
Verified Verifiers for Verifying Elections
Thomas Haines

Dept of Mathematical Sciences,

Norwegian University of Science and

Technology

Trondheim, Norway

thomas.haines@ntnu.no

Rajeev Goré

Research School of Computer Science,

Australian National University

Canberra, Australia

rajeev.gore@anu.edu.au

Mukesh Tiwari

Research School of Computer Science,

Australian National University

Canberra, Australia

mukesh.tiwari@anu.edu.au

ABSTRACT
The security and trustworthiness of elections is critical to democ-

racy; alas, securing elections is notoriously hard. Powerful crypto-

graphic techniques for verifying the integrity of electronic voting

have been developed and are in increasingly common use. The

claimed security guarantees of most of these techniques have been

formally proved. However, implementing the cryptographic veri-

fiers which utilise these techniques is a technical and error prone

process, and often leads to critical errors appearing in the gap

between the implementation and the formally verified design.

We significantly reduce the gap between theory and practice by

using machine checked proofs coupled with code extraction to pro-

duce cryptographic verifiers that are themselves formally verified.

We demonstrate the feasibility of our technique by producing a for-

mally verified verifier which we use to check the 2018 International

Association for Cryptologic Research (IACR) directors election.

KEYWORDS
verifiable e-voting; interactive theorem provers; code extraction

ACM Reference Format:
Thomas Haines, Rajeev Goré, and Mukesh Tiwari. 2019. Verified Verifiers

for Verifying Elections. In 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’19), November 11–15, 2019, London, United
Kingdom. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/

3319535.3354247

1 INTRODUCTION
Electronic voting is discussed regularly as a potential solution to

many problems of running elections from cost to usability; also,

there is a common conception that it will increase voter turnout

rates. Security experts, however, are well aware that electronic vot-

ing is a security nightmare. Consequently, there has been much

effort to develop usable schemes that produce publicly verifiable ev-

idence attesting to the correctness of their results. A scheme where

voters receive assurance that their vote was correctly included in

the tally is called end-to-end verifiable. Generally, this property is

broken down into three sub-properties: namely, cast-as-intended,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3354247

collected-as-cast, and counted-as-collected. For each of these sub-

properties, the overall scheme must produce verifiable evidence,

often utilising cryptographic techniques such as sigma protocols

and zero-knowledge proofs, as we describe shortly. Of course, care

must be taken that the conjunction of these sub-proprieties actually

implies end-to-end verifiability as noted by Küsters et al [36].

The theoretical foundations of such end-to-end verifiable elec-

tronic voting schemes are maturing but the propensity of practice

towards broken implementations is concerning. For example, al-

though Switzerland has, perhaps, the most rigorous requirements

and testing for its electronic voting, we have seen the withdrawal

of several proposed end-to-end verifiable systems because, even

after much analysis and certification, the implementations were

fatally flawed. For the cornucopia of errors in the Swiss post sys-

tem see Teague et al.’s excellent write up.
1
Some other prominent

failures and issues in allegedly end-to-end verifiable systems have

included the I-Vote system deployed in the Australian state of New

South Wales [33], and the e-voting system used in national elec-

tions in Estonia [43]. Many general issues have also been discovered

[10, 11, 18] which need to be carefully avoided in any implementa-

tion, but most of these issues were at one time present in the Helios

end-to-end verifiable e-voting system [1] used by the International

Association for Cryptological Research.

Public systems and prototypes have provided such a richness of

trivial but critical errors that trust in any system without extraordi-

narily careful analysis is unwarranted, regardless of any claimed

verifiability proprieties. It seems self-evident that there is a critical

lack of people with sufficient technical skill in programming and

cryptography to check these implementations.

We propose a different approach; by leveraging the various verifi-

ability properties of modern end-to-end verifiable e-voting schemes

it suffices to have a correct verifier for the (evidence produced by

the) scheme to ensure its integrity, regardless of any flaws in the

actual e-voting implementation; Rivest calls this property software

independence [40]. We can utilise interactive theorem provers and

code extraction to produce these verifiers with a very high degree of

confidence, which depends on the strong guarantees of correctness

provided by the interactive theorem prover rather than the new

and un- or under- studied e-voting system implementation.

Thus our title refers to the formal verification of software for

verifying the evidence produced by end-to-end verifiable schemes;

specifically, the software that implements the cryptographic primi-

tives and zero-knowledge proofs (ZKP), including sigma protocols

and mixnets, as used in an actual election. It does not refer to

1
https://people.eng.unimelb.edu.au/vjteague/SwissVote.html

https://doi.org/10.1145/3319535.3354247
https://doi.org/10.1145/3319535.3354247
https://doi.org/10.1145/3319535.3354247

the formal verification of the code that actually implements vote-

casting, or vote-transmission, or vote-counting. Indeed, according

to “software independence”, we do not actually need to verify these

e-voting implementations at all to ensure the integrity of the elec-

tion outcome if our verifiers for them are verified.

Formal verification implies that we have a logic-based proof that

the software is correct with respect to some logical specification.

By their nature, ZKPs generate cryptography-based proofs that are

published so that a scrutineer can (cryptographically) verify that

these proofs correctly vouch for the published result. Hence, our

title states that our verified software will accept the public evidence

for the election only if the election was run correctly in the cryp-

tographic sense. To ensure that the claim of correctness is itself

correct, we give logic-based proofs that the cryptographic prim-

itives and ZKP implementations satisfy the logical specifications

of their relevant security requirements. Thus these two notions of

verification beget two notions of proof: formal verification relies on

a proof that the code meets its specification; ZKPs generate proofs

that are published so that a scrutineer can check that these proofs

correctly vouch for the published result.

1.1 Helios and the IACR directors election 2018
We now explain the Helios voting system as used in the 2018 IACR

directors election. We apologise to non-experts as we cannot avoid

using e-voting and cryptographic jargon in this description. Note,

nothing in this section refers to formal verification!

The 2018 IACR directors election considered seven candidates

to fill three positions on the board of directors. All members of the

IACR were eligible to vote and could vote for as many candidates

as they wished, with the three candidates receiving the most votes

being elected; this style of voting is called approval voting.

The Helios voting system [1] v4 was used for the election; config-

ured with four authorities, who generated an ElGamal [26] public

key such that all four authorities were required to decrypt efficiently.

Each voter uses her personal computer to log into the system using

credentials she receives by email. Using her own computer, the

voter creates seven ElGamal ciphertexts; one for each candidate,

encrypting either zero or one in the exponent. Since the vote is in

the exponent, the ElGamal cryptosystem becomes additively homo-

morphic. The voter’s computer proves using a sigma protocol—a

particular kind of efficient ZKP—that the ballot is an encryption

of zero or one. The voter is then offered the chance to audit her

encrypted ballot to check that it does indeed contain the vote she

intended. If she chooses to audit, she must discard this ballot—but

can cast a fresh ballot; this mechanism is called a Benaloh challenge

[8]. Once she has an unaudited ballot with which she is happy,

she casts it. The Helios website maintains an append-only bulletin

board on which the voter’s encrypted ballot appears, as well as all

other public information and evidence related to the election. After

the voting period is over, all the encrypted ballots corresponding to

each candidate are multiplied together; so that there is now a single

ciphertext for each candidate, encoding the number of votes for that

candidate. The authorities then decrypt these (seven) ciphertexts,

announce the results and prove, using a sigma protocol, that the

announced result is the correct decryption.

Having explained the scheme we now explain its verifiability

properties. The scheme enjoys cast-as-intended verifiability cour-

tesy of the Benaloh challenges since the voter can continue to

challenge until she is convinced that her own computer is not com-

promised and is producing ballots according to her wishes. It enjoys

collected-as-cast verifiability since the voter can directly check that

her encrypted ballot was included on the bulletin board. The more

complicated step is the counted-as-collected check. At this stage,

there is a published list of encrypted ballots on the board and a pub-

lished result. It is easy for an arbitrary scrutineer to homomorphic

tally the encrypted votes, one simply reruns the (multiplication)

computation and checks the result matches the published one. The

two remaining steps are to check that the encrypted ballots actually

encrypt zero or one and that the tallied ciphertexts are decrypted

correctly.

We will now introduce the notation and techniques required to

check that the ballots are correctly encrypted and decrypted. Recall

that a binary relation R is a subset of the Cartesian product of two

sets. Given a set S of statements and setW of possible witnesses, we

use R to denote the relationship between S andW . A sigma protocol

for relationship R is used to produce a cryptographically correct

ZKP proof for a given statement s ∈ S , that the prover knows a
witness w ∈ W such that (s,w) ∈ R, without divulging w itself.

Recall that an ElGamal ciphertext over a cyclic group G is a pair

of group elements (c1, c2) for a given generator д and public key y.
We assume that G has prime order q and denote by F the the field

of integers mod q.
The sigma protocol for correct encryption for this election uses

(G ∗ G ∗ G ∗ G) as S and F asW and is a sigma protocol for the

relation R′
of four group elements (д, c1,y, c2) ∈ S and one field

element r ∈W where the pair ((д, c1,y, c2), r) ∈ R′
if (дr = c1∧y

r =

c2) ∨ (дr = c1 ∧ yr = c2/д).
The sigma protocol for correct decryption uses (G ∗G ∗G ∗G)

as S and F asW and is a sigma protocol for the relationship R′′
of

five group elements (д,y, c1, c2,m) ∈ S and one field element x ∈W
where the pair ((д,y, c1, c2,m),x) ∈ R′′

if дx = y ∧ cx
1
= c2/m.

To enable scrutiny, the election authority publishes, non-interactive,

sigma protocol transcripts for correct encryption and decryption.

Thus a scrutineer can verify the election result by checking the

following three things. First, the scrutineer checks that the tran-

scripts are valid for all encrypted ballots; this prevents the ballot

stuffing attack where a ciphertext encodes more than one vote.

Second, the scrutineer reruns the (multiplication) computation and

checks that the resulting ciphertexts match the published ones.

Finally, the scrutineer checks that the transcripts are valid for the

decryption of these combined ciphertexts with respect to the an-

nounced result. These three checks suffice to ensure that the ballots

were counted-as-collected (which we formally state in theorem

HeliosCorrectResultApproval).
These three checks cannot be done by hand for millions of ballots,

so we need a computer program: a verifier. The verifier must be

general enough to cover any election result obtained via Helios.

How can we guarantee that this verifier (program) is correct?

1.2 Clarifying our aims: the fine print :)
Our aim is to produce formally verified software for verifying elec-

tion results in the sense of the three checks mentioned above. In

particular, our aim is not to formally verify all the security and

privacy guarantees of Helios, nor to verify that the election author-

ity’s implementation of Helios is perfect, but rather to guarantee

that the cryptographic evidence produced by any Helios imple-

mentation and published by the election authority passes the three

checks mentioned above, thus guaranteeing that the published re-

sults are correct. This is inherently a per election proposition, so we

must verify that a particular set of encrypted ballots are correctly

constructed and tally to the claimed result.

Since we are producing verified software for verifying election

results, which is totally different to producing a verified version

of Helios itself, privacy is out of scope and so is any expected

behaviour not enforced by the Helios definition of verifiability.

Specifically, this means that for some deployed schemes which do

not offer end-to-end verifiability, our verifiers can only check those

properties which are publicly verifiable.

Nevertheless, our work already contains the primitives required

for verifying cast-as-intended and collected-as-cast. We cover all

three steps where applicable, though we were only able to verify

the last step properly in the case of Helios as used in the IACR2018

election, because both the cast-as-intended and collected-as-cast

are individually not universally verifiable for that election. Indeed,

we have checked the audited ballots of Helios (for cast-as-intended)

as used in the IACR2018, even though, strictly speaking, this check

should be performed by the voter before casting.

2 BACKGROUND
Interactive theorem provers are computer programs (tools) which

allow a user to encode mathematically rigorous definitions, state

desired properties (as theorems), and interactively and formally

prove that the definitions imply the theorems. Although they pro-

vide some automated proof-search facilities, the theorems to be

proved invariably require human guidance, so the tool accepts di-

rections for using a given finite collection of proof-rules, and only

accepts a putative proof if the proof-rules are applied correctly.

Trust rests upon three pillars: first, the code base for interactive

theorem provers is usually very small and has been scrutinised

by many experts, typically over several decades; second, most in-

teractive theorem provers produce a machine-readable proof of

the claimed theorem and these proofs can be checked either by

hand or by a different interactive theorem prover; third, interactive

theorem provers typically enjoy extremely rigorous mathematical

foundations, which have withstood decades of peer review. Many

interactive theorem provers are able to transliterate (extract) correct

proofs into ML, Haskell, Scheme or OCaml programs.

The main impediment to using interactive theorem proving and

code extraction is the rather steep learning curve involving exotic

mathematical logic(s) and the associated proof-rules. Consequently,

interactive theorem provers mostly remained in an academic set-

ting [31] [27], and were rarely considered for real life software-

engineering. Recent debacles, such as heartbleed
2
, have led com-

panies and researchers to focus on avoiding bugs using formal

2
http://heartbleed.com/

verification, to the point where it is now gaining momentum in

mainstream cryptographic development including verification of

Google BoringSSL[22] in Coq, HACL* in F* [49] used in Firefox,

verification of correctness and security of OpenSSL HMAC[9], veri-

fication of elliptic curve Curve25519 [16], and verified side channel

security of MAC-then-Encode-then-CBC-Encrypt (MEE-CBC)[4].

Secure electronic voting has been extensively studied since Chaum’s

seminal work [15]. In modern e-voting schemes, extensive use is

made of zero-knowledge proofs (ZKPs), first studied by Goldwasser,

Micali, and Rackoff [30]. ZKPs enable cryptographic, rather than

formal, verification of the election result without revealing informa-

tion which adversely affects the privacy of the election. Many ZKPs

are of a particularly simple and efficient form known as a sigma

protocol; a class first defined and analysed by Cramer in his PhD

Thesis [19]. The other main type of ZKPs used in electronic voting

are verifiable mixnets [24, 39], which allow encrypted ballots to be

secretly but verifiably shuffled before decryption.

