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Abstract. Quasi-adaptive non-interactive zero-knowledge proof (QA-
NIZK) systems and structure-preserving signature (SPS) schemes are
two powerful tools for constructing practical pairing-based cryptographic
schemes. Their efficiency directly affects the efficiency of the derived ad-
vanced protocols.

We construct more efficient QA-NIZK and SPS schemes with tight
security reductions. Our QA-NIZK scheme is the first one that achieves
both tight simulation soundness and constant proof size (in terms of
number of group elements) at the same time, while the recent scheme
from Abe et al. (ASTACRYPT 2018) achieved tight security with proof
size linearly depending on the size of the language and the witness. As-
suming the hardness of the Symmetric eXternal Diffie-Hellman (SXDH)
problem, our scheme contains only 14 elements in the proof and remains
independent of the size of the language and the witness. Moreover, our
scheme has tighter simulation soundness than the previous schemes.

Technically, we refine and extend a partitioning technique from a recent
SPS scheme (Gay et al., EUROCRYPT 2018). Furthermore, we improve
the efficiency of the tightly secure SPS schemes by using a relaxation
of NIZK proof system for OR languages, called designated-prover NIZK
system. Under the SXDH assumption, our SPS scheme contains 11 group
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elements in the signature, which is shortest among the tight schemes and
is the same as an early non-tight scheme (Abe et al., ASTACRYPT 2012).
Compared to the shortest known non-tight scheme (Jutla and Roy, PKC
2017), our scheme achieves tight security at the cost of 5 additional
elements.

All the schemes in this paper are proven secure based on the Matrix
Diffie-Hellman assumptions (Escala et al., CRYPTO 2013). These are
a class of assumptions which include the well-known SXDH and DLIN
assumptions and provide clean algebraic insights to our constructions.
To the best of our knowledge, our schemes achieve the best efficiency
among schemes with the same functionality and security properties. This
naturally leads to improvement of the efficiency of cryptosystems based
on simulation-sound QA-NIZK and SPS.

Keywords. Quasi-adaptive NIZK, simulation soundness, structure-pres-
erving signature, tight reduction.

1 Introduction

Bilinear pairing groups have enabled the construction of a plethora of rich cryp-
tographic primitives in the last two decades, starting from the seminal works
on three-party key exchange [30] and identity-based encryption (IBE) [11]. In
particular, the Groth-Sahai non-interactive zero-knowledge (NIZK) proof sys-
tem [24] for proving algebraic statements over pairing groups has proven to be
a powerful tool to construct more efficient advanced cryptographic protocols,
such as group signatures [21], anonymous credentials [7], and UC-secure com-
mitment [17] schemes.

QUASI-ADAPTIVE NIZK FOR LINEAR SUBSPACES. There are many applications
which require NIZK systems for proving membership in linear subspaces of group
vectors. A couple of examples are CCA2-secure public-key encryption via the
Naor-Yung paradigm [42], and publicly verifiable CCA2-secure IBE [29].

For proving linear subspace membership, the Groth-Sahai system has a proof
size linear in the dimension of the language and the subspace, in terms of num-
ber of group elements. To achieve better efficiency, Jutla and Roy proposed a
weaker notion [32] called quasi-adaptive NIZK arguments (QA-NIZK), where
the common reference string (CRS) may depend on the linear subspace and
the soundness is computationally adaptive. For computationally adaptive sound-
ness, the adversary is allowed to submit a proof for its adaptively chosen invalid
statement. Based on their work, further improvements [38,33,1] gave QA-NIZK
systems with constant proof size. This directly led to KDM-CCA2-secure PKE
and publicly verifiable CCA2-secure IBE with constant-size ciphertexts.

STRUCTURE-PRESERVING SIGNATURE. Structure-Preserving (SP) cryptography
[3] has evolved as an important paradigm in designing modular protocols. In
order to enable interoperability, it is required for SP primitives to support veri-
fication only by pairing product equations, which enable zero-knowledge proofs
using Groth-Sahai NIZKs.
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Structure-preserving signature (SPS) schemes are the most important build-
ing blocks in constructing anonymous credential [7], voting systems and mix-
nets [22], and privacy-preserving point collection [25]. In an SPS, all the public
keys, messages, and signatures are group elements and verification is done by
checking pairing-product equations. Constructing SPS is a very challenging task,
as traditional group-based signatures use hash functions, which are not structure-
preserving.

TiGHT SECURITY. The security of a cryptographic scheme is proven by con-
structing a reduction R which uses a successful adversary A against the security
of the scheme to solve some hard problem. Concretely, this argument establishes
the relation between the success probability of A (denoted by €4) and that of
R (denoted by er) as e4 < £ -er + negl(\), where negl(\) is negligible in the
security parameter A. The reduction R is called tight if ¢ is a small constant
and the running time of R is approximately the same as that of A. Most of
the recent works consider a variant notion of tight security, called almost tight
security, where the only difference is that ¢ may linearly (or, even better, log-
arithmically) depend on the security parameter A. It is worth mentioning that
the security loss in all our schemes is O(log @), where @Q is the number of A’s
queries. We note that QQ < 2* and thus our security loss is much less than O()).
In this paper, we do not distinguish tight security and almost tight security, but
we do provide the concrete security bounds.

Tightly secure schemes are more desirable than their non-tight counterparts,
since tightly secure schemes do not need to compensate much for their secu-
rity loss and allow universal key-length recommendations independent of the
envisioned size of an application. In recent years, there have been significant
efforts in developing schemes with tight security, such as PKEs [28,26,18,27,19],
IBEs [13,9,29], and signatures [28,8,4,20].

As discussed above, QA-NIZK and SPS are important building blocks for
advanced protocols which are embedded in larger scale settings. Designing effi-
cient QA-NIZK and SPS with tight security is very important, since non-tight
schemes can result in much larger security loss in the derived protocols.

QA-NIZK: TIGHT SECURITY OR COMPACT PROOFS? Several of the aforemen-
tioned applications of QA-NIZK require a stronger security notion, called sim-
ulation soundness, where an adversary can adaptively query simulated proofs
for vectors either inside or outside the linear subspace and in the end the ad-
versary needs to forge a proof on a vector outside the subspace. We assume
that the simulation oracle can be queried by the adversary up to @ times. If
@ > 1, we call the QA-NIZK scheme unbounded simulation-sound and if Q =1,
we call it one-time simulation-sound. Many applications, such as multi-challenge
(KDM-)CCA2-secure PKE and CCA2-secure IBE, require unbounded simulation
soundness.

If we consider the tightness, CRS and proof sizes” of previous works, we
have three different flavors of unbounded simulation-sound QA-NIZK schemes:

" We only count numbers of group elements.
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(1) schemes with non-tight security, but compact CRS-es (which only depend
on the dimension of the subspace) and constant-size proofs [37]; (2) schemes
with tight security and constant-size proofs, but linear-size CRS-es (which are
linearly in A) [18,29]; and (3) schemes with tight security and compact CRS-es,
but linear-size proofs (in the dimension of the language and the subspace) [5,6].

A few remarks are made for the tightly secure QA-NIZK scheme of Abe et
al. [5,6]. Its proceedings version has a bug and the authors fix it in the ePrint
version [6], but the proof size of the new scheme linearly depends on the dimen-
sion of the language and the subspace. To be more technical, the work of Abe
et al. achieves tight simulation soundness via the (structure-preserving) adap-
tive partitioning of [4,31]. Due to its use of OR proofs (cf. Figure 1 in their full
version [6]), the QA-NIZK proof size ends up being linear in the size of the lan-
guage and the subspace (in particular, || = O(nj +nz2)). Thus, it remained open
and interesting to construct a tightly simulation-sound QA-NIZK with compact
CRS-es and constant-size proofs.

SPS: TIGHTNESS WITH SHORTER SIGNATURES. In the past few years, substan-
tial progress was made to improve the efficiency of SPS. So far the schemes with
shortest signatures have 6 signature elements with non-tight reduction [34] by
improving [36], or 12 elements with security loss 361og(Q) [6], or 14 elements
with security loss 61og(Q) [20], where @ is the number of signing queries. Our
goal is to construct tightly secure SPS with shorter signatures and less security
loss.

1.1 Our Contributions

To make progress on the aforementioned two questions, we construct a QA-NIZK
scheme with 14 proof elements and an SPS scheme with 11 signature elements,
based on the Symmetric eXternal Diffie-Hellman (SXDH) assumption. The secu-
rity of both schemes is proven with tight reduction to the Matrix Diffie-Hellman
(MDDH) assumption [16], which is an algebraic generalization of Diffie-Hellman
assumptions (including SXDH). The security proof gives us algebraic insights
to our constructions and furthermore our constructions can be implemented by
(possibly weaker) linear assumptions beyond SXDH.

Our QA-NIZK scheme is the first one that achieves tight simulation sound-
ness, compact CRS-es and constant-size proofs at the same time. Even among
the tightly simulation-sound schemes, our scheme has less security loss. Since it
achieves better efficiency, using our scheme immediately improves the efficiency
of the applications of QA-NIZK with unbounded simulation soundness, including
publicly verifiable CCA2-secure PKFE with multiple challenge ciphertexts.

In contrast to the Abe et al. framework [5], we use a simpler and elegant
framework to achieve better efficiency. Technically, we make novel use of the
recent core lemma from [20] to construct a designated-verifier QA-NIZK (DV-
QA-NIZK) and then compile it to (publicly verifiable) QA-NIZK by using the
bilinearity of pairings. As a by-product, we achieve a tightly secure DV-QA-
NIZK, where the verifier holds a secret verification key.



Shorter QA-NIZK and SPS with Tighter Security 5

Let
Livy, = {[yl1 € G" : 3w € Z3? such that y = Mw}® (1)

be a linear subspace, where M € Z;1*"2 and n; > nz. We compare the effi-
ciency and security loss of QA-NIZK schemes in Table 1. Here we instantiate
our schemes (in both Tables 1 and 2) based on the SXDH assumption for a fair
comparison.

Scheme Type Jers| [7] Sec. los. | Ass.
LPJIY14 [38] QA-NIZK 2n1 +3(n2 + A) +10 |20 o(Q) DLIN
KW15 [37] QA-NIZK (2n2 + 6,n1 + 6) (4,0) 0(Q) SXDH
LPJY15 [39] QA-NIZK 2n1 + 3no + 24X + 55 | 42 3A+T DLIN
GHKW16 [18] DV-QA-NIZK [ na + X 4 8A+2 DDH
GHKW16 [18] QA-NIZK (n2+6X+1,n1 +2) | (3,0) 4X+1 |SXDH
AJORIS [5,6] QA-NIZK (3ng +15,n1 +12) (n1 4+ 16,2(n2 4 5)) | 36log(Q) | SXDH
Ours (Soction 3.1) | DV-QA-NIZK | (2n2 + 3, 4) (7,6) 6log(Q) |SXDH
Ours (Section 3.2) | QA-NIZK (4ng + 4,8 4+ 2n1) (8,6) 6log(Q) |SXDH

Table 1. Comparison of unbounded simulation-sound QA-NIZK schemes for proving
membership in Ly, . [crs| and |7| denote the size of CRS-es and proofs in terms of
numbers of group elements. For asymmetric pairings, notation (z,y) means x elements
in G; and y elements in G2. @ denotes the number of simulated proofs and A is the
security parameter.

Our second contribution is a more efficient tightly secure SPS. It contains 11
signature elements and n; + 15 public key elements, while the scheme from [5]
contains 12 and 3n; + 23 elements respectively, where n; denotes the number of
group elements in a message vector. We give a comparison between our scheme
and previous ones in Table 2. Compared with GHKP18, our construction has
shorter signatures and less pairing-product equations (PPEs) with the same level
of security loss. Compared with AJORI18, our construction has shorter signature
and tighter security, but slightly more PPEs. We leave constructing an SPS with
the same signature size and security loss but less PPEs as an interesting open
problem. As an important building block of our SPS, we propose the notion of
designated-prover OR proof systems for a unilateral language, where a prover
holds a secret proving key and the language is defined in one single group. We
believe that it is of independent interest.

1.2 Owur QA-NIZK: Technical Overview

THE KiLTz-WEE FRAMEWORK. In contrast to the work of Abe et al. [5], our
construction is motivated by the simple Kiltz-Wee framework [37], where they
implicitly constructed a simulation-sound DV-QA-NIZK and then compiled it

8 We follow the implicit notation of a group element. []s (s € {1,2,T}) denotes the
entry-wise exponentiation in Gs.
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Scheme [m] [o] Jvk| Sec. loss [Assumption # PPEs
Total [NL L1 L2
12 [29] I 107 + 613 o) DLIN 6+3
ACDKNO16 [2] |(n1,0)|(7,4) |(5,n1 + 12) o(Q) SXDH,XDLIN | 5 |1 2 2
LPY15 [40] (n1,0)|(10,1) |(16,2n1 + 5) o(Q) SXDH,XDLINX| 5 |3 2
KPW15 [36] (n1,0)|(6,1)  |(0,n1 + 6) 0(Q?)  |SXDH 3 |21
JRI17 [34] (n1,0)|(5,1) {(0,n1 + 6) 0(Q log Q)|SXDH 2 |1 1
AHNOP17 [4] |(ny,0)|(13,12)|(18, ny + 11) o(N) SXDH 15 |4 3 8
JOR18 [31] (n1,0)|(11,6) |(7, n1 + 16) o) SXDH 8 |4 2 2
GHKP18 [20]  |(n1,0)|(8,6) |(2,n1 +9) 6log(Q) |SXDH 9 |8 1
AJORIS [5,6] |(n1,0)(6,6) |(n1 + 11,2n1 + 12)|36log(Q) |SXDH 6 |4 1 1
Ours(unilateral)[(n1,0)[(7,4) [(2,n1 + 11) 6log(Q) [SXDH 7 6 1

Table 2. Comparison of structure-preserving signatures for message space G™ (in their
most efficient variants). “|m|”, “|o|”, and “|vk|” denote the size of messages, signatures,
and public keys in terms of numbers of group elements. Q denotes the number of
signing queries. “# PPEs” denotes the number of pairing-product equations. “NL”
denotes the number of non-linear equations that includes signatures in both groups.
“L1” denotes the number of linear equations in G; group. “L2” denotes the number of
linear equations in G2 group.

to a simulation-sound QA-NIZK with pairings. However, their simulation-sound
DV-QA-NIZK is not tight. In the following, we focus on constructing a tightly
simulation-sound DV-QA-NIZK. By a similar “DV-QA-NIZK — QA-NIZK tran-
sformation as in [37], we derive our QA-NIZK with shorter proofs and tighter
simulation soundness in the end.

The DV-QA-NIZK in [37] is essentially a simple hash proof system [14] for the
linear language L\, : to prove that [y]; = [Mx]; for some x € Z,, the prover
outputs a proof as 7 := [x | p];, where the projection [p]; := [M k]; is published
in the CRS. With the vector k as the secret verification key, a designated verifier
can check whether 7 = [yk];. By using k as a simulation trapdoor, a zero-
knowledge simulator can return the simulated proof as 7 := [y "k];, due to the
following equation:

x'p=x'"(M"k) =y k.

Soundness is guaranteed by the fact that the value y* "k is uniformly random,
given M "k, if y* is outside the span of M.

AFFINE MACs AND UNBOUNDED SIMULATION SOUNDNESS. To achieve un-
bounded simulation soundness, we need to hide the information of k in all the
@s-many simulation queries, in particular for the information outside the span
of M. The Kiltz-Wee solution is to blind the term y "k with a 2-universal hash
proof system. Via a non-tight reduction the hash proof system can be proved
to be a pseudorandom affine message authentication code (MAC) scheme pro-
posed by [9]. Technically, unbounded simulation soundness requires the under-
lying affine MAC to be pseudorandom against multiple challenge queries. This
notion has been formally considered in [29] later and it is stronger than the orig-
inal security in [9]. Because of that, the affine MAC based on the Naor-Reingold
PRF in [9] cannot be directly used in constructing tightly simulation-sound QA-
NIZK.



