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ADP;  adenosine diphosphate

AMPA; -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

ATP;  adenosine triphosphate

CBF; cerebral bloof flow 

CNS; central nervous system 

CRFC; cortical, retrosplenial and frontal cortex 

CSF; cerebrospinal fluid 

fMRT;  functional magnetic resonance tomography  

GABA; -aminobutyric acid 

GAD; glutamate dehydrogenase 

GLUT;  glucose transporter proteins

GS; glutamine synthetase 
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ICP; intracranial pressure 

ip; intraperitoneal 

MK801; Dizocilpine 

MR; magnetic resonance 

MRI; Magnet Resonance Imaging 

NMDA;  N-methyl-D-aspartate  

NMRS;  nuclear magnetic resonance spectroscopy 

NPH; normal pressure hydrocephalus 

PDH; pyruvate dehydrogenase 

PAG; phosphate activated glutaminase 

PC;  pyruvate carboxylase

PCP; phencyclidine 

PTZ; pentylenetetrazole
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SAMP8;  senescence-accelerated  mice P8  

sc; subcutant  

TCA; tricarboxylic acid cycle 

TE; temporal lobe 
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IV   Summary

When [1-13C]glucose and [1,2- 13C]acetate are given simultaneously, information of astrocytic and 

neuronal metabolism can be obtained in the same animal. This is because acetate is exclusively 

taken up by astrocytes, while the major part of acetyl-CoA derived from glucose is metabolized in 

neurons. In the present thesis glial-neuronal interactions in experimental models of epilepsy, 

hydrocephalus and schizophrenia were examined by 13C NMR spectroscopy and other techniques.

Pentylenetetrazole (PTZ)-kindling mainly altered metabolism of astrocytes in 2 

months old and of glutamatergic neurons in 8 months old senescence accelerated mice P8 

(SAMP8), a genetic model of aging. In the presence of PTZ, phenobarbital decreased labeling of 

most metabolites from both [1-13C]glucose and [1,2-13C]acetate in young SAMP8, although in older 

animals only GABAergic neurons were affected. Phenobarbital normalized glutamate labeling from 

[1-13C]glucose in old PTZ animals. Aging of SAMP8 lead to decreased mitochondrial activity in 

glutamatergic neurons, as shown by decreased glutamate labeling from [1-13C]glucose in old 

control animals compared to young controls. Additionally, old SAMP8 mice had disturbed 

astrocytic metabolism indicated by lowered glutamine synthesis from [1,2-13C]acetate. In the early 

development of rat kaolin-hydrocephalus astrocyte metabolism was impaired only. First later, at the 

chronic stage, neuronal metabolism became affected as well. A decrease in [4,5-13C]glutamate and 

unchanged [4,5-13C]glutamine indicated impaired transport of astrocytic glutamine to glutamatergic 

neurons four weeks after hydrocephalus induction. While a single dose of the NMDA antagonist 

MK801 mainly disturbed metabolism in the rat temporal lobe (TE), repeated administration lead 

mostly to metabolic impairment in the cingulate, retrosplenial and frontal cortex (CRFC). Evidence 

was found for decreased neurotransmitter release from synaptic vesicles and impaired conversion of 

glutamine to glutamate in neurons. Moreover, MK801 lead to compartmentation of glutamine 

metabolism, where glutamine labeled from neuronal glutamate was handled differently than 
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glutamine from astrocytic glutamate. Repeated MK801 administration provoked predominantly 

altered neuronal metabolism, while metabolism of astrocytes seemed relatively unaffected. This 

might add to the disturbances of the cortico-striato-thalamo-cortical loop caused by NDMA receptor 

blockade and hence to the sensory gating deficits provoking cortical sensory overstimulation and 

psychosis.

In contrast to the hydrocephalus experiment, the studies of epilepsy in SAMP8 and of NMDA 

receptor hypofunction did not show primary astrocytic impairment. Thus, astrocytic function differs 

from disorder to disorder. Although there is no general pattern of glial-neuronal interactions, the so-

called glutamate-glutamine cycle is frequently disturbed.  
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1. Introduction 

1.1. Neurons, astrocytes and other glia cells 

The brain consists of brain cells, blood and blood vessels, cerebrospinal fluid and the cerebral 

meninges. The brain cells can be divided into neurons and glial cells. Neurons are chemically and 

electrically excitable cells, which are critical to signaling of information over shorter or longer 

distances. GABAergic interneurons in the basal ganglia for example have very short axons, while 

the axons of the first motorneurons stretch from the motor cortex to the frontal column of the spinal 

cord and thus can be up to one meter long.  

The term “glia ” was originally introduced by Virchow. He characterized glia cells as “Nervenkitt”, 

literally “nerve glue”,  and thought that these cells mainly had a static function (Virchow, 1846). 

However, more than hundred years later,  we know that glial cells do not only act as a scaffolding 

for neurons. There are  macroglia, which include oligodendrocytes and astrocytes; microglia and 

ependymal cells. While the latter stand for the main part of cerebrospinal fluid production and line 

the brain ventricles and the spinal central canal, microglia are residential macrophages having 

immunological and phagocytic properties. Oligodendrocytes provide the myeline sheath around the 

neuronal axons, thus guaranteeing quick and undisturbed electrical signaling.

Astrocytes (literally “star-formed cells”) probably have the most complex role of all glial cells. 

Although far from being completely understood, astrocytes are thought to offer metabolic and 

structural support to neurons and in recent years evidence has arisen that astrocytes might even be 

intimately involved in neuronal information processing (Hansson and Rönnebäck, 2003). Astrocytic 

end feet, together with the gap junctions between the capillary endothelial cells, are part of the 

blood brain barrier (Abbott et al., 1992; Ballabh et al., 2004). Due to their location between 

capillaries and neurons, astrocytes link neuronal activity to energy metabolism and cerebral blood 

flow. Thus, astrocytes are thought to feed “hungry neurons ...[and]...deliver food for thoughts” as 
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Meeks and Mennerick put it (2003). It has been suggested that end-feet of activated astrocytes 

might even feed back onto capillaries leading to local vasodilation and therewith to  increased 

oxygen and glucose delivery (Paulson and Newman, 1987). Indeed, neuron-induced Ca2+   

elevations in astrocytes can lead to release of vasodilatory substances from astrocyte end-feet, 

thereby increasing local blood flow (Zonta et al., 2003; Anderson et al., 2003). Moreover, astrocytes 

supply neurons with neurotransmitter precursors and their uptake of extracellular glutamate, K+, H+

and many other ions and molecules from the synaptical cleft is crucial to brain cell homeostasis. It is 

noteworthy in this context, that astrocytes can express aquaporin-4, which is the predominant water 

channel in the neuropil of the CNS (Nagelhus et al., 2004; Simard and Nedergaard, 2004). Although 

not electrically excitable, astrocytes probably can communicate with each other by e.g. Ca2+ waves 

(Bennett et al., 2003; Giaume et al., 2003; Hansson and Rönnebäck, 2003). By enwraping pre- and 

postsynaptic terminals they can  modulate neurotransmission (Nedergaard et al., 2003; Newman, 

2003) and evidence has been found that they even might release glutamate under some 

circumstances in a Ca2+-dependant manner (Nedergaard et al., 2002; Liu et al., 2004). Several 

studies in the last decade have demonstrated intense communication between neurons and astrocytes 

(Rouach et al., 2004). As outlined above, astrocytic Ca2+ levels become elevated in response to 

neuronal input, which in turn influences synaptic activity.  It has even been hypothesized that 

astrocytes might form a gliovascular network consisting of microdomaines and higher-order 

gliovascular units matching local neuronal activity and blood flow (Nedergaard et al., 2003).  At the 

same time they might regulate neuronal firing thresholds through coordinative glial signaling and 

thereby establishing not only the structural, but also the functional architecture of the brain 

(Nedergaard et al., 2003). The intimate function of astrocytes in the so-called “glutamine-glutamate-

GABA-cycle” (Hertz et al., 1979) is referred to later in the text. Thus, although astrocytes have been 

relatively overlooked during many decades, they have gained unexpected attention in recent years. 

They are “stars at last” (Ransom et al., 2003). Today it is well known that altered glial neuronal 

interaction plays a crucial role in many neurological and neuropsychiatric conditions.
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1.2. The Tricarboxylic Acid Cycle and brain energy metabolism 

The main energy source for the mammalian brain is glucose, which is transported from the blood 

across the blood brain barrier to neurons and glia. Lactate, fatty acids, ketone bodies, acetate and 

other substrates cannot compensate for insufficient glucose supply to the brain as is evident from 

cerebral dysfunction in hypoglycemia. The uptake of glucose is maintained by special glucose 

transporter proteins (GLUT) in endothelial (the 55-kDA isoform of GLUT1) and glial cells (the 45-

kDA isoform of GLUT1; Choeiri et al., 2005; Wong et al., 2005), neurons (GLUT3; Maher, 1995) 

and microglia (GLUT5; Horikoshi et al., 2003). Inside the cell, glucose is phosphorylated to 

glucose-6-phosphate, which has a central position since from here glycolysis, the pentose phosphate 

pathway or glycogen formation originate. The cytosolic glycolysis transforms one molecule of 

glucose into two molecules of pyruvate and adenosine triphosphate (ATP) is formed from adenosine 

diphosphate (ADP). Pyruvate might enter the mitochondrial tricarboxylic acid (TCA) cycle after 

oxidative decarboxylation to acetyl coenzyme A. This step is catalyzed by pyruvate dehydrogenase 

(PDH). Then acetyl-CoA derived from glucose or other energy metabolites, can be completely 

metabolized to CO2 and H2O. Taking into account the net results from glycolysis, TCA cycle and 

the electron transport chain, one molecule of glucose can generate 36 molecules of ATP. However, 

it is interesting to note that in the immature rat brain, ketone bodies can represent about 30-70% of 

the total energy metabolism (Nehlig, 2004). 