Recently, there has been a significant focus on using automated

tools to create and check proofs in e-voting. The earliest tool in

use in e-voting appears to be ProVerif which was used by De-

laune et al [21] to reason formally about privacy; ProVerif was

also used to reason formally about cryptographic verifiability by

Smyth et al [42]. More recently tools such as EasyCrypt and par-

ticular Tamarin have both been used to formally verify various

e-voting schemes [14, 34] with the Cortier et al [17] work on (cryp-

tographic) verifiability and privacy of Belenaios being one of the

best examples. However, these prior works focus on the privacy or

integrity of the (theoretical) scheme itself while we are concerned

primarily with the integrity of a deployed implementation of the

scheme.

Largely tangential to the existing work mentioned above are

the efforts to produce correct counting software for elections. This

may seem strange to people more familiar with first-past-the-post

elections, but more complex vote-counting methods such as single-

transferable-vote and instant-runoff-voting have counting func-

tions which are non-trivial. There have been a series of papers

showing that techniques similar to what we suggest can be used to

ensure such complex elections are correctly tallied [28, 29, 38].

The definitions we have formally verified are inspired by Smyth

et al [41]; specifically, we formally verify that the cryptographic

verifier we generate guarantees both the correctness and sound-

ness aspect of the universal verifiability of the scheme. This is

the best that can be achieved for a scheme like Helios where cast-

as-intended and collected-as-cast verifiability are not universally

verifiable. Schemes such as Helios are said to have individual verifi-

ability for cast-as-intended and collected-as-cast since only voters

themselves can check these properties hold for their own ballot.

We used the Coq theorem prover [12] which is based upon Co-

quand’s Calculus of Constructions and has been developed over

decades. Part of our work rests upon analysing sigma protocols in

Coq and extracting efficient implementations, which has been done

before by Barthe et al [5]. Almeida et al [2] developed a compiler

which accepts an abstract description of the statement to be proved

and produces an implementation of a sigma protocol for that state-

ment along with an Isabelle/HOL proof that the sigma protocol is

correct. Both of these works were combined and expanded upon by

Almeida et al [3]. Thus there is no barrier to using their work for

the small subset of e-voting schemes which can be verified using

only sigma protocols; however, as far as we are aware, this has not

been done to date.

There are three main differences between our work and that

of Almeida et al [3]. Firstly, their approach is more general while

ours is specific to the kinds of sigma protocols commonly found

in e-voting. These specifics allow us to define and prove generic

combinations of sigma protocols which are not otherwise available,

such as proving you a witness such that it satisfies two distinct

statements. Secondly, in their own words, the “catch is that our
verification component is highly specialized for (a specific class of)
ZK-PoK and relies on in-depth knowledge on how the protocol was
constructed.”. However, since we aim at verifying existing deployed

e-voting implementations we need to prove that the deployed sigma

protocol is correct, and extract a provably correct verifier for it.

Almeida et al’s work would give us a correct sigma protocol for the

statement but not a verifier for the existing election. Thirdly, while

there are some electronic voting schemes which can be verified

using only sigma protocols, the majority use verifiable mixnets.

Verifiable mixnets, sometimes called proofs of shuffle, have not

been formally verified to be secure before in Coq, or any theorem

prover, and the ability to produce verified correct implementations

of these more complicated ZKPs is entirely non-trivial. That is,

while the work culminating in Almeida et al [3] is impressive, it is

not applicable to our primary aim of verifying real elections.

2.1 Verification and Code Extraction Via Coq
We now explain how to use the interactive theorem prover called

Coq [12] to: encode specifications; verify (functional) programs

correct against these encoded specifications; and extract the code

corresponding to the verified functional programs. We first describe

the differences between classical logic and intuitionistic logic since

the latter is indispensable for code extraction. We then describe

how the basic Coq proof engine works and briefly describe the con-

nection to functional programs. Finally, using a running example,

we describe how to specify, verify and extract code using Coq.

2.1.1 Classical Logic and Constructive Logics. We assume familiar-

ity with classical logic, but list three of its defining features:

(1) excluded middle: every statement is true or false;

(2) non-contradiction: no statement is both true and false; and

(3) non-empty domain of discourse: the values of variables such

as x and y are drawn from a non-empty set.

intuitionistic logic elides the law of the excluded middle and

demands that for an existential ∃x .φ(x) to be true, we must find

a witness a from the domain of discourse which makes φ(a) true.
Thus we cannot assume A ∨ ¬A, and then proceed by cases on A
and ¬A. Nor can we proceed by contradiction whereby we assume

¬A, show that this leads to a contradiction, and hence conclude

that A must hold. Intuitionistic logic is “constructive” because to

conclude A∨ B, we must construct a proof of A or a proof of B, and
to conclude ∃x .φ(x), we must construct a witness a as explained

above. Consequently, finding proofs in intuitionistic logic is usually

harder than in classical logic.

2.1.2 An overview of the Coq proof engine. At all stages of a Coq
proof, the proof enginemaintains a collection of labelled hypotheses

or assumptions t1 : α1, · · · , tn : αn , one current goal γ0, and a list

of further goals γ1, · · · ,γm as illustrated below at left.

t1 : α1
t2 : α2

...
tn : αn
γ0

γ1, · · · ,γm

α2 → β
α2
β

...
αn
γ0

γ1, · · · ,γm

∀x , β1(x) → β2(x)
α2

...
αn

β1(x)θ
γ1, · · · ,γm

Ignoring the labels ti for now, proof construction then either pro-

ceeds in a forward or a backward manner using a finite collection of

predefined “natural deduction” rules. For example, as shown above

centre, if α1 is of the form α2 → β , then we may extend the assump-

tions with β by apply the rule of modus ponens which intuitively

captures “if α2 → β and α2 then β”. Alternatively, as shown in the

rightmost figure, if α1 is of the form ∀x , β1(x) → β2(x), then we

can pattern-match γ0 with β2(x) to obtain a substitution θ such that

β2(x)θ = γ0, and then replace the goalγ0 with β1(x)θ , to “backchain”
on the implicational assumption instance β1(x)θ → β2(x)θ . Coq
will only accept a putative proof if all rules are used correctly,

thereby guaranteeing overall correctness.

2.1.3 Proofs as programs and code extraction. The syntax of the

basic propositions α and β is user-definable and is based upon a

highly sophisticated type-theory which allows all of the logical

manipulations mentioned above to be interpreted purely inside a

lambda-calculus of terms with the logical formulae as types where

t1 : α1 is now read as “term t1 is of type α1”. For example, the

modus ponens rule corresponds to function application: “if f is a

function from domain type α2 to range type β , and t is of type
α2 then f (t) is of type β”. By using the type annotations, we can

also read t : α2 as “t is a proof of α2”, read f : α2 → β as “f is

a function that converts proofs of α2 into proofs of β”, and read

f (t) : β as “f (t) is a proof of β”. Thus a successful proof corresponds
to a computable function in the underlying lambda-calculus. Coq

provides “extraction” facilities to turn such computable functions

into actual code in one of programming languages OCaml, Haskell

or Scheme.

2.1.4 Program Verification via Coq. Coq also provides a vast array

of pre-defined constructs from functional programming such as

natural numbers, lists, pattern matching and explicit function defi-

nitions. Below, we explain the two ways in which one can produce

verified programs via Coq using addition of two natural numbers

as an example. We use a format whereby we first give a natural

language definition as might be found in a mathematics text, then

its encoding into Coq, followed by an explanation of the encoding.

Definition 2.1. The setmynat is the smallest set formed using

the following clauses:

(1) the term O is inmynat ;
(2) if the term n is inmynat then so is the term S n;
(3) nothing else is inmynat .

I n d u c t i v e mynat : S e t : =

| O : mynat (∗ O i s a mynat ∗)

| S : mynat −> mynat . (∗ S o f a mynat i s a mynat ∗)

Here, the first line encodes thatmynat is of type Set and the ver-
tical bar separates the two subclauses of the encoding. The termsO
and S are known as constructors and anything in between “(*” and

“*)” are comments. The first subclause illustrates that the colon can

also be read as set membership ∈ while the second clause illustrates

that the constructor S is actually a function that accepts a member

frommynat and constructs another member ofmynat by prefixing

the given member with S . Thus the explicit mention of n in the nat-

ural language definition is elided. Clause (3) of the natural language

definition is encoded by the declaration Inductive. Intuitively, the
natural numbers are the terms O, (S O), (S (S O)), · · · .

Definition 2.2 (Specification of addition). AddingO to any natural

numberm givesm, and for all natural numbers n,m, and r , if adding
n tom gives r then adding (S n) tom gives (S r).

I n d u c t i v e add : mynat −> mynat −> mynat −> Prop : =

| addO : f o r a l l m, (add O m m)

| addS : f o r a l l n m r , add n m r −> add (S n) m (S r) .

Here, the notationmynat →mynat →mynat → Prop encodes

that add is ternary and that it is a “Proposition” which returns either

true or else false, but in intuitionistic logic rather than classical

logic. Our specification of addition is encoded as a ternary predicate

add n m r that is true iff “adding n tom gives r”, based purely on

the only two ways in which we can construct the first argument:

either it is O , or it is of the form (S ·).

There are now two ways to proceed to “extract” the code for an

implementation “myplus” of the predicate add . The first is to write

our own functionmyplus inside Coq and to prove that the function
implements the specification of addition. The second is to prove

a theorem inside Coq such that the proof encodes the function

implicitly. In both cases, the “extraction” facilities of Coq allow us

to produce actual code in OCaml, Haskell, or Scheme.

The encoding below is our hand-crafted function myplus in

which the “where” keyword allows an infix symbol + formyplus
and⇒ (not →) indicates the return value of the function:

F i x p o i n t myplus (n m: mynat) : mynat : =

match n with

| O => m

| S p => S (p + m)

end

where " p + m" : = (myplus p m) .

Theorem 2.3. For all natural numbers n,m, r , if r =myplus n m
then add n m r is true.
Theorem myp l u s _ c o r r e c t :

f o r a l l n m r : mynat , (r = myplus n m) −> (add n m r) .

The proof of this theorem must be constructed by us, interac-

tively, using the proof-engine described in Section 2.1.2. We do not

have to worry about the correctness of the proof of this theorem as

Coq will ensure that it is correct. The Coq extraction mechanism

turns our function “myplus” into Ocaml, Haskell or Scheme code.

The second way to extract code is to prove the following without

first writing our own hand-crafted version ofmyplus .

Theorem 2.4. For all n,m of typemynat , there is a way to con-
struct an r of typemynat such that add n m r is true.

Theorem myplus : f o r a l l n m: mynat , { r | add n m r } .

Here, the notation {r | add n m r } instructs Coq to retain all the

type-theoretic (algorithmic) content of the proof. The extraction

facility then transliterates this content into Ocaml code in the file

“myplus.ml”. We omit details since we followed the first approach.

Note the following: everything we do depends upon the spec-

ification! If the specification does not capture the intended task

properly then we are lost. For this reason, we go to great lengths

in the sequel to describe our actual Coq specification in detail. It is

only when it has been scrutinised by experts that we can convince

others that we are actually verifying what we wanted to verify.

3 CONTRIBUTION
We have made the first strides in combining formal verification

and code extraction with end-to-end verifiable electronic voting

for real elections, thereby significantly reducing the gap between

theory and practice. The current norm in electronic voting is to

have multiple layers of documentation ranging from high level de-

scriptions and proofs down to the code; these are supposed to line

up but often don’t, leaving a gap that has been the source of many

errors. Since we reason and prove directly about the implementa-

tion of the verifier, we eliminate this gap and enable far greater

confidence in the verifiability of the e-voting scheme as deployed.

Our contribution consists of four main components, as detailed

next.

We provide the logical machinery to easily prove implementa-

tions of the sigma protocols commonly used in e-voting correct;

which is to say, we prove they satisfy special soundness, honest-

verifier zero knowledge and completeness. By doing most of our

work in general lemmas and theorems, we provide a general base

for quickly proving cryptographic e-voting schemes secure.

We provide a verifier, which is provably correct with respect to

universal verifiability, for verifying the publicly available evidence

produced by the Helios e-voting system, with the caveat that we do

not model the Fiat-Shamir transform. By instantiating our general

techniques to the specific case of Helios, as used in the IACR 2018

director election, we produce and extract a formally verified verifier

for verifying the integrity of that election.

We have verified the published results of a real election using

our provably correct verifier. The verifier takes only a few minutes

to verify the entire election.

We show that our machinery extends to formally verifying the

implementations of verifiable mixnets to be sound, complete, and

privacy preserving. While previous work has used interactive theo-

rem provers to prove that sigma protocols are cryptographically

valid in this sense, to our knowledge, mixnets never have. This is

not only interesting due to being the first machine verified formal

proof of the correctness of a verifiable mixnet but also because,

as with the sigma protocols, we can extract the verifier and use

it to verify real elections. The second result on mixnets builds on

the first result on sigma protocols since the mixnet that we prove

correct is a protocol built on top of an underlying sigma protocol.

The proof of the mixnet uses the fact that the underlying protocol

is a verified correct sigma protocol.

3.1 Details on error prevention
To better communicate how our solutions prevents the errors that

commonly occur in e-voting, we consider the allegedly end-to-end

verifiable Swiss Post e-voting solution we mentioned earlier. This

scheme had formal proofs of security, detailed documentation and

had undergone various levels of certification. Nevertheless, when

the code was made public, various issues were detected. In the

next three paragraphs, we outline these issues and explain how our

contribution would have eliminated or strongly mitigated these

issues.

One of the more trivial errors in the system was in the sigma-

protocol for verifying that the voter knows that one of several

possible statements is true. The protocol aimed to follow the dis-

junctive proof approach of Cramer, Damgård, Schoenmakers [20]

where the challenger sends one challenge c and the adversary needs
to provide n more challenges such that c =

∑n
i=1 ci . The verifier

must check this equality, as otherwise, the soundness of the proof

breaks completely. The verifier from the SwissPost e-voting system

did not check the equality due to an implementation error, meaning

that their verifier was unsound. This mistake could not be made

in our formalisation inside Coq, since our encoding demands that

every sigma protocol must prove its soundness.

Another mistake was in the use of the Fiat-Shamir transform [23].

