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Summary

The use of Unmanned Aerial Vehicles (UAVs), popularly known as drones,
is growing considerably. This is due to their versatility, reduced cost and rapid
deployment, among other advantages. One of the main areas of interest in this
field is the development of autonomous UAVs. Inside this area of interest, the topic
of path planning was particularly studied in this thesis.

The goal of path planning is to develop algorithms that enable the UAV to
perform a given mission by its own, finding the controls that make it achieve the
mission goal in an optimal way. Such algorithms can be executed in real-time or
off-line. Real-time path planning algorithms are continuously running and acting
on the vehicle’s motion. Off-line algorithms may be used before the mission starts
to plan an optimal path and the required controls to achieve it. The path planning
strategy to be chosen depends on the mission characteristics and objectives.

The real-time path planning algorithms studied in this thesis are suitable for
missions where the environment or the mission parameters change dynamically.
This can be, for example, a moving target of interest or if local real-time weather
information is used in the optimization algorithm.

The first solution being presented in this thesis is the use of an autonomous
UAV for the surveillance of a ship’s trajectory. In this solution, a Model Predictive
Control (MPC) solving an optimal control problem (OCP) is designed, including a
kinematic model for the ship’s movement in addition to the two-dimensional UAV
kinematic model, which has the turn rate as the control input. The chosen strategy
for the UAV control was to send calculated waypoints based on the optimized turn
rate to the Ardupilot autopilot control unit. The mean error between the measured
and desired UAV position was reduced by 18% when the ship’s kinematic model
was used, compared to when it was not used. In the second solution, multiple
UAVs are used as relay nodes to maintain the communication link between an
Autonomous Surface Vehicle (ASV) and the ground station. The coordinated turn
kinematic model including wind effects is used for the UAV and the MPC also
includes a kinematic model for the ASV. In the simulations using two UAVs flying
at 100 meters of altitude, it was possible to double the Wi-Fi range between the
ASV and the ground station, resulting in an operational area four times bigger.
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Summary

Finally, a third real-time path planning solution using MPC is described, where
multiple UAVs are used in a Search and Rescue (SAR) mission. In this solution,
the coordinated turn model is adapted to the UAV control unit commands. The
solution is developed using CUDA C programming language to be embedded in the
UAVs’ on-board computers and tested using a Software-In-The-Loop environment
including flight dynamics simulated by JSBSim. Results show that three UAVs are
able to reach 50% of Probability of Success 2.35 times faster than when only a
single UAV is used.

The off-line path planning algorithms studied in this thesis are applied to long
range missions, where the UAV is expected to fly from the origin to a given desti-
nation. The technique of Particle Swarm Optimization was used to find the values
(solution) of the set of variables of the problem.

In the first off-line solution, a hybrid-electric UAV path is optimized so that
it flies close enough to a safe landing spot that it is able to reach with remaining
battery capacity in case of an engine failure. The range that the UAV is able to
fly is calculated by taking into consideration an aircraft performance model and
non-uniform forecasted wind maps. In the main simulated scenario, the straight
path had a length of 210.0 kilometers and 72.6% of it being close enough to a safe
landing spot. The resulted optimized path had a length of 215.4 kilometer (2.57%
increase) and 100% of it being close enough to a safe landing spot. In the sec-
ond solution, the algorithm was modified so that, instead of calculating the range,
the energy consumption is calculated in order to find the leveled path that allows
optimal energy savings taking into consideration the wind. The optimized path
achieved 4.2% of energy savings for the simulated scenario when compared to the
straight path. Finally, the third solution is described, where the path is optimized
additionally taking into consideration climbing, descent and electro-thermal icing
protection system usage, as well as other meteorological parameters. Twelve oper-
ational profiles were compared and the proposed solution achieved 52% of battery
savings when compared to the standard straight path.
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Chapter 1

Introduction

In this chapter, the background and motivation are presented, as well as the
structure of the thesis, where it is explained how the chapters are connected. The
problems of real-time path planning and off-line long range path planning are also
presented.

1.1 Background and Motivation

While the development of Unmanned Aerial Vehicles (UAVs) was boosted by
military applications in the last century, recently, in the last decade, the develop-
ment of UAVs (drones) for civilian applications has grown considerably.

UAVs are versatile tools that can be used in a broad spectrum of missions.
The rapid growth of the use of UAVs is justified by their endurance, reduced cost,
rapid deployment and flexibility. This flexibility is mainly due to the many types of
sensors that can be mounted on UAVs, enabling them to be used in many different
applications. In addition, they offer reduced risk for humans and impact on the
environment, when compared to manned aircraft.

There are many examples of civilian applications that arose in the last decade,
such as border patrol [47]. A report from the Department of Homeland Security’s
Inspector General states that the US performed 635 missions with UAVs by the
U.S. Customs and Border Protection in the 2017 fiscal year, totaling over 5625
hours of flight [107]. Sea surveillance is another common application [140]. UAVs
are such an important facility that Coast Guard Commanders do not want to
sail without a UAV on board [130]. UAVs are also being used in farms, such as
in precision agriculture [95] [67] as well as in spraying [159], to reduce costs and
also access areas where trucks cannot go [12]. Mapping/photogrammetry [116] is
also an important field where the employment of UAVs is very noticeable, where
UAVs equipped with imaging sensors are able to map three-dimensional models
of terrain, vegetation and urban areas [117]. Some other interesting initiatives are
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1. Introduction

arising, such as using UAVs for delivery [150] [63] or even Internet providing, such
as Facebook’s project to bring Internet to remote places using a UAV [126]. Finally,
recreational drones are also gaining a lot of attention in the UAV industry [96]. The
list of civilian applications is vast and not limited to the ones that were mentioned.

One of the most desired goals in UAV robotics is user-friendliness and intelli-
gence, in other words, these vehicles should have certain autonomy in the perfor-
mance of tasks to which they are assigned. The navigation of a UAV is one of the
most complex tasks related to the control of robots. This complexity occurs as the
navigation should integrate sensors, performance, planning, architecture, hardware
and computational efficiency. Thus, the integration of all these elements is intrinsic
in order to obtain autonomous navigation.

One of the main fields in UAV navigation is path planning, whose objective is
to enable the planning of the UAVs movements without human interference. This
is a difficult task, especially due to the vehicle constraints and mission complexity.

In path planning problems solved by optimization techniques, a cost function
(also called fitness function or objective function) is built with the aim to achieve
the mission objective. The optimization algorithm is responsible for finding the
solution of a set of path variables that minimizes the cost function, and, therefore,
achieves an optimal path. In non-convex problems, which are the most common, the
solution found by the optimization algorithm is usually not the optimal solution.
However, if proper optimization techniques are used, the found solution may be
very close to the best one.

In this thesis, the path planning techniques studied are divided into two cate-
gories: real-time path planning; and off-line long range path planning. Each one is
applicable to a different set of mission characteristics, which are described in the
following subsections.

1.1.1 The Problem of Real-Time Path Planning of Unmanned
Aerial Vehicles

Real-time path planning is the most suitable solution for missions where the en-
vironment is changing dynamically. For example, in tracking missions [131], where
the tracked objective changes its direction in a way that is not possible to know a
priori.

Wind is a phenomenon which magnitude and direction can frequently change
along a UAV mission. Since wind has a major impact on small UAV motion [13],
real-time path planning techniques can benefit from local in-flight wind estimations
[15] if the effects of wind are included in the vehicle’s model.

In the real-time path planning solutions proposed by this thesis, the technique
of Model Predictive Control (MPC) [24] is used for the solution of the optimal
control problem (OCP). In this technique, the cost function is designed to take

2



1.1. Background and Motivation

into consideration the predicted outputs of the model along a finite time horizon.
Therefore, the optimization algorithm is responsible for finding the values (solution)
of the set of OCP variables (control inputs) for the present and future time steps
that minimizes the difference between the desired and predicted sequence of outputs
(Figure 1.1).

Figure 1.1: A discrete MPC scheme. (Source: Martin Behrendt)

Besides the advantages of dealing with dynamic changes in the environment
and finding the control inputs based on a sequence of predicted outputs, MPC has
also the capability to directly incorporate vehicle constraints to the model. This is
especially interesting for fixed-wing UAVs due to their limited turning radius.

Despite the superior results brought by this approach, it has an increased com-
putational cost. Therefore, a proper optimization technique has to be chosen and
the MPC parameters (such as the horizon and number of steps), which are im-
portant for the stability of the MPC, as well as the computational cost of the
model equations, must be properly addressed. This is fundamental to allow the
optimization technique to converge the solution to an optimal value in a time that
is compatible with the system requirements. In addition, the development of the
algorithms should benefit from the recent advancements in the development of
faster processing units, including parallel computing, which is especially favorable
for optimization algorithms where the many candidate solutions can be evaluated
simultaneously.

1.1.2 The Problem of off-line long range path planning of
Unmanned Aerial Vehicles

Certain long range missions, such as missions where the objective is to fly from
the origin to a given destination, are usually more suitable for off-line path planning.
This is due mainly to the fact that the mission has a defined final state and the
optimization algorithm needs to take into consideration the entire geographical
domain and not only the region where the UAV could reach in a short time horizon.

3



1. Introduction

The mission also needs to be modelled in large-scale, leaving the low level control
within the autopilot control unit. This approach does not compromise the mission
because minor deviations will not affect significantly the overall performance, i.e.,
if the UAV deviates a few meters from the original path, this has minor impact on
the cost function if the total path length is in the scale of hundreds of kilometers.
In addition, changes in the environment are not expected to be big enough and
frequent enough to cause a significant impact on the result.

As mentioned, the effect of wind on small UAV missions is considerable. There-
fore, if the wind is used in favor or if the negative impact is mitigated, the mission
endurance can be enhanced (i.e. energy consumption reduced). For this to be possi-
ble, non-uniform forecasted wind maps must be included in the optimization. Also,
in missions with variable altitude, constraints such as the terrain elevation must
be addressed, limiting the domain to the region above the ground.

Finally, flying UAVs in icing conditions is challenging and risky if no icing pro-
tection system is used. Recent developed systems [134] require a significant amount
of electric energy to eliminate the ice on the structure and some solutions employ an
alternating usage, turning the system on and off during intervals to reduce the en-
ergy consumption. However, this approach degrades the aerodynamic performance
of the aircraft, sometimes requiring more propulsive power to compensate for the
penalties. Therefore, finding the path that optimizes the use of the icing protection
system is also necessary.

In the solutions described in this thesis, the technique of Particle Swarm Op-
timization (PSO) [35] is used to find the value of the set of variables, such as
waypoints, airspeed and climb angles, that minimizes the cost function and, there-
fore, finds an optimal path. PSO is a meta-heuristic optimization method where
the particles (solutions) are updated every iteration based on the best global and
local solutions.

1.2 Structure of the Thesis and Main Contribution

This thesis is divided into three parts: the first part presents three applications
of real-time path planning; the second part presents three applications of off-line
path planning; and the third part presents the concluding remarks and recommen-
dations for future work.

Part I: Real-time Path Planning with Model Predictive Control
The first part has three chapters.

• Chapter 2: In this chapter, a mission scenario where the UAV should au-
tonomously overfly a maritime vessel’s path is presented. The technique of
Model Predictive Control (MPC) is used and the planned path of the vessel is
included as a kinematic model in the optimal control problem. This inclusion

4



1.2. Structure of the Thesis and Main Contribution

significantly improves the performance of the system. For the UAV, a basic
two dimensional kinematic model with constant speed is used having the UAV
turning rate as the control input. The MPC problem is solved by a MATLAB
script with the ACADO Toolkit, which uses a quadratic programming solver.
After each optimization step, the target waypoints are calculated and sent
to the UAV control unit through the IMC Java Protocol library and DUNE
framework. The Ardupilot autopilot is responsible for the low level control
in order to ensure that the received waypoints are reached by the UAV. The
proposed solution was simulated in a Software-In-The-Loop environment in-
cluding flight dynamics model simulations.

• Chapter 3: In this chapter, a multiple UAVs solution for maintaining the
communication link between a moving Autonomous Surface Vehicle (ASV)
and the ground station is presented. As it is done in the previous chapter, this
chapter’s system also includes the vessel’s kinematic model in the MPC prob-
lem. Also, to achieve better performance and reliability, a new UAV kinematic
model is developed in order to use the autopilot’s control unit mode Fly-By-
Wire-B, where the airspeed and roll angle are directly commanded, instead
of only waypoints such as the system described in the previous chapter. The
UAV kinematic model is, therefore, upgraded to the coordinated turn model,
where the control inputs of the optimization problem are the acceleration
and roll angle rates. Since in the Fly-By-Wire-B mode the attitude of the
UAV is controlled by the commands obtained by the optimization algorithm,
the effects of wind are also included in the model. In addition, because of
the mission characteristics, the power consumption is also included in the
cost function. Finally, the solution is implemented in CUDA C embedded
programming language with the objective to benefit from parallel processing
and prepare the solution to run in the UAV’s on-board computer. Numerical
simulations for two different scenarios are evaluated.

• Chapter 4: The solution presented in this chapter modifies the previous
chapter solution so that the control inputs of the MPC problem are the same
as the commands that are accepted by the autopilot control unit. There-
fore, the airspeed and roll angle are chosen as the new optimization problem
control inputs. The system is fully integrated to the DUNE platform using
CUDA C programming language. Software-In-The-Loop simulations are eval-
uated, including flight dynamics model simulations. The solution is applied
to a Search and Rescue (SAR) mission, where multiple UAVs search a given
area for survivors. The mission is defined following international SAR direc-
tives. Five missions are simulated for each of the three operational profiles:
using one; two; or three UAVs. The average of the results are compared and
discussed.
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1. Introduction

Part II: Long Range Off-Line Path Planning with Environmental Pa-
rameters

The second part of the thesis presents three path planning problems that are
solved using Particle Swarm Optimization.

• Chapter 5: In this chapter, a path planning solution is presented to find the
path that a hybrid-electric UAV should follow in order to be always (or as
much as possible) close enough to a safe lading spot. This is due to the fact
that it is desired that the UAV is able to reach a landing spot in case of an
engine failure. Therefore, the optimization algorithm evaluates if the distance
between the steps of the candidate solution to the landing spots are within the
maximum range of the UAV, which is calculated considering variable airspeed
commands that give the maximum endurance considering non-uniform wind
maps. The technique of Particle Swarm Optimization (PSO) is used to find
the optimal path.

• Chapter 6: In order to find an optimal cost-efficient two dimensional path
between two points, the equations used in the previous chapter are modified
so that the power consumption per distance traveled can be calculated for dif-
ferent commanded airspeed and wind, instead of calculating the range based
on the commanded airspeed and wind as presented in the previous chapter.
Therefore, it is possible to find a path that uses the wind and the aerody-
namic performance characteristics in order to reduce the energy consumption
and, consequently, increase the endurance.

• Chapter 7: In this chapter, the solution presented in the previous chapter
is improved by including altitude changes in the aerodynamics performance
model. This results in a quasi-three-dimensional (multiple altitudes) path,
where the variables being optimized are the airspeed, climb angle and way-
points. Meteorological maps of different parameters and multiple altitudes
were obtained from a meteorological service provider. In addition, the use of
electro-thermal icing protection systems is introduced in order to allow the
UAV to fly under icing conditions and to optimize its energy consumption.
The icing conditions, as well as the power required by the icing protection
system and its effects on the aerodynamics are calculated based on the mete-
orological parameters. The meteorological parameters downloaded and con-
sidered in the calculations are horizontal winds, air temperature, humidity
and liquid water content.

Part III contains the final chapter, where the concluding remarks are pre-
sented, as well as the recommendations for future work.
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• [120] C. D. Rodin, F. A. A. Andrade, A. R. Hovenburg, T. A. Johansen, and
R. Storvold. A survey of design considerations of optical imaging stabilization
systems for small unmanned aerial systems. Submitted for publication.

8



Part I
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Chapter 2

Autonomous UAV surveillance of a
ship’s path with MPC for Maritime
Situational Awareness

Maritime Situational Awareness is crucial in maritime operations to identify
threats and to deal with them as soon as possible. These threats can be pirates
in shipping operations, icebergs when sailing in the northern sea routes, or even
unknown vessels or objects that might be on the ship’s path. A solution to identify
these threats is the use of UAVs to overfly the ship’s planned path. This solution
is described in this chapter, using an autonomous fixed wing UAV. Based on the
provided ship’s planned path, the UAV should autonomously fly over the area
around to the ship track. To do that, an optimization problem is solved using
Model Predictive Control, where the turn rate for the next time period is optimized.
Based on the turn rate, the future path of the UAV is calculated and the waypoints
are sent to the autopilot. This application is thoroughly tested using a Software-
In-The-Loop environment, where flight dynamics model simulations are combined
with the autopilot’s commands. The results show that the solution is suitable and
that the performance is significantly improved if the UAV has information about
the ship’s velocity in addition to position.

2.1 Introduction

After the tragedy of 11 September 2011, while the United States sought to
improve the safety and security of its citizens, arose in that country the concept of
Maritime Domain Awareness (MDA). The term had already been used earlier [87],
but the concept had not been defined yet. This “maritime awareness” implied in
having timely and reliable information on all areas and things of, on, under, relating
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to, adjacent to, or bordering on a sea, ocean, or other navigable waterway, including
all maritime, related activities, infrastructure, people, cargo, and vessels and other
conveniences [108]. Thus, the concept of MDA is the effective understanding of any
facts, associated to the maritime domain, which can impact the security, defense,
the economy and the environment. At the end of 2006, as a result of the Summit
meeting of the North Atlantic Treaty Organization (NATO) in Riga, the term
Maritime Domain Awareness (a concept which was originally American) evolved
into Maritime Situational Awareness [18], reflecting an international concept which
was more appropriate to the definitions used by different countries.

Nowadays, many illegal agents’ actions are observed in the maritime and coastal
environment, for example, piracy, which has returned because of the inability and
weaknesses to confront it. Besides, there are also established threats such as terror-
ism, transnational crimes, illegal immigration and environmental disasters caused
by pollution and catastrophes. Maritime and coastal monitoring also includes map-
ping and monitoring of marine resources, environmental parameters related to the
oil spills, climate indicators, icebergs and sea ice in arctic regions, in addition
to inspection of fisheries, surveillance for security, oceanography, data acquisition
from buoys, surface ships and underwater vehicles, assistance in search and rescue
missions, and situation awareness in marine operations, among others.

Thus, the purpose of Maritime Situational Awareness is to develop the ability to
identify existing threats as soon and as far as possible, by the integration of intelli-
gence information, surveillance, observation and navigation systems, interacting in
the same operational framework. For this capability to be effective, it is necessary
a structure that allows data collection, monitoring, air and naval sensors, and the
correct analysis of the facts, enabling a quick and accurate response.

To build this capability, UAVs are well suited tools that can be equipped with
a wide variety of sensors, such as cameras or radars. The cameras can be infrared,
RGB, or multispectral, for example. One application of these sensors is the tracking
of floating elements in the sea [91], like drifting objects, enemy vessels, icebergs and
others.

This information can be used in collision avoidance systems [78], where the
vessel finds a new path based on the obstacles’ positions; military operations [7],
where the threats or targets can be identified earlier; ice management [64], to map
the features of ice or icebergs drifting into the path of the vessel; and search and
rescue [115], where the vessel needs to find missing crew.

In seismic data collection, vessels tow arrays of streamers that might be up to
one kilometer wide and 5 kilometers long. When towing these arrays, the vessel
must keep steady direction and speed, hence to prevent damage to the streamers the
area upstream must be inspected for icebergs and growlers and in case of suspected
damage to streamers the array and cables themselves need to be inspected while
moving [152].
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Usually, the vessel is the center of the maritime operation, which, as exemplified
before, can be a shipping mission, a search and rescue, or a military surveillance
operation. To collect the needed data to support the chosen operation, the UAV
must fly over a region according to the vessel’s planned path and speed, and in
the case of scouting for growlers, combined with knowledge on i.e. potential drift
velocities, in a cooperative way ensuring safety margins on the captured data.

Therefore, in the scenario proposed in this chapter, a fixed wing UAV must
fly over the ship’s planned path at a certain distance ahead of the vessel to allow
the ship’s captain to timely react to findings. For instance, if it is needed some
information 4 minutes in advance, the UAV has to overfly the predicted position
of the ship 4 minutes ahead. For the UAV to decide its optimum path to cover
that area, an optimization problem has to be solved to minimize the error between
the predicted and the desired position of the UAV. To solve this problem, using
Model Predictive Control (MPC) is beneficial, because it can consider the predicted
output, based in current measurements, to fit the control inputs in a better manner.
In this problem, the intended velocity of the vessel can be used to predict its future
positions in order to decide the UAV’s optimum path.

There are several research describing the use of MPC techniques in the field of
UAVs, such as in [81], where a UAV was used to follow a linear path. However,
it did not take into account time constraints, so the problem was treated as a
path following problem. [65] also shows a solution to track moving objects, but
it optimizes the path according to the waypoints sequence, which has much more
computational cost than the solution presented in this chapter, where only the turn
rate is controlled. In [131], a MPC algorithm running in a ground station is used
to control the UAV turning radius and the camera’s gimbal to track objects in
the sea. The solution proposed in this chapter brings a similar approach but to a
different problem.

The system presented in this chapter, with the challenge of integrating different
software components and to make it possible to use it in an on-board real time op-
timization problem, introduces an effective solution for many types of autonomous
tracking problems, bringing a beneficial result, especially when the motion of the
tracking object is provided.

The UAV’s path is optimized by solving a MPC problem where the turn rate
is the control input. The UAV is assumed to fly at a constant altitude. The op-
timization problem is implemented using ACADO for MATLAB, a user-friendly
interface of the ACADO Toolkit [68], which is a software environment and algo-
rithm collection for automatic control and dynamic optimization, implemented in
C++. MATLAB is used to hold the main software, which does the integration
between the simulated ship’s data, the MPC and the Ardupilot autopilot.

ArduPilot [141] is an open source autopilot that supports many types of robotic
vehicles, including the fixed wing UAV platform used in this application. It is
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possible to send commands to the ArduPilot or to read the UAV sensors via Micro
Air Vehicle Communication Protocol (MAVLink) [142]. The ArduPilot has also a
Software-In-The-Loop simulator that can use a flight dynamics model simulator
to simulate the UAV’s behavior to the actuator commands and the sensors data.
The JSBSim [17] was used for the flight dynamics model simulations for the X8, a
fixed wing UAV which can fly up to 2 hours. To communicate with the autopilot,
the messages travel between MATLAB and the ArduPilot though DUNE [112],
which is an open source robot framework developed by the Underwater Systems
and Technology Laboratory (LSTS) of the University of Porto. The Inter-Module
Communication Protocol (IMC) is used for the messages between MATLAB and
DUNE using the IMC Java library for MATLAB.

Details of the system architecture are described in the next section.

2.2 System Description

Figure 2.1 shows the block diagram with the connections between all software
components used in this system.

Figure 2.1: System’s block diagram, simulation setup.

The main input is the simulated ship’s planned path, where the position and
velocity in the NED coordinates frame along the time were saved into a MATLAB
data file for simulation purposes. In a real mission, the ship’s planned path is
expected to be sent to the UAV in real-time. MATLAB also receives information
from DUNE about the UAV state and uses it, combined to the ship’s planned path,
to solve the optimization problem and send the waypoints to DUNE. DUNE, in
its turn, sends the waypoints to the ArduPilot and gets the information about the
UAV sensors. The ArduPilot commands the UAV, which has its flight dynamics
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simulated by JSBSim. Besides, a MAVProxy ground station is also used to control
the UAV in GUIDED mode, if needed.

2.2.1 MATLAB Core Code

The data file is loaded by the core code and the starting position of the ship is
taken as the origin of the NED frame. Therefore, the correspondent reference pair
of latitude and longitude is defined. In sequence, the update rate of the waypoints
is defined and also the time in advance when the ship should receive information
from the UAV about its path. This time is used to calculate where the ship might
be according to its planned path and then use that information as the desired
location where the UAV should overfly.

Position, velocity and attitude of the UAV are also necessary to be used as
inputs to solve the two-dimensions optimization problem, which assumes that the
UAV will fly at a constant altitude. Therefore, the following information about the
UAV is gotten from DUNE:

• Origin (reference) of its local NED frame (latitude, longitude, altitude);

• Position offset (x, y, z) from its NED frame origin;

• Body-Fixed frame 2D linear velocities (u, v);

• Euler angles (Roll (φ), Pitch (θ), Yaw (ψ)); and

• Angular velocities over body-fixed frame (p, q, r).

As the starting position of the ship is used in this application as the NED frame
reference, it is needed to convert the UAV position in its local NED frame (from
DUNE) to the application’s NED frame. To do that, first it is made a conversion
to geodetic coordinates (latitude and longitude) using the reference of the UAV’s
Local NED frame from DUNE and then it is made a conversion to the application’s
NED frame using the ship’s starting position as the reference. This is necessary
because, in DUNE, the reference of the UAV’s Local NED frame is updated every
kilometer of distance that it moves from the former defined reference. Besides, for
all conversions, the World Geodetic System of 1984 (WGS 84) was used as the
reference ellipsoid.

Regarding the yaw rate, as a two-dimensional model is used in this optimization
problem and the body-fixed angular velocity r, which is received from DUNE, is
not the rate referring to the UAV’s yaw angle, the UAV’s yaw rate has to be
calculated using the relationship between the Euler-angle rates vector [φ̇, θ̇, ψ̇]ᵀ

and the body-fixed angular velocity [p, q, r]ᵀ as Eq. 2.1 [137].
This is also needed because the UAV used in this application does not have

a rudder and uses the banking to turn. Therefore, in the two-dimensional model
described in the next section, the yaw rate r used is actually the yaw rate ψ̇ obtained
from Eq. 2.1.
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φ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ secφ sec θ


pq
r

 (2.1)

Finally, after solving the optimization problem, the target waypoint is sent to
DUNE using the “DesiredPath” function. In that function it is also possible to
send a second waypoint as a backup that can be used in case there is a temporary
communication problem.

The overall description of the Core Code is shown in Figure 2.2. The program
repeats every chosen update time step and it runs until the last planned position
of the ship is reached by the UAV, when the UAV starts to loiter and wait for a
guided command.

Figure 2.2: Overall Core Code description.

2.2.2 IMC Java library

To send or receive IMCmessages, the IMC Java library is required to provide the
necessary functions used by the MATLAB script. Besides, in the IMC protocol, the
communication is done between nodes. Therefore, the core code has to be started
as a IMC node and then connects to the desired node, in this case, the X8 UAV
node in DUNE.
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2.2.3 DUNE

DUNE is compatible with many different autopilots. In this application, as the
ArduPilot is used, when DUNE receives the “DesiredPath()” command, it calls the
Task responsible for the communication with the ArduPilot. However, the standard
Task available in DUNE’s repository operates the UAV in GUIDED Mode. In that
mode, the UAV starts to loiter when it reaches a certain distance from the UAV
and never passes through the waypoint. This behavior would make impossible the
proposed application.

Therefore, a modification was made in DUNE’s ArduPilot Task in the source
code, so that the UAV can be operated in AUTO Mode. In the new Task, a mission
containing the waypoint is sent to the autopilot. After the acknowledgement from
the autopilot, a command to start the mission is then sent by DUNE.

2.2.4 ArduPilot Software In The Loop

In the Software-In-The-Loop mode, the ArduPilot needs a flight dynamics
model simulator. In this application, JSBSim is used to simulate the behavior
of the UAV in a real flight. JSBSim simulations are done taking into considera-
tion the mass balance, ground reactions, propulsion, aerodynamics, buoyant forces,
gravity, external forces and atmospheric disturbances, such as winds, gusts, turbu-
lence, downbursts etc. In this application, the X8 UAV (Figure 2.3) model [52] was
chosen.

