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In this paper we extend the state-of-the-art stochastic programming models for the Maritime Fleet Re-
newal Problem (MFRP) to explicitly limit the risk of insolvency due to negative cash flows when making
maritime shipping investments. This is achieved by modeling the payment of ships in a number of pe-
riodical installments rather than in a lump sum paid upfront, representing more closely the actual cash
flows for a shipping company. Based on this, we propose two alternative risk control measures, where
the first imposes that the cash flow in each time period is always higher than a desired threshold, while
the second limits the Conditional Value-at-Risk. We test the two models on realistic test instances based
on data from a shipping company. The computational study demonstrates how the two models can be
used to assess the trade-offs between risk of insolvency and expected profits in the MFRP.
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1. Introduction

Ocean shipping companies enable trading between countries
and continents, and are thus the backbone of the modern glob-
alized economy. For such companies, decisions regarding the size
and composition of the fleet are decisive not only for their com-
petitiveness but also for their survival in an extremely competi-
tive market. In fact, the risk of being insolvent in the shipping in-
dustry is not rare. One example is provided by the bankruptcy of
Hanjin Shipping, the sixth largest container shipping company, in
the fall 2016, see, e.g., BBC News [4]. In addition, according to The
Economist [20], a number of other shipping companies are in a
vulnerable position. Overcapacity in the industry is certainly one of
the main reasons behind such vulnerability. UNCTAD [21] reports a
3.5% growth in the world fleet from 2015 to 2016, despite an only
2.1% demand growth. As a consequence “in 2015, most shipping seg-
ments, except for tankers, suffered historic low levels of freight rates
and weak earnings” [21].

Furthermore, reducing the fleet by scrapping ships is not al-
ways a viable option due to low steel prices, as in current
times. According to The Economist [20] overcapacity might ac-
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tually be triggered by big players which, by increasing capacity,
drop freight rates to unprofitable levels for smaller players and
in turn force them out of business. Therefore, analytic support
for decisions regarding shipping investments must necessarily en-
visage also the possibility of market scenarios in which freight
rates, demands, and scrapping rates fall to unprofitable levels, and
suggest decisions which protect the company from positions of
insolvency.

The problem of deciding the size and composition of a fleet of
ships has, for many years received little attention by the Opera-
tions Research (OR) community. Pantuso et al. [12] report only 37
scientific contributions produced in more than fifty years. However,
this trend has recently been inverted, with a prolific research effort
during the past five years. Particularly, the literature puts a special
emphasis on the treatment of the uncertainty which characterizes
shipping markets.

Alvarez et al. [1] propose a robust optimization model with
the scope of ensuring fleet renewal plans which are feasible de-
spite random variation in the purchase and selling prices of ships.
Bakkehaug et al. [3] propose a multistage stochastic program in
which a random variable, modeling the “status of the shipping
market”, controls a number of associated random parameters such
as demand, ship prices, and charter rates. Pantuso et al. [14] also
present a multistage stochastic program for the Maritime Fleet Re-
newal Problem (MFRP) in which a number of market parameters
(such as steel prices, demands, and charter rates) are not perfectly
correlated. The authors show that explicitly facing uncertainty can
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significantly improve fleet renewal plans. A solution method for
large-scale instances of the problem is offered by Pantuso et al.
[13], while Pantuso et al. [15] show that, information related to
expected values and range of variation of the demand plays an im-
portant role in fleet renewal plans.

Patricksson et al. [16] extend the MFRP in order to deal with
the limitation imposed in certain emission control areas. Particu-
larly, among other possible actions, the authors include the pos-
sibility to upgrade existing ships to standards which would allow
them to sail within emission control areas. Arslan and Papageor-
giou [2] consider the MFRP from the point of view of an industrial
bulk shipping company which needs to decide the number, the
size and the duration of time charters. The authors also propose
a multistage stochastic program which is solved using a rolling
horizon heuristic. Finally, March et al. [11] revisit the mathematical
model by Pantuso et al. [14] proposing a model which maximizes
the rate of return on the investments made. The authors show
that such a model allows to match more closely the investors’
preferences. Earlier methods and additional discussion on the
MFRP can be found in the literature survey provided by Pantuso
et al. [12].

The above mentioned research assumes risk neutral decision
makers which maximize expected profits/returns (or minimize ex-
pected costs). Therefore, the models proposed are not designed to
hedge against particularly negative market configurations and, e.g.,
limit the risk of insolvency. In fact, while they produce solutions
which are the best on average, they do not exclude that such solu-
tions, in certain scenarios, might produce extremely negative cash
flows. Thus, the available models do not necessarily protect the
company in tough periods.

In this paper we take the perspective of a risk averse decision
maker and study the problem of limiting the risk of insolvency
when making shipping investment decisions. Particularly, we ex-
tend a state-of-the-art multistage stochastic programming formu-
lation in order for it to explicitly limit excessively negative cash
flows which might drive the company into a position of insolvency.
We achieve this by proposing a number of modifications to the
available model.

First, we take into account that the payment of ships is typi-
cally made in a number of installments. This is in contrast with
the available literature which assumes that ships are fully paid in
one lump sum (see for example Alvarez et al. [1], Pantuso et al.
[13,14]). Stopford [19] explains that the payment of new ships is
usually made in at least three installments following correspond-
ing milestones in the construction process. However, when ships
are paid by debt, the ship is typically fully paid in five to ten years.
Thus, by modeling periodical installments we are able to replicate
more closely the cash flows of the company, and thus enforce con-
trol measures.

Second, we limit the negative magnitude of cash flows by
means of two alternative risk control measures. The first type of
measure imposes that the cash flow is higher than a desired (pos-
sibly negative) threshold in all possible scenarios (i.e., with prob-
ability one). This deterministic measure enables the company to
ensure that cash flows always are higher than a certain company-
specific safety threshold to avoid insolvency. The second type of
risk control measure limits instead the Conditional Value-at-Risk
(CVaR) of the negative cash flows, i.e., the expected negative cash
flows in the worst-case tail of the cash flows distribution. With
such risk control measure, the company is able to impose, for ex-
ample, that the expected cash flow in the 5%-probability worst-
case scenarios, is higher than $ -50 million.

Enforcing such controls on the negative cash flows might how-
ever have a negative impact on the expected profits by limiting
the investment options available to the decision maker. Therefore,
by considering a risk neutral decision maker as a benchmark, we

study the trade-off between different degrees of risk awareness
and expected profits.

The contributions of this paper is thus a novel multistage
stochastic program which, with respect to the available literature,
includes

e a closer and more realistic representation of the payment of
ships in instalments rather than in a lump sum,

e a risk control measure which deterministically limits negative
cash flows, and

e a risk control measure which limits the expected worst-case
cash flow.

The novel representation of the payment of investments also re-
quires changing the objective function, compared to previous mod-
els. In addition, for the resulting multistage stochastic program,
we illustrate a node formulation which enables the solution of
the problem through commercial solvers. Finally, we propose a
computational study where the new model is tested on instances
based on data from a real shipping company. In the computational
study we show the effect of risk control measures on profits and
derive consequent managerial and practical insights for shipping
companies.

The remainder of this paper is organized as follows. In
Section 2 we describe the MFRP with cash flow control in more
detail, while a mathematical model for the problem is proposed in
Section 3. In Section 4 we report from our computational study,
and finally we draw conclusions in Section 5.

2. The maritime fleet renewal problem with cash flow risk
control

In this section we introduce the MFRP with cash flow risk con-
trol. The problem revisits and extends the profit-maximization ver-
sion described by March et al. [11] and is consistent with most fea-
tures included in Pantuso et al. [13,14,15]. We begin by providing a
general description of the problem.