This transform converts an interactive sigma protocol into a non-

interactive one; however, if not implemented correctly the trans-

form fails catastrophically [11]. In the SwissPost e-voting scheme,

the transform was not implemented correctly in producing the

publicly verifiable proofs attesting that the ballots were cast-as-

intended. This allows a corrupt voting device to substitute ballots

without the voter detecting anything. While the Fiat-Shamir trans-

form is out of scope, our explicit formalisation for sigma protocols

makes clear what information needs to go into the transform. If the

transform is instantiated using the full transcript up to the point of

the challenge in our scheme then these issues are avoided.

The most critical error in the SwissPost e-voting scheme was a

fault in the commitment parameter generation. The mixnet they

were using relies upon a commitment parameter consisting of sev-

eral group elements for which the discrete log relation should be

unknown. In the SwissPost implementation these parameters were

generated with a known discrete log relationship. This error al-

lowed any of the several authorities to replace the entire set of

ballots with anything they wished, without detection. We intend to

model the parameter generation in Coq in future work; however,

even as is, our Theorem 7.8 of security for the mixnet makes clear

that the parameter generation is of crucial importance by explicitly

listing the possibility of incorrect parameter generation as part of

the theorem proved. The original paper specification [6] describing

the mixnet also demands correct parameter generation, but by mov-

ing it to the code level, we remove the gap, which resulted in this

critical bug. Additionally, the structure imposed by Coq of clear

and simple preconditions where almost all of the detail is proven

correct allows a much more focused and less error prone verifi-

cation process; since, only the definitions need to be scrutinised

as encapsulating the correct concept because the theorem prover

verifiers the details of the proof.

3.2 Limitations
While our work is a significant step forward, there are several

limitations; some of the limitations can be removed, or reduced,

through ongoing development, as we discuss in the future work

section at the end of the paper; others are inherent to our approach.

At present we are only targeting the integrity of the election

process. However, in any real election, one is also concerned about

privacy, whichwe have ignored.While this is a significant limitation

of our reasoning about the overall suitability of the electronic voting

scheme, it is a secondary consideration since we are primarily

interested in extracting a verifier for the correctness of the counting

process. An interesting area of future research is to combine our

approach with existing security definitions and formally define and

prove the security of an e-voting scheme, as well as extracting the

verifier. This would change the verifier extracted since the verifier

would have to check certain privacy guarantees as well, for instance

that no duplicate ballots appear in the ballot box.

In order to eschew probabilistic reasoning, the definitions we use

for correctness, in our work, amount to special soundness. Recall

that a zero knowledge proof demonstrates that a statement s belongs
to a particular language, and it is common to use R to denote the

relationship between statements and witnesses. Special soundness

says that if any adversary can produce two accepting transcripts

for different challenges then it is possible to extract a witness w
from those transcripts efficiently such that (s,w) ∈ R. Bellare and
Goldreich give the standard definition of proofs of knowledge in

their work “On Defining Proofs of Knowledge" [7]. They define

knowledge error, which intuitively denotes the probability that the

verifier accepts even when the prover does not know a witness. It

has been shown that a sigma protocol satisfying special soundness

is a proof of knowledge with negligible knowledge error in the

length of the challenge, as stated next.

Theorem 3.1. A sigma protocol P for relation R with challenge
length t is a proof of knowledge with knowledge error 2−t .

While we set clear preconditions which imply that the election

outcome was correctly calculated and announced, these precon-

ditions also have to be verified. Specifically, we formally prove

theorems of the form, if A and B are true then so is C, where C is

the integrity of the election. Clearly if A or B are not true then the

proof implies nothing about the integrity of the election. In addition,

since most e-voting schemes use non-interactive versions of the

appropriate zero knowledge proofs, the Fiat-Shamir transform [23]

must be applied carefully to avoid the known pitfalls [11].

A final caveat is that the transliterationmodule inside Coq to turn

a Coq function, such asmyplus , into executable code is not itself

verified. In particular, there is no guarantee that the extracted code

is correct with respect to the semantics of the chosen programming

language. So, strictly speaking we should verify the actual data

inside Coq for a higher level of assurance.

4 CONCEPTUAL OVERVIEW
In this section, we describe and motivate some of the conceptual

decisions we made in our work. We believe these are the right

decisions, at least for many of the current e-voting solutions, and

would encourage others to follow them, but they require motivation.

Using an interactive theorem prover only has value if the prover

will not accept incorrect proofs; this requires not only the prover

itself to be correct but also that simplifying axioms are avoided.

In the contexts of cryptography this often makes definitions and

theorems unsustainably complex to the point where it is not clear

that the proof captures the intent. In addition reasoning about

probabilities inside well established theorem provers is complex

and further compounds the complexity. For these reasons we choose

to avoid any probabilistic statements or simplifying axioms such as

perfect encryption or that negligible events never happen.

It may surprise the reader that we can achieve anything interest-

ing under these conditions. However, we achieve cryptographically

significant results by proving theorems which are known to imply

probabilistic results; for example we can prove that a given three

round protocol is perfectly complete, satisfies special-soundness

and is honest-verifier zero knowledge—which is to say that it is

a sigma protocol—without referring to any probabilities, and the

known implication from special-soundness to soundness rests out-

side what is proved inside the interactive theorem prover.

Some of the verifiable e-voting schemes rely for verification only

on sigma protocols and trivial equivalence; so the verifiers can

be reasoned about using only special soundness. Of course, any

part of the system not formally proved correct must be carefully

considered and evaluated; for instance the sigma protocols are

almost inevitably going to be made non-interacting via the Fiat-

Shamir transform, which has many pitfalls [11]. The conversion

using the Fiat-Shamir transform is outside the scope of our work.

5 BUILDING BLOCKS
We will begin to describe what we have defined and proven in Coq.

At the start we will express the definition and theorems in standard

notation and in Coq notation, for ease of understanding. But as we

progress, we shall elide the Coq encodings for lack of space.

5.1 Algebraic Structures
We now describe the definitions and theorems which we encoded

and proved in Coq, interspersed with (slightly simplified) examples

of the Coq formalisation. We start our building blocks with basic

algebraic structures over which we will define our later results. We

limit ourselves to working in cyclic groups of prime order since

these cover the overwhelming majority of e-voting systems. Our

Coq formalisation of an Abelian group is as follows.

Definition 5.1 (Abelian Group). An Abelian Group is a set G,
together with a binary operator ·, identity element e in G, and
unary operator −, such that:

Associative: ∀x ,y, z ∈ G,x · (y · z) = (x · y) · z
Identity: ∀x ∈ G, e · x = x
Inverse: ∀x ∈ G, e = −x · x
Commutative: ∀a,b ∈ G,a · b = b · a.

Class AbeGroup (G: Set) (dot: G -> G -> G) (one: G) (inv: G -> G)
:= {

dot_assoc : forall x y z: G, dot x (dot y z) = dot (dot x y) z;
one : forall x: G, dot one x = x;
inv : forall x: G, one = dot (inv x) x;
comm : forall a b: G, dot a b = dot b a; }.

Here, our definition is encoded as an abstract type class, AbeGroup,
which takes four parameters: G, dot , one and inv . The type of G
is Set as required by our definition. The type G → G → G of dot
encodes it as a prefix function (rather than an infix operator) which

takes two elements from G and returns an element in G. The type
of one is G itself, encoding that one ∈ G. The type G → G of inv
encodes it is a function which takes an element fromG and returns

an element inG . The conditions that makeG and Abelian group are

encoded inside the body of the class. We can now instantiate the

class AbeGroup by providing the four parameters, together with

proofs that the four conditions are met by the chosen parameters.

Coq will only allow the chosen instance if all proofs are correct.

A vector space is the primary structure used in our work on

Helios and mixnets. In particular, we will normally be interested

in the vector space of a cyclic group of prime order over the field

of integers modulo the same order. Our Coq formalisation of the

vector space follows.

Definition 5.2 (Vector Space). A vector space is a set G with a

binary operator ·, identity element e inG , a unary operator −G , and
a set F with two binary operators + and ∗, two identity elements 0

and 1 in F , two unary operators −F , 1/, and binary (exponentiation)
operator −−

such that:

Abelian group: ⟨G, ·, e,−G ⟩ form an Abelian Group

Field: ⟨F ,+, ∗, 0, 1,−F , 1/⟩ form a field

Distributivity with respect to vector addition:

∀r ∈ F ,∀x ,y ∈ G, (x · y)r = xr · yr

Distributivity with respect to field addition:

∀r , s ∈ F ,∀x ∈ G,xr+s = xr · xs

Compatibility: ∀r , s ∈ F ,∀x ∈ G,xr∗s = xr
s

Identity: ∀x ∈ G,x1 = x
Annihilator: ∀x ∈ G,x0 = 1

Class VectorSpace(G: Set) (Gdot: G -> G -> G) (Gone: G)
(Ginv: G -> G) (op: G -> F -> G) (F: Set)
(Fadd: F -> F -> F) (Fzero: F) (Fsub: F -> F -> F) (Finv: F -> F)
(Fmul: F -> F -> F) (Fone: F) (FmulInv: F -> F) (Fdiv: F-> F-> F)

:= {
vs_field :> field_theory Fzero Fone Fadd Fmul Fsub Finv Fdiv
FmulInv (@eq F);
vectorspace_abegrp :> AlbGroup G Gdot Gone Ginv;

mod_dist_Gdot : forall (r : F) (x y : G),
op (Gdot x y) r = Gdot (op x r) (op y r);

mod_dist_Fadd : forall (r s : F) (x : G),
op x (Fadd r s) = Gdot (op x r) (op x s);

mod_dist_FMul : forall (r s: F) (x : G),
op x (Fmul r s) = op (op x s) r;

mod_id : forall (x : G), op x Fone = x;
mod_ann : forall (x : G), op x Fzero = Gone;

}.

Here, @eq denotes the Leibniz equality of elements of type F.

Having defined the basic algebraic structures we proceed to

define the type of a sigma protocol. In essence it is a collection of

sets and algorithms defined over those sets.

Definition 5.3 (Sigma protocol form). The form of a sigma protocol

is a collection of the following sets and functions:

• A set S of statements

• A setW of witness

• A function Rel defining a relationship between S andW
• A set C of commitments

• A set R of random coins for the prover

• A set E of challenges

• A binary operator + on E
• An element 0 of E
• A unary operator − on E
• A function disjoint from two elements of E to a boolean

• A set T of responses

• A function P0 mapping a statement, random coin andwitness

into a tuple of a statement and a commitment.

• A functionV0 mapping a tuple of a statement, a commitment

and a challenge into a tuple of a statement, commitment and

challenge.

• A function P1 mapping a tuple containing a statement, com-

mitment and challenge, a random coin, and a witness into

a tuple containing a statement, commitment, challenge and

response.

• A function V1 which maps a tuple containing a statement,

commitment, challenge and response into a boolean.

• A function simulator which maps a statement, repose and

challenge into a tuple containing a statement, commitment,

challenge and response.

• A function simMap which maps a statement, random coin,

challenge and witness into a response.

• A function extractor which maps two response and chal-

lenges into a witness.

Variable E: Set. (* The set of challenges *)
Record form := mkForm {

S: Set; W : Set; (* sets of statements and witnesses *)
(* The relation function and the set of commitments *)

Rel: S -> W -> bool; C: Set;
(* The set of random coins for the prover *)

R: Set; add: E -> E -> E; zero: E; inv : E -> E;
disjoint: E -> E -> bool; (* required for product groups *)
T: Set; (* The set of responses *)

(* The initial step of the prover , outputs a commitment *)
P0: S -> R -> W -> (S * C);

(* The initial step of the verifier , outputs a challenge *)
V0: (S * C) -> E -> (S * C * E);

(* The final step of the prover , outputs a response *)
P1: (S * C * E) -> R -> W -> (S * C * E * T);

(* The final step of the verifier *)
V1: (S * C * E * T) -> bool;

(* The simulator *)
simulator: S -> T -> E -> (S * C * E * T);

(* An explicit mapping between honest and simulated *)
simMap: S -> R -> E -> W -> T;

(* The extractor *)
extractor: T -> T -> E -> E -> W

}.

ACoqRecord is akin toClass , and they can be used interchangeably,
but a class supports more automated type inference and can be

easily extended by another class. The keyword Variable which

introduces can abstract variable which is concretely defined later,

the pairing operation S ∗ C which is the type consisting of pairs

(s, c) where s is of type S and c is of type C , and the type bool
which encodes that the function disjoint returns a Boolean value

of true or else false; this is why “= true” turns up later. The set E of

challenges is external to the record for technical reasons. We later

use combiners which only work if the set of challenges for two

sigma protocol are equal; for Coq to type check these combiners

it needs to know externally of the record that the challenge set is

the same. For this reason you will see Siдma. f orm E to denote an

instantiation of sigma protocol form with the challenge set E.
An object of the type Sigma protocol form is a Sigma protocol if it

satisfies the conditions shown below in Definition 5.4. The core of

the requirements are, of course, correctness, special soundness, and

honest verifier knowledge. We define honest verifier zero knowl-

edge in a concrete way without referring to probabilities; we show

that there exists a bijection between the transcripts generated by

taking the random coin from the commit in P0 and by taking the

response at random in the simulation. In addition we require the

challenge space to be an abelian group, the algorithms to output the

transcript they receive without change, that algorithm V 0 outputs

the challenge from its randomness tape without modification, and

that the simulator produces accepting transcripts on all inputs. The

principal advantage of this formalisation is that we define a final

verification step which is what we will extract.

Definition 5.4 (Sigma protocol). An object with the form of a

sigma protocol is a sigma protocol if it satisfies the following, where

we use⇒ for logical implication since→ is used for another concept

in the cryptographic community:

• Correctness: ∀s ∈ S,w ∈ W , r ∈ R, c ∈ E,Rel(s,w) =

true ⇒ V1(P1(V0(P0(s, r ,w), c)r ,w) = true
• Special Soundness: ∀s ∈ S, c ∈ C, e1e2 ∈ E, t1t2 ∈ T ,
disjoint(e1, e2) = true ⇒ V1(s, c, e1, t1) = true ⇒
V1(s, c, e2, t2) = true ⇒ Rel(s, extractor (t1, t2, e1, e2)) =
true .

