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In this paper we extend the state-of-the-art stochastic programming models for the Maritime Fleet Re- 

newal Problem (MFRP) to explicitly limit the risk of insolvency due to negative cash flows when making 

maritime shipping investments. This is achieved by modeling the payment of ships in a number of pe- 

riodical installments rather than in a lump sum paid upfront, representing more closely the actual cash 

flows for a shipping company. Based on this, we propose two alternative risk control measures, where 

the first imposes that the cash flow in each time period is always higher than a desired threshold, while 

the second limits the Conditional Value-at-Risk. We test the two models on realistic test instances based 

on data from a shipping company. The computational study demonstrates how the two models can be 

used to assess the trade-offs between risk of insolvency and expected profits in the MFRP. 
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. Introduction 

Ocean shipping companies enable trading between countries

nd continents, and are thus the backbone of the modern glob-

lized economy. For such companies, decisions regarding the size

nd composition of the fleet are decisive not only for their com-

etitiveness but also for their survival in an extremely competi-

ive market. In fact, the risk of being insolvent in the shipping in-

ustry is not rare. One example is provided by the bankruptcy of

anjin Shipping, the sixth largest container shipping company, in

he fall 2016, see, e.g., BBC News [4] . In addition, according to The

conomist [20] , a number of other shipping companies are in a

ulnerable position. Overcapacity in the industry is certainly one of

he main reasons behind such vulnerability. UNCTAD [21] reports a

.5% growth in the world fleet from 2015 to 2016, despite an only

.1% demand growth. As a consequence “in 2015, most shipping seg-

ents, except for tankers, suffered historic lo w levels of freight rates

nd weak earnings ” [21] . 

Furthermore, reducing the fleet by scrapping ships is not al-

ays a viable option due to low steel prices, as in current

imes. According to The Economist [20] overcapacity might ac-
� This manuscript was processed by Associate Editor O. Prokopyev. 
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ually be triggered by big players which, by increasing capacity,

rop freight rates to unprofitable levels for smaller players and

n turn force them out of business. Therefore, analytic support

or decisions regarding shipping investments must necessarily en-

isage also the possibility of market scenarios in which freight

ates, demands, and scrapping rates fall to unprofitable levels, and

uggest decisions which protect the company from positions of

nsolvency. 

The problem of deciding the size and composition of a fleet of

hips has, for many years received little attention by the Opera-

ions Research (OR) community. Pantuso et al. [12] report only 37

cientific contributions produced in more than fifty years. However,

his trend has recently been inverted, with a prolific research effort

uring the past five years. Particularly, the literature puts a special

mphasis on the treatment of the uncertainty which characterizes

hipping markets. 

Alvarez et al. [1] propose a robust optimization model with

he scope of ensuring fleet renewal plans which are feasible de-

pite random variation in the purchase and selling prices of ships.

akkehaug et al. [3] propose a multistage stochastic program in

hich a random variable, modeling the “status of the shipping

arket”, controls a number of associated random parameters such

s demand, ship prices, and charter rates. Pantuso et al. [14] also

resent a multistage stochastic program for the Maritime Fleet Re-

ewal Problem (MFRP) in which a number of market parameters

such as steel prices, demands, and charter rates) are not perfectly

orrelated. The authors show that explicitly facing uncertainty can
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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significantly improve fleet renewal plans. A solution method for

large-scale instances of the problem is offered by Pantuso et al.

[13] , while Pantuso et al. [15] show that, information related to

expected values and range of variation of the demand plays an im-

portant role in fleet renewal plans. 

Patricksson et al. [16] extend the MFRP in order to deal with

the limitation imposed in certain emission control areas. Particu-

larly, among other possible actions, the authors include the pos-

sibility to upgrade existing ships to standards which would allow

them to sail within emission control areas. Arslan and Papageor-

giou [2] consider the MFRP from the point of view of an industrial

bulk shipping company which needs to decide the number, the

size and the duration of time charters. The authors also propose

a multistage stochastic program which is solved using a rolling

horizon heuristic. Finally, Mørch et al. [11] revisit the mathematical

model by Pantuso et al. [14] proposing a model which maximizes

the rate of return on the investments made. The authors show

that such a model allows to match more closely the investors’

preferences. Earlier methods and additional discussion on the

MFRP can be found in the literature survey provided by Pantuso

et al. [12] . 

The above mentioned research assumes risk neutral decision

makers which maximize expected profits/returns (or minimize ex-

pected costs). Therefore, the models proposed are not designed to

hedge against particularly negative market configurations and, e.g.,

limit the risk of insolvency. In fact, while they produce solutions

which are the best on average, they do not exclude that such solu-

tions, in certain scenarios, might produce extremely negative cash

flows. Thus, the available models do not necessarily protect the

company in tough periods. 

In this paper we take the perspective of a risk averse decision

maker and study the problem of limiting the risk of insolvency

when making shipping investment decisions. Particularly, we ex-

tend a state-of-the-art multistage stochastic programming formu-

lation in order for it to explicitly limit excessively negative cash

flows which might drive the company into a position of insolvency.

We achieve this by proposing a number of modifications to the

available model. 

First, we take into account that the payment of ships is typi-

cally made in a number of installments. This is in contrast with

the available literature which assumes that ships are fully paid in

one lump sum (see for example Alvarez et al. [1] , Pantuso et al.

[13,14] ). Stopford [19] explains that the payment of new ships is

usually made in at least three installments following correspond-

ing milestones in the construction process. However, when ships

are paid by debt, the ship is typically fully paid in five to ten years.

Thus, by modeling periodical installments we are able to replicate

more closely the cash flows of the company, and thus enforce con-

trol measures. 

Second, we limit the negative magnitude of cash flows by

means of two alternative risk control measures. The first type of

measure imposes that the cash flow is higher than a desired (pos-

sibly negative) threshold in all possible scenarios (i.e., with prob-

ability one). This deterministic measure enables the company to

ensure that cash flows always are higher than a certain company-

specific safety threshold to avoid insolvency. The second type of

risk control measure limits instead the Conditional Value-at-Risk

(CVaR) of the negative cash flows, i.e., the expected negative cash

flows in the worst-case tail of the cash flows distribution. With

such risk control measure, the company is able to impose, for ex-

ample, that the expected cash flow in the 5%-probability worst-

case scenarios, is higher than $ -50 million. 

Enforcing such controls on the negative cash flows might how-

ever have a negative impact on the expected profits by limiting

the investment options available to the decision maker. Therefore,

by considering a risk neutral decision maker as a benchmark, we
Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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tudy the trade-off between different degrees of risk awareness

nd expected profits. 

The contributions of this paper is thus a novel multistage

tochastic program which, with respect to the available literature,

ncludes 

• a closer and more realistic representation of the payment of

ships in instalments rather than in a lump sum, 
• a risk control measure which deterministically limits negative

cash flows, and 

• a risk control measure which limits the expected worst-case

cash flow. 

The novel representation of the payment of investments also re-

uires changing the objective function, compared to previous mod-

ls. In addition, for the resulting multistage stochastic program,

e illustrate a node formulation which enables the solution of

he problem through commercial solvers. Finally, we propose a

omputational study where the new model is tested on instances

ased on data from a real shipping company. In the computational

tudy we show the effect of risk control measures on profits and

erive consequent managerial and practical insights for shipping

ompanies. 

The remainder of this paper is organized as follows. In

ection 2 we describe the MFRP with cash flow control in more

etail, while a mathematical model for the problem is proposed in

ection 3 . In Section 4 we report from our computational study,

nd finally we draw conclusions in Section 5 . 

. The maritime fleet renewal problem with cash flow risk 

ontrol 

In this section we introduce the MFRP with cash flow risk con-

rol. The problem revisits and extends the profit-maximization ver-

ion described by Mørch et al. [11] and is consistent with most fea-

ures included in Pantuso et al. [13,14,15] . We begin by providing a

eneral description of the problem. 

A shipping company is to decide how to modify the available

eet of ships by adding or removing ships. Ships can be ordered

rom a ship-builder or bought in the second-hand market. In the

ormer case the delivery of the ship takes typically a number of

ears, depending on the order-book of the ship-builder. In the lat-

er case the delivery time is significantly shorter, and depends es-

entially on administration tasks and on the position of the ship. A

hipping company can also sell ships in the second-hand market,

r scrap (demolish) them receiving a remuneration for the steel of

he ship. 

Ships are paid for in different ways. The payment to the ship-

uilder is typically delivered in three installments, the first at the

lacement of the order, the second at the lay of the keel, the last

t the delivery of the ship (see [19] ). However, the actual cash out-

ow from the shipping company depends on whether the ship is

nanced by equity or debt. Typically, the cost of the ship (plus in-

erests or dividends) is actually paid back in a number of install-

ents for a period of up to ten years (see [19] ). 

The ownership and operations of a ship generate fixed and vari-

ble operating expenses for the shipping company. Fixed operating

xpenses (typically referred to as OPEX) cover those costs which

re not determined by the activities of the ship, such as insur-

nce, administration costs, crew salaries, and maintenance. Fixed

perating expenses can be lowered by laying up ships, i. e., stop-

ing them at ports, due to, e.g., lower insurance fees and reduced

rew. Variable operating expenses are generated by the sailing of

he ship and can essentially be restricted to bunker costs, and port

nd canal fees. 

Additional ships, for short-term needs, are typically obtained

y time-charters. Time-charters give the charterer the control of a
l., Risk control in maritime shipping investments, Omega, https: 

https://doi.org/10.1016/j.omega.2019.07.003
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hip and its crew for a specified period of time (weeks to months).

he charterer pays a (per day or per week) fee and all variable

perating costs (e.g., fuel and port fees), while the charteree main-

ains the ownership of the ship and bears all capital costs and fixed

perating expenses. Similarly, the shipping company has the possi-

ility to charter out own ships. 

