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Abstract

The primary focus of the work performed and summarized in this thesis
was to understand and improve anaerobic fermentation of lignocellulosic
sugars for butanol production by Clostridia. Experimental studies form the
basis for systematic data collection for modeling. The secondary focus of
the thesis was to develop a model for fermentative butanol production from
lignocelluosic sugars. The tertiary focus was to investigate all fermentation
variables and performance indicators with exploration of the interdepend-
encies. This thesis accommodated these focuses.

First, fermentation variables including typical operating conditions and per-
formance indicators were identified by collecting literature data. Explorat-
ory data analysis of the variables provided a holistic overview of the process
to demonstrate their significance and interconnectedness.

Initial fermentation experiments were done with different lignocellulosic
sugar ratios at different scales i.e. serum flaks and microbioreactors. Res-
ults showed that sugar ratio had a profound impact on the fermentation
kinetics, and serum flask setup was more beneficial in terms of stability of
operation and sample collection.

Next, the effect of different pre-growth conditions on fermentation perform-
ance was explored by using different sugar ratios. Culture pre-grown on
xylose as the sole sugar shows a better performance than culture pre-grown
on a mixture of glucose and xylose in bench-scale bioreactors, and this
strategy was used in the next experiments.

A model for Clostridial growth on mixtures of lignocellulosic sugars was de-
veloped first, which included the noncompetitive inhibition between them.
By using this growth model, fermentative butanol production from ligno-
cellulosic sugars was modelled. The model was validated with extra ex-
perimental data, and a sensitivity analysis was performed to gain better
understanding of the model parameters.
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Chapter 1

Introduction

In this chapter, the motivation and the scope for this PhD work are stated,
and contents are put into perspective. Thesis overview together with con-
tributions and publications are presented.

1.1 Motivation

Production of chemicals via biological routes from renewable feedstock
has been gaining interest as substitutes or complements to chemicals pro-
duced via petro-chemical routes to address environmental issues and sus-
tainability concerns. Butanol is a promising green chemical, which can be
produced from renewable sources by fermentation using microorganisms,
and used as a biofuel, or a building block for synthesis of other high value
green chemicals. One of the main objectives of research and development in
the bioprocess industry producing butanol is to establish economically vi-
able and sustainable operation by improving product yield, selectivity and
conversion efficiency. Historically, the most common measures to achieve
these have been strain development, and optimization of the fermentation
medium and operating conditions such as temperature, pH and feeding rate.
However, recent advancements in the field have addressed more specific re-
search needs, which are categorized and explained in the following sections.

1.1.1 Need for a Holistic Approach

Fermentation is a complex process, which involves numerous reactions,
metabolic products, genes, enzymes, metabolic switching mechanisms with
interconnections between them and dependence on environmental/operating

1



2 Chapter 1. Introduction

conditions. Recent advances in biotechnology have created opportunities
to understand this vastly complex process. However, there is room for
discovery and understanding of undetected and unidentified characteristics.
Therefore, it is crucial to have a holistic view of all fermentation variables
as well as to map out interdependencies between them so that fermentation
process design can be improved with this additional information.

1.1.2 Scalability Issues

Most of the experimental work for research and development takes place
in scales smaller than industrial scale of fermentation applications to save
time, energy and material cost. Typically, fermentation process design starts
in milliliter scale i.e. serum or shake flasks to test as many operating condi-
tions as possible within the scope of the research. Then, fermentations are
done in lab-scale bioreactors (1-10 liters) under the pre-selected conditions.
Finally, the design is fine-tuned in pilot scale bioreactors before moving to-
wards an industrial scale application. This work flow requires benchmarking
to gain insight into scalability and to have a smoother design process when
changing scales of application.

1.1.3 Co-utilization of Lignocellulosic Sugars

Fermentation substrate has the greatest share in all costs of fermentative
butanol production processes accounting for 66% of all [ ]. To tackle this
problem, many feedstock alternatives have been studied [ ] and lignocel-
lulosic biomass is among them because, it is the most abundant renewable
biomass resource, and it circumvents the direct fuel-versus-food competition
compared to e.g. corn and sugar cane in biofuel production. Hydrolysis of
lignocelluosic biomass yields a mixture of pentoses and hexoses, which are
fermented to butanol and by-products by the microorganisms. Full exploit-
ation of all sugars bound in lignocellulosic biomass is necessary to decrease
the substrate costs. However, mixed sugar fermentation studies are limited,
and there is need for better understanding of this process.

1.1.4 Need for Simple Models

A wide variety of model structures has been proposed to describe fer-
mentative butanol production. They serve different purposes, consequently
require and produce different kinds of information/data. The most detailed
models can provide the largest information volume; however, their indus-
trial applications can be limited due to high complexity level. In addition,
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the majority of models is only valid under certain process conditions and
regimes. Therefore, it is important to develop models, which are simple to
use, easy to interpret and applicable in wider operating conditions.

1.2 Scope

In the work underlying this thesis, the focus was to gain understanding
of lignocellulosic sugar fermentation for butanol production and to propose
a feeding strategy for achieving co-utilization of sugars. The scope also cov-
ers model development to describe the main characteristics of the process.
The modeling studies involve the growth model and the butanol production
model establishments together with sensitivity analysis of the model para-
meters and model validation with extra experimental data. The scope of
this thesis also includes analysis and investigation of all fermentation vari-
ables, definition and calculation of performance indicators, and exploration
of interconnectedness between all variables and indicators. Hence, the thesis
work includes and connects both experiments and modeling/simulation.

1.3 Basic Definitions

Basic definitions of the most common terms used in this thesis are
provided below for communication purposes and precision.

Process is a natural, progressively continuing operation or development
marked by a series of gradual changes that succeed one another in a relat-
ively fixed way and lead toward a particular results or end.

Fermentation is the anaerobic process of chemical breakdown of a sub-
stance by bacteria, yeasts, or other microorganisms. In the thesis, conver-
sion of sugars to butanol is called as fermentative butanol production.

Fermentation variable is an element, feature, or factor that can vary
or change in a fermentation process. Operating conditions are input vari-
ables, which can be changed by the user. In this thesis, sugar concentrations,
compositions or ratios are the input variables, and independent variables are
measured/observed concentrations of sugars, products and cell mass. In this
thesis, fermentation performance indicators such as substrate utilization and
product yield are also referred to as fermentation variables.

Biomass in this thesis refers to the biological feedstock converted to
products by microorganisms. The term “biomass” is used interchangeably
with “cell mass” in literature; however, they are hereby defined separately.
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Substrate is defined as the surface or material on or from which an
organism lives, grows, or obtains its nourishment. In the context of this
thesis, lignocellulosic biomass and sugars, glucose and xylose, and other
sugars are all referred to as substrate.

Coefficient is a factor that measures a particular property under cer-
tain conditions such as temperature, volume or a particular experimental
setup. In the context of this thesis, kinetic coefficients are calculated using
experimental data and employed as performance indicators of fermentation.
Butanol yield, substrate utilization and growth rate are the mostly used
coefficients in this thesis.

Model is broadly defined as something that mimics the behaviour of
something else . In this thesis, a model is used to refer to a set of mathem-
atical equations, which describes the changes in fermentation variables in
terms of input-output relationships.

Parameter is a quantity whose value is selected for the particular cir-
cumstances and in relation to which other variable quantities may be ex-
pressed. In this thesis, parameters are estimated using experimental data,
which are included in the models for cell mass growth and butanol produc-
tion.

1.4 Thesis Overview

The thesis summarizes the content of 6 separate scientific articles on
experimental and modeling studies of fermentative butanol production from
lignocellulosic sugars. The chapter sequence has been organized to reflect
the knowledge flow starting from overview of the process, and focusing on
a specific problem, and then experimental and modeling studies targeted to
the particular problem.

Chapter 2 provides a literature review on fermentative butanol produc-
tion processes with its main challenges and possible solutions to overcome
those. Properties and main application areas of butanol as a renewable
chemical and biofuel are explained together with a history of the process.
Different types of models describing fermentative butanol production are
reviewed with corresponding application areas of those models with a focus
on unstructured models.

Chapter 3 starts with identification and definition of fermentation vari-
ables, which includes typical operating conditions as well as indicators of
the process performance. Exploratory data analysis of the fermentation
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variables provides a holistic overview of the process to illustrate their signi-
ficance and interconnectedness. Insights and results from the data analysis
were used in design of the experiments in the following chapters.

Chapter 4 presents experimental results of fermentative butanol pro-
duction from lignocellulosic sugars and at different sugar ratios and per-
formed at different scales i.e. in serum flasks and microbioreactors. Com-
parative analysis of the fermentation kinetics showed that the sugar ratio
has a profound impact on the cell mass growth, consequently on butanol
production. Experiments were done in serum flasks and bench-scale fer-
menters in the subsequent chapters due to ease in offline data collection and
analysis, and robust operation.

Chapter 5 explores the effect of pre-growth conditions on fermentation
performance. Fed-batch fermenters inoculated with cultures pre-grown on
xylose and glucose were fed with different mixtures of the two sugars. The
fermenter started with the culture pre-grown on xylose as the sole sugar
showed a better performance. Consequently, this strategy was used in the
following chapters.

Chapter 6 consists of two steps for modeling the growth on mixtures
of glucose and xylose. First, response surface methodology was followed by
performing designed experiments and then fitting the experimental obser-
vations to a quadratic and interactive model. The statistical test showed
that the interaction between the sugars was significant, thus an interact-
ive growth model structure should be chosen. Secondly, binary substrate
growth models with different types of interactions were fitted with experi-
mental data, and the model with noncompetitive inhibition gave the best
fit. Growth model was chosen and used in the following chapter.

Chapter 7 focuses on modeling work for fermentative butanol produc-
tion to describe the process as well as to illustrate the effect of different
pre-growth conditions. Modeling approach and assumptions were presen-
ted together with the model equations. The proposed model described the
cell mass growth, glucose and xylose utilizations and butanol formation re-
flecting the major characteristics of the process i.e. substrate and butanol
inhibitions. Model validation was done by employing 4 extra experimental
datasets as well as literature data. Sensitivity analysis on model parameters
was done to gain better insight into the process.

Chapter 8 concludes this thesis with a summary of its contents, and
provides suggestions and guidelines for possible future research.

Appendix presents the materials and methods used in the thesis. Mi-



6 Chapter 1. Introduction

croorganism, medium components and compositions, growth conditions and
experimental techniques, analytical methods, statistical methods, calcula-
tion of fermentation coefficients and estimation of model parameters, model
accuracy measures and sensitivity analysis are given.
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Chapter 2

Literature Review

This chapter provides a literature review on fermentative butanol produc-
tion from lignocellulosic biomass and sugars together with its main chal-
lenges and possible solutions to overcome those. Properties and common
application areas of butanol and its isomers as green chemicals and biofuels
are explained with a history of the fermentative production process. This
chapter also summarizes different types of models describing the process
with their applications, focusing on unstructured models as they are used
in this thesis. Contents of this chapter were partly covered in .

2.1 Butanol as a Promising Renewable Chemical

Chemicals and fuels from renewable resources have gained global in-
terest due to raising global warming and climate change concerns, volatility
of oil price and supply, and legal restrictions on the use of nonrenewable
resources [ ]. Butanol has a 4-carbon structure and its isomers can present
straight-chain or branched structures. Different structures and positions of
the –OH and the carbon chain lead to different properties and used for clas-
sification of the butanol isomers [ ]. An overview of butanol isomers and
their application areas can be seen in Table [ , ].

Common application areas of butanol isomers are similar, and the ap-
plication as a solvent is predominant as well as the use as a gasoline additive.
Throughout the thesis, n-butanol is referred to as butanol for simplicity reas-
ons. The physical properties of butanol in comparison with other biofuels,
gasoline and diesel can be found in Table [ , ].

9
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Table 2.1: Butanol isomers and their applications areas.

Isomer Formula Application areas

OH

� Solvent (paint industry)
1-butanol � Plasticizer (plastics industry)
(n-butanol) � Hydraulic brake fluid

� Cosmetics
� Gasoline additive and alternative

OH � Solvent (several industries)
2-butanol � Domestic cleaning agent

� Industrial cleaner
� Paint remover
� Perfumes and artificial flavours

OH

� Solvent and additive (paint industry)
iso-butanol � Industrial cleaner

� Paint remover
� Ink ingredient
� Gasoline additive

OH � Solvent
tert � Industrial cleaner and paint remover
-butanol � Intermediate for MTBE, ETBE, TBHP

� Denaturant for ethanol
� Gasoline additive and octane booster

As Table shows, butanol has several advantages compared to the
more established biofuels ethanol and methanol: a longer carbon chain
length, higher volatility, polarity, combustion value, octane rating and lower
corrosive effects [ ]. Moreover, diesel engines can run on pure butanol or
diesel blends without any modifications [ ]. In addition, butanol is a valu-
able 4-carbon feedstock for chemical synthesis, which can be used for pro-
duction of esters, ethers, acetates, and plasticizers [ ]. Therefore, butanol
is a promising biofuel alternative as well as a renewable chemical.
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Table 2.2: Properties of gasoline, diesel, methanol, ethanol and butanol.

Gasoline Diesel Methanol Ethanol Butanol

Molecular formula C4 – C12 C12 – C25 CH3OH C2H5OH C4H9OH

Molecular weight 111.19 198.4 32.04 46.06 74.11

Cetane number 0-10 40-55 3 8 25

Octane number 80-99 20-30 111 108 96

Research octane
number

88-98 0 109 109 98

Motor octane
number

80-88 0 89 90 85

Oxygen content (%
weight)

- - 50 34.8 21.6

Density (g/ml) at
20 ◦C

0.72-0.78 0.82-0.86 0.796 0.79 0.808

Autoignition
temperature (◦C)

300 210 470 434 385

Flash point (◦C) at
closed cup

-45 to -38 65-88 12 8 35

Lower heating value
(MJ/kg)

42.7 42.5 19.9 26.8 33.1

Boiling point (◦C) 25-215 180-370 64.5 78.4 117.7

Stoichiometric ratio
(air to fuel)

14.7 14.3 6.49 9.02 11.21

Latent heating
(kJ/kg) at 25 ◦C

380-500 270 1109 904 582

Flammability limits
(% volume)

0.6-8 1.5-7.6 6.0-36.5 4.3-19 1.4-11.2

Saturation pressure
(kPa) at 38 ◦C

31.01 1.86 31.69 13.8 2.27

Viscosity (mm2/s) at
40 ◦C

0.4-0.8
(20 ◦C)

1.9-4.1 0.59 1.08 2.63

Energy density
(MJ/l)

32 35.86 16 19.6 29.2
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There are two major butanol production processes: i) fermentative pro-
duction from biomass, referred to as biobutanol and from fossil fuels referred
to as petro-butanol; however, butanol produced from both sources have the
same chemical properties. The majority of butanol produced today is via
petrochemical reaction; the propylene hydroformylation, also known as oxo
route [ , ]. Consequently, petro-butanol production is closely linked to
the propylene market, thus the price of crude oil [ ]. Therefore, butanol
production via the petrochemical route is not favorable due to environmental
concerns as discussed above, and creating a greater interest in bio-based
butanol production via fermentation. Details of the fermentative butanol
production are discussed in the section below.

2.1.1 A Brief History of Fermentative Butanol Production

Fermentative butanol production under anaerobic conditions is typic-
ally referred to as a part of ‘ABE fermentation’, since acetone, butanol and
ethanol are usually produced simultaneously. ABE fermentation is exclus-
ively performed by solventogenic Clostridia. Their fermentation metabol-
ism is typically characterized by two phases, exhibiting a distinct shift in
the product spectrum. During the acidogenesis phase, the main (liquid)
products are acetic acid and butyric acid, while the solvents, i.e. butanol,
acetone and ethanol, are produced during the solventogenic phase [ ].

Louis Pasteur was the first to report about fermentative butanol pro-
duction in 1862 [ ]. The first production utilizing the Weizmann process
began only in 1913, aiming to produce acetone for rubber synthesis [ ].
Later in 1916, the first industrial-scale ABE fermentation began operation
due to a high demand for acetone during World War I, and was able to
produce 3000 tons of acetone and 6000 tons of butanol within the next two
years. After the armistice in November 1918, most of the plants were shut
down [ ].

The Weizmann process, which was operated in batch mode at 37 ◦C
using cooked maize mash was commonly applied with a production of up to
150000 liters [ ]. The process became more economical in 1936 with use of
molasses and other industrial sugars and a decreased operating temperature
of 31 ◦C [ ]. In 1945, two-thirds of the butanol and one-tenth of the acetone
in the U.S. were produced by ABE fermentation processes. However, their
share in the total output declined rapidly during the 1950s mainly due
to the acute competition with the expanding petrochemical industry and
decreasing feedstock availability [ ].
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ABE fermentation became popular again in the 1970s after the oil crisis.
Initial attempts to improve fermentation performance focused on optimiza-
tion of operating conditions such as medium composition, nutrient limita-
tion and feeding profiles, pH control, cell density and gas transfer considera-
tions [ ]. It has been gaining increasing interest owing to the advancements
in Metabolic Flux Analysis (1984), Metabolic Engineering (1992), Gene
Knock-out by Homologous Recombination (1994), and Complete Genome
Sequencing (2001) [ ], holding promise of improved production yields and
productivities for more economic microbial production processes. There
are several excellent reviews covering the historical development of ABE
fermentation in detail [ , , – ].

2.1.2 Challenges and Possible Solutions

There are several challenges such as high substrate cost, solvent toxicity,
low cell density and by-product formation that need to be addressed for sus-
tainable and economical fermentative butanol production. Main issues and
possible solutions discussed in review articles are summarized in Table
providing a comprehensive view in terms of their frequency of appearance.

Great efforts have been made to find cheap/free feedstock and cost ef-
ficient processing methods to overcome the high substrate cost, which con-
stitutes 66% of all costs [ ]. To tackle this problem, many feedstock al-
ternatives have been proposed [ – ] and lignocellulosic biomass is the one
proposed the most because, it is the most abundant renewable biomass re-
source, and it circumvents the direct fuel-versus-food competition due to
the use of e.g. corn and sugar cane in biofuel production.

Low solvent tolerance limits the butanol titer to maximum 2% [ ],
which causes high downstream processing cost; therefore two major ap-
proaches were followed to address this problem: i) develop strains with
higher butanol tolerance [ , – ] and ii) alleviate the inhibitory effects
of butanol by in situ product removal [ , ]. There is a variety of sep-
aration techniques for removing butanol from the fermentation broth, and
their advantages and disadvantages were discussed in detail as a guideline
for process design [ , ]. Other process level measures to enhance fer-
mentative butanol production include operating at different modes such as
chemostat and fed-batch as well as cell recycle and immobilization together
with novel technologies such as membrane reactors. It is essential to high-
light the role of metabolic engineering for optimizing butanol production
by strain improvement as presented in Table . Research efforts are still
ongoing employing different methods at both metabolic and process levels.
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Table 2.3: Main challenges and solutions for fermentative butanol production.

Challenge Solution

High substrate cost

� Lignocellulosic biomass [ , , , , , , – , , – ]

� Starch based waste [ , , ]

� Syngas [ , , , , ]

� Macroalgae [ , , ]

� Crude glycerol [ , , , ]

� Protein waste [ ],

� Whey permeate [ , , ],

� Economical feedstock processing methods [ , , ]

� Medium optimization [ , ]

� Inulin [ ]

Low butanol
selectivity

� Metabolic engineering for disruption of the pathway for
acetone [ , , , , , , , , ]

� Homo-butanol fermentation via chemical mutagenesis and
metabolic engineering [ , , , ]

� Conversion of acetone into isopropanol [ , , ]

� Decoupling sporulation from
solventogenesis [ , , , , , , , , ]

Low butanol titer

� Metabolic engineering and mutagenesis for higher butanol
tolerance [ , , , – , , – , , ]

� In situ product
removal [ , , , , , – , , , , , ]

� Introducing butanol pathways in other
hosts [ , , , , , , , – , ]

� Re-enforcing hot channel for butanol formation [ ]

Low butanol yield

� Co-utilization of sugars without Carbon Catabolite
Repression [ , , ]

� Extending the substrate utilization range [ , , ]

Low butanol
productivity

� Co-utilization of sugars without Carbon Catabolite
Repression [ , , , ]

� Fed-batch fermentation [ , , , , ]

� Chemostat/continuous culturing [ , , , , – , ]

� Immobilized cell chemostat [ , , , – , ]

� Cell recycle chemostat [ , , , – , ]

� Multi stage chemostat [ , , , ]

Low O2 tolerance

� Co-culturing to maintain anaerobic conditions [ ]

� Random mutagenesis and selection [ , ]

� Metabolic engineering [ , ]

Culture degeneration � Prevention of excessive acidification of the culture [ ]

Phage contamination
� Good factory hygiene, strains immune to specific
phages [ , ]
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2.2 Fermentative Butanol Production from
Lignocellulosic Biomass

A typical conversion process from lignocellulosic biomass to butanol in-
volves three major steps: pretreatment, detoxification and fermentation as
shown in Figure .

CO2
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C5 & C6 sugars
+
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FermentationPretreatment
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Figure 2.1: A representative schematic diagram of fermentative butanol production from
lignocellulosic biomass.

Details of the fermentative butanol production from lignocellulosic bio-
mass are explained in the following sections.

2.2.1 Clostridial species

Clostridial species are typically used in fermentative butanol produc-
tion. Clostridia are rod-shaped, spore-forming Gram-positive bacteria
and typically strict anaerobes [ ]. Clostridia are saccharolytic butyric
acid-producing bacteria under certain conditions to ferment saccharides
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i.e. mono- (pentoses, hexoses), di- and polysaccharides, cellulosic-based
materials and other biomass feed stocks. Many strains have the ability to
secrete profuse enzymes that catalyze conversion of polysaccharides into
monosaccharides [ ]. Throughout the years, many Clostridial species have
been isolated and characterized that differ in their substrate preferences,
fermentation product profiles and other relevant properties [ ]. Popular
butanol producers include C. acetobutylicum, C. beijerincikii, C. sac-
caroperbutylacetonicum, C. saccharoacetobutylicum, C. aurantibutyricum,
C. pasteurianum, C. sporogenes, C. cadaveris, and C. tetanomorphum.
Commonly used strains are shown in Figure .

Clostridium

0 15 30 45 60

Number of applications

C. beijerinckii

C. acetobutylicum

C. saccharobutylicum

C. saccharoperbutylacetonicum

C. butylicum

C. sporogenes

C. sp. strain BOH3

C.tyrobutyricum

Figure 2.2: Common Clostridium strains used in fermentative butanol production from
lignocellulosic biomass.

Strain selection depends on i) type of substrates, ii) nutrient require-
ment, iii) tolerance of butanol, iv) desired yield and concentration, v) res-
istance to bacteriophage and antibiotics [ ].

2.2.2 Pretreatment

Lignocellulosic biomass is a favorable feedstock and proposed widely
for a more economical butanol production as discussed above. Its main
constituents are cellulose, hemicellulose and lignin [ ]. The opening of
the lignocellulosic biomass structure and the release of sugar content from
hemicellulose and cellulose with other cross-linked units and the residual
non-hydrolyzed raw feedstock is called pretreatment [ ]. Commonly used
lignocellulosic feedstocks are shown in Figure .