A shipping company is to decide how to modify the available
fleet of ships by adding or removing ships. Ships can be ordered
from a ship-builder or bought in the second-hand market. In the
former case the delivery of the ship takes typically a number of
years, depending on the order-book of the ship-builder. In the lat-
ter case the delivery time is significantly shorter, and depends es-
sentially on administration tasks and on the position of the ship. A
shipping company can also sell ships in the second-hand market,
or scrap (demolish) them receiving a remuneration for the steel of
the ship.

Ships are paid for in different ways. The payment to the ship-
builder is typically delivered in three installments, the first at the
placement of the order, the second at the lay of the keel, the last
at the delivery of the ship (see [19]). However, the actual cash out-
flow from the shipping company depends on whether the ship is
financed by equity or debt. Typically, the cost of the ship (plus in-
terests or dividends) is actually paid back in a number of install-
ments for a period of up to ten years (see [19]).

The ownership and operations of a ship generate fixed and vari-
able operating expenses for the shipping company. Fixed operating
expenses (typically referred to as OPEX) cover those costs which
are not determined by the activities of the ship, such as insur-
ance, administration costs, crew salaries, and maintenance. Fixed
operating expenses can be lowered by laying up ships, i. e., stop-
ping them at ports, due to, e.g., lower insurance fees and reduced
crew. Variable operating expenses are generated by the sailing of
the ship and can essentially be restricted to bunker costs, and port
and canal fees.

Additional ships, for short-term needs, are typically obtained
by time-charters. Time-charters give the charterer the control of a
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ship and its crew for a specified period of time (weeks to months).
The charterer pays a (per day or per week) fee and all variable
operating costs (e.g., fuel and port fees), while the charteree main-
tains the ownership of the ship and bears all capital costs and fixed
operating expenses. Similarly, the shipping company has the possi-
bility to charter out own ships.

The types and number of ships to operate is essentially de-
termined by sailing needs which in turn are generated by a
transportation demand, possibly contractualized. However, differ-
ent configurations of the sailing operation can be found. Lawrence
[10] distinguishes among three modes, namely industrial, liner, and
tramp shipping. In industrial shipping a producer of goods owns
and operates a fleet of ships used to deliver its production to cus-
tomers. In liner shipping, similarly to a city bus, the company
deploys the fleet on predefined trades, i. e., fixed routes with a
pre-published schedule. Finally, in tramp shipping ships are as-
signed to customers’ transportation calls, like taxis. In Section 3 we
assume liner shipping operations, while a more thorough descrip-
tion of the other modes can be found in Christiansen et al. [5].
In any case, unfulfilled transportation demand is typically covered
by space-charters, i.e., by transporting products by means of other
shipping companies’ ships, or by paying a penalty to customers.
Both options are typically expensive.

Due to the long lifetimes of ships and lead times for the deliv-
ery of new buildings, fleet renewal plans need to take into account
a planning horizon of a number of years. Consequently, several ele-
ments of the problem are uncertain when decisions are made, such
as demands, ship purchase and selling prices, charter rates, steel
prices, and bunker prices. Thus, fleet renewal plans are made un-
der uncertainty. Finally, such decisions are made periodically, e.g.,
every year.

In every period, a shipping company receives cash inflows gen-
erated by the remuneration of the transportation services provided,
by chartering own ships to other companies, and by selling or de-
molishing own ships. Cash outflows are instead generated by the
payment in installments of the ships purchased, by the payment of
fixed and variable operating expenses, by the time-charters taken,
and by the space-charters used to cover unfulfilled demand. Ensur-
ing solvency corresponds to ensuring that the net cash flow is, in
every period, within a company-specific safety margin.

The MFRP with cash flow control consists of determining how
many ships of each type to add to, or remove from, the available
fleet in order to maximize expected profit while limiting the risk
of insolvency due to cash flows falling below a company-specific
safety margin. While MFRP decisions are made periodically, the fo-
cus is on the decisions which must be made here-and-now, while
taking into account possible future scenarios and corresponding
decisions.

3. Mathematical model

In this section the MFRP with risk control is modeled as a
multistage stochastic mixed-integer program. The multistage and
stochastic structure allows us to capture the interplay between pe-
riodic decisions conditional on the discovery of new information
(i.e., realizations of uncertain parameters). Modeling assumptions
are discussed in Section 3.1, while in Section 3.2 we introduce the
basic profit maximization model with payment of ships in install-
ments (but without any risk control measures). Further, we pro-
pose two alternative measures for controlling cash flows. The first,
presented in Section 3.3, is a deterministic measure restricting the
cash flows to remain higher than a company-specific safety mar-
gin for all possible scenarios. The second measure, presented in
Section 3.4, controls the Conditional Value-at-Risk (CVaR), i. e, it
limits the expected negative cash flows in the tail of the distribu-
tion.

3.1. Modeling assumptions

We make the following assumptions.

A1 We assume a finite planning horizon consisting of a finite
number of decision times, i.e., stages. This, in practice, cor-
responds to making fleet renewal decisions periodically as it
is often the case in shipping companies.

A2 We assume that the joint probability distributions of the
random parameters are known. This implies that the com-
pany at least implements routines to collect market data and
estimate empirical distributions. Particularly, we assume a
discrete distribution in the form of a finite set of scenarios
and the respective probabilities. If the estimated distribution
is continuous it can be discretized using standard scenario
generation techniques such as Heyland et al. [7] or sampling
techniques.

A3 We assume that ships are different from each other in tech-
nology (i.e., speed, capacity, cost structure) and age. Thus,
a specific configuration of technology and age determines
a ship class. Notice therefore that two ships with identical
technology, but built in two different years, belong to two
different ship types.

A4 We assume second-hand ships that are bought in one pe-
riod are delivered at the beginning of the next planning pe-
riod. Similarly, we assume ships scrapped and sold leave the
fleet at the end before the beginning of the next planning
period. We assume new buildings are delivered after a suit-
able number of periods (lead time) which depends on the
order book at the shipbuilder.

A5 We assume time-charters can be issued for at most one time
period at a time (i.e., fractions of a period and up to an en-
tire period). Time charters longer than a period must thus
be issued one period at a time. Similarly, ships can be laid
up for at most one period at a time.

A6 We assume that the shipping company operates in the liner
shipping business. The corresponding shipping operations
are described in what follows.

Consistently with Pantuso et al. [14] and Merch et al. [11], the
company has to service a number of trades, i.e., sequences of ports
which have to be visited according to a pre-published schedule. A
trade consists of a number of origin ports and a number of desti-
nation ports. A ship services a trade when it visits all its ports, ac-
cording to the specific schedule, picking up cargoes at origin ports
and delivering cargoes at destination ports. Fig. 1 shows an exam-
ple trade which includes five origin and three destinations ports.
Transportation demands (possibly for different products) are asso-
ciated to each origin-destination pair.

We inherit the graph representation of the network of trades
used in Pantuso et al. [14]. Nodes in the graph represent trades.
Visiting a node corresponds to servicing the trade it represents.
Each node is assigned a demand which is calculated as the sum of
the demands between its port pairs. When a ship visits a node it
transports an amount of cargo up to the capacity of the ship. Arcs
represent ballast (i.e., empty) sailings between the last and the first
port of the trades connected. As an example, in the graph depicted
in Fig. 2 the arc between trade T1 and trade T2 represents the bal-
last sailing between the last port in trade T1 and the first port in
trade T2. It should be noted that the example Fig. 2 includes four
trades, and has no connection with the example showing one trade
in Fig. 1.

To perfectly assess the needed fleet capacity we would need to
include detailed deployment and routing decisions on an opera-
tional level. However, this would result in an intractable model.
To obtain a tractable model with a fair estimate of the capacity
needed at the operational level, we adopt the concept of loop from
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Fig. 1. Example trade from Asia (with five origin ports) to Europe (with three destination ports).

Fig. 2. Graph representation of an example network with four trades and two
loops.

