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Abstract—Blackouts in the power system are rare events that
can have large consequences for society. Successful preparation
and prevention of such events calls for models capable of
predicting their occurrence. The simultaneous outage of multiple
components is of special interest in an N-1 secure transmission
grid. Spatio-temporal correlation in probability of failure for
components can cause blackouts to occur more often than
anticipated. This paper demonstrates a new method of calculating
time-series of component unavailability due to external threats
based on historical data. The time-series of unavailability can
be used to predict the expected occurrence of contingencies
throughout the year. A test case is presented where an hourly
time series of wind dependent failure probabilities and historical
outage durations of transmission lines are combined to illustrate
the proposed method. The results show that the simultaneous
unavailability of multiple transmission lines may be significantly
larger than estimated using traditional reliability analysis.

Index Terms—Power system reliability, resilience, risk analysis.

I. INTRODUCTION

The electrical power system is a highly complex, critical
infrastructure on which society depends. Blackouts are rare
but with potentially severe consequences, and due to these
properties they are sometimes referred to as High Impact
Low Probability (HILP) events. In an N-1 secure transmission
grid multiple contingencies, or failure of multiple components,
must occur in overlapping time-frames to cause blackouts.
Harsh weather, such as wind, lightning and icing are some
of the most common causes of transmission line failures
and subsequent blackouts [1], [2]. Such events often occur
in short and intense periods of weather exposure such as
severe storms [3]. The overlap in time and place of failures
due to correlated threats is of high importance. The timing
of when a contingency occurs can also affect the associated
consequences. Thus, it is necessary to develop models that
capture spatio-temporal correlation in threat exposure.

Capturing HILP events using traditional power system
reliability methods can be difficult. The emerging field of
power systems resilience methodology goes beyond traditional
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reliability assessments and aim to capture such low probability
events [3]. Although there are no commonly accepted defini-
tion of resilience in the power systems domain, a proposed
definition is found in [4] as “the ability to withstand and
reduce the magnitude and/or duration of disruptive events,
which includes the capability to anticipate, absorb, adapt to,
and/or rapidly recover from such an event”. In [5], it is argued
that “a main difference between a reliable power grid and
a resilient power grid is that, in the latter, low probability-
high consequence events (e.g. extreme weather events) are
specifically considered and handled, with the ability to learn
from past occurrences”.

The two main paths to capture spatio-temporal correlaction
in threat exposure has either been to use Monte Carlo simula-
tion techniques or contingency enumeration approaches, con-
sidering multiple weather states [6], [7]. It has been considered
that for single contingency events, contingency enumeration
may be best suited, however for more complex systems and
higher order contingencies Monte Carlo simulation techniques
may produce better results [8]–[10].

This paper proposes a method of calculating time-series
of unavailability probability of transmission lines based on
historical data, and can serve as an alternative to Sequential
Monte Carlo simulations. The probability of higher order con-
tingencies can be calculated from the time-series unavailability
of single components. The method answers two of the set of
risk-triplets put forwards by Kaplan [11], namely what can
happen (the scenario) and how likely is it that this scenario
happens (likelihood). However, by also knowing the ’when’
of the scenario, it is possible to make some inferences of the
last of the triplets: the consequence of the scenario.

The main contribution of this article is to calculate time-
series of probability of contingencies occurring due to threats
that are spatio-temporally correlated. It is also a benefit that
each primary parameter in the analysis - the failure rate and
outage duration - can be analyzed separately before being
combined into an expected unavailability of components. The
production of historical time series of unavailability makes
it possible to couple the analysis with other time-dependent
information, for example measures of consequence of a given
contingency in a specific period of time. The method is
transparent and the resulting data can form the basis for



further analysis, or serve as a benchmark when develop-
ing other methods for predicting HILP events. The method
is exemplified for transmission lines using wind dependent
failure- and outage durations, as they are well known to
contribute to failure bunching effects in the power system
[10], [12]. Results from the analysis can be used, for example,
to prioritize maintenance and repair, strengthening of system
components, rerouting or undergrounding transmission lines,
or improvement of emergency and preparedness plans [10].

