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Genome-wide association analysis of self-reported
daytime sleepiness identifies 42 loci that suggest
biological subtypes
Heming Wang et al.#

Excessive daytime sleepiness (EDS) affects 10–20% of the population and is associated with

substantial functional deficits. Here, we identify 42 loci for self-reported daytime sleepiness

in GWAS of 452,071 individuals from the UK Biobank, with enrichment for genes expressed

in brain tissues and in neuronal transmission pathways. We confirm the aggregate effect of a

genetic risk score of 42 SNPs on daytime sleepiness in independent Scandinavian cohorts and

on other sleep disorders (restless legs syndrome, insomnia) and sleep traits (duration,

chronotype, accelerometer-derived sleep efficiency and daytime naps or inactivity). However,

individual daytime sleepiness signals vary in their associations with objective short vs long

sleep, and with markers of sleep continuity. The 42 sleepiness variants primarily cluster into

two predominant composite biological subtypes - sleep propensity and sleep fragmentation.

Shared genetic links are also seen with obesity, coronary heart disease, psychiatric diseases,

cognitive traits and reproductive ageing.
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Excessive daytime sleepiness (EDS) is a chief symptom of
chronic insufficient sleep1 as well as of several primary sleep
disorders, such as sleep apnea, narcolepsy, and circadian

rhythm disorders2,3. Several disease processes and medications
also associate with prevalent and incident EDS4–6. EDS is esti-
mated to contribute to risk for motor vehicle crashes, work-
related accidents, and loss of productivity, highlighting its public
health importance7,8. The clinical impact of EDS extends to a
negative impact on cognition, behavior, and quality of life9.
Therefore, sleep interventions often identify reduction in EDS as
a chief goal. EDS is also associated with an increased risk for
cardio-metabolic disorders, psychiatric problems, and
mortality6,10 through pathways that may be causal, bi-directional,
or reflect pleiotropic effects.

While EDS occurs in a variety of settings associated with
insufficient sleep, there is large inter-individual variability in
levels of EDS that is not fully explained by sleep duration, sleep
quality, or chronic disease11. Experimental studies have shown
that there is also individual vulnerability to EDS following sleep
restriction11,12. The heritability of daytime sleepiness is estimated
to be between 0.37 and 0.48 in twin studies13–15, 0.17 in family
studies16, and between 0.084 and 0.17 in GWAS17,18, suggesting
that genetic factors contribute to variation in sleepiness. Despite
multiple candidate gene studies19 and GWAS17,20,21, including
one from the first genetic release of the UK Biobank18, few
genome-wide significant genetic variants have been reported,
likely reflecting the heterogeneous and multifactorial etiology of
the phenotype and low statistical power.

Here, we extend our GWAS of self-reported daytime sleepiness
to the full UK Biobank dataset22 and identify multiple genetic
variants grouping into different biological subtypes that associate
with sleepiness. Bioinformatics analyses further highlight relevant
biological processes and reveal shared genetic background with
other diseases.

Results
Sample characteristics. In the UK Biobank22, 452,071 partici-
pants of European genetic ancestry self-reported the frequency of
daytime sleepiness using the question: “How likely are you to
doze off or fall asleep during the daytime when you don’t mean
to? (e.g.: when working, reading or driving)”, with the answer
categories “never” (N= 347,285), “sometimes” (N= 92,794),
“often” (N= 11,963), or “all of the time” (N= 29). The severity of
daytime sleepiness increased with older age, female sex, higher
body mass index (BMI), various behavioral, social and environ-
mental factors, and chronic diseases (Supplementary Table 1).
Self-reported daytime sleepiness was positively but weakly cor-
related with self-reported insomnia symptoms, morning chron-
otype, ICD-10, or self-report of physician diagnosed sleep apnea
and self-reported shorter and longer sleep duration, consistent
with earlier reports or known clinical correlates18 (Spearman
correlation <0.2; Supplementary Table 1 and Supplementary
Fig. 1). Self-reported daytime sleepiness was also weakly corre-
lated with shorter sleep duration, lower sleep efficiency (indicat-
ing more time awake during the sleep period), and longer daytime
inactivity duration estimated using a 7-day accelerometry in a
subset (N= 85,388) of UK Biobank participants (Methods; Sup-
plementary Table 2).

GWAS, sensitivity, and replication analyses. We performed a
GWAS of self-reported daytime sleepiness treating the four
categories as a continuous variable using a linear mixed regres-
sion model23 adjusted for age, sex, genotyping array, ten principal
components (PCs) of ancestry and genetic relatedness matrix, and
identified 37 genome-wide significant loci (P < 5 × 10−8) (Fig. 1,

Supplementary Fig. 2, Supplementary Table 3). The most sig-
nificant association was observed within the gene KSR2, a gene
associated with multiple physiological pathways relevant to sleep
and metabolism24,25 (see Discussion). Additional novel loci were
identified within or near genes with known actions on sleep–wake
control regulation or that are associated with sleep disorders (e.g.
PLCL1 (ref. 26), GABRA2 (ref. 27), BTBD9 (ref. 28), HTR7 (ref. 29),
RAI1 (ref. 30)), metabolic traits (e.g. GCKR31, SLC39A8 (ref. 32)),
and psychiatric traits (e.g. AGAP1 (ref. 33), CACNA1C34).
Regional association plots of genome-wide significant loci are
shown in Supplementary Fig. 3. We identified 37 association
signals driven by common lead variants with minor allele fre-
quency 0.08–0.49. The previously identified rare variant signals
for daytime sleepiness at AR/OPHN1 (MAF= 0.002), ROBO1
(MAF= 0.003), and TMEM132B (MAF= 0.004) in the first
release of the UK Biobank (N= 111,975)18 were not significantly
associated with sleepiness in this study (P= 0.006–0.03; Supple-
mentary Table 4). The lack of consistency across these analyses
may relate to initial false-positive signals at rare variants (MAF=
0.001–0.005) and/or by selection bias in the initial sample in
which heavy smokers had been oversampled35. However, two
genome-wide significant loci, HCRTR2 and PATJ, overlapped
with those identified for a composite sleep trait in the interim
release sample and a suggestive sleepiness signal at CEPB1 was
replicated. No association was seen with single-nucleotide poly-
morphisms (SNPs) reported in smaller independent GWAS of
EDS, hypersomnia, or narcolepsy (Supplementary Table 4).

Previous longitudinal research indicated obesity and weight
gain are associated with incidence of daytime sleepiness5;
therefore, we performed an additional GWAS adjusting for
BMI to identify loci that may operate in obesity-independent
pathways. This analysis identified five additional loci (Supple-
mentary Figs. 4 and 5; Supplementary Table 3). Effect estimates at
the 37 loci identified in the primary model were largely
unchanged.