Conversion of biomass into its main constituents is referred to in liter-
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Lignocellulosic feedstocks
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Figure 2.3: Common lignocellulosic feedstocks used in fermentative butanol production
from lignocellulosic biomass.

ature as fractionation, which is sometimes used interchangeably with pre-
treatment i.e., pretreatment is mentioned as a way of achieving biomass
fractionation, or the term fractionation is used as (part of) a pretreatment
method [ , , ]. In the thesis, for simplicity reasons all steps involved in
the conversion of the feedstock to sugars are named as pretreatment, though
enzymatic hydrolysis of the polysaccharide fractions is often referred to as
a step that is distinct from other pretreatment measures. Commonly used
pretreatment methods are shown in Figure .

Predominance of enzymatic hydrolysis in the pretreatment methods in
Figure shows its widespread application to produce fermentable sugars
from lignocellulosic biomass. Milling/grinding, extrusion, microwave and
ultra-sonication are common physical pretreatment methods that open up
the physical structure of lignocellulosic biomass [ – ]. Physico-chemical
methods such as steam explosion, steam treatment, hydrothermolysis, am-
monium fiber expansion, hot water treatment cause both the structure to
unravel and to release sugar monomers and dimers [ , – ]. Major chem-
ical pretreatment methods are alkali, acidic, ozonolysis, ionic liquid and
organosolv treatments [ , – ].

Enzymatic hydrolysis using suitable enzyme mixtures degrades poly-
saccharides such as cellulose and xylan to fermentable C6 and C5 sugar
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Pretreatment methods
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Figure 2.4: Common pretreatment methods used in fermentative butanol production
from lignocellulosic biomass.

monomers, respectively [ ]. Typically, combinations of several of the above-
mentioned pretreatment methods are employed depending on the feedstock.
Operating conditions of pretreatment are crucial since a small change in
the operating parameters can cause great differences in reduced sugar com-
position and concentration as well as inhibitory compounds, consequently
effecting the cost of substrate [ ]. Therefore, it is crucial to examine the
feasibility of any pretreatment method with respect to the generation of
inhibitors, energy consumption, operating cost, and sugar yield.

2.2.3 Detoxification

Compounds that are inhibitory to microorganisms and enzymes are of-
ten generated during pretreatment [ ]. Cellulose and hemicellulose should
ideally only yield sugar monomers such as glucose, xylose, and mannose.
However, harshness of some pretreatment conditions converts those sugars
and other lignocellulosic components into furfural, 5-hydroxymethyl fur-
fural (HMF), formic acid, acetic acid, levulinic acid and salts, which can
be inhibitory [ , ]. Partial decomposition of lignin generates inhibit-
ory (poly)phenolic aromatic compounds such as p-coumaric acid, ferulic
acid, syringe aldehyde, vanillic acid and vanillin [ ]. Contrary to ethanol-
producing microorganisms, furfural, HMF or acetic acid are not inhibitory
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to Clostridial butanol producers, rather they are stimulatory [ ]. An-
other common compound generated during pretreatment of lignocellulosic
biomass is formic acid. It is found to be inhibitory to C. acetobutylicum
at 0.5 g/l [ ] and 0.074 g/l (1 mM) inside the cell wall [ ] due to acid
crash [ ]. Therefore, it is a necessity to remove inhibitors for a success-
ful fermentation. For this purpose, several detoxification methods such as
electrodialysis [ ], liming/overliming [ , , , , , ], activated car-
bon/charcoal [ , , , ], dilution [ , ], resin [ , ] treatments are
applied. Even though it is not specifically mentioned as a detoxification
method, solid/sediment removal by filtration or centrifugation is also com-
monly applied to alleviate the inhibitory effects of the solids and undissolved
lignin in the lignocellulosic hydrolysates [ , , , , ]. Commonly used
detoxification methods are shown in Figure .

Detoxification methods
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Figure 2.5: Common detoxification methods used in fermentative butanol production
from lignocellulosic biomass.

It is important to note that the enzymes used in the hydrolysis step
can be inhibited by the compounds mentioned above as well as their sugar
yields, which can impose a limit to high substrate concentration [ ]. Altern-
ative lines of research currently target new pretreatment methods that are
less prone of inhibitor formation (like organosolv or other low-temperature
methods) and thus ideally do not require detoxification prior to fermenta-
tion, as well as increasing the inhibitor tolerance of fermentation strains e.g.
by means of adaptive evolution.
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2.2.4 Fermentation

ABE fermentation is biphasic; first acetic acid and butyric acid are pro-
duced in the acidogenesis phase, then the acids are re-assimilated to yield
solvents, acetone, butanol and ethanol [ ]. Batch fermentation is the most
studied mode due to simple operation, good reproducibility and control, and
low risk of contamination [ ]. Low cell density can result in low productiv-
ity, and absorbed substrate fermentation [ ] and biofilm reactors [ ] have
been applied to overcome this problem in batch processes. Fed-batch mode
is beneficial to tackle substrate inhibition by gradually adding the substrate,
thus keeping the substrate concentration below toxic levels [ ]. However,
fed-batch fermentation should still be accompanied by in situ product re-
moval to alleviate product inhibition [ , , ]. Continuous fermentation
(chemostat) has advantages over batch and fed-batch modes in terms of
better butanol yield and productivity [ ]. Multi-stage [ ], immobilized
cell [ , ], cell recycling and bleeding [ , ] techniques have been applied
to improve chemostat performance.

2.2.5 Strain Development

Strain development refers to any modifications in a strain done by ran-
dom mutagenesis and selection, like in adaptive laboratory evolution, or
directed, rational and/or Systems biology guided genetic modification em-
ploying metabolic engineering and synthetic biology to improve fermentation
performance by means of increased tolerance to toxic components, butanol
selectivity, improved substrate utilization and range.

In general, detoxification methods shown in Figure are used for re-
moval of inhibitors present in the substrate and/or feedstock as described in
Section . Co-culturing with other species to eliminate toxic components
such as oxygen in case of anaerobic fermentation is an alternative method.
Random mutagenesis and selection and metabolic engineering have been ap-
plied for the same purpose. Inhibition due to butanol accumulation is one of
the greatest challenges. Therefore, metabolic engineering and mutagenesis
have been targeting this specific problem.

A typical fermentative butanol production yields acetone and ethanol as
well, which decreases the selectivity of the product of interest. Metabolic en-
gineering for disruption of acetone producing pathways [ ], homo-butanol
fermentation via chemical mutagenesis and metabolic engineering and con-
version of acetone into isopropanol are among the strategies developed to
address this issue.



2.2. Fermentative Butanol Production from Lignocellulosic Biomass 21

Efficient utilization of the substrate is crucial to achieve a high butanol
yield, thus better fermentation performance [ , , ]. Disrupting the genes
responsible for Carbon Catabolite Repression and overexpression of genes
responsible for xylose transport and catalytic enzymes (D-xylose isomerase,
xylulokinase, and enzymes of PPP) are commonly followed approaches [ ,
, , ].

It is important to mention the recent efforts on CRISPR-Cas9 genome
engineering systems to improve butanol production by fermentation. Most
of the research focuses on production by Escherichia coli [ ]. However,
Clostridial butanol production improvements have been achieved by using
this technique as well [ ].

In summary, the increasing numbers of publications in recent years em-
ploying strain engineering techniques and approaches to address key bottle-
necks in Clostridial butanol production hold promise to finally solving these
in the future.

2.2.6 Process Integration and Intensification

Process integration and intensification techniques are applied to obtain
cost-effective fermentation processes. Important process intensification
approaches include a) simultaneous saccharification and (co-)fermentation
(SSF or SSCF) in which hydrolysis of polysaccharides present in (pre-
treated) biomass is performed by externally produced and added hydrolytic
enzyme mixes in situ with the simultaneous fermentation of the liberated
sugars by a strain (or in the case of SSCF several strains with comple-
mentary sugar substrate spectrum) producing the product of choice, e.g.
butanol [ , ], and b) consolidated bioprocessing (CBP) in which the
saccharolytic enzymes are produced within the sugar fermenting culture
e.g. by the target product producing strain itself or in co-culture with a
partner strain specialized in enzyme production and secretion [ ].

Gas stripping, pervaporation, adsorption, liquid-liquid extraction, per-
traction (membrane extraction), reverse osmosis and membrane distillation
are in situ product removal methods used to alleviate inhibitory effects
of butanol [ , ]. Fermentation with integrated gas stripping has widely
been studied mostly in fed-batch mode, which showed improved butanol
productivity [ , ].

Cell immobilization and cell recycle are mostly integrated to fermenters
operated in continuous mode to improve butanol productivity by preventing
the loss of cell mass with the bleeding stream out from the fermenter.
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Process integration and intensification measures therefore play crucial
roles in optimizing butanol fermentation processes for improved performance
and economic competitiveness.

2.3 Fermentative Butanol Production from Mixed
Sugars

There has been a great scientific interest in the utilization of differ-
ent sugars in mixed form for the production of biofuels, since pre-processed
lignocellulosic biomass feedstock usually contains a mixture of pentoses (C5)
such as xylose and arabinose, and hexoses (C6) such as glucose and man-
nose. Therefore, efficient utilization of C5 and C6 sugars is a prerequisite
for a successful fermentation process with optimized carbon utilization. In
this section,the studies focusing on Clostridial mixed sugar fermentations
producing butanol are reviewed.

Mixed sugar fermentation studies date back to early 1980s, in which
researchers investigated the influence of different pentose and hexose sug-
ars and their mixtures at different ratios on the fermentation kinetics [ ].
Some Clostridia have shown to readily consume sugar mixtures; however,
they do so with poor efficiency [ ]. Even though both strains can util-
ize glucose and xylose, C. beijerinckii has a large gene cluster containing
most of the genes involved in xylose metabolism and regulation, while in
C. acetobutylicum the xylose-related genes are dispersed over several differ-
ent chromosomal locations [ ]. Moreover, C. beijerinckii has more sets of
xylose metabolic pathway genes than C. acetobutylicum [ ].

Cells’ efficiency of simultaneously using sugars in mixed form decreases
due to a phenomenon called Carbon Catabolite Repression (CCR). Con-
sequently, utilization of pentose sugars is reduced or prevented entirely in
the presence of a preferred sugar such as glucose [ ]. Furthermore, CCR
can cause sequential utilization of sugars (diauxic growth for binary sub-
strate growth) and a lag phase, which increases the residence time, thus
operating costs. There have been attempts to improve product titers by
using immobilized cultures [ ], optimizing the culture pH and glucose to
xylose ratio [ ] and adding nutritional supplements [ ] for fermentat-
ive butanol production from mixed sugars. In addition, genomic informa-
tion [ , , ] and transcriptome analysis results [ – ] of lignocellu-
losic sugar metabolisms and respective repression mechanisms are available
in the literature.

There is an ongoing research on metabolic engineering to develop
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Clostridial strains capable of simultaneously fermenting hexose and pentose
for butanol production [ , , , , ]. Even though Lee et al.,
(2016) [ ] stated metabolic engineering is necessary for simultaneous
utilization of sugars, researchers have developed different feeding and
pre-growth strategies achieving co-utilization without any strain manip-
ulation [ , – ]. However, in the mixed sugar fermentation study
of Zhang et al. (2016), transcriptional studies suggested that glucose
inhibition on xylose metabolism-related genes was still present despite
the simultaneous utilization of glucose and xylose [ ]. Therefore, more
research on the subject is necessary to investigate this phenomenon further.

2.4 Modeling Fermentative Butanol Production

Mathematical modeling has been a crucial part of the ABE fermenta-
tion research. Experimental studies of fermentation processes are typically
time consuming due to slow kinetics, which results in a high operating cost
together with the cost of the consumables. Fermentation performance is
often defined in terms of product yield, selectivity and productivity. Those
depend significantly on the operating conditions such as temperature, pH,
substrate concentrations, presence of inhibitors, mode of operation, and the
type of the strain. Therefore, finding the most suitable operating conditions
would require a great number of experiments with different permutation
combinations of those. To tackle this experimental work load, bioprocess
designers usually do an initial screening of the alternatives and come up
with a combination of best operating conditions suited for their purpose.
Fermentation models are useful tools serving this objective.

Model simulations can provide insight into the main characteristics of
the fermentation processes as well as the influence of different operating
conditions and their interconnectedness. The purpose of modeling should be
identified clearly, thus the level of detail and type of the information included
in the models should be in accordance with that. In the sections below,
different types of models developed for fermentative butanol production
were categorized according to previous classifications done in the field [ ,

] and presented with a historical perspective.

2.4.1 Structural Models

The first structural model to describe fermentative butanol produc-
tion dates back to 1984, done by Papoutsakis [ ]. The model made a
steady state assumption for metabolic activity and balanced the elemental
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compositions of the substrates, cell mass and extracellular products using
stoichiometric relations; therefore, it is often referred to as ’stoichiomet-
ric model’ [ ]. Desai and coworkers extended the original stoichiometric
model in 1999 by adding a non-linear constraint that relates the experi-
mentally observed ratio of butyrate and acetate uptake to the ratio of their
intracellular concentrations [ ].

The metabolic networks assumed to develop the models mentioned above
were manually constructed based on the biochemical and genetic informa-
tion available at the time. However, there was a rise of the database-driven
network reconstruction in the early 2000s initiated by major improvements
in sequencing technologies allowing for an ever increasing number of organ-
isms to be completely sequenced. Consequently, genomes of C. acetobutyl-
icum ATCC 824 and C. beijerinckii NCIMB 8052 were published in 2001
and 2011, respectively and served as a basis of development of genome-scale
(metabolic) models [ , ]. In 2008, the first two genome-scale metabolic
models of C. acetobutylicum were established simultaneously by Senger and
Papoutsakis (2008) and Lee et al. (2008) [ – ]. McAnulty et al. (2012)
constructed a new and comprehensive model (iCAC490) [ ] using previ-
ous genome-scale models as a starting point and utilizing recent fluxomics
data [ , ]. A second generation genome-scale model of C. acetobutyl-
icum was developed by Dash et al. (2014) with 800 genes, 1500 reactions
and 1200 metabolites, thus three times larger than the first-generation mod-
els [ ]. The model was further improved by Yoo et al. (2015) covering
20% more genes [ ]. For C. beijerinckii, the first genome-scale metabolic
model was developed by Milne et al. (2011) comprising of 925 genes, 938
reactions, 881 metabolites and 67 membrane transporters [ ].

2.4.2 Dynamic Models for Batch Fermentation

The structural models based on fermentation equations or other stoi-
chiometric models are essentially steady-state models; therefore, they do
not provide any time variant or temporal information on formation of dif-
ferent metabolites. Consequently, applicability of these models for design
and optimization of bioprocesses is rather limited. Dynamic models, which
can be used to tackle this problem are presented in the paragraphs below.

Two dynamic models describing batch fermentation for butanol produc-
tion by a modified C. acetobutylicum ATCC 824 were published in 1986
by Volesky and coworkers. Their initial model, termed process-oriented,
comprised a set of differential equations describing product formation, acid
re-assimilation and sugar utilization [ ]. The model did not consider in-



2.4. Modeling Fermentative Butanol Production 25

tracellular metabolites and incorporated butanol effects by means of inhib-
ition of acid production and cellular decay. Subsequently, they developed
a ‘physiological state model’, which distinguished between intra- and ex-
tracellular concentrations of metabolites [ ]. The intracellular product
concentrations were linked to their extracellular counterparts described by
their initial model in terms of diffusion along concentration gradients [ ].
In 1990, they developed a model taking pH effects into account using their
previous models [ ]. The model features a general inhibition term and a
pH-dependence term for intracellular conversion of undissociated acids into
solvents to extend its applicability to a wide range of culture growth and
pH conditions.

Inhibition of the ABE fermentation by its products is an important as-
pect affecting the performance. A careful investigation of possible causes
and mechanisms, leading to inhibition is necessary for a successful process
design. This issue was addressed by Yang and Tsao (1994) with a study
using statistical analysis of cell mass growth kinetics under the synergistic
inhibition of multiple products and byproducts [ ]. The model employed
the Monod equation to express growth kinetics under inhibition of acetate,
butyrate or butanol described by the parabolic function. The mechanism of
inhibition is rather complex; therefore, a deterministic model for this process
would be quite difficult. Nevertheless, the semi-empirical approach presen-
ted in this model can be useful for analysis of the inhibition phenomena and
identification of governing factors.

A group of scientists from Japan developed kinetic models for ABE fer-
mentation based on the metabolic pathways of C. acetobutylicum ATCC
824, which reveal dynamic behavior of main metabolites and give inform-
ation about metabolic pathways with the maximum influence on butanol
formation. Their first model was developed using Michaelis–Menten kinetics
for all the 19 reactions and represented by a set of 16 differential equations
for 16 metabolites for fermentation of glucose [ ]. The model could pre-
dict the dynamics of the substrate, intermediates, and target metabolites.
In 2008, they extended their first model for fermentation of xylose as the
substrate by replacing the metabolic steps of the Embden–Meyerhof–Parnas
(EMP) pathway used in the glucose model with the pentose phosphate (PP)
pathway [ ]. Although these models are most comprehensive, the major
drawback in its application for various processes is that estimation of a
complete set of kinetic parameters is extremely difficult. In addition, they
do not consider ATP- and NADH-balances. The effects of pH and butanol
inhibition, the metabolic regulatory effects of transcriptional control and
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the information of some key metabolites such as butyryl phosphate are not
considered either. As a result, Li et al. (2011) proposed a new model by
improving the models of Shinto et al. (2007, 2008) [ ]. This model incor-
porated butyryl phosphate, whose initial peak marks the onset of solvent
production, described net effects of complex ABE regulations according to
endogenous enzyme activity variations, and introduced time-dependent en-
zyme activity coefficients (EAC) for every time interval [ ]. In a more
recent study, Raganati et al. (2015) adapted the model introduced in Shinto
et al. (2008) for investigating the effects of different sugars on batch fer-
mentations by C. acetobutylicum [ ]. In this updated model, a formally
unbounded butanol inhibition of cell mass growth was replaced with a finite
‘critical’ butanol concentration that constrained butanol-inhibited glucose
uptake and self-inhibitory butanol formation as well.

2.4.3 Dynamic Models for Continuous Fermentation

The first model for fermentative butanol production was pusblished in
1983 by the research group at Technical University of Delft (the Nether-
lands) for continuous operation by immobilized C. beijerinckii [ ]. In
1986, the model was extended with a butanol inhibition term and cell mass
distribution in the immobilization matrix [ , ]. In the same year,
Volesky and coworkers reported a model for production in a cell reten-
tion fermentor employing membrane filters [ ] by adapting their earlier
models describing batch fermentation [ , ]. Their model demonstrated
the effectiveness of cell retention while the cell mass is retained within the
fermentation system to achieve higher dilution rates, thus higher productiv-
ity [ ].

Another model for continuous production was developed by Jarzebski
et al. (1992) [ ]. This kinetic and physiological model described solvent
formation at acidic extracellular pH and acid production at more neutral pH
assuming solventogenesis is triggered by attaining a given threshold concen-
tration of intracellular butyrate and the undissociated form of butyric acid
passes freely through the cell membrane [ ]. Haus et al. (2011) focused on
pH effects on continuous fermentation as well, and their model studied the
observed pH-induced changes in gene expression on the two steady states,
i.e. at pH 5.7 and pH 4.5 [ ]. Thorn et al. (2013) extended their model
by taking pH-dependent sporulation into account with the assumption of
acid-forming cells sporulating in response to the sudden drop in culture pH
and resulting in metabolically inactive cells [ ]. Even though this model
could explain the differences between acidogenic and solventogenic cells, it
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could not predict the experimentally observed transition dynamics between
the two metabolic steady states [ ]. Therefore, a new model was suggested
by Millat et al. (2013) which considered two subpopulations with distinct
metabolic activity and assumed that acidogenic cells stop growing when the
pH falls below 5.2 to 5.1 while, simultaneously, the solvent-forming cells
increase in numbers to establish a solventogenic culture [ , ].

2.4.4 Models for Fermentation with in situ Product
Removal

As mentioned in the sections above, accumulation of products in the
fermentation broth causes inhibition. Therefore, in situ product removal
using different techniques such as pervaporation, liquid–liquid extraction,
gas stripping, and extractive distillation helps to alleviate inhibitory effects
of products. There has been several attempts to model fermentation pro-
cesses with simultaneous product recovery, which are presented below.

Wankat and coworkers modeled simultaneous fermentation and separa-
tion in a packed column with an immobilized cell trickle bed reactor and
integrated gas stripping [ – ]. Their system consisted of an enricher,
and a stripper, stacked over one another. They used Monod type production
for butanol with product inhibition on the cell mass growth and assumed
an equilibrium stage with steady state and isothermal operation, and sur-
face reaction with no diffusion limitation in an immobilization matrix for
model development. By using this model, they studied effects of gas to
water mole ratio in the enriched and stripper streams, total gas flow rate,
product inhibition kinetics, operating temperature and pressure and inlet
glucose concentration.

Park and Geng (1996) proposed a model for fed-batch fermentation with
simultaneous pervaporation as well. Their system consisted of a fermenter
and a pervaporation module mounted inside the fermenter [ ]. They
again applied Monod growth kinetics with inhibitions, and the complete
model comprised eight ordinary differential equations describing the change
of medium volume, and concentrations of cell mass, butyric acid, butanol,
acetic acid, ethanol, acetone and glucose over time. Product formations
were defined with yield coefficients (g product/g glucose) related to the cell
growth.

Shukla et al. (1989) suggested a model for a hollow fiber fermentor-
extractor. It was a tubular fermenter filled with hydrophobic micropor-
ous hollow fibers with immobilized cells, and the extraction solvent passing
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through the fibers [ ]. The model consists of eleven equations in which
the model of Mulchandani and Volesky (1986) was coupled to simple mass
balance equations for simultaneous solvent extraction [ ]. The model as-
sumes that there is no mass transfer resistance in radial direction in the
fermenter and steady state conditions exist.

Oleyl alcohol is a commonly used extractant for solvent recovery from
the broth in ABE fermentation. The extracted solvent is recovered by dis-
tilling the solvents from the extractant under vacuum conditions by main-
taining boiling point at mild temperature. Based on this, Shi et al. (2005)
developed a model for a flash extractive fermentation system and assessed
its performance by means of productivity, energy requirement, and product
purity [ ]. Mariano et al. (2009) proposed a model for a flash ferment-
ation process as well and studied the optimization of a continuous flash
fermentation process for butanol production [ ], and used the model of
Mulchandani and Volesky (1986) for description of the fermentation process.

2.4.5 Unstructured Models

Unstructured models are a generic class of models describing microbial
processes in terms of the growth of microorganisms, the utilization of sub-
strates and the formation of products. They are explained below.

2.4.5.1 Microbial Growth Models

The life cycle of microorganisms is characterized by different phases. A
representative growth curve and the respective growth rate curve can be
seen in Figure .