However, glycolysis and TCA cycle do not serve as energy producing cataplerotic 

pathways  only, but they also provide carbon skeletons for the synthesis of metabolites such as 

glutamate, GABA, glutamine and many others as is outlined below. The main anaplerotic enzyme 

in the brain is pyruvate carboxylase (PC) present in glia only (Patel, 1974; Shank et al., 1985; 

Wiesinger et al., 1997). PC converts pyruvate to oxalacetate, which then condenses with acetyl CoA 

to provide net synthesis of a molecule of -ketoglutarate, thereby replenishing the TCA cycle 

intermediates. Thus, the TCA cycle can be described as a biochemical turntable which is also 

intimately involved in neurotransmitter synthesis in both astrocytes and neurons.   
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1.3. Neurotransmitters 

Neurotransmitters are chemical substances interacting at synapses between nerve cells and their 

targets in the central or peripheral nervous system. The action potential causes neurotransmitter 

release from presynaptic vesicles mediated by Ca2+. Simplified, chemical synapses can be divided 

into direct and indirect synapses. At the former, the transmitters bind to ionotropic receptors in the 

membrane of  the postsynaptic cell leading to the opening of ion channels and membrane potential 

changes by influx of extracellular ions. At the latter, metabotropic receptors and second messenger 

systems are involved. Transmitters are then taken up into the postsynaptic neuron or astrocytes by 

specific reuptake mechanisms or, alternatively, they are degraded by enzymatic activity in the 

synaptic cleft such as acetylcholine.   

Serotonin, acetylcholine, the amino acids glutamate, -aminobutyric-acid (GABA) and glycine and 

the catecholamines adrenaline, noradrenaline and dopamine are termed classical neurotransmitters, 

while non-classical transmitters include peptides, NO, CO and many others. In contrast to old 

doctrines, more than one type of neurotransmitter may be released by a single neuron, although the 

specificity of neurotransmitter release allows the distinction between for example glutamatergic, 

GABAergic or noradrenergic neurons. 

1.4. Glial-neuronal interactions and the metabolism of amino acid neurotransmitters 

Glial and neuronal metabolism are intimately connected. Figure 1 gives a simplified illustration of 

glial neuronal metabolic interaction. Neurons lack the main anaplerotic enzyme in the brain, namely 

pyruvate carboxylase, and are therefore depending on astrocytic supply of TCA cycle intermediates 

since every drain of neuronal amino acids would otherwise lead to a shortage of neurotransmitter 

precursors. Moreover, astrocytes take up neuronal glutamate which will lead to further depletion of 

transmitters in neurons.  Thus, net synthesis of neuronal TCA cycle metabolites and compounds like 

glutamate and GABA require the entry of a four carbon unit. Pyruvate carboxylase in astrocytes 

transforms pyruvate to oxalacetate resulting after condensation with acetyl CoA in the formation of 
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the TCA cycle intermediate citrate, which can be further converted to -ketoglutarate. From  -

ketoglutarate glutamate can be formed with help of glutamate dehydrogenase or different 

transaminases (see Westergaard et al., 1995, for a review), but more important, glutamate can 

emerge from glutamine after hydrolyzation by phosphate-activated glutaminase (Kvamme et al., 

2000). The latter pathway is part of the so-called “glutamine-glutamate-cycle”, which was first 

introduced in the late 1960ies (Berl and Clarke, 1969; Van den Berg and Garfinkel, 1971) and then 

later extended to the “glutamine-glutamate-GABA-cycle” (Hertz, 1979). Shortly, astrocytes release 

glutamine into the extracellular space. From there glutamine is taken up by neurons converting it to 

glutamate and GABA. After release upon depolarization the transmitters are cleared from the 

synaptic cleft by astrocytes transforming glutamate to glutamine again and the cycle is closed.  

Glutamate from glutamine can be converted to -ketoglutarate and, as can be seen in Figure 1,  can 

enter the TCA cycle both in neurons and astrocytes. Note that GABA is predominately taken up into 

neurons (Schousboe et al., 2000 and 2003). 

Figure 1. Simplified presentation of glial-neuronal interactions. See Introduction for details. 

1.4.1. Glutamate 

Glutamate is the most important excitatory neurotransmitter in the mammalian CNS. Beside the 
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neurotransmitter pool, there is a metabolic pool of glutamate, which in astrocytes after conversion to 

glutamine  by glial specific glutamine synthetase can be metabolized in the TCA cycle for energy 

production as outlined above. Alternatively, it is incorporated into numerous proteins or peptides 

such as glutathione.  Since glutamate usually does not cross the blood brain barrier (Hawkins et al., 

1995), it is mainly produced within the CNS itself and most of the neurotransmitter pool is stored in 

the synaptical vesicles of glutamatergic neurons. Thus, under physiological circumstances 

intracellular concentration of glutamate exceeds extracellular concentration by a factor of 103-105

(Hamberger et al., 1983; Lehmann et al., 1983; Schousboe, 2003). Glutamate homeostasis is crucial 

to brain function due to two reasons. First, fast removal of glutamate from the synaptical cleft 

guarantees short glutamate action on the postsynaptic target cell and thereby precise information 

signaling. Second, high extracellular concentration of glutamate is cell damaging and the 

neurotoxicity of excessive glutamate release is of paramount importance in many neurological 

disorders (see section 1.4.). Indeed, reverse transport of glutamate from glial cytosol into the 

extracellular space induced by release of glutamate and potassium by damaged nerve cells (Billups 

and Attwell, 1996) exacerbates the deleterious effects of brain injury. However, evidence has also 

been found that vesicular release of glutamate from astrocytes in a Ca2+-dependant manner might 

under more physiological circumstances contribute to neuronal-astrocytic information signaling as 

explained earlier (Nedergaard et al., 2002; Liu et al., 2004). 

Five distinct glutamate transporters have been cloned so far, namely GLAST (EAAT1), GLT 

(EAAT2), EAAC (EAAT3), EAAT4 and EAAT5 (see Danbolt, 2001, for an extensive review). The 

significance of astrocytic clearing of glutamate as part of the “glutamate-glutamine-cycle” is 

illustrated by the fact that GLAST and GLT, which account for most of the glutamate transport, are 

restricted to astroglial cells. In contrast, EAAT3-5, transporters of minor importance for glutamate 

clearance from the synaptic cleft, are expressed on both glia and neurons and have a less ubiquitous 

localization with EAAT4 being mainly restricted to cerebellar purkinje cells and EAAT5 to retinal 

cells (Arriza et al., 1997; Eliasof et al., 1998). There are two different types of glutamate receptors:

G-protein-coupled, second messenger activating metabotropic receptors (mGluRs) and ligand gated 



16

ionotropic receptors (iGluRs). The latter consist of cation channels and are distinguished according 

to their different sensitivities to glutamate analogues: N-methyl-D-asparte (NMDA), kainate and -

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. Thus, as outlined in 1.4. 

NMDA, kainic acid and AMPA are widely used experimental substances. However, it should be 

remembered that, although many substances modify the NMDA receptor, the natural transmitter for 

the receptors is none of these analogues, but glutamate.  

Both in neurons and astrocytes the acetyl CoA used for glutamate synthesis is mainly produced 

from glucose after glycolysis. However, in contrast to neurons, astrocytes can have a netsynthesis of 

glutamate since they can convert pyruvate to oxalacetate. As mentioned above, glutamate can be 

transformed to glutamine by glutamine synthetase, which is exclusively localized in astroglia 

(Norenberg et al., 1979). Glutamine can then be released by astrocytes as part of the “glutamine-

glutamate-cycle”. Neurons convert glutamine to glutamate via phophate activated glutaminase 

(PAG), which is situated  in the inner mitochondrial membrane (Kvamme et al., 2000), and depend 

on astrocytic glutamine supply.  

1.4.2. GABA 

Being the most important inhibitory neurotransmitter in the mammalian CNS, GABA plays a 

significant role both in normal and pathological conditions. It is mainly found in GABAergic 

neurons, e.g. in the basal ganglia it is released by GABAergic interneurons to inhibit excitatory 

neurons projecting to the motor cortex (Carlsson et al., 2001). Its depletion and the blockade of 

GABA receptors by substances such as picrotoxin, pentylenetetrazole or penicillin lead to increased 

excitatory brain function as seen in convulsions. GABA is synthesized both in the cell body and the 

nerve terminal directly from glutamate by glutamate decarboxylase, which consist in two isoforms, 

GAD65 and GAD67 (Martin and Rinmvall, 1993).  The latter has been associated with the production 

of cytoplasmic GABA, while  GAD65  probably stands for the major part of vesicular GABA 

(Kaufmann et al., 1991; Waagepetersen et al., 1999). In the so-called GABA-shunt  GABA can be 

converted by GABA aminotransferase to form succinic semialdehyde, which afterwards is oxidized 
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to succinate permitting four of five C-atoms from -ketoglutarate to re-join the TCA cycle (Balazs 

et al., 1970).

However, upon release into the synaptical cleft the major part of GABA is taken up again by the 

same GABAergic neurons and only to a lesser extent by astrocytes ( Schousboe, 2000 and 2003). 

Therefore it remains controversial how much of GABA synthesis is depending on astrocytic 

glutamine supply (Cerdan et al., 1990; Hertz et al., 1992; Preece and Cerdan, 1996). Moreover, 

conflicting results have been found concerning the conversion from glutamine to GABA. In vitro 

data point towards initial glutamine incorporation,  after conversion to glutamate and  -

ketoglutarate, into the TCA cycle of GABAergic neurons (Westergaard et al., 1995; Waagepetersen 

et al., 1999), whereas in vivo data  suggest immediate conversion to GABA via glutamate (Hassel et 

al., 1995 and 1998; Sonnwald et al., 1996). 

Two ionotropic GABA receptors, GABAA and GABAC, and one metabotropic receptor, GABAB,

have been identified so far. As a distinct feature, GABAA receptors are regulated by allosteric 

modulation (Costa, 1991). They have four subunits, , ,  an  (Johnston, 1996; Vafa and 

Schofield, 1998), each with multiple variants, and exhibit binding sites for among others 

benzodiazepines and barbiturates. GABA transporters exist as four subtypes: GAT-1, predominantly 

present on GABAergic neurons and to a lesser extend on astrocytes, GAT-2, GAT-3 and low-

affinity subtype BGT-1. Note that the amount of GABA transferred from neurons to astrocytes is 

significantly smaller than the corresponding transport of glutamate and most of the released GABA 

is cleared from the synaptic cleft by re-uptake into GABAergic neurons (Schousboe et al., 2000 and 

2003) as previously outlined. 
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1.5. General criteria for animal models of brain disorders

Four major criteria are important when establishing experimental models of neurological and 

psychiatric disorders.

1. Face validity: How well is e.g. depressive behaviour copied by the animal model? Face validity 

may be difficult to achieve due to the fact that animals simply are not human beings. Thus, only 

some of the traits seen in depression can be mimicked. For example, fatigue and decreased sexual 

behaviour can be imitated, but not the feeling of guilt. 

2. Causative validity: How well does the factor, that induces the modelled behaviour, correspond to 

the current theories of what causes the illness?   