Shorter QA-NIZK and SPS with Tighter Security 7

Gay et al. [18] constructed a tightly secure unbounded simulation-sound QA-
NIZK °. Essentially, their tight PCA-secure PKE against multiple challenge
ciphertexts is a pseudorandom affine MAC against multiple challenge queries.
Then they use this MAC to blind the term y k. However, this tight solution
has a large CRS, namely, the number of group elements in the CRS is linear
in the security parameter. That is because the number of Z, elements in the
underlying affine MAC secret keys is also linear in the security parameter. These
Z,, elements are later converted as group elements in the CRS of QA-NIZK. To
the best of our knowledge, current pairing-based affine MACs enjoy either tight
security and linear size secret keys or constant size secret keys but non-tight
security. Therefore, it may be more promising to develop a new method, other
than affine MACs, to hide y "k with compact CRS and tight security.

OUR SOLUTION. We solve the above dilemma by a novel use of the core lemma
from [20]. To give more details, we fix some matrices Ag, A; € Zg’”k, choose a
random vector k’ and consider u := ([t]1, [v']1,7’) that has the distribution:

t <% Span(Ag) U Span(A;)
W =t"K €7, : (2)
7' : proves that t € Span(Ag) U Span(A;)

In a nutshell, the NIZK proof 7’ guarantees that t is from the disjunction space
and, by introducing randomness in the “right” space, the core lemma shows
that [u']; is pseudorandom with tight reductions. The core lemma itself is not a
MAC scheme, since it does not have message inputs, although it has been used
to construct a tightly secure (non-affine) MAC in [20].

A “NAIVE” ATTEMPT: USING THE CORE LEMMA. To have unbounded simu-
lation soundness, our first attempt is to use the pseudorandom value [u']; to
directly blind the term y "k from the DV-QA-NIZK with only adaptive sound-
ness in a straightforward way. Then the resulting DV-QA-NIZK outputs the
proof ([t]1, [u]1,7), which has the following distribution:

t < Span(Ag) U Span(A;)
uzka—i—EZp : (3)

7'+ proves that t € Span(Ag) USpan(A;)

In order to publicly generate a proof for a valid statement [y]; = [Mx]; with
witness x € Z!'*, we publish [M"k]1,[AJk]; and CRS for generating ' in the
CRS of our DV-QA-NIZK. Verification is done with designated verification key
(k,k’). Zero knowledge can be proven using (k,k’).

However, when we try to prove the unbounded simulation soundness, we run
into a problem. The core lemma shows the following two distributions are tightly

9 We note that the tight affine MAC in [29] can also be used to construct a DV-QA-
NIZK and a QA-NIZK with tight unbounded simulation soundness. Their efficiency
is slightly better than those in [18].
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indistinguishable:
REAL := {([ti]1, [t/ k'], 7))} ~c {([ti]1, [t/ ki]1,7])} =: RAND,

where k/, k! < Zik and i =1,...,Q. In the proof of unbounded simulation sound-
ness, we switch from REAL to RAND and then we can argue that all our simulated
proofs are random, since y 'k is blinded by the random value t; k. Unfortu-
nately, here we cannot use an information-theoretical argument to show that an
adversary cannot compute a forgery for an invalid statement: An adversary can
reuse the k; in the j-th (1 < j < Q) simulation query on [y;]1 € Span([M'];)
and Span([M’]1) N Span([M];) = {[0];} and given the additional information
M'Tk from the j-th query an adversary can compute a valid proof for another
invalid statement y* € Span(M’).

Moreover, this straightforward scheme has an attack: An adversary can ask
for a simulated proof 7 := ([t]1, [u]1,7") on an invalid [y];. Then it computes
([2t]1, [2u]1) and adapts the OR proof ' accordingly to #. The proof 7* :=
([2t]1, [2u]1, #) is a valid proof for an invalid statement [y*]; := [2y]1 ¢ Span
(M]y).

FrOM FAILURE TO SUCCESS VIA PAIRWISE INDEPENDENCE. The above prob-
lem happens due to the malleability in the “naive” attempt. We introduce non-
malleability by using a pairwise independent function in k. More precisely, let
T € Zj be a tag and our DV-QA-NIZK proof is still ([t], [u]1,7") with ([t]:,7)
as in Equation (3) but

u = yT(ko + Tkl) +tTk/.

We assume that all the tags in the simulated proofs and forgery are distinct,
which can be achieved by using a collision-resistant hash as 7 := H([y]1, [t]1,7")
€ Zy. Given k; the adversary can only see y;r (ko + 7;k1) from the j-th query
and for all the other queries the random values t, k; (i # j) hide the information
about ko and k;. Given kg +7;k; for a 7;, the pairwise independence guarantees
that even for a computationally unbounded adversary it is hard to compute ko +
7%k, for any 7* # 7;. Thus, the unbounded simulation soundness is concluded.
Details are presented in Section 3.1. In a nutshell, we use the pseudorandom
element [u/]; from the core lemma to hide [y ' (ko + 7ki)]; from a one-time
simulation sound DV-QA-NIZK.

FroM DESIGNATED TO PUBLIC VERIFICATION. What is left to do is to convert
our DV-QA-NIZK scheme into a QA-NIZK. Intuitively, we first make u publicly
verifiable via the (tuned) Groth-Sahai proof technique, and then modify the QA-
NIZK so that we can embed the secret key of our DV-QA-NIZK into it without
changing the view of the adversary. Then we can extract a forgery for the USS
experiment of the DV-QA-NIZK from the forgery by the adversary. Similar ideas
have been used in many previous works [37,33,36,12,9,20].
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1.3 Owur SPS: Technical Overview

The recent SPS schemes exploit the adaptive partitioning paradigm [27,19,4] to
achieve tight security. In this paradigm, NIZK for OR languages [23,43] plays an
important role, while at the same time, it also incurs high cost. Our basic idea is
to replace the full-fledged OR proof system proposed by Gay et al. [20] with one
in the designated-prover setting, where a prover is allowed to use a secret proving
key. Intuitively, it is easier to achieve an efficient scheme in such a setting since
it suffers less restrictions. In fact, the previous SPS scheme in [5] has already
exploited the designated-prover setting to reduce the proof size. However, it only
works for bilateral OR language (i.e., one out of two words lies in the linear span
of its corresponding space), while an OR-proof for unilateral language (i.e., a
single word lies in the linear span of either one of two spaces) is required in
the construction of [20]. Thus, some new technique is necessary for solving this
problem.

For ease of exposition, we focus on the SXDH setting now, where the following
OR-language is in consideration:

Ly :={[yli €G] |3r€Zy: [yh =[Ao]1-rV[yh =[A1]1-r}.

Let A; = (a, b)T, we observe that it is equivalent to the following language.

Ly :={lyo,y1]{ €GT|3w,a" € Zy: [yr]s — [yol: - 2 = [zl Ayl -z = [Ag]1- 2"}

b
a

Specifically, when = = 0, we have [y1]1 — [yo]1 - £ = [0]1, i-e., [yo,%1]{ is in the

span of A;. Otherwise, we have [y]1 = [Ag]1 - %’, i.e., [yo,y1]] is in the span

of Ag. Note that this language is an “AND-language” now. More importantly, a
witness consists only of 2 scalars and a statement consists only of 3 equations.
Hence, when applying the Groth-Sahai proof [24,15], the proof size will be only
7 (4 elements for committing the witness and 3 elements for equations), which
is shorter than the well-known OR proof in [43] (10 elements). However, the
statement contains 3 now, which may leak information on a witness. To avoid
this, we make g part of the witness and store its commitment (which consists of
2 group elements) in the common reference string. By doing this, we can ensure
that the information on g will not be leaked and g is always “fixed”, due to the
hiding and biding properties of commitments respectively. Also, notice that this
does not increase the size of proofs at all. This scheme satisfies perfect soundness,
and zero-knowledge can be tightly reduced to the SXDH assumption. Since the
prover has to use % to generate a witness for Lo given a witness for L1, this
scheme only works in the designated-prover setting. However, notice that when
simulating the proof, Ay and A; are not necessary, which is a crucial property
when applying to the partitioning paradigm.

We further generalize this scheme to one under the Dp-MDDH assumptions
for a fixed k. The size of proof will become O(k?), and the zero-knowledge
property can be reduced to the D-MDDH assumption with almost no security
loss.
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Replacing the OR-proof system of [20] with our designated-prover ones im-
mediately derives the most efficient SPS by now. We refer the reader to Table 2
for the comparison between our scheme and previous ones.

Additionally, we give another designated-prover OR proof scheme where the
proof size is O(k?), which is smaller than the above scheme when k > 1. As a
trade-off, it suffers a security loss of k. When k = 1, its efficiency is the same
as that of our original designated-prover OR proof scheme described above. In
symmetric groups, we adapt the designated-prover OR proof to provide the most
efficient full NIZK (i.e., one with public prover and verifier algorithms) for OR,
languages based on the Di-MDDH assumptions by now.

2 Preliminaries

NoTATIONS. We denote an empty string as e. We use z <& S to denote the
process of sampling an element x from set S uniformly at random. For positive
integers k > 1,17 € Z* and a matrix A € Z](DIH")XIC, we denote the upper square
matrix of A by A € Z’;Xk and the lower n rows of A by A € Zng. Similarly,
for a column vector v € Z’;*”, we denote the upper k elements by v € Z’; and
the lower 7 elements of v by v € Z}}. For a bit string m € {0,1}", m; denotes
the ith bit of m (i < n) and m; denotes the first 4 bits of m.

All our algorithms are probabilistic polynomial time unless we stated other-
wise. If A is a probabilistic polynomial time algorithm, then we write a < A(b)
to denote the random variable that outputted by A on input b.

GAMES. We follow [9] to use code-based games for defining and proving security.
A game G contains procedures INIT and FINALIZE, and some additional proce-
dures Py, ..., P,, which are defined in pseudo-code. All variables in a game are
initialized as 0, and all sets are empty (denote by (). An adversary A is executed
in game G (denote by G) if it first calls INIT, obtaining its output. Next, it may
make arbitrary queries to P; (according to their specification) and obtain their
output, where the total number of queries is denoted by @. Finally, it makes one
single call to FINALIZE(-) and stops. We use G* = d to denote that G outputs
d after interacting with A, and d is the output of FINALIZE.

2.1 Collision Resistant Hash Functions.

Let H be a family of hash functions H : {0,1}* — {0,1}*. We assume that it is
efficient to sample a function from H, which is denoted by H <& H.

Definition 1 (Collision resistance). We say a family of hash functions H
is collision-resistant (CR) if for all adversaries A

Adv§; 4(N) :=Prlz # 2’ NH(z) = H(2') | H & H, (z,2) & A(1*, H)]

is negligible.
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2.2 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1*
returns a description G := (G1, Ga, Gp, p, P1, P2, €) of asymmetric pairing groups
where G1, G2, G are cyclic groups of order p for a A-bit prime p, P, and P;
are generators of G; and Gs, respectively, and e : G; X Gy — G is an efficient
computable (non-degenerated) bilinear map. Define Pr := e(P;, P;), which is
a generator in Gp. In this paper, we only consider Type III pairings, where
G1 # G2 and there is no efficient homomorphism between them.

We use implicit representation of group elements as in [16]. For s € {1,2,T}
and a € Z, define [a]s = aPs € G, as the implicit representation of a in G;.
Similarly, for a matrix A = (a;;) € Zp*™ we define [A]; as the implicit repre-
sentation of A in G,. Span(A) := {Ar|r € Z'} C Zj denotes the linear span
of A, and similarly Span([A],) := {[Ar]s|r € Z]'} C G}. Note that it is efficient
to compute [AB]; given ([A]s,B) or (A, [B]s) with matching dimensions. We
define [A]; o [B]2 := e([A]1, [B]2) = [AB]r, which can be efficiently computed
given [A]; and [B]s.

Next we recall the definition of the Matrix Decisional Diffie-Hellman (MDDH)
[16] and related assumptions [41].

Definition 2 (Matrix distribution). Let k,¢ € N with £ > k. We call Dy,
a matriz distribution if it outputs matrices in Zf;Xk of full rank k in polynomial
time. By Dy we denote Dyy1 k.

Without loss of generality, we assume the first k rows of A < D,y form an
invertible matrix. For a matrix A < Dy, we define the set of kernel matrices
of A as

ker(A) :={at ¢ Z](f_k)w lat-A=0c¢ Zg_k)” and a* has rank (¢ — k)}.

Given a matrix A over fo’“, it is efficient to sample an a' from ker(A).
The Dy x-Matrix Diffie-Hellman problem is to distinguish the two distribu-
tions ([A],[Aw]) and ([A], [u]) where A & Dy, w < ZF and u & Z.

Definition 3 (Dg,-matrix decisional Diffie-Hellman assumption). Let
Dy be a matriz distribution and s € {1,2,T}. We say that the Dy -Matriz
Diffie-Hellman (Dg-MDDH) is hard relative to GGen in group Gy if for all
PPT adversaries A, it holds that

AdVESD, . a(N) = | Pr[l & A(G, [Al,, [Aw],)] — Pr[L ¢ A(G, [Al, [u],)]]

is negligible in the security parameter \, where the probability is taken over G <
GGen(1*), A <& Dy, w <& ZE and u & ZE.

We define the Kernel Diffie-Hellman assumption Dy-KerMDH [41] which is a
natural search variant of the Di-MDDH assumption.
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Definition 4 (Dy-kernel Diffie-Hellman assumption, Dy-KerMDH). Let
Dy be a matriz distribution and s € {1,2}. We say that the Dy-kernel Matriz
Diffie-Hellman (Dy-KerMDH ) is hard relative to GGen in group G if for all PPT
adversaries A, it holds that

AdVETfilge,k,A(/\) =Pr[c"A=0Ac#0|[c|s_ & A(G,[A],)]

is negligible in security parameter \, where the probability is taken over G <&
GGen(l’\), A& Dk.

The following lemma shows that the Dy-KerMDH assumption is a relaxation
of the Di-MDDH assumption since one can use a non-zero vector in the kernel
of A to test membership in the column space of A.

Lemma 1 (D;-MDDH = Dy-KerMDH [41]). For any matriz distribution Dy,
if Dx-MDDH s hard relative to GGen in group G, then Di-KerMDH s hard
relative to GGen in group Gs.

ForQ > 1, W & Z’;XQ, U& Z]‘;XQ, consider the @-fold Dy ,-MDDH problem
which is distinguishing the distributions ([A], [AW]) and ([A], [U]). That is, the
Q-fold Dy ,.-MDDH problem contains () independent instances of the D, ,-MDDH
problem (with the same A but different w;). The following lemma shows that
the two problems are tightly equivalent and the reduction only loses a constant
factor £ — k.

Lemma 2 (Random self-reducibility [16]). For ¢ > k and any matriz dis-
tribution Dy i, D¢,,-MDDH is random self-reducible. In particular, for any Q > 1,
if Dy ,-MDDH s hard relative to GGen in group G, then Q-fold D, ,-MDDH is
hard relative to GGen in group G, where T(B) = T(A) + Q - poly(\) and
-mddh 1
Advgs)pe,k) AN S (€= R)AVESD,  s(N) + p
The boosting lemma in [35] shows that the Dgy, ,-MDDH assumption reduces
to the Di-MDDH assumption with a security loss of a factor of k.

2.3 Non-Interactive Zero-Knowledge Proof

In this section, we follow [24,37] to recall the notion of a non-interactive zero-
knowledge proof [10] and then an instantiation for an OR-language.

Let par be the public parameter and £ = {Lpa} be a family of languages
with efficiently computable witness relation R . This definition is as follows .

Definition 5 (Non-interactive zero-knowledge proof [24]). A non-inter-
active zero-knowledge proof (NIZK) for L consists of five PPT algorithms II =
(Gen, TGen, Prove, Ver, Sim) such that:

— Gen(par) returns a common reference string crs.

— TGen(par) returns crs and a trapdoor td.
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— Prove(crs, z, w) returns a proof .
— Ver(crs, z,m) returns 1 (accept) or 0 (reject). Here, Ver is deterministic.
— Sim(crs, td, z) returns a proof w.
Perfect completeness is satisfied if for all crs € Gen (1%, par), allx € L, all
witnesses w such that Re(x,w) =1, and all © € Prove(crs, z,w), we have

Ver(crs, z,m) = 1.

Zero-knowledge is satisfied if for all PPT adversaries A we have that
Adv?iA()\) = | Pr[AProvelers ) (12 ers) = 1| crs <% Gen(17, par)]
— Pr[A%imers ) (12 crs) = 1| (crs, td) <= TGen (1, par)]

is negligible, where Sim(crs,z,w) returns m < Sim(crs,td, z) if Re(z,w) = 1
and aborts otherwise.