Figure 2.6: A representative growth curve of microorganisms (top) and the respective
growth rate curve (bottom) [ ].
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The actual shapes of the curves shown in Figure depend on several
factors such as environmental conditions, substrate properties, type of the
microorganism, physiology of the inoculum [ ]. Lag phase (1) occurs due
to adaptation of the culture to a new environment, and once the cells are
adapted, acceleration phase (2) is observed. The growth is most apparent
during the exponential or logarithmic growth phase (3). This phase is typ-
ically followed by retardation or deceleration phase (4) and then stationary
phase (5) due to exhaustion of nutrients and substrates, and accumulation
of toxic metabolites [ ]. Finally, the phase of decline or death is observed
during which the number of viable cells decrease at a death rate of kd (h-1).
The mass of dead cells is assumed to decay into carbohydrates, lipids, pro-
teins and nucleic acids, and this process is called disintegration or lysis.
Consequently, the change in cell mass concentration can be expressed as in
Equation .

dX

dt
= μX − kdX (2.1)

where X is the cell mass concentration (g/l), kd is the death rate(h-1), μ
is the specific growth rate (h-1). The specific growth rate (μ) cannot be
infinite due to the limited availability of nutrients, substrate concentration,
S (g/l) and other ambient conditions such as inhibitors, I (g/l), pH value
and temperature T, as shown in Equation .

μ = μ (S, I, pH, T ), μ �=∞ (2.2)

The Michaelis-Menten model describing the dependency of enzyme
activity on the substrate concentration was the basis for the kinetics of
microbial growth, since it can be seen as an autocatalytic reaction as well.
In the light of this connection, Monod identified the non-linear relation
between specific growth rate and limited substrate concentration, and
suggested that the specific growth rate is inversely proportional to substrate
concentration [ ]. Therefore, the specific growth rate increases fast at
low substrate concentrations and slowly at high substrate concentration,
until a saturation is reached according to Equation .

μ =
μmaxS

Ks + S
(2.3)

This limit is the maximum specific growth rate, μmax. The substrate
affinity constant Ks shows the relation of microorganism to the limiting
substrate. The specific growth rate is approximately linear when S < Ks.
Ks is always greater than zero, therefore S/(S +Ks) is always less than 1,
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consequently the specific growth rate, μ is less than μmax. The growth can
only start when the substrate concentration is at a certain value due to the
maintenance energy requirement. If the substrate is not the limiting factor
due to a high enough concentration, the maximum specific growth rate can
be reached.

The maximum specific growth rate can be treated as an intrinsic prop-
erty, since it is unique for every microorganism [ ]. The Monod model
applications for pure cultures and simple substrates showed very high accur-
acy [ ]. There has been many attempts to extend the Monod model for
better description of the systems with different characteristics. The most
common ones are summarized in Table .

Table 2.4: Models developed for microbial growth on single substrate for pure cultures.

Author Model Reference

Monod μ =
μmax S

Ks + S
[ ]

Moser μ =
μmax S

n

Ks + Sn
[ ]

Contois μ =
μmax S

Kc X + S
[ ]

Tessier μ = μmax (1− e−K S) [ ]

The Moser model was developed by upgrading the Monod model with
a constant, n to include the effects of microorganism’s adaptation to sta-
tionary process by mutation [ ]. Contois equation takes cell mass con-
centration into account as well. This model has a saturation constant, Kc

proportional to the cell mass concentration to describe the growth of cul-
tures with high cell mass density [ ]. The Tessier model has two constants
as the previously mentioned growth models and characterizes the growth by
using an exponential function [ ].

Different growth models can have better prediction capacities for differ-
ent cultures. Therefore, it is essential to have insight into available mod-
els and make the model selection accordingly. The above mentioned mod-
els apply to pure cultures and single substrate limited growth conditions.
However, the growth is often hindered by inhibitors. The growth models
considering the effects of inhibitors are discussed in the section below.
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2.4.5.2 Microbial Growth Models with Influence of Inhibitors

The growth can be hindered in presence of a high substrate concentra-
tion. To illustrate, when the substrate concentration in a growth medium is
increased, a maximum specific growth rate will be observed at a particular
concentration, above which the specific growth rate will decrease [ ]. The
reasons can be a high osmotic pressure of the medium or a specific toxicity
of the substrate [ ]. Consequently, chemical potential of the substrates,
intermediates and products, and functional activity of the cells can change,
permeability of the cells can alter, enzyme activities can be manipulated as
well in connection with genetic engineering and altering gene expression.

Microbial growth can also be hindered by certain product concentra-
tions. Inhibition paths of substrates and products are based on similar
effects and closely linked. The growth model with influence of substrate
and product inhibitions can be seen in Tables and , respectively.

Table 2.5: Models developed for microbial growth on single substrate for pure cultures
with effects of substrate inhibitions.

Author Model Reference

Edwards μ =
μmax S

(Ks + S)
e−S/KI [ ]

Edwards μ = μmax(e
−S/KI − e−S/KS ) [ ]

Webb μ =
μmax S (1 + βS/KI)

(Ks + S + S2/KI)
[ ]

Andrews μ =
μmax S

(Ks + S + S2/KI)
[ ]

Haldane μ =
μmax S

(Ks + S)(1 + S/KI)
[ ]

Tseng &
Wayman

μ =
μmax S

(Ks + S)
−KI(S − S∗) [ ]

Luong μ =
μmax S

(Ks + S) (1− S/Smax)α
[ ]

Edwards (1970) proposed two models employing the substrate inhibi-
tion term in exponential form (S/KI); one of which had the same structure
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as the Monod model, while the other one described the substrate depend-
ency of growth in exponential form as well [ ]. Webb (1963) derived a
model from enzyme kinetics with an integrated allosteric effect with β as
reaction rate [ ]. Similarly, Andrews (1968) suggested a model based on
enzyme kinetics assuming that β was equal to zero [ ], and Haldane’s
model (1930) also assumed that KI � Ks [ ]. The model developed by
Tseng and Wayman (1975) accounted for the fact that there is a threshold
substrate concentration, S∗ below which there is no growth inhibition, and
the growth decreases linearly with respect to the concentration difference
(S − S∗) when S > S∗ [ ]. Luong (1987) suggested a model including
a maximum substrate concentration, Smax above which the growth stops
entirely [ ]. This model was reported to have better prediction capacity
compared to the previous growth models with substrate inhibition terms,
in addition, it had the advantage of estimating the value of Smax.

Table 2.6: Models developed for microbial growth on single substrate for pure cultures
with effects of product inhibitions.

Author Model Reference

Hinshelwood μ =
μmax S

(Ks + S)
−KPP [ ]

Holzberg μ =
μmax S

(Ks + S)
KP1(P −KP2) [ ]

Aiba μ =
μmax S

(Ks + S)
e−KPP [ ]

Bazua & Wilke μ =
μmax S

(Ks + S)
− KP1 P

(KP2 − Pmax)
[ ]

Han & Levenspiel μ =
μmax S

(Ks + S)
(1− P/Pmax)

n [ ]

Luong μ =
μmax S

(Ks + S)
(1− (P/Pmax)

n) [ ]

Egamberdiev &
Ierusalimsky

μ =
μmax S

(Ks + S)(1 + P/KP )
[ ]

Competitive
inhibition

μ =
μmax S

Ks(1 + P/KP ) + S
[ ]
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The first model accounting for product inhibition was a simple linear kin-
etics model proposed by Hinshelwood (1946) [ ]. Holzberg’s model (1967)
suggested that the growth inhibition was prominent when the product con-
centration was higher than a threshold level [ ]. Since the growth inhib-
ition due to alcohols is noncompetitive in nature [ ], Egamberdiev and
Ireusalimsky (1968) described the specific growth rate as a hyperbolic func-
tion of product concentration [ ]. Exponential relationship between the
specific growth rate and product concentration was recognized in the model
of Aiba (1968) [ ].

For the first time, Bazua and Wilke’s model (1975) included a maximum
product concentration, Pmax at which the growth entirely stopped, and its
accuracy was better for describing the experimental observations [ ]. In
an attempt to generalize the product inhibition kinetics, Han and Levenspiel
(1988) proposed a nonlinear kinetic model containig Pmax and n to quantify
the extent of inhibition [ ]. Luong (1985) proposed a modification of
Han and Levenspiel’s model for improved flexibility [ ]. Even though
the inhibitory effects of alcohols on the growth are in noncompetitive form,
inhibitory effects of other metabolites produced during fermentative butanol
production can be in different forms. Therefore, competitive inhibition was
given as a common form as well [ ], which can describe butyric and acetic
acids inhibitions [ ].

2.4.5.3 Binary Substrate Growth Models

Fermentation substrates obtained from natural feedstock such as ligno-
cellulosic biomass are typically mixtures of different components i.e. hexoses
and pentoses as explained in the section above. Even though models for
mixed substrate growth are available, the majority of the models were de-
veloped for single substrate growth. Therefore, it is essential to understand
mixture effects and develop a kinetic model which can predict the cell mass
growth for successful design of lignocellulosic fermentation processes. The
models developed for binary substrate systems are summarized in Table .

McGee et al. (1972) developed a model describing growth for a hetero-
logous substrate, which serves different purposes e.g. carbon and nitrogen
mixtures [ ]. The model was classified as interactive and based on the
assumption that the growth rate can be affected by more than one substrate
simultaneously [ ].

Segel (1975) proposed a model for a noncompetitive inhibition between
the substrates based on enzyme kinetics when both substrates simultan-
eoulsy bound to an enzyme [ ]. Furthermore, uncompetitive inhibition
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model was suggested to characterize the interaction between the substrates.
It differs from the noncompetitive substrate inhibition in which one of the
substrates can only bind to the enzyme-substrate complex, not the free en-
zyme.

Table 2.7: Binary substrate growth models.

Type Model Ref.

Noncompetitive μ =
μmaxG SG

(KsG + SG)
(
1 + SX

KsX

) +
μmaxX SX

(KsX + SX)
(
1 + SG

KsG

) [ ]

Uncompetitive μ =
μmaxG SG

KsG + SG
(
1 + SX

KsX

) +
μmaxX SX

KsX + SX
(
1 + SG

KsG

) [ ]

Interactive μ =
μmaxG SGSX

(KsG + SG) (KsX + SX)
[ ]

Noninteractive μ =
μmaxG SG

KsG + SG
+

μmaxX SX

KsX + SX
[ ]

Competitive μ =
μmaxG SG

KsG + SG+ SX
(

KsG
KsX

) +
μmaxX SX

KsX + SX + SG
(

KsX
KsG

) [ ]

Yoon et al. (1977) developed a kinetic model for the homologous sub-
strate meaning that they serve for the same purpose e.g. as the carbon
source [ ] incorporating purely competitive kinetics [ ]. The model
shows that each substrate exhibits a competitive inhibition effect on the
utilization of the other substrate. Competitive interaction kinetics can be
used for describing both simultaneous and sequential substrate utilization
for mixed substrates.

The model proposed by Bell (1980) assumed that there was no inter-
action between the substrates; therefore, parameters estimated in single
substrate experiments were used to obtain the sum kinetic model [ ].

2.4.5.4 Substrate Utilization Models

Substrate utilization (consumption or degradation) can be expressed in
terms of specific growth rate as explained in previous sections. Microorgan-
isms utilize substrate to synthesize new cell material and to supply mainten-
ance and growth energy, and products are formed as a consequence [ ].
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� Synthesizing new cell material ((dSdt )X).

� Production of products such as butanol ((dSdt )P ).

� Supply of maintenance and growth energy ((dSdt )E).

Total substrate utilization is the sum of these three as shown in Equation
.

dS

dt
=

(
dS

dt

)
X

+

(
dS

dt

)
P

+

(
dS

dt

)
E

(2.4)

Utilization of the substrate for cell material synthesis is described by
using a stoichiometric relationship between them. This approach requires
a molecular formula for the cell mass even though it is well known that
the chemical constitution of the formed cell mass is not constant and varies
within microorganisms group, growth phase and the utilized substrate. In
this thesis, a typical molecular formula of bacteria, CH1.666N0.20O0.27 was
used in calculations [ ]. Equation shows the expression of substrate
utilization for cell material synthesis.

(
dS

dt

)
X

= − 1

YX/S

(
dX

dt

)
(2.5)

where

(
dX
dt

)
is the cell mass change over time as given in Equation , and

YX/S is the cell mass yield on substrate (g cell mass/g substrate).

Microorganisms require energy for the synthesis of cell ingredients, which
are consumed continuously, or for osmotic activities to sustain the concen-
tration gradient between cell interior and exterior [ , ]. Supply of
maintenance and growth energy can be described separately or combined.
When combined, substrate utilization for maintenance energy can be defined
as in Equation . (

dS

dt

)
E

= −ms

(
dX

dt

)
(2.6)

where ms (g substrate/g cell mass) is the maintenance energy constant.

The substrate utilization for product formation can be determined by
Equation . (

dS

dt

)
P

= − 1

YP/S

(
dX

dt

)
(2.7)
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where YP/S is the product yield on substrate (g product/g substrate). Sim-
ilar to the cell mass yield coefficient, YP/S is calculated using the stoi-
chiometric relationship between the substrate and the product of interest,
which is butanol in this thesis.

2.4.5.5 Product Formation Models

There are three types of microbial product formation models with
respect to the relation with the cell mass and specific growth rate. They
are growth-associated (Type I), mixed-growth-associated (Type II) and
nongrowth-associated (Type III) production types as illustrated in Figure

[ ].

Figure 2.7: Representative curves of substrate utilization, cell mass growth and product
formation at different production types, where X is the cell mass concentration, S is the
substrate concentration and P is the product concentration [ ].

Growth-associated products are produced simultaneously with cell mass
growth as a result of primary energy metabolism. Therefore, the specific
rate of product formation is proportional with the specific cell mass growth
rate as given in Equation .

dP

dt
= YP/X

(
dX

dt

)
(2.8)

where YP/X is the product yield on cell mass (g product/g cell mass). Typ-
ically alcohol fermentations exhibit this type of product formation (Type I),
including fermentative butanol production.

Mixed-growth-associated product formation takes place during station-
ary phase when the specific growth rate of cell mass is zero (shown in Figure

). This type of production (Type II) results from energy metabolism in-
directly, and the specific rate of product formation is constant as given in
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Equation .
dP

dt
= YP/X1

X + YP/X2

(
dX

dt

)
(2.9)

where YP/X1
is the product yield on cell mass for the nongrowth-associated

term and YP/X2
is for growth-associated term. The products are formed

at side or secondary reactions or following interactions of direct metabolic
products.

Nongrowth-associated (Type III) production takes place during the slow
growth and stationary phases as Equation shows.

dP

dt
= YP/X1

X (2.10)

Since the butanol production from fermentation follows Type I (growth-
associated), Equation was adapted and used in the thesis.
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Chapter 3

Exploratory Data Analysis of
Fermentation Variables

Contents of this chapter were covered in .

3.1 Introduction

Understanding the variables in fermentative butanol production and
their interconnectedness is lacking to a great extent, since many studies nar-
row their focus on a particular problem and evaluate their solution in the
same narrow window. A comprehensive dataset was developed by extract-
ing information from original research articles on Clostridial fermentative
production of butanol from lignocellulosic biomass and mixed sugars the
last three decades and an exploratory data analysis was performed to derive
current trends and dependencies.

3.2 Methods

77 lignocellulosic hydrolysate, 19 lignocellulosic hydrolysate with ad-
ditional glucose, and 79 mixed sugars fermentations are in the dataset,
covering 175 fermentations in total. The dataset contains initial and final
concentrations of all sugars and other components found in the substrate
mixtures, all products in the fermentation broth, fermentation time, types
of Clostridial strain, feedstock, pretreatment, and detoxification methods
for all 175 fermentations. As far as reported data were directly derived
from the article texts and tables, otherwise WebPlotDigitizer tool [ ] was
used for mining the information from the plots.

39
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Exploratory data analysis (EDA) is a statistical approach to analyze
datasets for summarizing their main characteristics, which was promoted by
John Tukey to encourage statisticians for in depth data exploration [ ].
Boxplot is used as a visual tool for EDA, which is a graphical method
for illustration of numerical data groups through their quartiles that is the
middle number between the smallest number and the median of the dataset.
The lines extending vertically from the boxes called whiskers indicate the
variability outside the upper and lower quartiles. In Figures , and

, boxplots are represented as rectangles with a vertical line showing the
mean value, whiskers shown as dashed lines, and outliers are individual plus
signs. Detailed features of the boxplots can be found in Section in
the Appendix. Kendall’s correlation coefficient was used to determine the
correlations between variables since it is able predict nonlinear relationships
[ ] and robust in presence of outliers in data [ ]. The coefficient has
a value between +1 and -1, where +1 is total positive correlation, 0 is no
correlation, and -1 is total negative correlation. Further explanation about
the correlation coefficient can be found in Section in the Appendix.

3.3 Results and Discussion

Clostridial strain type, feedstock type, pretreatment method, and de-
toxification method are summarized in Figures , , and .
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The substrate components present in the lignocellulosic hydrolysates are
shown in Figure with respect to their concentrations and the feedstock
type. Detailed explanations of the dataset features are presented in terms
of boxplots and correlation coefficients in the following sections.

3.3.1 Substrate Properties

In lignocellulosic substrate fermentation, the hydrolysate represents the
sole source of carbon; however, microorganisms need other nutrients such
as nitrogen, phosphorous, sulfur, vitamins and minerals for growth and pro-
duction. Typically, P2 stock solution and yeast extract are added externally,
which increases the substrate cost [ , , – , ]. To tackle this problem,
there have been attempts to provide the essential nutrients from complex
waste materials such as wastewater sludge [ ]. Optimization of medium
components to minimize the substrate cost is important to consider when
designing a fermentation process [ ]. In Figure , initial concentrations of
total substrates and their common constituents glucose, xylose, arabinose,
galactose, mannose and cellobiose are shown for lignocellulosic hydrolysate,
lignocellulosic hydrolysate with glucose, and mixed sugar fermentations. It
is important to note that the dataset could only include what was reported
in the papers; there is therefore a possibility of unreported, unidentified and
undetected components in the hydrolysates affecting results.
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Figure 3.2: Substrate properties of a,d) lignocellulosic hydrolysate, b,e) lignocellulosic
hydrolysate with additional glucose, and c,f) mixed sugar fermentations.

For lignocellulosic hydrolysates, the medians of total sugars, glucose, xy-
lose and arabinose concentrations were 41.8, 23.6, 10.8 and 1.02 g/l, respect-
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ively. Outliers worth to mention include soybean hull hydrolysis yielding 49
g/l glucose and 48 g/l xylose [ ], switchgrass yielding 77 g/l glucose with
total sugar of 82 g/l [ ], horticultural waste with 6 g/l glucose and 58 g/l
xylose [ ], and sugarcane bagasse containing 15 g/l glucose and 44 g/l xyl-
ose [ ]. The deviation from the general trend could be due to the feedstock
properties as well as the specific pretreatment methods. Addition of glucose
to the hydrolysate is a common practice to increase the total sugar con-
centration in the fermentation medium. Therefore, the total and individual
sugar concentrations were higher for lignocellulosic hydrolysates with gluc-
ose. The medians of total sugar, glucose, xylose and arabinose concentra-
tions were 60.05, 40.4, 15.7 and 2.8 g/l, respectively. The amount of glucose
added to the wheat straw hydrolysate was increased incrementally until the
substrate inhibitory level [ ], which resulted in outliers together with the
glucose added cassava bagasse hydrolysate [ ]. Mixed sugar fermentations
are frequent among published lignocellulosic biomass fermentation studies.
Researchers mimic the composition of hydrolysates with synthetic sugars to
test the effect of impurities and inhibitors. Mixed sugar concentrations are
more disperse with the medians of total sugar, glucose, xylose and arabinose
concentrations of 60, 28, 23 and 0 g/l, respectively.

3.3.2 Product Mixture Properties

Maximization of butanol titer is an all-time objective as discussed previ-
ously. In addition, the product mixture properties can provide information
about the state of the fermentation. Therefore, the composition and con-
centrations of the product mixtures were shown in Figure .

For lignocellulosic hydrolysate fermentations, the medians of total ABE
solvents, acetone, butanol and ethanol concentrations are 9.33, 2.5, 6.95
and 0.4 g/l, respectively, while median total acid, butyric acid and acetic
acid concentrations are 4.4, 1.94 and 2.26 g/l. The highest reported value
of the product of interest, butanol was 14.5 g/l produced by C. beijerinckii
P260 [ ] shown as an outlier in Figure . High total acid concentrations
of 14.1 and 15.1 g/l were reported for switchgrass hydrolysate fermentations
by C. acetobutylicum 824, and those were reduced to 5.38 and 4.8 g/l after
detoxification of the substrate with more than 100% increase in the total
ABE solvent concentrations [ ]. Total acid concentrations of 16.1 and 28.8
g/l were reported for soybean hull as the feedstock and engineered C. tyrobu-
tyricum strains [ ]. High acetone concentration in the product mixture is
not desirable since it is corrosive to plastic piping and increases downstream
costs. Therefore, wheat straw hydrolysate fermentation by C. beijerinckii
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with 11.9 g/l acetone [ ] and, switchgrass and phragmite hydrolysate fer-
mentations by C. saccharobutylicum with 9.13 and 9.15 g/l acetone [ ],
respectively, are worth to mention.
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Total acid
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a b c

Figure 3.3: Product concentrations of a) lignocellulosic hydrolysate, b) lignocellulosic
hydrolysate with additional glucose, and c) mixed sugar fermentations.

For lignocellulosic hydrolysate with glucose fermentations, the medi-
ans of total ABE solvents, acetone, butanol and ethanol concentrations are
13.81, 2.97, 8.69 and 0.71 g/l, which are 48%, 19%, 25% and 78% higher
than fermentations of lignocellulosic hydrolysates only as reported above.
Medians of total acid, butyric acid and acetic acid concentrations are 3.5,
1.0 and 2.5 g/l. Additional glucose resulted in an increase in ABE solvents,
and a decrease in total acids indicating that the fermentations were closer to
completion. Fermentation of wheat straw hydrolysate with added glucose
by C. beijerinckii yielded a high acetone concentration of 13.7 g/l [ ].

For mixed sugar fermentations, the medians of total ABE solvents, acet-
one, butanol and ethanol concentrations are 12.33, 3.01, 8.17 and 0.8 g/l,
respectively, while those of total acid, butyric acid and acetic acid concen-
trations are 4.83, 1.93 and 2.85 g/l. Even though the initial total substrate
concentrations of lignocellulosic hydrolysate with glucose and mixed sugar
fermentations were almost the same, the latter had 12% lower ABE solvents,
and 38% higher total acids. Reasons can be the difference in individual
sugar concentrations and the stimulatory effects of compounds present in
the hydrolysates [ ].

3.3.3 Performance Indicators

Percental (%) utilizations of total sugar, glucose, xylose and ar-
abinose, butanol and solvent yields in % (g product/g total sugar
consumed×100%) and the butanol ratio in % in ABE solvents (g butanol/g
ABE solvents×100%) were selected as the performance indicators, which
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are shown in Figure . Even though solvent/butanol productivity is
another important measure, reported values were difficult to compare due
to the presence of lag phases and low data density, making it difficult to
determine the exact termination time of fermentation.
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Figure 3.4: Performance indicator values of a,d) lignocellulosic hydrolysate, b,e) ligno-
cellulosic hydrolysate with additional glucose, and c,f) mixed sugar fermentations.