Figure 2.3: X8 UAV. (Source: NTNU)

2.3 Model Predictive Control

Model Predictive Control (MPC) is a class of techniques to solve numerical
optimization problems, controlling the input variable to minimize the deviations
between a desired output and the predicted output in a finite time-horizon [24].

In this application, the first assumption to be made is that the fixed wing UAV
is controlled by an Autopilot system, which needs to be fed with the waypoints of
the optimal flight trajectory. The MPC module is responsible for calculating this
trajectory, based on the UAV’s and ship’s attitude, position and velocity.
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2.3.1 UAV kinematic model

Considering that the fixed wing UAV will fly in a constant altitude, maintained
by the Autopilot, its kinematic is treated as a two-dimensional motion problem
(Figure 2.4).

Figure 2.4: UAV model in two dimensions

Therefore, the position and heading of the UAV can be expressed in the NED
frame as:

pUAV = [xUAV, yUAV, ψUAV]ᵀ, (2.2)

where xUAV and yUAV are the horizontal positions and ψ is the yaw angle. The
velocities in the BODY frame and the rate of change of the yaw angle forms the
following vector.

vUAV = [uUAV, vUAV, rUAV]ᵀ, (2.3)

Besides, the relation between Eq. 2.2 and Eq. 2.3 is given by:

pUAV = Rz(ψ)vUAV, (2.4)

where Rz(ψ) is the rotation matrix between the BODY and NED frames as shown
in Eq. 2.5.

Rz(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 . (2.5)

The UAV’s turning rate (r) is the control input of the optimization problem.
Therefore, it is necessary to define a maximum value for it as a problem constraint.
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2.3.2 Ship’s kinematic model

To use the ship kinematic in the MPC, a linear motion model is implemented
based on the position and velocity of the ship in its intended path, at the instant
the UAV should fly over that location.

pt+τship = ptship + vtshipτ, (2.6)

where pship = [xship, yship]ᵀ is the position of the ship on the path, τ is the time
between measurements and vship = [vx, vy]ᵀ the velocity vector.

2.3.3 Cost Function

The Least Squares (LS) function (Eq. 2.7) is used as the cost function to be
minimized by the MPC algorithm.

Jt =
1

2

t+T∑
i=t

‖h(zi)‖2, (2.7)

where zi = [xUAVi, yUAVi, xshipi, yshipi]
ᵀ is the state vector.

In this application, (h(zi)) is the distance between the current position of the
UAV and its desired position, which is equivalent to the ship’s future position in
its planned path:.

h(zi) =
√

(xUAVi − xshipi)
2 + (yUAVi − yshipi)2. (2.8)

2.4 Simulated Data

Figure 2.5: Two simulated ship’s path
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Two simulated datasets with the ship’s path were generated. Both have the
duration of 15 minutes.

The first dataset was generated for a fixed heading of −2π/3 rad and fixed
velocity of 18 knots.

The second has the same starting heading and velocity of the first one but it
changes the direction two times and the velocity one time. After going straight for
some time, it makes a slight turn to the right, then it goes straight for a while and
makes a final turn to the left, going straight for the rest of the time. The velocity
changes from from 18 knots to 21 knots in the middle of the path.

Both datasets were generated for a simulation of a ship navigating close to
Longyearbyen, Svalbard (Figure 2.5).

2.5 System Configuration

The following parameters were chosen for the application:

• 2 minutes between the ship’s current position and the desired position in its
planned path to be overflown;

• 4 seconds for the update period of the UAV waypoints;

• 20 seconds of MPC Horizon;

• 10 MPC input steps;

• 6 seconds between the current position and waypoint;

• Maximum of 30 iterations in the MPC optimization;

• Maximum turn rate of 0.3 rad/s;

• 18 m/s of UAV velocity; and

• 500m of altitude.

The reason to choose 4 seconds between each update is that if the time step is
too small, the autopilot may set the waypoint as reached before the next update.

The cruise speed of the X8 (18 m/s) was chosen to be the target constant
velocity. For a time of 4 seconds between updates, this results on 72 meters between
updates if the UAV is flying straight.

Besides, the target waypoint is set to be 6 seconds from the UAV’s current
position, what means that it is expected that the waypoint is updated about 36
meters before the UAV reaches the targeted one. This choice was made because if
the system wanted to wait the UAV to reach the waypoint or if it allowed the UAV
to get very close to the waypoint, the UAV would start to sorely turn trying to
reach the waypoint or even it could start to loiter around the waypoint without ever
reaching it. This kind of behavior is harmful for the optimization, which should
control the UAV in a smooth way.
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For the MPC parameters, a maximum number of 30 iterations, 10 input steps
and 20 seconds of horizon were chosen to meet the desired update period of 4 sec-
onds with the available hardware. This gives a sampling time of 2 seconds. However,
these parameters can be changed and fine-tuned depending on the processing unit
being utilized.

The maximum turn rate of the X8 with the standard tuning is around 0.4 rad/s.
However, in this optimization problem a lower value of 0.3 rad/s was chosen as the
maximum turn rate. This conservative choice was made to avoid sending waypoints
that would require too aggressive maneuvers and that could be impossible to reach
due to delays between the waypoints message sent by DUNE and the mission
acknowledgement by the Ardupilot. The fact that the X8 UAV banks to turn is
an additional limiting factor, because if the UAV is turning right and a waypoint
in its left is suddenly sent, the UAV has to bank all the way from one side to the
other to be able to change the direction of the turn.

2.6 Results

Figure 2.6 shows the path and the distance error of a UAV following the simu-
lated ship’s path that has constant velocity and heading. The ship kinematic model
was considered in this simulation, using a constant velocity ship trajectory predic-
tion. In the graph on the left, the ship’s path is represented as a blue dotted line
while the UAV’s path is represented in a solid red line. The “x” marker represents
the origin of the ship. The right graph shows the error between the current UAV
position and the desired one, according to its variation along the path (q from
0, which indicates the start of the mission, to 1, which indicates the end of the
mission).

Figure 2.6: UAV path and error for constant ship velocity and heading using the
ship model in the MPC.

It is possible to notice that the UAV tries to overfly the path but as its velocity
is higher than the ship’s, the UAV has to maneuver, crossing the path many times
doing turns. The mean error was 217 meters in this case.
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When the ship’s kinematic model is not used in the MPC (Figure 2.7), the UAV
does many 360 deg turns. This can be explained by the absence of the motion of
the ship in the model. Therefore, the system does not know that the ship is moving
forward and interprets that the desired position is fixed over time. The error in this
case was 265 meters, compared to 217 meters of the previous case when the ship’s
model was considered, i.e., an improvement of 18% was achieved when considering
the ship’s kinematics in the model.

Figure 2.7: UAV path and error for constant ship velocity and heading without
using the ship model in the MPC.

Even if the ship’s path is not straight and if its velocity changes along the path,
the UAV had a good performance keeping the error as small as when the steady
ship’s path was considered, as shown in Figure 2.8. This shows the ability of the
MPC solution to react very well to dynamic changes.

Figure 2.8: UAV path and error for varying ship velocity and heading using the
ship model in the MPC.

2.7 Discussion

As this application was developed to run in an on-board computer, the Software-
In-The-Loop simulation is a viable way to test the integration of the different
systems. E.g., communication delays and protocol challenges are already being
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faced here. On the other hand, hardware processing performance may only be
taken into account with a Hardware In Loop simulation, however, as the presented
solution was running in a MATLAB graphic interface installed in a laptop, it will
certainly achieve better performance if a dedicated on-board computer running a
compiled software written in embedded programming language is used. Therefore,
it would be possible to fine-tune the MPC parameters, having more MPC steps
and also more iterations to achieve better results.

Besides, it was noticed that just sending waypoints to the autopilot is not the
best approach to guide it. It would probably be better if the guidance is done
by changing the UAV’s attitude and velocity, for example, using the Fly-By-Wire
mode, where the controls are sent as the UAV’s remote control was used. That new
solution would probably demand a more complex model to be used in the MPC,
however, the benefits have the potential to overcome the additional complexity.

About the mission scenario, during the development of this solution, it was
glimpsed that it would be more useful if the UAV flew over an area around the
ship’s planned path instead of overflying only the planned path as a line. Thus, it
would be possible to detect objects that could be moving into the ship track [78].
To implement this area surveillance feature, a solution similar to the one described
in section 4.2.4 may be used.

2.8 Conclusion

In a cooperative mission with a ship and a UAV, a common use for the UAV
is to use it to overfly an area of interest. In this scenario, this is the area around
the ship’s planned path. Therefore, in this application it has been defined that
the UAV should overfly the position that the ship is expected to be in 2 minutes
from the current time. In the optimal control problem, the UAV should control
its turning rate to keep the distance from that position as minimum as possible.
Then, according to the optimized turn rate, waypoints are calculated to feed the
autopilot.

The path planning system using Model Predictive Control has been shown to
be very effective for the proposed problem. The UAV could keep its position very
close to the ship’s path most of the time, sometimes moving away from it with
strategic turns to get back to an optimum position. For the second dataset, where
the ship changes its velocity and heading over time, the system also achieved a
good result showing that the MPC can adapt to dynamic changes of the ship’s
behavior.

The difference between the results with and without using the ship’s model in
the MPC also proved that it is fundamental to use the ship’s kinematic model to
achieve better performance.
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Besides, more simulations can be done for fine tuning, such as changing the
number of steps per second. Another suggested improvement is to use hardware in
loop simulation aiming flight tests.
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Chapter 3

Path Planning of Multi-UAS
Communication Relay by
Decentralized MPC

When using Autonomous Surface Vehicles (ASV) in marine operations, long
distances and/or low power transmissions may severely limit the communication
between the ASV and the ground station. One solution to overcome this obsta-
cle is to use a group of small Unmanned Aerial Systems (UAS) to act as relay
nodes, in order to provide a user-defined minimum communication capability. To
achieve this, a decentralized cooperative multi-agent system using fixed-wing UAS
with nonlinear model predictive control is proposed, which aims to guarantee a de-
sired signal strength between the ASV and the ground station. The novelty of the
presented research resides in the inclusion of the aircraft performance model and
the effects of wind, together with the inclusion of the directivity of the antennas.
Experimental results of the proposed method are obtained through simulations.

3.1 Introduction

Using an Autonomous Surface Vehicle (ASV) in maritime missions brings forth
the need for a reliable communication link with sufficient signal strength between
the ASV and the ground station. Although in some cases a direct link can be
used, it is often severely limited in range and affected by the local geography.
Satellite communication can manage longer distances, but cannot always be used
due to partial satellite coverage, limited bandwidth or the high associated costs.
An alternative solution is to use autonomous fixed wing Unmanned Aerial Systems
(UAS) to act as communication relay nodes in order to establish a communication
link between the ASV and the ground station. By strategically coordinating the
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UAS’ trajectories, the obtainable communication link can reach the desired signal
strength over a larger distance.

In recent scientific literature, there are several approaches to solve similar prob-
lems. Grancharova et al. [51] used multiple rotary wing UAS to form a communi-
cation network between a base station, a stationary target and a moving target.
The author used RF Signal Propagation, Loss, And Terrain (SPLAT!) for cal-
culating the communication path losses. The path losses were approximated to
linear functions, and a Model Predictive Control problem was solved by quadratic
programming. Johansen et al. [79] describes the use of one fixed wing UAS as a
communication relay node between a ground station and an Autonomous Under-
water Vehicle (AUV), where the AUV was positioned at the ocean surface. In this
reference, horizontally omni-directional antennas were used. However, in their ex-
periment, due to the vertical directionality of the antenna beam, the roll angle of
the UAS affects the communication signal power. Kim et al. [84] used multiple au-
tonomous fixed wing UAS as communication relay nodes for a fleet of vessels using
a decision making algorithm to choose the waypoints which could satisfy Dubins
trajectories and lead to a configuration where the range between the nodes will be
less than a specified minimum communication range. The solution was improved
in [85], where the paths of the UAS were optimized using Nonlinear Model Predic-
tive Control (NMPC), and the network connectivity was modelled in the context of
Mobile Ad hoc NETworks (MANETs) based on global message connectivity. In this
reference, the change on the directivity of the antenna pattern due to the effect of
the attitude of the UAS was not considered. This made it simpler to model the com-
munication characteristics, but also made it less realistic. In addition, the method
does not consider the effects of wind or the power consumption of the UAS. Braga
et al. [20] optimized the communication Quality of Service, considering the power
consumption and the bandwidth. Here, a simplified power consumption estimation
was used, and, again, the wind and the UAS attitude effect on the radiation pattern
were not considered. In recent studies, Palma et al. [110] performed field experi-
ments using a UAS as a data mule, i.e. the UAS was used to download and offload
data sequentially, rather than to uphold a data link. Different protocols were tested
where it is shown that the quality of the communication depends on the protocol
being used. The author also states that the combination between the altitude and
loiter radius, which determines the angle between the nodes, has a significant effect
on the efficiency of data transfer due to the antenna-radiation patterns. Therefore,
it is fundamental to define flight trajectories whilst taking this into consideration.

Dixon and Frew [32] used a decentralized algorithm based on the gradient of
Signal-to-Noise Ratio (SNR) measurements to obtain a cascaded communication
chain between a control station and a moving vehicle. A drawback of their method
is the limitation in the vehicle dynamics – a cyclic motion is required in order
to obtain an estimate of the SNR – which can result in a non-optimal path. The
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authors do not consider power consumption of the vehicles, resulting in a functional
communication relay, but with a reduced duration compared to an algorithm that
considers the power consumption, and has more freedom in vehicle dynamics. Frew
and Brown [43] considered a meshed network of UAV relay nodes. Experimental
data showed that the meshed network improved the range and throughput of the
communication link compared to a static meshed network.

This chapter proposes a solution by using a decentralized nonlinear MPC to
optimize the state of multiple UAS to achieve the desired signal strength between
the ground station and the ASV. This is done while minimizing the power con-
sumption of the maneuvering aircraft in order to maximize the mission endurance.
As the directivity of the antennas is also considered, roll angles of the UAS are
taken into account when determining the signal strength. The proposed solution
also takes into account the effects of wind on the aircraft performance.

3.2 Methodology

3.2.1 Path Planning

Assuming that the path planning problem starts with all the UAS organized on
a network topology (Figure 3.1) providing the required transmitter-receiver signal
strength between the ASV and the ground station, the aim of the algorithm is to
optimize the states of the UAS to sustain a signal strength which does not fall
below a preset requirement. A Nonlinear Model Predictive Control (NMPC) [23]
method is used to optimize the airspeed and bank angle of the UAS to achieve the
desired signal strength while minimizing power consumption.

Figure 3.1: Network topology

A centralized control system would need to optimize the control inputs of all the
relay nodes, causing significantly increased complexity. With an increased number
of relay nodes the method ultimately becomes unfeasible. Therefore, a fully decen-
tralized NMPC is proposed in this chapter, where each UAS plans its own path
and attitude, taking into consideration the planned states of the other UAS and
the planned position of the ASV in time. This can only be achieved under the
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assumption that the information can be shared between the UAS. Here, the UAS
only needs to be able to communicate with the adjacent nodes.

Assuming that the UAS will fly at a constant altitude maintained by the au-
topilot, a two-dimensional kinematic model can be used based on the Coordinated
Flight Vehicle model [123] as:

ẋ

ẏ

ψ̇

v̇a
φ̇

 = f(x,u) =


va cosψ + vw cosψw
va sinψ + vw sinψw

g tanφ
va

uv
uφ

 (3.1)

where x = (x, y, ψ, va, φ) are the North and East positions in the NED frame,
heading, air-relative velocity (airspeed) and bank angle of the UAS, respectively.
vw and ψw are the velocity and heading of the wind and g is the gravity acceleration
of 9.81 m/s2. u = (uv, uφ) are the acceleration control input and the roll rate control
input, respectively.

The model is discretized by the forward Euler method:

xk+1 = fd(xk,uk) = xk + Tsf(xk,uk), (3.2)

where Ts is the sampling period.
The overall control problem is decomposed as a unique local control problem

for each UAS node, where each UAS optimizes its own state based on the signal
strength with respect to its two adjacent nodes, while taking into consideration the
planned states of the adjacent nodes. Collision avoidance and power consumption
are also considered.

Considering n UAS (xi,∀i ∈ {1, ..., n}), a fixed ground station (x0) and a
moving ASV (xn+1), the NMPC algorithm finds a control input sequence U ik =

{ui0,ui1, ...,uiN−1} ∈ R2×N for the ith UAS, which solves the following optimal
control problem:

minimize δi(x̄iN ) +

N−1∑
k=0

Li(x̄ik,u
i
k) (3.3)

subject to xik+1 = fd(xik,u
i
k) (3.4)

vamin ≤ viak ≤ vamax
(3.5)

φmin ≤ φik ≤ φmax (3.6)

v̇amin ≤ uivk ≤ v̇amax (3.7)

φ̇min ≤ uiφk ≤ φ̇max (3.8)

‖C1(xik − xjk)‖> rc, ∀j ∈ {1, ..., n}\{i} (3.9)
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where

δi(x̄iN ) = aJ i(x̄iN ), (3.10)

Li(x̄ik,u
i
k) = aJ i(x̄ik) + buiv

2

k + cuiφ
2

k
, (3.11)

and

J i(x̄ik) = αEi(C2x̄ik) + (1− α)P i(C3xik). (3.12)

x̄ik = [xi−1k ,xik,x
i+1
k ] are the states of the adjacent nodes, N is the number

of horizon steps and rc is the minimum safe distance between the UAS to avoid
collision. a, b, c are constant weighting factors and C1, C2 and C3 ∈ R2×5 are used
to define which state variables of the vehicles are to be considered in the equations.
In case of C1, only the x and y positions should be used, in case of C2, x, y, ψ
and φ are used and in case of C3, only va and φ are used.

C1 =

[
1 0 0 0 0

0 1 0 0 0

]
, (3.13)

C2 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

 , (3.14)

C3 =

[
0 0 0 1 0

0 0 0 0 1

]
. (3.15)

As the main goal of the system is to provide the desired signal strength with the
lowest power consumption, Ei(C2x̄i) through Eq. (3.16) is the difference between
the desired and actual signal strength between the ith UAS and its adjacent nodes,
while P i(C3xi) through Eq. (3.27) is the power consumption function. Finally, α
is a weighting factor that defines how much power can be used to improve the
communication.

3.2.2 Signal strength

The function of the transmitter-receiver signal strength between the ith UAS
and its adjacent nodes is the sum of the difference between the calculated signal
strength and the desired signal strength, for the ith UAS and each of the two
adjacent nodes (Eq. 3.16). If the signal strength is equal or higher than the desired
one, the error is considered to be zero (Figure 3.2).

Ei(C2x̄i) = ∆Erri(C2x̄i)
π
2 − arctan(−β∆Erri(C2x̄i))

π
, (3.16)
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Figure 3.2: E(C2x̄) for a ∆Erri(x̄) from -10 to 10 and β of 100000.

where β is the constant which defines how close the curve will be to a conditional
function and ∆Erri(x̄i) is the difference between the desired signal strength and
the minimum calculated signal strength as the following:

∆Erri(C2x̄i) = Pd − P imin(C2x̄i), (3.17)

where Pd is the desired signal strength and P imin(C2x̄i) is the lowest signal strength
between the ith UAS and each one of its adjacent nodes, as the lowest signal
strength is the one limiting the link. To calculate the minimum value between two
elements, the following equation is used:

P imin(C2x̄i) =

0.5(P i−1dBm(C2xi−1,C2xi) + P idBm(C2xi,C2xi+1)−√
(P i−1dBm(C2xi−1,C2xi)− P idBm(C2xi,C2xi+1))2)

(3.18)

where P idBm(C2xi,C2xi+1) = 10 logP i(C2xi,C2xi+1) + 30.
To calculate the signal strength between nodes, the Friis equation [88] is used

to calculate the received power, based on the distance between the nodes and the
directivity of the antennas:

P i(C2xi,C2xi+1) = Pt ·Di,i+1(C2xi,C1xi+1)·
Di+1,i(C2xi+1,C1xi)·
FSPL(C1xi,C1xi+1),

(3.19)

where FSPL(C1xi,C1xi+1) is the Free-Space-Path-Loss:

FSPL(C1xi,C1xi+1) = (
λ

4πdi(C1xi,C1xi+1)
)2, (3.20)
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and Pt is the transmitted power, λ is the wavelength, Di,i+1(xi,xi+1) is the direc-
tivity gain with respect to the position and antenna angle of the ith and (i+ 1)th
nodes, and di(C1xi,C1xi+1) is the distance between nodes:

di(C1xi,C1xi+1) =
√

(xi − xi+1)2 + (yi − yi+1)2 + (zi − zi+1)2, (3.21)

where zi is the constant z offsets of the antennas of the ith node.
The directivities are obtained by the following equation:

Di,i+1(C2xi,C1xi+1) = 4π
F (θ(C2xi,C1xi+1))

Favg
, (3.22)

where F (θ(C2xi,C1xi+1)) is the power radiation pattern of the antenna and Favg
is the average power density over a sphere, given by:

Favg =

∫ 2π

0

∫ π

0

F (θ(C2xi,C1xi+1))sinθdθdγ, (3.23)

where θ(C2xi,C1xi+1) is the angle between the antenna of the ith node and the
body of the (i+ 1)th node:

θ(C2xi,C1xi+1) = arcsin
Rz(ψ

i)Rx(φi)v(C1xi+1 −C1xi)
di(C1xi,C1xi+1)

, (3.24)

where v = [0 0 1] is the reference vector from where the angle θ will be calculated
relative to, Rx(φ) and Rz(ψ) are the rotation matrices in x and y with respect to
the angles φ and ψ [13].

Rx(φ) =

1 0 0

0 cosφ −sinφ
0 sinφ cosφ

 . (3.25)

Rz(ψ) =

cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 . (3.26)

3.2.3 Aircraft power consumption

To obtain an accurate model of the overall system performance, the in-flight
performance of the aircraft needs to be considered [54][53]. In this study, the path is
being optimized with respect to both the aircraft’s airspeed and bank angle. There-
fore it is necessary for the aircraft performance model to evaluate the in-flight power
consumption, and express the penalty for changing airspeed and performing longi-
tudinal maneuvering. For a propeller-driven aircraft in steady flight the consumed
power (P ) is found through:
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P =
Dva
ηp

, (3.27)

where D is the aerodynamic drag force experienced by the aircraft, va is the air-
speed, and ηp is the total propulsion efficiency. For level flight the generated lift L
equals the aircraft weight W . However, when the bank angle φ is no longer zero,
the lift force is rotated by an angle φ in relation to the gravity component. This
results in:

L cosφ = W. (3.28)

In this study the loss of lift caused by an increased bank angle is mitigated by
increasing the airspeed. This is done so that a constant altitude can be maintained.
It is therefore necessary to account for the effects of bank angle φ on the required
airspeed va. When considering a coordinated flight the adjusted airspeed for a turn
with constant-CL is found through:

va =

√
2W

ρ∞S

n

CL
= v∞

√
n. (3.29)

Here v∞ is the required airspeed for level unaccelerated flight in [m/s]. S is
the aircraft’s effective wing surface in [m2], W is the aircraft’s total weight in [N],
and ρ∞ is the air density in [kg/m3]. The initial aerodynamic lift coefficient CL is
determined through:

CL =
2W

ρ∞Sv2∞
. (3.30)

Furthermore, n is the load-factor, which in accelerated flight is larger than zero.
This is defined as:

n =
1

cosφ
=

(
T

W

)(
L

D

)
. (3.31)

In level unaccelerated flight and constant speed level turns the condition applies
that the generated thrust force T equals the drag force experienced by the aircraft.
Assuming a general simplified drag model in a coordinated flight where trim drag
is neglected, and the thrust line is parallel to the airspeed, the drag force D is
obtained through [5]:

D = T =
1

2
ρ∞v

2
aS

[
CD0

+ k

(
nW

qS

)2
]
. (3.32)

Here CD0
is the aircraft’s zero-lift drag coefficient. Finally, k is the lift-induced

drag constant, which is defined as:

k =
1

π AR e
(3.33)

32



3.3. System description

Here AR is the aircraft’s effective aspect ratio, and e is the Oswald efficiency
factor.

Figure 3.3: Skywalker X8 sUAS - operated by AMOS UAVLab (Source: NTNU)

In this study the Skywalker X8 aircraft is used in the simulations. The X8 (Fig-
ure 3.3) is a small battery-powered unmanned aircraft in flying-wing configuration.
It has a wingspan of 2.1 meters with a mission-ready weight of 3.36 kilograms.
The effective wing surface is approximately 0.74 square meters. Two elevon con-
trol surfaces are located on the outer wings to provide longitudinal, lateral and
directional control of the aircraft. The aerodynamic lift model that was used in
the simulation was based on wind tunnel experiments, which are described in [52],
while the value for k is assumed to be 0.0907. The propulsion characteristics are
unknown. Therefore for the remainder of this study the propulsion efficiency ηp is
assumed to be invariable at 0.5, and the maximum thrust Tmax is assumed to be
constant at 25 N with ideal-battery discharge characteristics.

From Eq. (3.31) and (3.32) it can be observed that as the bank angle increases,
the power consumption increases. The in-flight performance, and consequently the
power consumption, are affected through the required increase in airspeed. It is
important to note that to avoid the aircraft from entering a stall, the maximum
load factor nmax is limited by the available thrust. The thrust-limited maximum
load factor can be found by substituting the maximum available thrust in Eq.
(3.31). Solving for φ yields the thrust-limited maximum bank angle. The minimum
value for the airspeed vstall as a function of load factor n and CLmax

can be found
by inserting the maximum lift coefficient into Eq. 3.29. This results in:

vstall =

√
2

ρ∞

W

S

n

CLmax

. (3.34)

Finally, a structural limitation exists. As the structural limit load factor for the
Skywalker X8 platform is not known it is chosen to implement a stricter limitation
for the simulations as further referenced in section 3.4.

3.3 System description

The simplified block diagram of the control system is shown in Figure 3.4. The
Model Predictive Control (MPC) runs inside DUNE [112], which is an open source
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Figure 3.4: Individual system’s block diagram.

robot framework developed by the Underwater Systems and Technology Laboratory
(LSTS) of the University of Porto. DUNE is installed on the onboard computer
and communicates with the ArduPilot board via Micro Air Vehicle Communication
Protocol (MAVLink). When executing the maneuver, the ArduPilot opperates in
Fly-By-Wire-B (FBWB) mode and gets the desired roll and airspeed as Radio
Control (RC) inputs from DUNE.

The MPC is included in a DUNE task. Every time the UAS gets the updated
planned states of the adjacent nodes, it calls the MPC function and, based on its
current state and on the adjacent nodes states, it calculates its own planned states.
In this step, the wind forecast present in a data file is also considered. After the
optimization, the UAS broadcasts its planned states to the other nodes and sends
the commands to the ArduPilot.

The coordination of the mission is done by the dispatch and consumption of
Inter-Module Communication Protocol (IMC) messages. In DUNE, if a IMC mes-
sage is dispatched by a node, all nodes that are monitoring that type of message
will receive it and run the routine binded to the reception of that message.