Sensitivity analyses on autosomes additionally adjusted for
potential confounders (including depression, socio-economic
status, alcohol intake frequency, smoking status, caffeine intake,
employment status, marital status, neurodegenerative disorders,
and psychiatric problems) and stratified by obesity and sleep
duration did not substantially alter effect estimates of the
identified signals (Supplementary Data 1; Supplementary Tables 5
and 6). Secondary GWAS (N= 255,426), excluding shiftworkers
and individuals with chronic health or psychiatric illnesses,
additionally identified significant variants in SEMA3D and
revealed marginally significant interactions with health status at
PATJ, ZENF326/BARHL2, ECE2, ASAP1, and CYP1A1/CYP1A2
(interaction P < 0.05; Supplementary Fig. 6, Supplementary
Table 7). Conditional analyses at each locus identified no
secondary signals. Sex-stratified analyses on autosomes addition-
ally identified CWC27 and DIAPH3 in women but not in men;
however, significant gene by sex interactions were not observed
(Supplementary Fig. 7, Supplementary Table 8).

Replication was attempted using self-reported daytime sleepi-
ness indices (based on related questions) available in European
whites from HUNT36 (N= 29,906; Supplementary Table 9) and
Health 2000 studies37 (N= 4546; Supplementary Table 10)
(Methods). Five individual signals, including KSR2, SUSD4, and
CYP1A1/CYP1A2 were marginally significant (P < 0.05) and with
consistent association direction in individual cohorts and/or
meta-analysis (Supplementary Table 11). A genetic risk score
(GRS) of 42 sleepiness loci weighted by the effect estimates from
our primary daytime sleepiness GWAS was replicated in a meta-
analysis of HUNT, and Health 2000 (Fisher’s P= 0.00031;
Supplementary Table 11), and this remained significant after
removing the three marginally associated loci from the meta-
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analysis (Fisher’s P= 0.017). Marginal association with a tired-
ness phenotype was observed for two signals in a meta-analysis of
FINRISK38 (N= 20,344; Supplementary Table 12) and Finnish
Twin39 (N= 5766; Supplementary Table 13); however, a
combined GRS was not significant (Fisher’s P= 0.551; Supple-
mentary Table 14).

We further validated our results through associations with
subjective and objective measures of sleep patterns and disorders
available in the UK Biobank. A GRS of 42 variants was associated
with self-reported shorter sleep duration, morning chronotype,
increased insomnia symptoms, increased frequency of daytime
napping, and with accelerometry-assessed lower sleep efficiency
and increased duration of daytime inactivity (Table 1).

Clustering of sleepiness loci suggest biological subtypes.
Genetic variants may influence daytime sleepiness through dif-
ferent mechanisms. Therefore, to dissect this heterogeneity, we
investigated associations of individual SNPs with other sleep traits
(Supplementary Data 2).

Individual daytime sleepiness increasing alleles at PATJ and
PLCL1 were also associated with morning chronotype; loci at
metabolism regulatory genes KSR2, LOC644191/CRHR1, and
SLC39A8 with self-reported sleep duration (KSR2 with increased
sleep duration, LOC644191/CRHR1 with long sleep, and SLC39A8
with short sleep); LMOD1 and LOC644456/LOC730134 with both
insomnia and short sleep duration; and at the orexin/hypocretin
receptor HCRTR2 with both morning chronotype and short sleep
duration, suggesting common genetic factors. Adjusting for sleep
disturbance traits (ICD-10 code defined sleep apnea or narco-
lepsy, or self-reported sleep duration hours, frequent insomnia
symptoms or chronotype) together attenuated effect estimates for
several loci, suggesting that these genetic variants influence
sleepiness through altered sleep patterns and sleep disorders;
however, adjustment for any trait alone only minimally altered
effect estimates at individual loci (Supplementary Data 1).

Using 7-day accelerometry-derived data available in a subset of
the UK Biobank (N= 85,388), we observed associations of several
daytime sleepiness alleles with reduced sleep efficiency (e.g.,
SNX17) whereas others were associated with increased sleep
efficiency (e.g., PLCL1), suggesting that genetic mechanisms may
lead to sleepiness through effects on increased sleep fragmenta-
tion (i.e., low sleep efficiency) or increased sleep propensity (i.e.,
high sleep efficiency), respectively (Supplementary Data 2).
Therefore, we performed hierarchical clustering analyses on risk
alleles for sleepiness at 42 loci according to their association effect
sizes (z-scores) with objective estimates of sleep efficiency, sleep
duration, and number of sleep bouts, and self-reported frequent
insomnia symptoms. An iterative approach based on silhouette

coefficients was performed to remove cluster outliers (Methods;
Supplementary Fig. 8). We interpreted sleepiness alleles showing
patterns of association with higher sleep efficiency, longer sleep
duration, fewer discrete sleep bouts and fewer insomnia
symptoms as reflective of greater intrinsic sleep propensity,
whereas sleepiness alleles associated with these sleep traits in a
largely inverse manner were interpreted as reflective of disturbed
sleep or a sleep fragmentation phenotype resulting in less
restorative sleep (Fig. 2). GRS of daytime sleepiness loci stratified
by the two clusters support our interpretation, with sleep
propensity loci showing robust associations with early circadian
traits (e.g. morning chronotype P= 5.54 × 10−4; Table 1).

Functional effects of loci. Sleepiness loci lie in genomic regions
encompassing 164 genes (Supplementary Data 3), and 3 asso-
ciations are in strong linkage disequilibrium with known GWAS
associations for other traits, including blood cell count, high-
density lipoprotei cholesterol, and caffeine metabolism. Genes at
multiple loci have been implicated in Mendelian syndromes or in
experimental studies in mouse or fly models. Eighteen loci harbor
one or more genes with potential drug targets.

We performed fine mapping analyses for potential causal
variants using PICS40 and identified 33 variants within 25 sleepi-
ness loci with a causal probability larger than 0.2 (Supplementary
Data 4). The majority of likely causal variants were intronic (65%)
followed by non-coding transcript variants (8%) and nonsense-
mediated decay transcript variants (7%) (Supplementary Fig. 9).
Functional variants included a missense variant rs12140153
within PATJ, a synonymous variant rs11078398 within RAI1,
regulatory variants rs10800796 in the promoter region of
LMOD1, and rs239323 in a CTCF-binding site in the gene
POM121L2. Using the Oxford Brain Imaging Genetics (BIG)
server41, we further observed the pleiotropic locus at rs13135092
(SLC39A8, previously associated with blood lipids, height,
schizophrenia, and other traits42) to be significantly associated
with bilateral putamen and striatum volume in the UK Biobank
(P < 2.8 × 10−7; N= 9,707; Supplementary Fig. 10). This could be
of particular interest given the importance of these central brain
centers in influencing motor and emotional behaviors, and
emerging data implicating these centers in the integration of
behavioral inputs that modulate arousal and sleep–wake
states43,44.