For lignocellulosic hydrolysate fermentations, the medians of total sugar,
glucose, xylose and arabinose utilizations (%) are 94, 100, 80.8 and 100, re-
spectively, which indicates a rather inefficient use of xylose. Lowest glucose
utilizations shown as outliers in Figure are 49% for rice straw hydro-
lysate fermentation by non-acetone forming C. sporogenes [ ] and 16%
for switchgrass hydrolysate fermentation by C. acetobutylicum 824 that in-
creased to 60% after detoxification [ ]. In a similar manner, 14% glucose
utilization during wheat straw hydrolysate fermentation by C. beijerinckii
6422 increased to 76% after detoxification [ ]. Solvent and butanol yields
are important measures of cells’ efficiency to convert substrate to useful
products, and a higher butanol ratio is desirable to minimize downstream
processing costs. The medians of total ABE solvent yield, butanol yield and
butanol ratio were 34%, 25.6% and 67.5%. The highest butanol yield with
38.4% was achieved for rice bran hydrolysate fermentation by C. beijerinckii
8052 [ ], which represents 94% of the maximum theoretical butanol yield
from glucose, 0.41 (g/g) [ ]. The highest butanol ratio in ABE solvents
was 84.2% achieved in the same fermentation [ ]. It is interesting to note
that the butanol ratio was only 64% in the fermentation by non-acetone
forming C. sporogenes [ ], which can still be favorable, since the ethanol
and butanol blend is already a valuable and useful product mix.
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For lignocellulosic hydrolysate fermentations with added glucose, the
medians of total sugar, glucose, xylose and arabinose utilizations were
68.7%, 73%, 67% and 65%, respectively, which are lower than in ferment-
ations of the hydrolysates without added glucose. The reason can be
that the substrate concentrations reached inhibitory levels with the added
glucose and consequently sugar utilizations became inefficient. Median
values of total ABE solvent yield, butanol yield and butanol ratio were
37.8%, 22.3% and 60%. Despite 11.2% higher solvent yield, butanol yield
and butanol ratio were 13% and 12.5% lower compared to lignocellulosic
hydrolysate fermentations without extra glucose, which implies that the
composition of the sugar mixture has an influence on the product mixture.

For mixed sugar fermentations, the medians of total sugar, glucose, xyl-
ose and arabinose utilizations are 89%, 100%, 80.8% and 86%, respectively.
Despite the similar initial total substrate concentrations of lignocellulosic
hydrolysate with glucose and mixed sugar fermentations, the latter had
20% higher total sugar utilization. This can be due to the difference in
concentrations of individual sugars and other medium components. Me-
dian values of total ABE solvent yield, butanol yield and butanol ratio were
29.9%, 19.8% and 67%. Both yield values were significantly lower than in
lignocellulosic hydrolysate with added glucose fermentations. However, the
butanol ratio was 11.7% higher in mixed sugar fermentations.

3.3.4 Correlations between Fermentation Variables

All 22 fermentation variables introduced in the previous section were
used. They are initial substrate, glucose, xylose and acetic acid concentra-
tions (Si, SGi, SXi and HAci), ratio of glucose and xylose in the initial
substrate mixture (SGir and SXir), utilized concentrations of total sub-
strate, glucose and xylose (Su, SGu and SXu), percental utilizations of
total substrate, glucose and xylose (Sur, SGur and SXur), concentrations of
acetone, butanol, ethanol, ABE solvents, butyric acid, acetic acid and total
acids (Ac, BuOH, EtOH, ABE, HBu, HAc and Acids), ABE solvents
and butanol yields (ABEy and BuOHy), and butanol ratio in ABE solvents
(BuOHr). Figure shows correlations of 22 fermentation variables of 175
fermentations. For a thorough investigation of the correlation coefficients, it
is referred to Table in the Appendix. All the correlation coefficients dis-
cussed below have a p value greater than 0.05, showing that the correlation
is statistically significant.

All utilized sugar concentrations (Su, SGu, SXu) increase as their ini-
tial concentrations (Si, SGi, SXi) increase, which reflects into positive and



46 Chapter 3. Exploratory Data Analysis of Fermentation Variables

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

12345678910111213141516171819202122

0.49

0.41

0.05

0.13

0.13

0.54

-0.24

0.39

-0.15

0.20

-0.13

0.29

0.27

0.30

0.31

0.17

0.26

0.16

-0.09

-0.19

-0.16

0.49

-0.02

-0.27

0.36

0.31

-0.20

-0.24

-0.11

-0.16

0.30

0.25

0.23

0.29

0.07

0.16

0.09

0.03

-0.08

-0.14

0.41

-0.02

-0.40

-0.05

0.33

-0.06

0.05

0.18

0.00

0.11

0.11

0.33

0.15

0.07

0.12

0.06

-0.14

-0.20

-0.08

0.05

-0.40

0.42

-0.00

-0.03

0.43

-0.25

-0.33

-0.04

0.14

0.07

0.01

0.09

-0.08

-0.05

-0.09

0.07

0.05

-0.11

0.13

-0.27

-0.14

0.14

0.06

-0.13

0.27

0.56

0.12

-0.01

-0.00

0.21

0.02

-0.02

-0.01

-0.03

-0.16

-0.16

-0.04

0.13

0.36

-0.05

0.42

-0.14

0.08

-0.07

0.25

-0.27

0.04

0.17

0.24

0.30

-0.00

0.27

-0.06

0.25

0.17

0.36

0.33

0.11

0.54

0.31

0.33

-0.00

0.14

0.08

0.23

0.47

0.21

0.44

0.21

0.53

0.38

0.05

0.17

0.10

0.07

-0.04

-0.07

-0.24

-0.20

-0.06

-0.03

0.06

-0.07

0.23

0.01

0.55

0.24

0.22

0.27

0.12

0.25

-0.08

-0.08

-0.08

0.23

0.20

0.05

0.39

0.05

0.43

-0.13

0.25

0.47

0.01

0.09

-0.01

-0.08

0.38

0.33

0.22

0.38

0.08

0.19

0.13

0.04

-0.05

-0.02

-0.15

-0.24

0.18

-0.25

0.27

-0.27

0.21

0.55

0.09

0.20

0.21

0.10

0.18

0.18

0.17

0.12

0.07

0.10

0.09

0.10

0.18

0.20

-0.11

-0.33

0.56

0.04

0.44

0.24

-0.01

0.20

0.41

0.26

0.31

0.33

0.32

-0.14

-0.02

-0.09

0.01

-0.01

-0.06

-0.13

-0.16

0.00

-0.04

0.12

0.17

0.21

-0.08

0.21

0.41

0.24

0.22

0.12

0.22

-0.24

-0.13

-0.20

0.14

0.16

-0.01

0.29

0.30

0.11

0.14

-0.01

0.24

0.53

0.22

0.38

0.10

0.26

0.24

0.23

-0.22

-0.00

-0.13

0.41

0.27

-0.26

0.27

0.25

0.11

0.07

-0.00

0.30

0.27

0.33

0.18

0.31

0.22

0.29

-0.15

0.07

-0.05

0.42

0.40

0.08

0.30

0.23

0.33

0.01

0.21

-0.00

0.38

0.12

0.22

0.18

0.33

0.12

0.23

0.29

0.34

-0.05

0.07

-0.01

0.03

-0.02

-0.22

0.31

0.29

0.15

0.09

0.02

0.27

0.25

0.38

0.17

0.32

0.22

0.34

-0.19

0.07

-0.07

0.43

0.36

-0.06

0.17

0.07

0.07

-0.08

-0.02

-0.06

0.05

-0.08

0.08

0.12

-0.14

-0.24

-0.22

-0.15

-0.05

-0.19

0.42

-0.23

-0.29

0.08

0.26

0.16

0.12

-0.05

-0.01

0.25

0.17

-0.08

0.19

0.07

-0.02

-0.13

-0.00

0.07

0.07

0.07

0.42

0.09

-0.05

0.14

0.16

0.09

0.06

-0.09

-0.03

0.17

0.10

-0.08

0.13

0.10

-0.09

-0.20

-0.13

-0.05

-0.01

-0.07

-0.08

-0.17

0.15

-0.09

0.03

-0.14

0.07

-0.16

0.36

0.07

0.23

0.04

0.09

0.01

0.14

0.41

0.42

0.03

0.43

-0.23

0.09

-0.08

0.05

-0.19

-0.08

-0.20

0.05

-0.16

0.33

-0.04

0.20

-0.05

0.10

-0.01

0.16

0.27

0.40

-0.02

0.36

-0.29

-0.05

-0.17

0.31

-0.16

-0.14

-0.08

-0.11

-0.04

0.11

-0.07

0.05

-0.02

0.18

-0.06

-0.01

-0.26

0.08

-0.22

-0.06

0.08

0.14

0.15

0.05

0.31

1.00

1.00

0.56

0.75

1.00

0.73

0.61

0.56

1.00

-0.52

0.73

-0.52

1.00

1.00

1.00

0.56

0.64

1.00

0.61

0.75

1.00

1.00

0.61

1.00

0.61

1.00

1.00

0.62

0.73

0.56

0.62

1.00

0.86

1.00

0.64

0.73

0.86

1.00

1.00

0.66

1.00

0.76

0.66

0.76

1.00

1.00

0.74

0.74

1.00

1.00
-1 -0.8

-0.6

-0.4

-0.2

0 0.2

0.4

0.6

0.8

1
S

i

SG
i

SX
i

SG
ir

SX
ir

H
A

c
i

S
u

S
ur

SG
u

SG
ur

SX
u

SX
ur

A
c

B
uO

H
E

tO
H

A
B

E
H

B
u

H
A

c
A

cids
A

B
E

y

B
uO

H
y

B
uO

H
r

S
i          SG

i       SX
i       SG

ir      SX
ir      H

A
c

i      S
u         S

ur        SG
u       SG

ur     SX
u      SX

ur     A
c       B

uO
H

   E
tO

H
   A

B
E

    H
B

u    H
A

c    A
cids   A

B
E

y   B
uO

H
y  B

uO
H

r

F
ig
u
re

3
.5
:
C
o
rrela

tio
n
s
o
f
a
ll
ferm

en
ta
tio

n
va
ria

b
les



3.3. Results and Discussion 47

statistically significant correlation coefficients in Figure . On the other
hand, sugar utilizations (Sur, SGur, SXur) (%) decrease with increasing ini-
tial total sugar (Si) and glucose concentrations (SGi). Even though higher
sugar concentration improves fermentation to some extent, beyond some
threshold, it starts to become inhibitory and this phenomenon is illustrated
with negative correlation coefficients. Furthermore, correlation coefficients
show that SGur decreases with increasing initial glucose ratio (SGir) with
correlation coefficient value of -0.25 and increases with increasing initial xy-
lose ratio (SXir) in the substrate with correlation coefficient value of 0.27.
This seems controversial at first sight. However, high SGir is a result of
high SGi, which leads to lower glucose utilization as explained above.

CCR information is another important feature extracted from the cor-
relations. A higher initial glucose ratio (SGir) and a lower initial xylose
ratio (SXir) leads to an increasing utilized glucose concentration (SGu)
with a correlation coefficient of -0.13 for the latter. Similarly, the utilized
xylose concentration (SXu) increases with an increasing initial xylose ra-
tio (SXir), while it decreases as the initial glucose ratio (SGir) increases
with a correlation coefficient of -0.33. Therefore, both sugars repress each
other’s utilization due to CCR. However, the repression effect is greater from
glucose to xylose (|-0.33| > |-0.13|) as suggested in our previous work [ ].

As the correlation coefficients in Figure indicate, all product concen-
trations increase with increasing initial concentrations of all sugars; acetone
(Ac) and butanol (BuOH) concentrations are more influenced by initial
glucose (SGi) than xylose (SXi), and SGi has a greater influence on Ac
(0.30) than on BuOH (0.25). This is in line with previous work where no
acetone accumulation was found during fermentation of xylose by C. acet-
obutylicum [ ]. Both solvent yield (ABEy) and butanol yield (BuOHy)
decrease with increasing initial xylose concentration (SXi) and ratio (SXir),
while they increase with elevated initial acetic acid concentration (HAci)
that is often generated during pretreatment of lignocellulosic biomass. Neg-
ative correlation coefficient between xylose and yields could be because the
carbon content of one xylose molecule is less than that of glucose, thus one
xylose molecule has less capacity to yield products. Positive correlation
between ABEy and BuOHy, and HAci can be due to presence of acetic
acid in the beginning of fermentation facilitating solvent formation, follow-
ing metabolic pathway of fermentation [ ]. Another crucial performance
indicator, the butanol ratio (BuOHr), becomes greater as Si, SGi, and SGir

decrease. Furthermore, all product concentrations except HBu and EtOH
increase with increasing HAci. Some researchers stated that high initial
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acetic acid concentrations could facilitate acetone formation, consequently
increase the acetone to butanol ratio [ ]. However, the correlation coef-
ficient between HAci and BuOH is greater than that of HAci and Ac, i.e.
0.30 and 0.24, respectively. Therefore, a potential effect of initial acetic acid
concentrations in the fermentation medium on product formation needs to
be studied in more detail.

Correlation coefficients between utilized sugar concentrations (Su, SXu)
and sugar utilizations (Sur, SXur) are positive, indicating the more the
utilized sugar concentration, the higher the utilization (%) with respect to
its initial concentration. In addition, all solvent concentrations (ABE, Ac,
BuOH, EtOH) increase with increasing Su, SGu, SXu, Sur, SGur and
SXur. One exception to this trend is that there is no significant correlation
between SGur and Ac. HAc is in positive correlation with and Su and
SGu, while HBu is in negative correlation with and SXu and SXur. Even
though both acids are produced as the cells metabolize glucose and xylose,
the difference in the effects of specific sugars in the metabolic pathway is
apparent.

Ac and BuOH concentrations decrease with increasing HBu concentra-
tion, while there is no correlation with HAc. Therefore, HBu concentration
alone can be considered as a measure of fermentation completion. EtOH is
not correlated with any of the acids, which is in good agreement with the
metabolic model developed by Shinto et al., 2008 [ ].

3.4 Conclusions

This chapter presented operating conditions in terms of substrate prop-
erties together with performance indicators and product mixture properties
by developing an extensive data set including information of 175 fermenta-
tions, which to the author’s knowledge, is the largest collection assembled
so far. The main contributions of this chapter can be stated as below:

� This is the first attempt to identify and define performance indicators
for the ABE fermentation process.

� Presented substrate and product mixture properties provide a basis
for fermentation process design.

� Interconnectedness between the fermentation variables was investig-
ated for the first time by employing exploratory data analysis.
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� Results of the exploratory data analysis were linked to individual ob-
servations presented in the research articles to provide a holistic view
and a platform for discussing the usefulness of the measures applied
to improve fermentation performance.

� Exploratory data analysis revealed the effect of substrate composition
and concentration on the fermentation for the first time, which was
supported by other research results in the field.

� The relationships between performance indicators provided by the
data analysis can be utilized to predict fermentation performance
without having to determine every variable.

By using the results and observation from this chapter, the study in the
next Chapter was designed. In addition, experimental conditions such
as the representative sugars, their compositions and concentrations were
decided accordingly.
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Chapter 4

Butanol Production from
Lignocellulosic Sugars in
Microbioreactors

Contents of this chapter were covered in .

4.1 Introduction

Systematic bioprocess development involving strain and cultivation op-
timization and testing is often needed to increase yield and productivity.
These efforts require screening of strains, medium compositions, and op-
erating conditions, which are traditionally carried out in shake flasks or
microtiter plates. However, these methods have some downsides, such as
the lack of online data monitoring and control [ ]. Microbioreactor tech-
nology can eliminate some of these drawbacks by offering easy handling,
online monitoring of key parameters and control capability, in addition to
the possibility to run multiple cultures in parallel. Disposable and miniatur-
ized versions of bench-scale bioreactors are today available for performing
fermentation experiments. Moreover, such technology has the advantage
of low power consumption, less space requirements, small quantities of re-
agents and cells per batch as well as flexibility and portability due their small
size [ ]. To exploit these advantages for studying fermentative butanol
production, mixed sugar fermentation experiments were performed in micro-
bioreactors. A BioLector� (m2p-labs GmbH, Baesweiler, Germany) instru-
ment was used as the microbioreactor unit. The BioLector� is a powerful
tool with proven capabilities of high-throughput fermentation with simul-

51
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taneous online monitoring of cell mass growth (by light scattering), fluor-
escence, pH and dissolved oxygen (DO) [ ]. To date, the BioLector�

has not been used for the purpose of studying fermentative butanol pro-
duction before. The objectives of the present chapter were therefore i) to
demonstrate the possibility to use BioLector� for butanol production under
anaerobic conditions, ii) to investigate the effect of scale and experimental
setup by parallel use of BioLector� and serum flasks, and iii) to show the
effect of different sugar mixtures on fermentation.

4.2 Materials and Methods

4.2.1 Microorganism and Medium

Clostridium beijerinckii NCIMB 8052 was used, since it is known to
utilize different lignocellulosic sugars for growth and butanol production
[ ]. The culture was pre-grown in medium described in Section
and under the conditions explained in Section in the Appendix. The
fermentation medium contained 5 and 10 g/l sugar, and rest of the medium
components are given in Table .

In total 12 different sugar compositions at 2 different total sugar con-
centrations and 6 different glucose to xylose ratios were used and studied in
parallel. The cultures containing 5 g/l total sugar, and glucose (G) to xylose
(X) ratios of 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100 are referred to as
5-G100:X0, 5-G80:X20, 5-G60:X40, 5-G40:X60, 5-G20:X80 and 5-G0:X100,
respectively throughout the study. Similarly, the cultures containing 10
g/l total sugar, and glucose to xylose ratios of 100:0, 80:20, 60:40, 40:60,
20:80 and 0:100 are referred to as 10-G100:X0, 10-G80:X20, 10-G60:X40, 10-
G40:X60, 10-G20:X80 and 10-G0:X100, respectively. Analysis of variance
(ANOVA) was applied to test significance of the effect of sugar concentration
and glucose to xylose ratio, the details are in Section in the Appendix.

4.2.2 Fermentations

Fermentations performed in microbioreactors are explained in Section
together with the details of the online monitoring and the BioLector�

setup was shown in Figure . To benchmark the microbioreactor ferment-
ations, fermentations were also done in serum flasks as explained in Section

. Both microbioreactor and serum flask experiments had the same
mixture of medium and inoculum to prevent the errors due to medium
preparation and inoculation. Experiments were terminated after 79 hours.
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Samples were taken at the start and the end of the fermentations, which
were analyzed by using high-performance liquid chromatography (HPLC)
for quantification of sugars and butanol as described in Section . Data
shown represent the mean values from experiments performed in quadruples.
Error bars show the standard deviation. A representation of experimental
design of fermentations performed both in microbioreactors and serum flasks
is shown in Figure .

4.3 Results and Discussion

4.3.1 Evaluation of Growth in BioLector� Microbioreactor
Fermentations

All glucose contained in fermentation medium was utilized entirely in
all 12 conditions. On the other hand, cultures 10-G80:X20, 10-G40:X60,
10-G20:X80, 10-G0:X100 and 5-G0:X100 had 0.040, 0.037, 0.060, 0.086 and
0.014 g/l residual xylose, respectively. Average xylose utilizations were 99.8
and 98.9% for cultures with 5 and 10 g/l total sugar.

Figure and Figure show online logged data of fermentations done
in BioLector� in terms of cell mass (scattered light) and pH allowing the
continuous monitoring of the growth during the course of the fermentation
(79 hours). Right after the start, there occurred lag phases of approxim-
ately 1.5 hours and 1 hour for cultures containing 5 and 10 g/l total sugar,
respectively, likely due to the adaptation of the cells to their new environ-
ment [ ].

After the lag phase, exponential growth was observed, during which C.
beijerinckii is known to produce acids and pH in the fermentation broth
decreases as a result. At the same time, cell mass increases exponentially.
Exponential growth phase was followed by a stationary growth phase during
which cell mass increased at a slower rate in all cultures. Moreover, pH
increased due to re-assimilation of acids to solvents. Standard deviations
were considerably smaller during the exponential growth phase compared
to the rest of the fermentation for both cell mass and pH values.

For the best understanding of carbon turnover and product formation,
fermentation progress in standard bioreactors is followed continuously by
online measurements of pH, DO, and off-gas CO2, while cell mass, sugar
and product concentrations are usually determined intermittently by offline
spectrophotometry and HPLC, respectively. Such experiments are, however,
laborious and costly, and the first phase of process optimization, involving
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Figure 4.1: Experiment design of fermentations performed in serum flasks (top) and
microbioreactors with a schematic representation of a single well (bottom).

e.g. different parameters and strains, is therefore often performed in serum
flasks. The cell mass monitoring allowed the direct calculation of growth
rates during cultivations, whereas the pH measurements provided online
information about sugar consumption and switching of clostridial metabol-
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Figure 4.4: Growth rate (h-1) values during exponential growth for all 12 experiments
done in the BioLector� setup were determined from the BioLector� online data.

ism from acetogenic to solventogenic phase. This represents an improvement
over standard offline measurement methods in the evaluation of clostridial
fermentations, even though off-gas CO2, sugars and product concentrations
are still not measured online.

Figure shows that growth rate (h-1) values were greater for cultures
with 10 g/l total sugar. Average growth rate values for cultures containing
5 and 10 g/l were 0.240 and 0.302 h-1. However, the change in growth rate
with respect to glucose to xylose ratio exhibited the opposite trend for ratios
of G100:X0, G80:X20 and G60:X40. Highest and lowest growth rates were
0.376 and 0.190 h-1 observed for 10-G100:X0 and 5-G40:X60 cultures.

For experiments done in BioLector�, all cultures containing xylose had
a slower growth rate than the cultures with glucose as the sole sugar, es-
sentially due to glucose being the preferred carbon source over xylose and
the effect of CCR [ ]. Therefore, the results in this section confirm that
cell mass growth was affected by CCR during the fermentation by C. beijer-
inckii NCIMB 8052. The growth rate decreased with decreasing glucose ra-
tio in the medium and increased while xylose was the sole sugar (G0:X100)
compared to G20:X80 cultures. This trend can be assigned to interaction
between sugars which is discussed in detail in the following sections in this
thesis. The standard deviation values of cell mass data increased signific-
antly in stationary phase compared to exponential growth phase as shown in
Figure . Different glucose to xylose ratios resulted in different standard
deviations as well. The reason can be the changes in the morphology of cells
affecting the online cell mass monitoring in the BioLector� unit [ , ],
since Clostridia are known to go through morphological changes during fer-
mentation [ ], and variation of standard deviation might indicate that
the sugar composition affects the morphology of the cells. The same trend
was observed for online logged pH data; standard deviations were greater
when the cultures reached the stationary phase. A side study was done to
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investigate if any particular replicas deviated from the mean value due to
its location on the well plate; however, no obvious correlation was obtained,
and further systematic examination is required to rule out potential posi-
tion effects. The sugar ratio also had impact on butanol concentration and
yield, which were inversely proportional with the growth rate. These results
are in accordance with a previous study, which showed that a higher growth
rate results in a lower butanol concentration, since sugars were used for cell
mass growth and not for butanol production [ ].

4.3.2 Comparison of Fermentations Performed in
Microbioreactors and Serum Flasks

A comparative overview of the results for serum flask and microbiore-
actor setups are provided in this section. In serum flasks experiments, both
glucose and xylose contained in fermentation medium was utilized entirely
in all 12 conditions, while there was residual xylose in microbioreactor ex-
periments as given in the results above. Butanol concentration (g/l) and
butanol yield (g butanol/g sugar) values of all were shown in Figure .
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Figure 4.5: Butanol concentration a) and c), and butanol yield b) and d) values of
fermentations done in BioLector� and serum flasks with 5 and 10 g/l total sugar, re-
spectively. Mean values of the 4 replicas are shown together with error bars representing
standard deviation for BioLector� results.