The types and number of ships to operate is essentially de-

ermined by sailing needs which in turn are generated by a

ransportation demand, possibly contractualized. However, differ-

nt configurations of the sailing operation can be found. Lawrence

10] distinguishes among three modes, namely industrial, liner , and

ramp shipping. In industrial shipping a producer of goods owns

nd operates a fleet of ships used to deliver its production to cus-

omers. In liner shipping, similarly to a city bus, the company

eploys the fleet on predefined trades , i. e., fixed routes with a

re-published schedule. Finally, in tramp shipping ships are as-

igned to customers’ transportation calls, like taxis. In Section 3 we

ssume liner shipping operations, while a more thorough descrip-

ion of the other modes can be found in Christiansen et al. [5] .

n any case, unfulfilled transportation demand is typically covered

y space-charters , i.e., by transporting products by means of other

hipping companies’ ships, or by paying a penalty to customers.

oth options are typically expensive. 

Due to the long lifetimes of ships and lead times for the deliv-

ry of new buildings, fleet renewal plans need to take into account

 planning horizon of a number of years. Consequently, several ele-

ents of the problem are uncertain when decisions are made, such

s demands, ship purchase and selling prices, charter rates, steel

rices, and bunker prices. Thus, fleet renewal plans are made un-

er uncertainty. Finally, such decisions are made periodically, e.g.,

very year. 

In every period, a shipping company receives cash inflows gen-

rated by the remuneration of the transportation services provided,

y chartering own ships to other companies, and by selling or de-

olishing own ships. Cash outflows are instead generated by the

ayment in installments of the ships purchased, by the payment of

xed and variable operating expenses, by the time-charters taken,

nd by the space-charters used to cover unfulfilled demand. Ensur-

ng solvency corresponds to ensuring that the net cash flow is, in

very period, within a company-specific safety margin. 

The MFRP with cash flow control consists of determining how

any ships of each type to add to, or remove from, the available

eet in order to maximize expected profit while limiting the risk

f insolvency due to cash flows falling below a company-specific

afety margin. While MFRP decisions are made periodically, the fo-

us is on the decisions which must be made here-and-now, while

aking into account possible future scenarios and corresponding

ecisions. 

. Mathematical model 

In this section the MFRP with risk control is modeled as a

ultistage stochastic mixed-integer program. The multistage and

tochastic structure allows us to capture the interplay between pe-

iodic decisions conditional on the discovery of new information

i.e., realizations of uncertain parameters). Modeling assumptions

re discussed in Section 3.1 , while in Section 3.2 we introduce the

asic profit maximization model with payment of ships in install-

ents (but without any risk control measures). Further, we pro-

ose two alternative measures for controlling cash flows. The first,

resented in Section 3.3 , is a deterministic measure restricting the

ash flows to remain higher than a company-specific safety mar-

in for all possible scenarios. The second measure, presented in

ection 3.4 , controls the Conditional Value-at-Risk (CVaR), i. e., it

imits the expected negative cash flows in the tail of the distribu-

ion. 
Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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.1. Modeling assumptions 

We make the following assumptions. 

A1 We assume a finite planning horizon consisting of a finite

number of decision times, i.e., stages. This, in practice, cor-

responds to making fleet renewal decisions periodically as it

is often the case in shipping companies. 

A2 We assume that the joint probability distributions of the

random parameters are known. This implies that the com-

pany at least implements routines to collect market data and

estimate empirical distributions. Particularly, we assume a

discrete distribution in the form of a finite set of scenarios

and the respective probabilities. If the estimated distribution

is continuous it can be discretized using standard scenario

generation techniques such as Høyland et al. [7] or sampling

techniques. 

A3 We assume that ships are different from each other in tech-

nology (i.e., speed, capacity, cost structure) and age. Thus,

a specific configuration of technology and age determines

a ship class . Notice therefore that two ships with identical

technology, but built in two different years, belong to two

different ship types. 

A4 We assume second-hand ships that are bought in one pe-

riod are delivered at the beginning of the next planning pe-

riod. Similarly, we assume ships scrapped and sold leave the

fleet at the end before the beginning of the next planning

period. We assume new buildings are delivered after a suit-

able number of periods (lead time) which depends on the

order book at the shipbuilder. 

A5 We assume time-charters can be issued for at most one time

period at a time (i.e., fractions of a period and up to an en-

tire period). Time charters longer than a period must thus

be issued one period at a time. Similarly, ships can be laid

up for at most one period at a time. 

A6 We assume that the shipping company operates in the liner

shipping business. The corresponding shipping operations

are described in what follows. 

Consistently with Pantuso et al. [14] and Mørch et al. [11] , the

ompany has to service a number of trades, i.e., sequences of ports

hich have to be visited according to a pre-published schedule. A

rade consists of a number of origin ports and a number of desti-

ation ports. A ship services a trade when it visits all its ports, ac-

ording to the specific schedule, picking up cargoes at origin ports

nd delivering cargoes at destination ports. Fig. 1 shows an exam-

le trade which includes five origin and three destinations ports.

ransportation demands (possibly for different products) are asso-

iated to each origin-destination pair. 

We inherit the graph representation of the network of trades

sed in Pantuso et al. [14] . Nodes in the graph represent trades.

isiting a node corresponds to servicing the trade it represents.

ach node is assigned a demand which is calculated as the sum of

he demands between its port pairs. When a ship visits a node it

ransports an amount of cargo up to the capacity of the ship. Arcs

epresent ballast (i.e., empty) sailings between the last and the first

ort of the trades connected. As an example, in the graph depicted

n Fig. 2 the arc between trade T 1 and trade T 2 represents the bal-

ast sailing between the last port in trade T 1 and the first port in

rade T 2. It should be noted that the example Fig. 2 includes four

rades, and has no connection with the example showing one trade

n Fig. 1 . 

To perfectly assess the needed fleet capacity we would need to

nclude detailed deployment and routing decisions on an opera-

ional level. However, this would result in an intractable model.

o obtain a tractable model with a fair estimate of the capacity

eeded at the operational level, we adopt the concept of loop from
l., Risk control in maritime shipping investments, Omega, https: 
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Fig. 1. Example trade from Asia (with five origin ports) to Europe (with three destination ports). 

Fig. 2. Graph representation of an example network with four trades and two 

loops. 
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Pantuso et al. [14] . A loop is a cyclic path in the graph, i. e., a

path in the graph which begins and ends in the same node (trade).

Ships are assigned to loops. A ship assigned to a loop services the

trades in the loop in a given sequence, possibly with ballast sail-

ings in between, and returns to the initial port of the first trade in

the loop. The total length of a loop accounts for both the length of

the ballast sailings and the length of the trades. The cardinality of

a loop is equal to the number of trades it includes. Fig. 2 shows

two example loops, namely L 1 , of cardinality three (it includes T 1 ,

T 2 , T 4 ), and L 2 of cardinality two (it includes T 2 and T 3 ). Including

loops of higher cardinality corresponds to modeling the tactical de-

ployment problem with a higher granularity. Based on the results

from Pantuso et al. [14] , we have chosen in this paper to include

all loops with cardinality of one and two. 

With respect to the sailing operations we make the following

additional assumptions. 

A7 We assume trades are either contracted or optional . Con-

tracted trades are mandatory due to ongoing contracts

which commit the company to sail from and to certain ports.

Therefore, their demand must be fulfilled for the whole

planning horizon. The company can instead decide to ser-

vice each optional trade. However, once a company chooses

to service an optional trade, that trade must be serviced for

the remainder of the planning horizon. 
Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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A8 We assume space charters can be used only on contracted

trades but not on optional trades. This corresponds to com-

mitting the company’s own resources on the new sailing op-

erations. 

.2. Basic model: profit maximization without cash flow control 

In this section we first introduce the notation for the basic

rofit maximization model without cash flow control. Afterwards,

e introduce and discuss the mathematical model. For the sake

f legibility, all monetary quantities are to be considered appropri-

tely discounted. 

The profit maximization MFRP without cash flow control can

hus be formulated as follows. 

ax z = 

∑ 

s ∈S 
P s 

( ∑ 

t∈T \ { 0 } 

( ∑ 

i ∈N O t 

∑ 

k ∈K 
R 

D 
its D ikts δits (1a)

+ 

∑ 

i ∈N C t 

∑ 

k ∈K 

(
R 

D 
its D ikts − C SP 

ikts n ikts 

)
(1b)

−
∑ 

v ∈V t 

( 

C OP 
v ts y 

P 
v ts + C CI 

v ts h 

I 
v ts − R 

CO 
v ts h 

O 
v ts (1c)

+ 

∑ 

r∈R v t 

C T R v rts x v rts − R 

LU 
v ts l v ts 

) ) 

(1d)

−
∑ 

t≤M−1 

∑ 

v ∈V IN t 

C IN v t Y 
IP 
v (1e)

−
∑ 

t∈T 

∑ 

t −M+1 ≤t ′ ≤t 

∑ 

v ∈V IN t 

(C IN v t ′ ts y 
NB 
v t ′ s + C SH 

v t ′ ts y 
SH 
v t ′ s ) (1f)

+ 

∑ 

v ∈V T̄ 
(R 

SV 
v s y 

P 
v ̄T s −

∑ 

t ′ ∈T 

t ′ + M ∑ 

t= ̄T 
(C IN v t ′ ts y 

NB 
v t ′ s + C SH 

v t ′ ts y 
SH 
v t ′ s )) (1g)

+ 

∑ 

t∈T 

∑ 

v ∈V t 
(R 

SC 
v ts y 

SC 
v ts + R 

SE 
v ts y 

SE 
v ts ) 

) 

. (1h)
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( continued ) 

CI v ts The maximal number of charters in of a ship of type v , in period t 

and scenario s . 