Gene-based, pathway, and tissue enrichment analyses. Gene-
based analyses using PASCAL45 identified 94 genes associated
with self-reported daytime sleepiness (enrichment P < 2.29 ×
10−6) (Supplementary Table 15), of which 61 overlapped with
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genes under significant association peaks shown in Supple-
mentary Data 3. Tissue enrichment analysis across 53 tissues in
the GTEx database using MAGMA46 identified multiple brain
tissues including the frontal cortex, cerebellum, anterior cingulate
cortex, nucleus accumbens, caudate nucleus, putamen, hypotha-
lamus, amygdala, and hippocampus (enrichment P < 10−3; Sup-
plementary Table 16, Supplementary Fig. 11a). Pathway and
ontology analyses using PASCAL identified enrichment in neu-
ronal synaptic transmission pathways and EnrichR47 identified
pathways involved with the central nervous system, neuro-
transmitters, and metabolic processes (e.g. insulin receptor sig-
naling pathway) (Supplementary Table 17 and Supplementary
Data 5). Genes at loci showing clustering with sleep propensity
phenotypes (n= 37) showed enriched expression in brain tissues
including cortex and amygdala (enrichment P < 10−3; Supple-
mentary Fig. 11b). In contrast, no tissues were enriched in
expression of genes that showed clustering with sleep fragmen-
tation phenotypes (n= 86) perhaps reflecting further hetero-
geneity (Supplementary Fig. 11c). Pathway and ontology analyses
results for clustered genes using FUMA also reveal different
patterns (Supplementary Figs. 12 and 13).

The SNP-heritability of self-reported daytime sleepiness
explained by genome-wide SNPs was estimated at 6.9% (SE=
1%). Partitioning heritability across tissue types and functional
annotation classes indicated enrichment of heritability in central
nervous system and adrenal/pancreas tissue lineage tissues, and in
regions conserved in mammals, introns, and H3K4me1-
potentially active and primed enhancers (enrichment P < 8.3 ×
10−4) (Supplementary Tables 18 and 19).

Genetic correlation and Mendelian randomization. Consistent
with daytime sleepiness being a symptom of several sleep dis-
orders, GRSs of genome-wide significant SNPs for restless legs
syndrome48 (P= 0.0002), insomnia49 (P= 4 × 10−7), and coffee
consumption50 (P= 1.87 × 10−12) (often used as a sleepiness
“counter-measure”) were significantly associated with self-
reported daytime sleepiness phenotype (Table 2). Although EDS
is a key symptom of narcolepsy, the GRS of narcolepsy51 was not
associated with self-reported daytime sleepiness (P= 0.126),
suggesting narcolepsy loci did not explain sleepiness variation in
this sample. We could not examine the genetic overlap of sleep
apnea loci and sleepiness because few significant loci for sleep
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apnea have been reported in the literature and there was limited
sleep apnea information in this cohort.

To investigate the genetic correlation between sleepiness and
other common disorders, we tested the proportion of genetic
variation of self-reported daytime sleepiness shared with 233
other traits with published GWAS summary statistics in LDSC52.
After adjusting for multiple comparisons, significant positive
genetic correlations were observed for daytime sleepiness with
obesity traits, coronary heart disease, and psychiatric traits (P <
0.0001) (Supplementary Data 6). The genetic correlations with
coronary artery disease and psychiatric traits persisted after
adjusting for BMI (Fig. 3). Consistently suggestive negative
genetic correlations for daytime sleepiness with subjective well-
being and reproductive traits (age at menarche and age at first
birth) were also observed (P < 0.005).

To evaluate the causal relationship between sleep disorders
or other disease traits and daytime sleepiness, we performed
two-sample summary-level Mendelian Randomization (MR)
analyses using independent genetic variants from published
summary statistics from GWAS of BMI, type 2 diabetes,
coronary heart disease, neuroticism, bipolar disorder, depres-
sion, schizophrenia, age of menarche, restless legs syndrome,
narcolepsy, insomnia, sleep duration, and chronotype as
exposures and daytime sleepiness as outcome53. Using the
inverse variance weighted (IVW) approach, we identified a
putative causal association of higher BMI with increased
daytime sleepiness (IVW β= 0.018; 95% CI [0.008, 0.028]; P=
0.0004), which was significant after accounting for multiple
comparisons (IVW P < 0.003; Supplementary Table 20).
However, there was evidence of variant heterogeneity poten-
tially due to horizontal pleiotropy (Cochran’s Q= 677.17;

P= 1.09 × 10−37; Supplementary Table 21). Therefore, we
performed sensitivity analysis using the Radial MR-Egger
approach (Methods)54 to control for bias due to pleiotropy,
and observed an effect that was consistent with our main IVW
analyses but less precisely estimated (wider confidence
intervals) because this method is statistically relatively
inefficient (MR-Egger β= 0.025; 95% CI [−0.005, 0.055]; P
= 0.103; Fig. 4 and Supplementary Table 21). An additional
suggestive causal association of type 2 diabetes with increased
daytime sleepiness was also observed (IVW β= 0.005; 95% CI
[0.001, 0.009]; P= 0.014) with evidence of heterogeneity
(Cochran’s Q= 88.38; P= 0.005), but broadly consistent
results when using Radial MR-Egger again showed a consistent
effect direction (MR-Egger β= 0.002; 95% CI [−0.006, 0.01];
P= 0.637; Supplementary Table 21). Reverse MR did not
identify any strong evidence for daytime sleepiness having a
causal effect on any of the outcomes we examined (Supple-
mentary Table 22).