3.3.1 Mission coordination

Each UAS awaits the start of the mission in loiter mode. When the ASV starts
the plan, it dispatches a "PlanControl" message that is consumed by the UAS.
All UAS then start the maneuver and dispatch their planned states considering
the loiter maneuver, except the UAS closest to the ASV and the one closest to
the Ground Station. These two UAS wait for the planned states of their adjacent
nodes and are the first ones to run the MPC. Figure 3.5 shows the flow chart of
the IMC messages between the nodes.
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Figure 3.5: Communication between nodes using IMC messages and DUNE Tasks

3.4 Simulations

The first simulation (Figure 3.6) was done for a scenario considering two UAS
to close the Wi-Fi link between the ASV and a ground station. The simulation
starts when the ASV is at position [300,300] - 423 meters away from the ground
station. The first UAS starts the mission at position [100,100] and the second one
at position [200,200]. The ASV is moving north with constant speed over ground
of 1.6 m/s.

Figure 3.6: First simulation scenario. Ground station as a black x, ASV’s path in
black, UAS 1’s path in blue and UAS 2 path’s in red.

It is possible to notice that when the mission starts, the straight link between the
ASV and the ground station has less than -70 dBm, which was chosen as the desired
signal strength as it is the minimum power to establish a Wi-Fi connection. Using
the two UAS, the ASV can progress with the mission for more 8 minutes (or 768
meters north), when two UAS are not capable to provide the desired signal strength
anymore. This means an increase from around 400 to 800 meters of operational
radius around the ground station, resulting in an operational area 4 times bigger.
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This increase can be expanded if more UAS are used as relay nodes.
Considering the different limitations of the load factor, the maximum bank

angle φmax is chosen to be restricted to 20o, which offers an associated stall speed
of 8.9 meters per second. Therefore the minimum airspeed vamin

is defined to be
12.0 meters per second. The other parameters used in the simulation are shown in
tables 3.1, 3.2 and 3.3.

To solve the NMPC problem, Particle Swarm Optimization (PSO) [35] was
used. The algorithm, which is described in the Appendix B, was developed using
CUDA C programming language, benefiting from the parallelization to reduce the
computational time. Each optimization takes around 250 ms, proving the algo-
rithm suitable for real-time applications. The computational time can be reduced
if necessary, by adjusting the horizon and number of steps. This would result in
a decrease of the optimality, but may be beneficial in real environments, as the
system will calculate the control inputs for a state closer to the state that it was
when the calculation began.

Figure 3.7: Second simulation scenario. Ground station as a black x, ASV’s path
in black, UAS 1’s path in blue and UAS 2 path’s in red.

A second simulation was done for a scenario where the nodes were equipped with
a communication system inspired by the characteristics of the Maritime Broadband
Radio (MBR) 144 radio from the company Kongsberg Maritime [86], together with
a 7 dBi antenna with around 25 degrees of HPBW in the elevation plane. This radio
can provide up to 20 km of range [164] for a frequency between 4.90 and 5.85 GHz.
The communication parameters of this simulation were chosen as it is shown in
table 3.4 and the results are shown in Figure 6. The ASV starts the simulation
at position [13500,13500] (around 19 km from the ground station) and the UAS 1
and UAS 2 at [4500,4500] and [8000,8000], respectively. Here, the duration of the
mission was set to be one hour. It was found that besides the significant increase
in obtainable communication range, it is also noticeable that the link between the
ASV and the ground station when using the two UAS as relay nodes has a higher
signal strength throughout the duration of the mission.
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Table 3.1: MPC Parameters

Param Name Value Unit
vw velocity of wind 3.0 m/s
ψw heading of wind 0.7 rad
g gravity acceleration 9.81 m/s2

t time horizon 15.0 s
N horizon steps 30 m/s
h altitude of UAS 100.0 m
hN altitude of the ground station 20 m
vamin

minimum airspeed 12.0 m/s
vamax

maximum airspeed 20.0 m/s
φmin minimum bank angle -0.349 rad
φmax maximum bank angle 0.349 rad
v̇amin

minimum acceleration -0.2 m/s2

v̇amax maximum acceleration 0.2 m/s2

φ̇min minimum bank angle rate -1.4 rad/s

φ̇max maximum bank angle rate 1.4 rad/s
rc safe distance between UAVs 50.0 m
a weight of cost function 1.0
b weight of acceleration control 1.0
c weight of bank angle rate control 1.0
α weight of signal strength / power saving 0.99

Table 3.2: Communication Parameters of Scenario 1

Param Name Value Unit
β conditional function fitting constant 99999
Pd desired signal strength -70 dBm
Pt transmitter power 100.0 mW
λ wavelength 12.5 cm
HPBW Half-Power-Bandwidth 2.09 rad

3.5 Discussion

In the current implementation of the algorithm, the wind is assumed to be
constant. For small aircraft, however, the wind can have a major effect on the
power consumption. It would therefore be beneficial to use a forecast wind map
or local wind estimations in the optimization algorithm. A proposed method for
the forecast map is to fit an analytic function to a discrete wind map in order to
improve the convergence of the optimization algorithm.

Field experiments are also necessary in order to define constraints for the signal
strength variations, that could affect the overall network capability.

Regarding the number of UAS and the ASV behavior, it is necessary to simulate
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Table 3.3: Power consumption Parameters

Param Name Value Unit
ηp propulsion efficiency 0.5
W aircraft weight 32.96 N
ρ∞ air density 1.225 kg/m3

CD0 zero-lift drag coefficient 0.125
k lift-induced drag constant 0.0224
S wing surface 0.74 m

Table 3.4: Communication Parameters of Scenario 2

Param Name Value Unit
β conditional function fitting constant 99999
Pd desired signal strength -85 dBm
Pt transmitter power 2.0 W
λ wavelength 6.0 cm
HPBW Half-Power-Bandwidth 0.437 rad

scenarios where more UAS are used and that the ASV moves in different patterns
to evaluate the system performance. Simulations using different altitudes for the
UAS should also be considered.

3.6 Conclusion

In this chapter, a communication relay solution was presented. The goal of the
system is to provide a minimum signal strength between the Autonomous Surface
Vehicle and a ground station by using Unmanned Aerial Systems as communication
relay nodes. The system was build to be used with DUNE robotic framework and
was modeled as a Nonlinear Model Predictive Control problem. Simulations show
that the system is capable to be tested in field experiments and may be a suitable
tool in maritime missions.
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Chapter 4

Autonomous Unmanned Aerial
Vehicles in Search and Rescue
missions using real-time cooperative
Model Predictive Control

Unmanned Aerial Vehicles (UAVs) have recently been used on a wide variety of
applications due to their versatility, reduced cost, rapid deployment, among other
advantages. Search and Rescue (SAR) is one of the most prominent areas for the
employment of UAVs in place of a manned mission, especially because of its limita-
tions on the costs, human resources, and mental and perception of the human op-
erators. In this work, a real-time path planning solution using multiple cooperative
UAVs for SAR missions is proposed. The technique of Particle Swarm Optimization
is used to solve a Model Predictive Control (MPC) problem that aims to perform
search in a given area of interest, following the directive of international standards
of SAR. A coordinated turn kinematic model for level flight in the presence of wind
is included in the MPC. The solution is fully implemented to be embedded in the
UAVs on-board computer with DUNE, an on-board navigation software. The per-
formance is evaluated using Ardupilot’s Software-In-The-Loop with JSBSim flight
dynamics model simulations. Results show that when employing three UAVs, the
group reaches 50% of Probability of Success 2.35 times faster than when a single
UAV is employed.

4.1 Introduction

Search and Rescue (SAR) is one of the fields where the employment of UAVs
brings many advantages over manned missions, such as its reduced costs, lower
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use of human resources, and mental and perception limitations of human opera-
tors. [127] was one of the first works to perform experimental tests of a complete
autonomous single UAV SAR solution. A probability density function (PDF) that
expressed the likelihood of the target’s location was one of the main inputs of the
system. Video data from the UAV was transmitted to the ground station, that pro-
cessed it in real time using computer vision techniques to detect the presence of the
target and update the PDF. Paths were generated by the ground station to maxi-
mize the probability of finding the targeted object. The experimental flights showed
satisfactory results in searching and detecting the target. The main necessary im-
provements identified by the authors were to implement on-board computing and
to use multiple UAVs in the future.

SAR missions with autonomous UAVs are usually defined as an exploration
problem. Exploration approaches can be used in a wide range of applications. For
example, ice management, such as proposed by [58], where a Centralized Model
Predictive Search Software was used for surveillance and tracking of ice using mul-
tiple UAVs. In the solution proposed by this reference, the algorithm finds a set
of optimal waypoints that are sent to the autopilot control unit. The solution was
tested in a Software-In-The-Loop environment and the results were evaluated for a
different number of UAVs. [3] compared five exploration algorithms for SAR mis-
sions using a team of multiple UAVs. A centralized mission planner was used for
the path planning, whose objective was to find a sequence of waypoints for each
UAV to follow. In [124], an off-line algorithm to find a sequence of waypoints to
be followed by a team of UAVs in a SAR mission is proposed. The cost function is
built to minimize the travelled distance and the risk that people are exposed to.
The authors created a non-uniform "risk map" and "probability of people map"
for the simulated scenario.

A broad literature review about the persistent surveillance problem was done
by [105] focusing on the use of multiple UAVs. Persistent surveillance is a type
of exploration problem where the areas must be revisited over time. Among the
many topics that the literature review covers, grid decomposition and path plan-
ning techniques are the ones of the most interest for this work. The author reviews
the most common types of grid decomposition classifying the rectangular one, that
is also used by the enhanced solution proposed by this work, as the most popular.
Regarding the path planning techniques, the author states that the most common
methods are classical search methods such as A* [75], decision theoretic methods
such as Mixed Integer Linear Programming (MILP) [40], and Spanning Tree Cov-
erage (STC) methods [45]. Model Predictive Control (MPC) [24] is mentioned as a
topic less studied compared to the other planning techniques, but with significant
advantages because it directly incorporate dynamic constraints, it is less heuristic
and can react to changes in the environment.

MPC is a receding horizon control technique where the motion constraints are
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integrated in the control problem, which is particularly interesting for problems
with fixed-wing UAVs. Also, as the optimization is done for a finite time hori-
zon, the technique is proper for real-time problems where the environment can
dynamically change during the mission execution. In [131], MPC was used for
sea Search and Track missions using an autonomous UAV. Hardware-In-The-Loop
tests were performed. Waypoints were optimized and sent to the autopilot. Gimbal
attitude was also optimized and sent to the servo system. The MPC optimiza-
tion was not run on-board but on a dedicated computer in the ground control
station. In [158], a MPC solution was proposed for target tracking using a solar-
powered UAV. Energy harvesting and consumption were also included in the cost
function. A three-dimensional dynamic model was used with the thrust, roll angle
and lift coefficient as control inputs. The model also included horizontal winds.
[157] describes a tracking application using multiple solar-powered UAVs in urban
areas. A two-dimensional kinematic model is used without considering the wind.
The cost function includes the energy harvesting and considers the shadows made
by the buildings. Energy consumption is also considered. In addition, a distance
constraint was included to guarantee the communication quality. The coopera-
tive solution used is similar to the one described in this study, where the UAVs
share their planned states. The meta-heuristic technique Grasshopper Optimiza-
tion Algorithm is used for the optimization. A performance comparison between
optimization techniques is presented, including the performance of Particle Swarm
Optimization algorithm, which is used in this study. In this reference, the cost
function is composed by the feasibility cost, the mission cost, the energy cost, the
safety cost, the collision cost and the communication cost. In [9], a cooperative
multiple UAVs solution using MPC was used to close the communication link be-
tween a moving Autonomous Surface Vehicle and the ground station. Each UAV
had to minimize a local cost function that took into consideration the planned
states of the adjacent UAVs. In [31], a multiple UAVs receding horizon strategy
was proposed for a cooperative surveillance problem. A potential field method was
used for collision avoidance and network topology control management. The coop-
erative searching model was established based on the detection probability of the
UAVs on targets in cells. In addition, a forgetting factor was included to indicate
how fast the detection efforts are forgotten, so the UAVs can revisit the areas that
were searched before. Simulations for different parameters were compared. Also,
the performance of the proposed method was compared to the performance of a
parallel sequence search. In [146], a multi-vehicle cooperative search solution was
proposed using MPC. Decoupled, centralized, cooperative and greedy approaches
were compared.

In this study, a multiple UAVs cooperative Nonlinear Model Predictive Control
solution to search a given area is proposed. The technique of Particle Swarm Opti-
mization is used to find the control inputs that solve the optimal control problem.
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A coordinated turn kinematic model is implemented considering the effects of wind.
The search area is divided into cells and each cell has an associated reward, that
in this work is defined according to the international Search and Rescue directives.
A Software-In-The-Loop (SITL) environment with flight dynamics simulations is
used to test the solution. SITL simulations are more realistic numerical simulations
that run in real-time and closed loop with the control system software, in which
aircraft sensor data is simulated by a flight dynamics model.

In addition, it is assumed that there is always connection between UAVs in the
search area so that they can always share information between them. It is beyond
the scope of this work to discuss network design. Research about communication
and networks for UAVs in maritime missions is available at [163] and [165], where
communication technologies, standards and protocols are discussed and system
architectures are proposed, including hardware description.

The main contributions of this research to the field are:

1. Research about the use of receding horizon techniques in exploration prob-
lems is limited. This research contributes to the field by bringing a novel
multiple UAVs solution to an exploration problem using Model Predictive
Control where a finite time horizon grid search cost function with cells re-
wards and terminal cost is proposed.

2. The solutions found in the literature are developed with simplified vehicle
models, in which the effects of wind are not considered when UAV platforms
are employed. In small UAV missions, wind can easily exceed half of the
UAV’s airspeed, significantly affecting the UAV performance. In this work, a
coordinated turn kinematic model that takes the wind into consideration is
designed. The model is developed so that the control inputs are the same as
the autopilot control unit controls.

3. Usually, the solutions in the literature are only simulated in environments
without embedded programming restrictions and where vehicle dynamics are
not simulated. This makes results not close enough to what is expected in real-
life applications. Implementing the solution in software for real-time applica-
tions brings additional challenges such as communication delays, processing
time, actuator limitations, among others. In this research, the algorithm is
fully implemented in an embedded software and tested in a real-time SITL
environment that also simulates the flight dynamics, bringing results that are
very close to reality.

4. In the literature, the SAR scenarios created for testing the proposed solutions
are not based on standard directives. Therefore, making a fair comparison be-
tween different solutions is difficult. In this work, international SAR directives

42



4.2. Materials and Methods

are considered to define the mission scenario and the performance indicators.
This also allows testing the proposed solution in a relevant case.

4.2 Materials and Methods

4.2.1 Embedded System

The path planning algorithm was implemented as a task in DUNE: Unified
Navigation Environment [112]. It allows the operation of a wide variety of robots
using the same environment. This facilitates the development because the com-
munication between DUNE and the different control units is transparent to the
user.

The embedded system is outlined in Figure 4.1. The communication between
DUNE and the Ardupilot [141] autopilot control unit is done via MAVLink Mi-
cro Air Vehicle Protocol [142]. To command the Ardupilot, DUNE’s MPC task
must dispatch a message with the desired command, which will be interpreted by
DUNE’s Ardupilot control task and then sent to the Ardupilot via MAVLink.

The communication between DUNE tasks is done via the IMC: Intermodule
Communication API protocol [112]. This protocol basically operates by dispatching
and consuming messages. So, if a message is dispatched by a task, another task
that is waiting for that message will consume it.

Figure 4.1: Simplified DUNE block diagram.

The communication with other UAVs in DUNE’s cloud and with the ground
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station is done via IMC protocol also. The vehicles must be in the same network.
Therefore, IP addresses and TCP and UDP ports must be properly configured and
included in each vehicle’s DUNE configuration files. To allow the communication
between vehicles, the InterVehicleCommon UDP transport module is used.

Inside DUNE resides the MPC task. The commands to control the UAV are
given by the DesiredSpeed and DesiredRoll IMC messages, which carry, respec-
tively, the airspeed and roll control inputs given by the optimization. These mes-
sages are interpreted by DUNE’s Ardupilot control task, that sends the correspon-
dent MAVLink message to the Ardupilot unit. In addition, DUNE’s Ardupilot con-
trol task is responsible for changing the Ardupilot flight mode to the Fly-By-Wire-B
(FBWB) mode when the mission is started. In this flight mode, the Ardupilot con-
trol unit is responsible for holding the aircraft’s altitude. Airspeed, roll angle and
altitude external controls are accepted by the Ardupilot in the FBWB mode. The
Ardupilot control unit is responsible for the low level control loops to maintain the
commanded altitude, airspeed and roll angle. In this work, only roll and airspeed
are controlled by the optimization algorithm, therefore, the altitude control is fixed
at the desired altitude during the whole mission.

DUNE’s Ardupilot control task is also responsible for receiving the UAV’s pose
and attitude information and to dispatch it in the IMC messages EstimatedState
and IndicatedSpeed. These messages are consumed by the MPC task to be used as
the current state of the UAV.

The communication between the UAVs is done by the multiagent message,
which was created and included in the IMC messages list specifically for this appli-
cation. This message carries the information that the UAVs need to share between
them, such as planned control inputs and current state.

Each UAV waits for the multiagent messages from all other UAVs before running
the MPC optimization, e.g. if a team of three UAVs is employed, UAV 0 only
runs the optimization algorithm after receiving the multiagent messages with the
needed information from UAVs 1 and 2. This flow is described in Figure 4.2. Once
the messages are received and the optimization loop is over, the UAV dispatches
its multiagent message containing all information that need to be shared with the
other UAVs.

In order to prevent control issues caused by communication and processing
delays, the UAVs states used by the MPC optimization are predicted according to
the previously commanded control inputs and the measured delays by using Eq.
4.7. Therefore, in the end of the optimization loop, the real states of the UAVs are
expected to be close to the ones considered by the optimization algorithm when
finding the optimal control inputs. This results in a superior behavior since the
control inputs are obtained for UAVs attitudes and positions that are closer to
reality.

Note that, in an extension of the method proposed by this work, measures can
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Figure 4.2: UAV agents flowchart.

be employed to protect the system from communication failures, so that the UAVs
do not wait for delayed messages for too long but uses predictions instead. Also,
distance constraints can be included in the MPC in order to guarantee that the
UAVs do not separate further than the the maximum distance that enables the
communication.

4.2.2 Optimal Control Problem

Coordinated Turn Model

A two-dimensional kinematic model was developed based on the Coordinated
Turn model for level flight [13]. In this model, the UAV turns by changing its roll
angle so that there is no net side force acting on the UAV. Therefore, it is possible
to relate the course rate and the roll angle by making the centrifugal force acting
on the UAV equal and opposite to the horizontal component of the lift force acting
in the radial direction (Figure 4.3):

Flift sinuφ cos (χ− ψ) = mvgχ̇, (4.1)

where Flift is the lift force in [N], uφ is the roll control input in [rad], χ is the course
angle in [rad], ψ is the aircraft heading in [rad], m is the aircraft mass in [kg], vg
is the ground speed in [m/s] and χ̇ is the course rate in [rad/s].

Also, the vertical component of the lift force should be equal and opposite to
the projection of the gravitational force (Figure 4.3):

Flift cosuφ = mg, (4.2)
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Figure 4.3: Vertical (left) and horizontal (right) forces in the coordinated turn
maneuver.

where g is the gravitational acceleration of 9.81 m/s2.
By combining Eq. 4.1 and 4.2 it is possible to find the relation between the

course rate and the roll control input:

χ̇ =
g

vg
tanuφcos(χ− ψ). (4.3)

As wind is a major issue on UAV missions as it can likely reach more than half
of the UAV’s maximum airspeed, the Coordinated Turn model used in this project
was developed to consider the influence of wind on the UAV kinematics.

Therefore, the coordinated turn kinematic model for level flight in the presence
of wind is given by:ẋẏ

χ̇

 = f(x,u) =

 vg cosχ

vg sinχ
g
vg

tanuφcos(χ− ψ)

 , (4.4)

where x = (x, y, χ) are the north and east positions in the NED frame in [m] and
the course angle in [rad], respectively. u = (uv, uφ) are the airspeed control input
in [m/s] and roll control input in [rad], respectively, and with the ground speed (vg
in [m/s]):

vg =
√

(uv cosψ + vw cosψw)2 + (uv sinψ + vw sinψw)2, (4.5)

where vw is the wind speed in [m/s], ψw is the wind heading in [rad] and with the
aircraft heading (ψ in [rad]) calculated using the law of sines:

ψ = χ− arcsin
(vw
uv

sin (ψw − χ)
)
. (4.6)

The model is discretized by the forward Euler method:
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xk+1 = fd(xk,uk) = xk + Tsf(xk,uk), (4.7)

where xk and uk are the state and control inputs vector, respectively, in the dis-
cretization step k and Ts is the sampling period.

Model Predictive Control Problem

To reach the mission goal, a centralized optimization approach might not be
feasible because the problem would be too complex with too many control inputs. In
a non-convex problem with a very long vector of variables to optimize, falling very
early in a local minimum is a common issue. In addition, the necessary processing
power to optimize so many control inputs would be difficult to achieve by the on-
board processing unit of the UAV. In contrast, optimizing the controls of all UAVs
in a ground station would not be an ideal solution, due to communication range
limitations and because that in case of a communication failure, the UAVs would
not receive its controls, which could compromise the mission.

Therefore, in this research, the problem is addressed as a cooperative control
problem, where each UAV optimizes its own control inputs to update its state so
that a local cost function is minimized. The cost function also takes into considera-
tion the planned states of the other UAVs. As each UAV follows the same process,
it is expected that the global mission goal is achieved cooperatively. Collision avoid-
ance between UAVs is also considered.

Considering I UAVs (xi,∀i ∈ {0, ..., I − 1}), the algorithm finds a control in-
put sequence U ik = {ui0,ui1, ...,uiK−1} ∈ R2×K for the ith UAV, which solves the
following optimal control problem:

minimize δ(Cx̄K) +

K−1∑
k=0

Li(Cx̄k,uik) (4.8)

subject to xik+1 = fd(xik,u
i
k), (4.9)

vamin ≤ uivk ≤ vamax , (4.10)

φmin ≤ uiφk
≤ φmax, (4.11)

|C(xik − xjk)| > rc,∀j ∈ {0, ..., I − 1}\{i}, (4.12)

where

δ(x̄K) = F (CxK)− aJ(Cx̄K), (4.13)

and

Li(Cx̄k,uik) = aJ(Cx̄k) + b(uivk − u
i
vk−1

)2 + c(uiφk
− uiφk−1

)2. (4.14)
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Consider uiv−1
and uiφ−1

as the commanded airspeed and roll angle for the ith
UAV, respectively, in the previous optimization loop, x̄k = [x0

k, ...,x
I−1
k ] as the

states of all UAVs, K as the number of horizon steps and rc as the minimum safe
distance between the UAVs to avoid collision. a, b, c are constant weighting factors
and C ∈ R2×3 is used to define that only the x (north) and y (east) positions are
used from the state vector:

C1 =

[
1 0 0

0 1 0

]
. (4.15)

In Eq. 4.13, the function J represents the grid search function, which is the
sum of the rewards of visited cells, and F is the terminal cost (cost-to-go) function,
which is the distance from the terminal position to the unvisited cell with highest
reward. Both functions are described in detail in Section 4.2.4.

Optimization Technique

In this application, the Particle Swarm Optimization (PSO) [35] technique is
used to find an optimal set of airspeed (uv) and roll angle (uφ) that minimizes
the cost function. PSO is a meta-heuristic optimization method where the par-
ticles (solutions) are updated every iteration based on the best global and local
solutions. In this application, a standard PSO algorithm was implemented using
CUDA C programming language in order to benefit from the parallelism of the
Nvidia Graphics Processing Unit that is assumed to be used in the UAV on-board
computer.

The algorithm was set to run a fixed number of iterations on every loop. In
addition, the number of particles must be defined. These two parameters affect the
processing time and need to be fine-tuned according to the requirements.

The initial solutions are initiated with random values following the uniform
distribution, where the minimum and maximum values are the defined boundaries
of the airspeed and roll angle control inputs (Eq. 4.10 and 4.11).

4.2.3 SAR directives applied to UAVs equipped with remote
sensing

The Search and Rescue (SAR) consists, according to the Department of De-
fense (DoD) of the United States of America, in "the use of aircraft, surface craft,
submarines, and specialized rescue teams and equipment to search for and rescue
distressed persons on land or at sea in a permissive environment" [33]. This work
focuses on the sea cases, therefore, the following description emphasizes sea SAR
missions. Also, as only Unmanned Aerial Vehicles (UAVs) are used in this work,
only the directives for aircraft facilities are studied.
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Search Area

According to the International Aeronautical and Maritime Search and Rescue
(IAMSAR) Manual [73], the Total Adjusted Search Area (At), which is the mis-
sion’s actual search area, is calculated based on the Total Available Search Effort
(Zta), the Optimal Search Area (Ao) and the targeted Probability of Detection
(POD). The first is a measure of the total area that a set of search facilities can
effectively search within limits of search speed, endurance, and sweep width. The
second is the search area which will produce the highest probability of success
when searched uniformly with the available search effort and is essentially calcu-
lated based on the leeway and the Datum probable position error. Leeway is the
the movement of a search object through water caused by winds blowing against
exposed surfaces and Datum is a geographic point, line, or area used as a reference
in search planning, such as the "Last Known Position" or the "Estimated Incident
Position".

If the Total Available Search Effort (Zta) is smaller than the Optimal Search
Area (Ao), a strategy must be chosen to balance the Probability of Detection
(POD) and the Total Adjusted Search Area (At). Usually, the chosen strategy is
to fly on higher altitudes, increasing the sensor’s footprint or the crew’s field of
view while decreasing the POD. However, in this work, as UAVs equipped with
automated remote sensing are assumed to be used, resolution requirements usually
cannot be relaxed. Therefore, no trade-off between the POD and the search area
is made and the POD is set to its maximum value of one, which makes the Total
Adjusted Search Area (At) equal to the Total Available Search Effort (Zta).

In order to calculate the Total Available Search Effort (Zta), the sweep width
(W ) must be defined. When employing UAVs equipped with automated remote
sensing in such missions, the sensor being used has a direct influence on this pa-
rameter. Altitude, view angle and image quality may affect the capability of iden-
tifying a survivor or an object on the sea. This is specially important to be taken
into account because if the image does not contain the object of interest properly
recorded, the computer vision algorithm will not identify it, independently of the
ability that the algorithm has on identifying an important occurrence on an image.
This can occur due to low image quality or too long sensing distances, making the
object of interest imperceptible.

In the IAMSAR manual, the sweep width is calculated based on the altitude of
the aircraft, the visibility and the sensor system specifications. In sea SAR missions
with aircraft facilities and visual search, the Corrected Sweep Width (W ) is ad-
justed regarding the weather, velocity and crew fatigue correction factors. However,
these factors can be excluded from the equation when automated remote sensing
systems are used and the system’s velocity constraints are respected. Therefore,
in this work, the Corrected Sweep Width (W ) is considered equal to the original
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Uncorrected Sweep Width (Wu).
Finally, the Search Effort (Za), which represents the area which can be covered

by a specific facility, is calculated by:

Za = V × T ×W, (4.16)

where V is the Search Facility Speed (average speed) in [m/s], T is the Search
Endurance in [s] and W is the Sweep Width in [m].

Note that the Search Endurance is the time available for the facility to fly
looking for the survivors. The IAMSAR manual considers this time as 85% of the
lower value between the Daylight Hours Remaining and the On-Scene Endurance.
This is due to the fact that human crew is often only able to search with visible
light. In contrast, UAVs are often capable to equip sensors that are not affected
by that, such as infrared cameras, which allows the task to be done even along
the night. This is a considerable advantage of using UAVs equipped with remote
sensing systems.