Pantuso et al. [14]. A loop is a cyclic path in the graph, i. e, a
path in the graph which begins and ends in the same node (trade).
Ships are assigned to loops. A ship assigned to a loop services the
trades in the loop in a given sequence, possibly with ballast sail-
ings in between, and returns to the initial port of the first trade in
the loop. The total length of a loop accounts for both the length of
the ballast sailings and the length of the trades. The cardinality of
a loop is equal to the number of trades it includes. Fig. 2 shows
two example loops, namely L, of cardinality three (it includes Ty,
Ty, Ty), and L, of cardinality two (it includes T, and T3). Including
loops of higher cardinality corresponds to modeling the tactical de-
ployment problem with a higher granularity. Based on the results
from Pantuso et al. [14], we have chosen in this paper to include
all loops with cardinality of one and two.

With respect to the sailing operations we make the following
additional assumptions.

A7 We assume trades are either contracted or optional. Con-
tracted trades are mandatory due to ongoing contracts
which commit the company to sail from and to certain ports.
Therefore, their demand must be fulfilled for the whole
planning horizon. The company can instead decide to ser-
vice each optional trade. However, once a company chooses
to service an optional trade, that trade must be serviced for
the remainder of the planning horizon.

A8 We assume space charters can be used only on contracted
trades but not on optional trades. This corresponds to com-
mitting the company’s own resources on the new sailing op-
erations.

3.2. Basic model: profit maximization without cash flow control

In this section we first introduce the notation for the basic
profit maximization model without cash flow control. Afterwards,
we introduce and discuss the mathematical model. For the sake
of legibility, all monetary quantities are to be considered appropri-
ately discounted.

The profit maximization MFRP without cash flow control can
thus be formulated as follows.

maxz=> Rl > | > > RRDiksbis (1a)

seS teT\{0} \ieA? keK
+ Z Z (RgsDikts - qggsnikts) (lb)
ieNf kek
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Objective function (1a)-(1h) represents the expected profit for
the whole planning horizon. The term in (1a) represents the rev-
enue obtained for fulfilling the demand on optional trades. The
terms in (1b) represent the revenue from contracted trades mi-
nus the expenses for space charters. The terms in (1c) represent
the fixed operating expenses, the expenses for time charters and
the revenue for time chartering own ships to other companies. The
terms in (1d) represent the sailing expenses minus the savings for
laying-up ships. The term in (1e) represents the installments that
have to be paid for ships purchased in the past (i.e., in previous,
separated, decision problems). The terms in (1f) sum up the instal-
ments for the payment of ships built or bought in the second-hand
market. The terms in (1g) represent the sunset value of the fleet
minus the sum of the instalments that have to be paid after the
end of the planning period due to purchases and new buildings de-
cided within the end of the planning horizon. Finally, the terms in
(1h) represent the revenue from scrapping and selling own ships.

The problem is subject to the following constraints.

3> Quiures + Nies = Dies te T\ {0} ie N keK.ses,

VeV T€Riy

(1i)

Z Z QuiXures > DigsSis € T\ {0}, ie NC ke, se8, (1)

VeV T€Riy

Z Z vavrts‘f'zniktsZZDikts teT\{O}’ie-/\[tC’SES~

VeV, T€Riy kek ke
(1K)

Sets

T Set of time periods, indexed by t

S Set of scenarios, indexed by s

K Set of products, indexed by k

Ve Set of ship types existing in the market in period t, indexed by v (i.e.
the ship types with age between zero and the retirement age)

VN Set of potential new deliveries period t, i.e. the ship types with the
age equal to zero in period t

yIN The set of ship types for which the company pays instalments in
period ¢t

N; Set of available trades in period t, indexed by i. A; = NF UAN?

NE S N;  Set of contractual trades in period ¢, indexed by i

NP S N;  Set of optional trades in period t, indexed by i

Re Set of loops available for sailing in period t, indexed by r

Ry € R Set of loops that can be sailed by ship type v in period t, indexed
by r

Rine € Rur The set of loops servicing trade i that can be sailed in period t by a
ship of type v, indexed by r

Parameters

Tt The lead time for the delivery of a ship of type v, i.e. the time
between order placement and delivery

Ps The probability for scenario s to take place, set to 1 divided by the
number of scenarios

RY The sunset value of a ship of type v, in scenario s, i.e. the value of

the ship at the end of the planning horizon

RY. The revenue for transporting one unit of product on trade i, at
period t and scenario s

RE The revenue for selling a ship of type v, in period t and scenario s

R The scrapping value of ship of type v, in period t and scenario s

RY The lay-up savings for one period, for ship of type v, in period t and
scenario s

RSO The one-period charter-out revenue for ship of type v, in period t
and scenario s

Sl The charter-in cost for a ship of type v, in period t and scenario s

cor The operating cost for a ship of type v, in period t and scenario s

CIR The cost of performing loop r with a ship of type v, in period t and
scenario s

Cf,f;s The cost of delivering one unit of product k on trade i by space

charters, in period t, and scenario s

(continued on next page)

(continued)

Clys The maximal number of charters in of a ship of type v, in period t
and scenario s.

COyxs  The maximal number of charters out of a ship of type v, in period t
and scenario s

Clis The maximal total number of charters in, in period t and scenario s

COys The maximal total number of charters out, in period t and scenario s

SEys The maximal number of second-hand sales of ships of type v, in
period t and scenario s

SHys  The maximal number of second-hand purchases of ships of type v, in
period t and scenario §

SE;s The maximal total number of second-hand sales, in period t and
scenario s

SHis The maximal total number of second-hand purchases, in period t and
scenario §

Qi The capacity of product k on a ship of type v

Q The total capacity on a ship of type v

Zye The time a ship of type v needs to perform a loop r

Zy The total time available in a period (e.g, days in a year) for a ship of
type v

Dires The demand of product k on trade i in period t and scenario s

F; The frequency requirement on trade i in period ¢t, i.e. the number of
times a trade has to be serviced during one period

Y The initial fleet of ships of type v, i.e., the number of ships available
at the beginning of the planning horizon

YNB The number of ships of type v ordered in the past (i.e., in previous

planning periods) and delivered at the beginning of period t

N . L . . .
Covves The mstglment. paid in period t and scenario s for a ship of type v
ordered in period t/
SH . . . . .
Gottes The instalment paid in period t and scenario s, on a ship of type v

purchased in the second hand market at time t’

ciw The instalment paid in period ¢ for a ship of type v already in the
fleet at the beginning of the planning horizon. Note that this
parameter is not stochastic, because the ship has already been
bought and thus the instalments are already determined

M Number of instalments

T The last time period in the planning horizon

Variables

s The number of ships of type v scrapped in period t and scenario s

yoE The number of ships of type v sold in the second hand market, in
period t and scenario s

yﬁ‘t",s The number of ships of type v bought in the second hand market, in
period t' and scenario s

y’v"ffs The number of new buildings ordered for a ship of type v, in period
t' and scenario s

Vs The number of ships of type v in the fleet, in period t and scenario s

Lyts The number of ships of type v put on lay-up, in period t and
scenario §

hle The number of ships of type v chartered in, in period t and scenario s

O The number of ships of type v chartered out, in period t and

scenario §

Xyrts The number of loops r performed by ships of type v, in period t and
scenario s

Nikes The amount of cargo k delivered by space charters on trade i, in
period t and scenario s

Sits Binary variable set to 1 if the company chooses to service trade i in
period t and scenario s, 0 otherwise.