Discussion
This study expands our knowledge of the genetic architecture of
daytime sleepiness. Despite the modest SNP-heritability (h2=
6.9%, consistent with previous reports17,18), we identified 42
genome-wide significant loci (P < 5 × 10−8) given boosted statis-
tical power with 452,071 samples. The association effects were
largely unchanged adjusting for BMI, depression, socio-economic
status, alcohol, smoking, caffeine, employment, neurodegenera-
tive disorders, sleep disturbance traits individually, and upon
exclusion of shiftworkers, sleep/psychiatric medication users. We
did not evaluate the effect of restless legs syndrome and periodic

Table 2 Association between weighted genetic risk scores (GRS) of significant SNPs (P < 5 × 10−8) for other sleep behavioral
traits and sleep disorders with self-reported daytime sleepiness phenotype in UK Biobank

Trait N nSNP Beta (SE) per GRS effect P value

Frequent insomnia symptoms49 237,620 57 0.0007 (0.0001) 4.00 × 10−7*

Sleep duration (hours)59 446,118 78 −0.0002 (0.0001) 0.193
Short sleep59 106,192 27 0.0009 (0.0002) 1.25 × 10−4*

Long sleep59 34,184 8 0.0009 (0.0005) 0.068
Day naps 450,918 125 0.4078 (0.011) 6.61 × 10−281*

Morning chronotype67 697,828 348 0.00004 (0.0001) 0.524
Restless legs syndrome48 110,851 20 0.0009 (0.0002) 2.21 × 10−4*

Narcolepsy51 25,857 8 0.0007 (0.0004) 0.126
Coffee consumption (cups)50 91,462 8 0.033 (0.005) 1.87 × 10−12*

*P values significant after correction for nine traits. Increasing beta reflects increasing frequency of daytime sleepiness per increase in one risk allele for other sleep trait
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limb movement disorder because information on these disorders
were not collected in the UKB.

An aggregate effect of a genetic risk score of 42 loci was con-
firmed in independent Scandinavian cohorts with different self-
reported daytime sleepiness. Despite the challenges of individual
loci replication with insufficient power (5–57% in replication
cohorts; Supplementary Table 11), variable questionnaires in
different scales across different cohorts and the multifactorial
etiology of sleepiness, we observed nominal replication at five loci
including our most significant association observed at KSR2, a
gene regulating multiple signaling pathways (e.g. the ERK/MEK
signaling pathway), affecting energy balance, cellular fatty acid,
and glucose oxidation that is implicated in obesity, insulin
resistance, and heart rate during sleep in previous studies in
humans and mice24,25. While the GRS association was highly
significant including the three loci with nominal significance in
the meta-analysis, the effect estimates removing the three loci
remained at 67% of the original effect in HUNT and 86% of the
original effect in Health 2000, suggesting that additional indivi-
dual sleepiness loci contribute to the combined effect of the GRS.
However, replication in additional, well-powered cohorts will be
important.

The validation of our results was further supported by asso-
ciations between sleepiness GRS with self-reported shorter sleep
duration, morning chronotype, increased insomnia risk, increased
frequency of daytime napping, and with accelerometry-derived
lower sleep efficiency and increased duration of daytime inac-
tivity. These associations also suggest sleepiness loci impact other
sleep parameters such as sleep latency, sleep efficiency, and sleep
timing. The sleepiness GRS was not associated with 7-day
accelerometry-derived continuous sleep duration, largely reflect-
ing the heterogeneity of self-reported sleepiness (sleep propensity
vs sleep fragmentation).

Our results were strengthened by previous GWAS associations
with related traits (e.g. metabolic and psychiatric traits), model
organism evidence for sleep phenotypes (HCRTR2, SEMA7A, and
RAI1), and tissue and pathway enrichment analyses. Genes under
association peaks were enriched in multiple brain tissues,
including brain regions implicated in sleep–wake and arousal
disorders55 as well as centers responsive to sleep deprivation and
pathways involved with the central nervous system, neuro-
transmitters, and metabolic processes. Enrichment of partitioning
heritability were observed in variants in central nervous system

and highly conserved regions shared by human and other 28
mammals56, suggesting strong conservation of sleep regulation
throughout evolution.

We also investigated the heterogeneity of daytime sleepiness
loci for the first time by performing clustering analysis according
to individual SNP associations with four major sleep parameters:
7-day accelerometry-derived sleep efficiency, sleep duration, and
number of sleep bouts, and self-reported frequent insomnia
symptoms. We discovered risk sleepiness variants at 10 loci (e.g.
PLCL1 and KSR2) and their GRS that associated with sleep
propensity traits (higher sleep efficiency, longer sleep duration,
fewer discrete sleep bouts, and fewer insomnia symptoms);
whereas sleepiness variants at 27 loci (e.g. LMOD1, HCRTR2, and
GABRA2, known to play a central role in sleep/wake control and
narcolepsy57) and their GRS were more likely to contribute to
sleep fragmentation (lower sleep efficiency, shorter sleep dura-
tion, more sleep bouts and more insomnia symptoms). Sleep
propensity GRS revealed significant associations with early
chronotype, reflective of circadian influences on sleep drive.
Genes at sleep propensity loci also showed enriched expression in
brain tissues whereas no tissues were enriched in sleep frag-
mentation loci, suggesting that the mechanisms associated with
sleep fragmentation may be more complex, reflective of multi-
factorial influences. Future experimental and statistically robust
clustering analysis that include other sleep and related traits are
needed to validate and distinguish the biological subtypes of
daytime sleepiness58.

We extended our analysis to compare the genetic architecture
between daytime sleepiness and other common disorders, and
observed significant genetic correlations with obesity, coronary
heart disease, and psychiatric traits. The genetic correlations of
sleepiness with coronary artery disease and psychiatric traits
persisted after adjusting for BMI, perhaps partially reflecting
shared neurologic or neuroendocrine factors, such as those that
underlay insomnia and short sleep with cardiac and psychiatric
traits49,59. Using MR analysis, we identified potential causal
association of higher BMI with increased daytime sleepiness,
consistent with prospective epidemiological studies, which likely
reflect metabolic and/or circadian dysfunction in obese people5.
Suggestive causal association of type 2 diabetes and daytime
sleepiness were also identified, which may reflect a high pre-
valence of sleep disturbances in diabetes (e.g., sleep apnea) or
systemic inflammation. Reverse MR did not identify any strong
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evidence for sleepiness having a causal effect on any of the out-
comes we examined, implying that sleepiness is often a “symp-
tom” of other disorders. However, replications with large samples
are required to confirm the causal relationships. Future systematic
MR analyses with other common disorders may be of particular
interest.

This study has several strengths. It is the largest GWAS of self-
reported daytime sleepiness with better power than previous
studies. We identified 42 loci and confirmed the aggregated
association effect in independent cohorts. Moreover, using a wide
range of data on individual sleep traits—both self-reported and
objectively measured—we showed that individual daytime slee-
piness variants associate with unique patterns of sleep and cir-
cadian traits that largely cluster into two biological subtypes,
intrinsic sleep propensity and sleep fragmentation. These findings
were extended with knowledge from published databases of
tissue-based expression, pathway annotations, and GWAS sum-
mary statistics for other traits.