Perfect soundness is satisified if for all crs € Gen(par), for all words x ¢ L
and all proofs 7 it holds Ver(crs,z, ) = 0.

Notice that Gay et al. [20] adopted a stronger notion of composable zero-knowled-
ge. However, one can easily see that the standard we defined above is enough for
their constructions, as well as ours introduced later. Also, we can define perfect
zero-knowledge, which requires Adv?liA(/\) = 0, and computational soundness,
which requires that for all for all words x ¢ L,

Adv??f’A = | Pr[Ver(crs, z, ) = 1| crs < Gen(1*, par), m < A(17*, crs)]

is negligible.

NIZK FOR AN OR-LANGUAGE. In Appendix A we recall a NIZK for an OR-
language, which will be used as a building block of our QANIZK proof.

2.4 Quasi-Adaptive Zero-Knowledge Argument

The notion of quasi-adaptive zero-knowledge argument (QANIZK) was proposed
by Jutla and Roy [32], where the common reference string CRS depends on the
specific language for which proofs are generated. In the following, we recall the
definition of QANIZK [37,18]. For simplicity, we only consider arguments for
linear subspaces.

Let par be the public parameters for QANIZK and Dy, be a probability
distribution over a collection of relations R = { Ry, } parametrized by a matrix
M]; € G*™" (n1 > ng) with associated language Lpvy, = {[t]1 @ Iw €
Z}, st. [t] = [Mw]; }. We consider witness sampleable distributions [32] where
there is an efficiently sampleable distribution D;)ar outputs M’ € Zg**"? such
that [M']; distributes the same as [M];. We note that the matrix distribution
in Definition 2 is sampleable.
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We define the notions of QANIZK, designated-prover QANIZK (DPQANIZK),
designated-verifier QANIZK (DVQANIZK), designated-prover-verifier QANIZK
(DPVQANIZK) as follow.

Definition 6 (QANIZK). Let X € {¢,DP,DV,DPV}. An XQANIZK for a lan-
guage distribution Dpa consists of four PPT algorithms II = (Gen, Prove, Ver,
Sim).
— Gen(par,[M]y) returns a common reference string crs, a prover key prk, a
verifier key vrk and a simulation trapdoor td:
o X =c iff prk =vrk = e.
e X =DP iff vik =e.
e X =DV iff prk = €.
e X =DPV iff prk # € and vrk # €.
— Prove(crs, prk,[y]i, w) returns a proof .
— Ver(crs, vrk,[y]1, 7) returns 1 (accept) or O (reject). Here, Ver is a determin-
istic algorithm.
— Sim(crs, td,[y]1) returns a simulated proof .
Perfect completeness is satisfied if for all A, all [M]1, all ([y]1,w) with [y]1 =
[Mw]1, all (crs, prk, vrk,td) € Gen(par, [M]1), and all © € Prove(crs, prk,[y]i, w),
we have
Ver(crs, vrk, [y]1, 7) = 1.

Perfect zero knowledge is satisfied if for all \, all [M]1, all ([y]1,w) with [y]1 =
[Mw]1, and all (crs, prk, vrk, td) € Gen(par, [M]1), the following two distributions
are identical:

Prove(crs, prk, [y]1,w) and Sim(crs,td, [y]1).
We define the (unbounded) simulation soundness for all types of QANIZK.

Definition 7 (Unbounded simulation soundness). Let X € {¢,DP,DV,
DPV}. An XQANIZK IT := (Gen, Prove, Ver, Sim) is unbounded simulation sound
(USS) if for any adversary A,

Advi 4 () = Pr[USS™ = 1]
is megligible, where Game USS is defined in Figure 1.

WEAK USS. We can also consider a weak notion of simulation-soundness. in the
sense that it is only required that [y*]; & Qsim.'°

WITNESS-SAMPLABLE DISTRIBUTION. Here we define simulation soundness for
witness-sampleable distributions, namely, INIT gets M € Z;1*"2 as input, proofs
of our DVQANIZK and QANIZK schemes do not require the explicit M over Z,.

19 Tn [5], the defined security is this weak version. However, it is not sufficient for
constructing a CCA2 secure encryption scheme, since it does not prevent an adver-
sary from forging a new ciphertext for a challenge message and sending that it as a
decryption query.
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INIT(M): FINALIZE([y*]1, 7%):
(crs, prk, vrk, td) < Gen(par, [M];) [ [y"]1 € Lo, A ([y']1, 77) € Qsim then
Return crs. return Ver(crs, vrk, [y*]1,7")

Else return 0
SM([y]1): /| Qs queries
m <& Sim(crs, td, [y]1)

Qsim = Qsim U ([y]1,7)

Return 7

Fig. 1. USS security game for XQANIZK.

In all the standard definitions of (simulation) soundness of QANIZK for linear
subspaces, the challenger needs information on M in Z,, (not necessary the whole
matrix) to check whether the target word [y*]; is inside the language Span([M];).
This information can be a non-zero kernel vector of M (either in Z, or in Ga).
We can also define USS with respect to non-witness sampleable distributions
while our security proofs (with straightforward modifications) introduced later
also hold. In this case, we have to allow the challenger to use super polynomial
computational power to check whether [y*]; € Span(M), i.e., then the USS game
becomes non-falsifiable. Otherwise, we have to assume that the attacker always
gives [y*]1 ¢ Span(M) in USS. In fact, we note that many constructions and
applications of simulation-sound QANIZKs consider witness-sampleable distribu-
tions (c.f., [32,38,18,29]).

2.5 Structure-Preserving Signature

We now recall the notion of structure-preserving signature (SPS) [3] and unforge-
ability against chosen message attacks (UF-CMA).

Definition 8 (Signature). A signature scheme is a tuple of PPT algorithms
SIG := (Gen, Sign, Ver) such that:

— Gen(par) returns a verification/signing key pair (vk, sk).

— Sign(sk, m) returns a signature o for m € M.

— Ver(vk,m, o) returns 1 (accept) or 0 (reject). Here Ver is deterministic.
Correctness is satisfied if for all X € N, all m € M, and all (vk,sk) € Gen(par),

Ver(vk, m, Sign(sk, m)) = 1.

Definition 9 (Structure-preservation). A signature scheme is said to be
structure-preserving if its verification keys, signing messages, and signatures con-
sist only of group elements and verification proceeds via only a set of pairing
product equations.

Definition 10 (UF-CMA security). For a signature scheme SIG := (Gen,
Sign, Ver) and any adversary A, we define the following experiment:
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INIT: SIGNO(m): FINALIZE(m*,0™):
(vk,sk) < Gen(par) | Qsign := Qsign U{m} |If m* & Ogign and Ver(vk,m*,c") =1
Return vk o < Sign(sk, m) Return 1

Return o Else return 0

Fig. 2. UF-CMA security game for SIG.

A signature scheme SIG is unforgeable against chosen message attacks

(UF-CMA), if for all PPT adversaries A,
AdvEIET? (V) == Pr[UF-CMA* = 1]

is negligible, where Game UF-CMA is defined in Figure 2.

3 Quasi-Adaptive NIZK

In this section, we construct a QANIZK with tight simulation soundness. As
a stepping stone, we develop a DVQANIZK based on the Matrix Diffie-Hellman
assumption. By using the Kernel Matrix Diffie-Hellman assumption and pairings,
our DVQANIZK gives us a more efficient QANIZK. All the security reductions in
this section are tight.

THE CORE LEMMA. We recall the useful core lemma from [20], which can com-
putationally introduce randomness. More precisely, it shows that moving from
experiment Corey to Core; can (up to negligible terms) only increase the winning
chances of an adversary.

INITcore: EVALcore: FINALIZEcore (14) :

c:=0 ci=c+1 Parse p =: ([t]1, [u]1, Tor)
Ao, A1 & Doy s & Zy,t = Aos € 2" |Tf Veror(crSor, [t]1, Tor) = 0
par,, := (par, [Ao]1, [A1]1) o = tT(km) c|then return 0

crs?Br <—2k(-}enm(par0r7 1) 7, If (o], = tT(k+m)
k<& 7, Tor <& Proveo (crsor, [t]1,s) |and 0 < ¢’ < ¢ then
pi=Ag (k| +RF(0) |) = ([t]1, [w']1, mor) return 1

crs := (crsor, [Ao]1, [Pl1) |Return p Else return 0

Return crs

Fig. 3. Security games Coreg and Core; for the core lemma. RF : Z, — Z?,k is a random
function. All the codes are executed in both games, except the boxed codes which are
only executed in Core;.

Lemma 3 (Core lemma). If the D;,-MDDH assumption holds in the group Gz,
and IT°" = (Gengy, TGeng,, Prove,,, Very,, Sim,) is a NIZK for ﬁXmAI with perfect
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completeness, perfect soundness, and zero-knowledge, then for any adversary A
against the core lemma, there exist adversaries B, B’ with running time T'(B) =~
T(B') ~T(A)+ Q - poly(\) such that
AdvE"(\) :=Pr[Corej! = 1] — Pr[Corel! = 1]
<(4kMlog Q1 +2) - AdVES,, , 5(V) + (2[log Q] +2) - Adviiiz s (M)
Allog@ +2 | [log@]-@Q
p—1 p

+ D‘OgQW 'Apzk,k +

where Ap,, , is a statistically small term for Doy .

In a slight departure from [20], we include the term [A k]; in crs. We argue
that the core lemma still holds by the following reasons (for notation, our k is
their ko):

— The main purpose of k is to introduce the constant random function Fy(e)
in the transition from Gy to Gz in Lemma 4 in [20]. The same argument
still holds, given [A] k];.

— The randomization of Lemma 5 in [20] is done by switching [t]; into the
right span, and this can be done independent of k. Additionally, we note
that, given [A] k];, one cannot efficiently compute [t "k]; without knowing
s € Z’; s.t. t = Ags.

We give some brief intuition about the proof of the lemma here. Similar to [20],
we re-randomize k via a sequence of hybrid games. In the i-th hybrid game, we
set u =t " (k + RF;(c;)) where RF; is a random function and c|; denotes the
first i-bit prefix of the counter c for queries to EVALcye. To proceed from the
i-th game to the (i 4 1)-th, we choose t € Span(A.,.,) in EVALcore depending on
the (i 4+ 1)-th bit of c. We note that the view of the adversary does not change
due to the Doy ,-MDDH assumption. Then, as in [20], we can construct RF; in
the way that it satisfies t" RF;11(c;41) = t ' RF;(c);). The main difference is
that our RF; additionally satisfies AJ (k + RF;41(0T1)) = A (k + RF;(0%)),
namely, it not only re-randomizes k but also ensures that the AJk part in crs is
always independent of all the u'-s generated by EVALeye. We furthermore make
consistent changes to FINALIZEoe as in [20]. For completeness, we give a detailed
proof in Appendix B.

3.1 Stepping Stone: Designated-Verifier QA-NIZK

Let G + GGen(1*), par := G, k € N, H be a collision-resistant hash function
family, and IT°" := (Gengy, Prove,,, Very, ) be a NIZK system for language EXWAI
(constructed as in Figure 12). Our DVQANIZK IT% := (Gen, Prove, Ver, Sim) is
defined as in Figure 4. We note that our scheme can be easily extended to a tag-
based scheme by putting the label ¢ inside the hash function. Thus, our scheme
can be used in all the applications that require tag-based DVQANIZK.

Theorem 1 (Security of I7%). I1% is a DVQANIZK with perfect zero-knowle-
dge and (tightly) unbound simulation soundness. In particular, for any adversary
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Gen(par, [M]; € G1*"2): Prove(crs, [y]1, w): Jy=Mw e Z;*

Ag, A1 & Dopp, HEH s & ZF [t] := [Ao]is

par,, := (par, [Ao]1, [A1]1) Tor <= Proveo(crsor, [t]1,)

crsor + Gene(par,,, 1) 7:= H([yl1, [t]1, Tor) € Zp

ko, ki & 72 k & 72k [ul1 == [w'(po+7p1)+s ph

[pl := [AJKk], € G} Return 7 := ([t]1, [u]1, 7or)

[Poi == M'koi € G}?, [pili =

MTkq]; € GP2 Ver(crs, vk, [y]1, 7):

crs := (crsor, [Aol1, [P]1, [Pol1, [P1]1, H)  [Parse m = ([t]1, [u]1, Tor)

td := (ko, k1) 7 := H([y1, [t]1, Tor) € Zyp

vk := (k, ko, k1) If Veror(crsor, [t]1, Tor) = O then return 0

Return (crs, vk, td) If [u]; = [y "]1(ko 4+ 7k1) + [t " |1k then
return 1

Sim(crs, td, [y]1): Else return 0

s & Z’; t:= Ags

Tor <& Proveor(Crsor, [t]1, S)

T = H([y]17 [t]177T0r) € ZP

[u: == [y " (ko + 7ki)]1 + [s "]

Return 7 := ([t]1, [u]1, or)

Fig. 4. Construction of IT* := (Gen, Prove, Ver, Sim).

A, there exist adversaries B and B’ with T(B) ~ T(A) and
Adviza, 4(V) <AdVS, 5(N) + (4k[log Q] + 2) - AdVELD,, | 5(N)
+(2[log Q1 +2) - Advife 5 (A) + [log Q] - Ap,, ,

+4ﬂogQ1 + 2 N ([log Q1 + 1)-Q+1'
p—1 D

Proof (of Theorem 1). Perfect completeness follows directly from the correctness
of the OR proof system and the fact that for all y = Mw, p := AJk, po :=
MTko, p1 :=MTky, and t = Ags, for any 7, we have
w' (po+7p1)+s'p=w'(M'ko+7M"k;)+s'Ajk
= yT(ko + Tkl) + tTk.
Moreover, since
w'(po+7p1)+s' p=w'(M'ky+7M k) +s'p
=y '(ko+7ki)+s"p,

proofs generated by Prove and Sim for the same y = Mw are identical. Hence,
perfect zero knowledge is also satisfied.

We now focus on the tight simulation soundness of IT%. Let A be an adversary

against the unbounded simulation soundness of IT%. We bound the advantage
of A via a sequence of games defined in Figure 5.
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INTT(M): SM([y]1): /

i:=0 c:=c+1

Ao, A1 EDopp, HEH S&Z;[t]l = [Ao]1s

par,, := (par, [Ao]1, [A1]1) Tor <& Proveor(crsor, [t]1, )

crsor < Gener(par,,, 1%) 7= H([y]1, [t]1, 7or) € Zy

ko ki & 2y, k & 77 [l == [y " (ko + 7k1) + £ ( +RF(c) )]s

[Pl = [A (+RE(©O) )]1 €[ = ([t], [u]s, mor)

Glf Qsim = Qsim ) {([Y]177r)}7 Qtag = Qtag U {T}

po =M ko € Zre Return 7

p1:=MTk; € Z?

crs == (Crsor, [Ao]f, [pl1, [pol1, |FINALIZE([y"]1, 7"): J Gi1-Ga ,
[p1]1, H) Parse 7% =: ([t*]1, [u*]1, %)

Return crs "= H(y 1, [t"]1, 7o) € Zyp

If 7% € Qtag then return 0

If [y*]1 € Ly, or ([y*]1,7") € Qsim then
return 0

If Veror(crsor, [t*]1, 7o) = 0 then return 0

S = {ly"" (ko + 771) + T (] +RF(") Pla : 0 <
j* <}

If [u*]1 € S then return 1

Else return 0

Fig. 5. Games Gp, G; and Gz for the proof of Theorem 1. RF : Z, — Z,Z,k is a random
function. Given M over Zy, it is efficient to check whether [y*]1 € Ljvy, -

Go is the real USS experiment for DVQANIZK as defined in Definition 7.
Lemma 4 (Gg). Pr[USS™ = 1] = Pr[Gft = 1].

Lemma 5 (Gy to Gy1). There is an adversary B breaking the collision resis-
tance of H with T(B) ~ T(A) and Adv; 5(A) > | Pr[Gg' = 1] — Pr[G{! = 1]

Proof. We note that in Gy and G; the value u is uniquely defined by y,t and 7.
Thus, if A asks FINALIZE with ([y*]1, [t*]1, 7% ) that appears from one of the SIM
queries, then FINALIZE will output 0, since ([y*]1, 7* := ([y*]1, [t*]1, [u*]1,75)) €
Qsim- Now if ([y*]1, [t*]1, 72 ) has never appeared from one of the SIM queries,
but 7 = H([y*]1,[t*]1,75) € Qtag, the we can construct a straightforward
reduction B to break the CR property of H. a

Lemma 6 (G to Gg). There is an adversary B breaking the core lemma (cf.
Lemma 3) with running time T(B) =~ T(A) and Adv§™()\) = Pr[Gf = 1] —
Pr[Gs' = 1].