Figure shows that butanol concentrations and yields were greater
for cultures containing 10 g/l total sugar for all 6 different glucose to xylose
ratios in both setups. For BioLector�, average butanol concentration and
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butanol yield values of 6 experiments with 5 and 10 g/l were 0.192 and 0.664
g/l, 0.043 and 0.084 g/g, respectively. Both butanol concentrations and
yields increased with increasing xylose ratios from 0 to 40, decreased when
xylose ratio increased from 40 to 80, and increased again when the ratio
was G0:100X for cultures with 5 and 10 g/l total sugar. Highest butanol
concentration and butanol yield were 0.806 g/l and 0.099 g/g achieved in
the 10-G60:X40 culture, while lowest values 0.142 g/l and 0.031 g/g were
observed in 5-G20:X80.

For serum flask setup, average butanol concentration and butanol yield
values of 6 experiments with 5 and 10 g/l were 0.513 and 1.384 g/l, 0.114
and 0.176 g/g, respectively. Therefore, higher total sugar resulted in a
higher butanol production and yields, which agrees with the results obtained
in BioLector� fermentations. Highest butanol concentration and butanol
yield were 1.480 g/l and 0.190 g/g, achieved in the 10-G40:X60 culture,
while lowest values were 0.422 g/l and 0.093 g/g observed in 5-G20:X80,
which coincide with results of BioLector� as well.

Comparison of fermentations performed in microbioreactors and serum
flasks can provide important insight for scale up studies. Growth rates es-
timated using online logged cell mass data of BioLector� were in the range
of 0.190-0.312 h-1 for the cultures with 5 g/l total sugar, which is lower
than the range of 0.681-1.076 h-1 obtained in Chapter for experiments
done in serum flasks using the same sugar concentration and strain. Sim-
ilarly, the average growth rate of 0.240 h-1 in microbioreactors was 70%
lower than the value of 0.819 h-1 acquired in serum flasks. Different growth
rate values obtained in microbioreactors and serum flasks can be explained
by the difference in cell mass measurement methods. A study comparing
shake flasks and BioLector� microbioreactos showed that cell mass meas-
urements in BioLector� (scattered light intensity) and measurements with
photometer (optical density) were in good agreement for the growths of E.
coli and K. lactic. Contrarily, cell mass values for growth of G. oxydans
differed greatly, which was explained by the morphological changes [ ].
Therefore, it is important to have good knowledge about the physiology of
the strain used when comparing different experimental setups with different
monitoring units.

The effect of sugar ratio on butanol concentration and yield were not
as distinguishable for fermentations done in serum flasks as for the micro-
bioreactor fermentations. However, highest butanol productions and yields
were observed in 10-G60:X40 and 10-G40:X60 cultures, while lowest val-
ues observed in 5-G20:X80 cultures in both experimental setups. Average
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butanol concentration and butanol yield values of 0.428 g/l and 0.063 g/g
were 54.9% and 56.5% lower in microbioreactors than in serum flask fer-
mentations with average values of 0.948 g/l and 0.145 g/g. Even though
butanol concentrations were low due to low sugar concentrations used in
the fermentations of this chapter, average butanol yield value obtained in
serum flasks is comparable with the butanol yield found as 0.198 g/g in the
exploratory data analysis performed by using data of 79 fermentations with
lignocellulosic sugars as discussed in Chapter . The agreement in butanol
yield values is noteworthy, since it is a measure of cells’ efficiency to convert
substrate to desired product. Even though same inoculated media were used
in microbioreactors and serum flasks to have identical starting conditions,
there were significant deviations in butanol concentration and butanol yield
values, which can be related to the differences in experimental setups. Mi-
crobial well plates in microbioreactor setup was continuously shaken and
flushed with nitrogen to ensure and anaerobic conditions. This might have
caused stripping effect for the volatile components present in fermentation
broth, since gas stripping is a commonly applied method for butanol re-
moval [ ]. Although an evaporation-limiting layer was used, it might still
be permeable to butanol fume. On the other hand, serum flask fermenta-
tions were performed under static conditions without any gas flow through
the flasks. Moreover, flasks were sealed with rubber stoppers to sustain
anaerobic conditions and the stoppers were taken off when the experiments
were terminated. Therefore, gas stripping effect was not prevailing as in mi-
crobioreactors, which resulted in a greater average butanol concentration,
thus average butanol yield.

A two-way ANOVA was used to assess if the effect of changing total sugar
concentrations and glucose to xylose ratios on fermentation were significant.
Two tests were performed for fermentations done in BioLector� and in
serum flasks, p values are given in Table and Table , respectively.

Table 4.1: p values obtained from ANOVA for fermentations done in BioLector�.

Butanol
concentration (g/l)

Butanol
yield (g/g)

Specific growth
rate (h-1)

Total sugar
concentration (g/l)

1.54E-08 1.54E-08 3.71E-05

Sugar ratio (g/g) 0.00063 0.00025 2.88E-05
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Table shows that both total sugar concentration (g/l) and glucose
to xylose sugar ratio have significant effect on butanol concentration (g/l),
butanol yield (g butanol/g sugar) and growth rate (h-1), since all the p
values are smaller than the set limit of 0.05. It is important to note that
the effect of total sugar concentration on butanol concentration (g/l) and
butanol yield (g butanol/g sugar) were greater than that of sugar ratio with
p values of 1.54E-08 and 1.54E-08, and 0.00063 and 0.00025, respectively.
On the other hand, significance of effects for total sugar concentration and
sugar ratio were very similar for specific growth rate with p values of 3.71E-
05 and 2.88E-05, respectively. Therefore, specific growth rate was equally
sensitive to both factors.

Table 4.2: p values obtained from ANOVA for fermentations done in serum flasks.

Butanol
concentration (g/l)

Butanol
yield (g/g)

Total sugar concentration (g/l) 1.54E-08 1.54E-08

Sugar ratio (g/g) 0.00063 0.00025

Table shows that the effects of total sugar concentration on butanol
concentration and butanol yield were significant with p values smaller than
0.05. Nevertheless, sugar ratio did not have a significant effect. An in-depth
metabolic study would be useful to investigate the effects of carbon sources
on C. beijerinckii NCIMB 8052.

4.4 Conclusions

Fermentations of glucose and xylose at 6 different ratios and 2 differ-
ent total sugar concentrations were done by C. beijerinckii NCIMB 8052
in microbiorectors and serum flasks to demonstrate the possibility to use
BioLector�, to investigate the effect of scale and experimental setup, and
to show the effect of different sugar mixtures on fermentation. The main
contributions of this chapter are summarized below:

� All cultures could be successfully grown in the BioLector� system
under anaerobic conditions, metabolized both glucose and xylose, and
produced butanol.
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� The online monitoring of cell mass and pH in the BioLector� enabled
following the progress of the fermentations at unprecedented time-
resolution.

� Growth rate, butanol production and butanol yield values were 70.7,
54.9 and 56.6% lower, respectively in microbioreactors compared to
serum flasks experiments.

� Glucose to xylose ratio affects both growth and production.

In conclusion, the information obtained in this chapter will support fur-
ther research in bioreactor and bioprocess design and scale-up, which are
very important aspects of industrial fermentations of lignocellulosic biomass.



Chapter 5

Effect of Pre-growth
Conditions on Fermentation

Contents of this chapter were covered in .

5.1 Introduction

Fermentative butanol production faces feedstock availability and low
yield problems, and lignocellulosic biomass is a favorable feedstock, which
can help to tackle those problems as discussed in Chapter . Even though
lignocellulosic sugars is a mixture of pentose and hexose sugars, current
methodologies still mainly focus on the fermentation of hexose sugars,
mainly glucose, while discarding the rest of the feedstock or using it as
a source for process energy. Therefore, full exploitation of all the sugars
bound in lignocellulosic biomass can contribute to solving the low yield
problem. However, the cells’ efficiency at utilizing different sugars in mixed
form tends to decrease due to Carbon Catabolite Repression as thoroughly
explained in Section .

Developing strains capable of co-utilizing hexose and pentose for butanol
production by metabolic engineering is an active research topic [ , , ,

, ]. Even though Lee et al. (2016) [ ] stated metabolic engineering is
required for simultaneous utilization of sugars, researchers have developed
pre-growth strategies achieving co-utilization without any strain manipula-
tion [ , – ]. The suggested pre-growth methods comprised of subject-
ing a culture to a less favorable carbon source, mostly sole xylose for early
activation of its utilization pathway. When a mixture of a sugars, usually
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glucose and xylose, was then added to the fermentation medium, the cul-
ture pre-grown on xylose could simultaneously utilize them. In the light of
these findings, the objective was defined as: i) understanding the effect of
the feeding strategy on fermentation of glucose and xylose mixtures, and
ii) developing a feeding strategy to tackle CCR and sequential utilization
problems without having to manipulate the strain.

5.2 Materials and Methods

5.2.1 Microorganism and Medium

Clostridium beijerinckii NCIMB 8052 was used. The culture was pre-
grown in medium described in Section and under the conditions ex-
plained in Section . The fermentation medium contained 5 g/l sugar,
and rest of the medium components are given in Table .

5.2.2 Fermentations

Fermentations were performed under the conditions as explained in Sec-
tion . There were two fermenters: one had only xylose (G0:X100) as
the initial sugar (fermenter 1) and the other one had only glucose (G100:X0)
(fermenter 2). Mixtures of glucose and xylose were fed to fermenter 1 by
gradually increasing the glucose (G) to xylose (X) ratio in the feed G20:X80,
G40:X60, G60:X40, G80:X20 and G100:X0. Similarly, mixtures were fed to
fermenter 2 by gradually decreasing the glucose (G) to xylose (X) ratio in
the feed G80:X20, G60:X40, G40:X60 and G20:X80. Total sugar concen-
tration in the fermenters were kept at 5 g/l so that the sugar utilization
patterns could be clearly observed. Liquid level in the fermenters were kept
constant by using concentrated sugar solutions and removing equal amounts
as feed during sampling to reduce dilution effects. Samples were taken to
follow the progress of the fermentations, which were analyzed by using high-
performance liquid chromatography (HPLC) for quantification of sugars and
butanol as described in Section .

5.3 Results and Discussion

5.3.1 Progress of Fermentations

Progress of fermentation started with xylose as the initial sugar is shown
in Figure in terms of the amounts of the sugars fed and consumed,
and productions of cell mass and butanol. The first feed containing xylose
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(G0:X100) as the sole sugar was consumed within 6 hours with rate of 0.67
g/l.h-1, and cell mass concentration increased exponentially in the first feed
interval (0-6 hours).
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Figure 5.1: Glucose and xylose a), and butanol and cell mass b) profiles for fermenter 1
with xylose as the initial sugar.

The second feed to fermenter 1 was a mixture of 20% glucose and 80%
xylose, G20:X80. In the second feed interval (6-8 hours), glucose and xy-
lose were co-utilized at rates of 0.12 and 0.63 g/l.h-1, respectively. Cell
mass concentration increased steadily, and butanol was detected first after
7 hours. The third feed contained 40% glucose and 60% xylose, G40:X60,
which were co-utilized at 0.40 and 0.50 h-1. Cell mass growth rate decreased,
while butanol production rate reached 0.33 g/l.h-1. At 13 hours, the fourth
feed with 60% glucose and 40% xylose, G60:X40 was fed to fermenter 1, and
sugars were simultaneously utilized as well at rates of 0.64 and 0.37 g/l.h-1.
Butanol production rate was the same as in the third feed interval and its
concentration became 3.98 g/l, and cell mass continued to increase steadily.
The fifth feed consisting of 80% glucose and 20% xylose, G80:X20 was fed
at hour 22. Even though co-utilization was observed again, glucose and
xylose consumption rates decreased to 0.19 and 0.10 g/l.h-1, respectively.
There was no apparent change in cell mass concentration, while butanol
production rate decreased to 0.08 g/l.h-1. In the sixth feed interval, feed
contained only glucose (G100:X0), with the slowest utilization rate of 0.097
g/l.h-1observed in fermenter 1. Cell mass concentration decreased due to
decay phase, and butanol concentration increased to 4.98 g/l. 11.7 g/l xyl-
ose was fed in total and all of it was consumed, while 10.7 g/l glucose was
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fed and 4 g/l remained in fermenter 1. Fermenter 1 terminated after 48
hours with respect to start of the fermentation determined by off-gas CO2

monitoring.

Progress of fermentation 2, with glucose as the initial sugar is shown in
Figure in terms of the amounts of the sugars fed and consumed, and
productions of cell mass and butanol. The first feed containing glucose
(G100:X0) as the sole sugar was consumed within 5 hours with respect to
the start of the fermentation. In the first feed interval, glucose utilization
rate was 0.75 g/l.h-1, and cell mass growth was exponential.
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Figure 5.2: Glucose and xylose a), and butanol and cell mass b) profiles for fermenter 2
with glucose as the initial sugar.

The second feed with 80% glucose and 20% xylose, G80:X20 was fed
to fermenter 2 at time 5 hours. Steady growth was observed for cell mass,
and glucose and xylose utilization rates were 0.85 and 0.05 g/l.h-1 in the
second feed interval. Butanol was detected for the first time at 7 hours.
60% glucose and 40% xylose, G60:X40 was the third feed to fermenter 2.
There was an apparent co-utilization of sugars, steady growth of cell mass
and butanol production in the third feed interval. The fourth feed contained
40% glucose and 60% xylose, G40:X60, which were co-utilized at 0.075 and
0.114 g/l.h-1. Cell mass concentration decreased and butanol production
became very low. In the fifth feed interval of fermenter 2, sugar utilization
rates decreased drastically, cell mass decay continued and a small butanol
production was observed. In total, 12.47 g/l glucose was fed to fermenter 2
of which 8.822 g/l was consumed. 9.996 g/l xylose was fed of which 1.485
g/l was consumed. Final butanol concentration was 0.5 g/l in fermenter 2.
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Fermenter 2 terminated after 26 hours with respect to start of the ferment-
ation.

5.3.2 Kinetic Coefficients

Maximum specific growth rate, μmax, cell mass yield on sugar, YX/S ,
butanol yield on sugar, YB/S , butanol yield on cell mass, YB/X , glucose
utilization, SGur , xylose utilization, SXur and total sugar utilization, Sur
were the kinetic coefficients used to compare the two fermentations. The
coefficients, determined as described in Section for fermenter 1 and
fermenter 2, are shown in Table .

Table 5.1: Kinetic coefficients for fermenter 1 and fermenter 2.

Kinetic coefficient Fermenter 1 Fermenter 2

μmax (h-1) 0.68 0.94

YX/S (g/g) 0.1 0.12

YB/S (g/g) 0.28 0.05

YB/X (g/g) 2.8 0.42

SGur (%) 62 71

SXur (%) 100 1

Sur (%) 81 46

Maximum specific growth rate, μmax, 0.94 h-1 and cell mass yield on
sugar, YX/S , 0.12 g butanol/g sugar were higher in fermenter 2 than in
fermenter 1 with μmax value of 0.68 h-1 and YX/S value of 0.1 g cell mass/g
sugar. In fermenter 1, butanol yield on sugar, YB/S and butanol yield on
cell mass, YB/X were 0.28 g butanol/g sugar and 2.8 g butanol/g cell mass,
respectively, while they were 0.05 g/g and 0.42 g/g in fermenter 2. All xylose
fed to fermenter 1 was utilized while only a small amount of the total fed
xylose was utilized in fermenter 2; therefore, total xylose utilization, SXur

was 100% in fermenter 1, and 1% in fermenter 2. On the contrary, total
glucose utilization, SXur was higher in fermenter 2 with a value of 71%
than 62% obtained in fermenter 1. Total sugar utilization was greater in
fermenter 2, 81%, than in fermenter 1, 46%.
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As Table shows, fermenter 1 was superior to fermenter 2 by means of
total sugar and xylose utilizations, butanol concentration and butanol yield.
Even though glucose is the preferred carbon source for Clostridia, having
only xylose in fermenter 1 as the initial sugar obviously activated the xylose
metabolism. Therefore, mixtures of glucose and xylose were fed, sugars
were co-utilized. Results of fermenter 2 confirm this observation, since it
had glucose as the initial sugar, and glucose utilization was prominent when
sugar mixtures were fed. Faster growth of cell mass in fermenter 2 was
due to rapid glucose consumption, which resulted in a greater cell mass
concentration, thus higher cell mass yield, YX/S compared to fermenter 1.
Even though high cell mass density is desirable to achieve high butanol
productivity, an earlier study showed that higher growth rate results in a
lower butanol concentration, since more sugar was used for cell mass growth
and not for butanol production [ ].

There has been different approaches to improve utilization of sugars in
mixed form by tackling Carbon Catabolite Repression. Metabolic engineer-
ing targeted disrupting the genes responsible for CCR and overexpression of
genes responsible for xylose transport and catalytic enzymes [ , , , ]
which resulted in better utilization of xylose and higher butanol produc-
tion. Even though engineered strains have shown improved performance
compared to their wild type strains, researchers have developed pre-growth
strategies achieving co-utilization without any manipulation [ , , –

]. To compare these two approaches, utilized glucose, xylose and ara-
binose concentrations (g/l), SGu, SXu and SAu, butanol yield on sugar
(g/g), YB/S and butanol concentration (g/l), BuOH values are summarized
in Table .

Butanol yield (0.28 g/g) was the highest in fermenter 1 compared to all
other mixed sugar fermentations. Reported values in Table show the
results of batch fermentations, while fermenter 1 and fermenter 2 were op-
erated in fed-batch mode by keeping the total sugar concentration in the
broth (10 g/l) relatively low compared to common practice (60 g/l). Com-
bined effects of the operating mode and limited sugar concentration might
have also promoted better sugar utilization and higher butanol production.

In addition to the effect of initial sugar fed to the fermenter or present
in the pre-growth medium, glucose to xylose ratio has an influence on fer-
mentation kinetics. Both in fermenter 1 and fermenter 2, glucose utilization
increased with increasing glucose ratio in the feed and vice versa for xylose.
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Table 5.2: Comparison of results with previous studies.

Strain SGu

(g/l)
SXu

(g/l)
SAu

(g/l)
YB/S

(g/g)
BuOH
(g/l)

Ref.

C. beijerinckii NCIMB 8052 6.70 17.70 - 0.28 4.98 Ferm.1

C. beijerinckii NCIMB 8052 8.80 1.50 - 0.05 0.50 Ferm.2

C. beijerinckii NCIMB 8052 7.18 20.30 3.50 0.22 6.80 [ ]

C. beijerinckii NCIMB
8052xylR

7.18 29.30 7.40 0.25 10.82 [ ]

C. beijerinckii NCIMB
8052xylR-xylTptb

7.18 33.60 8.70 0.23 11.27 [ ]

C. beijerinckii SE-2 20.20 19.80 - 0.18 7.30 [ ]

C. beijerinckii SE-2 21.10 20.60 - 0.17 7 [ ]

C. beijerinckii SE-2 20 18.50 - 0.21 8 [ ]

C. acetobutylicum ATCC 824 19 2.60 - 0.12 2.50 [ ]

C. acetobutylicum ATCC 824 28 6.40 - 0.19 6.40 [ ]

C. acetobutylicum ATCC 824 41 7.30 - 0.18 8.80 [ ]

C. acetobutylicum ATCC
824-tal

19 13 - 0.18 5.80 [ ]

C. acetobutylicum ATCC
824-tal

28 11 - 0.19 7.50 [ ]

C. acetobutylicum ATCC
824-tal

41 9 - 0.18 8.80 [ ]

C. acetobutylicum ATCC 824 33 30 - 0.19 12.05 [ ]

C. acetobutylicum ATCC 824
(glucose pre-grown)

35 4 - 0.13 5 [ ]

C. acetobutylicum ATCC 824
(xylose pre-grown)

34 15 - 0.17 8.50 [ ]

C. acetobutylicum ATCC 824
(glucose & xylose pre-grown)

36 35 - 0.23 16.60 [ ]

C. acetobutylicum ATCC 824
(glucose pre-grown)

52 10 - 0.23 14.30 [ ]

C. acetobutylicum ATCC 824
(xylose pre-grown)

25 43 - 0.22 14.60 [ ]
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Both metabolic engineering and pre-growth strategies provide improve-
ment in terms of co-utilization of sugars in mixed form. However, simultan-
eous utilization alone does not guarantee that CCR was tackled. A recent
transcriptional study showed that during fermentation of glucose and xyl-
ose to produce butanol by C. beijerinckii SE-2, glucose inhibition on xylose
metabolism-related genes were still present even though the sugars were
co-utilized [ ].

5.4 Conclusions

Effects of different feeding strategies on fermentation were studied to
cope with CCR and sequential utilization problems. Main findings of this
chapter are summarized below:

� Fermenter 1 with only xylose as the initial carbon source could co-
utilize sugars for all mixed sugar feeds, while fermenter 2 with only
glucose as the initial sugar suffered from sequential utilization.

� Xylose in fermenter 2 accumulated while glucose was present; its util-
ization became apparent only after the glucose was completely ex-
hausted.

� Total sugar utilization, butanol concentration and butanol yield on
sugar were greater for fermenter 1, while specific growth rate of cell
mass and cell mass yield on sugar were higher for fermenter 2.

The effect of the sugar type in the initial growth medium on fermentation
was prevailing. Transcriptional studies need to be performed to understand
in depth if CCR is active or not, as well as to understand the co-utilization
mechanism for improvement of the proposed feeding approach. Observations
and findings of this chapter created a motive for further investigation of
mixed sugar utilization and were employed for development of a two-stage
pre-growth strategy in Chapter .



Chapter 6

Modelling The Binary
Substrate Growth

Contents of this chapter were covered in and .

6.1 Introduction

In the previous chapter, it was shown that the exposure of active cells
to xylose as the sole carbon source enhanced utilization of sugars in mixed
form and avoided the sequential utilization problem. However, co-utilization
alone does not guarantee that CCR was inactive [ ]. Therefore, the lim-
ited quantitative knowledge about the effect and extend of CCR on mixed
sugar utilization remains as a bottleneck, and indicates the importance
of studying the growth on mixed sugars to elucidate the synergic effects
stressed by earlier studies [ ]. This bottleneck is targeted in this chapter
by using Response Surface Methodology (RSM). RSM is a statistical tool,
which includes an experimental design with a minimum number of experi-
ments and builds a model that can predict the interaction and correlation
between a set of independent variables and responses [ ].

Even if it is apparent that there is interaction between the sugar utiliz-
ation paths, the type of interaction would remain unknown, and successful
design of lignocellulosic fermentation processes requires the kinetic model
for accurately predicting the cell mass growth. Therefore, objectives of this
chapter are i) to apply RSM to understand the utilization of xylose and
glucose as representative lignocellulosic sugars, and ii) to develop a model
describing the cell mass growth as well as the interaction between the sugars.
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6.2 Materials and Methods

6.2.1 Microorganism and Medium

Clostridium beijerinckii NCIMB 8052 was used. A two-stage pre-growth
strategy was applied based on Chapter . First, the culture was pre-grown
in medium described in Section and under the conditions explained in
Section . Then, the culture was pre-grown on a medium containing 5
g/l xylose and components given in Table . After the second pre-growth
in the xylose containing medium, experiments started in fermentation media
containing different amounts of glucose and xylose according to Table .
The rest of the medium components are listed in Table .