This study also has several limitations. Primary analyses used
self-reported daytime sleepiness expressed as a continuous vari-
able derived from a 4-point scale. Future work should evaluate the
psychometric properties of this question and compare it to other
frequently used measures of daytime sleepiness, such as the
Epworth Sleepiness Scale (ESS) or Maintenance of Wakefulness
Test. It is likely that there was some loss of power due to use of a
single measure of self-reported sleepiness resulting in random
misclassification. However, the large sample for which ques-
tionnaire data were available provided results that were able to be
further studied in a smaller sample of 7-day accelerometry-
derived sleep data (which has been shown to agree well with
polysomnography). Future work using objective measurements of
sleepiness, such as from vigilance tests, may provide further
insights into the genetics of sleepiness-related traits. The statis-
tical power of this study may also be limited by the heterogeneity
of daytime sleepiness which could be addressed by adjusting or
restricting analyses using the available covariate data. Only
individuals of European ancestries aged 40–69 years old in the
UK were included, which limits generalizability to other popu-
lations and age groups, especially considering that sleep patterns
change with age5.

In summary, we conducted an extensive series of analysis from
a large-scale GWAS and identified the heterogeneous genetic
architecture of daytime sleepiness. Multiple genetic loci were
identified, including genes expressed in brain areas implicated in
sleep–wake control and genes influencing metabolism. Shared
genetic factors were identified for daytime sleepiness and other
sleep disorders, with evidence that sleepiness variants clustered
with two predominant phenotypes—sleep propensity and sleep
fragmentation—with the former showing stronger evidence for
enrichment in central nervous system tissues, suggesting two
unique mechanistic pathways. Genetic variants for daytime slee-
piness also overlapped those for other diseases and lifestyle traits,
with evidence that higher BMI and possibly diabetes are causally
associated with increased daytime sleepiness. This work will
advance understanding of biological mechanisms relating to
sleepiness and underlying sleep and circadian regulation, and
open new avenues for future study.

Methods
Population and study design. The discovery analysis was conducted on partici-
pants of European ancestry from the UK Biobank study22. The UK Biobank is a
prospective study that has enrolled over 500,000 people aged 40–69 living in the
United Kingdom. Baseline measures collected between 2006 and 2010, including
self-reported heath questionnaire and anthropometric assessments were used in
this analysis. Participants taking any self-reported sleep medication (Supplemen-
tary Note 1) were excluded. The UK Biobank study was approved by the National
Health Service National Research Ethics Service (ref. 11/NW/0382), and all

participants provided written informed consent to participate in the UK Biobank
study. In total, 452,071 individuals of European ancestry were studied with avail-
able phenotypes and genotyping passing quality control, as described below.

EDS and covariate measurements. Self-reported daytime sleepiness was ascer-
tained in the UK Biobank using the question “How likely are you to dose off or fall
asleep during the daytime when you don’t mean to? (e.g. when working, reading or
driving)” with the response options of “Never/rarely”, “sometimes”, “often”, “all of
the time”, “do not know”, and “prefer not to answer”. Participants reporting “do
not know” and “prefer not to answer” were set to missing. Other responses were
coded continuously as 1 to 4 corresponding to the severity of daytime sleepiness.
The primary covariates used were self-reported age and sex, and BMI calculated as
weight/height2. Covariates used in the sensitivity analyses include potential con-
founders (depression, social economic status, alcohol intake frequency, smoking
status, caffeine intake, employment status, marital status, neurodegenerative dis-
orders, and use of psychiatric medications) and indices of sleep disorders and sleep
traits (daytime napping, sleep apnea, narcolepsy, sleep duration, insomnia, and
chronotype). Depression was recorded as a binary variable (yes/no) corresponding
to question “Ever depressed for a whole week?”. Social economic status was
measured by the Townsend Deprivation Index based on aggregated data from
national census output areas in the UK. Alcohol intake frequency was coded as a
continuous variable corresponding to “daily or almost daily”, “three or four times a
week”, “once or twice a week”, “once to three times a month”, “special occasions
only”, and “never” drinking alcohol. Smoking status was categorized as “current”,
“past”, or “never” smoked. Caffeine intake was coded continuously corresponding
to self-reported cups of tea/coffee per day. Employment status was categorized as
“employed”, “retired”, “looking after home and/or family”, “unable to work because
of sickness or disability”, “unemployed”, “doing unpaid or voluntary work”, or “full
or part-time student”. Neurodegenerative disorder cases (N= 517) were identified
as a union of International Classification of Diseases (ICD)-10 coded Parkinson’s
disease (G20–G21), Alzheimer’s disease (G30), and other degenerative diseases of
nervous system (G23, G31–G32). Day napping was coded continuously (“never/
rarely”, “sometimes”, or “usually”) responding to the question “Do you have a nap
during the day?” Sleep apnea cases (N= 5571) were identified as a union of self-
reported and ICD-10 coded (G47.3) sleep apnea. Narcolepsy cases (N= 7) were
determined by the ICD-10 code (G47.4). Insomnia was recorded as “never/rare”,
“sometimes”, or “usually” responding to the question “Do you have trouble falling
asleep at night or do you wake up in the middle of the night?”. Individuals reported
“usually” were considered as frequent insomnia symptom cases. Sleep duration was
recorded as discrete integers in response to the question “About how many hours
sleep do you get in every 24 hours (please include naps)”. In this study, short sleep
was defined by sleep duration shorter than 7 h and long sleep was defined by sleep
duration longer than 8 h. Chronotype was categorized as “definitely a “evening”
person”, “more an “evening” than a “morning” person”, “more a “morning” than
“evening” person”, and “definitely an “morning” person”. Secondary analyses were
performed on participants further excluding shiftworkers, psychiatric mediation
users, and participants with chronic and psychiatric illness (described in Supple-
mentary Note 2, N= 255,426).