The rest of the paper is structured as follows: Section II
defines central terms and introduces the practical implemen-
tation of the method such as the inclusion of failure rates,
outage duration curves and the calculation of unavailability of
transmission lines. In Section III, a sample case study on a
4-bus test system is presented to show the relevance of the
method, before the paper is concluded in Section IV.

II. METHOD

The proposed method calculates the expected instantaneous
unavailability of transmission lines. The method is exempli-
fied using unplanned transmission line outages due to wind,
although the approach can be applied to other components
that are subject to spatio-temporally correlated threats. Instan-
taneous unavailability can be defined as the ”probability that
an item is not in a state to perform as required at a given
instant” [13], where ”a given instant” is here understood as
the time-scale granularity of the analysis, which is set to one
hour in this example. Instantaneous unavailability will from
now on simply be referred to as unavailability.

The method consists of three different steps. Initially, a
time series of failure probabilities of transmission lines due
to wind exposure is either created or served as an input
into the analysis. Probability distributions of outage durations
are then parameterized using historical data. These outage
distributions are then combined with failure probabilities to
create a measure of unavailability of transmission lines.

A. Failure probabilities

Time series of hourly failure probabilities can be calculated
in a number of ways, depending on data availability and need
for accuracy. For weather related phenomena, the combined
use of historical failure data and weather conditions as seen
in [14], [15] can be of great help to capture historical suscep-
tibility to given threats, as well as failure bunching effects.

Time-series of hourly wind dependent failure probabilities
are generated according to the method of [14], with Bayesian
updating of failure rates and fragility curve estimation based
on historical failure and wind exposure. Initially, unique annual
failure rates for each line is calculated by doing a Bayesian
updating using the historical average failure rate due to wind
of all comparable lines in the system, and actual failures due
to wind for individual lines in a given time-span. A fragility
curve is then fitted to a wind exposure measure for each line
segment to distribute the failures in time, before the probability
of failure for each line is calculated as a series system of
failure probability of its line segments. The calculated annual
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Fig. 1. Hourly probability of line failure. Sample.

failure rate after curve fitting is held equal to the annual
failure rate found by Bayesian updating in the previous step to
maintain consistency. The weather data used to calculate wind
exposure of line segments is historical hourly wind speeds in
a 1 kilometer grid based on [16]. A more detailed description
of how to construct the time-series of failure probabilities can
be found in [14].

In this paper a slight alteration of the original method is
done. The fragility curve is not cut off at a lower wind-speed
limit. The relatively low probability of failure at the low end of
the fragility curve matches well with the historical percentage
of failures occurring below 15 m/s wind-speeds at about 20
percent [17], which is the justification of this alteration. A
sample of the calculated hourly failure probabilities due to
wind exposure for one line can be seen in Fig. 1, showing
the hourly probability of failure for a transmission line due to
wind exposure.

B. Outage duration

Events caused by natural hazards are also associated with
longer outage durations due to mechanical damage or lim-
itation to accessibility for repairs [1], [18]. The aim of the
following subsection is to create an outage duration curve that
represents the probability of a component still being out of
operation a given number of hours following a failure caused
by wind exposure.

Outage duration curves is constructed using data from the
Norwegian fault and disturbance database, FASIT [17], [19].
The database contains information on historical failures of
components, delivery point interruptions, and restoration and
repair times. Outage duration is here understood as the time
from a failure occurs until the component is again ready for
operation and covers both temporary and permanent failures.

The outage durations due to wind exposure from the FASIT
data show a right skewed distribution of outage durations as
shown in the histogram in Fig. 2. Other sources of outage
and repair statistics show similar patterns [20], [21]. The two-
parameter log-normal distribution is a good choice to represent



the data, which is in line with what was found by [20]. The
log-normal distribution is given by (1), where f(r) is the
probability density function (PDF) of the distribution of outage
durations of r hours.

f(r) =
1

rσ
√
2π
e
−
(ln(r)− µ)2

2σ2 (1)

The moments found from the FASIT data are then used
to fit a log-normal PDF of outage duration by modifying the
equations for the mean and variance. The method of moments
approach is used to ensure that the mean and variance found
in the data is maintained. The mean (2) and variance (3) of the
outage duration data is used to fit the parameters of the log-
normal distribution in (4) and (5). D represents the random
variable of outage duration, while di represents the unique
outage duration observations in hours.

