(
ra(ϑ, ϕ)

r

)
, m = 1, . . . , N

ψn(r, ϑ, ϕ) = eik(r−ra(ϑ,ϕ))Q̃n

(
ra(ϑ, ϕ)

r

)
, n = 1, . . . , N

such that the partial derivative can be computed by
∂φm
∂r

=
[
ikQm

(
ra(ϑ, ϕ)

r

)
− ra(ϑ, ϕ)

r2 Q′m

(
ra(ϑ, ϕ)

r

)]
eik(r−ra(ϑ,ϕ))

∂φm
∂ϑ

=
[
−ikQm

(
ra(ϑ, ϕ)

r

)
+ 1
r
Q′m

(
ra(ϑ, ϕ)

r

)]
∂ra(ϑ, ϕ)

∂ϑ
eik(r−ra(ϑ,ϕ))

∂φm
∂ϕ

=
[
−ikQm

(
ra(ϑ, ϕ)

r

)
+ 1
r
Q′m

(
ra(ϑ, ϕ)

r

)]
∂ra(ϑ, ϕ)

∂ϕ
eik(r−ra(ϑ,ϕ)).

and corresponding expressions for ψn. The expressions for the test functions in
the conjugated cases are

ψ̄n(r, ϑ, ϕ) = e−ik(r−ra(ϑ,ϕ))Q̃n

(
ra(ϑ, ϕ)

r

)
, n = 1, . . . , N

such that the partial derivative can be computed by

∂ψ̄m
∂r

=
[
−ikQm

(
ra(ϑ, ϕ)

r

)
− ra(ϑ, ϕ)

r2 Q′m

(
ra(ϑ, ϕ)

r

)]
e−ik(r−ra(ϑ,ϕ))

∂ψ̄m
∂ϑ

=
[
ikQm

(
ra(ϑ, ϕ)

r

)
+ 1
r
Q′m

(
ra(ϑ, ϕ)

r

)]
∂ra(ϑ, ϕ)

∂ϑ
e−ik(r−ra(ϑ,ϕ))

∂ψ̄m
∂ϕ

=
[
ikQm

(
ra(ϑ, ϕ)

r

)
+ 1
r
Q′m

(
ra(ϑ, ϕ)

r

)]
∂ra(ϑ, ϕ)

∂ϕ
e−ik(r−ra(ϑ,ϕ)).
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The dot product expression in the bilinear form in Eq. (A.1) can now be expressed
as

∇(RIψn) · ∇(RJφm) = 1
h2

r

∂(RIψn)
∂r

∂(RJφm)
∂r

+ 1
h2
θ

∂(RIψn)
∂ϑ

∂(RJφm)
∂ϑ

+ 1
h2
ϕ

∂(RIψn)
∂ϕ

∂(RJφm)
∂ϕ

= 1
h2

r

∂ψn
∂r

∂φm
∂r

RIRJ + 1
h2
θ

(
∂RI
∂ϑ

ψn +RI
∂ψn
∂ϑ

)(
∂RJ
∂ϑ

φm +RJ
∂φm
∂ϑ

)

+ 1
h2
ϕ

(
∂RI
∂ϕ

ψn +RI
∂ψn
∂ϕ

)(
∂RJ
∂ϕ

φm +RJ
∂φm
∂ϕ

)

which multiplied with the Jacobian J1 yields

∇(RIψn) · ∇(RJφm)J1 =
[(
r2 − Υ 2

)∂ψn
∂r

∂φm
∂r

RIRJ

+
(
∂RI
∂ϑ

ψn +RI
∂ψn
∂ϑ

)(
∂RJ
∂ϑ

φm +RJ
∂φm
∂ϑ

)

+ r2 − Υ 2 cos2 ϑ

(r2 − Υ 2) sin2 ϑ

(
∂RI
∂ϕ

ψn +RI
∂ψn
∂ϕ

)(
∂RJ
∂ϕ

φm +RJ
∂φm
∂ϕ

)]
sinϑ.

Combining all of this into Eq. (A.1) yields

B(RIψn, RJφm) =
∫ 2π

0

∫ π

0
K(ϑ, ϕ) sinϑ dϑ dϕ (A.2)

where

K(ϑ, ϕ) =
∫ ∞

ra(ϑ,ϕ)

{(
r2 − Υ 2

)∂ψn
∂r

∂φm
∂r

RIRJ +
(
∂RI
∂ϑ

ψn +RI
∂ψn
∂ϑ

)(
∂RJ
∂ϑ

φm +RJ
∂φm
∂ϑ

)

+ r2 − Υ 2 cos2 ϑ

(r2 − Υ 2) sin2 ϑ

(
∂RI
∂ϕ

ψn +RI
∂ψn
∂ϕ

)(
∂RJ
∂ϕ

φm +RJ
∂φm
∂ϕ

)

− k2(r2 − Υ 2 cos2 ϑ)ψnφmRIRJ
}

dr

=
∫ ∞

ra(ϑ,ϕ)

{
RIRJ

[(
r2 − Υ 2

)∂ψn
∂r

∂φm
∂r
− k2(r2 − Υ 2 cos2 ϑ)ψnφm + ∂ψn

∂ϑ

∂φm
∂ϑ

+ r2 − Υ 2 cos2 ϑ

(r2 − Υ 2) sin2 ϑ

∂ψn
∂ϕ

∂φm
∂ϕ

]

+∂RI
∂ϑ

∂RJ
∂ϑ

ψnφm + ∂RI
∂ϑ

RJψn
∂φm
∂ϑ

+RI
∂RJ
∂ϑ

∂ψn
∂ϑ

φm

+ r2 − Υ 2 cos2 ϑ

(r2 − Υ 2) sin2 ϑ

(
∂RI
∂ϕ

∂RJ
∂ϕ

ψnφm + ∂RI
∂ϕ

RJψn
∂φm
∂ϕ

+RI
∂RJ
∂ϕ

∂ψn
∂ϕ

φm

)}
dr.