Activity-monitor-derived measures of sleep. Raw accelerometer data (.cwa)
were collected using open source Axivity AX3 wrist-worn triaxial accelerometers
(https://github.com/digitalinteraction/openmovement) in 103,711 individuals from
the UK Biobank for up to 7 days60. We converted.cwa files to.wav files using
Omconvert (https://github.com/digitalinteraction/openmovement/tree/master/
Software/AX3/omconvert)60,61. Time windows of sleep (SPT-window) and activity
levels were extracted for each 24-h period using a heuristic algorithm using the R
package GGIR (https://cran.r-project.org/web/packages/GGIR/GGIR.pdf)62,63.
Briefly, for each individual, a 5-min rolling median of the absolute change in z-
angle (representing the dorsal–ventral direction when the wrist is in the anatomical
position) across a 24-h period. The 10th percentile of the output was used to
construct an individual’s threshold, distinguishing periods with movement from
non-movement. Inactivity bouts were defined as inactivity of at least 30 min
duration. Inactivity bouts with less than 60 min gaps were combined to blocks. The
SPT-window was defined as the longest inactivity block, with sleep onset as the
start of the block and waking time as the end of the block. The sleep measurements
derived from accelerometer data using this algorithm has been shown to provide
reliable estimates for sleep onset time, waking time, SPT-window duration, and
sleep duration within the SPT-window compared to polysomnography63. We
applied exclusion criteria based on accelerometer data quality including (1) none-
zero or missing in “data problem indicator” (Field 90002); (2) 0 in “good wear
time” (Field 90015); (3) 0 in “good calibration” (Field 90016); (4) 0 in “calibrated
on own data” (Field 90017); (5) “data recording errors” (Field 90182) >788 (Q3+
1.5 × IQR); and (6) non-zero in “interrupted recording periods” (Field 90180).
Accelerometry data from 85,388 participants of European ancestry passed quality
control and were analyzed in this study.

The distributions of accelerometer data are described in Supplementary Table 2.
The details of each measurement are as follows. L5 and M10 were the least-active
5-h window and most-active 10-h window for each day estimated from a moving
average of a contiguous 5/10-h window. The L5 timing was defined as the number
of hours elapsed from the previous midnight whereas M10 was defined as the
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number of hours elapsed from the previous midday. Sleep midpoint was the
midpoint between the start and end of the SPT-window. L5, M10, and sleep
midpoint variables capture the circadian characteristics of an individual. Sleep
episodes within the SPT-window were defined as periods of the z-axis angle change
less than 5° for at least 5 min62. Sleep duration in an SPT-window was calculated as
the sum of all sleep episodes. The mean and standard deviation of sleep duration
across all SPT-windows were investigated in this study. Sleep efficiency was
calculated as sleep duration divided the total SPT-window duration in an SPT-
window. Sleep fragmentation was examined by counting the number of sleep
episodes of at least 5 min separated by at least 5 s of wakefulness within an SPT-
window. Diurnal inactivity duration was the total duration of estimated bouts of
inactivity that fell outside of the SPT-window in 24 h, which included both
inactivity and naps.

Genotyping and quality control. DNA samples of 502,631 participants in the UK
Biobank were genotyped on two arrays: UK BiLEVE (807,411 markers) and UKB
Axiom (825,927 markers). In all, 488,377 samples and 805,426 genotyped markers
passed standard QC64 and were available in the full data release. SNPs were
imputed to a Haplotype Reference Consortium (HRC) panel (~96 million SNPs).
The detailed description of genotyping, QC, and imputation are available else-
where64. We further performed K-means clustering using the PCs of ~100,000
high-quality genotyped SNPs (missingness < 1.5% and MAF > 2.5%) and identified
453,964 participants of European ancestry.

Genome-wide association analysis. We performed a genome-wide association
analysis (GWAS) of self-reported daytime sleepiness as a continuous variable
derived from a 4-point scale using 452,071 individuals of European ancestry in the
UK Biobank. A linear mixed regression model was applied adjusting for age, sex,
genotyping array, 10 PCs, and genetic relatedness matrix, using BOLT-LMM with
an MAF > 0.001, BGEN imputation score > 0.3, maximum per SNP missingness of
10%, and per sample missingness of 40%23. Reference 1000 genome European-
ancestry (EUR) LD scores and genetic map (hg19) were implemented in this
analysis. X-chromosome data were imputed and analyzed separately (with males
coded as 0/2 and female genotypes coded as 0/1/2) using the same analytical
approach in BOLT-LMM as was done for analysis of autosomes. A rare chrX signal
at IGSF1 on chromosome X driven by one rare variant (MAF= 0.006) was iden-
tified, potentially attributed to genotyping artifact or false-positive association;
therefore, we do not report it as a main finding. Similar linear mixed regression
analyses were performed additionally adjusting for BMI and stratified by sex.
Secondary GWAS excluding related individuals, shiftworkers, individuals who used
psychiatric medications, and participants with chronic health and psychiatric ill-
ness (N= 255,426) was performed adjusting for age, sex, genotyping array, and 10
PCs in PLINK 1.9 (ref. 65). We used a hard-call genotype threshold of 0.1, SNP
imputation quality threshold of 0.80, and an MAF threshold of 0.001. SNP-herit-
ability, defined as the proportion of trait variance explained by genome-wide
additive genetic effects, was estimated using BOLT-REML23. Genome-wide sig-
nificance level was set at 5 × 10−8. Gene-sex and gene-health status interaction
analyses were performed on unrelated individuals using a linear regression model
in PLINK with the additional –interaction flag. Conditional analyses to dissect
independent signals in significant genomic regions were performed using GCTA-
COJO66 with MAF > 0.001 and genome-wide significant threshold of P < 5 × 10−8

through a stepwise selection procedure using –cojo-slct flag. Variant annotation for
each significant locus was performed using PICS with 1000 Genome EUR LD
reference with a causal probability of 0.2 or greater40.

Sensitivity and stratification analyses of significant loci. Sensitivity analyses
of the genome-wide significant loci on autosomes in the primary analysis (P < 5 ×
10−8) were performed additionally adjusting for potential confounders (including
depression, socio-economic status, alcohol intake frequency, smoking status, caf-
feine intake, employment status, marital status, and psychiatric problems) and
clinically important sleep traits (including sleep apnea, narcolepsy, sleep duration
hours, insomnia, and chronotype) individually in 337,539 unrelated individuals
using PLINK. Sleep traits were further adjusted in the model to investigate their
combined effect on sleepiness signals. Stratified association analyses with self-
reported daytime sleepiness were performed in persons without obesity (BMI < 30,
N= 256,373) vs individuals with obesity (BMI ≥ 30, N= 81,163), long sleepers
(self-reported sleep duration > 8 h; N= 25,272) vs short sleepers (self-reported
sleep duration < 7 h; N= 78,393) and tested for heterogeneity effect.