By summing the Search Effort of all facilities, the Total Available Effort (Zta
in [m2]) can be found:

Zta =

F∑
f=1

Zaf , (4.17)

where F is the number of facilities.
As described above, in this work the Total Adjusted Search Area (At) is equal

to the Total Available Effort (Zta). Therefore, for Single Point Datum, the Length
and the Width of the search area are given by the square root of the Total Available
Effort (Zta) as defined by the IAMSAR manual.

Probability Map

The Probability of containment (POC) distribution in the search area is very
important to guarantee efficient employment of the SAR facilities. When the ini-
tial indications do not provide enough information about the area, a standard
distribution is assumed. The two most used types of standard distributions are the
standard normal distribution and the uniform distribution, according the nature
of the datum. For datum point and lines, the standard normal distribution is used.
For datum areas, the uniform distribution is the most used. In this work, only the
single point datum case is studied. Single point datum occurs, for example, when
there is no significant leeway (e.g. when the target is a person in water [22]).

The probability map is a set of grid cells where each cell is labelled with the
probability of containing (POC) the search object in that cell. As the the prob-
ability map follows a probability distribution function, the total sum of all cells

50



4.2. Materials and Methods

should be equal to 100%. An example of probability table for single point datum
with 12× 12 cells is shown in Figure 4.4:

Figure 4.4: Initial probability table. Source: IAMSAR Manual [73]

4.2.4 Cost Function

An exploration cost function was developed based on [146] to search a given
area.

The region of interest is divided into M × N square cells of a width (re in
[m]), which value must be chosen to be smaller than the optical imaging sensor’s
footprint radius (Re in [m]) times the square root of 2. The sensor radius is equal
to the radius of the circle inscribed in the sensor’s footprint. Figure 4.5 shows an
example of a 4 × 4 grid with 100 m of cell width (re) and a UAV at position Cx
equipped with a sensor with 100 m of radius (Re).

The matrix Bi ∈ RM×N is used to identify if a cell was visited by the ith UAV.
The matrix bi ∈ RM×N is used to identify if a cell is planned to be visited by the
ith UAV in the MPC horizon. In every M ×N matrix used to identify if the cells
are visited, each element has an associated value of 1 if the referring cell is visited
or 0 if it is unvisited. Each cell has also an associated reward, given by φ ∈ RM×N .

The function J(x̄k) is the sum of all cells associated value (1 or 0) in the step
k times the correspondent reward:

J(x̄k) =

M−1∑
m=0

N−1∑
n=0

φmnymnk
(x̄k), (4.18)
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with

ymnk
(x̄k) = (4.19)

(‖Cxk − r1mn‖< Re ∧ ‖Cxk − r2mn‖< Re ∧ ‖Cxk − r3mn‖< Re ∧ ‖Cxk − r4mn‖< Re)

(4.20)

∨ ymnk−1
, (4.21)

where r1mn, r2mn, r3mn and r4mn are the four vertices of the cell (Figure 4.5) and
ymnk−1

is the associated value of the cell in the previous horizon step.

Figure 4.5: Cells grid example.

The starting value of ymn0
is given by the logical sum of the matrices of already

visited cells of all UAVs and the matrices of cells planned to be visited by other
UAVs:

ymn0
= Bi

mn ∨B
j
mn ∨ b

j
mn,∀j ∈ {0, ..., I − 1}\{i}. (4.22)

Finally, F (xK) is the terminal cost. This function is necessary for the algorithm
to consider the search beyond the prediction horizon by having a cost-to-go term. It
is given as the minimum euclidean distance from the latest state of the UAV in the
horizon, to the center of the closest unvisited cell, weighted by the correspondent
reward, in the end of the horizon:

F (CxK) = min
∀m∈O,∀n∈P

‖CxK − rmnK
‖

φmn
, (4.23)

where O ⊆ M and P ⊆ N are subsets of all unvisited cells and r = [x, y] are the
north and east positions of the cell’s center.
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4.3 Results and Discussion

4.3.1 Software-In-The-Loop simulations environment

To evaluate the proposed solution, a Software-In-The-Loop (SITL) environment
was set up using Ardupilot SITL simulator. This simulator allows to test the be-
havior of the Ardupilot code by running the Ardupilot in any computer without
the Ardupilot hardware. The aircraft sensor data is simulated by JSBSim [17], an
open source Flight Dynamics Model. Therefore, it is able to compute the UAV
dynamics according to the actuator controls given by the Ardupilot code.

An aircraft platform model must be chosen for JSBSim flight dynamics calcu-
lations. In this work, the Skywalker X8 UAV platform (Figure 4.6) is used. The
X8 is a UAV with around 4.0 to 4.5 kg of weight including the payload, 2.1 m of
wingspan and 35.7 cm of mean aerodynamic chord. The aerodynamic model used
to feed the JSBSim configuration file was developed based on wind tunnel tests
[52]. In addition, the JSBSim source code was modified to use in its calculations
the same wind map that is used by the MPC optimization.

Figure 4.6: X8 UAV. Source: NTNU

Figure 4.7 shows the interconnection between modules. For each UAV, an
Ardupilot SITL instance must be started linked to a JSBSim module. Each Ardupi-
lot instance uses a different TCP port. Therefore, one DUNE module must be
started for each UAV, configured with the correspondent TCP port. Finally, Nep-
tus [112], a command and control software, is used to visualize the UAVs telemetry
and location and to give commands to the UAVs, such as take off, loiter and to
start/stop the Search and Rescue mission.

4.3.2 Mission Simulation Scenario and Parameters

In this section, the parameters that define the mission scenario are described.

Aircraft and remote sensing platform

The X8 is a battery powered small UAV which can fly for around 80 min with
the automated remote sensing payload and proper battery. The radius of the remote
sensor’s range is equal to 200 m, which is half of the width of the sensor’s footprint.
This footprint was chosen assuming that a computer vision algorithm, such as the
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Figure 4.7: Software-In-The-Loop setup.

one described in the Appendix A, can detect the target in images captured at 400
m of altitude by an infrared camera with 7.5 mm of lens focal length, 640 × 480

pixels of resolution and 17 µm of pixel size.

Search Domain

The reference search area used in this work is equivalent to the Search Effort
(Za) of one X8 UAV, calculated by Equation 4.16. Considering the total endurance
of 80 min, the On-Scene Endurance (T ) is equal to 60 min (85% of the total
endurance). The Search Facility Speed (V ) is equal to the average airspeed of the
aircraft, in this case 16 m/s. The Sweep Width (W ) is equal to 400 m, which is the
lateral length of the required sensor footprint. Therefore, the search area is equal
to 23.04 km2, which gives a length and width equal to 4.8 km as the area has a
squared shape because the datum is a single point.

Cells Grid

The grid was built with a cell width of 100 m. Therefore, the 23.04 km2 of
search area were divided into 48× 48 cells. A two dimensional normal distribution
curve was fitted to the single point datum reference table provided by the IAMSAR
manual (Figure 4.4). The fitted curve of the probability (Figure 4.8), that gives
the reward of each cell is given by:

φmn = 0.002946 exp
(
−
( (m− 23.5)2

108.28
+

(n− 23.5)2

108.28

))
(4.24)

where m and n are the horizontal and vertical indexes of the cell, respectively.
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Figure 4.8: Reward of cells.

MPC Parameters

The airspeed range was chosen to be between 12 to 22 m/s. The reason for
this choice was to keep the airspeed around the cruise speed, so that the battery
consumption does not reach too high values. The roll angle range was chosen to
be between -45 and 45 degrees so that the aircraft performs smoother maneuvers
but still with freedom. The safe distance between UAVs was chosen to be 100 m
and a wind of 9.9 m/s pointing to 45 deg was considered in the flight dynamics
simulation.

A time horizon of 20 s and 20 horizon steps were the parameters chosen for the
MPC problem. With, for example, a ground speed of 17 m/s, this means 340 m
of straight distance, or a 180 deg turn. The weighting factor a was chosen to be
10000, because the rewards are of a very low value (the sum of all cells rewards is
equal to one). The weighting factors b and c were chosen to be 1, in order to avoid
unnecessary aggressive maneuvers.

Regarding the PSO parameters for the optimization, a total of 384 particles
was used and the algorithm runs 35 iterations with local and global coefficients of
1.

Simulation platform

The optimization algorithm was written in CUDA C programming language in
order to benefit from the parallelism, with the goal to embedded it on a NVIDIA
Jetson board in the future for Harware-In-The-Loop simulations and field tests.

The simulations were run in a laptop with the NVIDIA 940MX graphics card,
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which has 384 CUDA cores and 8 GB 128-bit memory. With the parameters pre-
sented in this study, each UAV is able to run one optimization in around 400 ms
when 3 UAVs perform the optimization at the same time. When only one UAV is
used, each optimization loop takes around 250 ms. Therefore, it is expected that
the NVIDIA Jetson board, which has 256 CUDA cores and 4 GB 64-bit memory
will be able to run one optimization in less than 400 ms. If this performance is
not achieved, the parameters can be fine-tuned to achieve shorter processing time.
Another possibility is to implement an optimization stopping feature that will run
as many iterations as possible within a given time, instead of a fixed number of
iterations.

It is also relevant to mention that the optimization time of each step was ad-
justed to 400 ms also when using only one or two UAVs. This was done by inserting
a delay, so each UAV’s optimization time is the same for simulations when one,
two or three UAVs are used. Therefore, this gives a fair comparison of the results.

4.3.3 Simulations

Three operational profiles were evaluated for the mission scenario: employing
only one UAV; employing two UAVs; or employing three UAVs. Five missions were
executed for each one of the profiles in order to obtain the average performance.

The reference search area was the Total Adjusted Search Area (At) for one
UAV facility and Probability of Detection (POD) equal to 1, as described in the
previous section.

The area was kept the same when employing two or three UAVs in order to
allow a fair performance comparison between the profiles. Figure 4.9 illustrates one
mission with three UAVs being monitored by the Command and Control software
Neptus. The light red area is the search area and the dark red cross in the middle
is the single point datum.

In all missions the UAVs departed from the same region (southeast of the search
area as shown in Figure 4.10) where they were loitering and waiting for the mission
start command. After receiving the command, the UAVs departed to the search
area and the mission time started to count from when the first UAV collected the
first reward.

The IAMSAR manual describes the Probability of success (POS) as the prob-
ability of finding the search object with a particular search. For each sub-area
searched, POS = POD × POC. It is therefore the way to measure search effec-
tiveness. As the Probability of detection (POD) is kept at 1, the POS is equal to
the POC of the area, which in this work is the sum of all rewards collected by the
group of UAVs in the area.

56



4.3. Results and Discussion

Figure 4.9: Snapshot of a mission with 3 UAVs being monitored with Neptus.

Figure 4.10: Snapshot of the beginning of a mission.
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4.3.4 Results

The boxplot of the time to reach 50% of POS is shown in Figure 4.11 for the
three operational profiles: employing one; two; or three UAVs. It is possible to
notice that the gain when a pair of UAVs is used is very significant when compared
to the single UAV profile, reaching 50% of POS 84% faster. When adding a third
UAV, the gain was less significant: on average, the group reached 50% of POS 28%
faster than when employing a pair of UAVs. The decrease on the gain is probably
due to the fact that the UAVs are often flying over areas that have already been
flown. A possible solution to avoid this situation is to reduce the width of the cells,
increasing the resolution of the grid. Therefore, the UAVs would better tune their
maneuvers and still have the cells inside the UAVs’ sensor radius. However, this
will increase the required computational power. This issue could be mitigated by
optimizing the algorithm, for example.

Figure 4.11: Time to reach 50% of Probability of success (POS).

Figure 4.12 shows the average POS during 20 min of mission. It is possible
to notice that the results match the observed behavior when the missions were
monitored. From the mission start to around 4 min, the UAVs fly to the area close
to the datum, where the reward (Probability of containment) is higher. When two
UAVs are employed, they fly parallel so that they cover more cells than when
employing a single UAV. However, when three UAVs are employed, even if they
form a parallel path, they fly close to each other and, therefore, do not visit many
more cells than the pair of UAVs. This happens because in case the three UAVs
get far enough from each other to not visit the same cells, they would take a longer
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path to arrive at the central area (highest rewards), not being a cost beneficial
solution.

Figure 4.12: Average Probability of Success in time.

After reaching the area close to the datum at around 4 min, the curve of rewards
collection grows steadily and the difference between the three operational profiles is
clear. When three UAVs were employed, the group reached 50% of POS 2.35 times
faster than the single UAV. The gain, however, reduces over time. For example, to
reach 65% of POS, the group of three UAVs did it 2.07 times faster than the single
UAV. The reason for the decrease on the gain is that the more cells are already
visited and rewards collected, further the UAVs have to fly to visit new cells and
collect new rewards (that are also lower in value). Therefore, the closer it is to
the end of the missions, smaller is the difference between the performance of the
different operational profiles.

Figure 4.13 shows the boxplot of the POS after 20 min of mission for the three
operational profiles. According to the IAMSAR Manual calculations, the single
UAV is expected to reach 100% of POS in 60 min. It is possible to notice that the
group of three UAVs is able to reach close to 90% of POS in 20 min, showing that
the improvement of adding extra UAVs is approximately linear.

In order to evaluate the benefits of using the wind information in the kinematic
model and test the system’s robustness, extra simulations were performed for: a
scenario where the wind was not considered in the MPC; and a scenario where the
wind considered in the MPC was underestimated by 20%. Results are shown in
Figure 4.14. It is possible to notice that the performance is superior when the wind
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Figure 4.13: Probability of success (POS) in 20 minutes of mission.

information is used, collecting on average 4.4% more rewards in 20 min of mission
time than when the wind is not considered in the model. The performance of the
underestimated wind case was close to the ideal case, proving the system’s robust-
ness. It is important to notice that despite the higher median of the underestimated
wind case, the ideal case was able to reach higher values of rewards collected having
both the upper quartile and maximum value higher than the underestimated wind
case.

Figure 4.14: Probability of success (POS) in 20 minutes of mission.

Finally, a pre-made path was created (Figure 4.15) in order to compare to the
performance of the single UAV with the real-time MPC optimization. In this path,
the UAV flies from the mission origin to the grid’s midpoint and then flies a spiral
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path. This spiral path is close to the standard path suggested by the IAMSAR
Manual.

In the spiral path, the lanes are equally spaced allowing the best coverage by
the sensor’s footprint. This would be the best possible simple standard path for
the mission scenario being investigated. Also, before starting the spiral path, the
UAV is assumed to first fly to the center of the area.

Figure 4.16 shows that for the same average airspeed of 15.5 m/s, the perfor-
mance of the MPC path planning was superior in the first 20 minutes of mission.
Also, in the spiral path, 50% of POS was reached in around 13 min, while it took
less than 11 min when the MPC optimization was used.

Figure 4.15: Spiral path.

In the spiral path, wind was not considered and the UAV keeps the ground
speed constant, while in the MPC path planning the UAV optimizes its speed to
reach higher coverage, for example reducing the airspeed to achieve a steeper turn
when needed. Another advantage, that is perhaps the most important, is that the
MPC solution has the capability to deal with dynamic changes on the environment
and mission parameters during the mission, as it is a real-time optimization. These
changes can be wind variations, updated search and rescue reports or even the lost
of one UAV in the middle of the mission due to technical problems or the addition
of extra UAVs that arrived later when the mission had already started.
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Figure 4.16: Probability of Success.

4.4 Conclusions

In this chapter, a real-time path planning for search and rescue with Model Pre-
dictive Control solved by Particle Swarm Optimization was proposed. The solution
was implemented to be embedded in the UAVs’ on-board computer and tested in
a Software-In-The-Loop environment with flight dynamics simulations. In future
work, Hardware-In-The-Loop simulations will be conducted in order to prepare the
system for flight tests. The search area was defined using the International Aero-
nautical and Maritime Search and Rescue (IAMSAR) directives. Also, the area was
divided into a grid of cells, where each cell had a correspondent reward, referred
to the IAMSAR’s Probability of containment. Results were analyzed for missions
where one, two or three Unmanned Aerial Vehicles (UAVs) were employed. To reach
50% of Probability of success, the performance of the group of three UAVs was on
average 2.35 times faster than the single UAV search. The effects of the inclusion
of wind information were also evaluated. When wind information was used, even if
the wind speed was underestimated by 20%, the team of three UAVs achieved on
average 4.4% higher Probability of success in 20 minutes of mission, when compared
to the scenario where no wind information was used. The performance of the single
UAV was also compared to a standard search pattern based on the IAMSAR’s sug-
gested pattern. The search using the proposed solution outperformed the standard
search pattern in the first 20 min, with the additional advantage of being a real-
time method that can deal with environmental dynamic changes and new mission
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directives.
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Part II

Long Range Off-Line Path Planning
with Environmental Parameters

65





Chapter 5

Contingency Path Planning for
Hybrid-electric UAS

This chapter presents a path planning optimization method which aims to miti-
gate the risks in the event of a critical engine or generator failure in hybrid-electric
UAS. This is achieved through continuous determination of the optimum flight
path, based on the remaining battery range and expected local wind conditions.
The result is a dynamically adjusting flight path which ensures the aircraft to re-
main within range of pre-specified safe landing spots. The developed algorithm
uses the Particle Swarm Optimization technique to optimize the flight path, and
incorporates regional wind information in order to increase the accuracy of the
expected in-flight performance of the aircraft.

5.1 Introduction

Hybrid-electric power trains used by long-range fixed-wing unmanned aerial
vehicles often employ an internal combustion engine as the main source of power.
It is witnessed that the internal combustion engine often is a critical point of failure.
In such an event a functioning electric motor may still be able to propel the aircraft
for a short period by utilizing the remaining battery capacity.

In an effort to contribute to the current scientific search towards path safety
within autonomous decision-making, this chapter proposes a new method for con-
tingent path planning optimization. The main goal of this study is to derive a
method for autonomous path planning which ensures that the aircraft is able to
reach a safe landing spot in the event of a critical engine or generator failure. This
is done while taking into consideration the presence of expected local winds and
their effect on the obtainable battery range. The resulting optimum path is found
by applying the technique of Particle Swarm Optimization (PSO) [35].
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In recent scientific literature path planning algorithm methods are described
which use local wind information. In [2], the author integrates the uncertainty of
the wind field into the wind model, and uses a Markov Decision Process for path
planning. The goal was to minimize the power consumption of the aircraft and min-
imize time-to-goal. A similar approach was chosen in [77], where the technique of
Ant Colony Optimization (ACO) is used to find the path which minimizes the travel
time considering the wind. However, as with most studies the wind is considered
constant during the flight. The ACO is a bio-inspired metaheuristic optimization
algorithm suchlike the Particle Swarm Optimization used in this study. PSO is
widely used for path planning, such as described in [92], where the author uses the
method to minimize the UAS path’s length and danger based on the proximity of
threats.

The study presented in this chapter builds further upon the before mentioned
methods by incorporating a dynamic wind model and translating this into the
real-time in-flight performance of hybrid-electric UAS.

5.2 Aircraft performance model

The resulting achievable flight range is described in the following subsections.
This is illustrated by analyzing the different segments of a flight that suffers a
critical engine or generator failure. The flight segments are divided into normal
operations, battery-powered flight, and unpowered glide.

5.2.1 Aircraft Power Model

For a conventional propeller-driven aircraft in level and unaccelerated flight,
the power that is required for obtaining the maximum flight range is expressed, in
watts, by:

Prmr = W

(
CD
CL

)
min

· vTAS , (5.1)

where W is the aircraft total weight in Newton, (CD/CL)min is the minimum
obtainable ratio between the aerodynamic drag and lift coefficients, and vTAS is
the true airspeed occurring at the (CD/CL)min condition.

One advantage of utilizing a hybrid-electric power train is that there is the pos-
sibility of co-powering the main drive shaft (continuous or intermittent). Depending
on the sizing of the hybrid system and mission specifications, this may prove to be
beneficial for the resulting range. A method for determining the achievable range
in the case of co-powering of a hybrid system is described by Marwa in [99]. In the
remainder of this analytical study it is further assumed that a functioning main
generator set is sized so that it is capable of supplying the necessary power required
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for maintaining the maximum range cruise speed (vmr). Therefore during cruise it
is given that the necessary amount of co-powering by the electric motor is zero.

5.2.2 Aircraft range - Normal operations

In the case of a hybrid powered aircraft where the electric co-powering equals
zero, the obtainable maximum range may be modelled similarly to conventional
fuel-powered aircraft. The Breguet range equation is a commonly used first-order
approximation to determine the achievable maximum range of a conventional pro-
peller aircraft [38]. When assuming no wind and a parabolic drag polar, the result-
ing maximum range in normal operations (Rno in meters) is expressed by [5]:

Rno =
ηpg
c
·
(
CL
CD

)
max

· ln
(
W0

W1

)
, (5.2)

where ηpg is the complete propulsion efficiency of the hybrid system, c is the specific
fuel consumption of the generator in Newtons per second per watt, W0 is the
aircraft’s total weight at the beginning of the cruise flight,W1 is the aircraft’s total
weight at the end of the cruise flight, and (CL/CD)max is the maximum achievable
ratio between the aerodynamic lift and drag coefficients in level and unaccelerated
flight.

5.2.3 Aircraft range - Battery-powered flight

In a situation where the main engine or generator fails, the hybrid system re-
mains able to supply the power necessary to propel the aircraft by utilizing the
remaining battery capacity. To obtain the performance model the aircraft is consid-
ered purely battery-powered. The adopted method for determining the maximum
achievable range of battery-powered sUAS has previously been described in [71].
The adopted method in that study is an extension on the classical determination
of battery-powered aircraft range, by including the Peukert effect on the battery
capacity. This allows for a more accurate determination of the aircraft’s battery
range [34][144]. When assuming no wind and a parabolic drag polar, the maximum
range (Rbp, in kilometers) for battery-powered sUAS in level and unaccelerated
flight, without the influence of wind, is expressed by:

Rbp =

 V × C ηpe
W
(
CD

CL

)
min

n(√
2W

ρ∞ S CL

)1−n

·Rt1−n · 3.6. (5.3)

Here V is the battery bus voltage, C is the battery capacity, n is the battery-
specific Peukert constant, Rt is the battery hour rating (i.e. the discharge period
at which the rated capacity C was determined), and ηpe is the propulsion efficiency
of the battery-powered system. The amount of experienced resistance depends on
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the specific set-up, and the availability of mitigation systems, such as mechanical
decoupling.

5.2.4 Aircraft range - Unpowered glide

After the main batteries have been drained, the aircraft may be able to fly
further by exchanging its altitude for range. This flight phase is modelled as pure
unpowered glide, depending solely on the altitude (h), and maximum glide ratio
(L/D)max. When the aircraft’s glide angle is moderate the maximum range for
unpowered glide in no-wind condition and for flat terrain is expressed by [6]:

Rug = h

(
L

D

)
max

. (5.4)

5.2.5 Effects of Wind

Small unmanned aircraft are often operating in relatively high wind speeds
- commonly exceeding half of the true air speed. Depending on the speed and
direction, en-route winds may have a significant influence on the obtainable range of
the aircraft. Therefore, in an effort to accurately estimate the maximum obtainable
range of an aircraft, one has to include the wind effects. This study aims to describes
a method for determining the maximum obtainable range, while including the
effects of horizontal winds that are encountered en-route. Note that this wind
model shall be applied to each segment of the flight.

In [57] it is described how the optimum airspeed may be determined when
accounting for head- and tailwinds. The author states that for propeller-powered
aircraft the optimum airspeed is obtained through:

mbr =
vTAS
vbr

=

 2mbr ±
(
vw
vmd

)
2mbr ± 3

(
vw
vmd

)


1
4

. (5.5)

Here mbr is the relative airspeed parameter between the true airspeed and
the best-range airspeed (vbr). vw is the wind speed, with ± indicating a head- or
tailwind, vmd is the minimum-drag airspeed. Solving for mbr yields the optimum
ratio to achieve the best range in the event of head- or tailwind. As Eq. (5.5)
only takes into account head- or tailwinds along the flight path, it is necessary to
include and isolate the crosswind component that may be encountered en-route.
When assuming a flat and non-rotating Earth and flying in level and unaccelerated
flight, the equations of motion through decomposed wind vectors are modelled as:

vGS = vTAS

[
cos φ

sin φ

]
+ vw

[
cos θw
sin θw

]
. (5.6)
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Here vGS is the aircraft’s ground velocity vector, and θw is the direction of the
wind. The aircraft’s commanded heading (φ) is the sum of the course angle (θ)
and the crab angle (β). Here β is defined as the angle between the TAS vector and
the ground course angle. The wind components perpendicular and parallel to the
resulting ground track, in relation to the reference horizontal path, can be found
by rotating the wind’s x and y components through angle θ, resulting in [153]:

v‖ = vwN cos θ + vwE sin θ

v⊥ = −vwN sin θ + vwE cos θ.
(5.7)

Considering the horizontal wind field to be described in the NED (North, East,
Down) frame, then vwE is the decomposed East wind component, and vwN is
the decomposed North wind component. v‖ is the wind component parallel to the
aircraft’s ground course and v⊥ is the perpendicular wind component to the ground
course. In relation to Eq. (5.5) the parallel wind component constitutes the value
for vw.

5.3 Path Planning

In this section, the optimization problem formulation and the cost function that
has to be minimized by the Particle Swarm Optimization (PSO) are presented. The
Apeendix contains a detailed description of the PSO algorithm.

5.3.1 Optimization Problem Formulation

In this study the goal is to find a safe path with the shortest length. Therefore,
the cost function ought to take into consideration both the path’s length and the
safety. Here a safe path is defined as a path in which the aircraft, in the event of
a critical engine or generator failure, is within flight range of a pre-specified safe
landing spot.

A two-dimensions geographical approach is used in this work, where the opti-
mization variables represent a set of waypoints of the path, with x (North) and y
(East) positions in the NED frame. As the input positions of the origin, destination
and landings spots are given in latitude and longitude coordinates, a conversion
to the NED frame is needed. Besides, to use the result as an input for an Autopi-
lot system it may be required to convert the waypoints to positions expressed in
latitude and longitude.

The domain has to be defined taking into consideration that the UAV may not
deviate too far from the straight line path between the departure and destination.

To initialize the optimization algorithm, first a straight path from the origin to
the destination is generated - with waypoints distributed equally along the path.
This strategy is crucial, as usually the optimal solution will be a deviation from
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this straight path. If only particles initialized with random positions are used,
they might have uncommon waypoints displacement, causing the algorithm to take
longer time to find an optimal solution or to fall into a local minimum.

The stop criteria used is straight forward. The algorithm runs until it reaches
a pre-defined number of iterations.

5.3.2 Cost Function

Always flying within range of a safe landing spot may not always be desired
(or realistic), since this may cause the path to be too long. For that reason a cost
function (f) is proposed that employs a method for weighing the importance of
the safety against the importance of the path length. As shown in the following
equation, α represents the weight of the path’s length over the safety. This results
in:

f = (α) length + (1− α)
1

safety
, (5.8)

where length and safety are relative values and in this study presented as percent-
ages. The function is calculated based on the minimum length, which is the straight
line between the departure and destination, as per Eq. (5.9), and the maximum
safety, if all points along the path are safe, as per Eq. (5.10).

length =
current length (Lcur)

minimum length (Lmin)
. (5.9)

safety =
number of safe points (nsafe)
total number of points (Npath)

. (5.10)

To ensure that the safety is evaluated for the entire path, and not only for the
position of the waypoint, an interpolation is performed to discretize the path into
Npath number of points. The effective flight range using battery power is calculated
to all landing spots that are not further than the maximum range which the UAV
could fly by taking into consideration a vector of wind that would provide the
maximum range, thus, landing spots very far away are not considered in that step
of the algorithm, saving computational power. As the wind might change along the
path between the point and the landing spot, the range is recalculated every Rstep
considering the closest wind vector.