Insertion of the expressions for the “radial shape functions” φ and ψ yields some
cancellation that removes some problematic terms for the Bubnov formulation.
We here show the expressions for the PGU formulation. The procedure for the
other three formulation is similar. Inserting the expressions for φ and ψ with
their corresponding partial derivatives we obtain the following expression using
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the substitution ρ = r
ra

and the notation %1 = Υ/ra (the eccentricity of the infinite-
element spheroid), %2 = kra and %3 = kΥ where we take the liberty of omitting
the angular dependence notation of the function ra

K(ϑ, ϕ) = rae−2ikra
∫ ∞

1

{
RIRJ

[(
ρ2 − %2

1
)[

i%2Q̃n

(1
ρ

)
− 1
ρ2 Q̃

′
n

(1
ρ

)][
i%2Qm

(1
ρ

)
− 1
ρ2Q

′
m

(1
ρ

)]

−(%2
2ρ

2 − %2
3 cos2 ϑ)Q̃n

(1
ρ

)
Qm

(1
ρ

)

+
[
−i%2Q̃n

(1
ρ

)
+ 1
ρ
Q̃′n

(1
ρ

)][
−i%2Qm

(1
ρ

)
+ 1
ρ
Q′m

(1
ρ

)]

· 1
r2

a

[(
∂ra
∂ϑ

)2
+ ρ2 − %2

1 cos2 ϑ

(ρ2 − %2
1) sin2 ϑ

(
∂ra
∂ϕ

)2]]

+
[
∂RI
∂ϑ

∂RJ
∂ϑ

+ ρ2 − %2
1 cos2 ϑ

(ρ2 − %2
1) sin2 ϑ

∂RI
∂ϕ

∂RJ
∂ϕ

]
Q̃n

(1
ρ

)
Qm

(1
ρ

)

+
[
∂ra
∂ϑ

∂RI
∂ϑ

RJ + ρ2 − %2
1 cos2 ϑ

(ρ2 − %2
1) sin2 ϑ

∂ra
∂ϕ

∂RI
∂ϕ

RJ

]

· 1
ra

[
−i%2Qm

(1
ρ

)
+ 1
ρ
Q′m

(1
ρ

)]
Q̃n

(1
ρ

)

+
[
∂ra
∂ϑ

RI
∂RJ
∂ϑ

+ ρ2 − %2
1 cos2 ϑ

(ρ2 − %2
1) sin2 ϑ

∂ra
∂ϕ

RI
∂RJ
∂ϕ

]

· 1
ra

[
−i%2Q̃n

(1
ρ

)
+ 1
ρ
Q̃′n

(1
ρ

)]
Qm

(1
ρ

)}
e2ikraρ dρ

Inserting the expressions for Q̃n and Qm (found in [2, pp. 158-159]) yields

K(ϑ, ϕ) = rae−2ikraDmm̃D̃nñ

∫ ∞

1

{
RIRJ

[(
ρ2 − %2

1
)[ i%2
ρñ+2 −

1
ρ2
ñ+ 2
ρñ+1

][ i%2
ρm̃
− 1
ρ2

m̃

ρm̃−1

]

−(%2
2ρ

2 − %2
3 cos2 ϑ) 1

ρñ+2
1
ρm̃

+
[
− i%2
ρñ+2 + 1

ρ

ñ+ 2
ρñ+1

][
− i%2
ρm̃

+ 1
ρ

m̃

ρm̃−1

]

· 1
r2

a

[(
∂ra
∂ϑ

)2
+ ρ2 − %2

1 cos2 ϑ

(ρ2 − %2
1) sin2 ϑ

(
∂ra
∂ϕ

)2]]

+
[
∂RI
∂ϑ

∂RJ
∂ϑ

+ ρ2 − %2
1 cos2 ϑ

(ρ2 − %2
1) sin2 ϑ

∂RI
∂ϕ

∂RJ
∂ϕ

]
1

ρñ+2
1
ρm̃

+
[
∂ra
∂ϑ

∂RI
∂ϑ

RJ + ρ2 − %2
1 cos2 ϑ

(ρ2 − %2
1) sin2 ϑ

∂ra
∂ϕ

∂RI
∂ϕ

RJ

]

· 1
ra

[
− i%2
ρm̃

+ 1
ρ

m̃

ρm̃−1

] 1
ρñ+2

+
[
∂ra
∂ϑ

RI
∂RJ
∂ϑ

+ ρ2 − %2
1 cos2 ϑ

(ρ2 − %2
1) sin2 ϑ

∂ra
∂ϕ

RI
∂RJ
∂ϕ

]

· 1
ra

[
− i%2
ρñ+2 + 1

ρ

ñ+ 2
ρñ+1

] 1
ρm̃

}
e2ikraρ dρ.
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Some algebraic manipulations give the final expression