E(D) =
1

n

n∑
i=1

di (2)

V ar(D) =
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n− 1
(3)
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V ar(D) + E(D)2

]
(4)
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√
ln
[
1 +

V ar(D)

E(D)2
]

(5)

Furthermore, we want to know the probability that a com-
ponent has not been restored by a given time, x. This can be
found through the survival function (SF) of the distribution.
The survival function S(x) is the complement of the cumu-
lative distribution function (CDF) denoted F (x), and can be
expressed as in (6).

S(x) = 1− F (x) = 1−
∫ x

0

f(r)dr (6)

The function now describes the probability that a component
is in a failed state for a given number of hours after a
failure event. The original outage duration data and the fitted
distribution can be seen in Fig. 2. However, the outage duration
function is a continuous distribution while the time-series is in
one-hour intervals. To account for this, the approximate mean
value of each time-step is calculated using the trapezoidal rule.

C. Unavailability probability

When failure probabilities are combined with outage dura-
tion probabilities, we get a measure of probability of the line
being unavailable at a given time. Unavailability is calculated
algorithmically by looping through failure probability time-
series and applying the outage probability functions. The logic
behind the approach is best illustrated in pseudo-code, seen in
Algorithm 1. After looping through all time-steps, an approx-
imation of the expected unavailability of the transmission line
at a given time is achieved. The algorithm shows only the
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Fig. 2. Observed outage duration of power lines (132-420kV) 2006-2016.

calculation of unavailability for a single transmission line but
can be repeatedly applied to any number of components.

The algorithm appends the expected unavailability at time
t to a given number of time-steps x ahead of time up until
a given cutoff, taking into account the probability that the
line is already unavailable due to a previous failure. The
cutoff in forward looking time-steps is a trade-off between
computational efficiency and accuracy, and is set to 1000 hours
after the failure in this example.

To correct for the accuracy impact of the chosen 1000 hour
cutoff, we need to compare the area under the SF-curve when
considering the integration of the curve towards infinity versus
an upper bound of 1000 hours. For the former, the alternative
expectation formula (see e.g. [22]) is used, which states that
the integral from zero to infinity of the SF for a continuous
non-negative random variable equals the expected value of the
distribution (7). For the latter, numerical integration is used to
approximate the area under the curve. The ratio of these two
areas, k in (8), can then be used to inflate numbers before the
cutoff. This ensures that the sum of outage duration is kept
the same as without a cutoff.

E(X) =

∫ ∞
0

[1− F (x)]dx (7)

E(D)∫ 1000

0
[1− F (x)]dx

= k (8)

The result of running the algorithm is given in Fig. 3, which
shows the hourly expected unavailability due to wind for a
single transmission line using the proposed method. The figure
is based on the failure probabilities found in Fig. 1 and outage
duration curve in Fig. 2.



Algorithm 1 Algorithm for calculating unavailability
Input: time-series of t failure probabilities
Output: time-series of t unavailability probabilities

Initialisation:
pt ← failure probability at time t
S(x)← outage survival function at time x since failure
ut ← unavailability probability at time t
cutoff← limit to forward propagating time-steps
k ← inflation factor due to cutoff
LOOP Process:

1: for all increasing time steps t do
2: for x in range(0, cutoff) do
3: ut+x+ = pt · (1− ut) · S(x) · k
4: end for
5: end for
6: return ut
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Fig. 3. Hourly probability of line unavailability. Sample.