Proof. We construct the reduction B defined in Figure 6 to break the core lemma.
Clearly, if B’s oracle access is from Corey, then B simulates Gi; and if B’s
oracle access is from Core; (which uses a random function RF'), then B simulates
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INIT([M]1): SM([y]1):

1:=0 ci=c+1

CI"S/ & INITcore ([t]l, [u']l, 71'°y) (i EVALcore

Parse crs’ =: (crsor, [Ao]1, [Pl1) |7 := H([yls, [th, Tor) € Zp

k07k1<iZgl7 H(i’}‘l [U]l = [yT(k0+Tk1)+Ul]1

[po)1 := [M ko € G} 7= ([t} [ulr, 7or)

[pl]l = [MTkl]l € G;& Qsim = QsimU{([Y]lﬂT)}, Qtag = QtagU{T}
crs == (crs’, [pol1, [p1]1, H) Return 7

Return crs

FINALIZE([y )1, 7"):

Parse 7% =: ([t*]1, [u"]1, 7ar)

= H(y |, [, o) € Zyp

If 7" € Qtag then return 0

If [y*s € Lpay, or ([y*]1,7*) € Qsim then
return 0

W =[] — [y (ko + 77kt

Return FINALIZEcore ([t*]1, [u/"]1, 7o)

Fig. 6. Reduction B for the proof of Lemma 6 with oracle INITcore, EVALcore, FINALIZEcore
defined in Figure 22. We highlight the oracle calls with grey.

Gy. Thus, Pr[Gff = 1] — Pr[G# = 1] = Pr[Core] = 1] — Pr[Core? = 1] =
Advg"™(A), which concludes the lemma. O

Lemma 7 (Gg). Pr[Gs' = 1] = %.

Proof. We apply the following information-theoretical arguments to show that

even a computationally unbounded adversary A can win in Gy only with negligi-

ble probability. If A wants to win in Gg, then A needs to output a fresh and valid

7w = ([t*]1, [u*]1, 75). According to the additional rejection rule introduced in

Ga, u=y*" (ko +7°k;1) +t*T (k + RF(j*)) must hold for some 0 < j* < Q. Fix

a j* < @, we show that A can compute such a u with probability at most 1/p.
The argument is based on the information leak about k¢ and kj:

— For the j-th SIM query (j # j*), the term t " RF(j) completely blinds the
information about ko and k; as long as t # 0.

— For the j*-th SiM query, we cannot use the entropy from the term (k +
RF(5*)) to hide ko and k; anymore, but we make the following stronger
argument. We assume that A learns the term t'(k + RF(5*)), and thus
y " (ko+7k;) is also leaked to .A. However, since 7% # 7, the terms (ko+7*k1)
and (ko + 7k;) are pairwise independent.

Now together with the information leaked from M ko and M Tk; in crs, from
A’s view, the term y*T (ko + 7%k;) is distributed uniformly at random, given
y ' (ko +7k1) from the j*-th SIM query ([y]; may not be in Ly, ). Thus, A can
compute the random term y*' (ko + 7°k;) and make FINALIZE output 1 with
probability at most 1/p. By the union bound, A can win in Go with probability
at most (Q + 1)/p. 0
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From Lemmata 4 to 7, we have Advyz, 4(\) = Pr[USS%] < Advg 5(A) +

Advgi€(A) + %%D. By Lemma 3, we conclude Theorem 1 as

Advie, a(A) <AV 5(N) + (4k[log Q] +2) - AdvE? D, . 5(N)

+(2[log Q] +2) - Advilizk s (A) + log Q] - Ap,, ,
4logQ] +2  ([logQ]+1)-Q+1
+ + :
p—1 D

3.2 QA-NIZK

Let G + GGen(1*), par := G, k € N, H be a collision-resistant hash function fam-
ily, and IT°" := (Gengy, Prove,, Very, ) be a NIZK system for language EXO,Al' Our
(publicly verifiable) QANIZK IT := (Gen, Prove, Ver, Sim) is defined as in Figure 7.
The main idea behind our construction is to tightly compile the DVQANIZK 79
from Figure 4 by using pairings. Again we note that our scheme can be easily
extended to a tag-based scheme by putting the label ¢ inside the hash function.
Thus, our scheme can be used in all the applications that require tag-based
QANIZK.

Gen(par, [M]; € G "2): Prove(crs, [y]1, w): Jy=Mw e Zy*
A07A1 &'Dzk,mA(i'D]ﬁH(i'H S&Z;[t]l = [Ao]ls

par,, := (par, [Ao]1,[A1]1) Tor <= Proveo(crsor, [t]1,)

CrSor <— Genor(parom 1)\) T = H([y]17 [t]h ﬂ—Of) S ZP

K & 7, [u == w'([Po]i + 7[P1]1) +s"[P]1 €
Ko 8 Z;nx(k+1) K, 8 Z;nx(k+1) G}X(k+1)

P:=AJK ¢ zZF*<- Return 7 := ([t]1, [u]1, 7or)

[Po]i == [MTKo]; € G?ﬂ(k“)

[Pi) = MKy € GI2* ¢+ Ver(crs, [y]1, 7):

C = KA ¢ 72kxk ! Parse m = ([t]1, [u]1, Tor)

Co := KoA epanxk T = H([Y]lv[t]hﬂ-m)ezp

C; = K;A anxk If Veror(crsor, [t]1, Tor) = 0 then return 0
1 =Ki1A € 4y, e

crs := (crsor, [Ao]1, [P1, [Po]1, [P1]1, If [ul1 0 [Al2 = [y ] 0 [Co + 7Ci]2 +

[Alz. [Cl, [Cola. [Cilz, H) e
td := (K(),Kl) return
Return (crs, td) Else return 0

Sim(crs, td, [y]1):

s ZF t:= Ags

Tor <& Proveo(crsor, [t]1,S)

7= H([yl, [th, o) € Zp

[u]: == [y (Ko +7K1)]s + [s"P]y
Return 7 := ([t]1, [u]1, 7or)

Fig. 7. Construction of II.
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Theorem 2 (Security of IT). I defined in Figure 7 is a QANIZK with perfect
zero-knowledge and (tight) unbounded simulation soundness if the Dy-KerMDH
assumption holds in Gy and the DVQANIZK IT% in Figure 4 is unbounded sim-
ulation sound. In particular, for any adversary A, there exist adversaries B and
B with T(B) = T(B') = T(A) + Q - poly()\), where Q is the number of queries
to SIM, poly is independent of QQ and

AdVF 4 (N) < AdvE™ B 5(A) + Advie s (V).

Proof (of Theorem 2). Perfect completeness follows directly from the complete-
ness of the OR proof system and the fact that for all P := AJ K, Py := MK,
P,:=M'K,, C:=KA, Cy:=KpA, C; :=K; A, and any 7

W' (Po+7P1) +s"P]o[A],
w!(M'Ko+7™™K;)+s"AJK]; 0 [A],

[

[

w! M '] 0[KoA + 7K Als +[sTAj]1 0 [KAJ,
y ' ]10[Co+7Ci]z + [t']1 o [Ca.

Moreover, since

w! (Po+7P)+s P=w (M'Ky+7M K;)+s'P
=y (Ko+7K;) +s'P,

the output of Prove is identical to that of Sim for the same y = Mw. Hence,
perfect zero knowledge is also satisfied.

We now focus on the tight simulation soundness of II. We prove it by a
sequence of games: Go is defined as the real experiment, USS (we omit the
description here), G; and Gg are defined as in Figure 8.

Lemma 8 (Gg). Pr[USS™ = 1] = Pr[G# = 1].

In Gy, FINALIZE additionally verifies the adversarial forgery with secret keys
K, Ky, and K; as in Figure 8.

Lemma 9 (G to Gy). There is an adversary B breaking the Dy-KerMDH as-
sumption over G with T(B) = T(A)+Q-poly(\) and Advé';'f%kyg(/\) > | Pr[Ggl =
1] — Pr[G{* = 1]].

Proof. Tt is straightforward that a pair ([y*]:,7*) passing the FINALIZE in G;

always passes the FINALIZE in Gy. We now bound the probability that A pro-

duces ([y*]1,7*) that passes the verification in Gy but not that in Gy. For
= ([t*]1, [u*]1, 7,), the verification equation in Gq is:

]y 0 [Als = [y* ']1 o [KoA + 7K Ay + [t 1 o [KA],
& u -y (Ko +7K;) — tTK]y 0 [A]y = [0]7.
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INrr([M]s): Stv([y)h):

Ao, Ay & Do, AE Dy, HEH |s & ZE [t]h := [Aois

al & ker(A) Tor 4% Proveo (crsor, [t]1,8)
Ti= H([y]lv [t]lyﬂ—or) € Zp

Jat e zZ** ) and at - A =0]| |[Al == [(y (ko +7ki)+t k)-a']

war, = o AT AT uly = [y (K + 1K) + 0K+ A
crsor <+ Gener(par,,, 1A) Qsim = Qsim U {([y]1,7)}
K/ & 72kx (kD) Return 7 := ([t]1, [u]1, 7or)

P

1% n1 X (k+1) 1% n1 X (k+1
K & 7D gl s gm )

ko=k :=0€ZM k:=0¢ Zik FiNaLIzE([y*]1, 7*):

Parse m = ([t*]1, [u*]1, 7o)

ko ka & Zp', k 20 = H(ly T, 161, ma) € 2,
K:=K +k-a" If ([y*]1,7*) € Qsim or [y*]1 € Ly, OF
Ko:=K,+kj -at Ver(crs, [y*]1,7*) = 0 then
K=K, +kj -at return 0
P:= AJK ¢ ZF¥HD (A% = [(y" " (ko + 7"k1) + t* k) -a']y
[Po]s = M Koy € G20 |If [y = [y (Ko +7Ki) + ¢7 7K' +
[Pl]l — [MTKI]I c lel2><(k+l) A ]1 then

return 1

C:=KA e 72"

Co := KoA € Zp1 ¥

C; =KjA ¢ ZZIXk

Crs = (CI’Sor7 [A()]17 [P]l7 [1)()]17 [P1]1
[A]z, [Clz, [Co]2, [Ci]2, H)

Return crs

Else return 0

Fig. 8. Games G; and for proving Theorem 2.

One can see that for any ([t*];,[u*]1, %) that passes the verification equation
in Go but not that in G, u* — y*(Ko + 7K;) — t " K is a non-zero vector in the
kernel of A.

We now construct an adversary B as follows. On receiving (G, [A]1) from the
Dy-KerMDH experiment, B samples all other parameters by itself and simulates
Gy for A. When A outputs a tuple ([t*], [u*]y,7%), B outputs u* — y* ' (Ko +
7K1) — t TK. Since B succeeds in its experiment when A outputs a tuple such
that u* —y* " (Ko + 7K;) — t TK is a non-zero vector in the kernel of A, we
have Advé":fjghg(/\) > | Pr[Gg' = 1] — Pr[Gf* = 1], completing the proof of this
lemma. O

Lemma 10 (G; to Gg). Pr[Gff = 1] = Pr[Gs' = 1].

Proof. Now we finish the reduction to the KerMDH assumption and we can have
A over Z,. In Gg, for i € {0,1} we replace K; by K’ + k;a' for at € ker(A),
where K/ ¢ Z;”X(k“), and k; <* Z7*. Furthermore, we replace K by K’ + kat

for K & Z,Q,kx(kﬂ) and k < Z2*. Since K’ and K] are uniformly random, K
and K; in Gy are distributed at random and the same as in G;. Thus, G5 is
distributed the same as Gj. O



24 M. Abe, C. S. Jutla, M. Ohkubo, J. Pan, A. Roy, Y. Wang

Lemma 11 (Gy). There is an adversary B’ breaking the USS security of IT% de-
fined in Figure 4 with T(B') ~ T(A)+Q-poly(X) and Pr[Gs' = 1] < AdviFi 5 (A).

Proof. We construct a reduction B’ in Figure 9 to break the USS security of 1T
defined in Figure 4.

INIT(M): SM([y]1):

$
A (Ith [l Ter) <€ S (1)
a® & ker(A) A S

L 1x (k+1) 1A 1= |ul1-a
/a €$Zp anda~A =0 [ = [y (K, +7K}) +t K + Al
CrSav <= INITdV(M) Qsim = Qsim U {([y]17 71')}
Parse crsqy =: (crsor, [Ao]1, [P]1, Return 7 := ([t]1, [u]1, 7or)

[Pol1, [p]1, H)
K’ & 72 FINALIZE([y*]1, 7%):
Ky & 20 K & zpx D Parse = ([67]1, [u]y, 7md,)
[Py := [Ao]lTK' + [p]wlL If ([y*]1,7") € Qsim or [y*]1 € Lmy, OF
[Po]1 := [M]{ K + [po]ia”t Ver(crs, [y*]1,7") = 0 then
[P1]: := [M]{ K} + [p1]1a™ return 0
C:=K'A € 72F** Compute [v]1 such that
Co :=KpA € Zp+** [phat = [u* —y* T (Kj + 7°Kj) —t* "K'y
Ci:=KjA ez " Return FINALIZEq, ([y*]1, ([t*]1, [v]1, 7))
crs := (crsor, [Ao]1, [P]1, [Po]1, [P1]1
[A]z, [C]z, [Col2, [Ci]2, H)

Return crs

Fig. 9. Reduction B’ for the proof of Lemma 11 with oracle access to INITq,, SIMg, and
FINALIZE4, as defined in Go of Figure 5. We highlight the oracle calls with grey.

We note that the [p]1, [pi]1 (i = 0,1) from INIT4, have the forms, p = AJ k
and p; = Mk, for some random k € sz and k; € Z;“, and furthermore the
value [u]; from SiMg, has the form u =y " (kg + 7ki) + t " k. Hence, essentially,
B’ simulate the security game with K and K; that are implicitly defined as
K = K +k-at and K; := K/ +k; - a'. The simulated INIT and Si™ are
identical to those in Gs.

In Go, FINALIZE([y*]1, 7* := ([t*]1, [u*]1, 7%)) outputs 1 if

u* :y*T(Ké—FT*K/l)—Ft*TK/-F(y*T(ko—l—T*kl)-i-t*Tk)'al

=v

and ([y*]1,7*) ¢ Qsim and [y*]1 ¢ Ly, and Ver(crs, [y*]1, 7*) = 1. Thus, if A
can make FINALIZE([y*];,7*) output 1 then B’ can extract the corresponding
[v]; to break the USS security. We conclude the lemma. O

To sum up, we have Pr{USS™ = 1] < AdvET® 5(\) + Advie. 5 (\) with B
and B’ as defined above. ' O
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3.3 Application: Tightly IND-mCCA-Secure PKE

By instantiating the labeled (enhanced) USS-QA-NIZK in the generic construc-
tion (see Figure 16) in [5] with our construction in Section 3.2, we immedi-
ately obtain a more efficient publicly verifiable labeled public-key encryption
(PKE) with tight IND-CCA2 security in the multi-user, multi-challenge setting
(IND-mCCA). The security reduction is independent of the number of decryption-
oracle requests of the CCA2 adversary. We refer the reader to Appendix C for
the definition of labeled IND-mCCA secure PKE and the construction.

4 Tightly Secure Structure-Preserving Signature

In this section, we present an SPS via a designated-prover NIZK for the OR-
language, whose security can be tightly reduced to the Doy ,-MDDH and Dy-
MDDH assumptions.

4.1 Designated-Prover OR-Proof

In this section, we construct NIZKs in the designated-prover setting. In contrast
to [5], we focus on the language EXO) A, defined in Section 2.3, where a single
word y is required to be in the linear span of either one of two spaces given by
matrices Ag and A;.

While previous techniques [23,43] require ten group elements in a proof, our
novel solution gives a QANIZK with only seven group elements under the SXDH
hardness assumption, by leveraging the privacy of the prover CRS.