Heterogeneity analysis. Genome-wide significant loci identified by primary
GWAS analysis were further investigated to understand their contribution to
daytime sleepiness through different mechanisms by testing the associations
between sleepiness risk alleles with BMI and other sleep traits in the UK Biobank
(including self-reported sleep duration, insomnia, chronotype, long sleep duration
[>8 h], short sleep duration [<7 h], snoring, obstructive sleep apnea defined by
ICD-10 code [G47.3], hypersomnolence [defined as sleepiness plus long sleep
duration without any chronic or psychiatric diseases], and 7-day accelerometry
data). Linear or logistic regression analyses were performed adjusting for age, sex,
genotyping array, and 10 PCs. Genome-wide summary statistics of sleep duration,

insomnia, chronotype, long sleep duration, short sleep duration, and 7-day accel-
erometry using BOLT-LMM were available in public database49,59,67,68. We per-
formed hierarchical cluster analyses using the pairwise Euclidean distances between

42 loci: D Xi;Xj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4
k¼1 xik � xjk

� �2
r

, where Xi ¼ xi1; xi2; xi3; xi4ð ÞT corre-

sponds to the association z-scores with accelerometer-derived sleep efficiency, sleep
duration, sleep fragmentation (number of sleep periods), and self-reported
insomnia for an SNP i, i= 1,…, 42. We took an iterative approach to improve the
performance of our clustering analysis by removing cluster outliers based on sil-
houette coefficients. Briefly, the silhouette coefficient is a measure of how similar an
object is to its own cluster (cohesion) compared to other clusters (separation). It
ranges from −1 to +1, where a high value indicates that the object is well matched
to its own cluster and poorly matched to neighboring clusters. In the initial clus-
tering results (Iteration 1), loci at GAPVD1/MAPKAP1, PATJ, and POM121L2/
FKSG83 showed negative silhouette coefficients, indicating that they were likely to
be incorrectly clustered (Supplementary Fig. 8a). We therefore removed these loci
in a subsequent iteration of clustering analysis. In Iteration 2, ECE2 locus then
showed a negative silhouette coefficient, and therefore this was removed (Sup-
plementary Fig. 8b). In Iteration 3, all loci showed positive silhouette coefficients
(Supplementary Fig. 8c), indicating reasonable classification. The average silhouette
coefficient improved from 0.32 in our original classification to 0.4 in our final
classification (with all positive coefficients).

Gene, pathway, and tissue enrichment analyses. We further examined the genes
within genome-wide significant loci using gene-based pathway and tissue enrich-
ment analyses45,47,69. Gene-based analysis was performed using PASCAL, which
estimated a combined association P value from the summary statistics of multiple
SNPs in a gene45. Pathway and ontology enrichment analyses were performed
using FUMA69 and EnrichR47. Tissue enrichment analysis was performed using
MAGMA46 in FUMA, which controlled for gene size. Pathway and tissue
enrichment analyses were also performed on genes within loci belonging to sleep
propensity and sleep fragmentation clusters separately.

We constructed a weighted GRS comprising the 42 significant sleepiness loci
and tested for associations with other self-reported sleep traits (sleep duration, long
sleep duration, short sleep duration, insomnia, chronotype, and day naps), and 7-
day accelerometry traits in the UK Biobank. Weighted GRS analyses were
performed by summing the products or risk allele count multiplied by the effect
estimate reported in the primary GWAS of self-reported daytime sleepiness using R
package gds (https://cran.r-project.org/web/packages/gds/gds.pdf). We also tested
the GRSs of reported loci for insomnia, sleep duration, short sleep, long sleep, day
naps, chronotype, restless legs syndrome (RLS), narcolepsy, and coffee
consumption associated with self-reported daytime sleepiness using the same
approach. The SNPs selected for each trait include 57 genome-wide significant loci
for frequent insomnia49; 78, 27, and 8 loci for sleep duration, long sleep, and short
sleep, respectively59; 348 loci for chronotype67; 125 loci for daytime napping; 20
genome-wide significant loci for RLS48; 8 non-HLA suggestive significant loci (P <
10−4) in a narcolepsy case–control study of European Americans51, and 8 loci for
coffee consumption50.

Genetic correlation analyses. Genetic correlation analysis using LD Score
regression was performed on genome-wide SNPs mapped to the HapMap3 refer-
ence panel between daytime sleepiness (with and without adjustment for BMI) and
233 published GWAS available in LDHub52. The significance level was determined
as 10−4 correcting for multiple comparisons. Pairwise genetic correlations among
daytime sleepiness, frequent insomnia, sleep duration, long sleep duration, short
sleep duration, and chronotype were performed locally using LDSC. We also
partitioned heritability across 8 cell-type regions and 25 functional annotation
categories available in LDSC70. Enrichment of the partitioning heritability was
calculated in each region with and without extension (±500 bp).

MR analyses. To investigate the causal relationship between daytime sleepiness
and other traits, we performed two-sample MR using MRbase package in R53. IVW
approach, assuming no horizontal pleiotropy effect, was implemented as the pri-
mary approach in this analysis. BMI, type 2 diabetes, coronary heart disease,
psychiatric, reproductive traits, and other sleep and circadian traits (narcolepsy,
insomnia, sleep duration, and chronotype) were tested as exposures for daytime
sleepiness. Independent genome-wide significant SNPs extracted from publicly
available summary statistics of exposures of interest (Supplementary Table 20)
were tested as instruments for their effect on daytime sleepiness. The significance
level was determinate as IVW P < 0.003 after accounting for multiple comparisons.
We identified a putative causal association of higher BMI with increased sleepiness
risk (IVW β= 0.018; 95% CI [0.008, 0.028]; P= 0.0004; Supplementary Table 21).
The mean F statistic was 32.7, indicating the instruments were sufficiently strong.
However, Cochran’s Q statistic was calculated to be 677.16 (P= 1.09 × 10−37),
indicating substantial heterogeneity about the IVW slope. This is an indicator of
potential horizontal pleiotropy that violates the traditional IV assumptions.
Therefore, we applied MR-Egger regression on the radial plot scale as a sensitivity
analysis54. The mean I2GX statistic is 0.89, indicating that instruments are suffi-
ciently strong for this analysis71. We observed a consistent effect direction for
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Radial MR-Egger (β= 0.025; 95% CI [−0.005, 0.055]; P value= 0.103). Rucker’s Q
statistic for Radial MR-Egger is 676.58, indicating that the IVW and Radial MR-
Egger models fit the data equally well (Supplementary Table 21). We also inves-
tigated the suggestive putative causal association of type 2 diabetes with increased
sleepiness risk (IVW mean F= 29; β= 0.005; 95% CI [0.001, 0.009]; P value=
0.014; Supplementary Table 21). Given variants heterogeneity evidence (Cochran’s
Q= 88.38; P= 0.005), we performed sensitivity analysis using Radial MR-Egger
again (mean I2GX = 0.84) and observed consistent effect direction (β= 0.025; 95%
CI [−0.005, 0.055]; P= 0.637; Supplementary Table 21). Reverse MR between
daytime sleepiness and other outcome were conducted using genome-wide sig-
nificant sleepiness SNPs as instruments, and did not identify any causal association
(IVW P > 0.05; Supplementary Table 22).