Z Z QuXyrts > ZDiktsaits teT\ {0}.ie Novs €s. (1D

VeV, reRiy kek

Constraints (1i) and (1j) ensure the satisfaction of the demand for
all products on contracted trades and on optional trades, respec-
tively. Notice that demand must be satisfied for all periods ex-
cept the initial. In fact, the fleet composition available in the initial
period is the result of an earlier planning problem, and the cor-
responding chartering decisions are made in a separated tactical-
level problem. These decisions do not influence the investment de-
cisions the MFRP focuses on. Notice also that space charters can be
used only on contracted trades but not on optional trades (see As-
sumption A8 in Section 3.1). Constraints (1k) and (11) ensure that
the total capacity is sufficient to cover the demand on contracted
and optional trades, respectively. Notice that these constraints are
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also modeled for all periods except the initial.

szvrtsZEt teT\{O},iGNrC,SES, (1m)
VeV rTeRiy
Z Z Xurts > s, teT\{O},iGMO,SGS, (1n)
veV reRy
Z ZyrXyrts < Zy (J’Ets + h{/ts - hi?ts = lus).
reRu

teT\{0},veV;,seS, (10)
Sits < 8ig1s teT\{0.ThieN . ses. (1p)

Constraints (1m) and (1n) enforce the service frequency require-
ments on the contracted and optional trades, respectively. Con-
straints (1o0) ensure that the fleet (including time charters) has
enough ships to cover the required sailing time. Constraints
(1p) ensure that, when the company decides to service an optional
trade, it is serviced for the rest of the planning horizon (see As-
sumption 7 in Section 3.1.

Voo =Y vevyses, (1q)
yhe =YNB teT:t<f,,L,veV[N,se$, (1r)

P _ P SC SH SE
Yues = Yor-1s _yut—l,s +y1/,t—1,s _yv.t—l,s

teT\{0},ven\V,ses, (1s)
y’v’tszy’;’fjh teT:t=ThveV ses, (1t)
yﬁts > lys —hf,ts—i—hs[s teT\{0},veV,ses, (1u)
Yos=Yis teT\{TLveVi\Vy1.5€8. (1v)

Constraints (1q)-(1v) keep track of ships added to and removed
from the fleet. Constraints (1q) set the initial fleet while con-
straints (1r) ensure that the model keeps track of the delivery of
new buildings ordered in the past (i.e., in earlier planning prob-
lems). Constraints (1s) ensure the balance of second-hand pur-
chases, sales and demolitions, while constraints (1t) maintain the
balance of new buildings. Notice that second-hand ships and scrap-
pings are added to or removed from the fleet one period after the
decision is made, while new buildings are delivered after T, peri-
ods. Constraints (1u) make sure that charters out and lay-ups are
actually available in the fleet. Finally, constraints (1v) ensure that
ships reaching their age limit are scrapped.

Vil <SHys te T\ (T}, veV.ses, (1w)
Vi <SEws teT\(TLveV,ses, (1x)
hl <Clys teT\{0},veW,seS, (1y)
h% <COus teT\{0},veV,seS, (12)

> v <SHis teT\({T}ses, (1aa)

veV \VN

> ¥ <SEs teT\{T).ses. (1ab)
veV \WY

> iy <Clis teT\{0},s€es, (1ac)
SVAVA

Z hps <COs teT\{0},ses. (1ad)
veV \VY

Constraints (1w) and (1x) impose a limit on the number of second-
hand purchases and sales, respectively, for a given type of ship,
while constraints (1y) and (1z) impose a limit on the number of
charters in and out, respectively, for a given type of ship. Con-
straints (1aa), (1ab), (1ac) and (1ad) limit the total number of
second-hand purchases, sales, charters in and charters out, respec-
tively. Notice that the bounds depend on the specific market in
which the company operates.

yNE e 7+ teT:tsT—fyl,veVﬁﬂ,seS, (1ae)
vy yE ezt teT\{T}hveV,seS, (1af)
Y eRY teT,veV,seS, (1ag)
hl hO lus e RY teT\{0},veV,ses, (1ah)
Xpes €ERT te T\ {0}, veV,reRy,S€S, (1ai)
Nies €RY teT\{0},ieNC keK,seS, (1aj)
Sis€{0,1} teT\{0},ieNO s€eS. (1ak)

Finally, constraints (1ae)-(1ak) set the domain for the decision
variables. Notice that variables y©.. are continuous, as their inte-
grality is automatically enforced by constraints (1q)-(1v).

Model (1) is assumed to be nonanticipative, i.e., decisions
are only based on current information. This is enforced through
so called “nonanticipativity constraints” which are however not
shown for the sake of legibility. Alternatively, it is possible to ob-
tain an equivalent node formulation of model (1) which implic-
itly ensures nonanticipative solutions. Such formulation, which as-
sociates decisions and realizations of random parameters to the
nodes of the underlying scenario tree, is provided in the appendix.
Generally, a node formulation yields an optimization problem with
significantly fewer decision variables and constraints and is of-
ten suitable for solving the corresponding problem by means of a
solver. While the node formulation will be used in our computa-
tional study, in what follows we continue to refer to the scenario
formulation (1) for ease of exposition.

A possible limitation of model (1) is that it tends to become
a very large optimization problem as the number of scenarios in-
creases in an attempt to provide a better description of the un-
certainty. This is independent of whether the node formulation in
the appendix or the scenario formulation (1) is used. As the size
of the model increases, specialized algorithms become necessary,
see e.g., Pantuso et al. [13]. An additional potential limitation is
the high-level description of the sailing operations. In fact, the cor-
responding fleet deployment problem is in general a complicated
optimization problem, see e.g., Powell and Perakis [17], Fagerholt
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et al. [6], Wang and Meng [22]. A simplified set of tactical descrip-
tion is however often required to make strategic decisions. The
implications of these simplifications and how they provide a rea-
sonable representation of the sailing operations are discussed in
Pantuso et al. [14]. However, the impact of the level of details in
short- and mid-term decisions and the quality of long-term de-
cisions is a general open research question beyond the scope of
shipping investments.

3.3. Deterministic cash flow control

In this section we introduce a deterministic control mechanism
on cash flows. For the sake of legibility, let fL and fQ be deci-
sion variables representing the cash-inflow and cash-outflow, re-
spectively, in period t and scenario s. For a given time period t € T
and scenario s € S, the cash-inflow and cash-outflow are defined

as in (2) and (3), respectively.

fls =" REDiesSies + Y RRDiss

ieN? kek ieNC keK
CO 1,0 SE ,SE LU SC 4,SC
+ Z (Rutshvts + Rutsy ves T thslm + Rutsy vts (2)
veVr
0 __ IN yIP IN ,,NB SH ,,SH
f ts — Z Cvtsyv + Z Z (Cvt’rsy ut's + Cvt’tsy ut's
veyN —M+1=t'<t yeyN
SP OP,,P 1l TR
+ Z Z Ciktsnikfs + Z(Cvtsy s T Cgtshuts + Z Cvrtsxi/fts)
ieNE kek veVr reRuye

3)
]

Thus, the cash-inflow f; consists of the revenue from con-
tracted and optional trades, the revenue from scrapping ships, sell-
ing and chartering out ships, and the operating expense savings
for laying-up ships. The cash-outflow fQ consists of the instal-
ments paid for the new ships ordered and for the purchases in the
second-hand market, the time and space chartering expenses, and
the fixed and variable operating expenses.

Furthermore, let F be the worst-case cash flow tolerated by the
company, and B the budget available for ordering and purchas-
ing ships in the first period (determined by known ongoing ex-
penses generated by the solution to earlier planning problems).
Cash flows can deterministically (i.e., for all scenarios considered)
be controlled by means of the following constraints which can be
added to the basic model presented in Section 3.2:

B+ D (RiGoyats + Rooovsas) = D (Glosios + GidosYaos) = F

veVo veVlN
ses (4)
fl—f2>F teT\{0},s€eS. (5)

Constraints (4) and (5) ensure that cash flows are higher than
the specified safety limit in the first and following periods, re-
spectively. Notice that the operating revenues and expenses are
not included in period 0 as they are the result of earlier planning
problems. Thus, constraints (4) ensure that investments in the first
period, given a budget B, do not violate the safety cash flow level F.