For each point (n), it is evaluated if it is close enough to at least one landing
spot (j). Then one unity is added to the safety result variable, demonstrated by:

nsafe =

Npath∑
n=1

{
1 if (rn1 < dn1 )||...||(rnj < dnj )

0 otherwise
, (5.11)
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where rnj is the maximum obtainable range in case of an engine failure (section
5.2) from point n to the landing spot j and dnj is the distance of the aircraft from
point n to the landing spot j.

The total length is the sum of the distance between the points of the interpo-
lation:

Lcur =

Npath∑
n=1

√
(xn − xn−1)2 + (yn − yn−1)2, (5.12)

where xn and yn are the North and East positions in the NED frame at point n,
respectively.

5.4 Case study and Experimental setup

5.4.1 Case Study

The scenario chosen for this simulation comprises the area located to the north
of the Norwegian city of Trondheim (Figure 5.1). For this study the Norwegian
Defence Research Establishment (FFI) made regional wind models available for
calculating wind speeds and directions for different altitudes with the resolution of
2.5 km. The date of the data retrieval was July 5th 2017, with wind information
valid between 03:00PM and 09:00PM of that day. The orange polygon in the figure
illustrates for which region the information was available. The locations of the
origin (A) and destination (B) were chosen so that the maximum length across the
wind model’s specified area was utilized. The straight-line path distance between
origin and destination is 210 kilometers, illustrated by the red dotted line, and
has a path safety of 72.6%. The safe landing spot locations were manually selected
through studying satellite imagery. The initial cruise altitude is chosen to be 1500
meters, meaning it can pass any mountain the aircraft may encounter within the
specified region.

5.4.2 Experimental Setup

This case study utilizes the P31015 concept UAV, which is a fixed-wing air-
craft in conventional pusher configuration. In this theoretical study the model shall
employ a hybrid propulsion system with sufficient capacity to allow continuous in-
flight recharging of the batteries - effectively enabling fully charged batteries during
cruise flight. The total propulsion efficiency through the generator (ηpg) is assumed
to be invariable at 28.5% while the specific fuel consumption c equals 383 grams
per horsepower per hour. The direct electric propulsion efficiency (ηpe) is assumed
to be invariable at 50%. These values lie within range of experimental data found
in [34], [101] and [74]. At the initiation of the cruise phase the aircraft is modelled
to carry 5.5 liters of on board fuel, and to have a fully charged battery with a
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Figure 5.1: Simulation scenario

usable nominal capacity of 10 Ampere-hours at 44.4 Volts. The total weight of the
aircraft is assumed to be 17.5 kilograms. More detailed aircraft specifications may
be found in [71].

The theoretical maximum obtainable range of the aircraft at any point in time
during the cruise phase is calculated as the sum of Rno, Rbp and Rug. As Rug is
defined as the maximum obtainable range related to flat terrain, this requires to
be re-evaluated when considering operating in mountainous terrain, such as the se-
lected region for this experiment. The terrain in the selected region is mountainous,
and contains elevated fields nearly as high as the selected cruise altitude. Therefore
the actual obtainable glide range is considered too variant. Thus, in this specific
simulation it is decided to leave out the potential range of unpowered glide, leaving
the sum of Rbp as the maximum obtainable range in case of an engine failure.

5.4.3 MATLAB Code description

A MATLAB script was written to perform the simulation. The main user in-
puts are the WGS-84 coordinates of the origin, destination and safe landing spots.
The wind information obtained was previously saved in a .dat file, which is used
for the evaluation of the cost function. The airframe characteristics and battery
efficiency, as detailed in previous sections, need to be configured. The optimization
parameters are shown in the next subsection. The script is set up so that it runs
the optimization algorithm until a pre-determined number of iterations is reached.
Figure 5.2 shows a simplified block diagram of the script.
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Figure 5.2: Overall block diagram

5.4.4 Parameters and Optimization Algorithm

Some parameters need to be defined in the optimization algorithm. Several
of these parameters may strongly affect the convergence speed of the algorithm,
and can prevent it from falling into local minima. Among these are the PSO ve-
locity constraint, which was chosen to be attached to the domain in order to be
automatically changed according to the problem; and the initial and final inertia
weight, which were chosen to range from 1.0 to 0.1, to allow a more global search
at the beginning, and a more local search in the course of iterations. However,
other parameters can hardly be modified as they are specified by the user’s re-
quirements, which affects the processing time. For instance, this is the case with
the number of points which discretize the path (Nsteps). The parameters used in
this simulation are presented in the table below, where the domain is defined by
[xmin, xmax, ymin, ymax]:

5.5 Results

Figure 5.3 shows the simulation result in the NED frame for a simulation using
α = 0.3. The yellow square and the green star represent the origin and destination
respectively. The red circles are the generated waypoints, while the red crosses
represent the safe landing spots. The path’s discretized points are presented as
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Table 5.1: List of parameters

Name Value
Number of iterations 100
Particle velocity constraint 0.1 x Domain
wini 1.0
wfin 0.1
Nsteps 84
Safe landing spots 5
xmin xs-Lmin/2
xmax xt+Lmin/2
ymin ys-Lmin/2
ymax yt+Lmin/2
Rstep 5 km

black dots. The arrows represent the distance from the point of the path to a
landing spot which the UAS can reach during a critical engine failure. This also
takes into account the effects of wind. What may be observed is that the projected
path is always close enough to at least one of three safe landing spots, resulting
in two landing spots to not be utilized within this scenario. It was found that in
this specific scenario the calculated path has a safety factor of 100%, with a total
length of 215.4 kilometers. This route is 5.4 kilometers longer than the straight
path distance between origin and destination. The convergence of the algorithm is
shown in Figure 5.4, where the vertical axis refers to the Cost Function, Eq. (5.8).

Figure 5.3: Result for α = 0.3

In an attempt to study the effects of the positioning and amount of safe landing
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Figure 5.4: Algorithm convergence

spots, a second simulation was conducted where the first landing spot was removed,
as illustrated in Figure 5.5. Here it is impossible to reach a safety score of 100% due
to the distance between the landing spots. The grey dots forming a line indicates
the part of the path where the UAS can not reach a landing spot in case of engine
failure. In this specific case it was found that for α = 0.3 the rated path safety was
83.3%, while the path distance had increased to 231.4 kilometers.

Figure 5.5: Result without LS1 for α = 0.3

In a third scenario where five safe landing spots were placed at different loca-
tions, the simulation for α = 0.3 resulted in a path with length 229.4 and safety
of 100%. When α = 0.7 was chosen, the length was shorter (219.9 km), while the
safety was 90.48%.

Therefore in this scenario it was found that compared to the straight-line tra-
jectory, the trade-off for α = 0.3 is 27.4% increased safety against an increase of
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19.4 kilometers in path length. When using an α of 0.7, the trade-off was of 17.9%
increased safety against 9.9 kilometers increase in path length, when compared to
the straight-line trajectory.

Figure 5.6 illustrates a magnified part of the path, including the plotting of the
wind vectors (orange arrows). The blue arrows represent by size the range that the
UAS can obtain using the electrical battery from the discretized point of the path
(black dots) to the landing spot (red cross). It may be observed that the wind is
pointing south, resulting in a larger obtainable range when flying North to South,
compared to flying South to North.

Figure 5.6: Extract of path including the wind vectors

5.6 Limitations

The suggested methods are evaluated through performing simulations. The
physical input parameters, such as the wind, are predicted values based on weather
model simulations. The suggested method does not include vertical winds, nor was
this information available. The aerodynamic and propulsion efficiency parameters
that were used are drawn from a concept aircraft and hybrid system, with assumed
performance characteristics. Although the geographic model is realistic, the safe
landing spots were chosen arbitrarily. All before mentioned limitations may influ-
ence the accuracy of the proposed model, and therefore a verification of the model
may be warranted.

5.7 Discussion

To eliminate the limitations described in the previous section, and to further
verify the proposed model, more simulations are needed. Besides the verification, a
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validation through flight test is to be conducted through utilizing an aircraft with
known performance characteristics. One desirable improvement is to optimize the
algorithm to reduce the processing time, so that in-flight real-time recalculation
becomes a possibility.

Though it is beyond the scope of this study, one might consider using a more
sophisticated glide performance model, such as described in [28] which also includes
the effects of turn performance on the achievable range, and consider [41] and [148]
which describe an optimization method for the in-flight performance in variable
(and altitude dependent) winds.

5.8 Conclusion

In this chapter a method was proposed that aims to increase the operational
safety of hybrid-electric powered UAVs. This was done by taking into account the
possibility of direct-electric propulsion in case of main generator failure. It was
demonstrated that the aircraft’s projected flight path can be adjusted so that
it remains within range of pre-specified safe landing spots. This is done while
taking into account the pre-calculated effects of winds that are encountered en-
route by including an altitude-dependent wind model. As it is not always possible
(or desirable) to have a completely safe path, the proposed method includes a
cost function in which the user may specify the importance of path safety over
the path length. A first simulation (α = 0.3) with arbitrarily picked safe landing
locations shows a path safety of 100%, while having a total path length of 215.4
kilometers. This is opposed to the straight path distance of 210.0 kilometers which
offers a path safety of 72.6%. In this instance it is concluded that the trade-off
may be an increased path safety of 27.4% at the cost of a longer path length of
5.4 kilometers. In a second simulation (also α = 0.3) one central safe landing spot
was removed. This simulation resulted in a path safety of 83.3%, while having a
total path length of 231.4 kilometers. The trade-off may be determined through
a similar approach. A third scenario was tested where the five safe landing spots
were placed at a different location, while α was chosen to be 0.3 and 0.7. In this
scenario it was shown that compared to the straight-line trajectory the trade-off
made for α = 0.3 is 27.4% increased safety against an increase of 19.4 kilometers in
path length, while for α = 0.7 this is 17.9% increased safety against 9.9 kilometers
increase in path length. The study presented here was a theoretical study based on
simulations utilizing hypothetical aircraft systems. To further validate and verify
the proposed methods, a future study with more diverse simulated scenarios is
suggested, and to perform test flights conducted with an aircraft that has known
performance characteristics.
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Chapter 6

Inclusion of Horizontal Wind Maps
in Path Planning Optimization of
UAS

Earlier studies demonstrate that en-route atmospheric winds significantly affect
the in-flight performance of unmanned aircraft. Nevertheless today the inclusion of
wind is not common practise in determining the optimal flight path. This chapter
aims to contribute with an accessible method that includes forecast horizontal
wind maps which are commonly available, and discuss the methods on how these
maps can be integrated in order to obtain the most energy efficient horizontal path
of fixed-wing aircraft. The benefits of including horizontal wind maps into the
path planning optimization are demonstrated through a simulation, which utilizes
Particle Swarm Optimization to find the optimal cost-beneficial path.

6.1 Introduction

Atmospheric winds pose constraints on the operations of unmanned aircraft.
This holds especially true for smaller aircraft, as here it is common for wind speeds
to constitute 20-50% of the airspeed [13]. This has a substantial effect on the
mission safety and the aircraft’s in-flight performance. It is therefore considered
to be warranted to account for atmospheric winds in the planning of the aircraft’s
flight path. As the unmanned aircraft industry is maturing, a growing scientific
search towards in-flight performance optimization is noticed. Accurate estimations
of the aircraft’s in-flight performance allow for optimal utilization of the system
within its specified mission objectives.

Early studies demonstrate the advantages of utilizing atmospheric winds in the
aircraft’s route optimization [25]. More recently efforts have been made to include
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the complete wind field in the optimization, such as found in [48], and more recently
in [42], which utilize the Ordered Upwind Method and the stochastic Dijkstra
algorithms, respectively, for determining the optimal flight path.

The study of path planning optimization in the context of unmanned aircraft
is relatively new but abundant. Most notably, in [104] a method is presented that
successfully incorporates wind fields in path following methods utilizing straight-
line and circular arc paths. In [123] a sophisticated method was described where
Model Predictive Control (MPC) methods were employed for path planning opti-
mization, while including the effects of wind. However, neither studies included the
effects of wind on the aircraft performance within the optimization, such as was the
case in [42], which describes a method for the incorporation of weather uncertainty
for manned aircraft in long-distance flights. In [29] the aircraft performance was
successfully included, with the assumption of a constant wind field.

More recent sophisticated wind-energy harvesting methods have received in-
creased scientific interest. Most notably in [53] two refined methods are described
which utilize updraft winds from locally observed wind-fields in order to extend
the aircraft’s range and endurance. Considering such complex wind fields offers the
potential of effective path optimization. However, the limitation of such methods
in context of the study presented in this chapter is that it relies on the availability
of detailed local wind measurements and terrain observations or maps. In prac-
tise the extraction of lift due to vertical winds over terrain, known as orographic
lift, is relatively complex to obtain [100]. This is in contrast to forecast horizontal
wind gradients which are relatively well described, and are commonly obtainable
through meteorological institutions.

The study presented in this chapter positions itself in the current literature
by describing an accessible method that includes forecast horizontal wind maps,
and discuss the methods on how these maps can be integrated in order to obtain
the most energy efficient horizontal flight path of fixed-wing unmanned aircraft.
To achieve this, it specifies and includes the effects of horizontal winds on the in-
flight performance of the aircraft. In this chapter the Particle Swarm Optimization
(PSO) technique is applied, such as described in the Appendix B, in order to
simulate how the inclusion wind affects the flight performance. PSO was chosen
because it is easy to implement, there are few parameters to adjust and it uses
global and local performance, which is advantageous in this type of problem where
it is expected that the optimal solution is likely to be a relatively small deviation
from the known solution candidate - the straight path.

The goal of the developed algorithm is to find the path which minimizes the
total energy consumption from origin to destination by using a forecast wind map
and by optimizing the path and airspeed of the aircraft. Minimizing the energy
consumption results in a lighter aircraft as battery-powered aircraft are required
to carry fewer on-board batteries, while fuel-powered aircraft require to carry less
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block fuel. Alternatively, one could consider the reduction in required fuel/batteries
to increase the cargo capacity of the aircraft, or to offer a larger safety margin
through energy reserves.

6.2 Aircraft dynamic model

The aircraft’s kinematic model is described through the North-East-Down (NED)
inertial reference frame. As the aim is to optimize the energy consumption per dis-
tance travelled, it is necessary to describe the wind field in a similar way. Because
in this study horizontal wind maps are used, the wind field is being described in a
two-dimensional plane.

When assuming a flat, non-rotating earth then x aligns north, y aligns east, and
z is pointing down to earth as positive direction. Relating to the wind navigation
triangle, as shown in figure 6.1, the aircraft’s inertial velocity in a coordinated flight
can be described as a function of the aircraft’s ground course χ and ground speed
vg. Similarly, this can be described as a function of the true airspeed va, heading
ψ, wind speed vw and wind speed direction ψw. These relations are found through:[

ẋ

ẏ

]
= vg

[
cosχ

sinχ

]
= va

[
cosψ

sinψ

]
+ vw

[
cosψw
sinψw

]
(6.1)

The relation between heading and course angle is conveniently described using
the law of sines, resulting in [123]:

ψ = χ− arcsin
vw
va

sin (ψw − χ) (6.2)

Figure 6.1: Wind Navigation Triangle in Coordinated Flight

In aviation the wind maps and directional indications are often expressed in the
navigation representation, rather than the mathematical representation. Therefore
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it is considered convenient to apply the same standards here. Here the directional
indications are related to x (true north), where the clockwise rotation is positive.
Note that wind maps commonly indicate the direction where the wind is coming
from, rather than where it is going towards.

In an attempt to more accurately determine the aircraft’s in-flight perfor-
mance, one may consider including the parallel wind speed along the aircraft’s
heading vwψ‖. When the wind components are decomposed as demonstrated in
equation (6.1), then the wind speed vw‖ can be found through:

vw‖ = vwx cosψ + vwy sinψ. (6.3)

6.3 Effects of wind on in-flight performance

Depending on the magnitude and direction of the wind in relation to the air-
craft’s desired ground path, the presence of wind has an effect on the in-flight
performance. In a typical mission considered in this study most in-flight time will
be spent during the cruise phase. In the context of path planning optimization it
is therefore the cruise phase that is considered most relevant. The remainder of
the study shall consider path planning optimization methods and considerations
for the cruise phase of fixed-wing unmanned aircraft.

The basis of the optimization methods presented in this chapter relies on the
trade-off between energy consumption and distance covered. To illustrate; when fly-
ing an A-to-B mission with a fixed distance, then the optimization goal considered
in this study is to minimize the energy consumption during the execution of this
mission. It is therefore required to express the aircraft’s energy consumption as a
function of distance covered. The required power (Pr in Watts) of propeller-driven
aircraft is found through [5]:

Pr = Dva =

√
2W 3

ρ∞ S

C2
D

C3
L

(6.4)

WhereW is the aircraft weight in [N], CL and CD are the aircraft’s aerodynamic
lift and drag coefficients respectively, ρ∞ is the air density in [kg/m3], and S is the
aircraft’s effective wing surface in [m2].

The aircraft’s in-flight performance can be optimized for different mission sce-
narios. The best range airspeed is found by flying at the airspeed where the energy
consumption per travelled distance is minimized. Considering that:

va =

√
2

ρ∞

(
W

S

)
1

CL
(6.5)

Then, when substituting equation (6.5) in (6.4) we find:
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(
Pr
va

)
= W

(
CD
CL

)
(6.6)

This expression shows that the condition for maximum range occurs at the
airspeed where CL/CD is maximized. However, as this expression relates travelled
distance solely to airspeed rather than ground track speed, this does not necessarily
hold true in the presence of en-route winds.

The specific energy consumption SEC is defined as the consumed energy per
distance travelled. This can be expressed in unit Newtons (N), Joule per meter
(J/m), or alternatively Watt-second per meter (Ws/m). Here the latter is chosen
since manufacturers of batteries often express the energy capacity in Watt-hour. By
plotting the specific energy consumption (obtained from equation 6.6) as a function
of vw and ψwr (obtained from equation 6.1 and 6.4), the effects of wind on the in-
flight performance can be visualized. Here ψwr is the wind direction relative to the
aircraft’s course.

In Figure 6.2A such a plot is illustrated which holds valid for the aerodynamic
model of the P31016 unmanned aircraft, flying at a ground velocity of 28.8 meters
per second and an altitude of 1500 meters under ISA conditions. The P31016 is the
unmanned platform used in the path planning scenario, which is specified further
in section 6.4.2.

Figure 6.2B shows the performance penalty of the presence of wind at the
commanded ground speed of 24.0 and 28.8 meters per second, for the arbitrarily
chosen ψwr of 30 degrees. This figure illustrates that for one given wind speed and
direction the maximum range may be obtained by changing the commanded ground
speed accordingly. Note that without the presence of wind flying at an airspeed
of 24.0 meters per second requires less power per unit time compared to flying at
28.8 meters per second. However, as this figure illustrates the energy consumption
per unit length is found to be lower when flying at 28.8 meters per second. This
balance changes depending on the present wind. This is further demonstrated in
6.2C where the resulting obtainable in-flight range is illustrated for both ground
speeds.

Path planning optimization algorithms that are set up so that the cost-function
optimization considers the energy consumption as a function of covered ground
distance in the presence of wind will inherently optimize the commanded airspeed
to give the best range. In other cases where the cost function algorithm is set up
to command the desired airspeed independently of ground speed, methods such as
described by [57] can be applied. In [57] it is suggested that the best-range airspeed
can be approximated through:
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Figure 6.2: A: Energy consumption of the P31016 per distance travelled as a func-
tion of wind speed, and the wind direction relative to the aircraft’s course ψwr. B:
SEC for different wind speed components, valid for ψwr of 30 degrees with fixed
ground speeds. C: Flight range for different wind speed components, valid for ψwr
of 30 degrees with fixed ground speeds. (vw > 0 is a tail wind, while vw < 0 is a
head wind)
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mbr =

 2mbr ±
(
vwp

vmd

)
2mbr ± 3

(
vwp

vmd

)


1
4

(6.7)

Here vmd is the minimum drag airspeed, vwp is the wind speed along the com-
manded heading of the aircraft. By solving formbr the ratio between the best-range
airspeed in the presence of wind, and the airspeed that gives the best-range without
the presence of wind can be found. The symbol ± indicates a head- or tailwind,
where positive values are considered a tailwind.

Missions that require the longest flight endurance, such as observation missions,
ought to optimize the airspeed so that the energy consumption per unit time is
minimized. Observing equation (6.4) it becomes clear that when the air density,
aircraft weight, and wing surface are constant, the total energy consumption be-
comes a sole function of CL and CD. Since CD and CL are functions of va, the
minimum power consumption, and thus the maximum endurance, is found at the
va where C2

L/C
3
D is minimized. Note that the presence of wind does not change the

optimum value for va to achieve the maximum endurance.
Similarly, path planning optimization algorithms where the cost-function con-

siders the energy consumption as a function of time will inherently optimize the
airspeed to obtain the best flight time.

6.4 Path Planning

In this section the path planning solution with the inclusion of the horizontal
wind maps is presented. The results are shown after describing the optimization
problem formulation, the parameters of the aircraft used for this simulation and
how the wind map was obtained to perform the wind interpolation.

6.4.1 Optimization Problem Formulation

An area north of Trondheim, Norway, was chosen for this study. The objective
of the optimization is to fly from A to B while using as little energy as possible,
while taking the wind into consideration. To achieve this the mission waypoints and
the airspeed along the path are optimized using the Particle Swarm Optimization
technique, through methods as described in the Appendix B.

A two-dimensional geometric approach is used in this work, where the optimiza-
tion variables represent a set of airspeed inputs V and waypoints of the path W ,
with x (North) and y (East) positions in the NED reference frame. The altitude
was chosen to be 1500 meters.

As the positions of the origin [xs, ys], destination [xt, yt] and wind vectors
[vw, ψw] are given in latitude and longitude coordinates, a conversion to the NED
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frame is needed. Besides, to use the result as an input for an autopilot system, it
may be required to convert the waypoints to positions expressed in latitude and
longitude. To reduce the error coming from the conversion between frames, the
coordinates of the origin of the NED frame are defined as the midpoint between
the origin and the destination.

As the path is divided into V velocity steps and W waypoints, the algorithm
needs to do an interpolation to discretize the path obtained from the W waypoints
into a path with V velocity steps. Therefore, the new path will have V + 1 new
interpolated waypoints, where [x1, y1] = [xs, ys] will be the origin of the mission,
[xV+1, yV+1] = [xt, yt] will be the destination and the other V −1 points are resulted
from the interpolation.

The cost function f is set in order to evaluate the energy consumption along
the path. Therefore, it adds the energy consumption used to travel each V step
through:

f = Lstep

V∑
n=1

Prn
vgsn

, (6.8)

where Prn is the required power (equation (6.4)) and vgsn is the ground speed in
meters per second for the nth velocity step. Lstep is the length of each step of the
path, given by:

Lstep =
L

V
(6.9)

where L is the total length of the path:

L =

V∑
n=1

√
(xn+1 − xn)2 + (yn+1 − yn)2 (6.10)

The domain (xmin, xmax, ymin, ymax) has to be defined taking into consider-
ation that the UAS may not deviate too far from the straight line path between
the origin and destination. In addition, the airspeed must be optimized within the
limits of the aircraft constrains.

To initialize the optimization algorithm, first a straight path from the origin to
the destination is generated - with waypoints distributed equally along the path,
while the airspeed along the path is set as the airspeed that would give the best
range without the presence of wind. This strategy is crucial, as usually the optimal
solution will be a deviation from this straight path. If only particles initialized with
random positions are used, they might have uncommon waypoints displacement,
causing the algorithm to take a long time to find an optimal solution or to get
stuck in a local minimum.

The other paths generated for the initialization of the optimization algorithm
have the waypoints randomly chosen following the rule that the next waypoint
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must be closer to the destination than the previous one. The airspeed variables are
randomly chosen between the minimum (vamin) and maximum (vamax) airspeed.
Figure 6.3 shows an example of initial guesses for the paths.

Figure 6.3: 200 paths generated in the initial guess. The yellow square is the origin
and the green star is the destination. The red arrows are the wind vectors.

6.4.2 Aircraft Platform

The P31016 (figure 6.4) is a small battery-powered aircraft that is powered by
a 6.0 kilowatt brushless motor, and has a battery capacity of 977 Watt-hour. The
propulsion efficiency is assumed constant at 50% with an ideal electrical discharge
pattern. The aircraft has a wing surface of 0.81 square meters and has a typical
mission-ready mass of 17.5 kilograms. Its aerodynamic characteristics were deter-
mined through a simplified model of the aircraft in the software tool XFLR5. Here
it was found that at an altitude of 1500 meters under ISA conditions the airspeed
for maximum range occurs at 28.8 meters per second, while the airspeed for maxi-
mum endurance is found at 24.0 meters per second. The aircraft’s stall speed with
extended flaps is 14 meters per second, while the maximum speed is limited to 38
meters per second.

6.4.3 Wind vector maps

The horizontal wind map used was originally obtained from the Norwegian
Meteorological Institute (MET), and provided by the Norwegian Defence Research
Establishment (FFI). The wind map contains the amplitude and direction of the
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Figure 6.4: P31016 concept battery-powered fixed-wing unmanned aircraft

wind for each point in the grid at a given altitude. The grid has a resolution
of approximately 2.5 kilometers, and the position of the points are given as the
latitude and the longitude. Figure 6.5 illustrates a section of the wind map used.

Figure 6.5: Part of the wind map used. The arrows show the amplitude and direc-
tion of the wind for each point in the grid. (Source: Maritime Robotics AS)

In order to obtain wind data in between the grid points in the wind map,
the wind data needs to be interpolated. Nearest neighbor interpolation could be
used for fast interpolation, and could provide sufficient accuracy for a smooth
wind field. However, the discontinuity of nearest neighbor interpolation or abrupt
wind changes could cause significant errors. In order to improve this, biharmonic
spline interpolation [125] is used. Biharmonic spline interpolation has the benefits
of creating a smooth surface (has minimum curvature) and passes through each
data point. To obtain a sufficiently low computation time, the 16 surrounding
grid points (the smallest and second smallest squares, each containing unique grid
points, and enclosing the point to be interpolated) are selected as the data points
for calculating the interpolation function.
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6.4.4 Results

The parameters chosen to set the optimization algorithm are shown in Table
6.1. Figure 6.6 shows the optimized path (black dots) for the mission where the
objective is to fly from the yellow square (origin) to the green star (destination).
The algorithm has optimized the position of the five waypoints (blue dots) and the
airspeed at each V -step. The resulted optimized airspeed is shown in figure 6.7.
In this mission the total energy consumption calculated for the straight line path,
when flying at the no-wind best-range airspeed of 28.8 meters per second, was 691
Watt-hour. The total energy consumption of the optimized path was 662 Watt-
hour. This is a saving of 4.2% of consumed energy. This is despite the fact that
the optimized path is 3.6 kilometers longer than the straight path. An overview of
the results of the flight time, path length and energy consumption as a comparison
between the straight path and the optimized path are shown in Table 6.2.