III. SAMPLE CASE

The goal of this approach is to better capture spatio-
temporal correlations in unavailability due to weather. A test
case is presented to exemplify. Unavailability is calculated
using both the proposed method, and a traditional analytical
method paired with a contingency enumeration approach [23]
as the base case. The results are then compared.

A 4-bus test network, given in [24], presented in [25], is
used to illustrate the test case. The 4-bus test network can be
seen in Fig. 4. Every line in the test-network is given a capacity
of 135 MW. Both generators have the capacity to cover all
demand on their own. Load point 1 (L1) is the prioritized load
point due to a higher cost of Energy Not Supplied (ENS). Only
minimal cutsets are enumerated. Two operating states (OS) are
considered, a high- and a light-load state, which have their
own minimal cuts. The high demand state (OS2) covers the
months December, January and February, while the light-load
state (OS1) covers the remaining months.

A divergence from the original test case is that individual
reliability input data for overhead transmission lines in the test

Fig. 4. 4-bus OPAL network [24].

TABLE I
MODIFIED RATING AND RELIABILITY DATA, TRANSMISSION LINES

Line Rating
[MW]

Failure rate
[failures/year]

Outage time
[hours/failure]

1 135 0.118 11.42
2 135 0.375 11.42
3 135 0.069 11.42
4 135 0.229 11.42

TABLE II
DELIVERY POINT LOAD DEMAND

DP Light load (OS1)
[MW]

Heavy load (OS2)
[MW]

L1 60 100
L2 30 75

TABLE III
INTERRUPTED POWER [MW] DUE TO MINIMAL CUTSETS (MC)

Light load (OS1) Heavy load (OS2)
MC\DP L1 L2 L1 L2
{2} - - - 40
{3} - - - 40
{2,3} 60 30 100 -
{2,4} 60 - 100 -
{3,4} - 30 - -

network is calculated, based on historical weather and outage
durations. This is done to ensure that the same mean values
are used in both the base case and the proposed method. The
modified rating and reliability data is given in Table I. The
delivery point load demand for the different operating states
are given in Table II. Minimal cut-sets (MC) are associated
with an interrupted power (Pinterr) at specific delivery points
(DP) in different operating states (OS), given in Table III.

The base case is a contingency enumeration approach using
average failure rates and outage durations as input to the eval-
uation of the unavailability of the components. Approximate
methods are used to calculate equivalent failure rates, outage
durations and unavailability for higher order contingencies.
Equations for this can be found in any number of reliability
textbooks, see e.g. [26]. Expected annual unavailability for
each operating state and delivery point is calculated as the
product of the annual failure rate and outage duration weighted
according to the duration of each operating state, exemplified



in (9) for OS1 (9 out of 12 months). Expected Annual ENS
(AENS) is calculated as in (10).

UMC,OS1 = λMC · rMC ·
9

12
(9)

AENSMC,OS,DP = UMC,OS · Pinterr,MC,OS,DP (10)

The proposed method relies on the same minimal cutsets
and power interrupted, and has the same average failure
rates and outage times as the base case. However, the input
to the reliability evaluation is time series of failure prob-
abilities and distributions of outage durations. Time series
of hourly unavailability covering 25 years of observations
for four transmission lines is constructed using historical
weather data and outage durations. Single line contingencies
are calculated using the proposed algorithm. The correlation
of failure probabilities between lines are given in Table IV.
Higher order contingencies can be calculated as a system of
independent components in parallel (see e.g. [27]) given the
weather exposure. The expected unavailability of the resulting
time series, ut, in the months of the different operating states
can be summed up and adjusted for the number of years of
observations, y, to find annual unavailability of the cutsets in
the associated operating states, as seen in (11).