K(ϑ, ϕ) =




RIRJ


−2%2

2B
(1)
ñ+m̃ − i%2(ñ+ m̃+ 2)B(1)

ñ+m̃+1 +
[
(ñ+ 2)m̃+ %2

3
(
1 + cos2 ϑ

)]
B

(1)
ñ+m̃+2

+i%1%3(ñ+ m̃+ 2)B(1)
ñ+m̃+3 − %2

1(ñ+ 2)m̃B(1)
ñ+m̃+4

+
[
−%2

2 − i%2(ñ+ m̃+ 2) + (ñ+ 2)m̃
]

· 1
r2

a



(
∂ra
∂ϑ

)2
B

(1)
ñ+m̃+2 +

(
∂ra
∂ϕ

)2

sin2 ϑ

(
B

(2)
ñ+m̃+1 − %2

1 cos2 θB
(2)
ñ+m̃+3

)






+
[
∂RI
∂ϑ

∂RJ
∂ϑ

+ m̃− i%2
ra

∂ra
∂ϑ

∂RI
∂ϑ

RJ + ñ+ 2− i%2
ra

∂ra
∂ϑ

RI
∂RJ
∂ϑ

]
B

(1)
ñ+m̃+2

+
[
∂RI
∂ϕ

∂RJ
∂ϕ

+ m̃− i%2
ra

∂ra
∂ϕ

∂RI
∂ϕ

RJ + ñ+ 2− i%2
ra

∂ra
∂ϕ

RI
∂RJ
∂ϕ

]

· 1
sin2 θ

(
B

(2)
ñ+m̃+1 − %2

1 cos2 θB
(2)
ñ+m̃+3

)



rae−2ikraDmm̃D̃nñ

where

B(1)
n (ra(ϑ, ϕ)) =

∫ ∞

1

e2ikraρ

ρn
dρ, B(2)

n (ra(ϑ, ϕ)) =
∫ ∞

1

e2ikraρ

(ρ2 − %2
1)ρn−1 dρ

for n > 1. In [1] a Chebyshev approximation is made of B(i)
n (as a function of ra),

on the interval [rmin, rmex]. These bounds must be precomputed.
Similar derivations for the other formulations can be obtained. The PGC

formulation has the expression

K(ϑ, ϕ) =




RIRJ


−i%2(ñ− m̃+ 2)B(1)

ñ+m̃+1 +
[
(ñ+ 2)m̃+ %2

3
(
−1 + cos2 ϑ

)]
B

(1)
ñ+m̃+2

+i%1%3(ñ− m̃+ 2)B(1)
ñ+m̃+3 − %2

1(ñ+ 2)m̃B(1)
ñ+m̃+4

+
[
%2

2 − i%2(ñ− m̃+ 2) + (ñ+ 2)m̃
]

· 1
r2

a



(
∂ra
∂ϑ

)2
B

(1)
ñ+m̃+2 +

(
∂ra
∂ϕ

)2

sin2 ϑ

(
B

(2)
ñ+m̃+1 − %2

1 cos2 θB
(2)
ñ+m̃+3

)






+
[
∂RI
∂ϑ

∂RJ
∂ϑ

+ m̃− i%2
ra

∂ra
∂ϑ

∂RI
∂ϑ

RJ + ñ+ 2 + i%2
ra

∂ra
∂ϑ

RI
∂RJ
∂ϑ

]
B

(1)
ñ+m̃+2

+
[
∂RI
∂ϕ

∂RJ
∂ϕ

+ m̃− i%2
ra

∂ra
∂ϕ

∂RI
∂ϕ

RJ + ñ+ 2 + i%2
ra

∂ra
∂ϕ

RI
∂RJ
∂ϕ

]

· 1
sin2 θ

(
B

(2)
ñ+m̃+1 − %2

1 cos2 θB
(2)
ñ+m̃+3

)



raDmm̃D̃nñ
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the BGC formulation has the expression

K(ϑ, ϕ) =




RIRJ


−i%2(ñ− m̃)B(1)

ñ+m̃−1 +
[
ñm̃+ %2

3
(
−1 + cos2 ϑ

)]
B

(1)
ñ+m̃

+i%1%3(ñ− m̃)B(1)
ñ+m̃+1 − %2

1ñm̃B
(1)
ñ+m̃+2

+
[
%2

2 − i%2(ñ− m̃) + ñm̃
]

· 1
r2

a



(
∂ra
∂ϑ

)2
B

(1)
ñ+m̃ +

(
∂ra
∂ϕ

)2

sin2 ϑ

(
B

(2)
ñ+m̃−1 − %2

1 cos2 θB
(2)
ñ+m̃+1

)






+
[
∂RI
∂ϑ

∂RJ
∂ϑ

+ m̃− i%2
ra

∂ra
∂ϑ

∂RI
∂ϑ

RJ + ñ+ i%2
ra

∂ra
∂ϑ

RI
∂RJ
∂ϑ

]
B

(1)
ñ+m̃

+
[
∂RI
∂ϕ

∂RJ
∂ϕ

+ m̃− i%2
ra

∂ra
∂ϕ

∂RI
∂ϕ

RJ + ñ+ i%2
ra

∂ra
∂ϕ

RI
∂RJ
∂ϕ

]