Table 6.1: List of parameters

Name Value
Iterations 200
Particles 200
Waypoints (W ) 5
V 50
Particle Size 55
Particle velocity
constraint

0.1 x Domain

wini 1.0
wfin 0.1
xmin xs-Lmin/3
xmax xt+Lmin/3
ymin ys-Lmin/3
ymax yt+Lmin/3
vamin

18 m/s
vamax 38 m/s

Table 6.2: Simulation results

Straight Path Optimized Path
Length 141.8 km 145.4 km
Time 1h 37min 1h 29min
Consumed energy 691 Wh 662 Wh
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Figure 6.6: Final path - Accounting for en-route winds

Figure 6.7: Optimized commanded airspeed along the route
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6.5 Discussion

The wind maps used in this study represents the wind information obtained
through meteorological wind models. As the current wind map is only valid for
that moment in time, for longer flights it may prove useful to include forecast
wind maps valid for future time windows. Moreover, in-situ path planning may
be complemented with real-time wind field estimations through methods such as
described in [53] and [89]. In the work described in [15] a real-time field estimation
method is described utilizing a moving horizon estimator, which may be used to
identify both steady and turbulent wind velocities.

The simulation results presented in this chapter are valid for one chosen sce-
nario. Depending on the local wind field and aerodynamic characteristics of the
aircraft the obtainable savings may be higher or lower for other scenarios. It is
important to extend this research in the future with more varied scenarios, while
having a validated aerodynamic model and propulsion efficiency model of the used
aircraft. Finally, the accuracy of the simulation results are as always limited by the
accuracy of the input parameters, which to a large extend include the predicted
wind field model. As horizontal wind maps do not specify vertical wind compo-
nents, these effects are not included. It is therefore warranted that in a future
research the proposed model is verified through field tests. This is done preferably
for a variety of mission scenarios with a different wind field, altitude and terrain.

It is important to complement the proposed method with the ability to in-
clude horizontal wind maps of different altitudes, and thereby effectively creating
a quasi-three-dimensional (multiple altitudes) wind field. This allows for en-route
adjustment of the cruise altitude which has the potential to further increase the
obtained flight efficiency.

6.6 Conclusion

In this chapter a method was presented for the inclusion of horizontal wind maps
into a path planning optimization algorithm. An aircraft performance model is
presented that incorporates the effects of wind on the in-flight energy consumption,
in relation to the airspeed and the resulting ground speed. It is demonstrated that
in the presence of wind the best-range airspeed is no longer found at the airspeed
associated with (CL/CD)max, thus en-route airspeed optimization is warranted. It
is described that when the goal is to maximize the flight range, an optimization
algorithm which is set up to optimize the commanded airspeed in order to minimize
the energy consumption as a function of ground distance covered, will inherently
command the optimal course and airspeed in the presence of wind.

A simulation was performed where a particle swarm optimization method was
utilized to determine the wind-optimized flight path, where an in-situ forecast 2D
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wind field was incorporated. The performed simulation shows that when compar-
ing the wind-optimized flight path to the straight path, the length increased with
3.6 kilometers to a total of 145.4 kilometers. However, the flight time was reduced
by eight minutes and the total consumed energy was reduced by 4.2%. These sim-
ulation results are valid for the chosen scenario utilizing the P31016 unmanned
aircraft. In future work it should be particularly interesting to simulate a more di-
verse wind field. In addition it is warranted to validate the proposed model through
field experiments.
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Chapter 7

Long range path planning using an
aircraft performance model for
battery powered sUAS equipped
with icing protection system

Earlier studies demonstrate that en-route atmospheric parameters, such as
winds and icing conditions, significantly affect the safety and in-flight performance
of unmanned aerial systems. Nowadays, the inclusion of meteorological factors is
not a common practice in determining the optimal flight path. This study aims to
contribute with a practical method that includes meteorological forecast informa-
tion in order to obtain the most energy efficient path of a fixed-wing aircraft. The
Particle Swarm Optimization based algorithm takes into consideration the aircraft
performance, including the effects of en-route winds and the power required for
active icing protection systems to mitigate the effects of icing. As a result, the
algorithm selects a path that will use the least energy to complete the given mis-
sion. In the scenario evaluated with real meteorological data and real aerodynamic
parameters, the battery consumption of the optimized path was 52% lower than
the standard straight path.

7.1 Introduction

Small Unmanned Aerial Systems (sUAS) have become versatile tools that can
be used in a broad spectrum of missions. The rapid growth of the use of sUAS is
justified by their endurance, reduced cost, rapid deployment and flexibility. This
flexibility is mainly due to the many types of sensors that can be mounted on sUAS,
enabling them to be used in many different applications, such as surveillance, recon-

95



7. Long range path planning using an aircraft performance model for battery
powered sUAS equipped with icing protection system

naissance, search and rescue, delivery, photogrammetry, inspection, among others.
In addition, they offer reduced risk for humans and impact on the environment,
when compared to manned aircraft.

A next and necessary step for the continuous evolution of sUAS technology is to
enable safe autonomous missions also in adverse weather conditions. For this to be
possible, effects of wind and icing on the aircraft performance must be addressed,
controlled and taken into consideration by the path planning algorithm to decide
if it is worth it to face the adverse weather conditions or to take a detour in order
to avoid exposing the sUAS to this.

Scientific literature on path planning of sUAS is abundant. In [66] a compara-
tive analysis of four three dimensional path planning algorithms based on geome-
try search was done. The algorithms compared were Dijkstra, Floyd, A* and Ant
Colony. Run time and path length were the two analyzed aspects. In [26], the author
used the Voronoi diagram to produce routes minimizing their detection by radar,
while in [160] the Rapidly Exploring Trees (RTTs) were used with a smoothing al-
gorithm based on cubic spiral curves for collision-free path planning. Optimization
techniques are also adopted, as Genetic Algorithms [106], MILP [118] and Particle
Swarm Optimization [92], where the author used the method to minimize the UAS
path’s length and danger based on the proximity of threats.

Atmospheric winds usually constitute 20-50% of the airspeed of sUAS [13].
Therefore, it affects the aircraft’s in-flight performance significantly. In [123], a
sophisticated method was described where Model Predictive Control (MPC) was
employed for path planning optimization including the effects of uniform wind.
In [2], the author used Markov Decision Process to optimize the unmanned aerial
vehicle’s path, integrating the uncertainty of the wind field into the wind model.
The goal of the algorithm was to minimize the energy consumption and time-to-
goal. A similar approach was chosen in [77], where the Ant Colony Optimization
(ACO) technique was used to optimize the path by minimizing the travel time
considering the effects of an uniform wind.

Most of the works about path planning of sUAS that takes the wind into con-
sideration use an uniform wind distribution. This information is often used in a
simplified model when calculating the effects of the wind on the energy consump-
tion. However, in [29], an aircraft performance was successfully included, with the
assumption of a constant wind field. In recent literature a nonuniform wind dis-
tribution in addition to an aircraft performance model was used. That is the case
in [70], where the flight path was optimized so that sUAS was guaranteed to be
able to reach a pre-designated safe landing stop. This was done by continuously
calculating the remaining range considering the remaining battery capacity in case
of an engine failure. In that study a wind map with nonuniform wind distribution
was used in the calculations of the maximum range of the sUAS. Also using a
nonuniform wind distribution, [72] proposed a two-dimensional optimization algo-
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rithm to find the path between two points with the minimum energy consumption.
By being aware of the wind map valid for a given altitude, it was possible to choose
a path where the wind was used favorably for energy savings for that flight level.

One of the most important meteorological constraints for UAS mission planning
is atmospheric icing. This hazard is also called in-cloud icing and occurs when an
airframe travels through a cloud containing supercooled liquid droplets. When these
droplets collide with the airframe they freeze and result in surface icing that grow
over time into ice horns that can significantly alter the wing shape. Even small ice
accretions have been shown to be able to decrease the aerodynamic performance
of a wing dramatically [21] [97].

The icing hazard is a well-researched topic for general aviation, but little at-
tention has been given to this topic until the recent years for UAS – although the
issue has already been identified during the 1990s [129]. UAS icing is in many ways
similar to icing on large aircrafts, but also exhibits significant differences when it
comes to flight velocities, airframe size, mission profiles, and weight restrictions.
In particular, the small UAS typically operate at Reynolds numbers an order of
magnitude lower compared to general aviation which causes differences in the flow
regime [138].

Modeling of icing effects on UAS have shown that icing results in a degradation
of aerodynamic performance. Ice accretions on the leading edge of the lifting sur-
faces can decrease lift, increase drag, and initiate earlier stall [139]. The degree of
the degradations seems strongly linked to the prevailing meteorological conditions.
In addition, icing has also shown to have detrimental effects on static and dynamic
stability. In summary, icing is a severe hazard, especially for small UAS, and it is
common practice to avoid flying in icing at all costs.

An icing protection system (IPS) can be used to mitigate this restriction of the
flight envelope. In the scope of this work an electro-thermal system designed at the
Norwegian University of Science and Technology will be investigated [133] [62]. This
system consists of heating zones on the leading edge of the lifting surfaces that are
activated when the aircraft enters an icing cloud. The IPS can run in two different
modes. In anti-icing mode, the system will continuously heat the leading edge to
inhibit the build-up of any ice. In de-icing mode, the systems operates in a cyclic
way, allowing for the accumulation of a small amount of ice over a time of 90 s,
followed by the removal of the ice by activating the heating zones for 30 s. Typically,
the de-icing mode will require lower power requirements compared to anti-icing,
but will also results in performance degradation during the ice accumulation cycles
[50].

As weather conditions often varies for geographic location and altitude, it is
important that the path planning algorithm is able to allow altitude changes in
during flight. Consequently, the terrain profile must be taken into consideration
and treated as an obstacle by the algorithm. This was previously implemented
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by [119], where the PSO and Parallel GA optimization techniques were compared
when used to find the best trajectory by minimizing a cost function based on the
path length and average altitude, including a penalization in the cases when the
path has parts under the terrain.

Electric batteries have variable potential according to the remaining capacity.
[145] presented a simple model for open-circuit potential determination. With this
model, it is possible to calculate the battery potential with respect to the current
being drawn. Lately, [44] derived the model equations to calculate the rate of
discharge for a constant-power.

In this study, a path planning algorithm is proposed to find an optimal path be-
tween a chosen origin and destination allowing both changes in course and altitude.
This optimization is performed by an unique algorithm that simultaneously process
several factors, some of which are novel and others that are normally individually
studied by the literature. These factors include: the icing protection system usage,
which is a very novel solution that enables sUAS to fly under icing conditions;
horizontal wind, that is a major issue on sUAS operations and has only recently
been studied; terrain profile, that is a fundamental factor that has already been
included in many studies; the aircraft performance model, which brings more re-
alistic and accurate calculations of the propulsion required power according to the
aircraft platform and environmental parameters; and battery discharge properties,
which is a relevant factor as sUAS are typically powered by electric batteries and
the discharge rates vary according to the remaining capacity. Therefore, this work
contributes to the field by proposing a tool that can be used to plan the sUAS
mission and to evaluate the different possible scenarios, in order to assist the deci-
sion making. In addition, to demonstrate its applicability, this work also brings the
analysis of the proposed solution for a mission scenario using real sUAS platform
parameters and real terrain and weather data.

7.2 Aircraft performance model

In this chapter the aircraft performance model is presented with all the equa-
tions that are needed for the calculation of the required power to propel the aircraft
in given atmospheric conditions and for a desired maneuver.

7.2.1 Pressure

The pressure (p in [Pa]) is calculated from the aircraft altitude by using the
barometric formula with subscript 0, that is valid from sea level up to 11000 m of
altitude:

p(h) = p0

[
T0

T0 + L0(h− h0)

] g0M
RL0

(7.1)
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where h is the altitude in [m], p0 is the standard pressure at sea level of 101325
Pa, T0 is the standard temperature at sea level of 288.15 K, L0 is the standard
temperature lapse rate for subscript 0 of -0.0065 K/m, h0 is the altitude at sea
level of 0 m, R is the molar gas constant of 8.314472 Jmol-1K-1, M is the molar
mass of Earth’s air of 0.0289644 kg/mol and g0 is the gravitational acceleration at
sea level of 9.80665 m/s2.

The values of the constants are taken from the International Standard Atmo-
sphere (ISA) mean sea level conditions [109].

7.2.2 Air Density

The density of air (ρ in [kgm-3]) is an atmospheric property which significantly
affects the aerodynamic forces.

To calculate the air density, the ideal gas law is used:

ρ(p, T ) =
p

RdT
, (7.2)

where p is the pressure in [Pa] given by Eq. 7.1, T is the air temperature in [K]
and Rd is the specific gas constant for dry air of 287.058 Jkg-1K-1.

7.2.3 Power Required

Assuming that the lift (Fig. 7.1) is high enough to compensate its opposite
weight component to keep the aircraft in the air, it is necessary to provide a power
high enough to: overcome the drag force and the weight’s component which is
tangent to the aircraft’s trajectory; and to move the aircraft forward in its trajec-
tory with an excess thrust. Therefore, the required propulsive power is given by
multiplying the required thrust by the desired airspeed:

Preq(Treq, va) = Treqva (7.3)

where Preq is the required propulsive power in [W] given by Eq. 7.3, va is the
airspeed in [m/s] and Treq is the required thrust in [N], which is given by:

Treq(D, θ) = D +Wsin(θ) (7.4)

where D is the drag force in [N] given by Eq. 7.5, W is the aircraft weight in [N]
and θ is the climb angle in [rad].

Hence, when the aircraft is cruising (θ is equal to zero), this results in sin(θ)

being equal to zero. In this case, the weight is normal to the drag force and tangent
to the lift.

As the drag force is dependent on the body’s size (e.g. the wing surface), the air
density and the airspeed, the equation for drag force D is derived by dimensional
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Figure 7.1: 2-D representation of an aircraft in a straight flight.

analysis following the Buckingham’s π-Theorem:

D(ρ, va, CD) = 0.5ρv2aSCD (7.5)

where ρ is the air density in [kgm-3] given by Eq. 7.2, va is the airspeed in [m/s],
S is the wing surface area in [m2] and CD is the drag coefficient, given by Eq. 7.8.

For an aircraft equipped with propellers, the engine’s required power (Pshaft)
is obtained dividing the propulsive required power (Preq in W, given by Eq. 7.3)
by the propeller efficiency (ηp):

Pshaft(Preq) =
Preq
ηp

. (7.6)

From the descent slope which no propulsion power is required, the aircraft’s
motor is assumed to be completely shut off and the on-board systems, except for
the icing protection systems, are assumed to use insignificant amounts of energy.
Therefore, the energy consumption in this case is assumed to be equal to the energy
consumption of the icing protection requirements. This is possible for an electric
powered aircraft that does not need to keep an engine running during the entire
mission. However, the maximum descent angle needs to be chosen so that sufficient
lift is provided for airspeed values that are in the range of predefined accepted
values of the desired airspeed.

Aerodynamic Coefficients

To be able to calculate the drag force, which characterizes the power required
to propel the sUAS, it is necessary to first calculate the drag and lift coefficients
(CD and CL respectively).

In common A-to-B missions the aircraft is expected to primarily be flying in
a horizontal straight flight, and performs a limited amount of turns. These turns
depend on the path optimization, however the turns denote on a relatively small
part of the entire path. Therefore, the effects of turns (circling flights) are not
considered in the following calculations. This holds valid for "A-to-B" missions,
and not for other mission types, such as loitering.
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In addition, and with respect to the mission profile, the aircraft is assumed to
follow a steady motion flight path, trust angle is zero, and the angle of attack is
small, typically ranging between -4 and 10 deg.

The lift coefficient for straight flight is given by [53] as:

CL(θ, ρ, va) =
2W cos(θ)

ρSv2a
, (7.7)

where va is the airspeed in [m/s], W is the aircraft weight in [N], θ is the climb
angle in [rad], ρ is the air density in [kgm-3] given by Eq. 7.2 and S is the wing
surface area in [m2].

In this study, the drag coefficient (CD) as a function the lift coefficient (CL)
was derived by a curve fitting process that aims to find a polynomial equation that
represents the true drag polar, typically acquired from wind tunnel experiments or
Computational Fluid Dynamics (CFD) simulations. To derive a valid polynomial
equation, it is necessary to first define the range of the lift coefficient where the
equation will be valid. This domain can be calculated by finding the lowest and
highest lift coefficient (CLmin

and CLmax
), respectively, for the mission and aircraft

constrains, such as minimum and maximum accepted airspeed (va), minimum and
maximum accepted climb angle (θ) and minimum and maximum air density (ρ).
CD is therefore a function of CL:

CD(CL) = f(CL), (7.8)

where f is the fitted function.

7.2.4 Ground speed

The airspeed is the speed of the aircraft with relation to the mass of air in
which it is flying. In this research, the airspeed is considered tangent to the aircraft’s
trajectory. Therefore, when the aircraft climbs or descends, it is possible to calculate
the projection of the airspeed on the horizontal axis (Fig. 7.2), with the assumption
of the absence of vertical wind, by:

vh(vhx , vhy ) =
√
v2hx

+ v2hy
, (7.9)

with x and y components of the horizontal airspeed (vh) given by:

vhy
(va, ψ, θ) = va cos(ψ) cos(θ),

vhx
(va, ψ, θ) = va sin(ψ) cos(θ),

(7.10)

where va is the airspeed in [m/s], ψ is the heading in [rad] (Eq. 7.12) and θ is the
climb angle in [rad].
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Figure 7.2: Representation of side view of the aircraft.

The presence of wind affects the aircraft’s travelled trajectory (Fig. 7.3). The
travelled trajectory is subject to the aircraft’s ground speed (vgs in [m/s]), which
is the aircraft’s speed relative to the ground and calculated by:

vgs(vhx
, vhy

, vwindx , vwindy ) =
√

(vhx
+ vwindx)2 + (vhy

+ vwindy )2, (7.11)

where vh is the horizontal airspeed in [m/s] and vwind the wind speed in [m/s].

Figure 7.3: Wind triangle.

The heading (ψ) is the direction where the aircraft is pointing to. It is given
by:

ψ(χ, vwind, va, ψwind) = χ− arcsin

(
vwind

va sin(ψwind − χ)

)
, (7.12)

where the course (χ in [rad]) is the travelled direction relative to the ground, with
the wind speed (vwind in [m/s]) given by:

vwind(vwindx , vwindy ) =
√
v2windx + v2windy , (7.13)

and with the wind heading (ψwind in [rad]) given by:

ψwind(vwindx , vwindy ) = arctan2(vwindx , vwindy ). (7.14)
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7.3 Battery performance model

Modern electric batteries have become dominant power sources within sUAS,
mainly because of their simplicity, and relatively high peak power output. Common
battery types, such as lithium-based cells, are rechargeable and durable, which
makes them suitable for sUAS operations.

Electric batteries’ energy potential changes according to the remaining capacity.
[53] modelled the battery potential (Voc in [V]) based on [145] as (Fig. 7.4):

Voc(C, Vo) = Vo −

(
κCcut

Ccut − C

)
+Ae−BC , (7.15)

where Ccut is the capacity discharged at cut-off in [Ah], C is the capacity discharged
in [Ah], A = Vfull−Vexp and B = 3/Cexp where Vfull is the fully charged potential
in [V]. Additionally, Vexp is the potential at the end of the exponential range in [V],
and Cexp is the capacity discharged at the end of the exponential range in [Ah],
with the Polarization Voltage (κ in [V]):

κ =
(Vfull − Vnom +A(e−BCnom − 1))(Ccut − Cnom)

Cnom
, (7.16)

where Vnom is the potential at the end of the nominal range in [V], Cnom is the
capacity discharged at the end of the nominal range in [Ah], and with battery
constant potential (Vo in [V]):

Vo(Ieff , Voc) = Vfull + κ+ (RCIeff )−A, (7.17)

where RC is the internal resistance in [Ohms] and Ieff is the effective discharge
current in [A].

Figure 7.4: Battery discharge curve. (Source: [145])

In this study, the power is considered constant during the discretization step,
and, therefore, the effective discharge current is the variable to be calculated. As a
result, the Trembley’s equations were manipulated to accommodate obtaining the
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effective discharge current for a given power. From Ohm’s law, the effective current
(Ieff in [A]) is given by:

Ieff (Voc) =
Peff
Voc

, (7.18)

with the potential (Voc in [V]) being obtained by solving the nonlinear equation:

V n+1
oc −

(
Vfull + κ−A− κCcut

Ccut − C
+Ae−BC

)
V noc −RCI1−nratedP

n
eff = 0, (7.19)

where n is the battery-specific Peukert’s constant and Irated is the maximum bat-
tery rated current in A.

Note that to obtain the potential (Voc), it is necessary to solve the nonlinear
Eq. 7.19. The valid solution will be in the range from the cut-off potential (Vcut)
to the fully charged potential (Vfull).

7.4 Meteorological and elevation data

This work aims to allow sUAS operations in adverse weather conditions. There-
fore, meteorological forecast data needs to be considered. This data is used in the
calculation of the total aircraft energy consumption, as it affects the aircraft’s
in-flight performance. Additionally, the meteorological conditions define when the
icing protection systems are to be used, and how much power is required to miti-
gate the adverse effects of aircraft icing. Finally, the elevation data is of importance
as the path planning algorithm optimizes the sUAS’ altitude, and therefore it is
vital to ensure a minimum terrain clearance in the aircraft’s planned path.

7.4.1 Meteorological parameters

In Table 7.1 the downloaded parameters are shown. The wind and air temper-
ature parameters are implemented directly in the form that they were supplied
in. Other parameters were modified due to unit compatibility for usage in the
calculation of other parameters, as described in the following sub-sections.

Table 7.1: List of downloaded parameters.

Parameter Description Units
vwindx Meridional wind in x direction m/s
vwindy Meridional wind in y direction m/s
T Air temperature K
q Specific humidity kg/kg
LWC Atmospheric cloud condensed water content or Liquid Water Content kg/kg
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Relative Humidity

The specific humidity parameter can be downloaded from the meteorological
service. However, in this work, the parameter used in the calculations is not the
specific humidity but the relative humidity. This is because the aircraft is assumed
to be in icing conditions and turn on the icing protection system when the tem-
perature is below 0 deg C and the relative humidity is over 0.99. Therefore, the
relative humidity (H) needs to be calculated and it is given by [46]:

H(ea, esat) =
ea
esat

(7.20)

with the vapour pressure (ea in [Pa]):

ea(p, q) =
qp

0.622 + 0.378q
(7.21)

where q is the specific humidity, p is the pressure in [Pa] given by Eq. 7.1 and with
the saturated water vapour pressure (esat in [Pa]):

esat(T ) = 10
0.7859+0.03477(T−273.16)

(1+0.00412(T−273.16)) + 2 (7.22)

where T is the temperature in [K].

LWC and MVD

The "mass fraction of cloud condensed water in air" can be also referred as
"liquid water content (LWC)". In the icing protection system regression model,
the LWC is one of the input parameters to estimate how much power is required
by the system. The regression model uses the LWC concentration in [gm-3] but the
downloaded parameter is the LWC mixing ratio in [kg/kg]. Therefore, to convert
LWC mixing ratio (LWCm in [kg/kg]) to LWC concentration (LWCc in [gm-3]),
the gas law for dry air is used:

LWCc(p, LWCm, T ) =
LWCmp

RdT
× 103, (7.23)

where T is the temperature in [K], Rd is the specific gas constant for dry air of
287.058 Jkg-1K-1. and p is the pressure in [Pa] given by Eq. 7.1.

The Water Droplet Median Volume Diameter (MVD in [µm]) is another pa-
rameter used to calculate the power required by the icing protection system. It is
approximated by following [143] and given by:

MVD(λ) =
3.672 + µ

λ
, (7.24)

with the shape parameter (µ) given by:

µ = min

(
1000

Nc
+ 2, 15

)
, (7.25)
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where Nc is the pre-specified droplet number of 100 cm-3 and with:

λ(LWCc) =

[
π

6

ρwNc
LWCc

Γ(µ+ 4)

Γ(µ+ 1)

] 1
3

, (7.26)

where Γ is the gamma function, ρw is the density of water of 1 gm-3 and Nc is
equal to 100x10-6 m-3.

Meteorological data download

The Norwegian Meteorological Institute hosts a webapp called THREDDS Data
Server, where it is possible to have access to weather forecasts of several meteorolog-
ical parameters. One of the services is the MetCoOp Ensemble Prediction System
(MEPS) [102], from where the parameters used in this work were downloaded. This
service provides data for the Scandinavian region with horizontal resolution of 2.5
km and from around 0.00986 to 0.99851 atm pressure levels (that can be converted
to altitude) divided into 65 not equally spaced values. In the MEPS service, raw
and post processed data are available for 10 ensemble members (set of forecast
simulations) and for up to 66 hours of forecast. The models are run every 6 hours
(00,06,12,18 UTC) and the first data file (00) is the most complete one and the
only file containing all the necessary parameters for the development of this work.
Therefore, the 00 file was downloaded for the esemble member 0 (mbr0) and the
data from the forecast time slot 0 was used in the simulations. The time slot 0
reflects the instant information of the chosen date/time while the other time slots
are hourly forecast.

The files are available in the Network Common Data Form (NetCFD) format
and each file is up to 200 GB. However, it is possible to select which parts to
download by using the Open-source Project for a Network Data Access Protocol
(OPeNDAP). Therefore, the selected parameters can be downloaded only for the
region of interest and for the desired pressure levels (altitudes).

7.4.2 Elevation data

The elevation data was downloaded from the Norwegian national website for
map data (geonorge.no). Geonorge provides a catalog with a wide variety of map
products, including elevation maps. These elevation maps are in the form of Digital
Terrain Model (DTM) or Digital Surface Model (DSM) and can be visualized in the
website or downloaded via WCS or WMS services. In this work, the DTM was used,
which is available with 1 m and 15 m of resolution for the regions correspondent
to UTM32, UTM33 and UTM35.
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Elevation data download

To download the data with the WCS service, the web browser can be used as the
WCS client. Therefore, the data is requested via HTTP through URL parameters.
The commands to be used are: GetCapabilities; DescribeCoverage; and GetCov-
erage. The first one returns all service-level metadata and a brief description, the
second one returns the full description and the third one returns the data itself.
The URL parameters varies according to the product and are usually described in
the information obtained by the GetCapabilities and DescribeCoverage commands.

7.5 Path Planning

The goal of this work is to find an optimum three dimensions path minimizing
the energy consumption of a long range sUAS flight from an origin to a destination
in adverse weather conditions. To achieve this an optimization technique is used
to minimize a given cost function.

7.5.1 Optimization technique

In this study the Particle Swarm Optimization (PSO) [35] technique is used to
minimize the cost function and therefore find the optimum path. PSO is a meta-
heuristic optimization method where the particles (solutions) are updated every
iteration based on the best global and local solutions. In this study the standard
PSO was used with a modification to reduce the maximum absolute particle velocity
by an ε factor. This was implemented to keep the search more local, and thereby
avoiding too large movements in the solution domain per iteration, as it may be
expected that the optimum solution is relatively close to the straight line path.

7.5.2 Optimization algorithm

The algorithm’s block diagram is shown in Fig. 7.5. The orange blocks scenario-
based input parameters, such as the meteorological and elevation data, the origin
and destination, the number of control inputs and the PSO parameters. The other
boxes outside the blue box are part of the pre-processing phase when the model is
created and the initial solutions are generated.

The blue box contains the optimization loop. First the candidate solutions are
evaluated with respect to the terrain. If part of the path is under terrain, the
solution is discarded (cost = ∞). If not, the optimization will evaluate the icing
conditions for each discretization step i.