CO v ts The maximal number of charters out of a ship of type v , in period t 

and scenario s 

CI ts The maximal total number of charters in, in period t and scenario s 

CO ts The maximal total number of charters out, in period t and scenario s 

SE v ts The maximal number of second-hand sales of ships of type v , in 

period t and scenario s 

SH v ts The maximal number of second-hand purchases of ships of type v , in 

period t and scenario s 

SE ts The maximal total number of second-hand sales, in period t and 

scenario s 

SH ts The maximal total number of second-hand purchases, in period t and 

scenario s 

Q vk The capacity of product k on a ship of type v 

Q v The total capacity on a ship of type v 

Z vr The time a ship of type v needs to perform a loop r 

Z v The total time available in a period (e.g, days in a year) for a ship of 

type v 

D ikts The demand of product k on trade i in period t and scenario s 

F it The frequency requirement on trade i in period t , i.e. the number of 

times a trade has to be serviced during one period 

Y IP v The initial fleet of ships of type v , i.e., the number of ships available 

at the beginning of the planning horizon 

Y NB 
v t The number of ships of type v ordered in the past (i.e., in previous 

planning periods) and delivered at the beginning of period t 

C IN v t ′ ts The instalment paid in period t and scenario s for a ship of type v 

ordered in period t ′ 
C SH 

v t ′ ts 
The instalment paid in period t and scenario s , on a ship of type v 

purchased in the second hand market at time t ′ 
C IN v t The instalment paid in period t for a ship of type v already in the 

fleet at the beginning of the planning horizon. Note that this 

parameter is not stochastic, because the ship has already been 

bought and thus the instalments are already determined 

M Number of instalments 
Objective function (1a) –(1h) represents the expected profit for

he whole planning horizon. The term in (1a) represents the rev-

nue obtained for fulfilling the demand on optional trades. The

erms in (1b) represent the revenue from contracted trades mi-

us the expenses for space charters. The terms in (1c) represent

he fixed operating expenses, the expenses for time charters and

he revenue for time chartering own ships to other companies. The

erms in (1d) represent the sailing expenses minus the savings for

aying-up ships. The term in (1e) represents the installments that

ave to be paid for ships purchased in the past (i.e., in previous,

eparated, decision problems). The terms in (1f) sum up the instal-

ents for the payment of ships built or bought in the second-hand

arket. The terms in (1g) represent the sunset value of the fleet

inus the sum of the instalments that have to be paid after the

nd of the planning period due to purchases and new buildings de-

ided within the end of the planning horizon. Finally, the terms in

1h) represent the revenue from scrapping and selling own ships. 

The problem is subject to the following constraints. ∑ 

 ∈V t 

∑ 

r∈R i v t 

Q v k x v rts + n ikts ≥ D ikts t ∈ T \ { 0 } , i ∈ N 

C 
t , k ∈ K, s ∈ S, 

(1i) 

∑ 

 ∈V t 

∑ 

r∈R i v t 

Q v k x v rts ≥ D ikts δits t ∈ T \ { 0 } , i ∈ N 

O 
t , k ∈ K, s ∈ S, (1j) 

∑ 

 ∈V t 

∑ 

r∈R i v t 

Q v x v rts + 

∑ 

k ∈K 
n ikts ≥

∑ 

k ∈K 
D ikts t ∈ T \ { 0 } , i ∈ N 

C 
t , s ∈ S, 

(1k) 
Sets 

T Set of time periods, indexed by t 

S Set of scenarios, indexed by s 

K Set of products, indexed by k 

V t Set of ship types existing in the market in period t , indexed by v (i.e. 

the ship types with age between zero and the retirement age) 

V N t Set of potential new deliveries period t , i.e. the ship types with the 

age equal to zero in period t 

V IN t The set of ship types for which the company pays instalments in 

period t 

N t Set of available trades in period t , indexed by i . N t = N 

C 
t ∪ N 

O 
t 

N 

C 
t ⊆ N t Set of contractual trades in period t , indexed by i 

N 

O 
t ⊆ N t Set of optional trades in period t , indexed by i 

R t Set of loops available for sailing in period t , indexed by r 

R v t ⊆ R t Set of loops that can be sailed by ship type v in period t , indexed 

by r 

R i v t ⊆ R v t The set of loops servicing trade i that can be sailed in period t by a 

ship of type v , indexed by r 

Parameters 

T̄ L v The lead time for the delivery of a ship of type v , i.e. the time 

between order placement and delivery 

P s The probability for scenario s to take place, set to 1 divided by the 

number of scenarios 

R SV 
v s The sunset value of a ship of type v , in scenario s , i.e. the value of 

the ship at the end of the planning horizon 

R D 
its 

The revenue for transporting one unit of product on trade i , at 

period t and scenario s 

R SE 
v ts The revenue for selling a ship of type v , in period t and scenario s 

R SC 
v ts The scrapping value of ship of type v , in period t and scenario s 

R LU 
v ts The lay-up savings for one period, for ship of type v , in period t and 

scenario s 

R CO 
v ts The one-period charter-out revenue for ship of type v , in period t 

and scenario s 

C CI 
v ts The charter-in cost for a ship of type v , in period t and scenario s 

C OP 
v ts The operating cost for a ship of type v , in period t and scenario s 

C TR 
v rts The cost of performing loop r with a ship of type v , in period t and 

scenario s 

C SP 
ikts 

The cost of delivering one unit of product k on trade i by space 

charters, in period t , and scenario s 

( continued on next page ) 

T̄ The last time period in the planning horizon 

Variables 

y SC 
v ts The number of ships of type v scrapped in period t and scenario s 

y SE 
v ts The number of ships of type v sold in the second hand market, in 

period t and scenario s 

y SH 
v t ′ s The number of ships of type v bought in the second hand market, in 

period t ′ and scenario s 

y NB 
v t ′ s The number of new buildings ordered for a ship of type v , in period 

t ′ and scenario s 

y P v ts The number of ships of type v in the fleet, in period t and scenario s 

l vts The number of ships of type v put on lay-up, in period t and 

scenario s 

h I v ts The number of ships of type v chartered in, in period t and scenario s 

h O v ts The number of ships of type v chartered out, in period t and 

scenario s 

x vrts The number of loops r performed by ships of type v , in period t and 

scenario s 

n ikts The amount of cargo k delivered by space charters on trade i , in 

period t and scenario s 

δits Binary variable set to 1 if the company chooses to service trade i in 

period t and scenario s , 0 otherwise. 

v

C  

a  

t  

c  

p  

r  

l  

c  

u  

s  

t  

a  

Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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∑ 

 ∈V t 

∑ 

r∈R i v t 

Q v x v rts ≥
∑ 

k ∈K 
D ikts δits t ∈ T \ { 0 } , i ∈ N 

O 
t , s ∈ S. (1l) 

onstraints (1i) and (1j) ensure the satisfaction of the demand for

ll products on contracted trades and on optional trades, respec-

ively. Notice that demand must be satisfied for all periods ex-

ept the initial. In fact, the fleet composition available in the initial

eriod is the result of an earlier planning problem, and the cor-

esponding chartering decisions are made in a separated tactical-

evel problem. These decisions do not influence the investment de-

isions the MFRP focuses on. Notice also that space charters can be

sed only on contracted trades but not on optional trades (see As-

umption A8 in Section 3.1 ). Constraints (1k) and (1l) ensure that

he total capacity is sufficient to cover the demand on contracted

nd optional trades, respectively. Notice that these constraints are
l., Risk control in maritime shipping investments, Omega, https: 

https://doi.org/10.1016/j.omega.2019.07.003
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also modeled for all periods except the initial. ∑ 

v ∈V t 

∑ 

r∈R i v t 

x v rts ≥ F it t ∈ T \ { 0 } , i ∈ N 

C 
t , s ∈ S, (1m)

∑ 

v ∈V t 

∑ 

r∈R i v t 

x v rts ≥ F it δits , t ∈ T \ { 0 } , i ∈ N 

O 
t , s ∈ S, (1n)

∑ 

r∈R v t 

Z v r x v rts ≤ Z v (y P v ts + h 

I 
v ts − h 

O 
v ts − l v ts ) , 

t ∈ T \ { 0 } , v ∈ V t , s ∈ S, (1o)

δits ≤ δi,t+1 ,s t ∈ T \ { 0 , T̄ } , i ∈ N 

O 
t , s ∈ S. (1p)

Constraints (1m) and (1n) enforce the service frequency require-

ments on the contracted and optional trades, respectively. Con-

straints (1o) ensure that the fleet (including time charters) has

enough ships to cover the required sailing time. Constraints

(1p) ensure that, when the company decides to service an optional

trade, it is serviced for the rest of the planning horizon (see As-

sumption 7 in Section 3.1 . 

y P v 0 s = Y IP v v ∈ V 0 , s ∈ S, (1q)

y P v ts = Y NB 
v t t ∈ T : t < T̄ v 

L 
, v ∈ V N t , s ∈ S, (1r)

y P v ts = y P v ,t−1 ,s − y SC 
v ,t−1 ,s + y SH 

v ,t−1 ,s − y SE 
v ,t−1 ,s 

t ∈ T \ { 0 } , v ∈ V t \ V N t , s ∈ S, (1s)

y P v ts = y NB 
v ,t−T̄ L v ,s 

t ∈ T : t ≥ T̄ L v , v ∈ V N t , s ∈ S, (1t)

y P v ts ≥ l v ts − h 

I 
v ts + h 

O 
v ts t ∈ T \ { 0 } , v ∈ V t , s ∈ S, (1u)

y P v ts = y SC 
v ts t ∈ T \ { ̄T } , v ∈ V t \ V t+1 , s ∈ S. (1v)

Constraints (1q) –(1v) keep track of ships added to and removed

from the fleet. Constraints (1q) set the initial fleet while con-

straints (1r) ensure that the model keeps track of the delivery of

new buildings ordered in the past (i.e., in earlier planning prob-

lems). Constraints (1s) ensure the balance of second-hand pur-

chases, sales and demolitions, while constraints (1t) maintain the

balance of new buildings. Notice that second-hand ships and scrap-

pings are added to or removed from the fleet one period after the

decision is made, while new buildings are delivered after T̄ v peri-

ods. Constraints (1u) make sure that charters out and lay-ups are

actually available in the fleet. Finally, constraints (1v) ensure that

ships reaching their age limit are scrapped. 

y SH 
v ts ≤ SH v ts t ∈ T \ { ̄T } , v ∈ V t , s ∈ S, (1w)

y SE 
v ts ≤ SE v ts t ∈ T \ { ̄T } , v ∈ V t , s ∈ S, (1x)

h 

I 
v ts ≤ CI v ts t ∈ T \ { 0 } , v ∈ V t , s ∈ S, (1y)

h 

O 
v ts ≤ CO v ts t ∈ T \ { 0 } , v ∈ V t , s ∈ S, (1z)

∑ 

v ∈V t \V N t 

y SH 
v ts ≤ SH ts t ∈ T \ { ̄T } , s ∈ S, (1aa)
Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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∑ 

 ∈V t \V N t 

y SE 
v ts ≤ SE ts t ∈ T \ { ̄T } , s ∈ S, (1ab)

∑ 

 ∈V t \V N t 

h 

I 
v ts ≤ CI ts t ∈ T \ { 0 } , s ∈ S, (1ac)

∑ 

 ∈V t \V N t 

h 

O 
v ts ≤ CO ts t ∈ T \ { 0 } , s ∈ S. (1ad)

onstraints (1w) and (1x) impose a limit on the number of second-

and purchases and sales, respectively, for a given type of ship,

hile constraints (1y) and (1z) impose a limit on the number of

harters in and out, respectively, for a given type of ship. Con-

traints (1aa), (1ab), (1ac) and (1ad) limit the total number of

econd-hand purchases, sales, charters in and charters out, respec-

ively. Notice that the bounds depend on the specific market in

hich the company operates. 