DEFINITION. For Ag, A1 <& Dy j, we define the notion of designated-prover
OR-proof for L} 4,

Definition 11 (Designated-Prover OR-Proof). A designated-prover proof
system for Lx a, is the same as that of NIZK for L} A, (see Section 2.3),
except that
— Gen takes (par, Ag, A1) as input instead of (par, [Ao]1, [A1]1) and outputs an
additional prover key prk.
— Prove takes prk as additional input.
— In the soundness definition, the Adversary is given oracle access to Prove
with prk instantiated by the one output by Gen.

CONSTRUCTION. Let G < GGen(1"), par := G, and k € N. In Figure 10 we
present a Designated-Prover OR-proof system for EXO) A

Lemma 12. If the Dy-MDDH assumption holds in the group G, then the proof
system II°" = (Gene,, TGeng, Prove,,, Vero,, Sime,) as defined in Figure 10 is a
designated-prover or-proof system for EXm A, With perfect completeness, perfect
soundness, and zero-knowledge. More precisely, for all adversaries A attacking
the zero-knowledge property of IT®, we obtain an adversary B with T(B) =
T(A) + Q- poly(\) and Advife 4(N) < AdvgE 1, 5(N).
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Gene(par, Ag € Zika,A1 IS Zika): TGeno (par, [Ao]1, [A1]1):

V & Dy u & ZEH\ Span(V) V& D,z Zk, ui=Vz
d, Fori=1,--- k:
o 1 kxk Si & 2% D=8, V'
| EAA e Crsar = (par, (o)1, [Ad )1, [z, [V]2,
dy ([Dil2)1<i<k),
Fori=1,---,k: tdor := (2, (Si)1<i<k)
S & ZI;Xk7 D;:=d/u’ +S;V" |Return (crsor,td_o,)_
crsor == (par, [Ao]1, [A1]1, [u]2, [V]2,
([Dil2)1<i<k) Veror(crsor, [y]1, ([Ci, €il2, [TLi, mil1)1<i<k):
skor 1= (Ao, A1, (Si)1<i<k) Parse m =: ([Ci, ci]z2, [TLi, mi)1)1<i<k
Return (crsor, skor) vl = [y, ,y6) 11 -
Fori=1,---,k:
Proveor (CrSor, Skor, [y]1, T): If [Aoi0[Cila—[yliofci]2 # [TL]io[V ]

Parse skor =: (Ao, A1, (Si)1<i<k) then return 0
If =(3j € {0,1} : [yls = [Ajr]1) then| ¢ [¥ " 10[Di)a—[yi]1o[u" Ja—[1]10[ei]2 #
abort [m:]1 0 [V ]2 then return 0

d ) Else return 1
d:= : = ﬁA_17 S Z];Xk
dk Simor (Crsor, tdor, [y]1):
(@1, yan) =y TdT —yT € ZLxk Parse tdor =: (2, (S)1<i<k)
’ ’ L - r kxk Parse [X]l = [(y17 T 7yk)]1
(X17""7Xk)-—r($17"'7mk)€Zp FOI'i:17"'7k7
Foi‘{z :s li;c.xfk: R, & Zl;xk7 [Ci]s = [RiVT]Z
[Czi];_:pxi[u—rb + Ri[VT]2 ne Zém7 leils = [riVTh
r, & ZLnk [Hi]l“*[_éORi —yri .
[ci]2 ::pmi[u—r]z +1; [V R [l := [y SZ y ri_ - yiz h
eturn ([Cs, ¢z, [TLi, mi]1)1<i<k

i = AoR; —yr;
T 1= yTSi —T;
Return (([C;, ¢i]2, [TLi, mi]1)1<i<k)

Fig. 10. Designated-prover or-proof for [,XLO,A1 .

We refer the reader to Introduction for the high-level idea of our construction.
We postpone the detailed proof in Appendix D.

EXTENSIONS. For larger matrices Ay, A1, and under Di-MDDH assumption for
a fixed k, we improve our proof size so that it asymptotically approaches a factor
of two. As a trade-off, it loses a factor of k.

Roughly, for some invertible matrix U, we exploit the following language
instead:

Lx,a, ={yh €G¥|IxeZ* X eZ*: AX =yxVy A{U=x}.

One can see that it is also equal to EXO,AN since y is in the span of Ag if x # 0
and in the span of A; otherwise. Instead of directly applying the Groth-Sahai
proof to it as before, we make careful adjustment on the proof for [y]{ AU =
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[x]; and commitment of the information on A in this case. We also extend it to
an efficient OR-Proof in the symmetric pairing, which might be of independent
interest. We refer the reader to Appendix E for the constructions and security
proofs.

4.2 Structure-Preserving Signature

By replacing the underlying OR-proof in the SPS in [20] with our designated-
prover one, we immediately obtain a more efficient SPS. A signature consists
only of 11 elements, which is the shortest known for tightly secure SPS-es.

Gen(par): Sign(vk, sk, [m]; € GT):
Ao, Ay & Do r & ZF [t = [Aohir
(crsor, skor) <— Genor(par, Ao, A1)  |mor < Proveo(crsor, [t]1,T)
A (i Dk m
K, & 728+ [l =K [t], + KT [1

K & Z£n+1) X (k+1)

1
Return o := ([t]1, 7or, [u]1)
Co = KoA € 72kxF

C=KA ez{t* Ver(vk, o, [m];):

vk = (CI’SOH [A0]17 [A]27 [00]27 [0]2) m::([t]h Tor [u]l)

sk := (Ko, K, skor) b « Veror(vk, [t]1, or)

Return (vk, sk) Ifb=1 and
[u']10[A]2 = [t"]10[Col2+[m ", 1]10[C2
return 1

Else return 0

Fig. 11. Tightly UF-CMA secure structure-preserving signature scheme Y’ with message
space GT. k € N and the public parameter is par = G where G + GGen(1").

Theorem 3 (Security of X). If IT° := (Geng,, TGeng,, Very,, Simg,) is a non-
interactive zero-knowledge proof system for £X07A17 the signature scheme X de-
scribed in Figure 11 is UF-CMA secure under the Dy 1,.-MDDH and D,-MDDH
assumptions. Namely, for any adversary A, there exist adversaries B,B’ with
running time T(B) =~ T(B') = T(A) + Q - poly()\), where Q is the number of
signing queries, poly is independent of @, and

AdvesE™e <(4k[log Q] +2) - Advgff’{;%,k) 5
+ (2 |—10g Q-| + 3) ' Advgg,dgk,lﬁ" + Dog Q] ! ADzk,k

+4f10gQ1+2 n (Q+1)[logQ] +Q +%
p—1 D D

We omit the proof of the above theorem since it is exactly the same as the
security proof of the SPS in [20] except that we adopt the notion of standard
zero knowledge instead of the composable one and the OR-proof system is a
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designated-prover one now, which does not affect the validity of the proof at all.
We refer the reader to [20] for the details. Notice that in the MDDH games of
the security proof, the reduction algorithm is not allowed to see Ay and A; so
that it cannot run the honest generation algorithm Gene, (par, Ag, A1). However,
it does not have to, since in all the MDDH games, common reference strings are
always switched to simulated ones, namely, the reduction algorithms only have
to run TGeng(par, [Aogl1, [A1]1).

4.3 DPQANIZK and Black-Box Construction

We can also use our designated-or-proof system to construct a structure-preserv-
ing DPQANIZK with weak USS, which might be of independent interest. We
refer the reader to Appendix F for the construction and security proof of it.

On the other hand, as shown in [5,6], there is an alternative approach for
constructing SPS directly from DPQANIZK. It is just mapping a message to
an invalid instance out of the language and simulating a proof with a trapdoor
behind a common reference string published as a public key. In the concrete
construction in [5,6], ng + 1 extra elements are included in a public key so that
they are used to make sure that messages consisting of ng elements are certainly
mapped to invalid instances. We can take the same approach but with improved
mapping that requires only one extra element assuming the hardness of the
computational Diffie-Hellman problem. The resulting signature size is exactly
the same as that of proofs of DPQANIZK and the public-key size is that of a
common-reference string plus one element.
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Supplementary Material

A A NIZK system for OR-language

We now recall a NIZK for an OR-language, which will be used as a building block
of our QANIZK proof. It was firstly given in [23] and later generalized in [43]
for more general languages. Up until now, this instantiation has been used in
several works [20,5] to achieve tight security. We use it as well.

Genor(par): VEI’m(CI’S7 [X]17 ([20]27 ([02127 [Hi]l)ie{o,l})):
D <& Dy, z & ZET1\Span(D) [z1]2 := [z]2 — [20]2
crs := (par, [D]z, [z]2) if for all ¢ € {0,1} it holds
Return crs [Ai]1 0 [Ci]2
=[LiJio[D]2 + [x]1 0 [z] ]2
Provec(crs, [X]1,r): return 1
let j € {0,1} s.t. [x]1 = [Aj]1 -r |Else return 0
v& Z];
[Z1—j]2 :=[D]2 - v Simer(crs, td, [x]1):
[z;]2 := [2]2 — [21—j]2 parse td =: u
So,51&Z§Xk V(iZZ
[Cjl2:==S;-[D]3 +r-[z]s [2o]2 := [D]2 - v
[I;]1 := [Aj]1 - S; [21]2 == [2]2 — [z0]2
[lej]g = Slfj . [D];— So,Sl <£ ZI;Xk
(1151 = [A15]1-S1-; = [x]1-v " |[Co]2 := So - [D]5
Return ([Z()]z, ([Ci]z, [Hi]l)ie{o,l}) [HO]I = [A0]1 -So — [X]l . V—r
[Ci]2 :=S: - [D]3
TGen (par): [M1]1 = [A1]1-S1 — [x]1 - (u—v) T
D & Dy, u & 2k Return ([zol2, ([Ci]z, [Ii]1)iet0,1})
z:=D-u
crs := (par, [D]2, [z]2), td :=u
Return (crs, td)

Fig. 12. Construction of II* for L3, a, ([23,43])

Let G <+ GGen(l’\), ke N, AQ,Al & 'ng)k, par := (g, [Ao]l, [Al]l) In Fig—
ure 12 we give the NIZK proof scheme IT°" = (Gene,, TGeng,, Provee, Vere, Simey),
which was previously presented in [37] and also implicitly given in [23,43], for
the OR-language

La,a, ={x1 €GI |IreZk: x|y = [A¢]y TV [x]1 = [A1]; - T}

Lemma 13. If the Di-MDDH assumption holds in the group Go, then the proof
system IT°" = (Gengy, TGeney, Provey, Verg, Simo ) is a NIZK for EXO7A1 with
perfect completeness, perfect soundness, and zero-knowledge. More precisely, for
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any adversary A against the zero-knowledge of I1°", there exists an adversary B

with T'(B) = T(A) + Q - poly(\) and

Adviie 4(N) < AdVEE! 5, 5().

B The Proof of the Core Lemma

In this section, we give the proof of the core lemma (see Lemma 3).

Proof (of Lemma 8). Let A be any adversary. We proceed via a series of hy-
brid games Go, ..., G3.110g @], described in Figure 13, and we denote by ¢; the
advantage of A to win G;.

r-—-—-—--- i
Go7 Gl,: G27 Gg,i : . EVALcore:
ittt 2 ci=c+1
INITcore: ffi_ _Z_ﬁv_['j]l = [Aos|1
c:=0 't <i Z?)k 1
Ao, Ay & Dap i -5 bl -

Tor <& Proveo (Crsor, [t]1,S)

parg = (par7 [A0]17 [Al]l) .
CrSor Genor(paro” 1A) ‘ Tor <= Simor(Crsor, td, [t]1) ‘

‘ (crsor, td) < TGene(par,,) [W']: = [t" (k +RFi(c;;) )1
K7 o= (6], [T, 7or)
p = A (kK +RF;(0") ) Return p

]

crs == (crsor, [Ao]1, [P]1)
Return crs

FINALIZEcore (11) :
Parse p = ([t]1, [¢']1, TTor)
b := Veror(crsor, [t]1, or)
Ifb=1land30< ' <c:
[u']i = [t]{ (k +RE(c];) )
return 1
Else return 0

Fig.13. Games Go, G, G, Gs; for i € {0,...,[logQ] — 1}, for the proof of the core
lemma (Lemma 3). RF; : {0,1}} — Zf,k denotes a random function, and c|; denotes
the i-bit prefix of the counter ¢ written in binary. In each procedure, the components
inside a solid (dotted, gray) frame are only present in the games marked by a solid
(dotted, gray) frame.

Go: By definition, we have

g0 = Pr[Coreg! = 1].
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Go to Gy: Game G; is the same as Gy, except that crs,, is generated by T Gen,, in-
stead of Gene, and proofs are generated by Sim,,. We now construct an adversary
B against the zero-knowledge property of NIZK as follows.

B runs the game similar to Gg, except that it uses crso, from its own experi-
ment instead of sampling it by itself. Then it answers EVALcoe and FINALIZE e
queries by using k and its own oracle which returns honest or simulated proofs 7.
Since B simulates G (respectively, G1) when crs,, and 7o, are generated by Gene,
and Prove,, (respectively, TGeno, and Sim,,), we have T'(B) =~ T(A) + Q - poly())
and

|€0 — 61| < AdV?;OHB(/\).

Gy to Go: Game G; is the same as G, except that we switch [t]; to random
over Gi. We now construct an adversary B; against the @-fold Dy ,-MDDH
assumption as follows.

On input (G, [Aol1, [Z1]1,- - -, [2g]1), B1 sets up the game similar to Gy, except
that it uses [Ag]1 from its own experiment instead of sampling Ay <& Doy, by
itself. Furthermore, to answer EVALeye queries By sets [t;]1 := [z;]1 (where t;
denotes t generated in Figure 13 for the ith EVALcye query) and computes the
rest accordingly. Since B; simulates G; when given a real Dy, ;-challenge and
simulates Gy otherwise, according to Lemma 2, we have T'(B1) ~ T(A) + Q -
poly(A) and

ddh
|51 — 62| S k- AdVEhD%JwBl (/\) + —.

Gy to Gs.9: We denote 0° as empty string €. In Gz, instead of sampling a random
k, we use k + RFy(e) to simulate the security game, where RFg(e) is a fixed
random vector. We have

E9 = £3.0-

Gs.i to Gy (i+1): There exist adversaries B;, B such that T'(B;) =~ T'(B;) ~ T(A)+
Q : pOIY()‘)v and

€3.i <€3.(i+1) T 4k - Advgidgzk,kﬁi (A) + 2Adv§l7(°r732 (A)

4 . Q
A

We refer the reader to Lemma 14 for this part of proof.

G3.110g @1 to Core;: We now introduce an intermediary game G4, where we set
[t} := [AgJir for r <> ZF. This corresponds to reversing transition from Gy

to Gz, and by the similar reasoning we obtain an adversary Bs fiogq) With
T(Bs.10gq1) = T(A) + Q - poly(A) such that

1
ddh
|‘€3»f10gQ-\ —ea| <k- AdVEhD%,mB&rlogQ] (A) +
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We now switch back to honest generation of crso, and 7o,. This corresponds to
reversing transition Gg to Gy, and by the same reasoning we obtain an adversary

By such that T'(By) ~ T(A) + Q - poly(\) and
les — Pr[Core] = 1]| < Adv%n&(/\),
completing the proof. O

Lemma 14 (G3z; to Gg (i11)). If the Doy x-MDDH assumption holds in Gy,
and IT°" = (Gengy, TGengy, Proveg,, Verg,, Simor) is a NIZK for EXO,Al with perfect
completeness, perfect soundness, and composable zero-knowledge, then for all
i €{0,...,[logQ]—1}, there exist adversaries B;, B such that T(B;) = T'(B}) =~
T(A)+ Q - poly(\) and

€3.i <€3.(i41) + 4k - AdVEf%%,k,Bi (A) + 2Adv§l7(°’73§ (A)
Q
2A — + —.
+ Dok, k + p— 1 + D

Proof. We proceed via a series of hybrid games H; ; for i € {0,..., [logQ] — 1},
j€{1,...,8}, described in Figure 14, and we denote by &, ; the advantage of A
to win Hi,j.