3. Construct validity : How well does the neurobiological correlates of the observed behaviour 

correspond to the theoretical model of what underlies human diseases? Causative and construct 

validity are more or less the same. They are difficult to achieve as well, since our knowledge about 

many of the underlying causes of brain disorders are still very limited. However, this is why animal 

models are established.

4. Predictive validity: How well does the model predict the therapeutic activity of drugs used to 

treat the disorder? Predictive validity may be the most important point, because animal models with 

high predictive validity are the ones used in pharmacological research. A model of epilepsy or 

affective disorder that corresponds to the same pharmacological treatment used in humans but not to 

other drugs, has high predictive validity. 

All animal procedures in the present thesis were approved by the Norwegian Animal Research 

Authority. 
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1.6. Epilepsy 

Epilepsy can be defined as a group of chronic brain diseases leading to repetitive, most  often 

spontaneous epileptic seizures. While about 5% of all the world's population experiences at least 

one single epileptic seizure in life, 0.5-1% develop epilepsy, which therefore is one of the most 

common severe neurological diseases (Sander and Shorvon, 1996). In Europe, the prevalence is ca. 

650 cases in 100,000 inhabitants. The incidence is highest in childhood, lowest in adolescence, early 

and middle adulthood and rises again from age 65 (Brodie and Dichter, 1997).

In short, abnormal paroxysmal depolarization of individual neurons due to disturbances of ion 

channels, neurotransmission or electrolytes spreads out by multi-cellular pathological 

synchronization. Thus, epileptic seizures can be evoked by structural brain lesions, but repetitive 

seizures can on their own cause selective cell damage in the cerebral cortex, hippocampus, brain 

stem and other areas (Gutula et al., 2003). Strong genetic disposition, occurrence at a certain age 

and lack of a known lesion are all characteristic for idiopathic or genuine epilepsy, while 

symptomatic epilepsy is provoked by a distinctive cause such as perinatal complications, cerebral 

deformities, brain trauma and tumor, vascular lesions, alcoholism, encephalitis and many more. The 

clinical manifestations are traditionally divided into partial seizures, which start in only one cerebral 

hemisphere, and generalized seizures, in which both hemispheres are involved. The International 

Classification of Epileptic Seizures, introduced 1981 by the International League against Epilepsy, 

distinguishes simple partial seizures without impaired consciousness, complex partial seizures with 

disturbed consciousness and partial seizures with secondary generalization.  Primary generalized 

seizures include absences (petit mal), tonic, clonic, tonic-clonic (grand mal), myoclonic and atonic 

convulsions. Moreover, there are unclassified seizures such as neonatal seizures and neonatal 

spasms. To the differential diagnosis of epilepsy belong syncope, psychogenic fits, narcolepsy, drop 

attacks due to insufficiency of the vertebrobasilar blood circulation, global transitory amnesia, 

hyperventilation tetany and certain psychiatric states such as katatonic and dissociative syndromes. 
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1.6.1. Animal models of epileptic disorders 

Concordant to the great variety of disorders which constitute epilepsy, many different animal 

models have been introduced. Status epilepticus can be induced by lithium and pilocarpine (Nehlig 

et al., 2002). Generalized seizures are moreover mimicked by e.g. different genetic models such as 

genetically epilepsy-prone rats (Hjeresen et al., 1987), electrically induced seizures (Castellion et 

al., 1965) or by one of the kindling models such as the well-established Pentylentetrazole (PTZ)-

kindling model. Epileptic kindling refers to the regular application of chemical or electrical stimuli 

in sub-threshold doses, which due to the additive effect consequently lead to epileptic seizures 

probably by  altered concentrations of extra-and intracellular ions and impairment of specific 

membrane functions (Bradford, 1995). For a review on kindling models see Löscher and Schmidt 

(1988). Pentylentetrazole is a chemical convulsant exerting its epileptogenic action by binding to 

the picrotoxin-binding site of the post-synaptic GABAA receptor (Macdonald and Barker, 1978; 

Ramamjaneyulu and Ticku, 1984), thereby decreasing GABA release and consequently enhancing 

neuronal depolarization (De Deyn and Macdonald, 1989). PTZ-kindling was used in the present 

studies (papers I and II). By increasing  GABA inhibition Phenobarbital is able to prevent epileptic 

seizures and, since it is a barbiturate, its efficacy and toxicity are greatest in later life (Macdonal and 

Barker, 1977; Kitani et al., 1988).  However,  kindling behavior can be induced by many other 

chemical convulsants, including NMDA antagonists such as MK801, CGP 37849 and CGP 39551 

(Loscher and Honack, 1991).

Moreover, there are a number of animal models, both genetic (Nehlig and Boehrer, 2003) and 

chemically induced by -hydroxybutyrate (GHB) (Snead et al., 1999), for generalized absence 

seizures with appropriate spike-wave patterns similar to human epilepsy and response to clinically 

used therapeutic agents.   
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While simple partial seizures may be induced by focal micro-application of e.g. penicillin (Meldrum 

and Naquet, 1970) or picrotoxin (Usunoff et al., 1969) on the cerebral cortex, direct injection of 

tetanus toxin into the hippocampus (Jefferys et al., 1995) or systemically (Sperk, 1994; Watanabe et 

al., 1999) or intrahippocampal administered kainate (de Vasconcelos et al., 2005) lead to complex 

partial seizures. Kainate, a glutamate receptor antagonist widely used to induce temporal lobe 

seizures, evokes hippocampal sclerosis and disturebd glial-neuronal interactions (Mueller et al., 

2000; Qu et al., 2003). Another model of limbic seizures is the pilocarpine model (Garzillo and 

Mello, 2002).

Epilepsy due to post-traumatic brain injury is evoked by the model of the chronic isolated cortex 

(Echlin and Battista, 1963), focal iron-induced epilepsy (Willmore et al., 1978) and fluid perkussion 

(Lowenstein et al., 1992). Moreover, there are also models for neonatal hyperthermic (Dube et al., 

2000), other febrile seizures (Bender et al., 2004), epilepsy in cortical dysplasia (Schwartzkroin et 

al., 2004) and hypoxia-induced seizures (Jensen et al., 1995). Even models for delicate epileptic 

disorders such as reflex epilepsy exist. The Fayoumi strain of chickens (Fepi) carries a recessive 

autosomal gene mutation leading to photogenic and audiogenic reflex epilepsy in homozygotes 

(Batini et al., 2004). Seizures are characterized by stimulus-locked motor symptoms followed by 

generalized self-sustained convulsions. Spikes and spike and waves patterns at rest are seen on EEG 

recordings and are suppressed during seizures and replaced by a desynchronized pattern of activity 

(Batini et al., 2004). 

Unfortunately, at least models of generalized seizures are somewhat limited by the relatively low 

and sporadic incidence of truly spontaneous seizures. Thus, most of the epileptic events occur more 

or less directly after manipulation such as the intraperitoneal administration of Pentylentetrazole or 

electrical stimulation. All epileptic models, however, have lead to significant insight into the 

etiology of epilepsy and consequently to therapeutic options such as antiepileptic brain surgery, 

valgus nerve stimulation and most important medical therapy including carbamazepine, valproate, 

phenytoin, benzodiazepines, barbiturates, oxcarbazepine, lamotrigen, gabapentin, tiagabine, 
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levetiracetam, zonisamide, topiramate and others. Please see Fisher (1989), Kupferberg (2001) and 

Jefferys (2003) for general reviews on models of epilepsy and resulting pathophysiological findings. 

For the role of glutamate transporters in experimental epilepsy please consider Maragakis and 

Rothstein (2004). 

However, as with other brain diseases, it should be noted that glutamate plays a pivotal role in 

epilepsy. Alteration of glutamate transporter expression and function may be an essential part of 

epileptogenesis (see Maragakis and Rothstein, 2004, for a review). Tanaka et al. (1997) found 

neuronal loss in the hippocampus of GLT1 knock-out mice resulting in seizures and increased 

mortality. Compared to wild-type mice GLAST knock-out mice responded to Pentylentetrazole with 

increased seizure activity (Watanabe et al., 1999). Others described a down-regulation of the 

neuronal EAAT3 transporter in some hippocampal areas of kainate-kindled rats (Simantov et al., 

1999).  Also decreased GABA activity is related to changes in glutamate transporter as was shown 

by Sekuty and co-workers, who demonstrated a 50% loss of hippocampal GABA amounts 

associated with knock-down of EAAC1 (Sepkuty et al., 2002).  
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1.7. Hydrocephalus 

The healthy brain produces as much cerebrospinal fluid (CSF) as it resorbs. If production surpasses 

elimination, hydrocephalus develops and the amount of  CSF in the intracranial space is increased to 

the expense of brain tissue and blood volume. Different forms of hydrocephalus are distinguished: 

In non-communicative hydrocephalus an obstruction in the ventricular system above the spinal cord 

due to tumors, blood clots, meningeal inflammation and many more causes ventricle enlargement 

and  increased intracranial pressure (ICP). In contrast, the communicative hydrocephalus is 

characterized by open CSF pathways, but impaired CSF absorption. Underlying conditions are e.g. 

sinus venous thrombosis, subarachnoidal bleedings and meningeal inflammation involving the 

Granulationes arachnoidales, all of them leading to disturbed CSF elimination into the venous 

system.  CSF overproduction due to carcinoma or papilloma of the plexus choroideus is a very 

seldom cause for hydrocephalus. This is also true for primary brain tissue loss leading to  

hydrocephalus ex vacuo, which refers to the compensative filling of the empty space by CSF.

The so-called “Normal Pressure Hydrocephalus” (NPH) is a form of communicative hydrocephalus 

with ventriculomegaly and impaired CSF absorption but without elevated ICP. Clinically, NPH  is 

characterized by the trias of dementia, urine incontinence and gait disturbances.  Hydrocephalus and 

other conditions with raised ICP lead to several symptoms depending on the time of development 

and the patient's age. In infants with  open fontanelles acute hydrocephalus can cause massive head 

enlargement and the so-called sunset phenomenon. In older children or adults increased ICP 

provokes headache, malaise and vomiting. Papilloedema develop after several days and the sunset-

phenomenon may occur due to ocular palsy of the third cranial nerve. If not treated correctly, a 

further increase  of ICP compromises brain stem function accompanied by loss of brain stem 

reflexes, coma and death.  