• Honest Verifier Zero Knowledge: ∀s ∈ S,w ∈W , r ∈ R, e ∈

E,Rel(s,w) = true ⇒ P1(V0(P0(s, r ,w), e), r ,w) =

simulator (s, simMap(s, r , e,w), e) ∧ ∀t ∈ T ,∃r ∈ R s.t. t =
simMap(s, r , e,w).

• Simulator Correctness: ∀s ∈ S, t ∈ T , e ∈ E,
V1(Simulator (s, t , e)) = true .

• The first part of the output of the functions P0,V0, P1,V1,
simulator is the first element of their input. That is, if you

consider the first part of the input as the protocol transcript,

they appended to that transcript without modifying the pre-

fix.

• The function V0 appends to the protocol transcript the chal-

lenge it receives without modification.

• The function simulator outputs the challenge it receives

without modification.

• The response included in the output of function simulator
does not depend upon the statement.

Class SigmaProtocol (Sig: Sigma.form E) := {
e_abgrp :> AbeGroup E Sig.add Sig.zero Sig.inv;

(** The functions do not modify the previous transcript *)
pres_p0: forall (s: Sig.S) (r: Sig.R) (w: Sig.W),

(Sig.P0 s r w) = (s,(Sig.P0 s r w).2);
pres_v0: forall (sc : Sig.S*Sig.C)(e : E),

(Sig.V0 sc e) = (sc ,(Sig.V0 sc e).2);
pres_p1: forall (sce: Sig.S*Sig.C*E) (r: Sig.R) (w: Sig.W),

(Sig.P1 sce r w) = (sce ,(Sig.P1 sce r w).2);
pres_sim: forall (s: Sig.S)(t : Sig.T)(e : E),

(s, (Sig.simulator s t e).1.1.2) = (Sig.simulator s t e).1.1;

(** For composability V0 maps E to E independently of S*C *)
comp_v0: forall (sc: Sig.S*Sig.C) (e: E), e = (Sig.V0 (sc) e).2;

(** The simulator 's challenge and response are independent
of the statement *)

chal_sim: forall (s: Sig.S)(t : Sig.T)(e : E),
e = (Sig.simulator s t e).1.2;

comp_sim1: forall (s1 s2 : Sig.S)(t :Sig.T)(e: E),
(Sig.simulator s1 t e).2 = (Sig.simulator s2 t e).2;

(** Properties *)
correctness: forall (s :Sig.S) (w: Sig.W) (r: Sig.R) (c: E),

Sig.Rel s w ->

Sig.V1 (Sig.P1 (Sig.V0 (Sig.P0 s r w) c) r w) = true;

special_soundness: forall (s: Sig.S) (c: Sig.C) (e1 e2: E)
(t1 t2: Sig.T),
Sig.disjoint e1 e2 ->
Sig.V1 (s, c, e1, t1) = true ->
Sig.V1 (s, c, e2, t2) = true ->
Sig.Rel s (Sig.extractor t1 t2 e1 e2) = true;

honest_verifier_ZK:
forall (s: Sig.S) (w: Sig.W) (r: Sig.R) (e: E),

Sig.Rel s w = true ->
(Sig.P1(Sig.V0 (Sig.P0 s r w) e) r w) =
Sig.simulator s (Sig.simMap s r e w) e /\
forall (t: Sig.T),
exists r: Sig.R, t = (Sig.simMap s r e w);

simulator_correct: forall (s: Sig.S) (t: Sig.T) (e: E),
Sig.V1(Sig.simulator s t e) = true;

Given a tuple a = (A,B), the notation a.1 and a.2 respectively return
A as the first and B as the second element of a.

To allow some of the combiners we need, we define a stronger

variant called a composable sigma protocol. In essence a composable

sigma protocol is a sigma protocol where the statement does not

effect the response returned, this is true of most sigma protocols

but notably, not for those over disjunctive statements.

Definition 5.5 (Composable Sigma Protocol). An object with the

form of a sigma protocol is a composable sigma protocol if the

following conditions are satisfied:

• The object is a sigma protocol

• Compose P1:∀s1s2 ∈ S, c1c2 ∈ C, e ∈ E, r ∈ R,w ∈W ,Rel(s1,w)∧

Rel(s2,w) ⇒

P1(((s1, c1), e), r ,w).2 = P1(((s2, c2), e), r ,w).2.

• Compose simMap: ∀s1s2 ∈ S, r ∈ R, e ∈ E,w ∈W ,
simMap(s1, r , e,w) = simMap(s2, r , e,w).

On top of this formalisation of sigma-protocols, we define, en-

code and formally verify various combiners, as explained next. To

save space, their Coq encodings are in Appendix C. Given a sigma

protocol for relation R, we can define sigma protocols for the fol-

lowing relationships. The equality relation R′
such that ((s1, s2),w)

are in R′
iff (s1,w) ∈ R ∧ (s2,w) ∈ R, where the prover shows they

have a witness that simultaneously satisfies two statements.

Theorem 5.6. If a sigma protocol S is composable then so is the
sigma protocol produced by running eqSigmaProtocol on S .

Theorem eqCorr :
CompSigmaProtocol E sigma ->

CompSigmaProtocol E (eqSigmaProtocol E sigma).

The and relation R′
such that ((s1, s2), (w1,w2)) are in R′

iff

(s1,w1) ∈ R ∧ (s2,w2) ∈ R, where the prover shows they know

two witnesses that satisfy two statements.

Theorem 5.7. If S is a sigma protocol then so is the result of
running andSigmaProtocol on S .

The disjunctive relationR′
such that (s1, s2,w) are inR′

iff (s1,w) ∈

R∨R(s2,w) ∈ R, where the prover shows they have know a witness

that satisfies one of two statements.

Theorem 5.8. If S is a sigma protocol then running disSigmaProto-
col on S produces a sigma protocol, provided that the disjoint function
of S is equivalent to the negation of the equal function.

Given two sigma protocols for relationship R and R′
, respectively,

can we define a new sigma protocol for the following relationship?

The parallel relation R′′
such that ((s1, s2), (w1,w2)) are in R′′

iff

(s1,w1) ∈ R ∧ (s2,w2) ∈ R’. That is, where the prover shows they
know two witnesses that satisfy the two statements.

Theorem 5.9. If S and S ′ are sigma protocols then running par-
SigmaProtocol on S and S ′ produces a sigma protocol.

Given two sigma protocols, one for the relationship R and one

for the relationship R′
, where both sigma protocols have the same

challenge set, can we define a new sigma protocol for the following

relationship. The and relation R′
such that ((s1, s2), (w1,w2)) are in

R′
iff (s1,w1) ∈ R ∧ (s2,w2) ∈ R, where the prover shows they have

know two witness that satisfy two statements.

Theorem 5.10. If S and S ′ are sigma protocols with the same chal-
lenge space then running genAndSigmaProtocol on S and S ′ produces
a sigma protocol.

5.2 Concrete Sigma Protocols
Many of the most common sigma protocols used in e-voting are

some form of proof knowledge of discrete log.

Definition 5.11. The discrete log (dLog) is a relationship between

two group elements and one field element where the second group

element is equal to the first to the power of the field element.

Definition dLog (s: G*G)(w: F) :=
let g := s.1 in
let gtox := s.2 in
gtox = (g^w).

We then define the component algorithms for the sigma protocol

for knowledge of discrete log.

Definition valid_P0 (ggtox: G*G) (r: F) (w: F): (G*G*G) :=
let g := ggtox.1 in
(ggtox , g^r).

Definition valid_V0 (ggtoxgtor: G*G*G) (c: F): (G*G*G*F)
:= (ggtoxgtor , c).

Definition valid_P1 (ggtoxgtorc: G*G*G*F) (r x: F) : G*G*G*F*F :=
let c := snd (ggtoxgtorc) in
let s := (r + c*x) in (ggtoxgtorc , s).

Definition valid_V1 (ggtoxgtorcs : G*G*G*F*F) :=
let g := fst (fst (fst (fst ggtoxgtorcs))) in
let gtox := snd (fst (fst (fst ggtoxgtorcs))) in
let gtor := snd (fst (fst ggtoxgtorcs)) in
let c := snd (fst ggtoxgtorcs) in
let s := snd ggtoxgtorcs in
(g^s) = ((gtox^c) o gtor).

Definition simulator_mapper (s: G*G) (r c x: F):=
(r+x*c).

Definition simulator (ggtox: G*G) (z e: F) :=
let g := fst ggtox in
let gtox := snd ggtox in

(ggtox , g^(z) o \ gtox^e, e, z).

Definition extractor (s1 s2 c1 c2: F) :=
(s1 - s2) / (c1 - c2).

Definition disjoint (c1 c2: F) :=
neg (c1 = c2).

We use ◦ for the group operation and \ for the group inverse.

We then use these algorithms to define the sigma protocol form.

Definition dLogForm : Sigma.form F := Sigma.mkForm F (prod G G) F
dLog G F Fadd Fzero Finv Fbool_eq disjoint F valid_P0 valid_V0
valid_P1 valid_V1 simulator simulator_mapper extractor.

We then prove that the sigma protocol form is a sigma protocol.

Theorem dLogSigma: CompSigmaProtocol F dLogForm.

We can now take advantage of the combiners to generate more

complicated protocols. First, we apply the the equality combiner to

construct a sigma protocol for equality of discrete logs. This sigma

protocol is used to prove that a ciphertext decrypts to a particular

value, as we will show below. We call this the DHTForm because

it is used to prove that four groups elements are a Diffie-Hellman

Tuple that is of the form (д,дa ,дb ,дab).

Definition DHTForm: Sigma.form F := eqSigmaProtocol F dLogForm.

To prove that one of two tuples is a Diffie-Hellman Tuple, we form

the disjunction of DHTForm, and use it to prove that an ElGamal

ciphertext is the encryption of one of two messages.

Definition DHTDisForm: Sigma.form F := disSigmaProtocol F DHTForm.

6 A PROVABLY CORRECT VERIFIER FOR
HELIOS

Having encoded the basic algebraic structures and the definitions

and combiners for sigma protocols, we proceed to instantiate them

to Helios, as used in the 2018 IACR directors election. To do so,

we must instantiate our basic algebraic definitions for the specific

Schnorr group used in the election. Recall that a Schnorr group is

a multiplicative Abelian subgroup of prime order q of the field of

integers modulo a primep, withp = kq+1 for some k . To instantiate
this group we must first prove that p and q are prime.

Interactive theorem provers are designed for proving mathe-

matical statements, but not for running computations inside their

environment. Consequently, computationally intensive proofs of

mathematical statements, such as number theoretic proofs, are not

ideal for interactive theorem provers. However, recent advances in

interactive theorem provers (specifically Coq) allowed us to prove

primality of two large prime numbers inside Coq. To begin with

we utilise the CoqPrime library
3
to prove in Coq that the numbers

p and q used by ICAR to define the Schnorr group (as described

above) are in fact prime.

Definition P : Z := 16328632084933010002384055033805457329601614771
1859553897391673090862148004064657990385836349537529416756455621824
9812075026498049238137557936767564877129380031037096474576701424363
8518442553823973482995267304044326777047662957480269391322789378384
6194285964464469846943061876447674624609656225800875643392126317758
1789595840901667639897567126617963789855768731707617721884323315069
5157881061257053019133078545928983562221396313169622475509818442661
0470184362648069010239662367183672047107559358990137503061077380023
6413791742659573740387111418775080434656473125060919684663818390398
2387884578266136503697493474682071.
Lemma P_prime : prime P.

Definition Q : Z := 61329566248342901292543872769978950870633559608
669337131139375508370458778917.
Lemma Q_prime : prime Q.

We can now make use of the modular arithmetic components of

the CoqPrime library to define the field of integers modulo Q .

Definition F : Set := (znz Q).
Definition Fadd : R -> R -> R := (add _).
Definition Fzero : R := (zero _).
Definition Fbool_eq (a b :R) : bool := Z.eqb (val Q a) (val Q b).
Definition Fsub : R -> R -> R := (sub _).
Definition Finv : R -> R := (opp _).

3
https://github.com/thery/coqprime

Definition Fmul : R -> R -> R := (mul _).
Definition Fone : R := (one _).
Definition FmulInv : R -> R := (inv _).
Definition Fdiv : R-> R-> R := (div _).
Lemma Ffield : field_theory Fzero Fone Fadd Fmul Fsub Finv Fdiv

FmulInv (@eq F).

We now define the function to check membership in the subgroup

of order Q of the integer modulo P .

Definition inQSubGroup (n: Fp): Prop
:= binary_power n (Z.to_nat Q) = one P.

With this function we can define the group that we will work in.

Definition G: Set := { Fp | inQSubGroup Fp }.

A subset type, represented as {x : A | P x}, denotes the subset of

elements of the type A which satisfy the predicate P. Subset types

are ideal for the situation where we need some kind of restriction

on data, e.g. in an integer division function, we want the divisor

to be non-zero. This restriction can easily be represent using the

subset type {div : Z | div , 0}.
Finally, we can define the vector space.

Instance HeliosIACR2018: VectorSpace F Fadd Fzero Fbool_eq Fsub
Finv Fmul Fone FmulInv Fdiv G Gdot Gone Gbool_eq Ginv op := {}.

Instance introduces an instance of a class, in this case VectorSpace.
The values immediately following the keyword VectorSpace are
parameters and the contents of ":= { }" are the methods, which in

this case is empty. We now define ElGamal encryption [25] in Coq.

Given a generator д, public key h, randomness r and messagem
return (дr ,hrm).

Definition enc (g h: G) (r: F) (m: G): (G*G) := (g^r,h^r o m).

An ElGamal ciphertext c decrypts to the messagem if there exists

r such that c = (дr ,hr o m).

Definition decryptsTo (g h: G) (c: (G*G)) (m: G)
:= exists (r: F), enc g h r m = c.

Our ElGamal ciphertext c must decrypt to one or zero where zero

is the identity element in the group and one is the generator.

Definition decryptsToOneOrZero (g h: G) (c: (G*G)): Prop :=
let zero := Gone in
let one := g in
decryptsTo g h c zero \/ decryptsTo g h c one.

A list cs of ElGamal ciphertexts is correctly formed for a Helios

system using approval voting if all ciphertexts decrypt to one or

zero.