Gz to H;1: For EVALeye queries, we choose [t]; randomly from Span([Ag]1)
instead of the whole Z2¥, where ¢;11 is the (i + 1)-th bit of the binary represen-
tation of c. This difference is bounded by using the Dy ,-MDDH assumption
twice. More precisely, we introduce an intermediary game H; o, where we choose
[ti]l as
[t] _ [A()I'i]l for r; (i Z]; if Ci+1 = 0
o [u;]; for u; & Zﬁk else '

Let Bio be an adversary receiving against the @-fold MDDH assumption.
On input (G, [Ao]1, [Z1]1,- ., [2@]1), it sets up the game for A similar to game
Gs.;, except that it uses [Ag]; from the challenge instead of sampling [Ag]y by
itself. Further, whenever obtaining a simulation query ¢ with c|;;.1 = 0, B; o sets
[ti]1 := [2:;]1 and follows Gj; otherwise. Similar, we can reduce the transition
from game H; ¢ to H;.1 to the Dy ,-MDDH assumption. According to Lemma 2,
we have T'(B;0) ~ T'(A) + @ - poly(A) and

. 2 ddh
|53.i - 5i,1| < pTl + 2k - Advglapzk,kygi.o ()\)

H;1 to H;2: We now reverse the transition from game Gy to G; in Lemma 3.
Specifically, we generate crs,, by using Gen,, instead of TGen,, and generate
proofs honestly by Prove,. By the similar reasoning as for the transition from
game Go to Gy, there exists an adversary B; 1 such that T(B; 1) ~ T(A) + Q -
poly(A) and

|6i.1 — éi2| < AdvRizk s, , (M)
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INITcore: // Hi.2 - Hi.7 7EVALcore: // Hi.2 - Hi.7 5 Hi.4 - Hi.8
Hia — His ci=ctl

c:=0 s & ZI;

Ao, Ay <& Dy [th = [Aciya]is

par, = (par, [Ao]y, [Ad)) [T (Croortd [t])

(crsor, td) < TGeno(par,,) ‘ Tror 4 Provecr(crser, [t]1,8) ‘

‘crsor + Genor(par,,) W)= [t" (k+RFs(ci))h

k & 73" [u]1 = [t (k+RFit1(cjit1))h

p = Ag(k‘f‘RFL(Ob)) W= ([t]17[ul]17ﬂ—or)
p:=AJ (k +RF;1(0"h)) Return p
crs := (crsor, [Ao]1, [P) | ________

Return crs FINALIZEcore (1) : //[Iji_..‘i_?_H_i._G], Hia — His
Parse f1 = ([t], [«/]1, 7o)
B := Vero(crsor, [t]1, Tor)
S = {RF;(c};) : ' < c}
Game Hj.4:
S = { RFi+1(C‘,i|dt) : 0 S C/ S C}
Game H;.5:

S:={RFiyi(c;; b):0<c <c, be{0,1} }
Game Hi‘s — Hi‘si
S = {RF1.+1( C\,'H»l ) : 0 S C/ S C}

and §=1and 3w € S: [u']y = [t]{ (k+w)
Return 1
Else return 0

Fig. 14. Games H; ; for i € {0,...,[log Q] —1}, j € {1, ..., 8}, for the proof of Lemma
14. Here, RF; : {0, l}i — Zik denotes a random function, c|; denotes the -bit string
that is a prefix of ¢ written in binary, and c; is the i’th bit of ¢ written in binary. We
have d¢ = 0 if t € Span(Ay), and d¢ = 1 if t € Span(A1). In each procedure, the
components inside a solid (dotted, gray) frame are only present in the games marked
by a solid (dotted, gray) frame. For the intermediate transitions from game H;4 to
game H; ¢ we use light gray highlighting to emphasize the respective differences.

H; 2 to H;3: H; 3 is the same as H; 2 except that FINALIZEy. additionally checks
whether [t]; € Span([A¢]1) U Span([A1]1). The perfect soundness of NIZK guar-
antees that

€i.2 = &.3.

Hi3 to H;4: We first rewrite RF;: {0,1}* — ng as

RF(v) = (Ag|A7) (1;«%53) : (4)
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where Ag € ker(Ag) C Z2F*% and Aj € ker(Ay) € Z2"*, v € {0,1} is an i-bit
string, and I,7; : {0,1}* — Z’; are two independent random functions. We note
that after rewriting RF; it is still a random function if (Ag|A{) has full rank,
which happens with probability 1 — Ap,, .

Next we define RF;;: {0,1}7F! — Z2F as

RFZ(V|Z) + AOLFZ/(VH) if Viy1 = 0

, )
RF;(v;) + AfT/(v;) else (5)

RFi+1 (I/) = {

where v € {0,1}"* and I7,7} : {0,1}" — Z are two new independent random
) 00 g

functions. RF;;; is a random function, since
Ti(”ﬁ)

Ii(vy:) - LiAL
<Ti () + X (v2) are two independent random vector and (Ag|Aj) has full

rank.

In H; 4, we simulate the security game with RF;; instead of RF;. We show
that this move does not change the view of A.

INITcore generates p by computing p := AJ (k + RF;;1(0°*!)) instead of
p := AJ (k+RF;(0%)). This change does not change the distribution of crs since

p=AJRF; (0" = AJ (RF;(0°) + AL I;(0") = AJ RF;(0).
For queries to EVALcoe, we consider

CTRF, 1 () = 4 L AORFi(Qi) + 1T A AT Ti(ep) i ciyr =0
. r"A/RF;(c;) + T A A{T!(c;) else

Cit+1
Thus, this change does not affect the output distribution of EVALcye queries.
In the oracle FINALIZEcye we have [t]; € Span([Ao]) USpan([A4]) and d¢ =
0 if t € Span(Ag) and dy = 1 if t € Span(A;). After replacing RF;(c;)
with RF;y1(c);|dt), the output distribution of EVALcoe does not change, since
tTRFiJ’_l (C\zldt) = tTRFZ(Ch)
To sum up, we obtain

|€i3 — Eia| < Ap,, ..

H; 4 to H;5: H; 5 is the same as H; 4 except that we enlarge the set S in
FINALIZEcore tO {RFi+1(CTi|b) i ¢/ < ¢,be{0,1}}. Thus, FINALIZEcore ([t]1, 17,
[u']1) will output 1, even if [u']y = (ko + RFi1(c];|1 - dy)) T[t]; for some ¢’ < c.

The transition from H; 4 to H; 5 can only increase the chance of the adversary,
since S; 4 C S; 5. We thus have
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H;5 to H;g: Let ¢ := cM(l —¢jyq) for some 0 < ¢’ < c. The difference between

H; 5 and H; ¢ lies in whether FINALIZEye Tejects a query with [u]; = [t]] (ko +
RFZ+1(€)) and t € Span(Ao) @] Span(Al):

— If ¢ < c, then such a query will be accepted in both H; 5 and H; . In this
case, both H; 5 and H; ¢ are distributed the same.

— If ¢ > ¢, then such a query will be accepted in H; 5, but rejected in H; . From
the adversary A’s view, the information of the random vector RF;41(¢) is
perfectly hidden. Thus, for a fixed ¢ > ¢, the adversary A can only output
the value [t RF;,1(¢)]1 € G; for some t # 0 with probability at most 1/p.

By union bound we can sum up:

|€is — il < —.
p

H; ¢ to H;7: H; 7 is the same as H; g except that FINALIZEcye does not perform
the additional check [t]; € Span([A¢]1)USpan([A1]1) anymore. Due to the sound-
ness of NIZK, this change will not affect the adversary’s view at all. Moreover,
in H; 7, we just use a truly random function to simulate instead of using Equa-
tions (4) and (5) and the kernel matrices of Ay and A;. Similar to “H; 3 to H; 4",
this change will not affect the adversary’s view as long as (Ag|A+) is full-rank,
we have
|éi.6 — Ei7| < Ap,, .-

H; 7 to H; g: This transition is similar to the transition from Gg to G; in Lemma, 3.
We can construct an adversary B; 7 such that T'(B;s) ~ T(A) + @ - poly(\) and

|€i7 — Eig] < Adv?y(or,sm()\)-

Hi.s to Hs (i41): We choose [t]; in EVALcye uniformly at random from G2*. Simi-
lar to the transition from Gs; to H; 1, this difference can be bounded by using the
Doy, ,-MDDH assumption twice, one with [Ag]; as the challenge matrix and the
other with [A];. We obtain an adversary B; g with T'(B;s) ~ T'(A) + Q - poly())
such that

. 2 m
(€8 — ea.p| < =7 + 2k AVEYD, 5.5 ()

completing the proof. a

C Tightly IND-mCCA-Secure PKE

In this section, we recall the definition of labeled IND-mCCA secure PKE and the
generic construction in [5]. By instantiating the underlying USS-QA-NIZK with
our construction in Section 3.2, we immediately obtain a more efficient publicly
verifiable labeled tightly IND-mCCA secure PKE.

Definition 12 (Labeled public-key encryption). A public-key encryption
(PKE) scheme consists of probabilistic polynomial-time algorithms ITpke = (Gen,
Enc, Dec):
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— Gen(par) generates a pair of public and secret keys (pk,sk). Message space
M is determined by pk.
— Enc(pk, m, ¢) returns a ciphertext ct.
— Dec(sk, ct, £) is deterministic and returns a message m.
For correctness, it must hold that, for all (pk,sk) € Gen(par), messages m € M,
and ct € Enc(pk, m, ¢), Dec(sk, ct,£) = m.

Definition 13 (IND-mCCA security). For a PKE IIpke := (Gen, Enc, Dec)
and any adversary A, we define the following experiment:

INIT: ENcO(i,mg, m1,¢):  |DECO(4,ct, £): FINALIZE(D™):
(pk',sk*) <= Gen(par) |ct* := Enc(pk’, my, £) |If (i;¢ct,f) € Qenc|If 0™ = b return
fori=1,---,n OQene = Oenc  U|then return L 1

b<&{0,1} {i,ct*, 0} m < Dec(sk’, ct, ) |Else return 0
Return pk. Return ct* Return m

Fig. 15. IND-mCCA security game for I1.

A PKE IIpkg is indistinguishable against chosen ciphertext attacks
(IND-mCCA), if for all PPT adversaries A,

Advi 2" A () == [2Pr[IND-mCCA™ = 1] — 1|
is negligible, where Game IND-mCCA is defined in Figure 15.

Gen(par): Enc(pk, [m]1 € G1,£):
B & Doy, k & 73 r <& Zy, [yl = [Br]{
crs & Gen(par, [B]1) [c]i := [mh + 1" [ph
p:=B 'k m := Prove(crs, [y]1, r, ([c]1, £))
pk = (crs, [B1, [p]1) Return ctxt := ([y]1, [c]1,7)
sk :=k
Return (pk, sk). Dec(sk, [m]1, ctxt, £):
Parse ctxt =: ([y]1, [c]1, )
If Ver(crs, [y]1, ([c]1,£),7) =1
return [c]1 — [y]:1k
Else abort

Fig. 16. IND-mCCA secure PKE using labeled QANIZK IT = (Gen, Prove, Ver, Sim).

Let G < GGen(1*), par := G, k € N, and IT = (Gen, Prove, Ver, Sim) be
our labeled QANIZK in Figure 7. We adopt the generic construction in [5,6] to
propose a IND-mCCA secure PKE in Figure 16, which is more efficient than the
original instantiation in [5,6].
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Theorem 4. If the Doy ,,-MDDH assumption holds, and II is a labeled QANIZK
with perfect completeness, perfect zero knowledge, and unbounded simulation
soundness, Ilpkg = (Gen, Enc, Dec) is a PKE with tight IND-mCCA security. In
particular, for any adversary A, there exist adversaries B and B' with T(B) =

T(B') ~T(A) and
Ad IND - mCCA()\) < 4. AdVUSS ()\) + 6k - Advgfdgk B’()‘) + O(l)
D p

We refer the reader to [6] for the proof of the above theorem.

D Proof of Lemma 12

We now show the proofs of completeness, zero-knowledge, and soundness of I7°".

Completeness. Let j € {0,1} such that [y]; = [Aj]ir. For (z1,---,zx) (com-
putedasy'd"—y "), we have [A;]1(x1,- -, xx) = [Aj]ir(z1, -+ @) = [y]1 (a1,
<o+, xk). Let ([Cyla, [cil2, TLi]1, [mi]1)1<i<k be returned by Provey, on input crs,y,
[y]1 and r. For i = 1,--- , k, we have

[Aoli 0 [Ci]2 — [y]1 o [cil2

[Aolioxiu' +R;V']y —[yhof[ziu’ +1,V ],
[Aox; — yailio[u']s + [Agli o [RiV ]y — [y1 0 [1: V]2
=[

[Ao

A ]1 oRV'a—[yliorV']
—yril1o[V ]y =[]0 [V]

and
¥ ']10[Dil2 — [y o [u']2 — [1]1 o [ci2
=y hold/u’ +8; Vs —[yiou’]a =[]y ofziu’ +r; V'],
y'd —yi—zilioa o+ [F'Sio[V s —[r]io[V]

=y
[yTSz - rz]l o [VT]Qu
which prove the completeness.

Zero-knowledge. Let A be a PPT adversary attacking the zero-knowledge
property. We build a PPT adversary B, which is defined in Figure 17, such that
T(B) ~ T(A) and

1
Adviie 4(N) < AdVEEr b, 5(N) + .

Upon receiving its MDDH challenge (G, [V]a, [u]2), B computes ([Ao]1, [A1]1,
([Di]2)1<i<k) and skor in the same way as in Geno, and forwards crso := (par,
[Ao]1, [A1]1, [u]2, [V]2, ([Di]2)1<i<k) to A. Every time when receiving a query
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INIT: Prv([y]1, r):
MDDH challenge: (G, [V]z, [u]2) T < Proveor(crsor, skor, [y]1,T)
par:=G Ay, A1 & Doy i Return 7
du _ Pk FINALIZE(b):
: =AA €7y Return b.
d
Fori=1,--- k:
S' <i kak
¢ P
[Dil2 :=d/ [u']s +Si[V']>
CrSor 1= (par, [A0]17 [A1]17 [u]27 [V]27
([Di]2)1<i<k)
Skor 1= (A07 A17 (Si)lﬁiﬁk)
Return crs,

Fig. 17. Reduction B from the zero knowledge property of IT* to Dr-MDDH assump-
tion.

([y]i,r) from A, B sends 7 < Proveo (crsor, Skor, [¥]1, 1) back. When A outputs a
bit b, B outputs b.

When B receives [u]y <= GE*1 due to fact that the uniformly random distri-
bution over Zi*! and the uniformly random distribution over Z&+* \ Span(V)
are 1/p-statistically close, it simulates the oracle Proveo(crsor, skor, -, ) in the
zero knowledge game (see Definition 5) within a 1/p statistical distance. Now we
argue that when B receives a real MDDH tuple, that is, when there exists z € Z’;
such that [u]s := [Vz]s, it simulates the simulation oracle in the zero knowledge
game perfectly.