3.4. Conditional value-at-risk cash flow control

In this section we extend the model in Section 3.2 to limit the
Conditional Value-at-Risk (CVaR), which have been used in a num-
ber of applications to control risk, see for example [24] and [23].
The CVaR represents the expected loss in the worst a% scenarios.
We impose constraints on the CVaR in every time period. Two pa-
rameters, namely a confidence level and a minimum CVaR value,

which are input to our model, reflect the degree of risk aversion
held by the shipping company. In our problem, for example, given
a confidence level of 95% and a minimum CVaR value of $-30 M,
the CVaR constraints would restrict the average cash flow in the
worst 5% scenarios in every time period to be above $-30 M.

Since we mainly study a two-stage case (even though the
model we presented in Section 3.2 can be multistage, depending
on the underlying scenario tree), we assume now, to simplify the
following explanation, that the MFRP is modeled as a two-stage
stochastic program. Let 7F € T be the set of first-stage time peri-
ods and 73 < T be the set of time periods in the second-stage. Let
a €[0, 1] be the confidence level, and ¢ and 7y artificial variables
necessary in the CVaR constraints. It can be shown that variable
¢, at the optimal solution, represents the Value-at-Risk (VaR), see
Rockafellar and Uryasev [18]. Variables 7 represent the negative
cash flows in excess of VaR in period t and scenario s. Finally, let
Fy be the minimum allowed expected cash flow under confidence
level «.

We adapt the constraints (4) and (5) to control cash flows in all
first-stage periods 7F. For the periods affected by uncertainty, i.e.
the time periods in 75, we limit the CVaR by applying the follow-
ing constraints.

1 _

§+mZPsntSZFa teTsy (6)
seS

Ns<fh—f2—¢ teTSses, (7)

Ns€R"UD teTS sed. (8)

Notice that artificial variables 7 take non-positive values and that
when the cash flow is short of VaR, the artificial variable 7 be-
comes negative and is included in constraints (6) which compute
and bound the value of CVaR. Notice also that the deterministic
cash flow control constraints introduced in Section 3.3 are a spe-
cial case of constraints (6)-(8) with a sufficiently high confidence
level . For example, if the number of scenarios, |S|, is equal to
100 and « = 0.99, the expected cash flow of the (1 —0.99) x 100
worst scenarios corresponds to the cash flow of the worst scenario.
In this case, bounding CVaR is equivalent to imposing a determin-
istic bound on cash flows.

4. Computational study

The scope of this computational study is to test the alterna-
tive cash flow control models introduced in Section 3 on instances
based on data from a real shipping company. Particularly, we fo-
cus on understanding the trade-off between expected profits and
protection against adverse market scenarios.

The models introduced in Section 3 (particularly their equiv-
alent node formulations presented in the appendix) were imple-
mented using IBM ILOG CPLEX 12.6.1 C++ callable libraries. Tests
were performed on a computer equipped with an Intel® Core
™}7-4500U CPU @ 1.8 GHz (2.4 Ghz) and 8 GB RAM.

4.1. Instances

We use three instances, named Small, Medium and Large,
adapted from Megrch et al. [11] and based on data from a major
shipping company which operates in the RoRo shipping market.
The three instances represent three shipping companies of differ-
ent sizes. The underlying characteristics of the ships and trades are
identical to Mgrch et al. [11]. However, we adjusted the initial fleet
and considered a different subset of the available trades with the
scope of observing the trade-off between risk aversion and profits
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Table 1 ' o ' The large instance represents a shipping company with 51 ships

Ship types and respective capacities in the instances. (see Table 1) in the initial fleet servicing 11 to 14 trades (see

Initial fleet Capacity Table 2) with a total demand for the first year of approximately
Ship Class  Small  Medium  large Cars  HH BB Total 2.9M RT43. In the medlurp instance there are 37 ships anq seven
Py 5 3 5 2975 2200 300 2975 to nine trades. The resulting total demand is thus approximately
o . . .

PCTC2 5 10 15 6800 2500 300 6800 65% qf the demand in the large 1n§tance. The small instance has
PCTC3 2 9 12 5450 2200 900 5450 16 ships and three to five trades with a total demand of approx-
PCTC4 1 5 6 6150 1800 200 6150 imately 30% of the demand in the large instance. However, in all
LCTC1 5 8 9 6000 2000 1500 6000 instances the demand can be increased by approximately 10% by
RORO1 1 2 4 4853 3100 1500 4853 ;
RORO2 0 0 0 5660 4000 2200 5660 mew.s ;l)f optional tral:i es. h he lead time T i
Total 16 37 51 ith respect to the other parameters, the lead time T/ is set

in companies of different size. The initial fleet and trades for the
three instances are reported in Tables 1 and 2, respectively. The
RoRo market is characterized by highly specialized ships due to
the specific technology required to load, unload, and host rolling
equipment. Consequently, the second-hand market and the mar-
ket for charters are rather small. Therefore, second-hand purchases
and sales, and well as charters in and out are excluded from the
model when running the tests. As a consequence, fewer options
are available to adapt the fleet to ongoing market conditions, and
the importance of planning against uncertainty is emphasized (see,
e.g., the discussion in Pantuso et al. [14]). In the basic settings, the
models are implemented as two-stage models. In Section 4.4 we
show that this is an acceptable simplification of the real-life prob-
lem. The three instances have a planning horizon of five years.

For each instance, 18 ship types are available. However, the size
and composition of the initial fleet, as well as the trades serviced,
vary between the instances. Tables 1 and 2 report the ship classes
and trades in the three instances, respectively. A ship class rep-
resents the technical specifications of the ship. However, different
ship types are obtained from each ship class, depending on the
age of the available ships. The company transports three types of
products, namely cars, High & Heavy vehicles (HH - mainly agri-
culture and industrial vehicles) and Break-Bulk cargo (BB - items
with high volume or weight such as train coaches or big engines).
The measurement unit for the three type of products is RT43, a
standard unit in the RoRo shipping business. The ship types op-
erated can carry the three types of products, but in different pro-
portions. The capacities of the available ship types are reported in
Table 1 while the demands are reported in Table 2. Note that the
total capacity of a ship from a given class corresponds to the high-
est of the individual capacities as the compartments of the ships
are not necessarily dedicated to a specific type of product.

Table 2

Trades in the instances. Demands are for the first year. Labels “C” and “O” indicate
contracted and optional trades, respectively, while a dash (“-") indicates that the
trade is not included in the instance.

Trades BB Car HH Small Medium Large
AFEU 0 19 200 0 0 C C
ASCE 2 166 119 397 44 120 - - C
ASEU 5 761 435 213 77 046 C C C
ASNE 36 845 35 331 66 606 C 0 C
ASNW 1939 60 158 7 400 0 0 0
EUNAOC 26 198 297 688 123 779 - C C
EUNE 20 075 469 379 67 853 - - C
EUNW 7 425 89 405 21 427 - C C
EUOC 16 776 266 855 55 474 C C
NAAS 3251 24 818 10 434 - - 0
NAEU 14 115 140 508 53 928 - - 0
NAME 4 476 103 048 14 200 - C C
NASA 3 404 41 036 24 419 - - C
SANA 2 689 97 999 29 239 C C

to two years. The instalments paid in each period are determined
by the new building price, the repayment time and the interest
rates offered by banks or the expected return on investments from
investors. We set a five years repayment time. This is consistent
with Stopford [19] who states that the repayment time is normally
between two and eight years. Moreover, Stopford [19] states that
the interest rates on loans for financing investments in ships are
generally quoted at a margin over London Interbank Offered Rate
(LIBOR). The spread of this margin is typically in the range 0.6% to
2.0%. Therefore, 1.25% is chosen as a margin on top of the LIBOR.
Using the June 2017 one-year LIBOR rate of 1.75%, we obtain an
interest rate of 3.0%.