 

NB 
v ts ∈ Z 

+ t ∈ T : t ≤ T̄ − T̄ v 
L 
, v ∈ V N t+ T L , s ∈ S, (1ae)

 

SC 
v ts , y 

SH 
v ts , y 

SE 
v ts ∈ Z 

+ t ∈ T \ { ̄T } , v ∈ V t , s ∈ S, (1af)

 

P 
v ts ∈ R 

+ t ∈ T , v ∈ V t , s ∈ S, (1ag)

 

I 
v ts , h 

O 
v ts , l v ts ∈ R 

+ t ∈ T \ { 0 } , v ∈ V t , s ∈ S, (1ah)

 v rts ∈ R 

+ t ∈ T \ { 0 } , v ∈ V t , r ∈ R v t , s ∈ S, (1ai)

 ikts ∈ R 

+ t ∈ T \ { 0 } , i ∈ N 

C 
t , k ∈ K, s ∈ S, (1aj)

its ∈ { 0 , 1 } t ∈ T \ { 0 } , i ∈ N 

O 
t , s ∈ S. (1ak)

inally, constraints (1ae) –(1ak) set the domain for the decision

ariables. Notice that variables y P v ts are continuous, as their inte-

rality is automatically enforced by constraints (1q) –(1v) . 

Model (1) is assumed to be nonanticipative, i.e., decisions

re only based on current information. This is enforced through

o called “nonanticipativity constraints” which are however not

hown for the sake of legibility. Alternatively, it is possible to ob-

ain an equivalent node formulation of model (1) which implic-

tly ensures nonanticipative solutions. Such formulation, which as-

ociates decisions and realizations of random parameters to the

odes of the underlying scenario tree, is provided in the appendix .

enerally, a node formulation yields an optimization problem with

ignificantly fewer decision variables and constraints and is of-

en suitable for solving the corresponding problem by means of a

olver. While the node formulation will be used in our computa-

ional study, in what follows we continue to refer to the scenario

ormulation (1) for ease of exposition. 

A possible limitation of model (1) is that it tends to become

 very large optimization problem as the number of scenarios in-

reases in an attempt to provide a better description of the un-

ertainty. This is independent of whether the node formulation in

he appendix or the scenario formulation (1) is used. As the size

f the model increases, specialized algorithms become necessary,

ee e.g., Pantuso et al. [13] . An additional potential limitation is

he high-level description of the sailing operations. In fact, the cor-

esponding fleet deployment problem is in general a complicated

ptimization problem, see e.g., Powell and Perakis [17] , Fagerholt
l., Risk control in maritime shipping investments, Omega, https: 
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t al. [6] , Wang and Meng [22] . A simplified set of tactical descrip-

ion is however often required to make strategic decisions. The

mplications of these simplifications and how they provide a rea-

onable representation of the sailing operations are discussed in

antuso et al. [14] . However, the impact of the level of details in

hort- and mid-term decisions and the quality of long-term de-

isions is a general open research question beyond the scope of

hipping investments. 

.3. Deterministic cash flow control 

In this section we introduce a deterministic control mechanism

n cash flows. For the sake of legibility, let f I ts and f O ts be deci-

ion variables representing the cash-inflow and cash-outflow, re-

pectively, in period t and scenario s . For a given time period t ∈ T 
nd scenario s ∈ S, the cash-inflow and cash-outflow are defined

s in (2) and (3) , respectively. 

f I ts = 

∑ 

i ∈N O t 

∑ 

k ∈K 
R 

D 
its D ikts δits + 

∑ 

i ∈N C t 

∑ 

k ∈K 
R 

D 
its D ikts 

+ 

∑ 

v ∈V t 
(R 

CO 
v ts h 

O 
v ts + R 

SE 
v ts y 

SE 
v ts + R 

LU 
v ts l v ts + R 

SC 
v ts y 

SC 
v ts ) (2) 

f O ts = 

∑ 

v ∈V IN t 

C IN v ts Y 
IP 
v + 

∑ 

t −M+1 ≤t ′ ≤t 

∑ 

v ∈V IN t 

(C IN v t ′ ts y 
NB 
v t ′ s + C SH 

v t ′ ts y 
SH 
v t ′ s ) 

+ 

∑ 

i ∈N C t 

∑ 

k ∈K 
C SP 

ikts n ikts + 

∑ 

v ∈V t 
(C OP 

v ts y 
P 
v ts + C CI 

v ts h 

I 
v ts + 

∑ 

r∈R v t 

C T R v rts x v rts ) 

(3) 

Thus, the cash-inflow f I ts consists of the revenue from con-

racted and optional trades, the revenue from scrapping ships, sell-

ng and chartering out ships, and the operating expense savings

or laying-up ships. The cash-outflow f O ts consists of the instal-

ents paid for the new ships ordered and for the purchases in the

econd-hand market, the time and space chartering expenses, and

he fixed and variable operating expenses. 

Furthermore, let F̄ be the worst-case cash flow tolerated by the

ompany, and B the budget available for ordering and purchas-

ng ships in the first period (determined by known ongoing ex-

enses generated by the solution to earlier planning problems).

ash flows can deterministically (i.e., for all scenarios considered)

e controlled by means of the following constraints which can be

dded to the basic model presented in Section 3.2 : 

 + 

∑ 

v ∈V 0 

(
R 

SE 
v 0 s y 

SE 
v 0 s + R 

SC 
v 0 s y 

SC 
v 0 s 

)
−

∑ 

v ∈V IN 
0 

(
C IN v 00 s y 

NB 
v 0 s + C SH 

v 00 s y 
SH 
v 0 s 

)
≥ F̄ 

s ∈ S (4) 

f I ts − f O ts ≥ F̄ t ∈ T \ { 0 } , s ∈ S. (5) 

onstraints (4) and (5) ensure that cash flows are higher than

he specified safety limit in the first and following periods, re-

pectively. Notice that the operating revenues and expenses are

ot included in period 0 as they are the result of earlier planning

roblems. Thus, constraints (4) ensure that investments in the first

eriod, given a budget B , do not violate the safety cash flow level F̄ .

.4. Conditional value-at-risk cash flow control 

In this section we extend the model in Section 3.2 to limit the

onditional Value-at-Risk (CVaR), which have been used in a num-

er of applications to control risk, see for example [24] and [23] .

he CVaR represents the expected loss in the worst α% scenarios.

e impose constraints on the CVaR in every time period. Two pa-

ameters, namely a confidence level and a minimum CVaR value,
Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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hich are input to our model, reflect the degree of risk aversion

eld by the shipping company. In our problem, for example, given

 confidence level of 95% and a minimum CVaR value of $ −30 M,

he CVaR constraints would restrict the average cash flow in the

orst 5% scenarios in every time period to be above $ −30 M. 

Since we mainly study a two-stage case (even though the

odel we presented in Section 3.2 can be multistage, depending

n the underlying scenario tree), we assume now, to simplify the

ollowing explanation, that the MFRP is modeled as a two-stage

tochastic program. Let T F ⊆ T be the set of first-stage time peri-

ds and T S ⊆ T be the set of time periods in the second-stage. Let

∈ [0, 1] be the confidence level, and ζ and ηts artificial variables

ecessary in the CVaR constraints. It can be shown that variable

, at the optimal solution, represents the Value-at-Risk (VaR), see

ockafellar and Uryasev [18] . Variables ηts represent the negative

ash flows in excess of VaR in period t and scenario s . Finally, let

 ̄α be the minimum allowed expected cash flow under confidence

evel α. 

We adapt the constraints (4) and (5) to control cash flows in all

rst-stage periods T F . For the periods affected by uncertainty, i.e.

he time periods in T S , we limit the CVaR by applying the follow-

ng constraints. 

+ 

1 

1 − α

∑ 

s ∈S 
P s ηts ≥ F̄ α t ∈ T S , (6) 

ts ≤ f I ts − f O ts − ζ t ∈ T S , s ∈ S, (7) 

ts ∈ R 

− ∪ 0 t ∈ T S , s ∈ S. (8) 

otice that artificial variables ηts take non-positive values and that

hen the cash flow is short of VaR, the artificial variable ηts be-

omes negative and is included in constraints (6) which compute

nd bound the value of CVaR. Notice also that the deterministic

ash flow control constraints introduced in Section 3.3 are a spe-

ial case of constraints (6) –(8) with a sufficiently high confidence

evel α. For example, if the number of scenarios, |S| , is equal to

00 and α = 0 . 99 , the expected cash flow of the (1 − 0 . 99) ∗ 100

orst scenarios corresponds to the cash flow of the worst scenario.

n this case, bounding CVaR is equivalent to imposing a determin-

stic bound on cash flows. 

. Computational study 

The scope of this computational study is to test the alterna-

ive cash flow control models introduced in Section 3 on instances

ased on data from a real shipping company. Particularly, we fo-

us on understanding the trade-off between expected profits and

rotection against adverse market scenarios. 

The models introduced in Section 3 (particularly their equiv-

lent node formulations presented in the appendix ) were imple-

ented using IBM ILOG CPLEX 12.6.1 C ++ callable libraries. Tests

ere performed on a computer equipped with an Intel® Core
M i7-4500U CPU @ 1.8 GHz (2.4 Ghz) and 8 GB RAM. 

.1. Instances 

We use three instances, named Small, Medium and Large ,

dapted from Mørch et al. [11] and based on data from a major

hipping company which operates in the RoRo shipping market.

he three instances represent three shipping companies of differ-

nt sizes. The underlying characteristics of the ships and trades are

dentical to Mørch et al. [11] . However, we adjusted the initial fleet

nd considered a different subset of the available trades with the

cope of observing the trade-off between risk aversion and profits
l., Risk control in maritime shipping investments, Omega, https: 

https://doi.org/10.1016/j.omega.2019.07.003
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Table 1 

Ship types and respective capacities in the instances. 