· 1
sin2 θ

(
B

(2)
ñ+m̃−1 − %2

1 cos2 θB
(2)
ñ+m̃+1

)



raDmm̃D̃nñ

− ira%2Dm1D̃n1RIRJ

and the BGU formulation has the expression

K(ϑ, ϕ) =




RIRJ


−2%2

2B
(1)
ñ+m̃−2(1− δñ1δm̃1)− i%2(ñ+ m̃)B(1)

ñ+m̃−1

+
[
ñm̃+ %2

3
(
1 + cos2 ϑ

)]
B

(1)
ñ+m̃

+i%1%3(ñ+ m̃)B(1)
ñ+m̃+1 − %2

1ñm̃B
(1)
ñ+m̃+2

+
[
−%2

2 − i%2(ñ+ m̃) + ñm̃
]

· 1
r2

a



(
∂ra
∂ϑ

)2
B

(1)
ñ+m̃ +

(
∂ra
∂ϕ

)2

sin2 ϑ

(
B

(2)
ñ+m̃−1 − %2

1 cos2 θB
(2)
ñ+m̃+1

)






+
[
∂RI
∂ϑ

∂RJ
∂ϑ

+ m̃− i%2
ra

∂ra
∂ϑ

∂RI
∂ϑ

RJ + ñ− i%2
ra

∂ra
∂ϑ

RI
∂RJ
∂ϑ

]
B

(1)
ñ+m̃

+
[
∂RI
∂ϕ

∂RJ
∂ϕ

+ m̃− i%2
ra

∂ra
∂ϕ

∂RI
∂ϕ

RJ + ñ− i%2
ra

∂ra
∂ϕ

RI
∂RJ
∂ϕ

]

· 1
sin2 θ

(
B

(2)
ñ+m̃−1 − %2

1 cos2 θB
(2)
ñ+m̃+1

)



rae−2i%2Dmm̃D̃nñ

− i%2raDm1D̃n1RIRJ .

A.1. Numerical examples

Some numerical examples are here given, comparing the target strength simulations
using IGABEM (with the GBM formulation) as reference solution and IENSG



Ray/beam tracing in the isogeometric framework 333

0◦

15◦

30◦

45◦

60◦
75◦90◦105◦

120◦

135◦

150◦

165◦

180◦−40

−30

−20

−10

0

10

20

pinc

T
S

[d
B]

IE
IENSG

Figure A.1: Shirron’s mock shell: Bistatic scattering on the mock shell with
αs = 0◦ and βs = 0◦ at ka = 10 (where a = 1 m is the radius of the hemispherical
endcaps).

(with the BGU formulation). Both methods are using the same mesh on the
scatterer, Γ .

Results for the hemispherically-capped cylinder (mock shell model) considered
in [1, Fig. 10] is produced using IGA in Figure A.1 (with Γ represented by 9578
dofs), illustrating very good results for the infinite elements attached directly onto
the scatterer using only N = 3 basis functions in the radial direction. Results
for the BeTSSi model 1 is produced in a similar fashion in Figure A.2 (with
Γ represented by 38 414 dofs), illustrating very good results even if the infinite
elements are attached directly onto the non-smooth scatterer using only N = 3
basis functions in the radial direction. However, the results diverge at f = 1 kHz
as illustrated in Figure A.3.

B. Ray/beam tracing in the isogeometric framework

Beam tracing builds upon ray tracing and was introduced by Heckbert and
Hanrahan [3]. It offers a high frequency approximation of scattering problems and
has been frequently used in the BeTSSi community. In the following we investigate
ray/beam tracing in the isogeoemtric framework. Again, the meshing procedure is
avoided, and the ray tracing algorithm may operate directly on the CAD model.

Ray tracing approximates the solution of the Helmholtz equation [4]

∇2p(x) + k2p(x) = 0
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Figure A.2: BeTSSi model 1: Monostatic scattering at f = 100 Hz and cf =
1500 m/s.
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Figure A.3: BeTSSi model 1: Monostatic scattering at f = 1000 Hz and cf =
1500 m/s.
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as a ray series

p(x) = eiωτ(x)
∞∑

j=0

Aj(xj)
(iω)j

which yields the eikonal and transport equations

O(ω2) : |∇τ |2 = c−2(x)
O(ω) : 2∇τ · ∇A0 + (∇2τ)A0 = 0,

O(ω1−j) : 2∇τ · ∇Aj + (∇2τ)Aj = −∇2Aj−1, j = 1, 2, . . . .

Beam tracing forms an alternative to finding eigenrays. As opposed to finding
eigenrays, beam tracing does not require solving the non-linear problem of finding
eigenrays. In case of constant sound speed, cf , the ray trajectories are linear curves,
and the pressure along ray j is given by

pj(s) = A0,j
s

eiks.

Ray/Beam tracing then reduces to finding intersection between straight lines and
surfaces. The amplitude of a ray is constructed in such a way that we have energy
conservation ∫

∂V0
|pj |2 dS =

∫

∂V1
|pj |2 dS = const,

where ∂V0 and ∂V1 are two reference cross sections along the beam. A beam can
be constructed using linear shape functions with s being the parameter along the
center ray, and n the normal distance from the observation point to the central ray

pbeam(s, n) = Abeam(s)φ(s, n)eiks, φ(s, n) =





W (s)−n
W (s) n 6W (s)

0 else.