Treatment of hydrocephalus may either be operative or conservative depending on the underlying 

causes and progression of the disease. To date the exact time for surgical intervention or even the 
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very indication for ventricular shunt therapy still remain problematic and in most cases invasive 

diagnostic procedures are required. In future non-invasive monitoring of brain metabolism might 

help to select the hydrocephalic patients who benefit from surgery. However, to achieve this goal 

profound knowledge about  the metabolic alterations in hydrocephalus is necessary, but not yet 

available.  Since a lumbar puncture is a relatively safe and  uncomplicated technique, most studies 

on brain metabolism in humans have evaluated levels of neurotransmitters, neuropeptides and 

amino acids in CSF and not brain tissue (Inagawa et. al, 1980; Engelsen et al., 1985; Barecca et al., 

1991; Zeman et al., 1991; Malm et al., 1991 and 1994; Raftopopulus et al., 1996; Yamamoto et al., 

1999). Although this methodological disadvantage is not relevant for animal studies, the few studies 

published on brain metabolism of hydrocephalic rats or other animals are quite contradictory as 

outlined below.  

1.7.1. Animal models of hydrocephalus 

While Higashi et al. reported increased amounts of dopamine, noradrenaline and homovanilic acid 

in rat cerebrum (Higashi et al., 1986), others found decreased activity of noradrenergic and 

dopaminergic neurons in rats with one and four weeks old hydrocephalus (Miyake et al., 1992). In 

rabbit brain with hydrocephalus dopamine release was enhanced in cerebellum, hypothalamus, 

mesencephalon and pons including medulla oblongata, but lowered in cortex and nucleus caudatus 

(Miwa et al., 1982). Alterations in cholinergic, GABAergic and dopaminergic neuronal metabolism 

were found in rat basal ganglia (Tashiro et al., 1997) and in  hippocampus levels of acetylcholine 

and noradrenaline were decreased (Egawata et al., 2002).  A decline of dopaminergic neurons in the 

substantia nigra was shown in rats with acute hydrocephalus, but not subacute hydrocephalus 

(Ishizaka et al., 2000). In neonatal hydrocephalus decreased amounts of glutamine, glutamate, 

aspartate, N-acetyl-aspartate and alanine were detected by using ¹H-Magnetic-Resonance-

Spectroscopy (Harris et al., 1997; Jones et al., 1997), while there were significantly higher levels of 

aspartate, glutamate and glutamine in rats with infantile hydrocephalus (Del Bigio and Vriend, 

1998).
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However, today we know  that hydrocephalus is a process involving the whole brain and is not, as 

formerly believed,  restricted to the periventricular area: Changes in metabolism have been 

described in the basalganglia (Tashiro et al., 1997; Ishizaka et al., 2000), in the cerebellum, 

hypothalamus, mesencephalon, pons, medulla oblongata and nucleus caudatus (Miwa et al., 1982), 

hippocampus (Egawata et al., 2002) and last, not least, in the cortex (Miwa et al., 1982, Harris et al., 

1997; Jones et al., 1997; Del Bigio and Vriend, 1998, Egawata et al., 2002). 

Experimental studies on hydrocephalus have been conducted since the beginning of 

the twentieth century. The great neurosurgeon W.E. Dandy together with K.D. Blackfan published 

the very first study in 1914 (Dandy and Blackfan, 1914).  Although already described in 1932 by 

Dixon et al., the kaolin-model is still one of the most studied hydrocephalus models and was used in 

paper III. The instillation of Kaolin into the cisterna magna causes aseptic inflammation of the basal 

meninges, which leads to the closure of the foramina Magendi and Luschka of the fourth ventricle 

and consequently to the development of non-communicative hydrocephalus. In the acute phase of 

rat kaolin-hydrocephalus four weeks after treatment ICP and CSF outflow resistance are highest, 

while the chronic phase is defined by normal basal pressure, declining outflow resistance and 

progression of ventriculomegaly (Kondziella et al., 2002). In the same study only moderate 

metabolic changes were detected by HPLC in the acute period with increased glutamine and 

decreased taurine in the cerebrum and increased alanine in the brain stem. However, distinct 

biochemical changes occurred during the chronic period such as a remarkable decrease of 

glutamate, glutamine and taurine in the cerebellum and other changes in cerebrum and brain stem 

(Kondziella et al., 2002).



26

1.8. Glutamate Excitotoxicity and Schizophrenia 

Glutamate is centrally involved in brain diseases ranging from Alzheimer's to schizophrenia and has 

many sites of action both intra- and extracellular. However, one pathophysiological feature of 

glutamate is relevant for nearly every brain disorder leading to impaired cell functioning or cell 

death: This is the neurotoxicity of excessive glutamate release, which causes extreme calcium influx 

into the cells.  

The dual role of glutamate, both vitally important and highly toxic, has been known for a long time 

(Olney, 1969). In order to establish new treatments, NMDA receptor (and other glutamate) 

antagonists have been tested clinically in many CNS disorders including riluzole in amyotrophic 

lateral sclerosis (Bensimon et al., 1994), memantine in Alzheimer's disease (Fleischhacker et al., 

1986), selfotel in stroke (Davis et al., 2000),  CP-101,606 in brain trauma (Bullock et al., 1999) and 

many more. Unfortunately, results of these studies have been quite disappointing so far. In 

amyotrophic lateral sclerosis, riluzole, the only available treatment at the moment, prolongs survival 

of the average patient by two months – mean duration of the disease is three to five years (Festoff et 

al., 2003; Miller et al., 2003). In focal cerebral ischaemia there was even a trend toward increased 

mortality with selfotel treatment (Muir and Lees, 2003).  

Extensive research is now performed on the formerly relatively overlooked AMPA-receptor 

(Furukawa et al., 2003; Rego et al., 2003; Van Damme et al., 2003). However, there is also 

increasing knowledge about the previously underestimated complexity of the NMDA receptor. 

While earlier experimental studies reported mainly a neuroprotective potential of glutamate 

antagonists (Park et al., 1988; Ozyurt et al., 1988; Faden et al., 1989; Foster et al., 1988; Choi et al., 

1988; Shapira, 1990), soon the additional neurotoxic properties of glutamate/NMDA antagonism 

were recognized (Olney et Farber, 1994; Farber et al., 1995, 1996 and 1998; Kim et al., 1999). Also 

recent papers report both positiv (Aono et al., 2002; Calzada et al., 2002; Miguel-Hidalgo et al., 

2002; Williams et al., 2002; Brandt et al., 2003; Calabresi et al., 2003; Zieminska et al., 2003; Lee 

et al., 2004) and negative influence on neurons (Dave et al., 2001; Farber 2002a and b; Ogita et al., 
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2003; Olney et al., 2003).

How can results concerning glutamate antagonism be so conflicting? The answer probably lies in 

the diversity of neurons and glutamate receptor subtypes and -units. Thus, the blockade of glutamate 

release of glutamatergic neurons acting on GABAergic interneurons might be neurotoxic by 

increasing indirectly glutamate release at a second glutamatergic neuron behind the interneuron 

(Farber et al., 1995). On the contrary, the blockade of NMDA receptors at the second glutamatergic 

neuron at the end of the chain might be neuroprotective. Moreover, it is now well-understood that 

there are different NMDA receptors and even many different subunits on each receptor (Danbolt, 

2001; Bleich 2003).

In the past years glutamatergic hypofunction has been recognized to play a significant role in 

schizophrenia, which is as an endogenous psychosis and a major psychiatric disorder. Prodrome, 

active and residual symptoms include delusions, hallucinations, disorganized speech, psychomotor 

disturbances such as grossly disorganized, catatonic or stereotyped behavior, and negative 

symptoms such as affective flattening.  Men and women are equally often affected, although 

schizophrenia develops earlier in male patients, who on average become symptomatic in their early 

or mid twenties, approximately five years prior to females (Häfner et al., 1992). Prevalence 

worldwide is 0.5-1.0% and incidence 0.05%,  largely independent from socio-cultural aspects 

(Häfner, 1993). 

According to the dopamine hypothesis of schizophrenia the clinical symptoms of this disorder are 

the consequence of central dopaminergic hyperactivity. Of  the three major dopamingergic 

pathways, namely the nigrostriatal, the tuberoinfundibular and the mesolimbic-mesocortical 

systems, only the latter is believed to be relevant to schizophrenia, which might explain the fact, 

why Parkinson's disease caused by dopaminergic hypofunction in the nigrostriatal system can 

coexist with schizophrenia. The dopamine hypothesis arose from psychopharmacological findings 

showing that dopamine-antagonists have antipsychotic effects in schizophrenic patients and 

moreover, that the effectiveness of these drugs is positive correlated to their ability to block 

dopamine receptors, especially the Dopamine-D2-receptor. Furthermore, L-dopa, the precursor of 
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dopamine and still the therapeutic cornerstone in Parkinson's disease, can produce psychotic 

symptoms. Recently the hyperdopaminergic hypothesis of schizophrenia has received more direct 

support from neuroimaging studies (Breier et al., 1997;  Abi-Dargham et al., 1998 and 2000). 

However, there are significant arguments against the believe that increased dopamine activity might 

be the single cause to psychotic conditions. For instance, studies of the CSF homovanillic acid, the 

main dopamine metabolite, have in general shown no altered concentrations in schizophrenic 

patients compared to controls (Bowers, 1970; Berger at al., 1980).  Even more relevant might be the 

fact that glutamate-receptor antagonists, such as phencyclidine, ketamine or MK801 acting on 

NMDA-receptors, have strong psychomimetic effects with hallucinations and psychomotor signs. 

Moreover, lysergic acid diethylamide, abbreviated LSD, produces psychotic symptoms also without 

interfering with dopamine receptors, but by binding to the serotonin-5HT-2 -receptor. Thus, in 

recent years evidence has arisen that the hypothesis of  primary dopaminergic hyperfunction has to 

be revised or, at least, extended, and a more differentiated approach including dopaminergic, 

glutamtergic and serotonergic neurotransmitter systems is favored (for a review see Carlsson et al., 

2001). The intimate connection of dopamine and glutamate metabolism has lead to the hypothesis 

of glutamate hypofunction causing increased dopamine activity and schizophrenic characteristics 

(Carlsson et al., 1999; Jentsch and Roth, 1999), but also a NMDA recepetor hypofunction model of 

glutamate induced neurotoxicity without direct involvement of  dopamine metabolism has been 

proposed (Olney, 1989). 