Initial fleet Capacity 

Ship Class Small Medium Large Cars HH BB Total 

PCTC1 2 3 5 4975 2200 300 4975 

PCTC2 5 10 15 6800 2500 300 6800 

PCTC3 2 9 12 5450 2200 900 5450 

PCTC4 1 5 6 6150 1800 200 6150 

LCTC1 5 8 9 6000 2000 1500 6000 

RORO1 1 2 4 4853 3100 1500 4853 

RORO2 0 0 0 5660 4000 2200 5660 

Total 16 37 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

T  

2  

t  

6  

1  

i  

i  

m

 

t  

b  

r  

i  

w  

b  

t  

g  

(  

2  

U  

i

 

e  

c  

t  

t  

s  

w  

p  

t  

h

 

s  

w  

i  

u  

m  

e  

s  

t  

0  

s

 

e  
in companies of different size. The initial fleet and trades for the

three instances are reported in Tables 1 and 2 , respectively. The

RoRo market is characterized by highly specialized ships due to

the specific technology required to load, unload, and host rolling

equipment. Consequently, the second-hand market and the mar-

ket for charters are rather small. Therefore, second-hand purchases

and sales, and well as charters in and out are excluded from the

model when running the tests. As a consequence, fewer options

are available to adapt the fleet to ongoing market conditions, and

the importance of planning against uncertainty is emphasized (see,

e.g., the discussion in Pantuso et al. [14] ). In the basic settings, the

models are implemented as two-stage models. In Section 4.4 we

show that this is an acceptable simplification of the real-life prob-

lem. The three instances have a planning horizon of five years. 

For each instance, 18 ship types are available. However, the size

and composition of the initial fleet, as well as the trades serviced,

vary between the instances. Tables 1 and 2 report the ship classes

and trades in the three instances, respectively. A ship class rep-

resents the technical specifications of the ship. However, different

ship types are obtained from each ship class, depending on the

age of the available ships. The company transports three types of

products, namely cars, High & Heavy vehicles (HH – mainly agri-

culture and industrial vehicles) and Break-Bulk cargo (BB – items

with high volume or weight such as train coaches or big engines).

The measurement unit for the three type of products is RT43, a

standard unit in the RoRo shipping business. The ship types op-

erated can carry the three types of products, but in different pro-

portions. The capacities of the available ship types are reported in

Table 1 while the demands are reported in Table 2 . Note that the

total capacity of a ship from a given class corresponds to the high-

est of the individual capacities as the compartments of the ships

are not necessarily dedicated to a specific type of product. 
Table 2 

Trades in the instances. Demands are for the first year. Labels “C” and “O” indicate 

contracted and optional trades, respectively, while a dash (“–”) indicates that the 

trade is not included in the instance. 

Trades BB Car HH Small Medium Large 

AFEU 0 19 200 0 O C C 

ASCE 2 166 119 397 44 120 – – C 

ASEU 5 761 435 213 77 046 C C C 

ASNE 36 845 35 331 66 606 C O C 

ASNW 1 939 60 158 7 400 O O O 

EUNAOC 26 198 297 688 123 779 – C C 

EUNE 20 075 469 379 67 853 – – C 

EUNW 7 425 89 405 21 427 – C C 

EUOC 16 776 266 855 55 474 – C C 

NAAS 3 251 24 818 10 434 – – O 

NAEU 14 115 140 508 53 928 – – O 

NAME 4 476 103 048 14 200 – C C 

NASA 3 404 41 036 24 419 – – C 

SANA 2 689 97 999 29 239 C C C 

o  

p  

r  

o  

e  

t  

−  

s  

fi  

t  

v  

L  

a  

w

 

a  

t  

a  

s  

n  

Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a

//doi.org/10.1016/j.omega.2019.07.003 
The large instance represents a shipping company with 51 ships

see Table 1 ) in the initial fleet servicing 11 to 14 trades (see

able 2 ) with a total demand for the first year of approximately

.9M RT43. In the medium instance there are 37 ships and seven

o nine trades. The resulting total demand is thus approximately

5% of the demand in the large instance. The small instance has

6 ships and three to five trades with a total demand of approx-

mately 30% of the demand in the large instance. However, in all

nstances the demand can be increased by approximately 10% by

eans of optional trades. 

With respect to the other parameters, the lead time T̄ L v is set

o two years. The instalments paid in each period are determined

y the new building price, the repayment time and the interest

ates offered by banks or the expected return on investments from

nvestors. We set a five years repayment time. This is consistent

ith Stopford [19] who states that the repayment time is normally

etween two and eight years. Moreover, Stopford [19] states that

he interest rates on loans for financing investments in ships are

enerally quoted at a margin over London Interbank Offered Rate

LIBOR). The spread of this margin is typically in the range 0.6% to

.0%. Therefore, 1.25% is chosen as a margin on top of the LIBOR.

sing the June 2017 one-year LIBOR rate of 1.75%, we obtain an

nterest rate of 3.0%. 

The progression of the value of the ships in the instances is

stimated using a linear depreciation based on the new building

ost and an expected lifetime of 30 years. This is consistent with

he findings in Stopford [19] for the Panamax bulk carriers sold in

he first nine months of 2002. The sunset value is set to 70% of the

hip value in the last period, a value that, after preliminary testing,

as found to be sufficient for preventing over-investments, while

roviding the desired modeling feature sunset values are intended

o have, i.e. to maintain a realistic fleet at the end of the planning

orizon. 

Space charter prices are set to 20 0 0 USD per RT43, which was

hown to give a reasonable and realistic use of space charters,

hile at the same time reasonably close to the real value of us-

ng such an option. This can also be considered a penalty cost for

nsatisfied demand, and thus the parameter is considered deter-

inistic. As suggested by Stopford [19] , all input values are prop-

rly discounted using a discount factor of 12% to ensure that deci-

ions made early in the planning horizon become more important

han later decisions. Finally, the budget for ordering ships in year

 is set to be 5% of the contracted revenue in period 1, assuming

imilar revenues in periods 0 and 1. 

Uncertainty is modeled by associating a random variable to

ach stochastic parameter in the problem. Particularly, we include

ne random variable representing the demand of each of the three

roducts on each trade, one random variable for ship prices, one

andom variable for the fuel price (influencing sailing costs), and

ne random variable for steel price (influencing scrapping rev-

nues). For each of these elements we assume a triangular dis-

ribution such that one can have a one-year change in the range

50 % to +50%. The correlations between the random variables are

hown in Table 3 . We assume that the first two years belong to the

rst stage, thus T F = { 0 , 1 , 2 } , while the remaining periods belong

o the second stage, thus T S = { 3 , 4 , 5 } . Scenarios for the random

ariables are generated using the method provided by Kaut and

ium [8] , which uses distribution functions and correlations. We

chieve acceptable in-sample stability (see Kaut and Wallace [9] )

ith 100 scenarios. 

As previously mentioned, space charter costs can also be seen

s penalty for unfulfilled demand, which in some cases is difficult

o quantify. Similarly, the correlation between the random vari-

bles might be difficult to estimate, e.g., when historical data is

carce. Therefore, we test four different versions of the problem,

amely for the combinations with normal and 50% reduced space
l., Risk control in maritime shipping investments, Omega, https: 
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Table 3 

Correlation matrix. 

Trade 1 Trade 2 . . . Trade N 

Car HH BB Car . . . BB New building price Fuel Steel 

Car 1 0.7 0.7 0.7 . . . 0.7 0.7 0.2 0.2 

Trade 1 HH 1 0.7 0.7 . . . 0.7 0.7 0.2 0.2 

BB 1 0.7 . . . 0.7 0.7 0.2 0.2 

Trade 2 Car 1 . . . 0.7 0.7 0.2 0.2 

� �
. . . � � � �

Trade N BB 1 0.7 0.2 0.2 

New building price 1 0.2 0.2 

Fuel 1 0.2 

Steel 1 
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harter cost, and with either all random variables correlated as

hown in Table 3 or with no correlation between them (i.e., with

orrelation matrix corresponding to an identity matrix of suitable

imensions). 

.2. Effects of deterministic cash flow control 

In this section we test the effect of using the deterministic cash

ow control introduced in Section 3.3 . We start by showing the

esults for the base case where we assume normal space charter

osts and correlated random variables. Particularly, we solve the

asic model presented in Section 3.2 with the addition of con-

traints (4) –(5) for different values of cash flow limit F̄ . We start by

olving the large instance without cash flow control (correspond-

ng to a risk neutral decision maker) and observe the worst-case

ash flow. Then, we set F̄ at this value and solve the problem with

ncreased values of F̄ , stopping when an infeasible problem is ob-

ained. Table 4 reports a summary of the first- and second-stage

olutions obtained for different levels of F̄ , where the first row rep-

esents the solution without cash flow constraints. 

It can be noticed that the expected profit decreases with in-

reasing F̄ (except for some noise due to the 1% optimality tol-

rance – see for example the increase from the third row to

he fourth row). However, in general, we observe that a signifi-

ant increase of the worst-case cash flow can be obtained at the

rice of only a negligible reduction of the expected profit. In fact,

he worst-case cash flow can be increased from $ − 66 . 3 M to

 − 39 . 8 M almost without reducing the expected profit. This is

ue to the fact that the problem has a flat objective function with

any near-optimal solutions. However, when stricter control on

ash flows is imposed, a significant reduction of expected profits is

egistered. It can be noticed that stricter cash flow limits are dealt

ith by reducing the number of new buildings, using the avail-

ble ships for longer times (see the reduced scrappings) and using
Table 4 

Solutions to instance Large for increasing cash flow limits F̄ wi

prices. Columns named 1 st and 2 nd report summaries of first

for the second-stage decisions are average values over the 100 

F̄ Expected New buildings Scrappings La

[$ M ] Profit [$ M ] 1 st 2 nd 1 st 2 nd 1 s

−66 . 3 1 109.4 29 1.99 9 19.09 0.3

−59 . 7 1 109.0 29 2.00 9 19.19 0.3

−53 . 1 1 108.5 29 1.98 9 19.16 0.3

−46 . 4 1 110.1 29 2.08 9 19.28 0.3

−39 . 8 1 109.3 29 2.02 9 19.16 0.3

−33 . 2 1 104.9 26 2.39 8 17.85 0.4

-26.5 1 094.2 26 2.41 9 16.77 2.