B.1. Beam tracing using linear shape functions

Assuming the object under consideration is parametrized by NURBS, the control
polygon bounds the domain (Figure B.4a). Projecting the control points onto a
plane with normal vector given by dinc (direction of incidence of the plane wave),
we find a polygon bounding a domain where rays can originate. The rays originate
from vertices of equilateral triangles structured as a FEM 2D mesh of the projected
polygon. To compute the scattered field at a given point, x, first find the beams
having support at this point (Figure B.4b). Let the center ray of a given beam be
given by

r1(s) = x1 + sd1.

Minimization of the distance from x to center ray, ‖r1(s)− x‖, yields

s = (x− x1) · d1 ⇒ P1 = x1 + [(x− x1) · d1]d1.
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(a) The control polygon bounds the scatterer. (b) Three beams having support at x.

Figure B.4: Preprocessing and postprocessing in beam tracing.

The boundary of the beam around x is determined by the vertices Pi. These
vertices are found by solving (ri(s)− P1) · d1 = 0 where ri(s) = xi + sdi

s = (P1 − xi) · d1
di · d1

⇒ Pi = xi + (P1 − xi) · d1
di · d1

di.

Write x in terms of barycentric coordinates

x = P1 + ξ2(P2 − P1) + ξ3(P3 − P1)

then
x ∈ ∆(P1,P2,P3) if ξ2, ξ3 > 0 ∧ ξ2 + ξ3 6 1.

Solving for ξ2 and ξ3 yields (with v1 = P2 − P1 and v2 = P3 − P1)

ξ2 = (v2 · v2)(x− P1) · v1 − (v1 · v2)(x− P1) · v2
(v1 · v1)(v2 · v2)− (v1 · v2)2

ξ3 = (v1 · v1)(x− P1) · v2 − (v1 · v2)(x− P1) · v1
(v1 · v1)(v2 · v2)− (v1 · v2)2

which is well defined because of Cauchy-Schwarz inequality.
For the far field evaluations, note that the center ray goes asymptotically as

r1(s) ∼ sd1.

Minimization of the distance from x to center ray, ‖r1(s)− x‖, yields

s ∼ x · d1 ⇒ P1 ∼ (x · d1)d1.



338 Appendices

The boundary of the beam around x is determined by the vertices Pi. These
vertices are found by solving (ri(s)− P1) · d1 = 0

s ∼ P1 · d1
di · d1

⇒ Pi ∼
x · d1
di · d1

di.

With
v1 = P2 − P1 ∼ (x · d1)

(
d2

d1 · d2
− d1

)

and
v2 = P3 − P1 ∼ (x · d1)

(
d3

d1 · d3
− d1

)

we find

v1 · v2 ∼ (x · d1)2
(

d2 · d3
(d1 · d2)(d1 · d3) − 1

)

v1 · v1 ∼ (x · d1)2
( 1

(d1 · d2)2 − 1
)

v2 · v2 ∼ (x · d1)2
( 1

(d1 · d3)2 − 1
)
.

Write x in terms of barycentric coordinates

x = P1 + ξ2(P2 − P1) + ξ3(P3 − P1)

then
x ∈ ∆(P1,P2,P3) if ξ2, ξ3 > 0 ∧ ξ2 + ξ3 6 1.

Solving for ξ2 and ξ3 yields

ξ2 =

(
1

(d1·d3)2 − 1
)(

x̂·d2
(x̂·d1)(d1·d2) − 1

)
−
(

d2·d3
(d1·d2)(d1·d3) − 1

)(
x̂·d3

(x̂·d1)(d1·d3) − 1
)

(
1

(d1·d2)2 − 1
)(

1
(d1·d3)2 − 1

)
−
(

d2·d3
(d1·d2)(d1·d3) − 1

)2

ξ3 =

(
1

(d1·d2)2 − 1
)(

x̂·d3
(x̂·d1)(d1·d3) − 1

)
−
(

d2·d3
(d1·d2)(d1·d3) − 1

)(
x̂·d2

(x̂·d1)(d1·d2) − 1
)

(
1

(d1·d2)2 − 1
)(

1
(d1·d3)2 − 1

)
−
(

d2·d3
(d1·d2)(d1·d3) − 1

)2 .

The area of ∆(P1,P2,P3) is given by

S = 1
2‖v1 × v2‖

which in the far field has the expression

S ∼ 1
2(x · d1)2

∥∥∥∥
d2

d1 · d2
× d3
d1 · d3

+ d1 ×
(

d2
d1 · d2

− d3
d1 · d3

)∥∥∥∥.
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di dr

n

θθ

Figure B.5: Ray tracing: The law of reflection states that the angle of incidence
is equal to the angle of reflection.

The scattered field is then computed by

p(x) =
∑

j∈{i :x∈Bi}

√
Ej
Sj
ξ1eik(s−s0)

where
s = ‖x− x1‖

and
Ej =

∫

∂V0
|pj |2 dS

corresponds to the energy of the beam Bj , Sj is the cross-sectional area of beam
Bj at x, s0 is the phase shift and ξ1 is the first barycentric coordinate at x.