Since [u]y = [Vz]s, for ¢ = 1,--- , k, we can re-write [D;]a, [C;l2, and [c;]2
as [Dl]g = (dZTZT + Si)[VT]g, [Ci]g = (XiZ—r + Ri)[VT]g, and [Ci]g = (,TiZT +
ri)[VT]g respectively. Furthermore, for ¢ = 1,--- , k, we can re-write II; and m;
as Ag(xiz" +R;) —y(z;z" +1;) (since Agx; —yr; =0) and §' (dz" +S;) —
(v;z" +r;) —y;z" (since deiT — x; —y; = 0 where y; denotes the ith element
in y) respectively. One can see that the distributions of x;z" + Ry, 2;2' + 1y,
and d;'—zT + S; are respectively identical to R;, r;, S;, where S;, R; < Z’;Xk,
and r; ¢ Z;Xk, for all 7. Thus, A’s view in this case is identical to its view in
the zero knowledge game where the oracle runs the simulator, which proves that
Advize 4(A) < AdVEED b, 5(N) + T

Perfect soundness. Let v € Z’;H be a vector satisfying Vv =0andu'v =1,
which must exists since u ¢ Span(V) . Let ([C;]z, [ci]2, [TLi]1, [m:i]1)1<i<k, be a
valid proof. It must satisfy

[Agl1 o [Ci]2 — [y]1 o [ei]a = [ITj]1 0 [VT]2

and
¥ Jio[Dile — [yiio[u']e — 11 o [eila = [mi]1 o [V ],



42

M. Abe, C. S. Jutla, M. Ohkubo, J. Pan, A. Roy, Y. Wang

Gene(par, Ag € Zika,Al S Zi’”k):

TGeng (par, [Ao]1, [A1]1):

V& Sopr, KK & 220k T & Sy
D:=KV' +A{TT

crsor := (par, [Ao1, [A1]1, [V]2, [D]2),
skor := (Ao, A1, K)

Return (crsor, skor)

Proveor(crsor, Skon [y]l 5 W):
Parse skor =: (Ao, A1, K)
If =(35 € {0,1} : [yl = [A;w]h)
then abort
Else
A=y—Aw
R & zkxk
[Cl2 = R[V ]2 + wAT[D],
r& Z;,Xk
[c]2 == r[VT]2 + AT[D]Z
II:'=AoR —yr
T i= (Alw)TK —r
Return ([C]z, [c]2, [IT]1, [7]1)

V & Doy, K& Z229F D= KV’
CrSor := (par, [A0]17 [A1]17 [V]27 [D]2)7
tder := K

Return (crser, tdor)

Veror(crsor, [y]1, 7):

Parse m =: ([Cl2, |c]2, [II]1, [7]1)-

If [Ao]1 0 [Clz — [yl o[c]z # M1 0 [V ]2
then return 0

It [y ] o (D2 — [1]1 o [e]2 # [x]1 0 [VT]s
then return 0

Else return 1

Simor(Crsor, tdor, [y]1):

Parse tdor =: K

R & Z8% [Cla :=R[V ]2
r & 7% [cls i=r[V']2
(1 == [AoiR — [yhr
(7)== [y ThK =[x
Return ([C]z, [c]2, [H]1, [7]1)

Fig. 18. Designated-Prover or-proof for ,C,‘X‘O",;‘1 .

fori=1,---, k. Multiplying above verification equation by v we have

[Ao]1(Cy1v, -, Ckv) =[yli(c1v, - ,cpV)

and
¥'h(d],

.,dkT)_

y'h=lciv, - epv]r

When there exists some ¢ such that c¢;v # 0, we have [Ag];(£¥) =y, ie., y €
Span(Ay), due to Equation 6. Otherwise, we have [yT]l(Alel)T -yl =0,
i.e., y € Span(A;), due to Equation 7. Therefore, we must have y € EY&O,Al
when there exists a valid proof, completing the proof of perfect soundness.

E Extensions of Designated-Prover OR-Proof

DESIGNATED-PROVER OR-PROOF WITH IMPROVED PROOF SIZE. Let G <+
GGen(1*), par := G, and k € N. Let Sar 1 be the set of all the elements V in

Do, such that W = —X_TVT is well-defined, and Sy be the set of all the

elements T in Z’;X% such that TW is invertible. We present the designated-
prover OR-proof in Figure 18.

Lemma 15. If the Di-MDDH assumption holds in the group Go, then the proof
system I1°" (Gengr, TGengy, Prove,,, Vero,, Simo,) as defined in Figure 18 is a
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It PR ([y]s, r):
MDDH challenge: (G, [V]z, [T]2) T < Proveo, (Crsor, skor, [y]1, 1)
par:=G Return 7

AO7 Al <i DZk,k

K, K' & 72k%k FINALIZE(b):

D:= KVTp-|- ALTT Return b.

crser := (par, [Ao]1, [A1]1, [V]z, [D]2), Else return 1

skor 1= (A07 Ay, K)

Return crse,

Fig. 19. Reduction B from the zero knowledge property of IT* to Dr-MDDH assump-
tion.

designated-prover or-proof system for EXm A, With perfect completeness, perfect
soundness, and zero-knowledge. More precisely, for all adversaries A attacking
the zero-knowledge of IT°", we obtain an adversary B with T(B) ~ T(A) + Q -
poly(A) and

k
Adviie 4(N) < k- AdvEE b, 5(N) + ’ + Ay s

where A/2k,k is the probability that V < Dy 1, has full rank.

Proof. We now show the proofs of completeness, zero-knowledge, and soundness
of IT°".

Completeness. Completeness follows easily from the fact that

[Agl10[Clz — [ylio[c]a = [Aoli o RV + WA D]y — [y]i o [rV' + ATD]y
=[AR —yrl1o[V']; =[] o [V'],

and

[y il —[iclcla=[y oD}~ [Jio[rV' + ATD];
= [(A1w) 1o [KVT + A{T]p — [rli o [V]2 = [a]1 o [V o
Computational zero-knowledge. Let A be a PPT adversary attacking the

zero-knowledge property. We build a PPT adversary B, which is defined in Fig-
ure 19, such that T'(B) ~ T(A) and

k
Advise 4(A) < k- AdVEEr b, 5(N) + ot Al -
Upon receiving its k-fold Doy x-MDDH challenge!! (G, [V]a,[T]2), B com-

putes (par, [Ag]1, [A1]1, [D]2) and ske, in the same way as in Geno, and forwards

1 1t is known that the Doy, ,.-MDDH hardness assumption reduces to Dy-MDDH with
a security loss of factor k[35].
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crsor := (par, [Ao]1, [A1]1, [V]2, [D]2) to A. Every time when receiving a query
([y]1,r) from A, B sends 7 < Proveo(crsor, Skor, [y]1, 1) back. When A outputs a
bit b, B outputs b.

When B receives [T]y ¢ G5*?* we consider the (2k x k)-matrix W such
that W = I¥*F and W = —X_TVT. With probability Aj, , ( which is over the
choice of V), W is well-defined. Note that VI W = 0 and DW = A{ TW. The
claim that TW is invertible with probability at least 1 — k/p. The reason is that
the top part of W is just the identity matrix then TW is just a random and
independent square matrix, which has determinant zero with probability at most
k/p due to the Schwartz-Zippel lemma (the determinant being a multi-variate
degree k polynomial in the entries of its matrix).

Now we argue that when B receives a real MDDH tuple, that is, when there
exists k' € Zy such that [T]y := [kK'V ]y, it simulates the simulation oracle in
the zero knowledge game perfectly.

Note that in the proving procedure (Agw —y)AT =0 andy — A = A;w.
Hence, we have

II=AR-yr=A)R+wA'K) - y(r+A'K)

and

T=(Aw) K—-r=y K- (r+A"K).
Moreover, the terms (R + wATK), (r + ATK), and (K + A{K’) are uni-
formly distributed. Thus, A’s view in this case is identical to its view in the

zero knowledge game where the oracle runs the simulator, which proves that
k ddh
Advize 4(A) < k-Advge, p, 5(A) + % + Ay p-

Soundness. Let ([Clz, [c]2, [II]1, [7]1) be a valid proof. It must satisfy
[Aolio[Cla = [yh o[cls = M1 o[V

and
[y 10Dz — [l oele = [wli o [V']2.

Consider the (2k x k)-matrix W such that W = I*** and W = —X_TVT.
With high probability (over the choice of V) the matrix W is well-defined. Note
that VW = 0, DW = A{ TW, and TW is invertible. Now, multiplying above
verification equations by W on the right, we have

Ao(CW) =y(cW)
and
y (AT TW) = cW.

Since the probability that TW is invertible is at least 1 — % as discussed in the
proof of computational zero-knowledge, if cW is zero, y is in the span of A; with
probability at least 1 — %. Otherwise, some element of the (1 x k)-matrix cW

is non-zero. W.l.o.g. let this be the first element, i.e. (¢W); is non-zero. Then
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Genor(par, [Ao] € G"**,[A1] € G™*'):

TGenor(par, [Ao], [A1]):

We assume | > n —t + k.
VED,KEZF D:=KV',
E=(Ao—A)'KVT F=AK
crs. = par, [A0]7 [A1]7 [V]7 [D]7

°' (E], [F]
Return crsor

PI’OVeor(CrSon [}’]: W):

abort

Let [y]1 = [A;w]1

(R,r) & 21k x 707k
[C]:=R[V']+ (1 - j)ww'[E]
[c] :=r[VT]+ (1 —j)w'[E]
(] := [Ao]R — [y]r

[x] := w ' [F] — [r]

Return ([C], [c], [IT], [])

If =(35 € {0,1} : [y] = [A;w]) then

vV & Dl,k7 K& ZZX]“7 D:= KVT7

E=(Ai—A)'KV'  F=ATK

crsy = (P27 [Aol, [A4], [V], D],
(E], [F]

tdor := K

Return (crsor, tdor)

If [Ao] 0 [C] — [y] o [c] # [T o [V]
then return 0

If [y o [D] - [1] o [e] # [x] o [V]
then return 0

Else return 1

Simor(crsory tdOl’? [y] ):
(R,x) & Z,}* x 27"

[C]:=R[V']

[c] :=r[V]

[IT] := [Ao]R — [y]r

[n] == [y "]K — [r]
Return ([C], [c], [I1], [7])

Fig. 20. Full or-proof for LXO,A1 in symmetric groups.

v = Ao(CW);/(cW);, and hence y is in span of Ay (here, (CW); is the first
column of CW). O

EFFICIENT FULL OR-PROOF IN SYMMETRIC GROUPS. We now adapt the
designated-prover OR-proof to provide public prover and verifier algorithms,
in other words, a full NIZK. To enable this, the CRS now exposes additional
elements [E] and [F], which allows public proofs, while still preserving zero-
knowledge and soundness. On the other hand we need representation of the
language matrices additionally in the second coordinate to compute E. This is
why the construction is only for the symmetric setting. In addition, we also gen-
eralize the dimensions of the language and assumptions, with a mild constraint.
We show it satisfies computational soundness and perfect zero-knowledge, while
it is easy to show that its dual case satisfies perfect soundness and computational
zero-knowledge. The construction is given in Figure 20.

Lemma 16. If the D, ;,-MDDH assumption holds in the group G withl > n—t+
k, then the proof system g, = (Gengr, TGengy, Provey, Vere, Sime,) as defined
in Figure 20 is a designated-prover or-proof system for EXOyAl with perfect com-
pleteness, computational soundness, and perfect zero-knowledge. More precisely,

for all adversaries A attacking the soundness property of IIg,,,, we obtain an
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Gener(par, [Ao] € G™F, [A1] € G™*F):

Vv & 'Dl,k

(K, L, T) & 727 x 707k g0
K: =K' + A{L

D:=KV'

D =KV'+A{LV'

D =KV +A{T]
E:=(Ao—A;)'D

F:=A/K

F:=AK'

CrSer 1= par, [A0]7 [A1]7 [V]7 [D]v)
o (E], [F]

Return crsor

Proveo(crsor, [y], 4, W):

(R,r) & 7% x Zy~*
[C]:=R[V']+ (1 —j)ww'[E]
[c] :==r[V']+ (1 - j)w'[E]
[IT] := [Ao]R — [y]r

[7] := w ' [F] — [r]

Return ([C], [c], [I1], [7])

Fig. 21. Symmetric or-proof for EXO’AI: Soundness Games Gi, Gz and .

adversary B with T(B) = T(A) + Q - poly(\) and

n—
Advife 4 < (n—t) - AdvEEn, , s(N) + — + A,

sym?

where Aik is the probability that V < Dy 1 has full rank.

Proof. Completeness follows easily by inspection, and we now show the proofs
of zero-knowledge and soundness of I7°".

Perfect zero-knowledge. Observe that the CRS is generated identically in
the real and simulation worlds. Perfect zero-knowledge now follows by sampling
R and r differently, but from an identical statistical distribution:

R—-R+(1-jww' (Ag—A)'K
ror+(1—7w (Ag—A) 'K

Computational soundness. In Figure 21 we describe three games. The first
game G; is identical to the real world. In the second game K is generated in a
different way, but from an statistically identical distribution. In the third game
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Gs, the matrix D is generated differently, but the games are computationaly
indistinguishable by (n — t)-fold D; ,-MDDH.

Now, we show that the probability of the Adversary winning the soundness
requirement is negligible. Let ([C], [c], [IT], [r]), be a valid proof. It must satisfy

[Ao] o [C] ~[y]ole] = Mo [V]

and
[y"]o[D] = [1]ofc] = [x]o [VT].

Randomly generate matrix U < Zl(ffk)x(nft) and let V& € Zéx(lfk) be a
full rank matrix such that VI'VL = 0. Compute W = VIU. TW = TV-+U is
invertible with overwhelming probability at least 1 — (n — t)/p. Since T and U
are randomly generated, they are full rank with overwhelming probability. Now,
since (n —t) < (I — k), we have that TV= is a full rank matrix of dimension
(n—t)x (I—k) and rank (n—t). Similarly, TV-+U is a square matrix of dimension
(n —t) x (n—t) and is full rank. Hence, TV+U is invertible.

Now, multiplying above verification equations by W on the right, we have

Ao(CW) =y(cW) (8)

and
y' (A{ TW) = cW. (9)

If ¢W is zero, then by Equation (9), y is in span A; with overwhelming proba-
bility at least 1— (n—t)/p, i.e., the probability that TW is invertible. Otherwise,
there is a vector e € Z;}*t, such that cWe = 1. Therefore, y = Ao(CWe), and
hence y is in span of Ag. a

F Designated-Prover QA-NIZK

In this section, we give a designated-prover QANIZK based on our designated-
prover OR-proof system, which only satisfies weak USS but is structure-preser-
ving. Note that all the USS security notions mentioned in this section mean weak
ones.

A VARIANT OF THE CORE LEMMA. We now give a variant of the core lemma (i.e.,
Lemma 3). By slightly changing the proof of Lemma 3 as follows, we immediately
obtain the proof of a variant of the core lemma (Lemma 17).

— Gen,, additionally generates sko, and takes as input Ag and Ay, and

— Prove,, additionally takes sk, as input.

Lemma 17 (A variant of core lemma). If the Dy,-MDDH assumption holds
in the group Go, and II°" = (Gene, TGene, Provee, Vere, Sime,) is an or-proof
system for EXO;AI with perfect completeness, perfect soundness, and composable
zero-knowledge as defined in Definition 11, then for any adversary A against the
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INITcore: EVALcore: FINALIZEcore ([t]1, [u/]1, Tor) :
c:=0 ci=c+1 If Vero(crsor, [t]1,7or) = 0
Ao, Ay & Doy s & ZF [t] := [Ao]is then return 0
par,, i= par W = ¢ RE() ) el (W] = [¢7 (e[ RE() s
(crsor, skor) <& Geno(par,,, z, and 0 < ¢’ < c then
ll?(zfiAZg)k Tor <& Proveor(crsor, skor,| Teturn 1

P [1;]17 s) Else return 0
p:=Ag (K +RF(0)))  [Return ([t]1, [u]1, o)
Return (crsor, [Ao]1, [P]1)

Fig. 22. Security games Coreg and Core; for the variant of the core lemma. RF : Z, —
Zik is a random function. All the codes are executed in both games, except the boxed
codes which are only executed in Core;.

core lemma, there exist adversaries B, B' with running time T'(B) ~ T(B’) ~
T(A)+ Q - poly(\) such that
Adv"()\) := Pr[Coref' = 1] — Pr[Coref! = 1]
<(4kM10g Q] +2) - AdVEIT,,, , 5(N) + (2[l0g Q] +2) - Adviiiz i (M)
4|lo + 2 lo .
T log Q] - Apye, + 2 pgfﬂl 41 g? 9

where ADZk,k is a statistically small term for Doy .

F.1 Stepping Stone: Designated-Prover-Verifier QA-NIZK

Let G < GGen(1%), par := G, k € N, and I := (Gen,,, Prove,, Very) be a
designated-prover NIZK for language 51\/&0, A, (constructed as in Figure 10). Our
DPVQANIZK IT9" := (Gen, Prove, Ver, Sim) is defined as in Figure 23.

Theorem 5 (Security of I1%V). 19V is a DPVQANIZK with perfect zero-
knowledge and (tightly) unbound simulation soundness. In particular, for any
adversary A, there exist adversaries B and B’ with T(B) = T(A) and

Adviti o (A) <(4k[log Q] +2) - Adviip,, . 5(V)
+(2[log Q] +2) - Adviier 5 (A) + [log Q] - Ap,, ,

+4[10gQ1 +2 N ([log Q1 + 1)-Q+1'
p—1 D

Proof (of Theorem 5). Perfect completeness follows directly from the correctness
of the OR proof system and the fact that for all y = Mw, p := Alk, py :=
M kg, and t = Ags, we have
wipo+ki+s ' p=w'M'ky+k + STAOTk
= kaO —|— I{Jl + tTk
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Gen(par, [M]; € G1*"2): Prove(crs, sk, [y]1,w): [y =Mw € Z*
Ao, A1 & Doy s & ZF [t] := [Ao]is
(crsor, skor) < Genor(par, Ag, A1) Tor <= Proveor(Crsor, Skor, [t]1,S)
ko & Z;17 k1 & Zp, k& Zf,k [u]1 = WT[po]l + [k‘l]l + ST[p]1
p=AjkecZk Return 7 := ([t]1, [u]1, 7or)
[Po]1 := [M ko)1 € G}?
crs := (crsor, [Ao]1, [P]1, [Po]1) Ver(crs, vk, [y]1, 7):
td := (skor, ko, k1) Parse m = ([t]1, [u]1, 7or)
vk := (k, ko, k1) If Veror(crsor, [t]1, Tor) = 0 then return 0
sk := (skor, k1) If [u)s = [y "Jiko + k1 + [t " ]1k then
Return (crs, vk, sk, td) return 1
Else return 0
Sim(crs, td, [y]1):
s & Zf” t:= Ags
Tor <& Proveo (Crsor, skor, [t]1, 8)
[u1 == [y "kol1 + [k1]s + [s" Py
Return 7 := ([t]1, [u]1, 7or)

Fig. 23. Construction of IT%" := (Gen, Prove, Ver, Sim).