−19 . 9 1 078.6 26 2.39 9 16.86 4.

−13 . 3 1 065.4 26 2.37 9 16.71 6.

−6 . 6 1 038.2 24 2.70 6 18.16 10

0.0 955.7 23 2.67 5 18.34 12

Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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ore space-charters. This corresponds to saying that the install-

ents associated with new buildings are a major cause of negative

ash flows. Finally, optional trades are used to increase the total

emand when the demand is low, and they are not serviced at all

n the high demand scenarios. 

Fig. 3 shows the cash flow development for each period and

cenario as a box plot comparing the solution of the model with-

ut cash flow constraints ( Fig. 3 a) and the solution of the model

ith the tightest cash flow constraints ( Fig. 3 b). These solutions

orrespond to F̄ = −66 . 3 and F̄ = 0 in Table 4 . The red dashed

ine represents the annualised expected profit. The lower end of

he box represents the first quartile, the upper end of the box

epresents the third quartile, and the line inside the box repre-

ents the median. The ends of the whiskers represent the mini-

um and maximum net cash flows. This means that 50% of the

cenarios are located inside the box, while 25% is located on each

ide of the box between the ends of the box and the ends of the

hiskers. 

In Fig. 3 a and b it can be noticed how the worst-case cash flow,

.e. the bottom whisker in year 5 without cash flow control, is im-

roved when controlling cash flows, at the cost of expected profit

oss and a reduction of the best-case cash flow. Furthermore, we

an observe a reduction in the cash flow standard deviation in pe-

iods 4 and 5 of Fig. 3 b. 

To interpret and visualize the four versions of the large in-

tance, i.e., with and without reduced space charter costs and with

nd without correlated random variables, the four efficient fron-

iers are plotted in Fig. 4 . The efficient frontiers show the profit

oss (compared to the risk neutral case) generated by different val-

es of the cash flow limit F̄ . Note that the decreasing relative ex-

ected profit loss in parts of the curves are the result of the 1%

ptimality gap, and not representing the real situation. Thus, in

eality the curves are always non-decreasing if the instances are

olved to optimality. 
th correlated random variables and normal space charter 

- and second-stage solutions, respectively. The numbers 

scenarios. 

y-up Space Optional Trades 

t 2 nd 1 st 2 nd 1 st 2 nd 

7 12.90 0 9 924 0 1.55 

7 12.72 0 13 989 0 1.46 

7 12.84 0 10 913 0 1.55 

7 12.61 0 12 416 0 1.47 

7 12.72 0 12 912 0 1.48 

1 12.56 0 26 709 0 1.42 

37 12.63 0 35 091 0 1.46 

36 12.69 0 34 769 0 1.46 

34 12.84 0 38 723 0 1.52 

.39 12.64 0 28 493 0 1.44 

.19 15.05 42 367 36 051 0 1.54 

l., Risk control in maritime shipping investments, Omega, https: 
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Fig. 3. The cash flow development for the large instance with correlated random variables and normal space charter price. The red dashed line is the annualized expected 

profit, and the numbers above each whisker is the standard deviation for the given period. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 4. The efficient frontiers for the different versions of the large instance. Let E ∗

be the annualized expected profit without cash flow control, and E F̄ the annual- 

ized expected profit using cash flow threshold F̄ . The vertical axis represents the 

ratio 100 ∗ (E ∗ − E F̄ ) /E ∗ . Let WC F̄ be the worst-case cash flow obtained for a given 

threshold F̄ . The horizontal axis represents the ratio 100 ∗ WC F̄ /E ∗ . Finally, SCP is an 

abbreviation for space charter price. 
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From Fig. 4 it is clear that all versions of the large instance

have the same characteristic. There exists a portion of the curves

where the worst-case cash flow can be increased with only small

losses in expected profit, and a portion where the expected profit

loss is rapidly increasing with the worst-case cash flow. Fur-

thermore, when tightening up the cash flow limits there is a

significant difference between the uncorrelated and correlated ver-

sions with normal space charter price. This illustrates that in the

real-world (where there exists some positive correlation between

the random variables involved) the benefit of using the cash flow

control model is greater than in an uncorrelated world. For ex-

ample, the relative worst-case cash flow of −10% has an expected

profit loss of approximately 6% and 2% for the uncorrelated and

correlated versions, respectively. In addition, the worst-case cash

flow can be improved by approximately 15% in terms of the an-

nualized expected profit without any significant loss in expected

profit. 

We can also see similar effects for the small and medium in-

stances as for the large one. Fig. 5 a and b show the efficient fron-

tiers for the four different versions of the small and medium in-
Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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tances, respectively. Also here, it is possible to significantly im-

rove the worst-case cash flow without much loss in expected

rofit in most versions. However, we see that for some versions,

uch as both versions of the small instance with normal space

harter price and both correlated versions for the medium in-

tance, there is not that much room for improving the worst-case

ash flow without large losses in expected profit. 

The reason we see different shapes of the efficient frontiers for

he small and medium instances ( Fig. 5 ) compared to the large

 Fig. 4 ) is that, the smaller the instance gets, the higher is the

elative impact of a decision. Note how the efficient frontiers for

he large instance can be represented by piecewise linear functions

ith an increasing gradient while the efficient frontier for some

f the small instances only consists of one linear function, corre-

ponding to less flexibility. These linear sections of the efficient

rontier for the small instance also appear to have a longer range

han for the large instance, but one must recall that the cost of

uying a ship compared to the expected profit is relatively higher

n the small instance compared to the large instance. 

.3. Effects of CVaR cash flow control 

We tested the CVaR cash flow control model presented in

ection 3.4 with confidence levels of α = 0 . 99 , 0.95 and 0.90 on

he large instance with correlations as shown in Table 3 and nor-

al space charter price. Note that since the instance is solved with

00 scenarios, the CVaR with α = 0 . 99 is equivalent to the deter-

inistic cash flow control model from Section 3.3 . 

Table 5 presents the solutions for the CVaR model with confi-

ence level of 0.95. When limiting the expected cash flow of the

% worst scenarios, the expected profit loss is much lower than for

= 0 . 99 (i.e., the deterministic cash flow case, see Table 4 ). This

an also be seen by comparing the efficient frontiers in Fig. 6 . An

mmediate observation is that, as intuition suggests, a higher toler-

nce of risk leads to higher profits. As an example, when the rela-

ive expected cash flow limit is 0%, a risk tolerance corresponding

o α = 0 . 95 leads to a profit loss of approximately 2% compared to

 risk neutral decision maker. However, a lower risk tolerance (cor-

esponding to α = 0 . 99 ) yields a profit loss of approximately 14%

or the same relative expected cash flow limit. Therefore, a deci-

ion maker willing to limit the negative expected cash flows in the

orst 5% scenarios, rather than in the worst 1% (corresponding to a

ore strict policy) is rewarded with a significantly higher expected
l., Risk control in maritime shipping investments, Omega, https: 
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Fig. 5. The efficient frontiers for the different versions of the small and medium instances. Let E ∗ be the annualized expected profit without cash flow control, and E F̄ the 

annualized expected profit using cash flow threshold F̄ . The vertical axis represents the ratio 100 ∗ (E ∗ − E F̄ ) /E ∗ . Let WC F̄ be the worst-case cash flow obtained for a given 

threshold F̄ . The horizontal axis represents the ratio 100 ∗ WC F̄ /E ∗ . Finally, SCP is an abbreviation for space charter price. 

Table 5 

Solutions for the large instance with correlated random variables and normal space charter prices for the CVaR 

model with α = 0 . 95 . 

F̄ α Expected New builds Scrappings Lay-up Space Optional 

[$ M ] Profit [$ M ] 1 st 2 nd 1 st 2 nd 1 st 2 nd 1 st 2 nd 1 st 2 nd 

−66 . 3 1109.4 29 1.99 9 19.09 0.37 12.9 0 9 924 0 1.55 

−59 . 7 1109.1 29 2.00 9 19.16 0.37 12.85 0 10 162 0 1.54 

−53 . 1 1109.9 30 1.99 9 19.58 0.37 13.70 0 454 0 1.46 

−46 . 4 1110.4 29 1.99 9 19.10 0.37 12.80 0 12 184 0 1.46 

−39 . 8 1109.1 29 2.12 9 19.30 0.37 12.66 0 12 998 0 1.46 

−33 . 2 1110.0 29 2.28 9 19.35 0.37 12.57 0 11 082 0 1.47 

−26 . 5 1109.4 28 2.19 8 19.34 0.41 12.62 0 12 642 0 1.45 

−19 . 9 1108.6 29 1.99 9 19.11 0.37 12.91 0 10 713 0 1.55 

−13 . 3 1109.1 29 2.01 8 20.08 0.41 12.76 0 5 811 0 1.46 

−6 . 6 1108.2 27 2.26 9 17.58 0.37 12.66 0 26 938 0 1.45 

0 1093.7 26 2.39 8 17.86 2.37 12.62 0 26 128 0 1.45 

6.6 1078.2 27 2.43 9 17.91 4.41 12.71 0 26 004 0 1.51 

13.3 1033.0 23 3.05 4 19.89 8.27 12.69 5 992 32 448 0 1.40 
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rofit, corresponding to only a 2% loss compared to that of a risk

eutral decision maker. It can be noticed that, in the left-hand-

ide portion of the efficient frontier, the increase in the cash flow

oes not result in expected profit losses. This means that, indepen-

ently of the degree of risk aversion of the decision maker, there

s the possibility of significantly limiting the risk of negative cash

ows while ensuring approximately the same expected profit as

hat of a risk neutral decision maker. However, in the right-hand-

ide portion of the efficient frontier, the difference between differ-

nt degrees of risk aversion leads to significantly different expected

rofits. 