If icing conditions are present in the step i (Hi > 99% and Ti < 0degC), the
deice and anti-ice required power are calculated (Pdeicei and Panti−icei , respec-
tively). For the deicing operations the engine’s required power is calculated with
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an updated drag coefficient (C∗Di
), which constitutes the average icing penalty, and

therefore an updated required propulsive power P ∗shafti . For the anti-ice operations
the aircraft’s wings are kept clear from icing. Therefore the engine’s required power
is the same as without ice (Pshafti). However, the anti-icing system does require
thermal energy. In this study the anti-icing system uses the main battery as power
source (i.e. does not have a separate power source), and therefore induces a per-
formance penalty during usage. The total power required by the deice and anti-ice
systems, including the respective engine’s required power, are compared and the
solution that requires the least total power is chosen. If there are no icing conditions
present the total required propulsion power remains unchanged (Pshafti).

The next step is to calculate the battery energy consumption in the step i

taking into consideration the battery model and how much battery capacity is
left. Finally, the total battery energy consumption is calculated by summing the
battery energy consumption times the flight time of all steps. The total battery
energy consumption is, therefore, used to update the particles’ position in the
domain. The new solutions are then evaluated. This process repeats for the chosen
total number of iterations.

Figure 7.5: Algorithm block diagram.

7.5.3 Cost Function

The aim of the optimization algorithm is to minimize a cost function (Eq. 7.27),
which represents the total energy consumption and is calculated by the sum of the
battery discharge rate (Ċ in [Ah/s]) in each discretization step, multiplied by the
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time in each discretization step:

minimize Ctot(Ċ, t) =

N∑
i=1

Ċiti (7.27)

where Ċ and t are the vectors with all Ċi and ti, respectively. Ctot is the total
discharged capacity in [Ah], i is the index of the discretization step, N is the
number of discretization steps in the path, ti is the time in [s] at the i-th step given
by:

ti(Lstep, vgsi) = Lstep/vgsi , (7.28)

where vgsi is the ground speed in the discretization step i in [m/s] given by Eq.
7.11, with the step’s length (Lstep in [m]) given by:

Lstep(L) =
L

N
, (7.29)

and with the total length of the path (L in [m]) given by:

L(x,y) =

N∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (7.30)

where xi and yi are east and north positions in the ENU frame and i is the index
of the discretization step.

The the rate of discharge (Ċ in [Ah/s]) given by:

Ċi(Itoti) =
Itoti
3600

, (7.31)

with the total current (Itot in [A]) given by:

Itoti(Ptoti , Voci) =
Ptoti
Voci

, (7.32)

where Voc is the battery’s potential in [V] (Eq. 7.19) and with the total required
power (Ptot in [W]) given by:

Ptot(Pshaft) = Pshaft, (7.33)

if there are not icing conditions occurring, or

Ptot(P
∗
shaft, Pdeice) = P ∗shaft + Pdeice, (7.34)

when there are icing conditions occuring, and the deice solution is the one requiring
the least power, or

Ptot(Pshaft, Panti−ice) = Pshaft + Panti−ice (7.35)
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if there are icing conditions, while the anti-ice solution requires the least power.
Here, Pshaft is the engine’s required power in [W] (Eq. 7.6), P ∗shaft is the engine’s
required power when using the deice solution in [W] (Eq. 7.40), Panti−ice is the
anti-ice solution required power in [W] and Pdeice is the deice solution required
power in [W].

Finally, Ci is the total capacity discharged in [Ah] until instant i and given by:

Ci(Ċi, ti) =

i∑
i=0

Ċiti, (7.36)

where Ċi is the vector of Ċ from Ċ0 to Ċi and ti is the vector of t from t0 to ti.
C0 is the initial discharged capacity.

Note that when parts of the path are not above the terrain, or if the total energy
consumption is higher than the battery’s capacity, this candidate solution receives
an infinite penalty to ensure it is disregarded as a candidate solution.

7.5.4 Control inputs

The required control inputs are horizontal plane waypoints (x,y), airspeeds (va)
and climb angles (θ). The number of waypoints (O) and airspeeds/climb angles (K)
are chosen by the user when defining the scenario. Note that the airspeed and climb
angle changes were chosen to occur at the same time for algorithm simplicity.

7.5.5 Model and Mission Parameters

ENU frame

The ENU frame was chosen as the coordinate system of the optimization algo-
rithm. Therefore, all information in World Geodetic System 1984 (WGS84), which
is in the format of latitude, longitude and altitude, must be converted to the ENU
frame. Also, the resulting waypoints of the optimized solution must be converted
to WGS84 in order to be fed into the sUAS’ flight control system.

In this work, when using the ENU frame, the x axis points east, the y axis
points north and the z axis points up.

It is also necessary to define the origin (0,0,0) of the ENU frame. As the region
around the origin is less affected by the frame conversion error, the origin was
chosen to be in the geographical midpoint between origin and destination at sea
level.

Domain

The candidate solutions’ waypoints are limited to be away from the straight
path up to a maximum distance. This maximum distance was defined as one third
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of the length of the straight path between the origin and destination. Therefore,
the optimization algorithm can only find candidate solutions containing waypoints
within this domain region.

The boundaries of airspeed (va) and climbing angle (θ) must also be defined ac-
cording to the aircraft platform’s constraints. In addition, these boundaries should
be fine tuned for values around the expected optimization resulting values, in order
to achieve faster convergence.

Discretization strategy

The cost function (Eq. 7.27) is evaluated for each discretization step of the path
and the total cost is the sum of the energy consumption in each step. Therefore
the number of steps will affect the resolution of the optimization algorithm, and
the processing time. The number of discretization steps (N) is defined by the
multiplication factor (F ) and the number of airspeed and climb angle changes (K):

N = KF − 1 (7.37)

These parameters are presented for a scenario example in Fig. 7.6. In this
example, A is the origin and B is the destination. There is one waypoint between
origin and destination (O = 1). There are three airspeed and climb angle changes
(K = 3), and three of multiplication factor (F = 3). Therefore there are eight
discretization steps (N).

Figure 7.6: Example of a path and its division.

Additionally, the first particle in the PSO algorithm has to be initiated with
a candidate solution. A good candidate initial solution for the first particle is a
straight path from origin to destination, climbing with constant climb angle to the
altitude a few meters above the highest peak, then cruising close to the destination,
and finally descending with constant negative climb rate to the destination.

Also, the other particles (candidate solutions) of the population must be initi-
ated. To not distract the optimization algorithm from the region around the first
candidate solution, which is expected to contain an optimal solution, the particles
are chosen to be variations of the first particle following the exponential probability
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distribution. Therefore, the values of the set of variables of the other particles are
close to the values of the first initial solution set of variables.

7.6 Case study

In this section, the chosen mission case and operational profiles that were evalu-
ated are described, and the aircraft and battery parameters used in the optimization
algorithm are explained.

7.6.1 Aircraft platform

The P31016 (Fig. 7.7) is a small battery-powered aircraft that is powered by
a 6.0 kilowatt brushless motor. The propulsion efficiency (ηp) is assumed constant
at 50% with an ideal electrical discharge pattern. The aircraft has a wing surface
(S) of 0.81 m2 and has a typical mission-ready weight of 171.5 N (W ).

Figure 7.7: P31016 concept battery-powered fixed-wing unmanned aircraft

Based on the aircraft flight envelope, the airspeed (va) was set ranging from 20
m/s to 30 m/s, and the climb angle (θ) ranging from -10 to 10 degrees. Consid-
ering the aircraft performance these limits were chosen to avoid the optimization
algorithm explores too high climb angles and airspeed.

The aircraft performance data was generated with the flow solving module
FENSAP, which is part of FENSAP-ICE [11]. Three-dimensional CFD simulations
were performed on the P31016 (Fig. 7.7) at Reynolds number (Re) of 1.2×106 with
angles of attack (AOA) corresponding to the set envelope limitations and using a
numerical setup described in Table 7.3. The results for drag and lift of the P31016
are presented in Fig. 7.8. The simulations indicate that the flow separation starts
from the trailing-edge at AOA of 8 deg. Drag forces increase unproportionally after
the onset of stall, whereas lift is decreased as the separation intensifies with higher
AOAs.

This data was used to fit the drag polar curve (Fig. 7.9). The curve was fitted for
a lift coefficient range calculated based on the aircraft and mission constrains. These
constrains are: minimum and maximum airspeed (va), minimum and maximum
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Figure 7.8: AOA (Angle-Of-Attack) vs CD and CL from CFD simulations

climb angle (θ) and minimum and maximum air density (ρ). The air density was
calculated according to the minimum and maximum expected relative humidity
(H), temperature (T ) and pressure (p) in the meteorological data. The minimum
and maximum resulting lift coefficient for these constrains were 0.3436 and 1.0371
respectively. The fitted curve of the drag polar for this range is given as:

CD(CL) = 0.1407C2
L − 0.07989CL + 0.02496, (7.38)

where CL is the lift coefficient and CD is the drag coefficient.

Figure 7.9: Drag polar fitted curve

7.6.2 Icing protection System model

The power requirements for de-icing and anti-icing, as well as the performance
penalties during de-icing are generated using numerical simulation methods. Two
icing codes are used for this. LEWICE is an icing code that has been developed
by NASA over several decades for general aviation [155]. It is a widely validated
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code [156], but it has been shown that there may be limitations for the application
of small UAS [59] [60]. The code is based on a panel-method, that can simulate
ice accumulation, anti-icing, and de-icing with very low computational resources.
ANSYS FENSAP-ICE is an icing code using modern computational fluid dynamics
(CFD) methods [55]. The code is very flexible and has in the past been used for UAS
applications [56] but still lacks a dedicated validation for icing at small Reynolds
numbers [61].

In this work, the LEWICE is used to generate a model for the anti-icing and de-
icing loads, whereas FENSAP-ICE is used for the de-icing performance penalties.
The low computational requirements of the panel-method of LEWICE allow to
simulate a large number of different meteorological icing conditions in short time,
in the order of minutes on a typical desktop computer. The same computations
would take several days on a high-performance computing (HPC) cluster with
FENSAP-ICE.

A total of 112 different icing cases have been simulated with LEWICE to gen-
erate a dataset for anti-icing with LEWICE. The boundary conditions of the me-
teorological cases are based on the icing envelope of 14 CFR Part 25, App. C
[1] used for the airworthiness certification of commercial aircrafts. The simulation
cases cover the intermittent maximum (IM) icing and continuous maximum (CM)
icing envelope. The range of values for each icing parameter is shown in Table
7.2. Simulations were performed in 2D using the mean aerodynamic chord (MAC
= 0.275 m) of the wing. For all simulation it was assumed that only 20% of the
leading-edge area of the lifting surfaces was protected (surface temperature of +5
deg C). Runback icing, generated by the refreezing of melted ice from the heated
zones, was not included in this study. This was done for reasons of simplification
and lack of dedicated studies of runback icing on UAS. Runback icing itself may
be a significant source of aerodynamic performance degradation of any IPS [154].

Table 7.2: Range of values for each icing parameter

Parameter Range of values
Airspeed [20, 30, 40, 50] m/s
Angle of attack AOA [0] deg
Chord c [0.275] m
Temperature TC [-2, -5, -10, -30] deg C
Median (droplet) volume diameter MVD [15, 20, 30, 40] µm
Liquid water content LWC concentration [0.04 ... 2.82] gm-3

The de-icing power requirements have been assumed to be 60% lower than the
anti-icing loads. In contrast to the anti-icing, the minimum power requirement
for de-icing can not be directly simulated with a steady-state assumption. This
means that transient simulations that prescribe a power supply to the leading-edge
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is required. Such simulations were carried out with LEWICE and confirmed that
the aforementioned assumption provides sufficient power for successful de-icing.
It should be noted however, that this assumption is a gross simplification, but is
deemed sufficient for the purpose of this work.

The 112 simulation cases from LEWICE for the anti-icing and de-icing power
requirements (Panti−ice and Pdeice, respectively) were used to generate linear mod-
els that are used for the path planning optimization. Forth order linear regression
models were used and have been found to be able to predict the power loads de-
pending on airspeed (va in [m/s]), temperature (TC in [deg C]), Liquid Water
Content concentration (LWCc in gm-3) and Median Volume Diameter (MVD in
[µm]) with good accuracy (R2= 0.977).

The data for the de-icing performance degradation was obtained with FENSAP-
ICE in 2D and then extrapolated for the entire aircraft. First, 90 s of ice accretion
were simulated with FENSAP-ICE with the numerical parameters specified in Ta-
ble 7.3. The degradation of lift and drag was then averaged over a full de-icing
cycle of 120 s. Again the 14 CFR Part 25, App. C icing envelopes (CM & IM) were
applied. In order to reduce the number of simulations, only the cruise velocity of
25 m/s and a single MVD of 20 µm was considered.

Table 7.3: Numerical parameters setup

Parameter Setup
Flow conditions Steady-state, fully turbulent
Turbulence model Spalart-Allmaras
Droplet distribution Monodisperse
Artificial
Viscosity

Second order
Streamline upwind

The aerodynamic degradation occurring during de-icing is presented in Fig.
7.10. A linear model (Eq. 7.39) was selected for the drag (R2 = 0.81).

C∗D(CD, LWCc) = CD + CD(0.0785 LWCc + 0.4973). (7.39)

Therefore, the required power to propel the aircraft when the de-icing solution
is used (P ∗pshaft in [W]) needs to be calculated using the degraded drag coefficient
(C∗D):

P ∗pshaft(ρ, va, C
∗
D, θ) =

(0.5ρv2aSC
∗
D +Wsin(θ))va
ηp

. (7.40)

Battery parameters

The P31016 is assumed to be equipped with a commercial 10-cells LiPo battery
with 26.4 Ah capacity (Ccut). Following Tremblay’s model, the potential parameters
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(a) LWC [gm-3] vs ∆CL [%] (b) LWC [gm-3] vs ∆CD [%]

Figure 7.10: Degradation on lift and drag.

of a 10-cells LiPo battery are approximately: 41.8, 39.67 and 37.67 Ampere-hour
of fully charged (Vfull), end of exponential range (Vexp) and end of nominal range
(Vnom) respectively. The capacity parameters are approximately: 2.64 and 20.4
Ampere-hour of end of exponential range (Cexp) and end of nominal range (Cnom),
respectively. In addition, from the battery’s manual it is found that the internal
resistance (Rc) is 0.015 Ohms and the maximum rated discharge current (Irated)
to be 660 Ampere. The potential curve of this battery with respect to the capacity
discharged for 10 Ampere of constant current is shown in Fig. 7.11.

Figure 7.11: Battery potential times capacity discharged

Note that for all cases, the battery was assumed to be fully charged in the
beginning of the mission. Therefore, C0 (the initial capacity discharged of the
battery) was assumed to be equal to 0 Ah.

7.6.3 Mission Case

The region of Northern Norway was chosen for the evaluation of the proposed
solution. The meteorological and elevation data were obtained for the area of the
white rectangle of Fig. 7.13. In this area, one mission case was defined to be inves-
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tigated and the weather of the date of 20th of January of 2019 was chosen as the
reference weather. For this area and date, the parameters of liquid water content
concentration (LWCc in [gm-3]) and temperature in deg C are related as shown in
Fig. 7.12 if icing conditions are met.

Figure 7.12: LWCc and temperature distribution.

Figure 7.13: Mission case.

Operational Profiles

For the mission case, twelve different operational profiles (OP) were evaluated
as described below.
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Note that all the operational profiles start at 250 m of altitude, regardless of
the altitude of the take off spot. Therefore, it is assumed that before starting the
autopilot, the aircraft will be taken by the pilot to 250 m of altitude. Also, when
reaching the destination, the aircraft must be landed by the pilot. Take off and
landing maneuvers are not considered in this work.

The straight paths are assumed to have constant airspeed of 28 m/s, which is
around the value of the best cruise airspeed for the P31016.

• OP 01: Horizontal straight path between origin and destination, climbing to
a few meters above the highest peak, flying at constant altitude until close to
the destination, then descending until the destination. Evaluated under no
icing conditions.

• OP 02: Optimized path without considering icing conditions. Evaluated under
no icing conditions.

• OP 03: Optimized path considering icing conditions, using deice or anti-ice
(best option) when needed. Evaluated under no icing conditions.

• OP 04: Optimized path considering icing conditions, using only anti-ice when
needed. Evaluated under no icing conditions.

• OP 05: Horizontal straight path between origin and destination, climbing to
a few meters above the highest peak, flying at constant altitude until close to
the destination, then descending until the destination. Evaluated under icing
conditions, using deice or anti-ice (best option) when needed.

• OP 06: Optimized path without considering icing conditions. Evaluated under
icing conditions, using deice or anti-ice (best option) when needed.

• OP 07: Optimized path considering icing conditions, using deice or anti-ice
(best option) when needed. Evaluated under icing conditions, using deice or
anti-ice (best option) when needed.

• OP 08: Optimized path without considering icing conditions. Evaluated under
icing conditions, using only anti-ice when needed.

• OP 09: Horizontal straight path between origin and destination, climbing to
a few meters above the highest peak, flying at constant altitude until close to
the destination, then descending until the destination. Evaluated under icing
conditions, using only anti-ice when needed.

• OP 10: Optimized path considering icing conditions, using only anti-ice when
needed. Evaluated under icing conditions, using deice or anti-ice (best option)
when needed.

• OP 11: Optimized path considering icing conditions, using only anti-ice when
needed. Evaluated under icing conditions, using only anti-ice when needed.
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• OP 12: Optimized path considering icing conditions, using deice or anti-ice
(best option) when needed. Evaluated under icing conditions, using only anti-
ice when needed.

7.7 Results

Table 7.4 show the results for the mission case, where the sUAS flies from Old-
ervik to Bursfjord. In icing conditions, the operational profile seven has the lowest
battery energy consumption (7.05 Ah), as expected. Compared to the operational
profile one, which consumes 14.82 Ah of battery, it brings a reduction of 52.43 %
on the battery energy consumption. Also, in this mission case, if only the anti-ice
is used and the sUAS is flying straight (OP 09), the battery energy consumption
is equal to 20.54 Ah, almost three times more than the optimized path that both
deice and anti-ice are available. This is due to the absence of path optimization
and to the fact that the anti-ice system requires more power.

In addition, if the path is optimized without taking the ice into consideration,
the expected battery energy consumption is of 6.28 Ah (OP 02). However, if the
sUAS actually experiences icing conditions during this flight, the battery energy
consumption is of 10.74 Ah (OP 06), against 7.05 Ah when the path is optimized
taking into consideration the weather forecast (OP 07). Therefore, this shows the
importance of using the weather information to optimize the path.

Table 7.4: Mission case operational profiles results

Straight
Opt.

without
ice

Opt.
with

anti-ice

Opt.
with
deice

Eval.
with

anti-ice

Eval.
with
deice

Battery
Cons.
[Ah]

Length
[km]

Time
[min]

Length
in ice
[km]

Time
in ice
[min]

OP 01 x 8.08 91.47 44.68 0.00 0.00
OP 02 x 6.28 91.82 45.59 0.00 0.00
OP 03 x x 6.52 97.49 49.80 0.00 0.00
OP 04 x 6.65 94.84 50.36 0.00 0.00
OP 05 x x x 14.82 91.47 44.68 49.39 23.32
OP 06 x x x 10.74 91.82 45.59 34.89 16.27
OP 07 x x x x 7.05 97.49 49.80 3.90 1.96
OP 08 x x 14.32 91.82 45.59 34.89 16.27
OP 09 x x 20.54 91.47 44.68 49.39 23.32
OP 10 x x x 7.09 94.84 50.36 3.79 1.71
OP 11 x x 7.46 94.84 50.36 3.79 1.71
OP 12 x x x 7.48 97.49 49.80 3.90 1.96

All optimized paths were longer than the straight path. Also, the flight time
was slightly longer in all cases. This is due to the fact the optimization takes the
wind into consideration so it is able to change the path to find a better wind profile
and/or to change the airspeed accordingly. Therefore, the flight duration is longer
but the battery energy consumption is lower.

Figure 7.14 shows the straight path (OP 05) and Fig. 7.15 the optimized path
(OP 07) of the mission case. The paths are represented by the black line and
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the blue dots at ground level shows the projection of the paths in the latitude-
longitude planes. The red lines represent the terrain. It is possible to notice that
in the optimization (Fig. 7.15), the path is optimized both vertically and sideways,
so that the ice is avoided when possible by placing it under or above the icing
clouds (light blue dots). Also, when close to the destination, the descent maneuver
is started as soon as possible, so energy savings are enhanced.

Figure 7.14: Straight path.

Figure 7.15: Optimized path.

The two peaks on the battery consumption (Fig. 7.16) between 5 and 10 minutes
and between 35 and 40 minutes are due to the icing conditions. In the first moment
that the sUAS is flying under icing conditions, the power required by the deice
system is 477 W and the increase on the power required to propel the aircraft is
184 W, totalizing 661 W. The increase on the propulsion required power is due to
the drag coefficient penalty brought by the deice system. If the anti-ice solution
was used, where there is no penalty on the drag, the required power would be
around 1150 W. Therefore, the deice solution requires less power in total (deice
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system plus propulsion power). The predominance of the deice solution over the
anti-ice will repeat in almost every case investigated in this work. This is due to
the mission constrains and to the fact that, according to the deice and anti-ice
regression models used in this work, the anti-ice will only have an advantage in
maneuvers with high drag.

Figure 7.16: Battery Consumption.

Figure 7.17: Battery Discharged.

Finally, Fig. 7.18 shows the optimized airspeed along the path (OP 07). It is
possible to notice that the airspeed is kept around the known best cruise airspeed
of the aircraft, which is around 28 m/s.

It should be noted that several simplifications have been applied to some of
the simulation input of this study regarding the icing protection system and icing
effects that may have a significant influence on the overall results:

• No runback icing effects

• Simplified de-icing load calculation

• Simplified simulation of the aerodynamic degradation during de-icing

These simplifications were introduced in order to limit the amount of expensive
computational simulations. Since this work is focussing mostly on the path planning
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Figure 7.18: Airspeed of optimized path.

method, these simplifications were considered sufficient for this study. For future
work, a greater level of detail can easily be included to the required input data.

7.8 Conclusion

This chapter presented a path planning algorithm for small UAS equipped with
icing protection systems. An aircraft performance model was used to calculate the
power required to propel the aircraft. A battery model was also included in the
calculations to give a more precise battery consumption. The goal of the algorithm
was to find an optimum path that uses the least energy, taking into consideration
the atmospheric parameters, such as wind, liquid water content, relative humidity
and temperature of a given time. Climb/decent angles, airspeed and waypoints were
the optimization variables. The investigated mission case was to fly between two
towns in Northern Norway in a given date of the winter season. Twelve operational
profiles were compared and the proposed solution, that takes the icing conditions
into consideration when optimizing the path, achieved 52% of battery savings when
compared to the standard straight path, proving itself to be a very useful solution
for path planning in icing conditions. In addition, it was verified that, for the sUAS
used in this work, the deice solution will require less power to protect the sUAS
from icing in the majority of situations, compared to the anti-ice solution.
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Chapter 8

Concluding Remarks and
Recommendation for Future Work

In this thesis, real-time and off-line solutions for UAV path planning were de-
scribed and discussed. Each chapter describes the improvements of the previous
solution and a new application.

In part one, in the applications where the mission included a moving maritime
vessel, it was shown that the inclusion of the ship’s kinematic model in the Model
Predictive Control (MPC) optimal control problem (OCP) significantly increases
the system performance. Regarding the UAV kinematic model, the use of a coor-
dinated turn model, considering wind and where the control inputs corresponded
to the autopilot’s commanded controls, allowed the UAV to execute more agile
maneuvers and, consequently, achieve better performance. Therefore, this solution
was superior than the previous one where a simplified model was used and the
calculated waypoints fed to the autopilot control unit.

In addition, the Particle Swarm Optimization algorithm was implemented with
CUDA C programming language, which benefits from parallel computing and,
therefore, achieves faster convergence. This results in improved performance be-
cause MPC or optimization parameters such as number of horizon steps or number
of iterations can be increased. Also, integrating this algorithm to the DUNE frame-
work, which was used to make the interface between the MPC algorithm and the
Ardupilot autopilot control unit, was proven to be a suitable solution that simplifies
the implementation of UAV path planning applications.

Software-In-The-Loop (SITL) simulations were proven of fundamental impor-
tance when evaluating real-time path planning solutions. Challenges such as com-
munication delays, actuator limitations and interfacing may significantly impact
the results. Therefore, numerical simulations without proper SITL simulations
(where the UAV flight dynamics is also considered) may achieve results that are
far from what is expected from a real flight. SITL simulations have the objective
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to bring the results closer to reality, allowing a fairer evaluation.
Regarding the off-line path planning solutions for long range missions discussed

in the second part of this thesis, it was shown that planning the UAV mission by
taking the wind effects into consideration can significantly reduce the energy con-
sumption and, consequently, increase the mission endurance. In the path planning
algorithm, the aircraft aerodynamics model should be included in the cost-function
in order to achieve accurate estimations of performance. Also, to estimate the ex-
pected range of the UAV it is fundamental to consider the wind effects.

For UAVs equipped with electro-thermal icing protection systems, path plan-
ning can significantly reduce energy consumption. Also, finding quasi-three-dimensional
(multiple altitudes) paths, where the altitude can change along the path, is bene-
ficial to avoid operating under severe icing conditions or to mitigate the effects of
wind. In this kind of application, it is important to limit the optimization search
domain to the area above the ground by taking elevation maps into consideration.

The main activities of recommended future work are grouped as the following.

• Optimization algorithm improvements: Particle Swarm Optimization
(PSO) was the technique used for the optimization of both real-time and
off-line path planning. The algorithms were implemented with the feature
of parallel processing, in order to achieve faster convergence. However, it is
probably possible to reduce even more the computational time by optimizing
the algorithm implementation. Improvements such as structuring better the
memory sharing and using pointers and references are desirable, as well as
the conversion of floating point numbers into integers. The simplification or
approximation of computational expensive mathematical expressions, such
as trigonometric functions, also have the potential to significantly reduce
the processing time. One straightforward example is the Euclidean distance
that is used many times by all the solutions presented in this thesis and can
be replaced by taxicab distance, which results in a faster algorithm. Also,
modifications on the structure of the PSO as the ones proposed in recent
literature should be experimented. In addition, other optimization techniques
may be tested and their performance compared with PSO.

• Collision avoidance: In the real-time application, where multiple UAVs are
expected to be employed, a basic collision avoidance constraint was imple-
mented. This solution was an abrupt constraint that discards the solution if
the distance between the UAVs is smaller than the desired safe distance. It
may be beneficial to improve the collision avoidance constraint implement-
ing an algorithm that applies a smoother penalty which is proportional to
the distance between UAVs, such as potential field-based collision avoidance
solutions.

126



• DUNE’s maneuver integration: The real-time algorithms use DUNE to
get navigation state, suervisory control, and to send the control inputs to
the Ardupilot autopilot control unit. The off-line solutions assume that the
waypoints, airspeed and altitude will be manually fed to the mission planner
software. Both solutions work but are not ideal. To increase the operational
safety, it is necessary to integrate the solutions to DUNE’s plan management.
Therefore, the systems will be part of DUNE’s maneuvers list. This allows a
centralized control management and fast response in case of failures, as well
as correct logging and automatic start of contingency plans in case the UAV
has an unexpected behavior.

• Hardware-In-The-Loop simulations: When the embedded software is
ready and tested with Software-In-The-Loop simulations, it is considered im-
portant to test it in the UAV’s on-board hardware before a flight in order to
anticipate and correct any problems that would result in accidents or mal-
functions. The hardware should be configured and integrated as for a flight.
An on-board computer, such as the NVidia Jetson, should have the DUNE
software installed with the path planning algorithm. Also, additional sen-
sors, such as cameras, should be connected. This on-board computer should
be connected to the Ardupilot. Therefore, the network connections (and cor-
responding delays), interfacing, as well as sensors and actuators, are prepared
and can be tested. Also, different scenarios should be simulated and investi-
gated in order to evaluate the robustness of the solutions proposed.