The progression of the value of the ships in the instances is
estimated using a linear depreciation based on the new building
cost and an expected lifetime of 30 years. This is consistent with
the findings in Stopford [19] for the Panamax bulk carriers sold in
the first nine months of 2002. The sunset value is set to 70% of the
ship value in the last period, a value that, after preliminary testing,
was found to be sufficient for preventing over-investments, while
providing the desired modeling feature sunset values are intended
to have, i.e. to maintain a realistic fleet at the end of the planning
horizon.

Space charter prices are set to 2000 USD per RT43, which was
shown to give a reasonable and realistic use of space charters,
while at the same time reasonably close to the real value of us-
ing such an option. This can also be considered a penalty cost for
unsatisfied demand, and thus the parameter is considered deter-
ministic. As suggested by Stopford [19], all input values are prop-
erly discounted using a discount factor of 12% to ensure that deci-
sions made early in the planning horizon become more important
than later decisions. Finally, the budget for ordering ships in year
0 is set to be 5% of the contracted revenue in period 1, assuming
similar revenues in periods 0 and 1.

Uncertainty is modeled by associating a random variable to
each stochastic parameter in the problem. Particularly, we include
one random variable representing the demand of each of the three
products on each trade, one random variable for ship prices, one
random variable for the fuel price (influencing sailing costs), and
one random variable for steel price (influencing scrapping rev-
enues). For each of these elements we assume a triangular dis-
tribution such that one can have a one-year change in the range
—50% to +50%. The correlations between the random variables are
shown in Table 3. We assume that the first two years belong to the
first stage, thus 7F = {0, 1, 2}, while the remaining periods belong
to the second stage, thus 7° = {3, 4, 5}. Scenarios for the random
variables are generated using the method provided by Kaut and
Lium [8], which uses distribution functions and correlations. We
achieve acceptable in-sample stability (see Kaut and Wallace [9])
with 100 scenarios.

As previously mentioned, space charter costs can also be seen
as penalty for unfulfilled demand, which in some cases is difficult
to quantify. Similarly, the correlation between the random vari-
ables might be difficult to estimate, e.g., when historical data is
scarce. Therefore, we test four different versions of the problem,
namely for the combinations with normal and 50% reduced space
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Table 3
Correlation matrix.
Trade 1 Trade 2 Trade N
Car HH BB Car BB New building price  Fuel  Steel
Car 1 0.7 07 07 0.7 0.7 0.2 0.2
Trade 1 HH 1 0.7 0.7 0.7 0.7 0.2 0.2
BB 1 0.7 0.7 0.7 0.2 0.2
Trade 2 Car 1 0.7 0.7 0.2 0.2
Trade N BB 1 0.7 0.2 0.2
New building price 1 0.2 0.2
Fuel 1 0.2
Steel 1

charter cost, and with either all random variables correlated as
shown in Table 3 or with no correlation between them (i.e., with
correlation matrix corresponding to an identity matrix of suitable
dimensions).

4.2. Effects of deterministic cash flow control

In this section we test the effect of using the deterministic cash
flow control introduced in Section 3.3. We start by showing the
results for the base case where we assume normal space charter
costs and correlated random variables. Particularly, we solve the
basic model presented in Section 3.2 with the addition of con-
straints (4)—(5) for different values of cash flow limit F. We start by
solving the large instance without cash flow control (correspond-
ing to a risk neutral decision maker) and observe the worst-case
cash flow. Then, we set F at this value and solve the problem with
increased values of F, stopping when an infeasible problem is ob-
tained. Table 4 reports a summary of the first- and second-stage
solutions obtained for different levels of F, where the first row rep-
resents the solution without cash flow constraints.

It can be noticed that the expected profit decreases with in-
creasing F (except for some noise due to the 1% optimality tol-
erance - see for example the increase from the third row to
the fourth row). However, in general, we observe that a signifi-
cant increase of the worst-case cash flow can be obtained at the
price of only a negligible reduction of the expected profit. In fact,
the worst-case cash flow can be increased from $—-66.3 M to
$-39.8 M almost without reducing the expected profit. This is
due to the fact that the problem has a flat objective function with
many near-optimal solutions. However, when stricter control on
cash flows is imposed, a significant reduction of expected profits is
registered. It can be noticed that stricter cash flow limits are dealt
with by reducing the number of new buildings, using the avail-
able ships for longer times (see the reduced scrappings) and using

Table 4

more space-charters. This corresponds to saying that the install-
ments associated with new buildings are a major cause of negative
cash flows. Finally, optional trades are used to increase the total
demand when the demand is low, and they are not serviced at all
in the high demand scenarios.

Fig. 3 shows the cash flow development for each period and
scenario as a box plot comparing the solution of the model with-
out cash flow constraints (Fig. 3a) and the solution of the model
with the tightest cash flow constraints (Fig. 3b). These solutions
correspond to F = —66.3 and F =0 in Table 4. The red dashed
line represents the annualised expected profit. The lower end of
the box represents the first quartile, the upper end of the box
represents the third quartile, and the line inside the box repre-
sents the median. The ends of the whiskers represent the mini-
mum and maximum net cash flows. This means that 50% of the
scenarios are located inside the box, while 25% is located on each
side of the box between the ends of the box and the ends of the
whiskers.

In Fig. 3a and b it can be noticed how the worst-case cash flow,
i.e. the bottom whisker in year 5 without cash flow control, is im-
proved when controlling cash flows, at the cost of expected profit
loss and a reduction of the best-case cash flow. Furthermore, we
can observe a reduction in the cash flow standard deviation in pe-
riods 4 and 5 of Fig. 3b.

To interpret and visualize the four versions of the large in-
stance, i.e., with and without reduced space charter costs and with
and without correlated random variables, the four efficient fron-
tiers are plotted in Fig. 4. The efficient frontiers show the profit
loss (compared to the risk neutral case) generated by different val-
ues of the cash flow limit F. Note that the decreasing relative ex-
pected profit loss in parts of the curves are the result of the 1%
optimality gap, and not representing the real situation. Thus, in
reality the curves are always non-decreasing if the instances are
solved to optimality.

Solutions to instance Large for increasing cash flow limits F with correlated random variables and normal space charter
prices. Columns named 1st and 2nd report summaries of first- and second-stage solutions, respectively. The numbers
for the second-stage decisions are average values over the 100 scenarios.

F Expected New buildings  Scrappings Lay-up Space Optional Trades
[$M] Profit [§M]  1st  2nd 1st  2nd 1st 2nd 1st 2nd 1st  2nd
-66.3 11094 29 1.99 9 19.09 037 1290 0 9924 0 1.55
-59.7 1109.0 29 2.00 9 19.19 037 1272 0 13989 0 1.46
-53.1 11085 29 1.98 9 19.16 037 1284 0 10913 0 1.55
-46.4 11101 29 2.08 9 19.28 037 1261 0 12416 0 1.47
-39.8 11093 29 2.02 9 19.16 037 1272 0 12912 0 1.48
-332 11049 26 239 8 17.85 041 1256 0 26709 O 1.42
-26.5 1 094.2 26 241 9 16.77  2.37 1263 0 35091 O 1.46
-19.9 10786 26 239 9 16.86  4.36 1269 0 34769 0 1.46
-13.3 10654 26 237 9 16.71 634 1284 0 38723 0 1.52
-6.6 1038.2 24 270 6 18.16 1039 1264 0 28493 0 1.44
0.0 955.7 23 2.67 5 1834 1219 1505 42367 36051 O 1.54
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(a) Without cash flow constraints
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Fig. 3. The cash flow development for the large instance with correlated random variables and normal space charter price. The red dashed line is the annualized expected
profit, and the numbers above each whisker is the standard deviation for the given period. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

T T T T T T T T
Correlated 100% SCP ——
Uncorrelated 100% SCP — -
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Uncorrelated 50% SCP —+ 12%
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Fig. 4. The efficient frontiers for the different versions of the large instance. Let E*
be the annualized expected profit without cash flow control, and EF the annual-
ized expected profit using cash flow threshold F. The vertical axis represents the
ratio 100 « (E* — EF)/E*. Let WCT be the worst-case cash flow obtained for a given
threshold F. The horizontal axis represents the ratio 100 + WCF /E*. Finally, SCP is an
abbreviation for space charter price.