Exact ray reflections on a rigid sphere (radius R0) from straight lines on the
form

x(s) = o+ ds

can be found at (by solving ‖x(s)‖ = R0)

s = −o · d−
√
D, D = (o · d)2 +R2

0 − ‖o‖2,

where we have reflection iff D > 0. A ray reflecting at a surface point with normal
vector n has incident direction (di) and reflected direction (dr) related by

dr = di − 2(di · n)n

with ‖dr‖ = ‖di‖ = ‖n‖ = 1.
Let the incident wave pinc(x) = Pinceikdinc·x at x1 = R0ex be represented

by a beam with circular cross section with radius δ (where dinc = −ex). Then,
E =

∫
∂V0
|pinc|2 dS = |Pinc|2πδ2. Based on the previous formulas, we find (see

Figure B.6)
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Figure B.6: Computation of exact beam scattering solution.

x2 =
√
R2

0 − δ2ex + δey

d2 =
(

1− 2
(
δ

R0

)2)
ex + 2 δ

R0

√

1−
(
δ

R0

)2
ey

P2 = x+
δR2

0 − 2‖x‖δ
√
R2

0 − δ2

2δ2 −R2
0

ey.

The cross-section area of the beam at x is then

Sj = π‖P2 − x‖2 = π


δR

2
0 − 2‖x‖δ

√
R2

0 − δ2

2δ2 −R2
0




2

.

The far field backscattered pressure is found by considering the limit ‖x‖ → ∞

p0(x̂) = |Pinc|
2
√
R2

0 − δ2
(R2

0 − 2δ2)e−2ikR0 .

If we finally consider the limit δ → 0 we find

p0(x̂) = |Pinc|R0
2 e−2ikR0

which is the exact expression for rigid scattering on a sphere using the Kirchhoff
approximation (investigated in Paper IV). This gives the target strength

TS = 20 log10

(
R0
2

)
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Figure B.7: Frequency sweep of rigid sphere: The target strength is plotted
against the dimensionless wave number.

which is the asymptotic limit of the analytic solution as k →∞ [5].
As can be seen from Figures B.7 to B.9, beam approximation increase in

accuracy as a function of the number of initial beams (geometry approximation),
N , and increase in accuracy as a function of frequency (for sufficiently high N),
but loses accuracy from the plane wave approximation for high frequencies at
a fixed N . This is very similar to corresponding simulations using Kirchhoff
approximation investigated in paper IV. The geometric approximation can be
improved by adapting the beams for the incident wave and splitting beams at edge
reflections. As the raytracing part is independent of frequency, frequency sweep
calculations are very efficient using ray/beam tracing. In Figures B.10 to B.12 it
can clearly be seen that the ability to model forward scattering using ray/beam
tracing is lacking.

B.2. Ray tracing in the isogeometric framework

Usually the scatterer is tessellated with plane facets at which ray reflection can
be trivially computed. The problem with this procedure is identical to the same
approach using Kirchhoff approximation. Namely frequency dependent memory
consumption and accuracy. The isogeometric framework resolves both of these
issues by computing the reflections directly on the CAD-model, which in most
cases can be assumed to be represented by NURBS. Additionally, IGA avoids the
tesselation step entirely. However, widespread use of ray tracing using NURBS is
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Figure B.8: Frequency sweep of rigid sphere: The relative error (of the far
field) is plotted against the dimensionless wave number.
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Figure B.9: Frequency sweep of rigid sphere: The relative absolute error (of
the far field) is plotted against the dimensionless wave number.
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Figure B.10: Bistatic scattering of rigid sphere: The target strength is plotted
against the aspect angle at f = 20 kHz.
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Figure B.11: Bistatic scattering of rigid sphere: The relative error (of the far
field) is plotted against the aspect angle at f = 20 kHz.
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Figure B.12: Bistatic scattering of rigid sphere: The relative absolute error
(of the far field) is plotted against the aspect angle at f = 20 kHz.

lacking due to algebraic complexity [6].
A ray tracing algorithm is presented by Martin et al. [6]. The algorithm first

finds the intersections of the rays and a set of axis-aligned bounding boxes (see
Figure B.13). Then for each box hit, root finding is iteratively applied (using
Newton iteration) until a convergence or a divergence criterion is met. As a
preprocessing step the control mesh is flattened using refinement. This step is
important to obtain a good initial guess for the Newton iterations. Moreover, it
reduces the chance of multiple roots in a sub-patch. This new refinement forms
a basis for the bounding volume hierarchy. Note that the refined mesh data is
only needed in this initial step. Flattening means refining the mesh such that each
element satisfies some flatness criteria. More advanced adaptive method could be

Figure B.13: Uniform refinements gives a basis for the bounding boxes.
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utilized. Especially local refinement methods. Martin et al. [6] consider a heuristic
tensor product refinement strategy based on the curvature and the arclength. For
each knot span, consider the number of new knots to be added is given by

n = C · max
ξ∈[ξi,ξi+1)

{curvature(X(ξ))} · arclength
ξ∈[ξi,ξi+1)

(X(ξ))3/2

where C is a user defined parameter to control fineness. Several estimates are
involved in calculating these quantities, including polynomial estimation of rational
curves (NURBS-curves). In the ξ-direction, the number n is computed for each
non-empty knot span [ηj+1, ηj), such that the final number of knots to be added
in [ξi+1, ξi) is the maximum of these numbers. This procedure is repeated in the
η-direction of the tensor product mesh. The inserted knots are spaced uniformly
in each sub interval. The final step of the flattening procedure is to duplicate the
knots in the knot vector such that each knot is repeated p times. The control
points for each element then forms a basis for its bounding box.