However, with a deeper understanding of the NMDA receptor not only new knowledge about the 

origin of different brain diseases like schizophrenia will arise. Even a second generation of NMDA 

receptor antagonists acting more specifically on different subunits of the receptor and thus new 

potential therapies might be developed. Future aspects for epidemiology and socio-economy look 

huge in the light of an increasingly aging population in the western world (Kilpatrick and Tilbrook, 

2002). For a review on the “enormous potential of NMDA recpetor antagonists” see Smith, 2003. 
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1.8.1. Animal models of Schizophrenia and NMDA-toxicity 

In the late 1950s Phencyclidine (PCP) was introduced as a general dissociative anesthetic 

(Johnstone et al., 1958; Collins et al., 1960; Corssen and Domino, 1966). NMDA glutamate-

receptor antagonists, such as PCP, ketamine or dizocilpine-maleate (MK801; 5R, 10S]-[+]-5-

Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine), have been shown to cause strong 

psychomimetic effects with hallucinations and psychomotor signs and have been used extensively 

in schizophrenia research. In contrast to dopaminergic agonists, which only mimic the positive 

symptoms of schizophrenia, NMDA antagonists produce the whole spectrum including negative and 

cognitive symptoms. They are therefore considered appropriate schizophrenia models. 

One of the best characterized non-competitive antagonists of the PCP binding site of the NMDA 

receptor is MK801, which is even more selective than PCP (Carlsson et al., 2001). MK801 causes 

behavioral changes in rodents such as hypermobility, head weaving and ataxia (Loscher et al., 

1991), altered cerebral metabolism such as excessive cerebral glucose supply (Loubinoux et al., 

1994) and is able to minimize cell damage in the hippocampus during ischaemia, but also to induce 

neuronal degeneration in the cingulate cortex (Wozniak et al., 1998). Thus,  it is a widely studied 

substance in experimental research of both schizophrenia and glutamate neurotoxicity.   
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1.9. NMR Spectroscopy 

Nuclear Magnetic Resonance Spectroscopy (NMRS) allows the noninvasive study of biochemical 

processes in vivo, ex vivo and in vitro. Thus, cell cultures, tissue, animals and humans can be 

examined. Like Nuclear Magnet Resonance Imaging (MRI) and functional Imaging (fMRI), NMRS  

does not depend on x-rays or the application of radioactive material. The main principle is that 

atoms with uneven mass numbers and/or odd numbers of protons have a nuclear spin or so-called 

magnetic moments. A large number of nuclei with magnetic moments exist, but in practice less than 

ten have made an impact on biochemical research:  13 C is mainly used to examine metabolic 

pathways as is outlined below.  High energy phosphates and phospholipids can be studied using 31P

NMRS and levels of amino acids, glucose, lactate and  NAA using 1H NMRS, while studies on drug 

distribution mostly involve 19F NMRS. Less often used nuclei are 7Li, 14N and 23Na.

When a strong external magnetic field (B0) is applied to a sample, the earlier randomly oriented 

atoms with a magnetic moment align themselves with respect to B0 either with or against its 

direction. The distribution of these spins therefore has different energy states and the difference can 

be described as E = hB0 /2 ,  being the gyromagnetic ratio. The distribution of the spins is 

characterized by the Bolzman formula: N /N  = e- E/K BT , where N  equals the number of spins in 

the higher energy state, N  the number of spins in the lower energy state, KB is the Bolzman's 

constant and T the absolute temperature. When applying a second magnetic field B1  in form of a 

radio frequency pulse vertically on B0, the spins will change their distribution and absorb the energy 

from the RF pulse if the frequency of the pulse is the same with which the spins resonate, namely 

the so-called Larmor frequency:  = B0 /2  .  At the time B1   is removed the spins will return to 

their former distribution, inducing a current in the MR coil. This current is recorded as the MR 

signal and is called the free induction decay (FID). Since the FID is usually received from a 

homogenous sample containing nuclei with different resonance frequencies, these different 

compounds have to be resolved by converting amplitude against time to amplitude against 

frequency, which can be achieved using the mathematical operation known as Fourier
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transformation. A scan refers to one cycle of pulsing and data acquisition. Since the signal to noise 

ratio increases with the square root of the number of scans, a reasonable high number of scans 

should be performed to obtain reliable results, depending on concentration of the analyzed 

metabolites.   

Both MR spectroscopy and imaging exploit the magnetic features of nuclei with nuclear spin (I 0)

when placed in a uniform magnetic field. The nuclear spins are then oriented in different energy 

levels (n=2I+I ) by equilibrium processes. A radio frequency energy is applied to induce 

transmission between the different energy states. The excited nuclei return to  equilibrium due to 

longitudinal and transversal relaxation processes. This time-dependent decay is acuired and Fourrier 

transformed into a frequency-dependent spectrum. Depending on the molecular environment of a 

certain nucleus a specific peak is registered.

Spectral analysis: Tissue, blood, urine and other fluids comprise a tremendous amount of MR 

detectable compounds. Therefore NMR spectra are often very complex and different approaches are 

used to investigate them. Peak areas and intensities can be compared to an internal reference such as 

ethylene glycol, which was used in the present studies. To correct for partial saturation factors for 

relaxation and nuclear Overhauser effects (NOE) were applied to all the  13C spectra. 

NOE is due to proton decoupling of the 13C NMR spectra and the intensities of the 13C signals are 

usually increased up to 200%. The NOE depend on conditions influencing relaxation such as the 

number of protons covalently bound and will therefore vary from nucleus to nucleus. In the present  

13C  NMRS experiments some spectra were taken with a long inter scan delay and broad-band 

decoupling during acquisition to obtain heteronuclear decoupling, but to avoid NOE. 

For information on 1H NMR spectroscopy see Materials and Methods. 

1.9.1. 13C NMR Spectroscopy application to neuroscience 

13C NMRS is an excellent tool to obtain information about metabolic pathways and glial-neuronal 

metabolic interactions, especially since not only cell cultures and animal models can be studied, but 
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also patients. See Sonnewald et al. (1996) for an comprehensive review for the application of 13C

NMRS on cell cultures, Sonnewald and Kondziella (2003) on animal models for neurological 

diseases and Taylor et al. (1996) for glial neuronal interaction. The natural abundance of 13C is only 

1.1%, thus 13C labeled precursors and products are easily detected. However, it is important to 

observe that the occurrence of two neighboring 13C atoms, causing homonuclear spin-spin-coupling, 

leads to splitting and displacement of the resonance from the central singlet resonance, which is 

present if the 13C is alone. 13C - 13C spin coupling makes the detection of label particularly specific, 

because the likeliness of two naturally adjacent 13C atoms in the same molecule is very small, which 

is why precursors such as [1,2-13C]acetate can be used. For an exhaustive description of 

homonuclear splitting patterns in biological molecules see Cerdan et al., (1990) and Bachelard and 

Badar-Goffer for quantification of spectra (1993).  13C- 1H coupling is called heteronuclear 

coupling. Barany et al. (1985) have established a detailed allocation of resonances in rat brain 

extracts and the application of 13C NMRS to the study of metabolic pathways in guina pig brain 

slices has been performed for the first time by Bachelard and Badar-Goffer, who used [1-

13C]glucose both in extracts and during superfusion.  Since then glial neuronal metabolic interaction 

has been studied both in rat brain extracts (Shank et al., 1993), cultures of cortical astrocytes, 

neurons and co-cultures thereof both in cerebrum and cerebellum (Sonnewald et al., 1997) and in 

different animal models such as the stroke model of temporary occlusion of the middle cerebral 

artery (Haaberg et al., 1998).

Neurons metabolize the major part of acetyl-CoA derived from glucose, while acetate is selectively 

taken up by astrocytes due to a specialized transport system being absent or less active in neurons 

(Minchin and Beart, 1975; Sonnewald et al., 1991; Waniewski and Martin, 1998). Thus, by 

simultaneous administration of [1-13C]glucose and [1,2-13C]acetate neuronal and astrocytic 

metabolism can be studied in the same animal (Taylor et al., 1996), which constitutes the main 

principle of glial neuronal metabolic studies using 13C NMRS. Injection of 13C-labeled glucose and 

acetate leads to efficient labeling of many metabolites, as is shown in the brain extract spectrum in 

Figure 2. Label from [1-13C]glucose can be quantified by analyzing the singlet peaks in the different 
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compounds. In contrast, the doublets seen in the spectrum are mostly derived from [1,2-13C]acetate

and thus astrocytic metabolism. By comparing the doublets with the singlets in Figure 2, it is 

obvious that glutamine is labeled more from [1,2-13C]acetate (doublet) than [1-13C]glucose (singlet); 

the opposite is the case for glutamate and GABA. Alanine, lactate, C6-N-acetylaspartate (NAA) and 

succinate are mainly labeled from glucose. Creatine and taurine are not labeled, the naturally 

abundant 13C gives rise to the observed singlets. 

Figure 2. 13C NMR spectrum of temporal lobe extracts from rats injected with MK801 together 
with [1,2-13C]acetate and [1-13C]glucose. Peak assignments; 1: glutamate C-2; 2: glutamine C-2; 3: 
aspartate C-2; 4: aspartate C-3; 5: GABA C-2; 6: succinate C-2/C-3; 7: glutamate C-4; 8: glutamine 
C-4; 9: glutamate C-3; 10: glutamine C-4; 11: GABA C-3; 12: N-acetyl-aspartate C-3; 13: lactate 
C-3.
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Since both acetyl-CoA and oxalacetate can be labeled or unlabeled, the number of possible 

isotopomers of the TCA metabolites is large and only compounds derived from the firsts two turns 

are represented in the Figures (Figures 3-4). However, conclusions about the predominant 

metabolic pathways can be drawn from the acetate/glucose utilization ratios of metabolites such as 

glutamate, glutamine and GABA.  
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1.9.1.1. Labeling from [1-13C]glucose

As described for glucose in general in section 1.1.2. and as can be seen in Figure 3 [1-13C]glucose is 

converted to pyruvate via glycolysis and can form [3-13C]alanine and [3-13C]lactate. Pyruvate may 

enter the TCA cycle via [2-13C ]acetyl-CoA, which will lead to the formation of [4-13C]glutamate 

and glutamine or [2-13C]GABA. Alternatively, pyruvate can be carboxylated by pyruvate 

carboxylase (PC) to oxalacetate, which will lead to the synthesis of [2-13C]glutamate and glutamine 

or [4-13C]GABA.

Figure 3. Schematic presentation of isotopomers of glutamate, glutamine and GABA derived from 
[1-13C]glucose after the first and second turn of the tricarboxylic acid (TCA) cycle. 
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1.9.1.2. Labeling from [1,2-13C]acetate

[1,2-13C]acetate can also be converted to acetyl-CoA, however, the product, [1,2-13C]acetyl-CoA, 

will have two 13C atoms (Figure 4), resulting in doublet formation. Thus, [4,5-13C]glutamate and 

glutamine or [1,2-13C]GABA are formed.                                            

Figure 4. Schematic presentation of isotopomers of glutamate, glutamine and GABA derived from 
[1,2-13C]acetate after the first and second turn of the tricarboxylic acid (TCA) cycle.  
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2. Materials and Methods 

2.1. Experimental Procedures 

2.1.1. The PTZ-Model of Epilepsy and SAMP8 

As outlined earlier, the prevalence and incidence of epilepsy is high in the elderly (Sander and 

Shorvon, 1996). However, most animal models of epilepsy use young adult rodents. Senescence-

accelerated  mice P8 (SAMP8) represent a model of aging and are, although growing normally, 

characterized by a life span that is only about half as long as in controls (Abe et al., 1994). 