Definition HeliosCorrectEncrApproval (g h: G) (cs: list (G*G)) :=
let zero := Gone in
let one := g in
Forall (decryptsToOneOrZero g h) cs.

To generalise our approach we define a function ApprovalSigma

which given a list of ElGamal ciphertexts produces a sigma protocol

to check that the ciphertexts are correctly encrypted. Similarly, we

define a function ApprovalSigmaStatement which given a list of

ElGamal ciphertext converts them into the statement of the sigma

protocol produced by ApprovalSigma.

We will now proceed to define two theorems "HeliosCorrectEn-

crApprovalList" and "HeliosCorrectDecrList", which together imply

that all the ballots are correctly formed and that the announced

result is the decryption of the summation of the ballots.

Theorem 6.1 (HeliosCorrectEncrApprovalList). For any gen-
erator д and public key h and for any list of voters voting on any
number of options, if you generate the statement and sigma protocol
using the functions ApprovalSigmaStatement and ApprovalSigma
and the verifier accepts two transcripts with different challenges then
we extract a witness which shows that the ciphertexts are correctly
encrypted, as defined in HeliosCorrectEncrApproval.

As we have already noted, this style of theorem combined with

the known relationship between special soundness and soundness

implies that the verifier only accepts with negligible probability

unless the statement is true.

Definition HeliosCorrectEncrApprovalList (g h: G)
(cs: list (list (G*G))): Prop :=

forall x: list(G*G),
In x cs ->

let Sig := ApprovalSigma x in
let s := (ApprovalSigmaStatement g h x) in

forall (c: Sigma.C (recChalType x) Sig) (e1 e2: (recChalType x))
(t1 t2: Sigma.T (recChalType x) Sig),

Sigma.V1 (recChalType x) Sig (s,c,e1,t1) ->
Sigma.V1 (recChalType x) Sig (s,c,e2,t2) ->
Sigma.disjoint (recChalType x) Sig e1 e2 ->
HeliosCorrectEncrApproval g h x.

We define decryptsTo2 as the decryption of an ElGamal ciphertext.

The implication is the same, however the evidence provided differs.

In the earlier definition the proof consisted of the randomness used

in encryption whereas here it consists of the secret key.

Definition decryptsTo2 (g h: G) (c: (G*G)) (m: G) :=
exists (x: F), g^x = h /\ (c.2 o - m) = c.1^x.

We now define decryptionConsistent which given a generator д,
public keyh and pair consisting of a ciphertext andmessage, returns

true if the message is encrypted in the ciphertext.

Definition decryptionConsistent (g h: G) (pair: (G*G)*G) :=
decryptsTo2 g h pair.1 pair .2.

We then define DecryptionSigma, which generates the sigma pro-

tocol for correct decryption, as a parallel composition of the Diffie

Hellman tuple sigma protocol.

Definition DecryptionSigma :=
parSigmaProtocol (F*F*F) F (parSigmaProtocol (F*F) F

(parSigmaProtocol F F DHTForm DHTForm) DHTForm) DHTForm.

decFactorStatement takes a generator д, public key h, ciphertext
c , and decryption factor d and returns a statement for the Diffie

Hellman tuple sigma protocol.

Definition decFactorStatement (g h: G)(c: G*G)(d: G): DHTForm.S
:= ((g,h),(c.1,d)).

We then define DecryptionSigmaStatement which produces state-

ments for the sigma protocol produced by DecryptionSigma.

Definition DecryptionSigmaStatement (g: G) (c: G*G)
(y: (G*G*G*G)) (d: (G*G*G*G)): DecryptionSigma.S :=
let '(y1,y2,y3,y4) := y in
let '(d1,d2,d3,d4) := d in
((decFactorStatment g y1 c d1),(decFactorStatment g y2 c d2),

(decFactorStatment g y3 c d3),(decFactorStatment g y4 c d4)).

We now define a theorem, which we prove later, which says the ver-

ifier of the sigma protocol accepting on the output of the statement

generator implies with overwhelming probability that the result

was correctly announced. For simplicity, we present this definition

for the concrete case of 4 authorities though this could be easily

generalised. The theorem says that for any generatorд, public keyh,
for authority subkeys, for all decryption factors and ciphertexts and

claimed result, if the verifier accepts for two different challenges

we can extract a witness for the truth of the statement.

Definition HeliosCorrectDecrList (g h: G)(y: (G*G*G*G))
(df: list(G*G*G*G))
(dt: list ((G*G)*G)) : Prop :=

let d := combine dt df in

forall x: ((G*G)*G*(G*G*G*G)),
In x d -> (*For all values to check the decryption of *)

let '(c1, c2) := x.1.1 in
let m := x.1.2 in
let '(df1 , df2 , df3 , df4) := x.2 in

(*Basic consistence , the sum of decryption factors is equal to
second element of the ciphertext divided by the claimed message *)
df1 o df2 o df3 o df4 = c2 o - m ->

let Sig := DecryptionSigma in
let s := DecryptionSigmaStatement g x.1.1 y x.2 in

forall (c: Sigma.C (F*F*F*F) Sig) (e1 e2: (F*F*F*F))
(t1 t2: Sigma.T (F*F*F*F) Sig),

Sigma.V1 (F*F*F*F) Sig (s,c,e1,t1) ->
Sigma.V1 (F*F*F*F) Sig (s,c,e2,t2) ->
Sigma.disjoint (F*F*F*F) Sig e1 e2 ->
decryptionConsistent g h x.1.

We prove the two theorems defined above.

Theorem HeliosCorrectResultApproval :
(*The outer list contains each voter and the inner list

contains their ciphertext on each option *)
forall numOpts numVoter: nat ,
forall (g h: G)(cs: list (list (G*G))),
forall (y: (G*G*G*G)),(* Authoritity keys *)
(* Decryption Factors , each authority each option *)
forall (df: list (G*G*G*G)),
forall (r: list F), (* Results *)

length cs = numVoter -> (*Basic data length consistency *)
Forall (lenEqualToN numOpts) cs ->
length df = numOpts ->
length r = numOpts ->

(*Data consistence *)
y.1.1.1 o y.1.1.2 o y.1.2 o y.2 = h ->
(* The authority decryption keys combine to give the h *)

let summation := map Prod cs in
let resultInGroup := map (mapToGroup g) r in
let dt := combine summation resultInGroup in

(*All ballots are correctly formed AND
the announced result is correct *)

HeliosCorrectEncrApprovalList g h cs /\
HeliosCorrectDecrList g h y df dt.

Proof.

6.1 Verifying a real election
We used the well developed program extraction [37] facility of Coq

to extract the definitions above into OCaml code. It can, also, be

used to extract proofs into Haskell or Scheme programs. Specifically

we extracted the DecryptionSigma, DecryptionSigmaStatement,
ApprovalSigma, and ApprovalSigmaStatement.

We then retrived the votes, results and proof from the Helios

IACR 2018 directors election from the Helios website, the election

address can be found here
4
—you can find the data combined into

.json files in our code repository, see appendix A. The main verifica-

tion code lies in main.ml, it is very simple, it parses the JSON files

and feeds the data into the sigma protocols extracted from Coq. The

4
https://vote.heliosvoting.org/helios/elections/60a714ea-ce6d-11e8-8248-

76b4ab96574c/view

election had four authorities, seven candidates (which the voter

could select any subset of), and 465 cast ballots. The election takes

two minutes to verify on a single core of a MacBook Pro (2.3Ghz),

the peak memory usage is 53MB. We note that the verification work

can be parallelized trivially.

7 APPLICATIONS TO MIXNETS
Verifiable e-voting schemes which use homomorphic tallying, such

as Helios, rely only on sigma protocols for verifiability, but many

verifiable e-voting schemes use mixnets instead. Mixnets were first

introduced by Chaum [15] as a solution to the traffic analysis prob-

lem. In the context of e-voting they are commonly used to provide

anonymity. The process is normally, that encrypted votes appear

next to the voter’s identity on the first bulletin board. These bal-

lots are then re-encrypted and shuffled several times before being

decrypted. Clearly, if the mixnet doing the shuffle is not verifiable

this would allow ballot substitution. To prevent this, e-voting has

long made use of verifiable mixnets first introduced by Neff [39]

and Furukawa et al [24]. Verifiable mixnets use more complicated

zero knowledge protocols called proofs of shuffle to prove that the

output of the mixnet is a permuted re-encryption of the input.

Wikström’s proof of shuffle [47] and follow up work with Tere-

lius [46] is one of the most common proofs of shuffle.Wikström’s re-

sult applies to many cryptosystems so we take the optimised variant

for ElGamal [45] which is widely deployed in practice [13, 44, 48];

it has been used in binding government elections in Norway, Spain

and Estonia. We demonstrate that it is feasible to formally prove

the correctness of verifiable mixnets inside an interactive theorem

prover and then extract the verifier.

We first define the statements which the mixnet proves. The

mixnet shows that the ballots were permuted using a permuta-

tion previously committed to by the prover. Since the commitment

scheme used is perfectly hiding, but only computational binding, it

is always possible that the commitments were broken by the adver-

sary rather than the mix being correct. We define how the Pedersen

commitment works and what it means for the binding property of

the commitment to be broken in the next four definitions.

Definition 7.1 (Petersen Commitment). A Pedersen commitment

for two group elements h, h1 ∈ G and messagem ∈ F and random-

ness r ∈ F is c ∈ G = hrhm
1
.

Definition PC (h: G) (h1: G) (m : F) (r: F): G
:= h^r o h1^m.

We enforce that c ∈ G by setting the return type of PC to be G.

Definition 7.2 (Extended Petersen Commitment). An extended

Pedersen commitment for a group element h ∈ G, and a vector of

group elements (h1, ...,hn) and vector of messages (m1, ...,mn) and

randomness r ∈ F is c ∈ G = hr
∑n
i=1 h

mi
i .

Definition EPC (h: G) (hs: V2G) (m: V2F) (r: F): G
:= h^r o V2G_prod (V2M_Pexp hs m).

Definition 7.3 (Binding Pedersen Commitment Relation). Given
two group elements h, h1 ∈ G we say that the binding property is

broken if an adversary can find a commit c ∈ G and two openings

(m1, r1), (m2, r2) ∈ F such thatm1 ,m2 and c = h
r1hm1

1
= hr2hm2

1
.

We recall that the binding property reduces to the discrete log

problem in the underlying group. For this problem to be hard, д
and h should be random generators chosen in a way such that no

non-trivial information is leaked about the relationship between

them. However, as we have already mentioned, correct parameter

generation is currently out of scope for our work.

Definition relComPC (h: G) (h1: G) (c: G) (* Statement *)
(m1 m2: F) (r1 r2: F) := (* Witness *)

m1 <> m2 /\
c = (PC h h1 m1 r1) /\ c = (PC h h1 m2 r2).

Definition 7.4 (Binding Extended Pedersen Commitment). Given a

group elements h ∈ G and a vector of group elements (h1, ...,hn) ∈
G we say that the binding property is broken if an adversary can

find a commit c ∈ G and two openings ((m1, ...,mn), r) ∈ F and

((m′
1
, ...,m′

n), r
′) ∈ F such that mi , m′

i for some i and and c =

hr
∑n
i=1 h

mi
i = hr

′ ∑n
i=1 h

m′
i

i .

Definition relComEPC (h: G) (hs: V2G) (c: G) (* Statement *)
(m1 m2: V2F) (r1 r2: F) (* Witness *)

:= m1 <> m2 /\
c = (EPC h hs m1 r1) /\ c = (EPC h hs m2 r2).

If the commitments were not broken then the shuffle must be cor-

rect. The correctness of the shuffle is captured by the three following

definitions.

First we describe what it means to commit to a permutation.

Definition 7.5 (Matrix Commitment). Given a group element h ∈

G, a vector of group elements (h1, ...,hn) ∈ G, a square matrix

m ∈ Fn∗n , and a vector of field elements (r1, ..., rn) ∈ F , the matrix

commitment is vector of group elements (c1, ..., cn) where ci =

hri
∑n
j=1 h

mi, j
j .

Definition 7.6 (Permutation commitment relation). Given a group

element h, a vector of group elements (h1, ...,hn) ∈ G, a commit-

ment c , a matrixm and vector of field elements (r1, ..., rn), we say
they satisfy the permutation commitment relation if the matrixm
is a permutation matrix and c is a matrix commitment tom using

randomness r .

Definition 7.7 (Shuffle and re-encryption relation). Given a group

element д, public key pk , vectors of ElGamal ciphertexts (e1, ..., en)
and (e ′

1
, ..., e ′n), matrixm, and vector of field elements (r1, ..., rn),

we say they satisfy the shuffle and re-encryption relation if the

output ciphertext vector is the re-encryption of the vector of input

ciphertexts multiplied bym using the randomness.

We begin by defining the underlying sigma protocol which un-

derpins Wikström’s mixnet in the case of ElGamal encryption. We

have moved the definition of u’Form to the appendix since the

fitness of the sigma protocol for its purpose is checked by Coq.

Definition WikstromSigma :=
parSigmaProtocol (parSigmaProtocol dLogForm dLogForm)

(u'Form).

We now have all material to define our concluding theorem. The

theorem has a fair bit of detail but in essence it says that if the

verifier from sigma protocol WikstromSigma accepts transcripts

containing statements of certain forms then either the commitments

are broken or the shuffle was performed correctly. This, coupled

with the known relation between soundness and special sound-

ness, implies that checking the verifier suffices for ensuring correct

mixing, if the commitments parameters are generated correctly.

Theorem 7.8 (Special Soundness of Mixnet). For all group ele-
mentsд, public keyspk , two vectors of ElGamal ciphertexts (e1, ..., en)
and (e ′

1
, ..., e ′n), group elementsh, a vector of group elements (h1, ...,hn) ∈

G, matrix commitments c and primary challenge matrices U if the
determinant of U is non-zero it implies that:

For all vector of group elements ĉ1, ĉ2 if you take the Wikström-
sigma protocol and statements s1 and s2 generated by calling Wik-
stromStatement on the above, if the adversary can create 2n accepting
transcripts than we efficiently compute either a witness that breaks
the binding property of the c ommitments or a witness that the shuffle
was correctly done.

We will first explain why the assumptions in the theorem are

acceptable and then briefly describe the proof.