6.2.2 Fermentations

Fermentations were performed in serum flasks as explained in Section
. 2 ml samples were taken every 2 hours from the start of the experi-

ments until the end of the exponential growth phase. Optical density (OD)
was used as a measure for cell mass concentration, explained in Section .

6.2.3 Design of Experiments

A circumscribed central composite (CCC) design for 2 factors, glucose
and xylose concentrations was used for designing the experiment. CCC
design resulted in 16 experimental runs with 8 of them in the centre point
to reduce the effects of correlations between the factors. Further explanation
about CCC design can be found in Section . Minimum and maximum
values of factors were chosen as 1 g/l and 4 g/l, then real values for each
experiment were obtained according to the coded levels of the respective
CCC design, which are shown together in Table .

Table 6.1: Real and coded values of circumscribed central composite design for 2 factors.

Factor Symbol
Coded

-1.4142 -1 0 1 1.4142

Glucose (g/l) X1 1 1.4393 2.5000 3.5606 4

Xylose (g/l) X2 1 1.4393 2.5000 3.5606 4
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6.2.4 Model Fitting

A quadratic linear model was fitted with the experimental data obtained.
R-squared value was used to assess the quality of the fit. p value for F-
statistic and p value for t-statistic were used to assess significance of linear
regression model and model coefficients, respectively. Details can be seen
in Section in the Appendix.

Binary substrate growth models were fitted with the experimental
growth data by using Levenberg-Marquardt nonlinear least squares al-
gorithm. Sum of squared error (SSE) was used to assess the quality of the
fit. 95% confidence intervals for the model parameters were obtained by
using the covariance matrix, which is then converted to correlation matrix.
Raw residuals were used to visualize the difference between the simulated
and observed values of the growth rate. Details can be seen in Section

in the Appendix.

6.3 Results and Discussion

6.3.1 Characterization of the Growth on Mixtures of
Glucose and Xylose

Table shows resulting response values (specific growth rates) estim-
ated as shown in Section for each experiment together with the factor
levels (sugar concentrations) defined by CCC design.

The experimental data given in Table were fitted to the model, Equa-
tion presented in the Appendix by linear regression given in Section

. Model fitting resulted in Equation with the actual variables (gluc-
ose and xylose concentrations) and the predicted response (growth rate).

Growth rate = 0.0178 + 0.6073×Glucose+ 0.0486×Xylose
− 0.0585×Glucose2 + 0.0498×Xylose2
− 0.1266×Glucose×Xylose

(6.1)

Fit results provided insight into the quality of the fit. The R-squared
value was 0.939, which means that the model can explain 93.9% of the
variability in the response variable, growth rate, while 6.1% of the variability
cannot be represented by this model. The p value for F-statistic for the
model was 8.83e-06 indicating that the model was significant.
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Table 6.2: Experimental values of circumscribed central composite design and responses.

Experiment
No.

Glucose (g/l) Xylose (g/l) Growth rate (h-1)

1 1.4393 1.4393 0.7095

2 1.4393 3.5606 1.0760

3 3.5606 1.4393 0.8514

4 3.5606 3.5606 0.6811

5 1 2.5000 0.6153

6 4 2.5000 0.7045

7 2.5000 1 0.9313

8 2.5000 4 0.8396

9 2.5000 2.5000 0.8877

10 2.5000 2.5000 0.7343

11 2.5000 2.5000 1.0580

12 2.5000 2.5000 0.8380

13 2.5000 2.5000 0.8426

14 2.5000 2.5000 0.7039

15 2.5000 2.5000 0.7544

16 2.5000 2.5000 0.8755

Residuals from the least squares are important for assessing the accuracy
of the model. Therefore, normal probability distribution of residuals is
shown in Figure , which confirmed that the normality assumption was
satisfied since the probability of the residuals fell on a straight line.

After the quality of the fit was found satisfactory, response surface was
plotted by using the model in Equation , the resulting response surface
and its contour plot are presented in Figures and , respectively.
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Figure 6.1: Normal probability distribution of residuals.
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Figure 6.2: Response surface of glucose and xylose concentrations versus growth rates.

Figure shows that a minimum appeared when both variables are
zero, since cells cannot grow without any carbon source. When glucose was
the only sugar present, growth rate increased as its concentration increased,
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and a maximum growth rate value was obtained at the highest glucose
concentration. Therefore, the effect of glucose concentration on the growth
rate is greater than xylose as it is the preferred carbon source. Even though
the growth rate was lower for only xylose containing experiments than for
only glucose containing ones, the growth rate was still proportional with the
xylose concentration.
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Figure 6.3: Contour plot of glucose and xylose concentrations versus growth rates.

Figure shows that the stationary point is a saddle point. From this
point near the centre of the experimental design, increasing or decreasing
both factors at the same time results in a decreasing response. However,
from the stationary point, increasing either factor when decreasing the other
one results in an increasing response. This trend demonstrates the import-
ance of interaction between the sugars. Therefore, CCR is still active and
both sugars are most likely to be repressing utilization of each other, thus
decreasing the growth rate. This is an interesting finding as glucose was
found to repress the growth of xylose in earlier studies [ ]; while the find-
ings suggest that, the repression effect can apply to both sugars. This might
also be due to the developed two-stage pre-growth strategy, where the cul-
ture was grown on a medium containing only xylose as the sugar to activate
the xylose pathway and achieve co-utilization of sugars.

Table shows fit results with the model coefficient estimates, their p
values for the t-statistic, and the corresponding statistical significances.
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Table 6.3: Model coefficients and corresponding statistical values.

Source p value Significance

Intercept 0.7963 -

X1 9.44e-05 ** (p < 0.01)

X2 0.6030 -

X2
1 0.0259 *(p < 0.05)

X2
2 0.0273 *(p < 0.05)

X1X2 0.0002 ** (p < 0.01)

Glucose (X1) was the most significant variable among all and the only
highly significant linear variable affecting the growth rate. Second highly
significant variable was the interaction between the variables (X1X2). Both
quadratic variables (X1

2 and X2
2) were significant, while the linear variable

of xylose (X2) was not significant. Figure illustrates the effect of each
model coefficient on the response.
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Figure 6.4: Normalized values of model coefficients versus growth rate.
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The effects of the model coefficients were examined using Figure .
Linear variable of glucose (X1) was the most significant variable with the
greatest impact on the response. The growth rate increased as glucose
concentration increased. The second most significant variable was the inter-
action between the variables. The interaction term had a negative impact
on the growth rate. The quadratic variable of glucose (X1X2) had a neg-
ative effect on the response, while quadratic variable of xylose (X2X2) was
increasing the growth rate. Information about the significance of the model
coefficients by using p value was confirmed by the plot showing the effect of
the coefficients on the response, growth rate.

6.3.2 Modelling the Growth on Mixtures of Glucose and
Xylose

Growth data obtained in previous section as a result of the design of
experiment was used for model fitting. Glucose and xylose concentrations,
SG and SX are predictor variables and the growth rate, μ is the response
variable. The coefficients shown in this section are empirical, and due to
their dependency on the species, substrate and environmental conditions,
they are called parameters. Table shows fit results in terms of SSE for
the chosen binary substrate growth models.

Table 6.4: Fit results for binary substrate growth models.

Model Model type SSE

μ =
μmaxG · SG

(KsG + SG) · (1 + SX
KsX

) +
μmaxX · SX

(KsX + SX) · (1 + SG
KsG

) Noncompetitive
[ ]

0.0778

μ =
μmaxG · SG

KsG + SG · (1 + SX
KsX

) +
μmaxX · SX

KsX + SX · (1 + SG
KsG

) Uncompetitive
[ ]

0.1516

μ =
μmaxG · SG · SX

(KsG + SG) · (KsX + SX)
Interactive
[ ]

0.1867

μ =
μmaxG · SG
KsG + SG

+
μmaxX · SX
KsX + SX

Noninteractive
[ ]

0.1847

μ =
μmaxG · SG

KsG + SG+ SX · (KsG
KsX

) +
μmaxX · SX

KsX + SX + SG · (KsX
KsG

) Competitive
[ ]

0.1928
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Fit results showed that the noncompetitive binary substrate growth
model delivered the smallest SSE value of 0.0778. Equation shows the
resulting model with the estimated parameters. The quality of the fit was
satisfactory.

μ =
1.435 · SG

(1.236 + SG) · (1 + SX
4.601

) +
1.508 · SX

(4.601 + SX) · (1 + SG
1.236

) (6.2)

Figure shows the growth rate (h-1) predictions of noncompetitive
binary substrate growth model with respect to glucose and xylose concen-
trations (g/l).

Figure 6.5: Noncompetitive binary substrate growth model predictions and experimental
observations.

Figure shows that a minimum response, the growth rate, appeared
when both glucose and xylose concentrations were zero, since cells can-
not grow without any carbon source. When glucose was the sole sugar,
the growth rate increased as its concentration increased, and a maximum
growth rate value was obtained at its highest concentration. Even though
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the growth rate was lower for xylose than for glucose, the growth rate was
still proportional with the xylose concentration. Moreover, the projection
of the model prediction surface plot illustrates that increasing or decreasing
both sugar concentrations at the same time results in a decreasing growth
rate. However, increasing either of the sugars when decreasing the other
one results in an increasing growth rate.
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Figure 6.6: Residuals of noncompetitive binary substrate growth model predictions and
experimental observations.

Figure shows raw residuals, which are the difference between the
predicted and observed values of the growth rate. The greatest raw residual
value was 0.12 h-1 for model prediction of 0.705 h-1, while 0 was the lowest
observed when both sugar concentrations were 0.

Table shows the parameter estimates and their 95% confidence inter-
vals for the noncompetitive binary substrate growth model. The maximum
specific growth rate on glucose, μmaxG was greater than the maximum spe-
cific growth rate on xylose, μmaxX . On the other hand, the substrate affinity
constant for xylose, KsX was larger than the substrate affinity constant for
glucose, KsG.
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Table 6.5: Parameters of the noncompetitive binary substrate growth model.

Parameter Estimate 95% Confidence interval

μmaxG 1.4354 (-2.2643) – 5.1351

KsG 1.2360 (-7.1363) – 9.6082

KsX 4.5996 (-23.9499) – 33.1491

μmaxX 1.5078 (-1.8106) – 4.8262

μmaxX had the smallest confidence interval, thus the uncertainty asso-
ciated with this parameter was the smallest among others, while KsX had
the largest confidence interval. 95% confidence intervals of the parameters
in ascending order were μmaxX , μmaxG, KsG and KsG. Correlation matrix
for the noncompetitive binary substrate growth model is given in Table .

Table 6.6: Correlation matrix of noncompetitive binary substrate growth model.

μmaxG KsG KsX μmaxX

μmaxG 1 0.9918 -0.9945 -0.9728

KsG 0.9918 1 -0.9860 -0.9455

KsX -0.9945 -0.9860 1 0.9542

μmaxX -0.9728 -0.9455 0.9542 1

The correlation coefficient ranges from -1 to +1. The greater the abso-
lute value of the correlation coefficient, the stronger the relationship between
those parameters. Furthermore, the sign of the correlation coefficient indic-
ates the direction of the relationship. If both parameters tend to increase
or decrease simultaneously, the correlation coefficient is positive. Therefore,
the greatest correlation of -0.9954 was found between μmaxG and KsX , thus
as one parameter decreases as the other one increases. The weakest correla-
tion value was -0.9455 between μmaxX and KsG. The relationships between
μmaxG and μmaxX , and KsG and KsX were negative. On the other hand,
the relationship between model parameters for individual sugars, μmaxG and
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KsG, and μmaxX and KsX were positive.

Effects of the model parameters on the growth rate were illustrated
in Figure by varying the parameters over their respective confidence
intervals and plotting them against the resulting growth rate values. Sugar
concentrations (SG and SX) were kept constant at their centre value of 2.5
g/l over the experimental concentration space.
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Figure 6.7: Effects of parameters of the noncompetitive binary substrate growth model
on the growth rate (h-1).

Increase in both μmaxG and μmaxX resulted in an increased growth rate,
μ. However, the effect of μmaxG was greater, since the slope of μmaxG

versus μ plot was 0.41, while the slope of μmaxX versus μ was 0.23. The
shape of KsG versus μ plot was in the shape of an exponential decay curve,
therefore μ increased exponentially with decreasing KsG. On the other
hand, KsX versus μ plot was in the shape of an exponential growth curve,
thus μ increased exponentially, while KsX was increasing. Furthermore,
there is a relation between the sugar concentration and the substrate affinity
constant [ ]. When SX < KsX , the term for repression effect of xylose
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on glucose utilization (1 + SX/KsX) decreases with increasing KsX , and
vice versa. Therefore, a change in KsG and KsX resulted in different effects
on the growth rate, since SG=2.5 g/l > KsG=1.2360 g/l, and SX=2.5 g/l
< KsX=4.5996 g/l as shown in Figure .

6.4 Conclusions

A binary substrate growth model was suggested, which describes the cell
mass growth on mixtures of glucose and xylose and the interaction between
them. Main conclusions of this chapter are given below:

� RSM showed that the interaction between the sugars had a significant
influence on the cell mass growth.

� CCR mechanism can be active not only from glucose on xylose utiliz-
ation, but also vice versa, from xylose on glucose utilization.

� Among the interactive binary substrate models, the model with non-
competitive inhibition gave the best fit.

Validation with other sugar concentration values will be necessary to
evaluate the prediction capability of the proposed growth model. In the
following chapter, the growth model obtained in this chapter was used.
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Chapter 7

Modelling Fermentative
Butanol Production from
Glucose and Xylose

Contents of this chapter were covered in .

7.1 Introduction

Fermentative butanol production from mixtures of pentose and hexose
suffers from Carbon Catabolite Repression as thoroughly explained in Sec-
tion together with a review of different approaches to tackle this prob-
lem. In Chapter , a pre-growth strategy was developed, showing that a
culture subjected to xylose as the sole sugar could efficiently co-utilize gluc-
ose and xylose, and produce butanol. In this chapter, the improvement in
mixed sugars fermentations were investigated with respect to the suggested
pre-growth strategies.

There are different models describing fermentative butanol production,
which serves different purposes and utilizes different types of information as
reviewed in Section . Despite the wide variety of the proposed models
[ , ], there is still not a consensus about the most appropriate model
to use for process design, control and optimization. Moreover, the majority
of models is only valid under certain process conditions and regimes [ ].
Dynamic models developed by Shinto et al. (2007, 2008) have been central
to the recent modeling attempts [ , ]. Raganati et al. (2015) applied
their models for a wider range of pentose and hexose sugars [ ]. Diaz

85
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and Willis (2018) extended the model to include CCR for fermentation of
glucose and xylose [ ] and it was developed simultaneously with the initial
model proposed as part of this PhD project [ ]. These two are currently
the only mixed sugar fermentation models developed for butanol production.
Despite their rich information content, the complexity level of Shinto et al.’s
(2007, 2008) models is high and they require larger experimental datasets
for estimation of larger number of parameters necessary to construct the
models. On the contrary, traditional unstructured models are simpler and
easier to interpret, thus they are still actively being used for describing
butanol production by fermentation [ ].

The main objective of this chapter is therefore twofold: i) to establish a
dynamic model for fermentative butanol production from mixtures of gluc-
ose and xylose, and ii) to investigate the effects of pre-growth strategies on
the fermentation kinetics.

7.2 Materials and Methods

7.2.1 Microorganism and Medium

Clostridium beijerinckii NCIMB 8052 was used. The culture was pre-
grown in medium described in Section and under the conditions ex-
plained in Section . The fermentation medium contained different
amounts of glucose and xylose as explained in the section below, and rest
of the medium components are given in Table .

7.2.2 Fermentations

Fed-batch fermentations were performed in serum flasks as explained in
Section . 2 ml samples were taken every 2 hours from the start of the
experiments until the end of the exponential growth phase. Optical density
(OD) was used as a measure for cell mass concentration, explained in Section

. 1 ml samples were taken at sampling times of 0, 4, 8, 12, 16, 24, 26, 28,
30, 32, 36, 40 and 48 hours with respect to the start of the experiment. Sugar
feeding was done with a concentrated, 232.5 g/l sugar solution containing
equal amounts of glucose and xylose. The feeding was done such that the
volumes removed during sampling and the volumes added during feeding
were equal and the same for all the experiments to reduce dilution effects.
The cultures with 15 g/l total sugars (X15 and GX15, validation datasets)
were fed with the sugar solution every 8 hours, the ones with 30 g/l (X30
and GX30, parameter estimation datasets) were fed every 16 hours, and the
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ones with 45 g/l (X45 and GX45, validation datasets) were fed every 24
hours. Experiments terminated after 48 hours.

Samples were analyzed by using high-performance liquid chroma-
tography (HPLC) for quantification of sugars and butanol, and cell
mass concentration was estimated by measuring optical density (OD) as
described in Section .

7.3 Model Development

A dynamic model describing cell mass (X) growth, uptake of glucose
(SG) and xylose (SX), and butanol (B) production was developed. The
model was based on unstructured mathematical models that have typically
been used to estimate the state of fermentative butanol production [ ].
Kinetic equations were chosen such that they can describe the key char-
acteristics of the process while avoiding the overparameterization of the
model. Following assumptions were made by employing the fermentation
biochemistry knowledge to establish the proposed model:

� Glucose and xylose are the only limiting substrates.

� There is no nitrogen limitation.

� Growth inhibition sources are

1. high substrate concentration

2. butanol accumulation

3. interaction between sugars

� High substrate inhibition effects are combined for glucose and xylose,
and it is in noncompetitive form [ ].

� Butanol inhibition is noncompetitive described by parabolic function
[ , ].

� Inhibition effects of substrates on each other is significant and non-
competitive [ ].

� Substrate assimilation is only for butanol and cell mass production.

� Substrate consumption for maintenance is negligible.

� Luedeking-Piret model with a growth-associated part describes the
butanol production.
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The model was developed with the light of the assumptions above using
the data of Fond et al. (1986) [ ], and the experimental data produced
during this PhD project separately for cultures pre-grown on xylose, and
pre-grown on xylose and glucose. The validity and accuracy were checked
using two more datasets for each model. Then, the critical parameters were
identified by sensitivity analysis.

In section , the Monod equation was modified to describe the growth
on mixtures of glucose and xylose together with noncompetitive inhibition
between them. Cell mass growth on glucose, μSG, and xylose, μSX , are
shown in Equation and Equation , respectively.

μSG =
μmaxG · SG

(KsG + SG) · (1 + SX
KsX

) (7.1)

μSX =
μmaxX · SX

(KsX + SX) · (1 + SG
KsG

) (7.2)

where μmaxG and μmaxX are maximum specific growth rates on glucose and
xylose, and KsG and KsX are substrate affinity constants for glucose and
xylose, respectively. The growth model was extended with substrate and
butanol inhibition terms in this section as shown in Equation .

μg = (μSG + μSX) ·
(

KI

KI + SG+ SX

)
·
(
1− B

Bmax

)iB

(7.3)

where μg is the specific growth rate of cell mass, KI is the substrate in-
hibition constant, Bmax is the concentration of butanol at which cell mass
growth stops, and iB is the butanol inhibition constant to cell mass growth.
Net growth rate of cell mass, μnet, given in Equation is the difference
between the specific growth rate and specific death rate, kd, therefore, the
cell mass change over time shown in Equation .

μnet = μg − kd (7.4)

dX

dt
= μnet ·X (7.5)

Glucose and xylose uptakes are given in terms of the amounts utilized
for cell mass growth and butanol formation, which can be seen in Equation

and Equation , respectively.

dSG

dt
= −μSG ·X ·

(
1

YX/SG
+

1

YB/SG

)
(7.6)
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dSX

dt
= −μSX ·X ·

(
1

YX/SX
+

1

YB/SX

)
(7.7)

where YX/SG and YX/SX are cell yields on glucose and xylose, and YB/SG

and YB/SX are butanol yields on glucose and xylose, respectively. Equation
shows butanol formation.

dB

dt
= μSG ·X · YB/XG + μSX ·X · YB/XX (7.8)

where YB/XG and YB/XX are butanol yields on cell mass utilizing glucose
and xylose. The relationships between cell mass yields, butanol yields on
substrates and on cell mass are shown in Equation and Equation .

YB/XG =
YB/SG

YX/SG
(7.9)

YB/XX =
YB/SX

YX/SX
(7.10)

The empirical coefficients shown in Equations - are called para-
meters in the thesis due to their dependency on the species, substrate and
environmental conditions.

7.3.1 Parameter Estimation

The proposed model includes 12 parameters listed in the section above
that are unknown a priori; therefore, they are estimated using the experi-
mental data of cell mass, glucose, xylose, and butanol concentrations. The
parameter estimation poses a constrained nonlinear least-squares optimiz-
ation problem, which was solved as described in Section . Parameter
bounds were the constraints as shown in Table .

After obtaining the parameter estimates, model simulations were done
to check the model accuracy, and the average squared correlation coeffi-
cients (r2) were calculated using the model predictions and experimental
observations as explained in Section . Sensitivity analysis was done by
10% perturbations in each of 12 parameters as given in Section .

7.4 Results and Discussiom

7.4.1 Parameter Estimates

The model parameters were estimated for 4 datasets:
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1. Glucose and xylose fermentations by xylose pre-grown culture, X30.

2. Fond et al.’s data of glucose and xylose fermentations by xylose pre-
grown culture, FondX [ ]

3. Glucose and xylose fermentations by glucose and xylose pre-grown
culture, GX30.

4. Fond et al.’s data of glucose and xylose fermentations by glucose and
xylose pre-grown culture, FondGX [ ].

Parameter estimates for all 4 datasets given in Table were interpreted to
illustrate the effects of different pre-growth strategies on the fermentation
kinetics.

Table 7.1: Parameter estimation results.

Parameter X30 FondX [ ] GX30 FondGX [ ]

YX/SG 0.199 0.097 0.523 0.157

YX/SX 0.292 0.260 0.058 0.223

YB/SG 0.265 0.250 0.196 0.319

YB/SX 0.057 0.389 0.232 0.399

kd 0.055 0.033 0.076 0.026

Bmax 15.632 15.796 15.658 17.243

iB 1.125 2.138 0.616 1.695

KI 143.629 186.199 171.492 187.667

μmaxG 0.982 1.444 0.730 1.204

KsG 1.842 5.634 1.293 4.637

KsX 2.066 6.974 4.469 5.884

μmaxX 0.487 1.292 0.615 1.025

Cell mass yield on glucose, YX/SG values were 0.199 and 0.523 g/g, and
cell mass yield on xylose, YX/SX values were 0.292 and 0.058 g/g for xylose
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pre-grown culture, X30 and glucose and xylose pre-grown culture, GX30,
respectively. Therefore, higher amount of glucose ended up in cell mass
in GX30 than in X30, and vice versa for xylose. The reason can be the
higher expression levels of glucose utilization enzymes in the glucose and
xylose pre-grown culture since it is the preferred carbon source [ ]. On the
other hand, for the culture pre-grown in only xylose containing medium,
xylose assimilation enzymes were readily available when the glucose and
xylose mixture was added and could utilize xylose at a higher efficiency for
cell mass production. Furthermore, FondGX had higher YX/SG and lower
YX/SX than FondX showing the same trend. Maximum specific growth rate
of cell mass on glucose, μmaxG and substrate affinity constant for glucose,
KsG was lower for FondGX and GX30 indicating that the cells pre-grown
on glucose and xylose grew slower on glucose and were more attracted to
glucose. However, changes in μmaxX and KsX exhibited opposite trends for
X30 and GX30 cultures, and FondX and FondGX. This difference in the
parameters of xylose growth model can be the result of C. beijerinckii (used
in experiments of the thesis) having more sets of xylose metabolic pathway
genes than C. acetobutylicum (used in Fond et al.’s study (1986)) [ ].
Thus, different sugar utilization mechanisms may have caused variance in
the xylose growth parameters.