The empirical parameter C must be carefully chosen by the user. To small,
and it can result in failure in the root finding process. To large, and the bounding
volume hierarchy becomes large and computationally expensive. The hierarchy is
built based upon the created bounding boxes: the leaves. These leaves are used to
provide initial guess for the Newton iteration (midpoint in the element). The root
and internal nodes of the tree will contain larger volumes which bounds portions
of the underlying surface. The tree is formed by sorting the volumes according to
the axis direction which has greatest extent across the bounding volumes, splitting
the data in half, and repeating the process.

To ensure that the resulting root, P , obtained by Newton iterations lie on the
line, r(s) = o+ sd, the following projection is made

s = (P − o) · d

Self-intersection can be avoided by a requirement that the new ray has traveled a
minimum distance.

As for the sphere, the exact beams may be computed for the BeTSSi model 3.
The monostatic target strength in the xy-plane as a function of the azimuth angle
ϕ is

TS =





20 log10
(
Ro2

2

)
0 6 ϕ < ϕmax

∞ ϕ = φmax

20 log10
(
Ro1

2

)
ϕmax < ϕ 6 π

where [7, p. 108]

ϕmax = π

2 − tan−1
(

Ro1 −Ro2
L−Ro1 −Ro2

)
= 1.522054475 = 87.20729763◦.
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Figure B.14: Scattering on BeTSSi model 3 at 1 kHz.

In Figure B.14 a comparison is made with the beam tray tracing algorithm, the
Kirchhoff algorithm (paper IV) and a reference solution created by IGABEM
(paper III). The ray tracing procedure fails to obtain accurate results for the
far field from the straight sections of the geometry as opposed to the Kirchhoff
approximation. On the other hand, the Kirchhoff approximation (based on a
simple physical optics approximation) does not model multiple reflections. A
remedy for this is to use the Kirchhoff approximation based on the rays leaving
the scatterer.

B.3. Computation of reflection and transmission coefficients

For thin elastic layers, rigid boundary conditions perform poorly even for the
high frequency spectrum (f ∼ 10 kHz). A ray hitting a surface should be divided
into a reflected ray and a transmitted ray. Computation of the transmission and
reflection coefficients are then necessary. The steps are presented in the following
based on the work of Brekhovskikh [8].

In the solid layer we not only have longitudinal waves, but also transverse waves.
For any smooth surface where reflection can be defined, the scatterer can locally
be approximated by a plane surface. The transmission and reflection coefficients
are then computed on an infinite elastic plate. Without loss of generality the
(plane) wave fronts are assumed to lie in the xz-plane and the layers are normal
to the z-axis. At each interface we require continuity of displacement and pressure
(details in paper I)

ρfω
2uini −

∂ptot
∂n

= 0, σijninj + ptot = 0
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Figure B.15: The incident wave is both reflected and transmitted (into longitudinal
and transverse waves) through a solid infinitely large plate.

which in our case is equivalent with

ρfω
2uz −

∂ptot
∂z

= 0,
(
K − 2G

3

)
∂ux
∂x

+
(
K + 4G

3

)
∂uz
∂z

+ ptot = 0. (B.1)

Here, ptot = p1 + pinc for z > h (layer 1) and ptot = p2 for z < 0 (layer 3) where
pinc = Pinceik1(x sin θ1−z cos θ1). The exterior traction vector, T , has components

Ti = σijnj

That is, T = σ13ex + σ23ey + σ33ez. For our case the tangential traction free
boundary conditions are given by

σ13 = 0 and σ23 = 0,

which is equivalent with

∂ux
∂z

+ ∂uz
∂x

= 0 and ∂uz
∂y

+ ∂uy
∂z

= 0. (B.2)

The solution of the general Navier equation

G∇2u+
(
K + G

3

)
∇(∇ · u) + ρsω

2u = 0

can be written on the form

u = ∇φ+∇×ψ.

In our special case we have (setting ψ = ψey)

ux = ∂φ

∂x
− ∂ψ

∂z
, uy = 0, uz = ∂φ

∂z
+ ∂ψ

∂x
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φ and ψ are called the potentials for the longitudinal and transverse waves,
respectively. These potentials satisfy the Helmholtz equation

∇2φ+ a2φ = 0 and ∇2ψ + b2ψ = 0

where

a = ω

cs,1
, b = ω

cs,2
, cs,1 =

√
3K + 4G

3ρs
, cs,2 =

√
G

ρs
.

The pressure in the fluids also solve the Helmholtz equation

∇2p1 + k2
1p1 = 0 and ∇2p2 + k2

2p2 = 0

where
k1 = ω

cf,1
and k2 = ω

cf,2
.

We look for solutions on the form

φ = Aφei(axx+azz)

ψ = Aψei(bxx+bzz)

p1 = A1ei(k1xx+k1zz)

p2 = A2ei(k2xx+k2zz)

where

a2 = a2
x + a2

z

b2 = b2x + b2z

k2
1 = k2

1x + k2
1z

k2
2 = k2

2x + k2
2z.

The traction free boundary conditions applied to the potentials φ and ψ are

∂2φ

∂z∂x
− ∂2ψ

∂z2 + ∂2φ

∂x∂z
+ ∂2ψ

∂x2 = 0.

Insertion yields
−2axazφ−

(
b2x − b2z

)
ψ = 0

which evaluated at z = 0 (upper boundary of solid) gives

bx = ax

Evaluation of the other boundary conditions in a similar fashion yield

ax = k1x = k2x = k1 sin θ1.
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By writing

ax = a sin θ2, bx = b sin γ2, k1x = k1 sin θ1, k2x = k2 sin θ3

we obtain Snell’s law

a sin θ2 = b sin γ2 = k1 sin θ1 = k2 sin θ3.