The first assumption is that the primary challenge matrixU has

a non-zero determinant. This is fine because the challenge matrix

is chosen by the verifer at random and a random matrix has a non-

zero determinant with overwhelming probability. The second set

of assumptions is that we can get 2n accepting transcripts of the

correct form. This assumption is what makes the theorem a type of

special soundness. We remind the reader that special soundness im-

plies soundness and hence proving this theorem implies producing

a single accepting transcript is computationally unfeasible unless

the statement is true. The Schwartz-Zippel lemma assumptions

assume we are in the overwhelming probable case where polyno-

mial tested using the Schwartz-Zippel is zero. In particular, the

proof relies on a theorem which states that a square matrix is a

permutation matrix if and only if it satisfies two equations. One of

the equations is defined over the ring of polynomials rather than

the field. The Schwartz-Zippel lemma is used to efficiently prove

that the polynomial equalities hold with overwhelming probability.

By assuming that the events which occur with only negligible

probability to do not happen, our proof is simplified to linear algebra.

The flow of the proof is the same as in the original papers [46, 47],

and in particular to the verbose proof of the optimised variant

in [32]. The structure of the proof is in two stages. First, it proves

that the accepting transcripts allow it to extract witness satisfying

some sub-statements; this follows nearly immediately from the

special soundness of the underlying sigma protocol. Then it proves

given witnesses to these sub-statements it can produce a witness

for validity of theorem 7.8.

8 CONCLUSION AND FURTHERWORK
We have created the first provably correct verifier for a real e-

voting scheme, along with the technical machinery required to

easily produce this kind of verifier for a wide class of e-voting

schemes. Our verifier is able to efficiently verify a real election.

We have also proved a mixnet secure in an interactive theorem

prover, which had not previously been done. As with the sigma

protocols, we can extract the verifier and use this in real elections.

8.1 Future Work
We intend to model the Fiat-Shamir transform and commitment

parameter generation.

It would be ideal to unify our work with the existing research

on e-voting security definitions; but, this is highly non-trivial. It

remains an open problem to encode the existing definitions into

Coq, prove that specific voting schemes meet these definitions and

then extract the code that actually implements these schemes (as

well as their verifiers). This would naturally extend our work to

cover the area of privacy as well as integrity.

We have demonstrated techniques that enable proving and ex-

traction of mixnets in Coq. To make this viable for real elections,

we need to generalise the proofs, since at present, the mixnet only

allows the shuffling of a fixed number of ballots. We stress that this

work is not technically complicated but time consuming.

Another gap is that the extraction mechanism of Coq does not

come with formal correctness guarantees that reach down to the

machine code level, such as, for example, in CakeML [35].

As some readers may have noticed, our Coq formalisation—while

fit for purpose—could benefit from further refinement. We intend to

do this and provide better tooling to allow other interested parties

to more easily adapt our work to their elections.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

helpful comments. Thomas Haines acknowledges the support of

the Luxembourg National Research Fund (FNR) and the Research

Council of Norway for the joint project SURCVS.

REFERENCES
[1] Ben Adida. 2008. Helios: Web-based Open-Audit Voting. In USENIX Security

Symposium, Paul C. van Oorschot (Ed.). USENIX Association, 335–348.

[2] José Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn, Ahmad-

Reza Sadeghi, and Thomas Schneider. 2010. A Certifying Compiler for Zero-

Knowledge Proofs of Knowledge Based on Sigma-Protocols. InComputer Security -
ESORICS 2010, 15th European Symposium on Research in Computer Security, Athens,
Greece, September 20-22, 2010. Proceedings. 151–167. https://doi.org/10.1007/978-
3-642-15497-3_10

[3] José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe, Stephan

Krenn, and Santiago Zanella Béguelin. 2012. Full proof cryptography: verifiable

compilation of efficient zero-knowledge protocols. In the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18,
2012. 488–500. https://doi.org/10.1145/2382196.2382249

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupres-

soir. 2016. Verifiable Side-Channel Security of Cryptographic Implementations:

Constant-Time MEE-CBC. In Fast Software Encryption, Thomas Peyrin (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 163–184.

[5] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire, and

Sylvain Heraud. 2010. A Machine-Checked Formalization of Sigma-Protocols. In

CSF. IEEE Computer Society, 246–260.

[6] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-Knowledge Argument for

Correctness of a Shuffle. In EUROCRYPT (Lecture Notes in Computer Science),
Vol. 7237. Springer, 263–280.

[7] Mihir Bellare and Oded Goldreich. 1992. On Defining Proofs of Knowledge. In

CRYPTO (Lecture Notes in Computer Science), Vol. 740. Springer, 390–420.
[8] Josh Benaloh. 2007. Ballot Casting Assurance via Voter-Initiated Poll Station

Auditing. In EVT. USENIX Association.

[9] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015.

Verified Correctness and Security of OpenSSL HMAC. In 24th USENIX Security
Symposium (USENIX Security 15). USENIX Association, Washington, D.C., 207–

221. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/

presentation/beringer

[10] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan

Warinschi. 2011. Adapting Helios for Provable Ballot Privacy. In Computer
Security - ESORICS 2011 - 16th European Symposium on Research in Computer
Security, Leuven, Belgium, September 12-14, 2011. Proceedings (Lecture Notes in
Computer Science), Vijay Atluri and Claudia Díaz (Eds.), Vol. 6879. Springer,

335–354. https://doi.org/10.1007\/978-3-642-23822-2_19

[11] David Bernhard, Olivier Pereira, and Bogdan Warinschi. 2012. How Not to Prove

Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In

https://doi.org/10.1007/978-3-642-15497-3_10
https://doi.org/10.1007/978-3-642-15497-3_10
https://doi.org/10.1145/2382196.2382249
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://doi.org/10.1007\/978-3-642-23822-2_19

ASIACRYPT (Lecture Notes in Computer Science), Vol. 7658. Springer, 626–643.
[12] Yves Bertot, Pierre Castéran, Gérard Huet, and Christine Paulin-Mohring. 2004.

Interactive theorem proving and program development : Coq’Art : the calculus of
inductive constructions. Springer.

[13] BFH-EVG. 2018. UniCrypt. https://github.com/bfh-evg/unicrypt. (2018).

[14] Alessandro Bruni, Eva Drewsen, and Carsten Schürmann. 2017. Towards a

Mechanized Proof of Selene Receipt-Freeness and Vote-Privacy. In E-VOTE-ID
(Lecture Notes in Computer Science), Vol. 10615. Springer, 110–126.

[15] David Chaum. 1981. Untraceable mail, return addresses and digital pseudonyms.

Commun. ACM 24(2) (1981), 84–88.

[16] Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien

Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. 2014. Verifying

Curve25519 Software. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’14). ACM, New York, NY, USA,

299–309. https://doi.org/10.1145/2660267.2660370

[17] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir, and Bogdan

Warinschi. 2018. Machine-Checked Proofs for Electronic Voting: Privacy and

Verifiability for Belenios. In CSF. IEEE Computer Society, 298–312.

[18] Véronique Cortier and Ben Smyth. 2013. Attacking and fixing Helios: An analysis

of ballot secrecy. Journal of Computer Security 21, 1 (2013), 89–148.

[19] Ronald Cramer. 1997. Modular Design of Secure yet Practical Cryptographic

Protocols.

[20] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. 1994. Proofs of Partial

Knowledge and Simplified Design of Witness Hiding Protocols. In CRYPTO
(Lecture Notes in Computer Science), Vol. 839. Springer, 174–187.

[21] Stéphanie Delaune, Mark Ryan, and Ben Smyth. 2008. Automatic Verification

of Privacy Properties in the Applied pi Calculus. In IFIPTM (IFIP Advances in
Information and Communication Technology), Vol. 263. Springer, 263–278.

[22] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. 2019. Simple High-

Level Code for Cryptographic Arithmetic - With Proofs, Without Compromises.

In 2019 2019 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,

Los Alamitos, CA, USA. https://doi.org/10.1109/SP.2019.00005

[23] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO (Lecture Notes in Computer
Science), Vol. 263. Springer, 186–194.

[24] Jun Furukawa and Kazue Sako. 2001. An Efficient Scheme for Proving a Shuffle.

In CRYPTO (Lecture Notes in Computer Science), Vol. 2139. Springer, 368–387.
[25] Taher El Gamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms. In CRYPTO (Lecture Notes in Computer Science), Vol. 196.
Springer, 10–18.

[26] Taher El Gamal. 1985. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE Transactions on Information Theory 31, 4 (1985),

469–472.

[27] Herman Geuvers, Freek Wiedijk, and Jan Zwanenburg. 2002. A Construc-

tive Proof of the Fundamental Theorem of Algebra Without Using the Ratio-

nals. In Selected Papers from the International Workshop on Types for Proofs
and Programs (TYPES ’00). Springer-Verlag, Berlin, Heidelberg, 96–111. http:

//dl.acm.org/citation.cfm?id=646540.696038

[28] Milad K. Ghale, Rajeev Goré, and Dirk Pattinson. 2017. A Formally Verified Single

Transferable Voting Scheme with Fractional Values. In E-VOTE-ID (Lecture Notes
in Computer Science), Vol. 10615. Springer, 163–182.

[29] Milad K. Ghale, Rajeev Goré, Dirk Pattinson, and Mukesh Tiwari. 2018. Modular

Formalisation and Verification of STV Algorithms. In E-Vote-ID (Lecture Notes in
Computer Science), Vol. 11143. Springer, 51–66.

[30] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge

Complexity of Interactive Proof-Systems (Extended Abstract). In STOC. ACM,

291–304.

[31] Georges Gonthier. 2008. The Four Colour Theorem: Engineering of a Formal

Proof. In Computer Mathematics, Deepak Kapur (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 333–333.

[32] Thomas Haines. 2019. A Description and Proof of a Generalised and Optimised

Variant of Wikström’s Mixnet. CoRR abs/1901.08371 (2019).

[33] J Alex Halderman and Vanessa Teague. 2015. The new south wales ivote system:

Security failures and verification flaws in a live online election. In International
Conference on E-Voting and Identity. Springer, 35–53.

[34] Wojciech Jamroga, Michal Knapik, and Damian Kurpiewski. 2018. Model Check-

ing the SELENE E-Voting Protocol in Multi-agent Logics. In E-Vote-ID (Lecture
Notes in Computer Science), Vol. 11143. Springer, 100–116.

[35] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014.

CakeML: a verified implementation ofML. In Proc. POPL 2014, Suresh Jagannathan
and Peter Sewell (Eds.). ACM, 179–192.

[36] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2012. Clash Attacks on the

Verifiability of E-Voting Systems. In IEEE Symposium on Security and Privacy.
IEEE Computer Society, 395–409.

[37] Pierre Letouzey. 2003. A New Extraction for Coq. In Proc. TYPES 2002 (Lecture
Notes in Computer Science), Herman Geuvers and Freek Wiedijk (Eds.), Vol. 2646.

Springer, 200–219.

[38] Lyria Bennett Moses, Rajeev Goré, Ron Levy, Dirk Pattinson, and Mukesh Tiwari.

2017. No More Excuses: Automated Synthesis of Practical and Verifiable Vote-

Counting Programs for Complex Voting Schemes. In E-VOTE-ID (Lecture Notes in
Computer Science), Vol. 10615. Springer, 66–83.

[39] C. Andrew Neff. 2001. A verifiable secret shuffle and its application to e-voting.

In ACM Conference on Computer and Communications Security. ACM, 116–125.

[40] Ronald L Rivest. 2008. On the notion of ’software independence’ in voting

systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 366, 1881 (2008), 3759–3767.

[41] Ben Smyth, Steven Frink, and Michael R. Clarkson. 2015. Election Verifiability:

Cryptographic Definitions and an Analysis of Helios, Helios-C, and JCJ. Cryptol-

ogy ePrint Archive, Report 2015/233. (2015). https://eprint.iacr.org/2015/233.

[42] Ben Smyth, Mark Ryan, Steve Kremer, and Mounira Kourjieh. 2010. Towards

Automatic Analysis of Election Verifiability Properties. In ARSPA-WITS (Lecture
Notes in Computer Science), Vol. 6186. Springer, 146–163.

[43] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,

Margaret MacAlpine, and J Alex Halderman. 2014. Security analysis of the Esto-

nian internet voting system. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 703–715.

[44] The state of Geneva. 2018. CHVote. https://github.com/republique-et-canton-

de-geneve/chvote-protocol-poc. (2018).

[45] Björn Terelius. 2015. Some aspects of cryptographic protocols: with applications
in electronic voting and digital watermarking. Ph.D. Dissertation. KTH Royal

Institute of Technology.

[46] Björn Terelius and Douglas Wikström. 2010. Proofs of Restricted Shuffles. In

AFRICACRYPT. Springer, 100–113.
[47] Douglas Wikström. 2009. A commitment-consistent proof of a shuffle. In Infor-

mation Security and Privacy. Springer, 407–421.
[48] Douglas Wikström. 2018. Verificatum. https://github.com/verificatum/

verificatum-vcr. (2018).

[49] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and

Benjamin Beurdouche. 2017. HACL*: A Verified Modern Cryptographic Library.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017.
1789–1806. http://doi.acm.org/10.1145/3133956.3134043

A CODE
We have made our code available at https://github.com/gerlion/

secure-e-voting-with-coq

B COQ CODE OMITED FROM SECTION 5
Class CompSigmaProtocol (Sig: Sigma.form E) := {

sigma_comp :> SigmaProtocol Sig;

comp_p1: forall (sc1 sc2: Sig.S*Sig.C) (e: E) (r: Sig.R)
(w: Sig.W),

(Sig.Rel sc1.1 w && Sig.Rel sc2.1 w) ->
(Sig.P1 (sc1 ,e) r w).2 = (Sig.P1 (sc2 ,e) r w).2;

comp_simMap: forall (s1 s2: Sig.S) (r: Sig.R) (e: E) (w: Sig.W),
Sig.simMap s1 r e w = Sig.simMap s2 r e w;

}.

Note that the following function does not depend on the content of

the list, only its length. The function could equally be defined on a

natural number; however, for technical reasons this complicates a

later proof.

Fixpoint ApprovalSigma (c: list (G*G)) : Sigma.form :=
match c with

| nil => emptyForm
| a :: b => parSigmaProtocol (ApprovalSigma b) DHTDisForm

end.