.4. From a two-stage to a three-stage model 

The instances solved in Sections 4.2 and 4.3 have been solved

sing a two-stage model even though a multi-stage representation

s clearly closer to the reality. In this section we compare the re-

ults between a two-stage and a three-stage representation of the

roblem to examine whether the former is a reasonable simplifi-

ation. For computational reasons we run tests only on the small

nstance. Furthermore, we use the uncorrelated settings since the

orrelated setting requires a higher number of scenarios for the

cenario generation algorithm to work correctly, resulting in an

xcessive computation time for the three-stage model. Finally, we

se a 50% reduction in space charter prices as it provides a wider
Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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ange where the worst-case cash flow can be improved, as seen

n Fig. 5 a. In the three-stage model, the decision stages are period

, 3 and 5. At every stage we generate 20 conditional realizations,

esulting in a total of 20 ∗ 20 = 400 scenarios. The efficient fron-

iers for the three- and two-stage solutions are shown in Fig. 7 .

hey both have similar characteristics with a section where the

orst-case cash flow is increased at a small cost in expected profit

oss, and a section where the cost is rapidly increasing with worst-

ase cash flow improvement. This indicates that the characteristics

ound in the efficient frontiers are similar between the two-stage

nd three-stage model versions. Therefore, the two-stage simplifi-

ation seems to give a good trade-off between computational time

nd solution quality, at least for the small instance with uncorre-

ated random variables and reduced space charter price. 

.5. Discussion and managerial insights 

To determine which confidence level and solution a company

hould choose depends on their current situation and risk prefer-

nces. A company’s utility of a solution might change whether they

ace the risk of cash flow insolvency or balance-sheet insolvency. If

he company is low on cash reserves and thus is facing an immedi-

te risk of cash flow insolvency, the manager will probably choose

 solution from the steep part of the efficient frontier, where the
l., Risk control in maritime shipping investments, Omega, https: 
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Fig. 6. The efficient frontiers for the CVaR model solved for the large instance 

with correlated random variables and normal space charter price. Let E ∗ be the 

annualized expected profit without cash flow control, and E F̄ α the annualized ex- 

pected profit using cash flow threshold F̄ α . The vertical axis represents the ratio 

100 ∗ (E ∗ − E F̄ α ) /E ∗ . The relative expected cash flow limit is calculated as the mini- 

mum expected cash flow allowed, F̄ α, divided by the annualized expected profit. 

Fig. 7. The efficient frontiers for the three and two stage solutions for the small 

instance with uncorrelated correlation random variables and reduced space charter 

price. Let E ∗ be the annualized expected profit without cash flow control, and E F̄ the 

annualized expected profit using cash flow threshold F̄ . The vertical axis represents 

the ratio 100 ∗ (E ∗ − E F̄ ) /E ∗ . Let WC F̄ be the worst-case cash flow obtained for a 

given threshold F̄ . The horizontal axis represents the ratio 100 ∗ WC F̄ /E ∗ . 
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limit on the worst-case cash flow is stricter and thus the protec-

tion against this type of risk is stronger. 

On the other hand, if the company has a big cash reserve for

the coming planning period, but for some reason the value of

their assets (for instance ships) dropped to a level where their lia-

bilities are greater than the asset values, the company would be

facing the risk of balance-sheet insolvency. In this situation the

manager would probably choose a solution further to the left on

the efficient frontier in order to maximize the expected profit,

thus increasing the value of the company and reducing the risk

of balance-sheet insolvency. However, this will come at the cost of

increased risk of low-cash flows in a poor market. 

A risk neutral decision maker will probably maximize expected

profit regardless of the risk, thus not using a binding confidence

level at all (corresponding to a solution from the efficient frontiers

with lower confidence levels, e.g., the bottom curve in Fig. 6 ). A

more risk averse decision maker will probably, for a given rela-

tive expected cash flow limit, prefer a solution with a higher con-

fidence level. On the other hand, for a given confidence level, the

risk averse decision maker will probably choose a solution more
Please cite this article as: J. Skålnes, K. Fagerholt and G. Pantuso et a
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o the right of the given efficient frontier to increase the relative

xpected cash flow limit, though perhaps at a cost of a loss in ex-

ected profit. However, the solutions between −30% and −15% in

elative expected cash flow limit in Fig. 6 are close to indifferent

ith respect to expected profit. Hence, one can hedge against bad

ash flow periods with very little expected profit loss by choosing

 solution from an efficient frontier with a higher confidence level

r by increasing the relative expected cash flow limit. 

The results presented in the previous sections show that in

ost cases it is possible to reduce the risk (i.e. the relative worst

ase cash flow) significantly with very little loss in expected profit.

urthermore, the results show that stricter cash flow limits or

igher risk aversion are dealt with by reducing the number of new

uildings, using the available ships for longer times (i.e. reduc-

ng the number of scrappings) and using more space-charters. This

orresponds to saying that the installments associated with new

uildings are a major cause of negative cash flows. Finally, optional

rades are used to increase the total demand when the demand is

ow, and they are not serviced at all in the high demand scenarios.

The CVaR model provides the decision maker with a tool to

hoose a risk level matching their situation and risk preference.

he deterministic cash flow control is more conservative, but has

he advantage that it might be easier to use and interpret its re-

ults for a manager of a shipping company. The computational

tudy in this paper demonstrates that the CVaR model can serve

s a valuable decision making tool for a risk averse decision maker

ith the following highlighted benefits: 

• The decision maker can explicitly define their risk preferences

by adjusting the confidence level and the cash flow threshold. 
• There exists a great potential of finding solutions that will al-

low the company to hedge against periods with bad cash flows

without compromising expected profit. 
• Constraining the CVaR does not significantly increase the com-

plexity of the model with respect to a risk neutral setting. 

. Concluding remarks 

We introduced two new models for solving the Maritime Fleet

enewal Problem (MFRP) focusing on controlling the risk of in-

olvency. The first is a deterministic cash flow control model,

hile the second model uses Conditional Value-at-Risk (CVaR)

onstraints to control the risk. In both models, the payments of

hips are modeled as instalments rather than lump sums to cap-

ure the cash flows more precisely. The deterministic cash flow

ontrol model is shown to be a special case of the CVaR model

aving such a high confidence level that just one worst-case sce-

ario is controlled. 

The computational study demonstrated how a shipping com-

any can use the two proposed models to provide decision sup-

ort in assessing the trade-offs between risk and expected profits.

t was shown that solutions of the deterministic cash flow control

odel for increasing cash flow limits improve the cash flow in the

orst-case scenario. However, this comes at the cost of reduced

xpected profit. Furthermore, by solving the CVaR model for a set

f confidence levels the company can adjust their risk level accord-

ng to their risk preference. 

In the case study in this paper, we looked at the roll-on roll-off

hipping segment, where the possibility of using secondhand ships

nd charters is limited and was therefore not considered in the

ests (although the proposed model includes it). In other shipping

egments, these possibilities are more prominent and should be in-

luded. It is expected that having such possibilities would reduce

he need of controlling the cash flows as the charter and second-

and markets provide additional recourse actions which can be

sed to reduce the consequences of unfavorable first-stage deci-
l., Risk control in maritime shipping investments, Omega, https: 
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Sets 

T Set of periods, indexed by t 

L Set of nodes, indexed by n 

L t Set of nodes in a time period t , indexed by n. a ( n, t ′ ) is the 

ancestor node of node n in the scenario tree in period t ′ , with 

a (n, t − 1) written as a ( n ). 

K Set of products, indexed by k 

V t Set of ship types existing in the market in period t , indexed by v 

V N t Set of new ship types existing in the market in period t 

V IN t The set of ship types the company pays instalments for in period 

t 

N t Set of trades operated in period t , indexed by i 

N 

C 
t Set of contractual trades the shipping company is committed to 

serve in period t , indexed by i 

N 

O 
t Set of optional trades the shipping company can choose to 

undertake or not in period t , indexed by i 

R t Set of loops in period t , indexed by r 

R v t Set of loops that can be sailed by a ship of type v in period t , 

indexed by r 

R i v t The set of loops servicing trade i that can be sailed in period t by 

a ship of type v , indexed by r 

Parameters 

P n The probability for node n to occur 

R D 
in 

The revenue of transporting one unit of goods on trade i , at node 

n 

R SE 
v n The selling price for a ship of type v , at node n 

R SC 
v n The scrapping value of a ship of type v , at node n 

R LU 
v n The lay-up savings for one period, for a ship of type v , at node n 

R SV 
v n The sunset value of a ship of type v , at node n 

R CO 
v n The charter out revenue for one period, for a ship of type v , at 

node n 

C CI 
v n The charter in cost for a ship of type v , at node n 

R CO 
v n The charter out revenue for a ship of v , at node n 

C OP 
v n The fixed operating cost for a ship of type v , at node n 

C TR 
v rn The cost of performing a loop r , for a ship of type v , at node n 

C SP 
ikn 

The space charter cost for one unit of product k on trade i , at 

node n 

CI v n The limit on number of ships of type v available for chartering in 

at node n 

CO v n The limit on number of ships of type v available for chartering 

out at node n 

SH v n The limit on number of ships of type v available for purchase in 

the second hand market at node n 

SE v n The limit on number of ships of type v that can be sold in the 

second hand market at node n 

CI n The limit of the total number of ships that can be chartered in at 

node n 

CO n The limit of the total number of ships that can be chartered out 

at node n 

SH n The limit of the total number of ships that can be bought in the 

second hand market at node n 

SE n The limit of the total number of ships that can be sold in the 

second hand market at node n 

T̄ The last time period in the planning horizon 

T̄ L v The lead time for building a ship of type v 

Q vk The total capacity of product k on ship of type v 

Q v The total capacity on ship of type v 

Z vr The time a ship of type v needs to perform a loop r 

Z v The total available time in one period for a ship of type v 

D ikn The demand on trade i of product k in node n 

( continued on next page ) 
ions. However, further research and tests are required to verify

his expected behaviour. 