Both butanol yield on glucose, YB/SG and butanol yield on xylose, YB/SX

were greater for glucose and xylose pre-grown culture, FondGX than xylose
pre-grown culture, FondX. The same increase was observed for YB/SX in
GX30 compared to X30. Therefore, glucose and xylose pre-grown cultures
produced more butanol. The highest YB/SG was 0.319 g/g and the highest
YB/SX was 0.399 g/g representing the 77.4% of the maximum theoretical
butanol yield on glucose, 0.412 g/g, and 80.7% of the maximum theoret-
ical butanol yield on xylose, 0.494 g/g, respectively. The concentrations of
butanol at which cell mass growth stops, Bmax were 15.632, 15.658, 15.796
and 17.243 g/l for X30, GX30, FondX and FondGX, respectively. There-
fore, glucose and xylose pre-grown cultures were more tolerant to butanol
toxicity. Similarly, butanol inhibition constants to cell mass growth, iB
were 1.125, 0.616, 2.138, 1.695 for X30, GX30, FondX and FondGX, re-
spectively indicating the extent of butanol inhibition is greater for xylose
pre-grown cultures. The toxic butanol concentration values and butanol
inhibition constants are in good agreement with both previously reported
experimental observations [ ] and estimations in modeling studies [ ].
Further experimental evidence confirms that the inhibitory effects of butanol
on C. acetobutylicum were more pronounced in xylose-grown cells than in
glucose-grown cells, and glucose and xylose permease were inhibited when
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butanol concentration reached 12 and 8 g/l, respectively [ ].

Substrate inhibition constant, KI values were 143.629, 171.492, 186.199,
and 187.667 g/l for X30, GX30, FondX and FondGX, respectively. Thus,
the substrate inhibition on the growth was greater for the xylose pre-grown
cultures. KI estimates coincide with the literature information where it was
stated that the cell growth was inhibited strongly when the total substrate
concentration was 200 g/l and stopped entirely when it was 250 g/l for a
mixture of sugars containing mostly glucose [ ]. These results principally
agree with the results of Raganati et al. (2015), in which they found that the
cultures fed with glucose possessed the highest metabolic activity and lowest
tendency to sporulate compared to the cultures with pentose sugars [ ].
Even though this might be an indication of a shorter lifespan for xylose
pre-grown cells, further investigation is necessary.

7.4.2 Comparison of Model Predictions and Experimental
Observations

Simulations were performed by employing the model with the parameter
estimates given in Table . The model predictions and the observed values
for the FondX and FondGX datasets are shown in Figure .
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Figure 7.1: Comparison of model predictions and experimental observations with the
data from Fond et al. (1986) for a) xylose pre-grown culture, FondX, and b) glucose and
xylose pre-grown culture, FondGX [ ].

Figure (left) shows the predicted and observed values of cell mass,
glucose, xylose and butanol concentrations for fermentation of a sugar mix-
ture of 53 g/l xylose and 25 g/l glucose by xylose pre-grown culture, FondX.
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Exponential growth phase during which the cell mass increased rapidly was
observed until 10 hours with respect to the start of the experiment, and
followed by a steady cell mass growth until 40 hours. Glucose utilization
started immediately and lasted for 25 hours. Only after complete depletion
of glucose, xylose utilization became apparent and lasted until the end of
the fermentation with a decreased rate from 64 hours when butanol concen-
tration reached 14 g/l. Butanol production was slow initially, became faster
between 16 and 54 hours, and almost stopped around 64 hours. The residual
xylose concentration was 11 g/l, and butanol was 14.5 g/l at the end of the
fermentation. Figure (right) shows the predicted and observed values
for fermentation of a sugar mixture of 36 g/l xylose and 39 g/l glucose by
glucose and xylose pre-grown culture, FondGX. Exponential growth lasted
longer in this fermentation, continued for 22 hours, and then steady growth
occurred until 47 hours and cell mass concentration decreased until the end
of the experiment. Initially, glucose was consumed rapidly and xylose util-
ization was very slow. After 22 hours, both sugars were co-utilized almost
at the same rate. Glucose was completely depleted at 47 hours, while xylose
consumption continued. Xylose consumption rate decreased when butanol
concentration was 16 g/l. The residual xylose and butanol concentrations
were 4.3 and 16.6 g/l, respectively. Higher butanol concentration and lower
residual xylose in FondGX than in FondX are line with the estimated para-
meters as well as the butanol concentrations when the sugar utilization rates
dropped. Therefore, the model can describe the fermentation kinetics for
both pre-growth strategies. A more detailed overview of the model accur-
acy in terms of average squared correlation coefficients (r2) between the
predicted and observed values is given in Table .

The model predictions and experimental observations done in the thesis
for X30 and GX30, parameter estimation experiments, and X15, GX15,
X45, and GX45, validation experiments are shown in Figure .

Figures a-c show the predicted and observed values of cell mass
(volume corrected), accumulated consumption of glucose, xylose and accu-
mulated butanol concentrations for fed-batch fermentations by xylose pre-
grown cultures, X15, X30 and X45. All the cultures showed the same growth
pattern; cell mass concentrations increased exponentially as soon as the ex-
periments started followed by a steady growth phase, followed by a decay
phase during which the apparent cell mass concentration decreased [ ].
In all the experiments, xylose consumption rates were slightly higher and
utilizations were simultaneous with glucose. Consumption rates of both
glucose and xylose decreased as the fermentations proceeded. Butanol con-
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centrations showed the same trend as the cell mass confirming the growth-
associated production as shown in Equation .

Figures d-f show the model predictions and experimental observa-
tions of cell mass (volume corrected), accumulated consumption of glucose,
xylose and accumulated butanol concentrations for fed-batch fermentations
by glucose and xylose pre-grown cultures, GX15, GX30 and GX45. Cell
mass concentrations showed the same growth pattern as in the fermenta-
tions with xylose pre-grown cultures explained above. In all experiments,
sugar utilizations were simultaneous and almost at the same rate unlike
the xylose pre-grown culture experiments in which the xylose consumption
rates were higher than those for glucose. Sugar consumption rates became
slower as the fermentations continued. Similarly, butanol and cell mass
productions were closely linked.

Table 7.2: Average squared correlation coefficients (r2) between predicted and observed
values.

Dataset Cell mass Glucose Xylose Butanol Average

X15 0.122 0.944 0.851 0.903 0.705

X30 0.842 0.975 0.973 0.914 0.926

X45 0.552 0.921 0.894 0.524 0.723

GX15 0.754 0.935 0.873 0.925 0.872

GX30 0.934 0.982 0.991 0.778 0.917

GX45 0.752 0.094 0.248 0.221 0.329

FondX 0.595 0.998 0.350 0.591 0.633

FondGX 0.657 0.997 0.623 0.826 0.776

Average 0.651 0.856 0.725 0.710 0.735

In accordance with Fond et al.’s (1986) work, glucose and xylose pre-
grown cultures in our experiments showed better tolerance to inhibitions as
well as 2-fold increase in butanol production and 1.5-fold increase in sugar
utilizations. For all our experiments, cell mass growth rate, total amounts
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of sugar utilizations and butanol production increased with decreasing total
sugar concentration. The reason is the inhibition due to high substrate
concentration and noncompetitive inhibition between sugars. Model pre-
dictions and observations were in good agreement as derivable from the r2

values shown in Table .

Average squared correlation coefficients (r2) for the parameter estima-
tion datasets were 0.926, 0.917, 0.633, and 0.776 for X30, GX30, FondX and
FondGX, respectively. The results are in the range of r2 values calculated in
similar studies. The r2 values of Shinto et al.’s findings for the parameter es-
timation datasets were 0.909 and 0.970; Raganati et al.’s results were 0.894
and 0.890 for fermentations of 65.7 mM (10 g/l) xylose and 70.6 mM (12.7
g/l) glucose, and 60 g/l glucose and 60 g/l xylose, respectively [ , , ].
It is important to note that the fermentations in these studies were single
sugar fermentations. The model proposed for mixed sugar fermentation was
by Diaz and Willis (2018), and r2 was 0.955 for fermentation of 32 g/l xylose
and 31 g/l glucose [ ]. The higher average squared correlation coefficients
can be due to use of a more detailed model considering more metabolites
and a variety of different datasets used in parameter estimation.

7.4.3 Sensitivity Analysis on Model Parameters

The critical parameters were identified by performing a sensitivity ana-
lysis. The reference trajectory was the concentration profiles from model
simulations under the given initial concentrations and model parameters es-
timated for X30 and GX30. Figure shows the sensitivity analysis for the
cell mass, glucose, xylose and butanol in terms of end point deviations (%)
in concentrations with 10% perturbations in the parameters.

End point deviations (%) were significantly larger in cell mass, glucose
and xylose concentrations for GX30 than X30, while in the same range
for butanol. Figures a and e show that +10% variations of all growth
parameters resulted in a greater end point cell mass concentration due to
increased net growth rate. While positive influence of μmaxG and μmaxX

on growth is apparent, the same impact of KsG and KsX can be explained
by decreased competitive inhibition between the sugars when SG > KsG

and SX > KsX as shown in Equations and . The greatest end point
deviation in cell mass was 49.68% in GX30 with respect to a +10% increase
in μmaxG. Another critical parameter was specific death rate of cell mass, kd
and its -10% perturbation caused 11.28 and 18.48% end point deviations in
cell mass concentrations in X30 and G30, respectively as a result of increased
net growth rate, μnet.
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Figures b and f illustrate that glucose concentrations were most sens-
itive to the perturbations in growth parameters due to its correlation with
cell mass concentration as given in Equation . Therefore, any perturba-
tion of any parameter causing an increase in cell mass concentration results
in a decrease in glucose concentration. Moreover, +10% variation in YB/SG

yielded 3.84 and 16.68% end point deviations for X30 and GX30, respect-
ively, as a result of greater growth inhibition due to increased butanol level.
Figures c and g show that the critical parameters were the same for xyl-
ose as for glucose. The greatest end point deviations in xylose concentrations
were 12.66% for X30 and 52.8% for G30 resulting from -10% variations in
μmaxX and μmaxG, respectively.

Growth parameters were the most critical for butanol since its produc-
tion is dependent on growth and cell mass concentrations as given in Equa-
tion . Figures d and h show that +10% variation in the most critical
parameter, μmaxG resulted in 21.17 and 38.95% end point deviations, while
+10% variation of the second most important parameter, KsX caused 16.88
and 21.27% end point deviations for X30 and GX30, respectively. Sensit-
ivity analysis identified critical parameters, which can be re-estimated with
more experimental data to improve the model accuracy.

7.5 Conclusions

A dynamic model structure describing key characteristics of fermentative
butanol production from glucose and xylose mixtures was proposed. Para-
meter estimates revealed that pre-growth has a profound impact on the
kinetics, and parameter values coincide with observations done in similar
studies. Sugar utilization and butanol production were higher in ferment-
ations by cultures pre-grown on glucose and xylose. Sugar utilization and
butanol production decreased with increasing initial sugar concentrations,
which is consistent with the results of exploratory data analysis performed
by using data of 175 fermentations with lignocellulosic hydrolysates and
mixed sugars shown in Chapter . Two models developed for both pre-
growth strategies were validated with two more experimental datasets, and
average squared correlation coefficients between predicted and observed val-
ues were satisfactory. Growth parameters were critical for all components
as identified by sensitivity analysis. The main contributions of this study
can be stated as below:

� This is the first study, which investigates the effect of different pre-
growth strategies on kinetics of mixed sugar fermentations.
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� The proposed model is the first attempt to incorporate the noncom-
petitive inhibition between sugars together with high substrate and
butanol inhibitions.

� This chapter provides insight into contributions of each sugar to cell
mass growth and butanol formation in terms of yield parameters.

The suggested model can serve as a basis for industrial fermentations of
lignocellulosic biomass, and its extension with effects of common inhibitors
found in the hydrolysates can improve its applicability.
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Chapter 8

Concluding Remarks and
Future Work

8.1 Concluding Remarks

This thesis dealt with different aspects of fermentative butanol produc-
tion from lignocellulosic biomass. The research has been motivated by the
increasing need to design efficient processes for production of biofuels and
green chemicals with improved conversion of feedstock to useful products.
However, complexity of fermentation is not well understood, and systematic
approach is lacking to tackle low product yield and selectivity, scalability and
poor mixed sugar utilization problems, and unavailability of simple models
to describe mixed sugar fermentations. Therefore, the aim of this thesis was
to obtain a holistic overview of all fermentation variables, gain insight into
scalability issues, develop feeding strategies to achieve co-utilization of sug-
ars, and to establish a simple model which can describe fermentative butanol
production from lignocellulosic sugars. Experimental studies in different fer-
mentation setups in different scales were done together with modeling and
simulations to serve the aim of the thesis. The main contributions of this
thesis are summarized below for each chapter.

Chapter 3 presented variables and performance indicators of ferment-
ative butanol production from lignocellulosic biomass and sugars by devel-
oping an extensive dataset covering 175 fermentations, which is the largest
collection to author’s knowledge. Presented substrate and product mixture
properties provided as a basis for fermentation process design. This was the
first attempt to identify and define performance indicators, and to study

101
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interconnectedness between them and fermentation variables by explorat-
ory data analysis. EDA results were linked to individual observations from
research articles to provide a holistic overview and a platform for discussing
the usefulness of the measures applied to improve fermentation performance.
Exploratory data analysis revealed the effect of substrate mixture properties
on the fermentation for the first time, supported by research results in the
field. The interconnectedness between the fermentation variables sugges-
ted that data analysis can be utilized to predict fermentation performance
without having to measure/determine every variable.

By using the findings from this chapter, design of experiments in the fol-
lowing chapters were done, in addition, operating conditions such as repres-
entative lignocellulosic sugars, their compositions and concentrations were
decided accordingly.

Chapter 4 showed results of glucose and xylose fermentations as repres-
entative lignocellulosic sugars at 6 different ratios and 2 different total sugar
concentrations by C. beijerinckii NCIMB 8052 in microbiorectors and serum
flasks. Glucose to xylose ratio affected both cell mass growth and butanol
production. All cultures could be successfully grown in the BioLector�

system under anaerobic conditions, metabolized both glucose and xylose,
and produced butanol. The online monitoring of cell mass and pH in the
BioLector� enabled following the progress of the fermentations at unpre-
cedented time-resolution. Even though applicability of BioLector� was
successfully demonstrated for the first time, growth rate, butanol produc-
tion and butanol yield values were lower compared to fermentations done in
serum flasks. Therefore, serum flask was chosen in addition to bench-scale
fermenters for the experiments presented in the following chapters.

Chapter 5 demonstrated the effect of different feeding strategies, which
were designed to cope with Carbon Catabolite Repression and sequential
utilization problems on fermentation kinetics. The fermenter with only xy-
lose as the initial carbon source could co-utilize sugars for all mixed sugar
feeds, while the fermenter with only glucose as the initial sugar suffered
from sequential utilization, thus xylose utilization became apparent only
after complete exhaustion of glucose. Therefore, effect of sugar in the initial
growth medium on fermentation was prevailing, and this was the first study
to investigate the effect in a systematic manner. Observations and findings
of this chapter created a motive for further investigation of mixed sugar
utilization and were employed for development of a two-stage pre-growth
strategy in Chapter .

Chapter 6 suggested a binary substrate growth model, which described
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the cell mass growth on mixtures of glucose and xylose and the interac-
tion between them. First, results of Response Surface Methodology showed
that the interaction between the sugars had a significant influence on the
cell mass growth, illustrated that Carbon Catabolite Repression mechan-
ism could be active not only from glucose on xylose utilization, but also
vice versa, from xylose on glucose utilization. Then the model fitting for
different interactive binary substrate models was done, and the model with
noncompetitive inhibition gave the best fit. This was the first model to
describe growth of C. beijerinckii NCIMB 8052 on mixtures of glucose and
xylose.

Chapter 7 proposed a dynamic model describing key characteristics of
fermentative butanol production from glucose and xylose mixtures. Estim-
ates of model parameters revealed that the initial sugar in the pre-growth
medium had a profound impact on the kinetics, and parameter values co-
incided with observations done in similar studies. Sugar utilization and
butanol production were higher in fermentations by cultures pre-grown on
glucose and xylose compared to the ones pre-grown only on xylose. Sugar
utilizations and butanol productions decreased with increasing initial sugar
concentrations, which was consistent with the results of exploratory data
analysis performed by using data of 175 fermentations with lignocellulosic
hydrolysates and mixed sugars shown in Chapter . Two models developed
for both pre-growth strategies were validated with two additional experi-
mental datasets, and average squared correlation coefficients between pre-
dicted and observed values were satisfactory. Growth parameters were crit-
ical for all components as identified by sensitivity analysis. This was the
first study that investigated the effect of different pre-growth strategies on
kinetics of mixed sugar fermentations. The proposed model was the first at-
tempt to incorporate the noncompetitive inhibition between sugars together
with high substrate and butanol inhibitions, and provided insight into con-
tributions of each sugar to cell mass growth and butanol formation in terms
of yield parameters.

The knowledge and experience obtained throughout the thesis work were
utilized to provide some directions and suggestions for future work in Section

.

8.2 Recommendations for Future Work

In this thesis, a considerable emphasis has been placed on the batch
and fed-batch fermenters due to their prevalence in industry traditionally.
However, continuous fermentation is gaining importance as they provide
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better utilization of equipment, prolonged operation time and improved pro-
ductivity. Therefore, there is a significant scope for future development of
operating strategies and models for continuous fermenters. Furthermore,
industrial fermentation processes utilize biomass, properties of which de-
pend greatly on the type of the biomass and the environmental conditions
instead of pure sugars and defined medium used in this thesis. Thus, it is
of great importance to test feeding and pre-growth strategies suggested in
this thesis for industrial scale fermentations of biomass. In addition, pro-
posed models need to be applied for prediction of those processes, which
were not considered in this thesis. Particularly, the following topics should
be investigated further.

8.2.1 Experimental Work

Experimental studies of fermentation have several limitations. Prior
knowledge about the fermentation process should be sufficient to make a
good design of the experiment with regards to the purpose. Low data density
of fermentative butanol production from lignocellulosic biomass is a common
problem as well. In addition, lack of or insufficient data filtration hinders
following the progress of fermentation, and creates uncertainty in models
developed with these data. Thus, high performance data acquisition is im-
portant to obtain a complete understanding of complex substrate utilization
and product formation kinetics. Complete understanding of the effect of
different operating conditions on fermentation is lacking and transcriptome
analysis can provide complimentary information on metabolic regulation.
The suggestions for future work regarding these aspects are discussed more
in detail in the sections below.

Experimental setups

During bioprocess development, initial screening of different strains and
substrates or medium components are done in microtiter plates. After pre-
selection of the tested conditions, experiments are done in a larger scale,
typically in shake or serum flaks. Similarly, some of those conditions are
selected and tested in bench-scale fermenters. This process stretches to pilot
scale and industrial scale bioreactors. Therefore, different scales of ferment-
ation are typically done in different types of bioreactors/setups, and each
of them has drawbacks and benefits regarding the monitoring, sampling,
operating and control options and capabilities. Hence, it is important to
make a considerate selection of the experimental setup depending on the
purpose of the experiment. For example, the microbioreactor unit used in



8.2. Recommendations for Future Work 105

this thesis is advantageous if the objective is to scan as many parameters
as possible in one run. On the other hand, taking and analyzing samples
for quantification of sugars or other products during the fermentation are
not possible in microbioreactors. Consequently, an attentive evaluation of
experimental setups is necessary for scale up studies as well as for producing
data specific to the purpose of the experiment.

Running replicates of experiments in parallel can help to demonstrate the
reproducibility and to provide information about the inherent variability of
the process. Therefore, it is beneficial to design the experiments and arrange
the setups, which enable parallel runs of replicates. Then the results of
replicates can be used to calculate standard deviations for each data point
of each sugar and product providing a measure of uncertainty. Moreover,
having replicates for every different operating condition can help to illustrate
their effects on fermentation more clearly. Even though the operation of
several bioreactors in parallel can be laborious, the improvement in results
makes it worthwhile.

Measurement methods

Low data density of fermentative butanol production from lignocellulosic
biomass is limiting the modeling and optimization of the process. Off-gas
(CO2), temperature and pH can be measured on-line with a relatively high
frequency during the course of fermentation. On the other hand, quantific-
ation of sugars and metabolites (alcohols, acids) are done off-line by using
chromatographic methods, which are time consuming and erroneous, and
results in insufficient data. Therefore, it is significant to develop and em-
ploy on-line measurement methods that can provide reliable and adequate
data points. Bench-top Raman analyzers with integrated auto-samplers are
compact and easy-to-use units with shown possibility to use in fermentation
applications. Use of Raman analyzers coupled with real time data analysis
has the potential to overcome low data density problem of fermentation.
Increased volume of real-time data can help to quantify and filter measure-
ment errors as well, since it becomes tedious to distinguish error when data
density is low.

Measurement of cell mass concentration has similar issues. Even though
there is a number of methods available for its quantification, they only
provide an approximation of the actual amount of active cells. Moreover, it
is known that a fermentation culture consists of cells at different physiolo-
gical states, which are associated with different metabolisms. Therefore,
it is important to track the change in physiological states of the cells and
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their distribution among the population to gain better understanding of the
fermentation. Raman microscopes have been used for this purpose recently.
However, analysis and filtering of the microscopic data would be required.
All in all, there is a great number of measurement methods, which can be
exploited with better utilization of on-line data analysis and filtering tools.

Transcriptome analysis

Transcriptome analysis reveals information about expression levels of
genes encoding enzymes and gives a detailed view on gene regulation at
genome scale. Expressions of the different genes encoding the enzymes as
catalysts of different reactions in the metabolic pathway can be identified
by transcriptome analysis. As mentioned throughout the thesis, cells go
through different phases and physiological states, which are important for
understanding fermentation. These changes in the cells and their meta-
bolism can be detected and monitored by transcriptome analysis. Effects
of sugar composition and concentration on fermentation are studied thor-
oughly with illustrated improvement in sugar utilization by the suggested
pre-growth strategies. Transcriptome analysis can be used to support the
usefulness of these strategies as well by determining the expression levels of
enzymes responsible from using different sugars. To sum up, information
about the changes in the transcriptome during changing operating condi-
tions can support the findings of this thesis, and can be utilized further in
Systems Biology level model development.

8.2.2 Modeling Work

Fermentation models are often criticized for having poor accuracy and
predictability within a limited operating space. These issues are linked to
insufficient, unfiltered or poor quality experimental data. Lack of models for
describing fermentative butanol production from lignocellulosic hydrolysates
needs to be addressed as well. The recommendations regarding these are
discussed in the sections below.