Theorem andCorr :
SigmaProtocol E sigma ->
SigmaProtocol E (andSigmaProtocol E sigma).

Theorem disCorr :
SigmaProtocol E sigma ->
(forall (a b: E),
sigma.disjoint a b <-> sigma.bool_eq a b = false) ->

SigmaProtocol E (disSigmaProtocol E sigma).

https://github.com/bfh-evg/unicrypt
https://doi.org/10.1145/2660267.2660370
https://doi.org/10.1109/SP.2019.00005
http://dl.acm.org/citation.cfm?id=646540.696038
http://dl.acm.org/citation.cfm?id=646540.696038
https://eprint.iacr.org/2015/233
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/republique-et-canton-de-geneve/chvote-protocol-poc
https://github.com/verificatum/verificatum-vcr
https://github.com/verificatum/verificatum-vcr
http://doi.acm.org/10.1145/3133956.3134043
https://github.com/gerlion/secure-e-voting-with-coq
https://github.com/gerlion/secure-e-voting-with-coq

Thorem parCorr :
SigmaProtocol E sigOne ->
SigmaProtocol E' sigTwo ->
SigmaProtocol (E*E') (parSigmaProtocol E E' sigOne sigTwo).

Theorem andGenCorr :
SigmaProtocol E sigOne ->
SigmaProtocol E sigTwo ->
(Sigma.disjoint E sigOne = Sigma.disjoint E sigTwo) ->
SigmaProtocol E (genAndSigmaProtocol E sigOne sigTwo).

Fixpoint ApprovalSigmaStatement (g h: G) (c: list (G*G)) :
(ApprovalSigma c).S :=

match c with
| nil => (g)
| a :: b => (ApprovalSigma g h b, (oneOrZeroCipher g h a))

end.

C COQ ENCODINGS OF SIGMA PROTOCOL
COMBINERS

The combiner for the equality relationship

Definition eqSigmaProtocol (Sig: Sigma.form E) :
Sigma.form E :=

let eqS: Set := prod Sig.S1 Sig.S1 in
let eqC: Set := prod Sig.C1 Sig.C1 in

let eq_Rel (s: eqS) (w: Sig.W1): bool := Sig.Rel1 s.1 w
&& Sig.Rel1 s.2 w in

let eq_P0 (s: eqS) (r: Sig.R1) (w: Sig.W1) :
(eqS*eqC) :=

let c1 := (Sig.P01 s.1 r w).2 in
let c2 := (Sig.P01 s.2 r w).2 in
(s,(c1,c2)) in

let eq_V0 (p0: eqS*eqC) (e: E): (eqS*eqC*E) :=
let s1 := p0.1.1 in
let s2 := p0.1.2 in
let c1 := p0.2.1 in
let c2 := p0.2.2 in

(p0 , (Sig.V01 (s1,c1),e).2) in

let eq_P1 (v0: eqS*eqC*E) (r: Sig.R1) (w: Sig.W1) :
(eqS*eqC*E*Sig.T1) :=

let s1 := v0 .1.1.1 in
let s2 := v0 .1.1.2 in
let c1 := v0 .1.2.1 in
let c2 := v0 .1.2.2 in
let e := v0.2 in
(v0 ,(Sig.P11 (s1,c1,e) r w).2) in

let eq_V1 (p1 : eqS*eqC*E*Sig.T1) : bool :=
let s1 := p1 .1.1.1.1 in
let s2 := p1 .1.1.1.2 in
let c1 := p1 .1.1.2.1 in
let c2 := p1 .1.1.2.2 in
let e := p1.1.2 in
let r := p1.2 in
Sig.V11 (s1,c1 ,e,r) && Sig.V11 (s2,c2,e,r) in

let eq_simulator(s: eqS) (r: Sig.T1) (e: E) :
(eqS*eqC*E*Sig.T1) :=

let s1 := s.1 in
let s2 := s.2 in
let sim1 := Sig.simulator1 s1 r e in
let sim2 := Sig.simulator1 s2 r e in
let c1 := sim1 .1.1.2 in
let c2 := sim2 .1.1.2 in
let e1 := sim1 .1.2 in
let r1 := sim1.2 in
(s,(c1,c2),e1 ,r1) in

let eq_simMap (s : eqS) (r: Sig.R1) (e :E) (w: Sig.W1) :
(Sig.T1) :=

Sig.simMap1 s.1 r e w in

let eq_extractor(r1 r2: Sig.T1) (e1 e2: E): (Sig.W1) :=
Sig.extractor1 r1 r2 e1 e2 in

Sigma.mkForm E eqS Sig.W1 eq_Rel eqC Sig.R1
Sig.add1 Sig.zero1 Sig.inv1 Sig.bool_eq1 Sig.disjoint1

Sig.T1 eq_P0 eq_V0 eq_P1 eq_V1 eq_simulator
eq_simMap eq_extractor.

The combiner for the and relationship

Definition andSigmaProtocol (Sig: Sigma.form E) :
Sigma.form E :=

let andS : Set := prod Sig.S1 Sig.S1 in
let andW : Set := prod Sig.W1 Sig.W1 in
let andC : Set := prod Sig.C1 Sig.C1 in
let andR : Set := prod Sig.R1 Sig.R1 in
let andT : Set := prod Sig.T1 Sig.T1 in

let and_Rel (s: andS) (w: andW): bool
:= Sig.Rel1 s.1 w.1 && Sig.Rel1 s.2 w.2 in

let and_P0 (s: andS) (r: andR) (w: andW) :
(andS*andC) :=

let c1 := (Sig.P01 s.1 r.1 w.1).2 in
let c2 := (Sig.P01 s.2 r.2 w.2).2 in
(s,(c1,c2)) in

let and_V0 (p0: andS*andC) (e: E): (andS*andC*E) :=
let s1 := p0.1.1 in
let s2 := p0.1.2 in
let c1 := p0.2.1 in
let c2 := p0.2.2 in

(p0, (Sig.V01 (s1,c1) e).2) in

let and_P1 (v0: andS*andC*E) (r: andR) (w: andW) :
(andS*andC*E*andT) :=

let s1 := v0 .1.1.1 in
let s2 := v0 .1.1.2 in
let c1 := v0 .1.2.1 in
let c2 := v0 .1.2.2 in
let e := v0.2 in
(v0 ,((Sig.P11 (s1,c1,e) r.1 w.1).2,

(Sig.P11 (s2,c2,e) r.2 w.2).2)) in

let and_V1 (p1: andS*andC*E*andT): bool :=
let s1 := p1 .1.1.1.1 in
let s2 := p1 .1.1.1.2 in
let c1 := p1 .1.1.2.1 in
let c2 := p1 .1.1.2.2 in
let e := p1.1.2 in
let r := p1.2 in
Sig.V11 (s1,c1,e,r.1) && Sig.V11 (s2,c2,e,r.2) in

let and_simulator (s: andS) (r: andT) (e: E) :
(andS*andC*E*andT) :=

let s1 := s.1 in
let s2 := s.2 in
let sim1 := Sig.simulator1 s1 r.1 e in
let sim2 := Sig.simulator1 s2 r.2 e in
let c1 := sim1 .1.1.2 in
let c2 := sim2 .1.1.2 in
let e1 := sim1 .1.2 in
let r1 := sim1.2 in
let r2 := sim2.2 in
(s,(c1,c2),e1 ,(r1,r2)) in

let and_simMap (s: andS) (r: andR) (e :E) (w: andW) :
(andT) :=

((Sig.simMap1 s.1 r.1 e w.1),
(Sig.simMap1 s.2 r.2 e w.2)) in

let and_extractor(r1 r2 : andT)(e1 e2 : E): (andW) :=
(Sig.extractor1 r1.1 r2.1 e1 e2,

Sig.extractor1 r1.2 r2.2 e1 e2) in

Sigma.mkForm E andS andW and_Rel andC andR
Sig.add1 Sig.zero1 Sig.inv1 Sig.bool_eq1 Sig.disjoint1

andT and_P0 and_V0 and_P1 and_V1 and_simulator
and_simMap and_extractor.

The combiner for the disjunctive relationship

Definition disSigmaProtocol (Sig: Sigma.form E) :
Sigma.form E :=

(*new statement space*)
let disS: Set := prod Sig.S1 Sig.S1 in
(*new commit space *)
let disC: Set := prod Sig.C1 Sig.C1 in
(*new random space *)
let disR: Set := prod (prod Sig.R1 Sig.T1) E in
(*new response space*)
let disT: Set := prod (prod Sig.T1 E) Sig.T1 in

let dis_Rel (s: disS) (w: Sig.W1): bool :=
Sig.Rel1 s.1 w || Sig.Rel1 s.2 w in

let dis_P0 (s: disS) (rzeb: disR) (w: Sig.W1) :
(disS*disC) :=

let e := rzeb.2 in
let z := rzeb .1.2 in
let r := rzeb .1.1 in
let hc1 := (Sig.P01 s.1 r w).2 in
let hc2 := (Sig.P01 s.2 r w).2 in
let sc1 := (Sig.simulator1 s.1 z e).1.1.2 in
let sc2 := (Sig.simulator1 s.2 z e).1.1.2 in
if (Sig.Rel1 s.1 w) then (s,(hc1 ,sc2))

else (s,(sc1 ,hc2)) in

let dis_V0 (p0: disS*disC) (e: E): (disS*disC*E) :=
(p0, e) in

let dis_P1 (v0: disS*disC*E) (rzeb: disR) (w: Sig.W1) :
(disS*disC*E*disT) :=

let s1 := v0 .1.1.1 in
let s2 := v0 .1.1.2 in
let c1 := v0 .1.2.1 in
let c2 := v0 .1.2.2 in
let e := v0.2 in
let se := rzeb.2 in
let z := rzeb .1.2 in
let r := rzeb .1.1 in
let e1 := (Sig.V01 (s1, c1)

(Sig.add1 e (Sig.inv1 se))).2 in
let ht1 := (Sig.P11 (s1,c1,e1) r w).2 in
let ht2 := (Sig.P11 (s2,c2,e1) r w).2 in
let st1 := (Sig.simulator1 s1 z se).2 in
let st2 := (Sig.simulator1 s2 z se).2 in
if (Sig.Rel1 s1 w) then (v0, ((ht1 ,e1,st2)))

else (v0, ((st1 ,se,ht2))) in

let dis_V1 (p1: disS*disC*E*disT) : bool :=
let s1 := p1 .1.1.1.1 in
let s2 := p1 .1.1.1.2 in
let c1 := p1 .1.1.2.1 in
let c2 := p1 .1.1.2.2 in
let e := p1.1.2 in
let e1 := p1 .2.1.2 in
let e2 := (Sig.add1 e (Sig.inv1 e1)) in
let r1 := p1 .2.1.1 in
let r2 := p1.2.2 in
(Sig.V11 (s1,c1,e1,r1) && Sig.V11 (s2,c2,e2,r2)) in

let dis_simulator(s: disS) (t: disT) (e: E) :
(disS*disC*E*disT) :=

let s1 := s.1 in
let s2 := s.2 in
let e1 := t.1.2 in
let e2 := (Sig.add1 e (Sig.inv1 e1)) in
let r1 := t.1.1 in
let r2 := t.2 in
let sim1 := Sig.simulator1 s1 r1 e1 in

let sim2 := Sig.simulator1 s2 r2 e2 in
let c1 := sim1 .1.1.2 in
let c2 := sim2 .1.1.2 in
let sr1 := sim1.2 in
let sr2 := sim2.2 in
let se1 := sim1 .1.2 in
let se2 := sim2 .1.2 in

(s,(c1,c2),e,((sr1 ,se1), (sr2))) in

let dis_simMap (s: disS) (rtcb: disR) (e :E) (w: Sig.W1)
: (disT) :=

let r := rtcb .1.1 in
let t := rtcb .1.2 in
let c := rtcb.2 in
let h1 := Sig.simMap1 s.1

r (Sig.add1 e (Sig.inv1 c)) w in
let h2 := Sig.simMap1 s.2 r

(Sig.add1 e (Sig.inv1 c)) w in
if (Sig.Rel1 s.1 w) then (h1 , Sig.add1 e (

Sig.inv1 c),t) else (t,c,h2) in

let dis_extractor (r1 r2: disT) (c1 c2: E): (Sig.W1) :=
let e1 := r1.1.2 in
let e2 := (Sig.add1 c1 (Sig.inv1 e1)) in
let e3 := r2.1.2 in
let e4 := (Sig.add1 c2 (Sig.inv1 e3)) in
let t1 := r1.1.1 in
let t2 := r1.2 in
let t3 := r2.1.1 in
let t4 := r2.2 in

if ~~(Sig.bool_eq1 e1 e3) then Sig.extractor1 t1 t3 e1
e3 else

Sig.extractor1 t2 t4 e2 e4 in

Sigma.mkForm E disS Sig.W1 dis_Rel disC disR
Sig.add1 Sig.zero1 Sig.inv1 Sig.bool_eq1 Sig.disjoint1

disT dis_P0 dis_V0
dis_P1 dis_V1 dis_simulator
dis_simMap dis_extractor.