Genetically induced learning and memory deficits in SMAP8 (Fujibayashi et al., 1994) might be 

evoked by substantially increased glioses in hippocampus and cerebral cortex (Nomura et al., 1996).

Thus, the PTZ-model of epilepsy was combined with a model of aging: 2 and 8 months old SAMP8 

mice received intraperitoneal applications of regular sub-threshold doses of PTZ (35mg/kg) or 

respectively  PTZ and phenobarbital (10mg/kg) every other day for 40 days, while controls were 

treated with saline. During a period of 30 minutes the behavior was monitored according to a score 

system: 0=normal behavior, 1= myoclonic jerks, 2=minimal seizures without Straub-tail, 3= 

minimal seizures with Straub-tail, 4=generalized tonic-clonic seizures with loss of consciousness 

and postictal phase, 5=like 4 but with rotation on their axis, 6=like 5 and death. On day 40, fifteen 

minutes after intraperitoneal administration of [1-13C]glucose and [1,2-13C] acetate, the mice were 

sacrificed, cerebrum, cerebellum and brain stem prepared followed by  HPLC and NMR 

spectroscopy.

2.1.2. The Kaolin-Model of Hydrocephalus 

Rats were deeply anaethesized with ketamine (100mg/kg body weight) and 

medotomidinhydrochlorid (0,5mg/kg) and the cisterna magna was prepared microsurgically by 

exposing the atlanto-occipital membrane. Following a medial incision a venflon catheter was 

inserted and 0.1ml kaolin solution carefully injected. The membrane incision was covered using a 
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3x3mm piece of resorbable gelatin sponge to prevent leakage of Kaolin. After wound closure the 

rats were allowed to recover and hydrocephalus developed spontaneously. Two, four and six weeks 

after kaolin injection rats were decapitated and NMR spectroscopy performed on cerebrum, 

cerebellum and brain stem.  

2.1.3. The NMDA receptor antagonist MK801 and schizophrenia 

Two different studies, single and repeated administration of MK801, were performed.  

First, saline or MK801 (0.5mg/kg body weight) were injected once intraperitoneally in Sprague 

Dawley rats. Immediately afterwards all subjects received [1-C13]glucose and [1,2- C13 ]acetate 

intraperitoneally in the contralateral side of the abdomen. Twenty minutes later animals were 

sacrificed by decapitation and cingulate, retrosplenial and parts of the frontal cortex (CRFC) were 

dissected. Moreover, the temporal lobe (TE) was prepared by a 3mm long horizontal cut from the 

most lateral  point of the hemisphere and another cut reaching ventrally through the whole brain. 

Thus, TE included temporal and piriform cortex, amygdala and parts of the hippocampus.  CRFC 

and TE were then analyzed using HPLC, 1 H and 13C NMR spectroscopy.

Second, saline or MK801 (0.5mg/kg body weight) were administered intraperitoneally on any other 

day for twelve days. Ataxia was assessed by observing rats for 30 minutes after MK801 

administration and  documenting  the number of falls or other sudden drops in posture. 

Hyperlocomotion was measured during the same period by  counting how often rats crossed over 

from one corner of the cage to the other and passed completely one of the two imaginary lines 

dividing the cage in four equal quarters. The last MK801 injection was given together with [1- 

13C]glucose and [1,2- 13C]acetate and twenty minutes afterwards animals were decapitated. TE and 

CRFC were studied by HPLC, 1 H and 13C NMR spectroscopy.

Three MK801 treated rats and five controls did not receive [1-13C]glucose and [1,2-13C]acetate in 

their last injection. They were deeply anesthetized with ketamine (100mg/kg) and 

medotomidinehydrochloride (0.5mg/kg) and underwent cardiac perfusion with 20ml heparinized 

0.9% saline and a modified Karnovsky solution (2% formaldehyd, 2.5% glutaraldehyd, 0.1M 
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natriumcacodylate buffer, 0.025% CaCl2; pH 7.4). Brains were removed immediately after 

perfusion and stored in the same fixative until slicing. All slices were processed by sequential 

alcohol dehydration, cleared, infiltrated, embedded in paraffin and stained with Hematoxilin-Eosin 

or Nissl-stained. Using the atlas of Paxinos and Watson (1998) CRFC, TE and hippocampus were 

identified and examined by light microscopy for signs of neuronal degeneration such as 

intracytoplasmatic vacuoles, remnant nuclear debris, brightly eosinophilic cytoplasm and local glial 

reaction, which have been described earlier (Olney et al., 1989).

2.2. High Pressure Liquid Chromatography 

 Absolute levels of amino acids such as glutamate, GABA, glutamine, alanine, aspartate and taurine 

were analyzed by High Pressure Liquid Chromatography (HPLC) on a Hewlett Packard system 

(Agilent, USA) with fluorescence detection after derivatization with o-phthaldialdehyde. In the 

study of repeated MK801 administration (paper V) also dopamine,  noradrenaline and serotonin 

were measured. As quantification standard a standard solution of amino acids was examined in 

between all samples, which were normally highly diluted before analysis (Geddes and Wood, 1984). 

For paper V the monoamine transmitter substances (NA, Da, 5-HT) and acid (DOPAC, 5-HIAA, 

HVA) metabolites were quantified in brain tissue homogenates by HPLC separations and 

electrochemical detection. The analytical method is based on two chromatographic separations for 

amines and acids. Both systems are equipped with a reverse phase coloumn (Luna C18(2), dp 3μm, 

50 x 2mm i.d., Phenomex), and electrochemical detection is accomplished at two potentials on 

glassy carbon electrodes (MF-1000, Bioanalytical Systems, Inc.). The aqueous mobile phase 

(0.4ml/min) for the acid system contains citric acid 14mM, sodium citrate 10mM, MeOH 15% (v/v) 

and EDTA 0.1mM. Detection potentials relative to Ag/AgCl reference are 0.45 and 0.6V. The 

aqueous ion pairing mobile phase (0.5ml/min) for the amine system contains citric acid 5mM, 

sodium citrate 10mM, MeOH 9%(v/v), decane sulfonic acid 0.45mM and EDTA 0.1 mM. Detection 

potentials relative to Ag/AgCl reference are 0.45 and 0.65V.
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2.3 13C NMR spectroscopy 

Proton decoupled 150.92 MHz 13C NMR spectra were obtained using a Bruker DRX-600 

spectrometer after the samples had been re-dissolved in 200 μL D2O containing ethylene glycol 

0.1% as an internal standard. Scans were accumulated with a 30º pulse angle and 30 kHz spectral 

width with 64K data points. The number of scans was typically 10,000. The acquisition time was 

1.08 s, the relaxation delay 0.5 s.  Factors for nuclear Overhauser and relaxation effects were 

applied to all spectra. 

2.4. 1H NMR spectroscopy 

1H is the natural form and easily detected by NMR spectroscopy (for reviews see Bachelard and 

Badar-Goffer, 1993; Sonnewald et al., 1994). The acquisition time is short. However, the 

disadvantage is that the chemical shift range is very narrow and peaks may overlap. 1H NMR 

spectroscopy is used to quantify concentrations of amino acids, lactate, glucose and other small 

molecules. For the experiments in papers IV and V a DRX-600 spectrometer was used to obtain 1H

NMR spectra with a sweep width of 12 kHz with 32K data points. The pulse angle was 90°, the 

acquisition time 1.36 s and the relaxation delay was 10 s. The number of scans was 400. Water 

suppression was set at the residual H2O resonance. 

2.5. Statistics 

The statistical differences between groups were analyzed by several methods such as ANOVA and 

student's t-test, depending on the number of groups. Please see the different papers for more 

information. p<0.05 was considered significant. 
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3. Aims of Study 

To answer the following questions: 

1. What are the glial-neuronal interactions in experimental epilepsy in SAMP8 and how are they 

influenced by phenobarbital? Are there differences in behavior in old SAMP8 compared to young 

SAMP8? What impact has aging on brain metabolism? 

2. What are the glial-neuronal interactions in experimental hydrocephalus? How do these 

interactions change with the time course of hydrocephalus development?  

3. What are the glial-neuronal interactions in experimental schizophrenia, respectively in NMDA 

antagonism? What are the differences in brain metabolism between a single acute and repeated 

MK801 administration?  

4. Is there evidence for neuronal degeneration in the cortex of rats treated repeatedly with MK801?  

Is there a different pattern of impairment in different cortical localizations?  How might cortical 

metabolism of monoamines such as dopamine, noradrenaline and serotonin be connected with glial-

neuronal glutamatergic interactions? 

5. Is there a common pattern of glial-neuronal interactions in the different brain disorders? Do 

astrocytes preserve and protect neuronal metabolism? Does disturbance of glial-neuronal 

interactions start with astrocytic impairment? 

6. What additional information of disordered brain biochemistry does 13C NMRS reveal compared 

to HPLC?
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4. Synopsis of Papers 

Paper I 

D. Kondziella, A. Bidar, B. Urfjell, O. Sletvold, U. Sonnewald: The pentylentetrazole-kindling 

model of epilepsy in old and young SAMP8 mice: Behaviour and metabolism. Neurochemistry 

International, 2002 (40): 413C-418. 

Pentylentetrazole (PTZ)-kindling was induced in senescence-accelerated mice P8 (SAMP8), a 

model for aging. 2 months and 8 months old SAMP8 received either PTZ (35mg/kg), PTZ 

(35mg/kg) and Phenobarbital (10mg/kg) or saline intraperitoneally every second day for 40 days 

and their behavior was monitored using the following score list: (0) normal behavior, (1) myoclonic 

jerks, (2) minimal seizures without Straub-tail, (3) minimal seizures with Straub-tail, (4) generalized 

tonic-clonic seizures with loss of consciousness and postictal phase, (5) like (4) but with rotation on 

their axis. On day 40, the animals were decapitated and amounts of glutathione, glutamine, 

glutamate, GABA, aspartete, alanine plus taurine were measured by HPLC.  Although each mouse 

had an individual seizure pattern, no statistical difference were found between young and old 

SAMP8. PTZ evoked seizures leading to death occurred in two of the six 8 months old animals, but 

not in any 2 months old animal. Atypical absence seizures were restricted to old animals and 

occurred in three animals. Significantly lower amounts of GABA, glutamine and glutathione were 

noted in 8 months old SAMP8 controls compared to 2 months old. However,  concentrations of 

metabolites were the same in all groups of 2 months old animals, whereas 8 months old SAMP8 had 

raised GABA, glutamine and glutathione levels when treated with either PTZ alone or together with 

Phenobarbital. Thus, it was concluded that, in terms of absolute metabolite concentrations, brain 

metabolism of old SAMP8 is more susceptible to PTZ and Phenobarbital compared to young 

SAMP8.