Another direction for future research could be to include cash

ow reserves. In this paper, we have assumed that there exists

n internal cash flow threshold calculated by the company. When

his is not the case, cash flow reserves could be introduced to

ndogenously determine the appropriate cash flow limit. That is,

rofits may be used as a cash reserve to prepare for future unfa-

orable markets. 
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ppendix. Node formulation 

ash flow expressions 

f I n = 

∑ 

i ∈N O t 

∑ 

k ∈K 
R 

D 
in D ikn δin + 

∑ 

i ∈N C t 

∑ 

k ∈K 
R 

D 
in D ikn 

+ 

∑ 

v ∈V t 
(R 

CO 
v n h 

O 
v n + R 

SE 
v n y 

SE 
v n + R 

LU 
v n l v n + R 

SC 
v n y 

SC 
v n ) , 

t ∈ T \ { 0 } , n ∈ L t 

f O n = 

∑ 

v ∈V IN t 

C IN v n Y 
IP 
v + 

∑ 

t −M≤t ′ ≤t 

∑ 

v ∈V IN t 

(C IN v a (n,t ′ ) n y 
NB 
v a (n,t ′ ) n + C SH 

v a (n,t ′ ) n y 
SH 
v a (n,t ′ ) n )

+ 

∑ 

i ∈N C t 

∑ 

k ∈K 
C SP 

ikn n ikn + 

∑ 

v ∈V t 
(C OP 

v n y 
P 
v n + C CI 

v n h 

I 
v n + 

∑ 

r∈R v t 

C T R v rn x v rn ) , 

t ∈ T \ { 0 } , n ∈ L t 

bjective function 

ax z = 

∑ 

t∈T \{ 0 } 

∑ 

n ∈L t 
P n 

( ∑ 

i ∈N O t 

∑ 

k ∈K 
R 

D 
in D ikn δin 

+ 

∑ 

i ∈N C t 

∑ 

k ∈K 
(R 

D 
in D ikn − C SP 

ikn n ikn ) 

−
∑ 

v ∈V t 
(C OP 

v n y 
P 
v n + C CI 

v n h 

I 
v n − R 

CO 
v n h 

O 
v n 

+ 

∑ 

r∈R v t 

C T R v rn x v rn − R 

LU 
v n l v n ) 

)
−

∑ 

t≤M−1 

∑ 

n ∈L t 

∑ 

v ∈V IN t 

P n C 
IN 
v n Y 

IP 
v 

−
∑ 

t∈T 

∑ 

t −M≤t ′ ≤t 

∑ 

n ∈L t 

∑ 

v ∈V IN t 

P n (C 
IN 
v a (n,t ′ ) n y 

NB 
v a (n,t ′ ) +C SH 

v a (n,t ′ ) n y 
SH 
v a (n,t ′ ) ) 

+ 

∑ 

v ∈V T̄ 
( 
∑ 

n ∈L T̄ 
P n R 

SV 
v n y 

P 
v n 

−
∑ 

t ′ ∈T 

t ′ + M ∑ 

t= ̄T 

∑ 

n ∈L t 
P n (C 

IN 
v a (n,t ′ ) n y 

NB 
v a (n,t ′ ) + C SH 

v a (n,t ′ ) n y 
SH 
v a (n,t ′ ) )) 

+ 

∑ 

t∈T 

∑ 

n ∈L t 

∑ 

v ∈V t 
P n (R 

SC 
v n y 

SC 
v n + R 

SE 
v n y 

SE 
v n ) 

emand constraints 

∑ 

 ∈V t 

∑ 

r∈R i v t 

Q v k x v rn + n ikn ≥ D ikn , 
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t ∈ T \ { 0 } , i ∈ N 

C 
t , k ∈ K, n ∈ L t , ∑ 

 ∈V t 

∑ 

r∈R i v t 

Q v k x v rn ≥ D ikn δin , 

t ∈ T \ { 0 } , i ∈ N 

O 
t , k ∈ K, n ∈ L t , 

apacity constraints 

∑ 

 ∈V t 

∑ 

r∈R i v t 

Q v x v rn + 

∑ 

k ∈K 
n ikn ≥

∑ 

k ∈K 
D ikn , 

t ∈ T \ { 0 } , i ∈ N 

C 
t , n ∈ L t , 
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( continued ) 

F in The frequency requirement on trade i in node n 

Y NB 
v n The number of ships of type v ordered in the previous planning 

period, delivered at node n in the beginning of the time period 

Y IP v The initial fleet of ships of type v 

C IN v a (n,t ′ ) n The instalment paid at node n on a ship of type v ordered at 

node a ( n, t ′ ) 
C IN v n The instalment paid for a ship of type v at node n for the ships 

in the initial fleet, i.e before the planning horizon begins 

C SH 
v a (n,t ′ ) n The instalments paid at node n on a ship of type v bought in the 

second hand market at node a ( n, t ′ ) 
M Number of instalments 

F̄ The cash flow limit, i.e. no period and scenario are allowed to 

have a worse cash flow than this limit 

B The budget available for ordering or purchasing ships in period 0 

Variables 

y NB 
v n The number of new buildings ordered of ship of type v , at node n 

y SH 
v n The number of ships of type v bought in the second hand 

market, at node n 

y SE 
v n The number of ships of type v sold in the second hand market at 

node n 

y SC 
v n The number of ships of type v scrapped at node n 

y P v n The number of ships of type v in the pool, at node n 

h I v n The number of ships of type v chartered in, at period n 

h O v n The number of ships of type v chartered out at node n 

l vn The number of ships of type v on lay-up, at node n 

x vrn The number of loops r performed by a ship of type v , at node n 

n ikn The amount of product k delivered at node n , by space charters 

on trade i 

δin Set to 1 if the company services optional trade i at node n , 0 

otherwise. 

f I n The cash inflow at node n 

f O n The cash outflow at node n 

y

y

y

C

v

C

v

B

y

∑ 

v ∈V t 

∑ 

r∈R i v t 

Q v x v rn ≥
∑ 

k ∈K 
D ikn δin , 

t ∈ T \ { 0 } , i ∈ N 

O 
t , n ∈ L t , 

Frequency constraints 

∑ 

v ∈V t 

∑ 

r∈R i v t 

x v rn ≥ F in , t ∈ T \ { 0 } , i ∈ N 

C 
t , n ∈ L t , 

∑ 

v ∈V t 

∑ 

r∈R i v t 

x v rn ≥ F in δin , t ∈ T \ { 0 } , i ∈ N 

O 
t , n ∈ L t , 

Time constraints 

∑ 

r∈R v t 

Z v r x v rn ≤ Z v (y P v n + h 

I 
v n − h 

O 
v n − l v n ) , 

t ∈ T \ { 0 } , v ∈ V t , n ∈ L t , 

Optional trades constraints 

δia (n ) ≤ δin , t ∈ T \ { 0 , 1 } , i ∈ N 

O 
t , n ∈ L t , 

Pool constraints 

y P v 0 = Y IP v v ∈ V 0 
y P v n = y P v ,a (n ) − y SC 

v ,a (n ) + y SH 
v ,a (n ) − y SE 

v ,a (n ) 

t ∈ T \ { 0 } , v ∈ V t \ V N t , n ∈ L t , 

y P v n = y NB 

v a (n,t−T̄ 
L 
) 
v 
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t ∈ T : t ≥ T̄ v 
L 
, v ∈ V N t , n ∈ L t , 

 

P 
v n = Y NB 

v n 

t ∈ T : t < T̄ v 
L 
, v ∈ V N t , n ∈ L t , 

 

P 
v n ≥ l v n − h 

I 
v n + h 

O 
v n 

t ∈ T \ { 0 } , v ∈ V t , n ∈ L t , 

 

P 
v n = y SC 

v n 

t ∈ T \ { ̄T } , v ∈ V t \ V t+1 , n ∈ L t , 

harter in constraints 

y SH 
v n ≤ SH v n , t ∈ T \ { ̄T } , v ∈ V t , n ∈ L t , 

y SE 
v n ≤ SE v n , t ∈ T \ { ̄T } , v ∈ V t , n ∈ L t , 

h 

I 
v n ≤ CI v n , t ∈ T \ { 0 } , v ∈ V t , n ∈ L t , 

h 

O 
v n ≤ CO v n , t ∈ T \ { 0 } , v ∈ V t , n ∈ L t , ∑ 

 ∈V t \V N t 

y SH 
v n ≤ SH n , t ∈ T \ { ̄T } , n ∈ L t , 

∑ 

v ∈V t \V N t 

y SE 
v n ≤ SE n , t ∈ T \ { ̄T } , n ∈ L t , 

∑ 

v ∈V t \V N t 

h 

I 
v n ≤ CI n , t ∈ T \ { 0 } , n ∈ L t , 

∑ 

v ∈V t \V N t 

h 

O 
v n ≤ CO n , t ∈ T \ { 0 } , n ∈ L t , 

ash flow constraints 

∑ 

 ∈V 0 
(R 

SE 
v 0 y 

SE 
v 0 + R 

SC 
v 0 y 

SC 
v 0 ) −

∑ 

v ∈V IN 
0 

(C IN v 00 y 
NB 
v 0 + C SH 

v 00 y 
SH 
v 0 ) + B ≥ F̄ , 

f I n − f O n ≥ F̄ , t ∈ T \ { 0 } , n ∈ L t , 

ounds on the decision variables 

y NB 
v n ∈ Z 

+ , t ∈ T : t ≤ T̄ − T̄ v 
L 
, v ∈ V N t+ T L , n ∈ L t , 

 

SC 
v n , y 

SH 
v n , y 

SE 
v n ∈ Z 

+ , t ∈ T \ { ̄T } , v ∈ V t , n ∈ L t , 

y P v n ∈ R 

+ , t ∈ T , v ∈ V t , n ∈ L t , 

h 

I 
v n , h 

O 
v n , l v n ∈ R 

+ , t ∈ T \ { 0 } , v ∈ V t , n ∈ L t , 

x v rn ∈ R 

+ , t ∈ T \ { 0 } , v ∈ V t , r ∈ R v t , n ∈ L t , 

n ikn ∈ R 

+ , t ∈ T \ { 0 } , i ∈ N 

C 
t , k ∈ K, n ∈ L t 

δin ∈ { 0 , 1 } , t ∈ T \ { 0 } , i ∈ N 

O 
t , n ∈ L t , 

Conditional Value-at-Risk model 

Sets 

T F The set of periods in the first stage 

T S The set of periods under uncertainty, i.e. all periods after the first stage 

Parameters 

α Confidence level 

F̄ α The minimum expected cash flow allowed under confidence level α

Variables 

ζ Artificial variable for CVaR constraints 

ηn Artificial variable for CVaR constraints at node n 
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