• Field tests: Finally, after the Hardware-In-The-Loop simulations, the system
should be ready to be tested in field tests. In these field tests, the payload,
such as on-board computer and sensors, should be mounted on experimental
aircraft platforms. The performance of the system should be evaluated and
eventual corrections applied with the objective to achieve a reliable system
that can be used in future research and applications.
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Appendix A

Object Classification in Thermal
Images using Convolutional Neural
Networks for Search and Rescue
Missions with Unmanned Aerial
Systems

In recent years, the use of Unmanned Aerial Systems (UAS) has become com-
monplace in a wide variety of tasks due to their relatively low cost and ease of
operation. In this paper, we explore the use of UAS in maritime Search And Res-
cue (SAR) missions by using experimental data to detect and classify objects at
the sea surface. The objects are chosen as common objects present in maritime
SAR missions: a boat, a pallet, a human, and a buoy. The data consists of thermal
images and a Gaussian Mixture Model (GMM) is used to discriminate foreground
objects from the background. Then, bounding boxes containing the object are de-
fined and used to train a Convolutional Neural Network (CNN). The CNN achieves
the average accuracy of 92.5% when evaluating a testing dataset.

A.1 Introduction

Maritime Search and Rescue (SAR) operations are usually based on the drifting
trajectory, which is influenced by the water streams and winds. In such operations,
it is common to estimate the drift by deploying buoys with GPS sensors to transmit
their positions [73]. Since changes in the environment at the search region are
common, the search parameters might change many times during the mission,
leading to the necessity of the reconfiguration of the mission itself. The search is
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usually performed using manned aircraft and vessels and is limited by the costs,
the availability of human resources, and the mental and perception limitations of
the human operators. All these limitations impose that a method for automatic
classification of objects would be beneficial to the SAR mission as an additional
assistance to the operators, due to its ability to process multiple inputs at higher
speeds and with an invariable reliability rate, as it is not subject to exhaustion.

The use of Unmanned Aerial Systems (UAS) has grown rapidly, especially
because of their high endurance, reduced cost, rapid deployment and flexibility.
They also offers reduced risk for humans and impact on the environment com-
pared to manned aircraft. Therefore, intelligent autonomous UAS equipped with
image recognition capabilities to classify vessels, wrecks, people and objects pose
are well suited tools to assist maritime SAR operations.

In these missions, it is fundamental to identifying key objects in aerial images
using the techniques of object detection, classification and tracking. However, it
might be more challenging to solve these classic computer vision problems when
using UAS, especially because of real-time requirements and relatively fixed view
angles. Moreover, running computationally intensive algorithms, such as image
processing algorithms and deep neural networks with many filters and convolution
layers, can be an additional challenge due to UAS power consumption limitations,
and space and weight constraint for embedded hardware.

Leira et al. [91] used thermal camera images captured by UAS to detect, classify,
and track objects at the sea. The solution presented arises as a useful tool for SAR
operations. The object detection algorithm used relies on static filter parameters
and thresholds, which are determined manually a posteriori. The classifier used
is based on the object area, the average object thermal radiation, and its general
shape. However, there are a number of scenarios where this classification would
be challenging, e.g., when motion blur is present or when the object is moving
across an image with varying sensor intensity, which can be caused by an uneven
scene radiance or sensor noise. Therefore, a deep learning algorithm could be a
more effective tool for the object classification, since it can handle variations on
the images affected by environmental changes, as long as these effects are widely
present in the dataset.

Convolutional Neural Networks (CNN) are the state-of-the-art deep learning
tools for classification of images. Using convolution and pooling layers, it is possible
to efficiently extract the most relevant features of the images. Some works were
done with CNN and UAS, as in [128], where bounding boxes of images captured
by a camera mounted on a UAS at a high altitude were classified in real-time into
four classes: building, ground, tree and road. In [83], ground animals were detected
using CNN in aerial images captured by a camera mounted on a low-cost UAS in
Namibia and the step of object detection for bounding boxes prediction was also
explored in the work. Sea animals were detected in aerial images in [98], where the
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bounding boxes were defined by the confidence of each pixel of being the center of
a window containing a mammal and then a CNN is used to classify the images.
Regarding the use of CNN to classify objects in aerial images taken by a UAS in
maritime environments, a work was done by [30], where RGB images were used and
bounding boxes were classified into two classes: boat or notboat. SAR, CNN and
UAS are used together in [14], where near real-time object detection was performed
by a UAS for avalanche SAR missions. A pre-trained CNN did the object detection
and a Support Vector Machine (SVM) was used to classify the proposed human
bodies. All of these works were done using datasets of RGB images, but there are
also some works using CNN with thermal images, as in [76], to monitor machine
health and in [80], to detect pedestrians. However, there were not found works using
CNN to classify objects at the sea in aerial thermal imagery and this is particularly
important in night time low visibility SAR operations.

In this paper, a CNN is trained to classify boats, buoys, people and pallets
in images captured by a thermal camera mounted on a fixed-wing UAS. The fore-
ground objects were detected by modeling the background as a mixture of Gaussian
distributions and subtracting the foreground [136]. This method is computation-
ally cheaper than other object proposal methods such as sliding windows [111] or
selective search [147] because it is particularly suitable for thermal images at the
sea, as there are two modes present in the distribution: the radiance reflected from
the sky, and the heat emitted from the sea [19]. Subsequently a window was fitted
around the objects and padded to ensure that the full objects were included in
the window. One other novelty brought by this study is the use of the estimated
observed area as an extra feature in the fully connected layer of the CNN.

A.2 Dataset

The dataset consists of images captured by a thermal camera mounted on a
fixed-wing UAS. The thermal camera used is a FLIR Tau2, which provides analogue
video data at a 640 × 512 pixels resolution. The lens has a focal length of 19 mm,
which produces a 32◦ × 26◦ angle of view. The analogue video data is converted
to digital using a 16 bit analogue-to-digital converter. In order to create 8 bit
images, the 16 bit images are normalized between 0 and 255 for the smallest and
largest intensity in the full dataset. The UAS was also equipped with an Inertial
Measurement Unit (IMU) and Global Navigation Satellite System (GNSS) unit, in
order to find the surface area of the objects in the images (see section A.2.3).

Four different objects were placed in the ocean: a 26 feet boat, an euro pallet,
a human wearing an immersion suit, and a buoy with a 60 cm diameter. The ob-
jects are chosen as common objects present in maritime SAR missions, where e.g.
pallets are a common object to search for when trying to locate fish aggregating
devices. The objects can be seen in higher resolution visual light camera images
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in figure A.1. The human varied between different actions during the experiment:
floating horizontally on the surface (creating a large, long surface), swimming (cre-
ating a medium sized surface varying in shape), and standing vertically (creating
a small surface, down to 20 cm across).

Figure A.1: The different objects present in the scene, as captured by a higher
resolution, visual light camera. Top: boat and pallet, bottom left: human, bottom
right: buoy. The images were captured at different altitudes.

The total dataset consists of around 22,000 images that were captured during
a time span of 50 minutes. The objects were only fully inside in the camera field of
view in a limited subset of the full dataset, leading to a smaller number of images
used in the CNN.

Various imperfections were present in the images. Several images contain motion
blur caused by the dynamics of the UAS. This effect is minor for larger objects
such as the boat, however for smaller objects such as a human head sticking out
from the water, it can greatly affect the shape, size, and intensity of the object.
See figure A.2 for an example of how motion blur changes the object size and
dimensions. The pixel intensity is also varying throughout each image, which makes
the same object take on intensities between 97 to 110 in an example 8 bit image
sequence. This might be caused by noise in the uncooled thermal image sensor,
internal camera intensity calibrations, or varying scene radiance. The background
varies between 81 and 98 in the same image sequence. See figure A.3 for an average
of all images without objects, where the intensity variation can be seen.

In order to find the objects in the images and label them, their boundaries were
first found (section A.2.1). The objects were then automatically labeled based on
the physical area of the boundary (see section A.2.1 for definition of the physical
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Figure A.2: The same object (human) without motion blur (left) and with motion
blur (right). The shape, size, and intensity is greatly affected.

Figure A.3: The mean image without any objects, with its intensity stretched to
show the varying image intensity.

area) and finally manually corrected (section A.2.2). The number of labeled objects
in the dataset used in the CNN is summarized in table A.1.

Table A.1: Number of labeled objects in the dataset

Boats 620

Pallets 739

Humans 313

Buoys 276

A.2.1 Bounding Boxes

In order to discriminate the foreground objects from the background in the im-
ages, the background pixels were modeled using an adaptive background Gaussian
Mixture Model (GMM) [136]. The GMM provides robust foreground segmentation
and is suitable for thermal images at the sea since there are two modes present in
the distribution: the radiance reflected from the sky, and the heat emitted from the
sea. It can also model the varying sensor noise, but might fail when the thermal
camera is performing sudden noise corrections. The algorithm was implemented
using the Background Subtraction Library [132]. A study by Borghgraef et al. [19]
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showed that more advanced algorithms, such as ViBe and the behaviour subtrac-
tion algorithm, outperformed the GMM for detecting objects at the sea surface in
thermal images. However, this was for a static camera at a highly slant angle, which
means that the study is not completely applicable to the scenario of this paper.
For this application, the GMM is chosen as a good balance between robustness and
simplicity. The bounding box was then defined as the smallest box that encloses
the boundary of the object. The bounding boxes of all objects were then padded
to the size of the largest bounding box found in the dataset. See figure A.4 for a
sample boundary and bounding box.

Figure A.4: The border around the extracted foreground object (red), and the
bounding box (green).

A.2.2 Labeling

In order to use the extracted foreground objects in the supervised learning
algorithm, each object needs to be properly labeled. The objects were first assigned
one of three labels based on their observed area in square meters (see section A.2.3)
- boat, pallet, or human/buoy. Each label was then manually verified and adjusted
if deemed incorrect.

Due to the low ground resolution and their similar dimensions, discriminating
humans from buoys was not possible only using the size as a criterion or by looking
at individual images due to the varying shapes of the human and other effects, e.g.,
motion blur. A manual classification was therefore done by analyzing the shape of
each object appearing in a sequence of images, taking into consideration that the
buoy is completely round while the human has a more elliptical and varying shape.
See figures A.5 and A.6 for examples with a boat, a pallet, a human, and a buoy
in the images.
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Figure A.5: The different objects which were labeled. Top left: boat, top right:
pallet, bottom left: human, bottom right: buoy. The images are scaled to show
more detail.

Figure A.6: Objects in a different color map, in order to aid in manually discrim-
inating humans from buoys. Top left: boat, top right: pallet, bottom left: human,
bottom right: buoy.
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A.2.3 Object Area

The observed area of each object in square meters is used as an extra feature
in the fully connected layer of the CNN. The real observed area is defined as the
area of the object as seen by the camera, when projected at the plane spanning
the North and East axes (NE-plane) at an altitude of zero (D = 0). See figure A.7
for a visual description of the observed area of an object.

Figure A.7: The observed length, l, of an object. The observed area is the corre-
sponding feature in two dimensions.

The pinhole camera model [114] is used to calculate the observed area of the
boundary of each object. First, the observed area of the center pixel within the
boundary is calculated, which is then multiplied by the number of pixels within
the boundary. In order to perform these calculations, it is necessary to know the
roll and pitch angles and altitude of the camera. This data is obtained from the
IMU and GNSS data, and is represented in the form of the extrinsic camera matrix.
The intrinsic matrix is calculated from the camera specification. No lens distortion
is considered – due to the relatively small angle of view of the lens, the distortion
will likely be low and not affect the results in a significant way.

The observed area distributions for each object is shown in figure A.8. It can
be seen that boats and pallets can be almost completely classified based on their
observed area (with minor overlap between pallets and humans), while there are
major overlaps between humans and buoys. This is however an artifact of this
dataset – in other datasets, buoys and boats can take on a variety of sizes. As
previously mentioned, humans can take on a wide variety of sizes due to the different
poses.

The real observed area of a buoy with a diameter of 60 cm should be 0.28 m2. As
can be seen in figure A.8, the area is biased towards higher values. One reason for
this is that a 60 cm circle can appear in 16 pixels (figure A.9), when the observed
area of each pixel is 17.9 cm – which is the case when flying at an altitude of 200 m
with no roll or pitch using the camera system used in the experiment performed.
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Figure A.8: Distribution of observed areas for the objects present. From top to
bottom: boats, pallets, humans, buoys.

This gives an observed area of 0.52 m2. Additionally, the motion blur causes the
object to appear larger than it really is.

Figure A.9: A buoy with a diameter of 60 cm can appear in 16 pixels, when the
observed width and height of each pixel is 17.9 cm.

A.3 Convolutional Neural Network

Traditionally, supervised learning based image analysis combines feature ex-
traction with classical machine learning methods [149]. Convolutional Neural Net-
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Figure A.10: CNN architecture. If the Estimated Object Area is used, one more
element is added in the flatten layer, resulting in an output of 3.376 elements.

work (CNN) is an alternative trend for image classification that has been proven
to produce high accuracy in image classification tasks [39] without requiring any
task-specific feature engineering [103]. It is considered the most successful machine
learning model in recent years [90] and the most eminent method in computer
vision [27], in part because it consists of a powerful image feature extractor [16].

A CNN is based on neuroscience research about the processes that mammalian
visual cortex uses to recognize images [49]. Typically several basic stages compose a
CNN. Each stage consists of concatenation of convolution, normalization, activation
(nonlinear), and pooling layers [151]. In this work, two distinct architectures were
used. The difference between them was the employment of the observed object area
as an input of the fully connected layer.

A.3.1 Architecture

Regarding the architecture (see Figure A.10), the proposed network starts with
an input layer containing the image window. This layer is followed by the convo-
lution layer which produces 30 feature maps from filters of size 5×5. The convolu-
tional layer has a set of learnable filters called kernels. By the convolution between
one kernel and a chunk of values from the layer, a feature map is generated, which
consists of a presence representation of a specific feature in the image. The next
layer is a max pooling with a filter of size 2×2, whose purpose is extracting the
hierarchical features of the input image [94]. It works by mapping the bigger value
from a 2×2 chunk to only one value in the next layer. Pooling helps to make the
representation approximately invariant to small translations of the input [49]. This
function is also responsible for reducing the width and the height of the feature
map. Reducing this dimension, the computational demand is reduced due to the
reduction of the number of parameters, which helps to avoid over-fitting. Then, it
comes another convolution layer with 15 feature maps of size 3×3, and finally one
more max pooling layer composed by 2×2 filters.
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The next layer is a flatten layer used to adjust the tensor dimensions to the
fully connected layers. At this point, the two architectures become different. One
network has the estimated object size as an input and the other one does not. Then,
it follows 2 fully connected layers composed respectively by 128 and 50 neurons
using the rectifier activation function. The last fully connected layer is used to
provide the predicted classification, using the softmax activation function. This is
the most common solution for the regulation of the output values within the range
from 0 to 1 [93], which assigns a multinomial probability distribution to the output
vector [162]. It enhances the discriminative modeling power of the CNN, providing
the probability of the input to belong to each possible class, namely: boat, buoys,
human or pallet.

A.3.2 Dropout

One technique widely used to improve the performance and avoid the over-
fitting (which is often a serious problem for a CNN [161]) is the dropout. The term
“dropout” refers to dropping out units (hidden and visible) in a neural network
during the training phase. By dropping a unit out, it means temporarily removing
it from the network in the current epoch, along with all its incoming and outgoing
connections [135].

The dropout parameter controlled in this paper was the independent probability
of deactivating a neuron. This parameter was tested with 2 values: 0.2 and 0.5.

A.3.3 Cross-validation

In order to evaluate the generalization capacity of the classifiers, it is preferable
that the dataset used in the evaluation process is different from the one used
during the training process. Typically, the formation of the training and test set
is based on non-repetitive sampling techniques, such as the k-fold cross validation
method [122]. Cross-validation is a robust statistical technique for estimating the
true risk function [4] (or the generalization error), the most important operational
performance metric of a trained network [82].

In this paper, the database is divided into five sets of equal size. During each
execution of the algorithm, one set is chosen to be excluded in the training phase,
which will be the corresponding test set. This process is repeated five times, and
the performance metric is inferred for each of the datasets that were left out of the
training process. The value of the overall performance metric will be defined by
the average of the values obtained for each of the five executions.
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A.3.4 Stopping criterion

In the neural network training phase, a stopping criterion has to be used to
stop the training of the neural network. To ensure that the training was stopped in
a way to provide an appropriate generalization, a validation based early stopping
is used in this work [113]. A small part of the training dataset is sorted out to
be used as a validation set. At each epoch, the performance index is evaluated for
the new training set and for the validation set. When the performance metric of
the validation set stops to decrease, i.e., when the training starts to over-fit, the
training is stopped.

A.4 Results

After testing the convergence for different parameters, the first CNN was chosen
and trained for the 5-folds of images in 8 bit format, without taking into consider-
ation the estimated size of the objects. The maximum number of epochs was 500
and the early stopping was set to stop the training after 50 validation evaluations
without improvements. The validation split was 0.18 and dropout was 0.50. After
doing 10 executions to get an indicative statistical performance, the average ac-
curacy was 92.0% with 0.50% of standard deviation. This result shows that the
configuration of the training algorithm was well set, so that the performances of
all executions for all folds were similar.

Figure A.11: Accuracy for different configurations.

When using the estimated objects size as an extra input of the fully connected
layer, the resulted accuracy is higher as shown in figure A.11 for 8 bit and 16 bit
images, achieving 92.5% and 92.1% of accuracy, respectively. Regarding the clas-
sification, it is possible to notice that classifying between buoys and humans is a
challenge as seen in the Confusion Matrix (table A.2). However, the use of the es-
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timated object size helps the CNN to get better results (table A.3). When looking
to the Confusion Matrix for buoys, there are fewer cases when the buoy is classified
as a human. There is even a case of a boat being classified as a pallet when the
estimated object size was not used (table A.2).

Figure A.12: Probability that a human is either a human (blue) or buoy (red).

Figure A.13: Probability that a buoy is either a human (blue) or buoy (red).

The ability of the CNN to classify humans vs. buoys is further investigated in
figures A.12 and A.13, where the probability of each human and buoy test sample
being either a human or a buoy are shown. In the humans samples, it is possible
to notice that it is easier for the CNN to differentiate them from buoys. However,
when analyzing the classification probabilities of the buoys samples, it shows that
it is very challenging to the CNN to decide if it is a buoy or a human.

Regarding the comparison of the performance between 8 and 16 bit images,
even with the fact that the 16 bit images have more detail, the accuracy was
sightly higher for the configuration with 8 bit images. This might be caused by the
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reduction of noise when reducing the bit depth, e.g., small intensity variations in
the sea surface.

Table A.2: Confusion Matrix for 8 bit images without using object size.

Predicted
Boat Human Buoy Pallet

True

Boat 128 0 0 1
Human 0 36 18 0
Buoy 0 15 45 1
Pallet 0 0 1 145

Table A.3: Confusion Matrix for 8 bit images using object size.

Predicted
Boat Human Buoy Pallet

True

Boat 114 0 0 0
Human 0 41 13 0
Buoy 0 7 64 0
Pallet 0 0 1 150

Images of three vessels from a different dataset (Figure A.14) were used to
evaluate the performance of the CNNs.

The observed areas of the vessels were estimated and chosen to be 200 m2, 25
m2 and 10 m2 for the big, medium and small boat, respectively.

When using the CNN where the observed area is not used, all the three sam-
ples achieved 100% of probability of being a boat. Regarding the CNN where the
observed area is used as an input, the big and medium vessel achieved 100% of
probability of being a boat and the small vessel was classified as a pallet.

Figure A.14: Images of vessels from an external dataset. Top left: big vessel, top
right: medium vessel, bottom: small vessel.
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A.5 Discussion

To obtain the images of the objects, the bounding boxes were defined as the
smallest box that encloses the boundary of the object. Then, the bounding boxes of
all objects were padded to the size of the largest bounding box found for the set of
objects of the same class. However, in the SAR mission, it is not possible to know
the class of the object a priori, therefore, another strategy need to be used to define
the bounding boxes. One solution could be to define a specific number of pixels
pad the boundaries of the detected object with, to ensure that the whole object
will be inside the bounding box. This number of pixels should be defined by the
altitude of the UAS when the image is being captured and also the estimated size
of the object. Thus, effects by the distance to the scene would also be mitigated.

The observed area, as well as its appearance in the thermal images, are greatly
affected by motion blur. For larger objects this does not pose a major problem, but
for objects being just a few pixels in size, the difference can be of major concern.
An actively stabilized gimbal and carefully chosen exposure times based on the
UAS dynamics could prevent this. Another mitigating solution would be to collect
a larger dataset in order to be able to properly classify objects even with motion
blur.

The major difficulty of the CNN is to properly distinguish between humans
and buoys, which is likely due to the low resolution of the thermal image sensor
and relative high altitude, resulting in the objects being represented by very few
pixels in the images. In real world maritime SAR missions, however, a buoy being
classified as a human would not be a major issue, as the operator would still be
notified, and could dismiss the notification from the CNN. Incorrectly classifying
a human as a buoy could potentially cause a missed person, but could be solved
by lowering the human probability threshold for notifying the operator.

In the dataset used in this work, all boat samples have similar observed areas.
Therefore, when evaluating the classification performance for images of vessels from
an external dataset, the result was superior when using the CNN where the object
area was not considered as an input. However, the generalization power of the
CNN containing the observed area can be improved by using a dataset with more
samples of boats of different sizes. Also, in general, it is beneficial to have more
data, especially at different angles and altitudes.

A.6 Future Work

In the mission carried out to gather the data used for this work, an Electro-
Optical (EO) camera was also equipped in the UAS to capture RGB images. How-
ever, the thermal and the RGB images were not obtained during the same flight,
so it is not possible to use the two images together as inputs of the same CNN.
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Therefore, a future step is to develop a CNN to classify the objects in the RGB
images, as done by [30]. Then, investigating a method to use both datasets together,
for example, trying to use the results of each independent CNN multiplying the
probability of each sample to be one of the classes.

For the CNN proposed by this work, the classification of images of vessels
obtained in another mission in totally different conditions was evaluated. However,
it is important to evaluate the classification for images of humans, buoys and pallets
as well. Thus, it would be possible to estimate how well the CNN could perform in
a real mission.

Another aspect that requires evaluation is how to improve the discrimination
between humans and buoys, especially in the case of buoys, where the calculated
probability of a buoy sample being a buoy is very close to the probability of being
a human. Examples of this approach would be to use an actively stabilized and
sweeping gimbal together with a lens with higher focal length, in order to get a
higher ground resolution.

A.7 Conclusion

In this paper, the algorithm for detecting and classifying objects at the sea
surface in thermal camera images taken by Unmanned Aerial Systems (UAS) has
been discussed. The algorithm uses a Gaussian Mixture Model (GMM) in order to
discriminate foreground objects from the background in the images. Then, bound-
ing boxes around the objects are defined and used to train and test a Convolutional
Neural Network (CNN). The observed area of the objects was also estimated and
used as an input. The CNN was evaluated using the k-fold method with 5 folds
and achieved an average of 92.5% of accuracy. Images of vessels from an external
dataset were also evaluated and all of them achieved 100% of probability of being
a boat when using the CNN where the observed area was not used. The results and
the robustness of the CNN algorithm prove it to be a useful tool to assist maritime
SAR operations, and be a central part in a future fully autonomous UAS operation
in SAR missions.
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Particle Swarm Optimization

Particle Swarm Optimization (PSO) [35] is a technique that uses a population
of solutions that explores the hyperspace of a problem at a defined speed, which
is adjusted according to the best individual historical solution pbest, and with the
best historical global solution gbest. This evaluation is performed by calculating
the cost function. Calculating the cost function according to the position of the
particle makes it possible to identify whether the new position is better than that
previously occupied by the particle. Thus, at each iteration a new velocity, i.e.,
the movement in the domain space, is adjusted as a function of pbest and gbest.
This is done so that each particle explores the hyperspace optimally, as it takes
into consideration the historical performance of the population. This procedure is
illustrated in figure B.1. Through this method the movement of each particle is
considered to naturally evolve into the optimal (solution) position.

Figure B.1: Behavior of two particles in an arbitrary two-dimensional space

This technique is notable for its simplicity as the behavior of each particle, and
therefore the set of presumed solutions, is defined by only two iterative equations.
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These determine the position xni and velocity vni of the particle i at time n, resulting
in:

v
(n+1)
i = vni + c1 r1(pbesti

n − xni )

+ c2 r2(gbestg
n − xni )

(B.1)

x
(n+1)
i = xni + v

(n+1)
i (B.2)

where c1 and c2 are called “acceleration coefficients”, which are related to the
local and global portion, respectively; and with r1 and r2 representing the stochastic
factor of these accelerations. These are usually chosen as a uniformly distributed
random value between 0 and 1.

The PSO algorithm corresponds to the pseudocode shown in Algorithm 1:

Algorithm 1 PSO
1: Initialize a swarm with random positions and velocities
2: while Stop criteria is not satisfied do
3: for Each particle i do
4: Calculate the new velocity
5: Update the position
6: Evaluate the cost function f(xi)
7: if f(xi) < f(pbesti) then
8: pbesti ← xi
9: end if

10: if f(xi) < f(gbestg) then
11: gbestg ← xi
12: end if
13: end for
14: end while

Several authors proposed modifications to the basic algorithm. In this study two
small modifications proposed by the original creators of the algorithm are adopted;
position and velocity boundary constraints as described in [37], and linear inertia
weight as described in [36].

The PSO algorithm evolves by updating the particle position for each iteration
in relation to the velocity vector. Such updates have stochastic gains, where it
is undesirable that the particles move uncontrollably. A particle that has a high
velocity in relation to the total domain size, may eventually jump to a distant
point inside the domain. This results in the particle no longer performing a minutely
search for the optimum. To avoid this problem, the concept of position and velocity
constraints was developed.

Another fundamental strategy is to limit the search domain in relation to the
optimization problem in question. To prevent the particle from exploring distant

148



regions away from the region that has the optimal solution, or to prevent from
bringing solutions outside the problem domain.

Here the basic idea is to avoid for the particle to leave the domain where the
optimal solution resides.

The constraints can be implemented through:

vi =


Vmax if vi > Vmax

−Vmax if vi < −Vmax
vi otherwise

(B.3)

The following conditions are added to the algorithm:

xi =


Xmax if xi > Xmax

Xmin if xi < Xmin

xi otherwise

(B.4)

The final modification is to permit a better control of the search domain. The
inertia weight, indicated in the following equation as wn, is applied to the current
velocity vni , during the process of calculating the new velocity of the particle:

v
(n+1)
i = wnvni + c1 r1(pbesti

n − xni )

+ c2 r2(gbestg
n − xni )

(B.5)

When a constant value is chosen for the inertia weight, high values imply high
velocities, which can make the particle to traverse the entire search domain more
quickly; while low values slow down, limiting the search domain of the particle to
its neighborhood. Initially, a constant value was proposed for the inertia weight.
However, proposals of dynamic values that varied linearly appeared later.

In this specific case the consensus is that initially it is more convenient for the
particle to have a global search power, and only afterwards perform a more local
exploration. In the linear inertia weight, if N is the maximum number of iterations,
nd wini and wfin are the values of the initial and final inertia weight, the inertia
weight for the iteration n is determined by:

wn = (wini − wfin)
(N − n)

N
+ wfin (B.6)
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