Moreover, MR imaging was performed on a 2.3T DRX 100 Biospec from Bruker (Germany) on one 

2 months old PTZ animal and one young control, which later were excluded from the metabolic 
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studies, however, no differences were found.  

Paper II 

D. Kondziella, J. Hammer, O. Sletvold, U. Sonnewald:   The pentylenetetrazole-kindling  model  of 

epilepsy in SAMP8 mice: Glial neuronal metabolic interactions. Neurochemistry International, 2003 

(43): 629-637. 

Pentylentetrazole(PTZ)-kindling was combined with the aging model of senescence-accelerated 

mice P8 (SAMP8) as described in Paper I.  On day 40, the animals were injected with 

intraperitoneal [1-13C]glucose (0.3M, 543mg/kg) plus [1,2-13C]acetate (0.6M, 504mg/kg) and 13C

NMRS was performed on the whole brains. In 2 months old SAMP8 PTZ-kindling decreased 

labeling of glutamine C-4 both from [1-13C]glucose and [1,2-13C]acetate, while it lowered labeling 

in glutamate C-4 from [1-13C]glucose only, indicating that PTZ-kindling affected  mainly astrocytes 

in younger and glutamatergic neurons in older animals. Surprisingly, in the presence of PTZ, 

phenobarbital decreased labeling of most metabolites from both [1-13C]glucose and [1,2-13C]acetate

in young SAMP8, although in older animals only GABAergic neurons were affected as suggested 

by an increase in GABA labeling.  In addition, phenobarbital normalized glutamate labeling from  

[1-13C]glucose in the old PTZ/phenobarbital animals.

Paper III 

D. Kondziella, Q. Hong, W. Luedemann, T. Brinker, O. Sletvold, U. Sonnewald: Astrocyte 

metabolism is disturbed in the early development of experimental hydrocephalus. Journal of 

Neurochemistry,2003 (85) 274-281. 

Two, four and six weeks after the Kaolin injection into the cisterna magna of adult Sprague Dawley 

rats, [1-13C]glucose (0.3M, 543mg/kg) plus [1,2-13C]acetate (0.6M, 504mg/kg) were administered 

intraperitoneally and cerebrum, cerebellum and brainstem dissected. Interestingly, 13C NMRS 

revealed  that labeling of most amino acids derived from [1-13C]glucose remained unaffected, while 

labeling from [1,2-13C]acetate was significantly altered in various metabolites during the acute 
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period of hydrocephalus. Cerebral [1,2-13C]lactate and brainstem [1,2-13C] GABA were increased, 

while taurine was decreased in cerebrum two weeks after hydrocephalus induction. Additional two 

weeks later labeling from [1,2-13C]acetate was statistically decreased in cerebral [4,5-13C]glutamate, 

[1,2-13C]glutamate and [1,2-13C]GABA. N-acetylaspartate (NAA), a neuronal marker, remained 

unchanged in week four, and first in the chronic period of hydrocephalus labeling of NAA-C6 was 

lowered in cerebellum and brainstem, but not in cerebrum. Thus, it was concluded that astrocyte 

metabolism is disturbed in the early development of kaolin-hydrocephalus and only later, at the 

chronic stage, neuronal metabolism becomes  affected as well.  

Paper IV 

E. Brenner, D. Kondziella, A. Håberg, U. Sonnewald: Impaired glutamine metabolism in NMDA 

receptor hypofunction induced by MK801. Submitted. 

Sprague-Dawley rats received either a single application of MK801 (0.5mg/kg) or saline together 

with  [1-13C]glucose (543mg/kg) and [1,2-13C]acetate (504mg/kg). After decapitation the temporal 

lobe and the cingulate, retrosplenial and frontal cortices (CRFC) were prepared and examined by 

HPLC, 1H NMRS and 13C NMRS. Hypofunction of the NMDA receptor induced similar changes in 

both brain areas investigated. However, the changes were most pronounced in the temporal lobe. 

Generally, only labeling form [1-13C]glucose was affected by MK801. The only change in labeling 

from [1,2-13C]acetate was in an isotopomer of glutamine derived from the second turn of the TCA 

cycle. In CRFC and temporal lobe amounts of both labeled and unlabeled glutamine were increased, 

whereas those of aspartate were decreased. The decrease in labeling of aspartate in the CRFC was 

more pronounced than the decrease in concentration, leading to decreased 13C enrichment. The 

amount of lactate formed from unlabeled glucose or other unlabeled substrates was also increased in 

both areas. In temporal lobe, not in CRFC, increased concentrations of glutamate, GABA, 

succinate, glutathione and inositol were detected together with increased labeling of GABA and 

succinate from [1-13C]glucose and glutamine from [1,2-13C]acetate. 13C enrichment was increased 

in succinate and decreased in glutamate. Whereas labeled and unlabeled glutamine was increased, 
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this was only the case for unlabeled glutamate. The results point towards a disturbance in glutamate-

glutamine cycling and thus interaction between neurons and glia, since labeling of these two amino 

acids from glucose was affected differently.   

Paper V 

D. Kondziella, E. Brenner,  E.M. Evjolfsson, K.R. Markinhuhta., M.L. Carlsson, U. Sonnewald: 

Glial-neuronal interactions are impaired in the schizophrenia model of repeated MK801 exposure. 

Submitted. 

NMDA receptors such as Phencyclidine and MK801 provoke psychotic and other neuropsychiatric 

symptoms. Thus, repeated MK801 administration can serve as an animal model of schizophrenia. 

Saline or MK801 (0.5mg/kg) were injected every other day for twelve days. Hyperlocomotion and 

ataxia were measured semi-quantitavely for half an hour after each injection. The last dose was 

given together with [1-13C]glucose (543mg/kg) and [1,2-13C]acetate (504mg/kg) followed by 

decapitation 20 minutes later. Temporal lobe (TE) and retrosplenial, cingulate and parts of frontal 

cortex (CRFC) extracts were studied by HPLC, 13C and 1H NMR spectroscopy. Five controls and 

three MK801 animals underwent cardiac perfusion and Hematoxilin-Eosin- and Nissl-stained 

histological slices from RSC and TE were examined by light microscopy, but no morphological 

changes were found. Behavioral alterations such as head waving, hyperlocomotion, abducted 

hindlimbs and ataxia were found and were characterized by considerable inter- and intravariability. 

  MK801 affected the CRFC to a much greater extent  than the temporal lobe with 

significant increases in the levels of glutathione, glutamate and taurine, but unchanged cortical 

amounts of dopamine, noradrenaline and serotonin. [4,5-13C]glutamate and [4,5-113C]glutamine, 

derived from [1,2-13C]acetate, were significantly decreased in CRFC. Label from [1-13C]glucose

was affected in the same brain region with decreases of [4-13C]glutamate, [2-13C]GABA and [4-

13C]GABA. Glutamate cycling from [1-13C]glucose was changed in both the investigated brain 

areas and an increase of the cycling ratio for 13C from [1,2-13C]acetate was found for glutamine in 

the CRFC. Acetate/glucose ratios of glutamate and glutamine were decreased in the CRFC. It was 
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concluded that the present findings might add to the disturbances of the cortico-striato-thalamo-

cortical loop caused by NDMA receptor blockade and hence to the sensory gating deficits 

provoking sensory overstimulation of the cortex and psychosis. Moreover, astrocytic function and 

the glutamine-glutamate cycle are probably of greater importance for schizophrenia pathophysology 

than hitherto recognized.
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5. Discussion 

5.1. Glial-neuronal interactions in the PTZ model of epilepsy in SAMP8 

Each mouse had an individual seizure pattern and besides the fact that deaths and atypical absence 

seizure were restricted to old SAMP8, no statistical differences were found between young and old 

PTZ -kindled mice. Although statistically significant, the results concerning the old animals, which 

received either PTZ alone or together with Phenobarbital, should be interpreted cautiously due to 

the reduced number of animals in the 8 months groups. However, the observed deaths in these 

groups are in line with former results showing that the lethal dose for PTZ (Nokubo and Kitani, 

1988) and Phenobarbital (Kitani et al., 1988) is reduced in mice with increasing age.

In the HPLC study no biochemical changes were observed between the groups of 2 months old, 

while in the 8 months old both treatment groups had significantly higher amounts of GABA, 

glutamine, glutathione and alanine plus taurine compared to 8 months old controls. Since in the 8 

months old treatment groups glutamate concentration was unchanged, while an increase was seen in 

GABA, glutamine and glutathione, it appeared likely that an increased glutamate release lead to 

raised production of glutamate related products as a possible neuroprotective adaption.  SAMP8 

mice receiving both PTZ and Phenobarbital had the same glutamate concentration as the PTZ-

kindled mice, thus it is probable that glutamate levels are influenced by PTZ rather than by the 

seizures themselves. 

According to the HPLC results, cerebral metabolism of 8 months old animals seemed more 

sensitive to PTZ: In terms of absolute metabolite concentrations, brain metabolism of old SAMP8 

was more susceptible to PTZ and Phenobarbital compared to young SAMP8. Moreover, it was 

suggested that glutamate metabolism was altered in old SAMP8 and that excessive glutamate might 

be transformed into glutamate related metabolites, possibly in astrocytes.

However, this interpretation was only partly confirmed by NMRS results, indicating that PTZ-

kindling affected astrocytes in younger animals (decreased labeling in glutamine C4 from [1-

C13C]glucose and [1,2-13C]acetate) and glutamatergic neurons in older animals (decreased labeling 
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in glutamate C4 from [1- 13C]glucose). Surprisingly, PTZ-kindling did not enhance glutamate in 2 

or 8 months old SAMP8. On the contrary, glutamate labeling was significantly decreased in the 8 

months old PTZ animals. A possible explanation might be that PTZ-kindling enhances the density 

of glutamate-binding sites on excitatory neurons, which has indeed been shown earlier (Schroeder et 

al., 1999).