From Fig. 4 it is clear that all versions of the large instance
have the same characteristic. There exists a portion of the curves
where the worst-case cash flow can be increased with only small
losses in expected profit, and a portion where the expected profit
loss is rapidly increasing with the worst-case cash flow. Fur-
thermore, when tightening up the cash flow limits there is a
significant difference between the uncorrelated and correlated ver-
sions with normal space charter price. This illustrates that in the
real-world (where there exists some positive correlation between
the random variables involved) the benefit of using the cash flow
control model is greater than in an uncorrelated world. For ex-
ample, the relative worst-case cash flow of —10% has an expected
profit loss of approximately 6% and 2% for the uncorrelated and
correlated versions, respectively. In addition, the worst-case cash
flow can be improved by approximately 15% in terms of the an-
nualized expected profit without any significant loss in expected
profit.

We can also see similar effects for the small and medium in-
stances as for the large one. Fig. 5a and b show the efficient fron-
tiers for the four different versions of the small and medium in-

stances, respectively. Also here, it is possible to significantly im-
prove the worst-case cash flow without much loss in expected
profit in most versions. However, we see that for some versions,
such as both versions of the small instance with normal space
charter price and both correlated versions for the medium in-
stance, there is not that much room for improving the worst-case
cash flow without large losses in expected profit.

The reason we see different shapes of the efficient frontiers for
the small and medium instances (Fig. 5) compared to the large
(Fig. 4) is that, the smaller the instance gets, the higher is the
relative impact of a decision. Note how the efficient frontiers for
the large instance can be represented by piecewise linear functions
with an increasing gradient while the efficient frontier for some
of the small instances only consists of one linear function, corre-
sponding to less flexibility. These linear sections of the efficient
frontier for the small instance also appear to have a longer range
than for the large instance, but one must recall that the cost of
buying a ship compared to the expected profit is relatively higher
in the small instance compared to the large instance.

4.3. Effects of CVaR cash flow control

We tested the CVaR cash flow control model presented in
Section 3.4 with confidence levels of o =0.99, 0.95 and 0.90 on
the large instance with correlations as shown in Table 3 and nor-
mal space charter price. Note that since the instance is solved with
100 scenarios, the CVaR with o = 0.99 is equivalent to the deter-
ministic cash flow control model from Section 3.3.

Table 5 presents the solutions for the CVaR model with confi-
dence level of 0.95. When limiting the expected cash flow of the
5% worst scenarios, the expected profit loss is much lower than for
o =0.99 (i.e.,, the deterministic cash flow case, see Table 4). This
can also be seen by comparing the efficient frontiers in Fig. 6. An
immediate observation is that, as intuition suggests, a higher toler-
ance of risk leads to higher profits. As an example, when the rela-
tive expected cash flow limit is 0%, a risk tolerance corresponding
to o = 0.95 leads to a profit loss of approximately 2% compared to
a risk neutral decision maker. However, a lower risk tolerance (cor-
responding to o = 0.99) yields a profit loss of approximately 14%
for the same relative expected cash flow limit. Therefore, a deci-
sion maker willing to limit the negative expected cash flows in the
worst 5% scenarios, rather than in the worst 1% (corresponding to a
more strict policy) is rewarded with a significantly higher expected
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(a) Small instance
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(b) Medium instance

Fig. 5. The efficient frontiers for the different versions of the small and medium instances. Let E* be the annualized expected profit without cash flow control, and EF the
annualized expected profit using cash flow threshold F. The vertical axis represents the ratio 100 * (E* — EF)/E*. Let WCF be the worst-case cash flow obtained for a given
threshold F. The horizontal axis represents the ratio 100 = WCF /E*. Finally, SCP is an abbreviation for space charter price.

Table 5

Solutions for the large instance with correlated random variables and normal space charter prices for the CVaR

model with o = 0.95.

Fy Expected New builds  Scrappings Lay-up Space Optional

[$M] Profit [$M]  1st  2nd 1st  2nd 1st 2nd st 2nd 1st  2nd
-66.3  1109.4 29 199 9 19.09 037 129 0 9 924 0 1.55
-59.7  1109.1 29 200 9 19.16 037 1285 0 10162 O 1.54
-53.1 1109.9 30 1.99 9 1958 037 1370 0O 454 0 1.46
-46.4 11104 29 199 9 1910 037 1280 O 12184 0 1.46
-39.8  1109.1 29 212 9 1930 037 1266 O 12998 0 1.46
-33.2 11100 29 228 9 1935 037 1257 O 11082 0 1.47
-26.5 1109.4 28 219 8 1934 041 1262 0 12642 0 1.45
-19.9 1108.6 29 199 9 19.11 037 1291 0 10713 0 1.55
-133 1109.1 29 2.01 8 20.08 0.41 1276 0 5811 0 1.46
-6.6 1108.2 27 226 9 1758 037 1266 0 26938 0 1.45
0 1093.7 26 239 8 1786 237 1262 0 26128 0 1.45
6.6 1078.2 27 243 9 1791 441 12.71 0 26004 O 1.51
13.3 1033.0 23 305 4 19.89 827 1269 5992 32448 0 1.40

profit, corresponding to only a 2% loss compared to that of a risk
neutral decision maker. It can be noticed that, in the left-hand-
side portion of the efficient frontier, the increase in the cash flow
does not result in expected profit losses. This means that, indepen-
dently of the degree of risk aversion of the decision maker, there
is the possibility of significantly limiting the risk of negative cash
flows while ensuring approximately the same expected profit as
that of a risk neutral decision maker. However, in the right-hand-
side portion of the efficient frontier, the difference between differ-
ent degrees of risk aversion leads to significantly different expected
profits.

4.4. From a two-stage to a three-stage model

The instances solved in Sections 4.2 and 4.3 have been solved
using a two-stage model even though a multi-stage representation
is clearly closer to the reality. In this section we compare the re-
sults between a two-stage and a three-stage representation of the
problem to examine whether the former is a reasonable simplifi-
cation. For computational reasons we run tests only on the small
instance. Furthermore, we use the uncorrelated settings since the
correlated setting requires a higher number of scenarios for the
scenario generation algorithm to work correctly, resulting in an
excessive computation time for the three-stage model. Finally, we
use a 50% reduction in space charter prices as it provides a wider

range where the worst-case cash flow can be improved, as seen
in Fig. 5a. In the three-stage model, the decision stages are period
1, 3 and 5. At every stage we generate 20 conditional realizations,
resulting in a total of 20 %20 = 400 scenarios. The efficient fron-
tiers for the three- and two-stage solutions are shown in Fig. 7.
They both have similar characteristics with a section where the
worst-case cash flow is increased at a small cost in expected profit
loss, and a section where the cost is rapidly increasing with worst-
case cash flow improvement. This indicates that the characteristics
found in the efficient frontiers are similar between the two-stage
and three-stage model versions. Therefore, the two-stage simplifi-
cation seems to give a good trade-off between computational time
and solution quality, at least for the small instance with uncorre-
lated random variables and reduced space charter price.