Model fine-tuning

Improving quality of the experimental data can in return improve the
quality of the model developed using them. As discussed in Section ,
increasing the number of data points (sampling frequency) will increase
the degrees of freedom when estimating the model parameters, and then
the confidence intervals will get smaller, thus the uncertainty associated
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with the parameters will be lower. Similarly, filtering measurement errors
improves the quality of data.

Averages of the data from replicated experiments and the standard de-
viations as weights can be used in weighted regression for parameter es-
timation. This extra information input to the modeling can increase the
reliability.

Modeling fermentative butanol production from lignocellulosic
hydrolysates

The models suggested in this thesis are describing the fermentation of
pure sugars; glucose and xylose. However, there are typically more sugars
present in the lignocellulosic biomass hydrolysates as presented in Figure

. Therefore, extension of the proposed model with more sugars can be
beneficial in terms of more realistic description of the process. To approach
the real application even closer, a model for lignocellulosic biomass hydro-
lysate fermentation is necessary. Comparison of the models developed by
using all the sugars present in the hydrolysate and the actual hydrolysate
will reveal very important information about the effect of inhibitors present
in the hydrolysate as discussed in Section , and will help to quantify
those effects. For development of these models, the methodology of this
thesis can be followed. First, the characterization and modeling of the cell
mass growth on those particular sugar mixtures/hydrolysates, and then the
development of the model describing the substrate utilizations as well as the
butanol production, in addition to the cell mass growth. Validation of these
models is required to demonstrate the application range of the model.



108 Chapter 8. Concluding Remarks and Future Work



APPENDICES
A-B





Appendix A

Correlations

Correlations between fermentation variables are shown in Table .
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Appendix B

Materials and Methods

B.1 Bacterial Strain

An industrial, wild type Clostridium beijerinckii NCIMB 8052 strain,
provided by the Biotechnology and Nanomedicine group in SINTEF In-
dustry was used. Work ampoules (1 ml) were prepared by pre-growing the
strain provided in frozen form in Reinforced Clostridial Medium (CM0149),
and then mixing them with 20% glycerol solution to prevent damage due to
freezing. All the work ampoules were stored at the deep freezer at −80 ◦C.
The work ampoules prepared in the same batch were used in the experi-
ments.

B.2 Media

Two different types of media were used in the experiments presented in
this thesis. They are presented in detail below.

B.2.1 Pre-growth Media

The revival of frozen work ampoules were done by a 14 hour pre-growth
in the Reinforced Clostridial Medium (RCM)(CM0149) by Oxoid, Thermo
Scientific designed by Hirsch and Grinstead1 for the cultivation and enu-
meration of Clostridia [ ]. The RCM medium was in powder form, and
38 g of it was suspended in 1 litre of distilled water. Then, it was brought
to the boil to dissolve completely followed by sterilization with autoclave at
121 ◦C for 15 minutes. The autoclaved media were flushed with biological
grade nitrogen gas upon cooling to have anaerobic conditions. Final pH of

115
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the medium was 6.8±0.2. Typical composition of the Reinforced Clostridial
Medium (RCM) is shown in Table .

Table B.1: Typical composition of Reinforced Clostridial Medium, CM0149.

Component Molecular formula Concentration (g/l)

Yeast extract - 13

Peptone - 10

Glucose C6H12O6 5

Soluble starch (C6H12O6)n.H2O 5

Sodium chloride NaCl 5

Sodium acetate C2H3NaO2 3

Cysteine hydrochloride HSCH2CH(NH2)COOH.HCl 0.5

Agar - 0.5

B.2.2 Fermentation Media

The cultures pre-grown on the RCM medium presented above were used
as the inocula for fermentation experiments performed both in serum flasks
and fermenters. Except the sugar(s), composition of the fermentation me-
dia were the same in all experiments. Components of the fermentation
medium are shown in Table together with their concentrations (g/l) for
1 l medium. Separate stock solutions were prepared for every component as
shown in Table . In serum flask experiments, 232.5 g/l sugar solutions
containing equal amounts of glucose and xylose and in the fermentation
experiments, separate glucose and xylose solutions with 232.5 g/l concen-
trations were used. Vitamins were filter sterilized and stored in the freezer
at −20 ◦C and the rest were stored in the fridge at 4 ◦C.

For the medium preparation, respective amounts (volume in ml) of
the components were mixed with the sterile and anaerobic distilled wa-
ter to have the designated the liquid volume of the particular experiment.
Sodium acetate, yeast extract, ammonium sulfate, sodium chloride, mag-
nesium sulfate heptahydrate and manganese sulfate monohydrate comprise
the base medium and were autoclaved together. Potassium salts, KH2PO4
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and K2HPO4, and sugar solutions were autoclaved separately. Iron solution
was filter sterilized as well as the vitamins. All the components were mixed
and stirred thoroughly in a magnetic stirrer while flushed with biological
grade nitrogen gas.

Table B.2: Medium components used in fermentation and flask test experiments.

Component Molecular
formula

Concentration
(g/l)

Stock solution
used

Sodium acetate C2H3NaO2 2.5 250 g/l

Yeast extract - 5 200 g/l

Ammonium sulfate (NH4)2SO4 2 400 g/l

Sodium chloride NaCl 0.01 0.01 g/ml

Magnesium sulfate
heptahydrate

MgSO4.7H2O 0.2 40 g/l

Manganese(II)
sulfate monohydrate

MnSO4.H2O 0.01 0.079 g/ml

Monopotassium
phosphate

KH2PO4 0.75 15 g/100 ml

Dipotassium
phosphate

K2HPO4 1.50 30 g/100 ml

Iron(II) sulfate
heptahydrate

FeSO4.7H2O 0.01 100 mg/ml

p-aminobenzoic acid 0.01 50 mg/ml

Biotin 0.01 50 mg/ml

Thiamine 0.01 50 mg/ml

B.3 Analytical Methods

B.3.1 Optical Density Measurement

Optical density (OD) was used as a measure for cell mass concentration,
measured at 660 nm with a UV-vis spectrophotometer UV-1700 (Shimadzu)
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with water as the reference. Samples exceeding 0.4 OD were diluted with
water so that the Beer-Lambert Law is applied. The OD readings were
converted to cell mass concentrations as explained below.

B.3.2 Dry Cell Weight Estimation

The dry cell mass samples were centrifuged (10000 rpm) at 5 ◦C for 5
minutes and pelleted cell mass washed with deionized water for three times.
The cells were then dried at 120 ◦C until constant weight was obtained.

B.3.3 High Performance Liquid Chromatography

The samples for determining concentrations of glucose, xylose and
butanol were filtrated (Millipore filter, 0.2 micrometre) before analysis
by using a HPLC system (Shimadzu Model 9) equipped with UV (210
nm) and RI detector and an Aminex HPX-87H column (Biorad). Samples
were eluted with 5 mM H2SO4 buffer, flow rate 0.6 ml/min at 45 ◦C.
Quantification was performed using standards for each component.

B.4 Growth Conditions

There were two types of fermentations, done in the serum flasks and in
the fermenters. Both were started upon inoculation with active cultures,
pre-grown on the RCM media. Details of the growth conditions are given
the chapters below.

B.4.1 Pre-growth Conditions

The RCM media were anaerobically prepared with 50 ml volume in
120 ml serum bottles sealed with rubber stoppers. The fresh media were
inoculated with 1 ml of frozen work ampoules (2% v/v). The inoculated
media were then incubated at 37 ◦C under static conditions for 14 hours,
which was found as the optimal for C. beijerinckii [ ].

B.4.2 Serum Flask Experiments

Serum flask experiments were done in 120 ml serum bottles with 50 ml
working volume, inoculum size of 4% v/v, at 37 ◦C static and anaerobic
conditions.
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B.4.3 Microbioreactor Experiments

Fermentations were performed in round-well plates with 48x 3 ml mi-
crobioreactor wells with 1.5 ml working volume. Anaerobic conditions were
sustained by flushing with biological grade nitrogen gas at 37 ◦C and shak-
ing at 400 rpm in a BioLector� instrument (m2p-labs; Baesweiler, Ger-
many). Cultures in the wells were started with inoculum size of 4% v/v.
The BioLector� measures cell mass density by scattered light, which was
measured every 20 minutes in the present study. A gain of 20 (EX: 620
nm, EM:620 nm) was used for the experiments to avoid saturation at high
optical densities. pH was measured every 20 minutes with a gain of 19 (EX:
470 nm, EM: 525 nm). Photo of the BioLector�, microbioreactor setup is
shown in Figure together with a microbial well plate and a single well.

pH
DO

Cell mass & 
fluorescence

BioLector Setup Microbial Well Plate

Figure B.1: BioLector� setup, round-well plate, and a single well showing the sensors
for dissolved oxygen (DO), pH, cell mass and fluorescence.

B.4.4 Fermentation Experiments

Fermentation experiments were done in 2 l Applikon fermenters with 1
l working volume, inoculum size of 4% v/v, at 37 ◦C stirred at 150 rpm and
flushed with biological grade nitrogen gas (0.5 l/min) to sustain anaerobic
conditions. There was no pH control applied.

B.5 Exploratory Data Analysis

Exploratory data analysis was performed to statistically visualize the
fermentation variables and the correlations between them by means of box-
plots and correlation plots, respectively. Further explanations can be found
in the chapters below.
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B.5.1 Boxplot

Boxplots are typically used for visualization of statistics and shown as
rectangles. Matlab function, boxplot is used. On each rectangle, the central
mark indicates 50th percentile that is the median, and the left and right
edges of the box indicate the 25th and 75th percentiles, respectively, for a
boxplot stretching along the x-axis. A percentile is a measure indicating the
value below which a given percentage of data in a data set fall.

Whisker are the dashed lines extending from the boxes. Their default
value is approximately ±2.7σ and 99.3 percent coverage if the data are
normally distributed. The plotted whisker extends to the adjacent value,
which is the most extreme data value that is not an outlier. Outliers are
plotted individually using the ’+’ symbol, if they are greater than q3+w×
(q3− q1) or less than q1−w× (q3− q1), where w is the maximum whisker
length, and q1 and q3 are the 25th and 75th percentiles of the data set,
respectively.

B.5.2 Correlations

Kendall’s correlation coefficient shows the correlations among pairs of
variables in a data set. Matlab function, corr is used for this purpose with
pairwise option so that correlation coefficient is computed only for the rows
with no missing values in columns i or j. Kendall’s τ is based on counting
the number of (i,j) pairs, for i<j, that are concordant. That is for which
Xa,i - Xa,j and Yb,i - Yb,j have the same sign. The equation for Kendall’s
tau includes an adjustment for ties in the normalizing constant. For column
Xa in matrix X and column Yb in matrix Y , Kendall’s τ coefficient is given
in Equation .

τ =
2K

n(n− 1)
(B.1)

where K =
∑n−1

i=1

∑n
j=i+1 ξ

∗(Xa,i, Xa,j , Yb,i, Yb,j) and

ξ∗(Xa,i, Xa,j , Yb,i, Yb,j) =

⎧⎪⎨
⎪⎩
1 if (Xa,i −Xa,j)(Yb,i − Yb,j) > 0

0 if (Xa,i −Xa,j)(Yb,i − Yb,j) = 0

−1 if (Xa,i −Xa,j)(Yb,i − Yb,j) < 0

The coefficient has a value between -1 and +1 where +1 is total positive
correlation, 0 is no correlation, -1 and is total negative correlation. When
the p value is less than the significance level of 0.05, it indicates rejection of
the hypothesis that no correlation exists between the two columns.
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B.6 Analysis of Variance

Analysis of variance (ANOVA) is a procedure to assign sample variance
to different sources and to decide whether the variation arises within or
among different population groups. A two-way, nonparametric ANOVA
method, Friedman’s test is used in this thesis. Friedman’s test assumes that
all data come from populations having the same continuous distribution,
apart from possibly different locations due to column and row effect, and all
observations are mutually independent [ ]. It does not test for row effects
or interaction effects. Friedman’s test is appropriate when columns represent
treatments that are under study, and rows represent nuisance effects (blocks)
that need to be taken into account but are not of any interest.

The different columns of X represent changes in a factor A. The different
rows represent changes in a blocking factor B. If there is more than one
observation for each combination of factors, input reps indicates the number
of replicates and it must be constant. The matrix below illustrates the
format for a set-up where column factor A has three levels, row factor B has
two levels, and there are two replicates (reps=2). The subscripts indicate
row, column, and replicate, respectively.

X =

⎡
⎢⎢⎣
x111 x121 x131
x112 x122 x132
x211 x221 x231
x212 x222 x232

⎤
⎥⎥⎦

Friedman’s test assumes a model of the form shown in Equation .

xijk = μ+ αi + βj + εijk (B.2)

where μ is an overall location parameter, αi and βj represent the column
and row effects, respectively, and εijk represents the error. This test ranks
the data within each level of B, and tests for a difference across levels of A.

Friedman’s test makes the following assumptions about the data in X:

� Data does not need to come from a normal distribution.

� All data come from populations having the same continuous distribu-
tion, apart from possibly different locations due to column and row
effects.

� All observations are mutually independent.
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The p value that friedman returns is the probability that a chi-square
statistic with a specific degrees of freedom, df is more extreme than calcu-
lated value of chi-square. If the p value is near zero, this casts doubt on
the null hypothesis. A sufficiently small p value suggests that at least one
column-sample median is significantly different than the others; i.e., there
is a main effect due to factor A. It is common to declare a result significant
if the p value is less than 0.05 or 0.01. The chi-square test statistic is shown
in Equation .

T = (n− 1)

(
s

σ0

)2

(B.3)

where n is the sample size, s is the sample standard deviation, and σ is
the hypothesized standard deviation. The denominator is the ratio of the
sample standard deviation to the hypothesized standard deviation. The
further this ratio deviates from 1, the more likely you are to reject the null
hypothesis. The test statistic, T has a chi-square distribution with (n− 1)
degrees of freedom under the null hypothesis.

B.7 Determination of Kinetic Coefficients and
Fermentation Variables

The kinetic coefficients can be used to characterize a fermentation pro-
cess and asses its performance. The coefficients used in this thesis are shown
below.

The maximum specific growth rate, μmax (h−1) is equal to specific
growth rate, μ (h−1) during exponential growth phase as shown in Equation

, since the nutrient concentration is high enough so that the growth rate
is independent of nutrient concentration.

dX

dt
= μ ·X (B.4)

The specific growth rate is determined during the exponential growth
phase by integration of Equation , which yields Equation .

ln

(
X

X0

)
= μ · t (B.5)

where t is time (h), and X and X0 are the cell mass concentrations (g/l) at
time t and t = 0, respectively.

Cell mass yield, YX/S (g cell/g sugar), butanol yield, YB/S (BuOHy)
(g butanol/g sugar), butanol yield on cell mass, YB/X (g butanol/g cell),
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solvent yield, ABEy (g solvent/g sugar) are shown in Equations , ,
, and , respectively. Butanol ratio in solvent mixture, BuOHr (g

butanol/g ABE solvents) is given in Equation .

YX/S =
Xf −Xi

Si − Sf (B.6)

YB/S =
BuOH

Si − Sf (B.7)

YB/X =
BuOH

Xf −Xi
(B.8)

ABEy =
ABE

Si − Sf (B.9)

BuOHr =
BuOH

ABE
(B.10)

where Xi and Xf are initial and final cell mass concentrations (g/l), Si
and Sf are initial and final total sugar concentrations (g/l), BuOH is total
butanol production (g/l), ABE is total solvent production (g/l).

Glucose and xylose ratios in the sugar mixture (%), SGir and SXir are
shown in Equation and Equation .

SGir =
SGi

Si
× 100% (B.11)

SXir =
SXi

Si
× 100% (B.12)

where SXi and Si are initial glucose and xylose concentrations (g/l).

Utilized amounts of total sugar, glucose and xylose, Su, SGu and SXu

(g/l), and their percental utilizations Sur, SGur and SXur (%) are shown
in Equations , , , , and .

Su = (Si − Sf ) (B.13)

SGu = (SGi − SGf ) (B.14)

SXu = (SXi − SXf ) (B.15)

Sur =

(
Si − Sf
Si

)
× 100% (B.16)

SGur =

(
SGi − SGf

SGi

)
× 100% (B.17)

SXur =

(
SXi − SXf

SXi

)
× 100% (B.18)
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B.8 Design of Experiments

Design of experiments enables planning experiments with systematic
data collection. Central Composite Design (CCD), also referred as Box-
Wilson Design, is a five-level fractional factorial design of experiments. Cir-
cumscribed, inscribed, and face-centered are the three types of CCDs. Cir-
cumscribed central composite (CCC) design was used in this thesis due to its
ability to provide good accuracy of estimation over the entire design space
using built-in Matlab function ccdesign. Figure shows a geometrical
representation of the CCC design.

-1.5 -1 -0.5 0 0.5 1 1.5
Coded values of factor 1
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Figure B.2: A geometrical representation of the CCC design with two factors.

The five-level coded values of each factor are represented by [−α,−1, 0+
1,+α]. For a two factor CCC design, α is equal to 1.4142, and the design
consists of 16 experimental runs with 8 of them in the centre point to reduce
the effects of correlations between the factors. The minimum and maximum
values for the factors were determined first, then the real values for each
experiment were obtained according to the coded values.

B.9 Regression

B.9.1 Linear Regression

A quadratic linear model given in Equation is fitted with exper-
imental data obtained from CCC design of experiments by using Matlab
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function fitlm for linear regression analysis applying least squares method.

Y = A0 +
∑

AiXi +
∑

AiiX
2
i +

∑
AijXiXj (B.19)

where Y is the response, A0 is the constant coefficient, Ai is the linear coef-
ficient, Aii is the quadratic coefficient and Aij is the interaction coefficient.
Xi and Xj are factor level values determined by CCC design.

p value for F-statistic

In linear regression, the F-statistic is the test statistic, which tests
whether the model fits significantly better than a degenerate model consist-
ing of only a constant term. When the null hypothesis is true, the F-statistic
follows the F-distribution. p value for the F-statistic is used to determine
the significance.

p value for t-statistic

In linear regression, the t-statistic is used to make inferences about the
regression coefficients. t-statistic for each coefficient to test the null hy-
pothesis that the corresponding coefficient is zero, which means that the
corresponding term is not significant versus the alternate hypothesis that
the coefficient is different from zero.

tStat =
Ai

SEi
(B.20)

where Ai is the coefficient estimate and SEi is the standard error of the
estimated coefficient, Ai.

p value for the t-statistic of the hypothesis test that the corresponding
coefficient is equal to zero or not.

B.9.2 Nonlinear Regression

The binary substrate growth models given in the chapter were fitted by
using the Matlab function nlinfit for nonlinear regression, which uses the
Levenberg-Marquardt nonlinear least squares algorithm. The parameter
estimates minimize the least squares equation, Equation .

N∑
i=1

(Yi − f(Xi, b))
2 (B.21)

where f(Xi, b) is the nonlinear function, Xi are the predictors for ith obser-
vation, i = 1,...,N, and b are the parameters.
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95% confidence intervals for the model parameters were obtained by
using nlparci, and CovB output argument of nlinfit gives covariance matrix,
which was then converted to a correlation matrix by using corrcov function.
R argument of the nlinfit function was used to get raw residuals data to
visualize the difference between the simulated and observed values of the
growth rate.

B.10 Parameter Estimation

The model parameters were unknown a priori; therefore, they were
estimated from experimental data. Observed concentrations of cell mass,
glucose, xylose, and butanol are used:

y = [ [X] [SG] [SX] [B] ]T

for estimation of parameters

Θ = [YX/SG YX/SX YB/SG YB/SX kd Bmax iB KI μmaxG KsG KsX μmaxX ]T

The parameter estimation poses a nonlinear least-squares optimization
problem

Θ̂ = argmin

Nm∑
i=1

Nv∑
j=1

(yobsij − ypredij )2 (B.22)

where Θ̂ denotes the estimated values of the parameters Θ; and yobs and
ypred denote the observed and predicted concentrations of the components.
Number of components, Nm, is 4. Number of observations, Nv, is 14. The
subscript ij denotes the jth value of the ith component.

The objective of the parameter estimation problem in Equation
is to determine the parameters, Θ, by minimizing the squared difference
between the observed and predicted concentrations of the components in
y. The constrained nonlinear optimization problem is solved using fmin-
con in MATLAB 2017b Optimization Toolbox based on the interior point
algorithm together with ode45 solver.

B.10.1 Determination of Parameter Bounds

The bounds for yield coefficients were determined using stoichiometric
relations between the components [ , ], which are shown below.

C6H12O6 −→ C4H10O+ 2CO2 + 3H2O (B.23)
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C6H12O6 −→ C4H10O+ 2CO2 + 3H2O (B.24)

C5H10O5 −→ C4H10O+ 2CO2 + 3H2O (B.25)

C5H10O5 −→ C4H10O+ 2CO2 + 3H2O (B.26)

Rest of the parameter bounds were taken from literature [ ]. The
optimization problem was initialized by with the initial points, which were
the middle points between the upper and lower bounds of the parameters.
The parameter bounds considered in the optimization problem are given in
Table together with the initial points.

Table B.3: Model parameters, their bounds and initial points used for initialization.

Parameter Unit Lower
bound

Upper
bound

Initial point

YX/SG g/g 0 0.689 0.345

YX/SX g/g 0 0.689 0.345

YB/SG g/g 0 0.412 0.206

YB/SX g/g 0 0.494 0.247

kd h-1 0 0.100 0.050

Bmax g/l 10 20 15

iB - 0 10 5

KI g/l 125 250 187

μmaxG h-1 0 1 0.500

KsG g/l 0 10 5

KsX g/l 0 10 5

μmaxX h-1 0 1 0.500

B.11 Index of Model Accuracy

Average squared correlation coefficient, r2 was employed as the model
accuracy index and it was calculated as shown below. Equation shows
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sum of squared error (SSE) between the observed and predicted values of
the components.

SSE =

tend∑
t=0

(yobsi (t)− ypredi (t))2 (B.27)

where yobsi (t) and ypredi (t) denote the observed and predicted concentrations
of the components, i = X,SG, SX,B at time t, and the subscript i denotes
value of the ith measured component.

Sum of squared total (SST), which is a quantification of the observa-
tions’, yobsi (t) variation around their mean, yobsi was calculated as in Equa-
tion .

SST =

tend∑
t=0

(yobsi (t)− yobsi )2 (B.28)

By using SSE and SST values, average squared correlation coefficients
for each component was calculated with the formula given in Equation .

r2 = 1− SSE
SST

(B.29)

B.12 Sensitivity Analysis

Sensitivity analysis was conducted by 10% perturbations in each of 12
parameters. The sensitivity can be measured by comparing the final concen-
trations with perturbed and unperturbed parameters. End point deviations
(ED) of cell mass, glucose, xylose and butanol as a result of each parameter
perturbation are assessed. ED values were calculated as in Equation .

EDP
i (%) =

yi(Θ±ΔΘ, tend)− yrefi (Θ, tend)

yrefi (Θ, tend)
(B.30)

where yi(Θ, tend) and yi(Θ±ΔΘ, tend) represent the predicted concentration
of ith component at time tend associated with unperturbed parameter Θ and
perturbed parameter Θ±ΔΘ, respectively. yrefi (Θ, tend) is the end concen-
tration of the ith component in the reference, where i = X,SG, SX,B.
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