Moreover, since
w po+ki+s p=w M'ko+k +s'p
=y 'ko+k +s'p,

proofs generated by Prove and Sim for the same y = Mw are identical. Hence,
perfect zero knowledge is also satisfied.

We now focus on the tight simulation soundness of IT9. Let A be an ad-
versary against the unbounded simulation soundness of IT9Y. We bound the
advantage of A via a sequence of games defined in Figure 5.

Go is the real experiment, DPVSS.

Lemma 18 (Gp). Pr[USSA =1]= Pr[G()4 = 1].

Lemma 19 (Go to Gy). There is an adversary B breaking the core lemma (cf.
Lemma 19) with running time T(B) ~ T(A) and

AdvE(\) = Pr[Gt = 1] — Pr[Gs' = 1].

Proof. We construct the reduction B defined in Figure 25 to break the core
lemma.

Clearly, if the oracles are simulated as in Corey, then the distribution sim-
ulated by B is the same as in Gj; and if the oracles are simulated as in Core;
(with a random function RF), then the distribution simulated by B is the same
as in Go. Thus,

Pr[Gf* = 1] — Pr[G4' = 1] = Pr[Core} = 1] — Pr[Core® = 1] = Adv™ (),
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INtT(M): SM([y]1): /

i:=0 c:=c+1
Ao, Ay & Doy s & Z’; [t]1 := [Aosh
par,, := (par) Tor <& Proveor(Crsor, Skor, [t]1, 8)

CrSor Genor(psrw Ao, ?1)% [u: == [y "ko + k1 + t (K +RF(c) )]
ni 7
ko & Zp's By & Zp) k& 2o 0 (18], [ula, 7or)

p:=A;(K+RF(0) ) €Zy |Qum := Oum U {lyl1}

po = MTkq € Z2 Return =
crs 1= (crsor, [Aol1, [P]1, [Po]1)
Return crs FINALIZE([y"]s, 77): //

Parse 7% =: ([t"]1, [u"]1, 7o)
If [y*]l € ‘C'[M]l or ([y*]l,w*) € Qsim then
return 0
If Vero (crsor, [t*]1, o) = 0 then return 0
S:={ly""ko+ ki +t""(K+RF(") Pl : 0 < j* <

c}
If [u*]y € S then return 1
Else return 0

Fig. 24. Games Go, G; and Gz for the proof of Theorem 1. RF : Z, — Zik is a random
function. Given M over Z,, it is efficient to check whether [y*]1 € Ljvy, -

which concludes the lemma. O
Lemma 20 (G). Pr[Gs' = 1] = %.

Proof. We apply the following information-theoretical arguments to show that

even a computationally unbounded adversary A can win in Gy only with negligi-

ble probability. If A wants to win in Gg, then A needs to output a fresh and valid

= ([t*]1, [u*]1, 7%). According to the additional rejection rule introduced in

Go, u = y* ko + k1 +t*T (k + RF(j*)) must hold for some 0 < j* < Q. Fix a

J7* < @, we show that A can compute such a u with probability at most 1/p.
The argument is based on the information leak about ko and kq:

— For the j-th SIM query (j # j*), the term t " RF(j) completely blinds the
information about ko and k; as long as t # 0.

— For the j*-th SiM query, we cannot use the entropy from the term (k +
RF(5*)) to hide ko and k; anymore, but we make the following stronger
argument. We assume that A learns the term t' (k + RF(j*)), and thus
y 'kg + ki is also leaked to .A. However, since y* # y, the terms pg =
M ko+0-ki,y ko+k; and y*Tko + k1 are pairwise independent.

As a result, from A’s view, the term y* T (ko + 7%k;) is distributed uniformly at
random, giveny ' (ko+7k1) from the j*-th SIM query ([y]; may not be in L, ).
Thus, A can compute the random term y* " ko and make FINALIZE output 1 with
probability at most 1/p. By the union bound, A can win in Gy with probability
at most (Q + 1)/p. 0
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INIT([M]1): SM([y]1):
1:=0 ci=c+1
CI"S/ & INITcore ([t]l, [u']l, 71'°y) (i EVALcore

Pars$e crs’ =: (C$r50r7 [A0]17 [p]l) [u]1 = [kaO + k1 + U,]l
ko & 257, by < Zyp = ([t]1, [u]1, Tor)

[pol1 := [MTkO]l € G}? Qsim = Quim U {[y]1}, Return
crs := (crs’, [pol1, [P1]1)
Return crs FINALIZE([y*]1, 7*):

Parse 7* =: ([t*]1, [u"]1, 7o)

If [y*]1 € Lpvy, or ([y*]1) € Qsim then
return 0

W = [u] — [y" ko + ki)

Return FINALIZEcore ([t*]1, [u'"]1, mar)

Fig.25. Reduction B for the proof of Lemma 19 with oracle INITcore, EVALcore,
FINALIZEcore defined in Figure 22. We highlight the oracle calls with grey.

From Lemmata 18 to 20, we have

@+1)
r—

Adviz, 4 (A) := Pr[USSA] < Advig™®(\) +

By Lemma 3, we conclude Theorem 5 as
Advize 4(N) <(4k[log Q1 +2) - AdVEID,  5(N)

+(2 ﬂOg Q~| + 2) : AdVZNkIZK,B’(/\) + ﬂog Q~| : AD2k,k
4flog@]+2 | ([logQ]+1)-Q+1
+ + .
p—1 P

F.2 Designated-Prover QA-NIZK

Let G < GGen(1*), par := G, k € N, and IT° := (Gen,,, Prove,,, Ver,,) be a NIZK
system for language L3 A, . Our (publicly verifiable) DPQANIZK 119 := (Gen,
Prove, Ver, Sim) is defined as in Figure 26.

Theorem 6 (Security of II%). [I% defined in Figure 26 is a DPQANIZK
with perfect zero-knowledge and (tightly) unbounded simulation soundness if the
Dy-KerMDH assumption holds in Go and the DPVQANIZK IT9%V in Figure 23
is unbounded simulation sound. In particular, for any adversary A, there exist
adversaries B and B’ with T(B) =~ T(B') ~ T(A) 4+ Q - poly(\), where Q is the
number of queries to SIM, poly is independent of Q and

PrUSS™ = 1] < AdVET%, 5(A) + AdviPrs o (A).
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Gen(par, [M]; € G1*"2): Prove(crs, sk, [y]1,w): [y =Mw € Z*
Ao, Ay & Do, A& Dy, s & Zy, [t] == [Aohs

par,, := (par, [Ao]1, [A1]1) Tor <= Proveor(Crsor, Skor, [t]1,S)

(CI’Son Skor) — Genor(parw 1407 Al) [u]1 = WT[P()]l + [K1]1 + ST[P]1

K & 72k (kD Return 7 := ([t]1, [u]1, or)

Ko & zp <t

K, & Z;X(Hl) Ver(crs, [y]1, 7):

P:=AJK ez, * Parse m = ([t]1, [u]1, 7or)

If Veror(crsor, [t]1, Tor) = 0 then return 0
If [u o [Alz = [y"]1 o [Col2 + [1]1 ©
[01]2 + [tT]l o [C]Q then

return 1
Else return 0

[PO]l — [MTKo]l c quzx(k?Jrl)
C:=KA e 22"

Co :=KoA € Zp**

C; =KjA € Z;Xk

Crs (= (CI’Sor7 [A()]17 [P]l7 [Po]l
PR il i Sim(crs, . [y],):

sk := (skor, K1) s & Z’;, t:= Ags

Return (crs, td) Tor ¢ Proveor(crsor, skor, [t]1, 5)
[u]1 = [yTKoh + [K1]1 + [STP]1
Return 7 := ([t]1, [u]1, 7or)

Fig. 26. Construction of II°.

Proof (of Theorem 6). Perfect completeness follows directly from the complete-
ness of the OR proof system and the fact that for all P := AJ K, Py := MK
C:= I(z&7 CO = K()A, Cl = KlA,

WTPO + Kl + STP]l @) [A]Q

w MK +K; +s'AjK]; o [A],

w M']; 0 [KoAlz + [1]1 o [K1A]o + [sTAg]1 o [KA],

v o [Col2 + [1]1 0 [Cila + [tT]1 0 [Cla.

[
[
[
[
Moreover, since
w P +Ki+s' P=w M'Ky+K; +s'P
=y Ko+ K, +s'P,

the output of Prove is identical to that of Sim for the same y = Mw. Hence,
perfect zero knowledge is also satisfied.

We now focus on the tight simulation soundness of IT9. We prove it by

a sequence of games: Gy is defined as the real experiment, USS (we omit the
description here), G; and Gz are defined as in Figure 27.

Lemma 21 (Gp). Pr[USSA = 1] = Pr[Gg' = 1].

In Gy, FINALIZE additionally verifies the adversarial forgery with secret keys
K, Ky, and K; as in Figure 27.
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INIT([M]1): SM([y]1):

A07A1 & 'Dzk,k7 A & Dk S (i Zg, [t]l = [Ao]ls

at & ker(A) Tor <& Provc_eror(crsomskc>r7 g]h s) )
AL = [(y Ko + k1 + £ k) -at]y

Jat e zZ** ) andat - A=0]| |[u]; =]y Ki+Ki+t K + A
par,, := (par, [Ao]1, [A1]1) Qsim := Qsim U {[y]1}

crsor <+ Gener(par,,, 1A) Return 7 := ([t]1, [u]1, 7or)

K & Zikx(kﬂ)

K) & zpr kD

K, & 7,k

ko 32062217161 IZOGZp,k::

FINALIZE([y*]1, 7™):

Parse m = ([t*]1, [u*]1, 7)

If [y*]1 € Qsim or [y*]1 € Ly, or
Ver(crs, [y*]1,7*) = 0 then

0 c ZQk

L return 0
k() <i Z;ll’kl & le)xk7 k & Z?)k [A*]l — [(y*TkO + kl +t*Tk) . aL]l
K:=K +k-a If [w) = [y (Ko +7K;) + t7 K +
Ko =Kj)+ko-at A*]1 then
K, =K +k - at return 1
P:=AJK ¢ zZF*) Else return 0

[PO]l = [MTKO]I c G;zgx(kJrl)

C:=KA e 722"

Co :=KoA € 2 **

C; =KjA € Z%,Xk

Crs = (CI’Sor7 [A()]17 [P]l7 [1)()]17
[Al2, [C]2, [Co]2, [C1]2)

Return crs

Fig.27. Games G; and for proving Theorem 6.

Lemma 22 (Gg to Gy). There is an adversary B breaking the Dy-KerMDH as-
sumption over Go with T(B) ~ T(A) + Q - poly(\) and

AdvETD (M) > | Pr[Ggt = 1] — Pr[Gf = 1]|.

Proof. Tt is straightforward that a pair ([y*];,7*) passing the FINALIZE in G,
always passes the FINALIZE in Gg. We now bound the probability that A pro-
duces ([y*]1,7*) that passes the verification in Gy but not that in G;. For
7 = ([t*]1, [u*]1, 7)), the verification equation in Gy is:

[y o [Alz = [y* ']1 0 [KoA]z + [1]1 o [K1 Ay + [t ]1 0 [KA],
<~ [u* — y*TKQ - K; — tTK]l [¢) [A]2 = [O]T

One can see that for any ([t*];,[u*]1, 7% ) that passes the verification equation
in Gg but not that in G;, u* — y*Ko — K; — t 'K is a non-zero vector in the
kernel of A.

We now construct an adversary B as follows. On receiving (G, [A]1) from the
Dy-KerMDH experiment, B samples all other parameters by itself and simulates
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Gy for A. When A outputs a tuple ([t*]1, [u*]1,7%), B outputs u* — v Ko —
K, — t"K. Since B succeeds in its experiment when A outputs a tuple such
that u* — y*TKO — K, — t"K is a non-zero vector in the kernel of A, we have
AdVET?ng,B()‘) > |Pr[Gg' = 1] — Pr[Gf* = 1]|, completing the proof of this
lemma. ad

Lemma 23 (G; to Gy). Pr[G{* = 1] = Pr[Gs' = 1].

Proof. Now we finish the reduction to the KerMDH assumption and we can have
A over Z,. In Ga, for i € {0,1} we replace K; by K/ + k;a’ for a’ € ker(A).
Furthermore, we replace K by K’ +ka*. Since K’ and K/ are uniformly random,
K and K; in G, are distributed at random and the same as in G;. Thus, G5 is
distributed the same as G;. O

Lemma 24 (G3). There is an adversary B’ breaking the DPVSS security of
II% defined in Figure 23 with T(B') ~ T(A) + Q - poly()\) and

Pr(Gs' = 1] < AV . (M),

Proof. We construct a reduction B’ in Figure 28 to break the DPVSS security of
IT9V defined in Figure 23.

INIT(M): SM([y]1):
A€ Dy ([t]1, [t]1, Ter) & Sthapu ([y1)
a <& ker(A) A s -2t
1 1x(k+1) 1 _ 1= |Uuj1-a

/a <Zp anda”A =0\ " (VT 4K, 46 K+ Al
Cr'Sdpv <~ INITdPV(M) Qsim = Qsim U {([y]17 ﬂ—)}
Parse crsqpy, =: (crsor, [Ao]1, [P]1, Return 7 := ([t]1, [u]1, 7or)

[Pol1)
K/ & 72k (kD) FINALIZE([y*]1, 7):
Kj & 70 Y Parse m = ([t"]1, [u"]1, 7o)
K, & Zzl)x(lvrl) If ([y*]177r:) € 95im or [y*']1 € Ly, or
[P = [A0) K’ + [plia* Ver(ers,[y°]1,7*) = 0 then
[Pols := [M] K{ + [pol1a* return 0
C:=K'A e 72h<* Compute [v]; such that
CO — K6A c Z;nxk [U]IaL — [u* _ y*TK(/) _ Kll _ t*TK/]l
Ci:=K|A € 7,*F Return FINALIZEq, ([y™*]1, ([t*]1, [v]1, 7o)
Crs = (CrSOH [AO]17 [P]17 [PO]17 [Pl]l

[Al2, [Cl2, [Co]2, [Ci]2, H)
Return crs

Fig. 28. Reduction B’ for the proof of Lemma 24 with oracle access to INITgpv, STMdpy
and FINALIZEgp,, as defined in Go of Figure 24. We highlight the oracle calls with grey.

We note that the [p]1,[po]1 from INIT4p have the forms, p = Ak and
po = MTkq for some random k € ng and ko € Z;*, and furthermore the



Shorter QA-NIZK and SPS with Tighter Security 55

value [u]; from SiMgp, has the form u = y ko + k1 + t"k. Hence, essentially,
B’ simulate the security game with K and K, that are implicitly defined as
K:=K' +k-at, Ky:=K{+ky-at, and K; := K| + k; - a’. The simulated
INIT and SIM are identical to those in Gs.

In Gy, FINALIZE([y*]1, 7* := ([t*]1, [u*]1, 7% )) outputs 1 if

w =y K+ K+t K 4 (v ko + k4 t* k) at

=v

and ([y*]1) ¢ Qsim and [y*]1 ¢ Ly, and Ver(crs, [y*]1, 7*) = 1. Thus, if A can
make FINALIZE([y*]1, 7*) output 1 then B’ can extract the corresponding [v]; to
break the USS security. We conclude the lemma. a

To sum up, we have PrlUSS* = 1] < AdvETD, 5(N) + Advie 5 (\) with B
and B’ as defined above. ' O
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