Replication analyses. Replication analyses were conducted using self-reported day
sleepiness or fatigue in Scandinavian individuals from four population-based stu-
dies, including Nord-Trøndelag Health Study (HUNT), Health 2000 Survey,
FINRISK, and The Finnish Twin Cohort Study.

The HUNT is a large longitudinal population health study, investigating the
county of Nord-Trøndelag, Norway since 1984 (ref. 36). Three surveys (HUNT1
[1984–1986], HUNT2 [1995–1997], and HUNT3 [2006–2008]) have been
completed including more than 120,000 individuals. Daytime sleepiness phenotype
was collected in HUNT3 by asking the question “How often in the last 3 months
have you felt sleepy during the day?” with the choices “Never/seldom”,
“Sometimes”, and “Several times”. Individuals with self-reported stroke, myocardial
infarction, angina pectoris, diabetes mellitus, hypo- and hyperthyroidism,
fibromyalgia, and arthritis were excluded from the replication analysis.

DNA samples were collected in 71,860 HUNT samples and genotyped on one
of three Illumina arrays: HumanCoreExome12 v1.0, HumanCoreExome12 v1.1,
and UM HUNT Biobank v1.0. Imputation was performed on samples with
European ancestries using a combined reference panel comprised of the HRC and
2202 whole-genome sequenced HUNT participants. In total, 29,906 individuals
with both phenotype and imputed genotype data were available for this analysis.
Sample distributions are presented in Supplementary Table 9. A generalized linear
mixed model analysis was performed on continuous sleepiness adjusted for age,
sex, genotyping batch effect, and four PCs using SAIGE v0.25. A second analysis
additionally adjusting for BMI was conducted for replications of loci identified after
adjusting for BMI.

The Health 2000 Survey is a population-based sample representing the
population structure of individuals from Finland who at the time of contact were
over 18 years old. Individuals over 30 years of age answered a number of health and
lifestyle-related questionnaires37. These data were collected between 11 September
2000 and 2 March 2001 with a goal to reveal and study public health problems in
Finland. The Ethics Committee of the Helsinki and Uusimaa Hospital District
approved the study protocol, and a written informed consent was obtained from all
participants after providing a description of the study. Full Epworth sleepiness scale
(0–24) was included among the questionnaires and included from 4546 individuals
with genotyping data on the study (Supplementary Table 10).

Genotyping was performed at Finnish Genome center using
IlluminaHuman610K genotyping array. Imputation was performed against 2,690
hcWGS and 5092 WES Finnish genomes (http://www.sisuproject.fi/). Linear
regression analyses were performed on continuous ESS adjusted for age, sex,
genotyping batch effect, and 10 PCs using snptest v2.5. Shiftworkers were excluded
and secondary analysis was adjusted with BMI.

The FINRISK is a population-based study initiated in 1972 and collected every 5
years since then in Finland to investigate the risk factors for cardiovascular
outcomes38. Nine cross-sectional surveys including 101,451 participants aged
25–74 years old were conducted between 1972 to 2012. DNA samples have been
collected since the 1992 survey.

We studied exhaustion and fatigue in this population. This was ascertained by
asking a question “During the past 30 days, have you felt yourself exhausted or
overstrained?” with choises “Never”, “Sometimes” and “Often”. In total, 20,344
individuals with both phenotype and whole genome genotyped and imputed data
were available for this study (Supplementary Table 12). Genotyping was performed
at the Wellcome Trust Sanger Institute (Cambridge, UK), at the Broad Institute of
Harvard and MIT (MA, USA), and at the Institute for Molecular Medicine Finland
(FIMM) Genotyping Unit using Illumina beadchips (Human610-Quad,
HumanOmniExpress, HumanCoreExome). The data were imputed using the 1000
Genomes project phase 3 haplotypes and a custom haplotype set of 2000 whole
genome sequenced Finnish individuals as reference panels. Linear regression
analyses for exhaustion was performed with snptest v2.5 and adjusted with age, sex,
genotyping batch effects, and 10 PCs. Shiftworkers were removed from analyses, A
secondary analysis was additionally adjusted for BMI.

The Finnish Twin Cohort Study consists of same-sexed twin pairs born before
1958, who participated in two questionnaire surveys in 1975 and 1981. In 1990,
twins who had participated in either previous survey and who were born in 1930 to
1957 were invited to participate in a questionnaire survey in 1990. The survey
included a broad set of items on sleep and sleep disorders, as reported earlier39.
Daytime fatigue was ascertained by asking the question “During the past year have
you experienced any of the following symptoms: Daytime fatigue?” with the
choices “Never”, “Every day or almost every day”, “On 3–5 days per week”, “On

1–2 days per week”, “Less often than once a week”, “About once a month” and
“Rarely”. These were coded to three categories where “Never” & “Rarely” coded to
represent category of “Low”, “On 1–2 days per week” & “Less often than once a
week” as “Intermediate” and “Every day or almost every day” & “On 3–5 days per
week” as “High”. Total of 5766 individuals with phenotype and imputed genotype
data were available for the study (Supplementary Table 13). Genotyping were done
at the Wellcome Trust Sanger Institute (Cambridge, UK), at the Broad Institute of
Harvard and MIT (MA, USA), at the Institute for Molecular Medicine Finland and
at the Thermo Fisher Scientific (Santa Clara CA, USA) using Illumina (Human610-
Quad, Human670-QuadCustom, HumanCoreExome) and Affymetrix (FinnGen
Axiom array) platforms. Genotypes were imputed using the Haplotype Reference
Consortium release 1.1 reference panel. Linear mixed model association for EDS
was performed with RVTESTS v2.0.9 adjusted for age, sex, and the genetic kinship
matrix as a random effect controlling for sample relatedness and population
structure.”

A GRS of all sleepiness loci were also tested in the four cohorts. Meta-analyses
of the sleepiness cohorts (HUNT and Health 2000) and the tiredness cohorts
(FINRISK and Finnish Twin) were performed using Fisher’s method.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
UK Biobank Sleep Traits GWAS summary statistics are available at the Sleep Disorder
Knowledge Portal (SDKP) website (http://www.sleepdisordergenetics.org). All other data
are contained within the article and its supplementary information or available upon
request.
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