We have

az = ±
√
a2 − a2

x bz = ±
√
b2 − b2x

k1z = ±
√
k2

1 − k2
1x k2z = ±

√
k2

2 − k2
2x

so since we require no waves to originate from infinity for p1 and p2, then k1x > 0
and k2x < 0. The solution may thus be written as

φ = A
(1)
φ eia(x sin θ2+z cos θ2) +A

(2)
φ eia(x sin θ2−z cos θ2)

ψ = A
(1)
ψ eib(x sin γ2+z cos γ2) +A

(2)
ψ eib(x sin γ2−z cos γ2)

p1 = A1eik1(x sin θ1+z cos θ1)

p2 = A2eik2(x sin θ3−z cos θ3).

Insertion of these expressions into the boundary conditions (Eqs. (B.1) and (B.2))
evaluated at z = 0 and z = −h yields a linear system of equations

HC = D

where

H =




−k1 cos θ1
ρf,1ω2 a cos θ2 −a cos θ2 b sin γ2 b sin γ2 0
1 a2

(
−K −G

(
1
3 + cos 2θ2

))
a2
(
−K −G

(
1
3 + cos 2θ2

))
−Gb2 sin 2γ2 Gb2 sin 2γ2 0

0 −a2 sin 2θ2 a2 sin 2θ2 b2 cos 2γ2 b2 cos 2γ2 0
0 −a2e−iah cos θ2 sin 2θ2 a2eiah cos θ2 sin 2θ2 b2e−ibh cos γ2 cos 2γ2 b2eibh cos γ2 cos 2γ2 0
0 ae−iah cos θ2 cos θ2 −aeiah cos θ2 cos θ2 be−ibh cos γ2 sin γ2 beibh cos γ2 sin γ2

k2eik2h cos θ3 cos θ3
ρf,2ω2

0 a2
(
−K −G

(
1
3 + cos 2θ2

))
e−iah cos θ2 a2

(
−K −G

(
1
3 + cos 2θ2

))
eiah cos θ2 −Gb2e−ibh cos γ2 sin 2γ2 Gb2eibh cos γ2 sin 2γ2 eik2h cos θ3




and

C =




A1

A
(1)
φ

A
(2)
φ

A
(1)
ψ

A
(2)
ψ

A2




, D =




−Pinck1 cos θ1
ρf,1ω2

−Pinc
0
0
0
0




.
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Table 1: Transmission and reflection coefficients for a steel shell of thickness
h = 20 mm with water in layer 1 and air in layer 3 at θ1 = 0.

f [kHz] ReT ImT ReR ImR

1 0.000 379 767 0.000 249 719 −0.395 896 148 −0.917 881 662
3 0.000 111 197 0.000 219 612 0.591 993 753 −0.805 804 333

10 0.000 012 214 0.000 081 497 0.956 075 958 −0.293 076 432
30 0.000 001 290 0.000 029 418 0.996 162 573 −0.087 503 949

Solving this system, we obtain the following expressions for the reflection coefficient
R and transmission coefficient T

R = p1|x=0,z=0
Pinc

= A1
Pinc

= M(Zf,2 − Zf,1) + i
[(
M2 −N2)Zf,2 + Zf,1

]

M(Zf,2 + Zf,1) + i[(M2 −N2)Zf,2 − Zf,1]

T = p2|x=0,z=−h
Pinc

= A2eik2h cos θ3

Pinc
= 2NZf,2
M(Zf,2 + Zf,1) + i[(M2 −N2)Zf,2 − Zf,1]

where

N = Zs,1 cos2(2γ2)
Zf,2 sinP + Zs,2 sin2(2γ2)

Zf,2 sinQ

M = Zs,1
Zf,2

cos2(2γ2) cotP + Zs,2
Zf,2

sin2(2γ2) cotQ

and

P = ah cos θ2, Q = bh cos γ2

Zf,1 = ρf,1cf,1
cos θ1

, Zs,1 = ρscs,1
cos θ2

, Zs,2 = ρscs,2
cos γ2

, Zf,2 = ρf,2cf,2
cos θ3

.

For the BeTSSi model 3 a thickness of h = 8 mm is used (water on both sides of
shell) and for BeTSSi model 1 and 2 a thickness of h = 20 mm is used (water in
layer 1 and air in layer 3). As can be seen from Figure B.16, the elastic shell has
reduced transparency for higher frequencies. Figure B.17 illustrates how well air
is approximated with vacuum. The coefficients in Tables 1 and 2 can be used as
an approximation (for all θ1) if the above formulas become too cumbersome to
evaluate when simulating the BeTSSi models.
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Figure B.16: Reflection coefficient for steel plate (h = 8 mm) in water
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Figure B.17: Transmission coefficient for steel plate (h = 20 mm) between water
and air
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Table 2: Transmission and reflection coefficients for a steel shell of thickness
h = 8 mm with water on both sides of shell at θ1 = 0.

f [kHz] ReT ImT ReR ImR

1 0.982 994 356 0.129 425 410 0.017 005 608 −0.129 158 694
3 0.865 266 600 0.341 838 512 0.134 733 079 −0.341 038 325

10 0.366 032 206 0.483 053 261 0.633 964 233 −0.480 384 557
30 0.059 738 860 0.241 054 269 0.940 228 789 −0.233 010 583
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