4.5. Discussion and managerial insights

To determine which confidence level and solution a company
should choose depends on their current situation and risk prefer-
ences. A company’s utility of a solution might change whether they
face the risk of cash flow insolvency or balance-sheet insolvency. If
the company is low on cash reserves and thus is facing an immedi-
ate risk of cash flow insolvency, the manager will probably choose
a solution from the steep part of the efficient frontier, where the
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Fig. 6. The efficient frontiers for the CVaR model solved for the large instance
with correlated random variables and normal space charter price. Let E* be the
annualized expected profit without cash flow control, and Ef« the annualized ex-
pected profit using cash flow threshold F,. The vertical axis represents the ratio
100 % (E* — Ef«)/E*. The relative expected cash flow limit is calculated as the mini-
mum expected cash flow allowed, F,, divided by the annualized expected profit.
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Fig. 7. The efficient frontiers for the three and two stage solutions for the small
instance with uncorrelated correlation random variables and reduced space charter
price. Let E* be the annualized expected profit without cash flow control, and EF the
annualized expected profit using cash flow threshold F. The vertical axis represents
the ratio 100« (E* — EF)/E*. Let WCF be the worst-case cash flow _obtained for a
given threshold F. The horizontal axis represents the ratio 100 « WCF /E*.

limit on the worst-case cash flow is stricter and thus the protec-
tion against this type of risk is stronger.

On the other hand, if the company has a big cash reserve for
the coming planning period, but for some reason the value of
their assets (for instance ships) dropped to a level where their lia-
bilities are greater than the asset values, the company would be
facing the risk of balance-sheet insolvency. In this situation the
manager would probably choose a solution further to the left on
the efficient frontier in order to maximize the expected profit,
thus increasing the value of the company and reducing the risk
of balance-sheet insolvency. However, this will come at the cost of
increased risk of low-cash flows in a poor market.

A risk neutral decision maker will probably maximize expected
profit regardless of the risk, thus not using a binding confidence
level at all (corresponding to a solution from the efficient frontiers
with lower confidence levels, e.g., the bottom curve in Fig. 6). A
more risk averse decision maker will probably, for a given rela-
tive expected cash flow limit, prefer a solution with a higher con-
fidence level. On the other hand, for a given confidence level, the
risk averse decision maker will probably choose a solution more

to the right of the given efficient frontier to increase the relative
expected cash flow limit, though perhaps at a cost of a loss in ex-
pected profit. However, the solutions between —30% and —15% in
relative expected cash flow limit in Fig. 6 are close to indifferent
with respect to expected profit. Hence, one can hedge against bad
cash flow periods with very little expected profit loss by choosing
a solution from an efficient frontier with a higher confidence level
or by increasing the relative expected cash flow limit.

The results presented in the previous sections show that in
most cases it is possible to reduce the risk (i.e. the relative worst
case cash flow) significantly with very little loss in expected profit.
Furthermore, the results show that stricter cash flow limits or
higher risk aversion are dealt with by reducing the number of new
buildings, using the available ships for longer times (i.e. reduc-
ing the number of scrappings) and using more space-charters. This
corresponds to saying that the installments associated with new
buildings are a major cause of negative cash flows. Finally, optional
trades are used to increase the total demand when the demand is
low, and they are not serviced at all in the high demand scenarios.

The CVaR model provides the decision maker with a tool to
choose a risk level matching their situation and risk preference.
The deterministic cash flow control is more conservative, but has
the advantage that it might be easier to use and interpret its re-
sults for a manager of a shipping company. The computational
study in this paper demonstrates that the CVaR model can serve
as a valuable decision making tool for a risk averse decision maker
with the following highlighted benefits:

o The decision maker can explicitly define their risk preferences
by adjusting the confidence level and the cash flow threshold.

o There exists a great potential of finding solutions that will al-
low the company to hedge against periods with bad cash flows
without compromising expected profit.

o Constraining the CVaR does not significantly increase the com-
plexity of the model with respect to a risk neutral setting.

5. Concluding remarks

We introduced two new models for solving the Maritime Fleet
Renewal Problem (MFRP) focusing on controlling the risk of in-
solvency. The first is a deterministic cash flow control model,
while the second model uses Conditional Value-at-Risk (CVaR)
constraints to control the risk. In both models, the payments of
ships are modeled as instalments rather than lump sums to cap-
ture the cash flows more precisely. The deterministic cash flow
control model is shown to be a special case of the CVaR model
having such a high confidence level that just one worst-case sce-
nario is controlled.

The computational study demonstrated how a shipping com-
pany can use the two proposed models to provide decision sup-
port in assessing the trade-offs between risk and expected profits.
It was shown that solutions of the deterministic cash flow control
model for increasing cash flow limits improve the cash flow in the
worst-case scenario. However, this comes at the cost of reduced
expected profit. Furthermore, by solving the CVaR model for a set
of confidence levels the company can adjust their risk level accord-
ing to their risk preference.

In the case study in this paper, we looked at the roll-on roll-off
shipping segment, where the possibility of using secondhand ships
and charters is limited and was therefore not considered in the
tests (although the proposed model includes it). In other shipping
segments, these possibilities are more prominent and should be in-
cluded. It is expected that having such possibilities would reduce
the need of controlling the cash flows as the charter and second-
hand markets provide additional recourse actions which can be
used to reduce the consequences of unfavorable first-stage deci-
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sions. However, further research and tests are required to verify
this expected behaviour.

Another direction for future research could be to include cash
flow reserves. In this paper, we have assumed that there exists
an internal cash flow threshold calculated by the company. When
this is not the case, cash flow reserves could be introduced to
endogenously determine the appropriate cash flow limit. That is,
profits may be used as a cash reserve to prepare for future unfa-
vorable markets.
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Sets

T Set of periods, indexed by t

L Set of nodes, indexed by n

Le Set of nodes in a time period ¢, indexed by n. a(n, t') is the
ancestor node of node n in the scenario tree in period t’, with
a(n,t —1) written as a(n).

K Set of products, indexed by k

Ve Set of ship types existing in the market in period ¢, indexed by v

vy Set of new ship types existing in the market in period t

yiN The set of ship types the company pays instalments for in period
t

ft Set of trades operated in period t, indexed by i

NE Set of contractual trades the shipping company is committed to
serve in period t, indexed by i

NP Set of optional trades the shipping company can choose to
undertake or not in period t, indexed by i

Re Set of loops in period t, indexed by r

Rue Set of loops that can be sailed by a ship of type v in period ¢,
indexed by r

Rint The set of loops servicing trade i that can be sailed in period t by
a ship of type v, indexed by r

Parameters

Py The probability for node n to occur

RD The revenue of transporting one unit of goods on trade i, at node
n

RSE The selling price for a ship of type v, at node n

R The scrapping value of a ship of type v, at node n

RWY The lay-up savings for one period, for a ship of type v, at node n

RSV The sunset value of a ship of type v, at node n

RS0 The charter out revenue for one period, for a ship of type v, at
node n

cl The charter in cost for a ship of type v, at node n

RS0 The charter out revenue for a ship of v, at node n

cor The fixed operating cost for a ship of type v, at node n

CIR The cost of performing a loop r, for a ship of type v, at node n

Cﬁ(’; The space charter cost for one unit of product k on trade i, at
node n

Clyn The limit on number of ships of type v available for chartering in
at node n

COyp The limit on number of ships of type v available for chartering
out at node n

SHyn The limit on number of ships of type v available for purchase in
the second hand market at node n

SEun The limit on number of ships of type v that can be sold in the
second hand market at node n

Cl, The limit of the total number of ships that can be chartered in at
node n

CO, The limit of the total number of ships that can be chartered out
at node n

SH, The limit of the total number of ships that can be bought in the
second hand market at node n

SE, The limit of the total number of ships that can be sold in the
second hand market at node n

T The last time period in the planning horizon

T,,L The lead time for building a ship of type v

Quk The total capacity of product k on ship of type v

Q The total capacity on ship of type v

Zy The time a ship of type v needs to perform a loop r

Zy The total available time in one period for a ship of type v

Din The demand on trade i of product k in node n
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