UOS =

∑n
t=1,t∈OS ut

y
(11)

TABLE IV
CORRELATION OF FAILURE PROBABILITIES BETWEEN LINES

Line
1 2 3 4

Line

1 1.00 0.74 0.17 0.60
2 0.74 1.00 0.11 0.57
3 0.17 0.11 1.00 0.21
4 0.60 0.57 0.21 1.00

The calculated expected annual unavailability and AENS
are compared in the different approaches. Single line un-
availability can be seen in Fig. 5. Numbers in bars represent
the percentage difference in unavailability when comparing
the proposed method to the base case for each operating
state. Although single line contingencies occur with the same
expected number of hours each year in the two approaches,
the displacement of when unavailability occurs has an effect
on ENS, as single line contingencies only cause ENS in OS2.
The difference in ENS as a result of this displacement can be
observed in Table V. ENS during OS2 for line 2 and 3 is
82% and 79% higher respectively, using the proposed method
than in the base case. This is a reflection of harsher weather
during the winter months which is more accurately captured
by the time-series unavailability in the proposed method.

Spatio-temporal correlations and the associated failure
bunching come into play for second order contingencies. The
total unavailability of second order contingencies have notably
lower estimates during the winter months in the base case
compared to the proposed method, especially when failure
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Fig. 6. Unavailability due to second order contingencies

probabilities are highly correlated. Results in Fig. 6 illustrate
this: Unavailability of the minimal cutset lines 2 and 4 due
to wind in OS2 is 899% higher than in the base case, and
the annual ENS is 387% higher. The reason for this increase
is two-fold. First, the hourly average expected unavailability
is higher during the winter months in this sample. Secondly,
periods of high expected unavailability for the two compo-
nents coincide due to spatio-temporal correlation in weather
exposure for this cutset, thus causing the product of the two
probabilities to sum to larger values than if this was not the
case. This effect is not captured by the base case method.

Single line contingencies dominate the expected annual
unavailability and ENS, compared to the second order con-
tingencies. However, the effects of higher order contingencies
are more relevant to consider in a N-1 secure transmission grid.
The difference in expected annual unavailability and ENS is
239% and 290% higher, respectively, compared with the base
case for second order contingencies.



TABLE V
SUMMARY RESULTS

Base case Proposed method ∆
Unavailability [h/y]
Line 2 4.2789 4.2726 0 %
Line 3 0.7901 0.7897 0 %
Line 2 Line 3 0.0004 0.0007 80 %
Line 2 Line 4 0.0013 0.0051 302 %
Line 3 Line 4 0.0002 0.0006 163 %
Single lines 5.0689 5.0623 0 %
2nd order contingencies 0.0019 0.0065 239 %
Total 5.0708 5.0687 0 %
AENS [MWh/y]
Line 2 42.7886 77.9177 82 %
Line 3 7.9005 14.1269 79 %
Line 2 Line 3 0.0357 0.0670 88 %
Line 2 Line 4 0.0895 0.4358 387 %
Line 3 Line 4 0.0053 0.0064 21 %
Single lines 50.6891 92.0445 82 %
2nd order contingencies 0.1305 0.5093 290 %
Total 50.8195 92.5538 82 %

IV. CONCLUSION

In this paper we have developed a method of calculating
time-series unavailability of components in the electrical trans-
mission system due to external threats that exhibit spatio-
temporal correlation. The solution is exemplified in a test
case, which shows that the proposed method captures spatio-
temporal correlation in threat exposure more accurately than
the base case method. When combining the time-series output
of expected unavailability with a consequence analyses we get
a more complete view of the associated risks. In the test case,
this results in an almost four times higher AENS due to a
second order cutset with highly correlated wind exposure.

The proposed method must make a trade-off between the
need for accuracy and computational efficiency, and as a
consequence it relies on several approximations in distributing
outage durations in time. However, comparison of single line
contingencies show that there are small differences in annual
expected unavailability in the approaches, which indicates that
the effects of the approximations are limited. It can be argued
that the benefits of capturing the spatio-temporal correlations
in the analysis of higher order contingencies outweighs the
negative impact of these approximations.

By identifying lines that has a high impact on a given
consequence metric, such as ENS, in conjunction with other
lines, strengthening measures can be prioritized and initiated
on lines that have the greatest consequence reducing effects.
The proposed method is a useful approach that may contribute
to reducing the probability of HILP events and thereby, to a
more resilient grid.
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