The combiner for the parallel relationship

Definition parSigmaProtocol (Sig1: Sigma.form E)
(Sig2: Sigma.form E'): Sigma.form (E*E') :=

let parS: Set := prod Sig1.S1 Sig2.S2 in
let parW: Set := prod Sig1.W1 Sig2.W2 in
let parC: Set := prod Sig1.C1 Sig2.C2 in
let parR: Set := prod Sig1.R1 Sig2.R2 in
let parE: Set := prod E E' in
let parT: Set := prod Sig1.T1 Sig2.T2 in

let par_Rel (s: parS) (w: parW): bool :=
Sig1.Rel1 s.1 w.1 && Sig2.Rel2 s.2 w.2 in

let par_add (e1 e2: parE): parE :=
(Sig1.add1 e1.1 e2.1, Sig2.add2 e1.2 e2.2) in

let par_zero: parE :=
(Sig1.zero1 , Sig2.zero2) in

let par_bool_eq (e1 e2: parE): bool :=
Sig1.bool_eq1 e1.1 e2.1 &&

Sig2.bool_eq2 e1.2 e2.2 in

let par_inv (e: parE): parE :=
(Sig1.inv1 e.1, Sig2.inv2 e.2) in

let par_disjoint (e1 e2: parE): bool :=
Sig1.disjoint1 e1.1 e2.1 &&

Sig2.disjoint2 e1.2 e2.2 in

let par_P0 (s: parS) (r: parR) (w: parW):
(parS*parC) :=

let c1 := (Sig1.P01 s.1 r.1 w.1).2 in
let c2 := (Sig2.P02 s.2 r.2 w.2).2 in
(s,(c1,c2)) in

let par_V0 (p0: parS*parC) (e: parE) :
(parS*parC*parE) :=

let s1 := p0.1.1 in
let s2 := p0.1.2 in
let c1 := p0.2.1 in
let c2 := p0.2.2 in

(p0 , ((Sig1.V01 (s1,c1) e.1).2,
(Sig2.V02 (s2,c2) e.2).2)) in

let par_P1 (v0: parS*parC*parE) (r: parR) (w: parW) :
(parS*parC*parE*parT) :=

let s1 := v0 .1.1.1 in
let s2 := v0 .1.1.2 in
let c1 := v0 .1.2.1 in
let c2 := v0 .1.2.2 in
let e := v0.2 in
(v0 ,((Sig1.P11 (s1,c1,e.1) r.1 w.1).2,

(Sig2.P12 (s2,c2,e.2) r.2 w.2).2)) in

let par_V1 (p1: parS*parC*parE*parT) : bool :=
let s1 := p1 .1.1.1.1 in
let s2 := p1 .1.1.1.2 in
let c1 := p1 .1.1.2.1 in
let c2 := p1 .1.1.2.2 in
let e := p1.1.2 in
let r := p1.2 in
Sig1.V11 (s1,c1,e.1,r.1) && Sig2.V12 (s2,c2,e.2,r.2) in

let par_simulator (s: parS) (r: parT) (e: parE) :
(parS*parC*parE*parT) :=

let s1 := s.1 in
let s2 := s.2 in
let sim1 := Sig1.simulator1 s1 r.1 e.1 in
let sim2 := Sig2.simulator2 s2 r.2 e.2 in
let c1 := sim1 .1.1.2 in
let c2 := sim2 .1.1.2 in
let e1 := sim1 .1.2 in
let e2 := sim2 .1.2 in
let r1 := sim1.2 in
let r2 := sim2.2 in
(s,(c1,c2),(e1,e2),(r1,r2)) in

let par_simMap (s: parS) (r: parR) (e :parE) (w: parW) :
(parT) :=

((Sig1.simMap1 s.1 r.1 e.1 w.1),
(Sig2.simMap2 s.2 r.2 e.2 w.2)) in

let par_extractor(r1 r2: parT) (e1 e2: parE) :
(parW) :=

(Sig1.extractor1 r1.1 r2.1 e1.1 e2.1,
Sig2.extractor2 r1.2 r2.2 e1.2 e2.2) in

Sigma.mkForm (E*E') parS parW par_Rel parC parR
par_add par_zero par_inv par_bool_eq par_disjoint parT
par_P0 par_V0 par_P1 par_V1 par_simulator par_simMap

par_extractor.

The combiner for the generalised and relationship

Definition genAndSigmaProtocol (Sig1 Sig2: Sigma.form E)
: Sigma.form E :=

let genAndS : Set := prod Sig1.S1 Sig2.S1 in
let genAndW : Set := prod Sig1.W1 Sig2.W1 in
let genAndC : Set := prod Sig1.C1 Sig2.C1 in
let genAndR : Set := prod Sig1.R1 Sig2.R1 in
let genAndT : Set := prod Sig1.T1 Sig2.T1 in

let genAnd_Rel (s : genAndS) (w :genAndW): bool :=
Sig1.Rel1 s.1 w.1 && Sig2.Rel1 s.2 w.2 in

let genAnd_P0 (s: genAndS) (r: genAndR) (w: genAndW)
: (genAndS*genAndC) :=

let c1 := (Sig1.P01 s.1 r.1 w.1).2 in
let c2 := (Sig2.P01 s.2 r.2 w.2).2 in
(s,(c1,c2)) in

let genAnd_V0 (p0: genAndS*genAndC) (e: E) :
(genAndS*genAndC*E) :=

let s1 := p0.1.1 in
let s2 := p0.1.2 in
let c1 := p0.2.1 in
let c2 := p0.2.2 in
(p0, e) in

let genAnd_P1 (v0: genAndS*genAndC*E) (r: genAndR)
(w: genAndW): (genAndS*genAndC*E*genAndT) :=

let s1 := v0 .1.1.1 in
let s2 := v0 .1.1.2 in
let c1 := v0 .1.2.1 in
let c2 := v0 .1.2.2 in
let e := v0.2 in
(v0 ,((Sig1.P11 (s1,c1,e) r.1 w.1).2,

(Sig2.P11 (s2,c2,e) r.2 w.2).2)) in

let genAnd_V1 (p1: genAndS*genAndC*E*genAndT): bool :=
let s1 := p1 .1.1.1.1 in
let s2 := p1 .1.1.1.2 in
let c1 := p1 .1.1.2.1 in
let c2 := p1 .1.1.2.2 in
let e := p1.1.2 in
let r := p1.2 in
Sig1.V11 (s1,c1,e,r.1) && Sig2.V11 (s2,c2,e,r.2) in

let genAnd_simulator (s: genAndS) (r: genAndT) (e: E) :
(genAndS*genAndC*E*genAndT) :=

let s1 := s.1 in
let s2 := s.2 in
let sim1 := Sig1.simulator1 s1 r.1 e in
let sim2 := Sig2.simulator1 s2 r.2 e in
let c1 := sim1 .1.1.2 in
let c2 := sim2 .1.1.2 in
let r1 := sim1.2 in
let r2 := sim2.2 in
(s,(c1,c2),e,(r1,r2)) in

let genAnd_simMap (s: genAndS) (r: genAndR) (e: E)
(w: genAndW) : (genAndT) :=

((Sig1.simMap1 s.1 r.1 e w.1),
(Sig2.simMap1 s.2 r.2 e w.2)) in

let genAnd_extractor(r1 r2: genAndT) (e1 e2: E) :
(genAndW) :=

(Sig1.extractor1 r1.1 r2.1 e1 e2, Sig2.extractor1
r1.2 r2.2 e1 e2) in

Sigma.mkForm E genAndS genAndW genAnd_Rel genAndC
genAndR Sig1.add1 Sig1.zero1 Sig1.inv1 Sig1.bool_eq1
Sig1.disjoint1 genAndT genAnd_P0 genAnd_V0
genAnd_P1 genAnd_V1 genAnd_simulator
genAnd_simMap genAnd_extractor.

D COQ CODE OMITTED FOR SECTION 7
Definition com (h: G) (hs: V2G) (m: M2F) (r: V2F): V2G :=

Build_V2G(EPC h hs (M2F_col1 m) (r1 r))
(EPC h hs (M2F_col2 m) (r2 r))

(* The commitment is to a permutation *)
Definition relPi (h: G) (hs: V2G) (c: V2G) (* Statement *)

(m : M2F)(r : V2F) := (* Witness *)
M2F_isPermutation m
/\ c = (com h hs m r).

(* Definition of shuffling *) (* e2_i = e1_p_i * r_p_i *)
Definition relReEnc(g pk : G)(e e' : (V2G*V2G))(m : M2F)

(r : V2F) :=
let e'' := ciphMatrix e' m in
let r'' := M2F_CVmult m r in

IsReEnc g pk e.1 e''.1 (r1 r'')
/\ IsReEnc g pk e.2 e''.2 (r2 r'').

Definition u'_Rel (s: (G*G*G*V2G*(V2G*V2G))*(G*V2G*V2G))
(w: V2F*F*F*V2F) :=

let parm := s.1 in
let g := parm .1.1.1.1 in
let pk := parm .1.1.1.2 in
let h := parm .1.1.2 in
let hs := parm .1.2 in
let e' := parm.2 in

let stat := s.2 in
let a := stat .1.1 in
let b := stat .1.2 in
let cHat := stat.2 in

let u' := w.1.1.1 in
let rTil := w.1.1.2 in
let rStar := w.1.2 in
let rHat := w.2 in

Gbool_eq a (EPC h hs u' rTil) &&
V2G_eq b (V2G_mult (V2G_Tprod (ciphExp e' u'))

(Enc g pk rStar Gone)) &&
Gbool_eq (m1 cHat) (PC h (m1 hs) (r1 u') (r1 rHat)) &&
Gbool_eq (m2 cHat) (PC h (m1 cHat) (r2 u') (r2 rHat)).

(** Begin Sigma Proper *)
(* We pass why to allow branching in disjunction *)
Definition u'_P0 (s : (G*G*G*V2G*(V2G*V2G))*(G*V2G*V2G))

(r w : V2F*F*F*V2F) : (G*G*G*V2G*(V2G*V2G))*
(G*V2G*V2G)*(G*V2G*V2G) :=

let parm := s.1 in
let g := parm .1.1.1.1 in
let pk := parm .1.1.1.2 in
let h := parm .1.1.2 in
let hs := parm .1.2 in
let e' := parm.2 in

let stat := s.2 in
let a := stat .1.1 in
let b := stat .1.2 in
let cHat := stat.2 in

let u' := w.1.1.1 in
let rTil := w.1.1.2 in
let rStar := w.1.2 in
let rHat := w.2 in

let w' := r.1.1.1 in
let w3 := r.1.1.2 in
let w4 := r.1.2 in
let wHat := r.2 in

let t3 := EPC h hs w' w3 in
let t4 := V2G_mult (V2G_Tprod (ciphExp e' w'))

(Enc g pk w4 Gone) in
let tHat1 := PC h (m1 hs) (r1 w') (r1 wHat) in
let tHat2 := PC h (m1 cHat) (r2 w') (r2 wHat) in

(s, (t3, t4, Build_V2G tHat1 tHat2)).

Definition u'_V0 (ggtoxgtor: (G*G*G*V2G*(V2G*V2G))*
(G*V2G*V2G)*(G*V2G*V2G)) (c: F):
((G*G*G*V2G*(V2G*V2G))*(G*V2G*V2G)*(G*V2G*V2G)*F)

:= (ggtoxgtor , c).

Definition u'_P1 (ggtoxgtorc: (G*G*G*V2G*(V2G*V2G))*
(G*V2G*V2G)*(G*V2G*V2G)*F) (r w: V2F*F*F*V2F):

(G*G*G*V2G*(V2G*V2G))*(G*V2G*V2G)*
(G*V2G*V2G)*F*(V2F*F*F*V2F) :=

let c := snd (ggtoxgtorc) in

let u' := w.1.1.1 in
let rTil := w.1.1.2 in
let rStar := w.1.2 in
let rHat := w.2 in

let w' := r.1.1.1 in
let w3 := r.1.1.2 in
let w4 := r.1.2 in

let wHat := r.2 in

let s3 := w3+rTil*c in
let s4 := w4+rStar*c in
let sHat := V2F_add wHat (V2F_scale rHat c) in
let s' := V2F_add w' (V2F_scale u' c) in

(ggtoxgtorc , (s', s3, s4, sHat)).

Definition u'_V1 (transcript :
(G*G*G*V2G*(V2G*V2G))*(G*V2G*V2G)*(G*V2G*V2G)*F*

(V2F*F*F*V2F)) :=

let s := transcript .1.1.1 in
let c := transcript .1.1.2 in
let e := transcript .1.2 in
let t := transcript .2 in

let parm := s.1 in
let g := parm .1.1.1.1 in
let pk := parm .1.1.1.2 in
let h := parm .1.1.2 in
let hs := parm .1.2 in
let e' := parm.2 in

let stat := s.2 in
let a := stat .1.1 in
let b := stat .1.2 in
let cHat := stat.2 in

let t3 := c.1.1 in
let t4 := c.1.2 in
let tHat := c.2 in

let s3 := t.1.1.2 in
let s4 := t.1.2 in
let sHat := t.2 in
let s' := t.1.1.1 in

Gbool_eq (t3 o a^e) (EPC h hs s' s3)
&& V2G_eq (V2G_mult t4 (V2G_Sexp b e))

(V2G_mult (V2G_Tprod (ciphExp e' s'))
(Enc g pk s4 Gone))

&& Gbool_eq (m1 (V2G_mult tHat (V2G_Sexp cHat e)))
(PC h (m1 hs) (r1 s') (r1 sHat))

&& Gbool_eq (m2 (V2G_mult tHat (V2G_Sexp cHat e)))
(PC h (m1 cHat) (r2 s') (r2 sHat)).

Definition u'_simulator_mapper (s : (G*G*G*V2G*(V2G*V2G))
*(G*V2G*V2G))

(r: V2F*F*F*V2F) (c: F) (w: V2F*F*F*V2F):=

let u' := w.1.1.1 in
let rTil := w.1.1.2 in
let rStar := w.1.2 in
let rHat := w.2 in

let w' := r.1.1.1 in
let w3 := r.1.1.2 in
let w4 := r.1.2 in
let wHat := r.2 in

let s3 := w3+rTil*c in
let s4 := w4+rStar*c in
let sHat := V2F_add wHat (V2F_scale rHat c) in
let s' := V2F_add w' (V2F_scale u' c) in

(s', s3, s4, sHat).

For reasons of space we have omitted the remaining coq formal-

isations and refer the reader to the code repository mentioned in

appendix A for the relevant material.

	Abstract
	1 Introduction
	1.1 Helios and the IACR directors election 2018
	1.2 Clarifying our aims: the fine print :)

	2 Background
	2.1 Verification and Code Extraction Via Coq

	3 Contribution
	3.1 Details on error prevention
	3.2 Limitations

	4 Conceptual Overview
	5 Building blocks
	5.1 Algebraic Structures
	5.2 Concrete Sigma Protocols

	6 A provably correct verifier for Helios
	6.1 Verifying a real election

	7 Applications to mixnets
	8 Conclusion and Further Work
	8.1 Future Work

	Acknowledgments
	References
	A Code
	B Coq code omited from section 5
	C Coq encodings of sigma protocol combiners
	D Coq code omitted for section 7