Being in line with HPLC results, aging alone lead to decreased mitochondrial activity in 

glutamatergic, not GABAergic, neurons, as shown by decreased glutamate labeling from [1- 

13C]glucose in old control animals compared to young controls. Moreover, old SAMP8 mice had 

impaired astrocytic metabolism, since glutamine synthesis from [1,2-13C]acetate was lowered.  

Phenobarbital in the presence of PTZ decreased labeling of most metabolites from both [1-

13C]glucose and [1,2-13C]acetate in younger animals with the exception of GABAergic neurons, 

however, in older animals only GABAergic neurons were affected as indicated by an increase in 

GABA labeling. Thus, in contrast to the HPLC results, NMRS revealed significant metabolic 

alterations provoked by Phenobarbital, which were most pronounced in the 2 months old animals. 

Together with the unchanged amino acid levels the decrease of labeling of most metabolites from 

both precursors points towards decreased turnover of metabolites in the 2 months old animals 

treated with both PTZ and Phenobarbital. Interestingly,  co-administration of PTZ and 

Phenobarbital lead to considerably greater changes than PTZ alone. Since PTZ probably acts to a 

greater extent by increasing the number of glutamate-binding sites than by interfering with 

metabolism, as was outlined above, the observed metabolic changes are presumably caused by 

Phenobarbital alone and not by the combined effect of PTZ and Phenobarbital. 

Furthermore Phenobarbital increased GABA-labeling in young and decreased it in old animals, 

underlining again the significant role of GABA for the growing efficacy and neurotoxicity of 

barbiturates in elderly subjects (Macdonald and Barker, 1977; Kitani et al., 1988). Howerever, it is 

interesting that in the old PTZ/phenobarbital animals phenobarbital normalized glutamate labeling 

from  [1-13C]glucose compared to the old PTZ group. 

Additionally, alanine labeling from [1-13C]glucose and glutamate C4 from repeated [1,2-13C]acetate
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labeling were decreased in the young animals receiving both Phenobarbital and PTZ, indicating 

impaired astrocytic metabolism, since alanine labeling in the cortex is presumably an astrocytic 

process (Sonnewald et al., 1991; Westergaard et al., 1993). Transfer of labeled glutamine from 

astrocytes to neurons was probably reduced as well.  

Thus, HPLC results showed only metabolic changes in the 8 months old, and not in the 2 months 

old mice. However, NMRS results indicated changes both in the young and the old animals, namely 

impaired metabolism of glutamatergic neurons in older and of astrocytes in younger rodents. 

5.2. Glial-neuronal interactions in adult rats with kaolin-induced hydrocephalus 

Interestingly, while labeling of most metabolites derived from [1-13C]glucose remained without 

alterations, labeling from [1,2-13C]acetate was affected. Two weeks after kaolin-treatment labeling 

from [1,2-13C]GABA was increased in brain stem and from [1,2-13C]lactate in cerebrum. Four 

weeks after  hydrocephalus-induction labeling of [4,5-13C]glutamate, [1,2-13C]glutamate and [1,2-

13C]GABA in cerebrum were decreased.  Labeling of CH3 in N-acetyl-aspartate, being the only 

altered neuronal marker, was decreased in cerebellum and brainstem six weeks after kaolin-

injection into the cisterna magna.   

Thus, brain metabolism during the  first two weeks of hydrocephalus is not severely damaged, since 

apart from an increase in cerebrum [1,2-13C]lactate and brain stem [1,2-13C]GABA no other 

changes were observed. Astrocyte metabolism in cerebrum is, however, distinctly disturbed from 

week 4 as shown by decreased labeling of metabolites as [4,5-13C]glutamate, [1,2-13C]glutamate 

and [1,2-13C]GABA from [1,2-13C]acetate. In addition [4,5-13C]glutamate was decreased in 

cerebellum. The decreased acetate/glucose utilization ratios for glutamate in cerebrum and 

cerebellum and for GABA in cerebrum reflects altered astrocytic biochemistry as well. Astrocytes 

release [4,5-13C]glutamine from [1,2-13C]acetate for neuronal use. Neurons convert this glutamine 

to [4,5-13C]glutamate, which is mostly stored in glutamatergic neurons (Ottersen and Storm-

Mathisen, 1984). Decreased transport of astrocytic glutamine to  glutamatergic neurons in cerebrum 

was clearly shown by the decrease in [4,5-13C]glutamate from 4 weeks after kaolin installation, 
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since [4,5-13C]glutamine was unchanged. The same was apparently true for the cerebellum. This 

decrease in neurotransmitter precursor could not remain without consequences for the glutamatergic 

neurons because glutamate released from neurons is mainly taken up by astrocytes. Thus, it needs to 

be replenished by glutamine from astrocytes and this constitutes the so-called “glutamine-glutamate 

cycle” (Hertz 1979). Since no changes in glutamate concentrations were found in an earlier study 

using HPLC (Kondziella et al., 2002), glutamatergic neurons probably either released less glutamate 

to decrease the need for replenishment or glutamate from neurons was consumed to a lesser extent 

in the astrocytic TCA cycle. Impairment of these cycles is, however, not likely at the early stages of 

hydrocephalus as labeling from [1-13C]glucose remained unaffected at all time points after kaolin 

injection. Alternatively, increased synthesis of neuronal glutamate from unlabeled precursors  might 

compensate for the decrease in [4,5-13C]glutamate, however, this would eventually lead to depletion 

of metabolites as neurons lack an anaplerotic pathway (Shank et al., 1985) and, consequently, to 

loss of cell function.

Several metabolites from [1,2-13C]acetate were altered, but labeling from [1-13C]glucose was only 

changed in the acetyl group of NAA. NAA is localized to the cytosol of neurons and has been 

proposed as a neuronal marker (Tsai and Coyle, 1995). The amount of label in NAA was decreased 

in cerebellum and brainstem from 6 weeks, but remained unchanged in cerebrum, indicating a slight 

impairment of mitochondrial function in these two brain regions in the chronic period of 

hydrocephalus. Since ventricular enlargement in experimental hydrocephalus does not stop until 8 

weeks after kaolin instillation (Braun et al., 1999), these neuronal disturbances might be related to 

mechanical distortion of the brainstem and cerebellum due to continuing expansion of the third and 

fourth ventricle. 

[1,2-13C]lactate concentration was slightly increased in cerebrum 2 and 6 weeks after hydrocephalus 

onset, while a decrease was noticed in the brainstem in week 6. Via the TCA cycle, [1,2-13C]lactate 

is obtained from [1,2-13C]acetate, as was shown by Hassel and Sonnewald (1995). Note that lactate 

can be labeled via the TCA cycle in cultured astrocytes from [U-13C]glutamate, which was not the 

case in cultured neurons (Sonnewald et al., 1996). Therefore the increase in [1,2-13C]lactate levels 



51

observed in the present study probably occurred in astrocytes. However, the decrease in [4,5-

13C]glutamate and [1,2-13C]GABA took place in neurons, confirming impaired glial-neuronal 

interaction.

In an earlier study it was shown that the acute phase of hydrocephalus in the first four weeks after 

kaolin-injection is characterized by ICP, increased CSF resistance, beginning ventriculomegaly,  

enhanced brain water content and moderate alterations in brain biochemistry as measured by HPLC 

(Kondziella et al., 2002). Glutamine concentration is increased and taurine concentration decreased 

in the cerebrum, while alanine is increased in the brain stem. However, the chronic phase is defined 

by normal ICP, declining CSF outflow resistance, continuing ventricular enlargement and distinct 

changes in the biochemical parameters such as a remarkable decrease of glutamate, glutamine and 

taurine in the cerebellum,  a decrease of taurine and alanine plus an increase in glutamine in the 

cerebrum and an increase of alanine in the brain stem (Kondziella et al., 2002).

While in the same study the amount of taurine remained decreased in the cerebrum, the amount of 

glutamine increased, indicating reactive gliosis, since glutamine synthesis in brain is an exclusively 

astrocytic process. Indeed, the largest effect of hydrocephalus in the cerebrum was seen in taurine, 

an osmolyte (Pasantes-Morales et al., 2002), which was decreased during all time points. It was 

hypothesized that the enhancing ICP and CSF outflow resistance evoke cell oedema which is 

compensated for by release of taurine. This protective mechanism might become insufficient during 

the fourth week, as indicated by increasing brain water content (Kondziella et al., 2002).

However, this hypothesis could not be confirmed in the present NMRS study, since the 

concentration of inositol, which like taurine has a role as an osmotic regulator and is thought to be 

mostly of astrocytic origin (Wolfson et al., 2000), was not altered. Therefore swelling of astrocytes 

is probably not a prominent element in kaolin-hydrocephalus and might instead be true for 

oligodendrocytes in white matter. In this context it is interesting that evidence for an earlier 

disturbance of cerebral blood flow in white matter than in gray matter has been reported (Da Silva 

et al., 1995; Kristensen et al., 1996).

Thus, in the acute stage of experimental hydrocephalus astrocytic metabolism is clearly affected and 
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only later, during the chronic period six weeks after induction of hydrocephalus, neuronal 

metabolism appears to be moderately impaired. 

5.3. Glial-neuronal interactions in MK801 induced NMDA receptor hypofunction and    

experimental schizophrenia 

A single dose of MK801 provoked similar metabolic changes in CRFC and TE, however, the 

changes were more pronounced in the latter.  The amount of glutamine formed from [1,2-

13C]acetate derived from the first turn of the TCA cycle, [4,5-13C]glutamine, was unchanged, 

whereas [1,2-13C]glutamine was increased in the temporal lobe. The latter form of glutamine is 

derived from [1,2-13C]acetate as well, however, 2-oxoglutarate for synthesis of [1,2-13C]glutamine 

via [1,2-13C]glutamate has stayed in the TCA cycle for an additional turn. Thus, in the temporal 

lobe, mitochondrial function was altered in the astrocytes. No changes were observed in [4,5-

13C]glutamine, [4,5-13C]glutamate and [1,2-13C]GABA from [1,2-13C]acetate demonstrating 

unperturbed metabolic flux from astrocytes to neurons in both areas of the brain. These observations 

point towards compartmentation of glutamine metabolism, where glutamine labeled from neuronal 

glutamate ([4-13C]glutamate) is handled in a different compartment than glutamine from astrocytic 

glutamate. 

While astrocytic metabolism seemed relatively preserved, decreased neurotransmitter release from 

synaptic vesicles and impaired conversion of glutamine to glutamate in neurons were noticed. 

However, mitochondrial metabolism in neurons appeared largely preserved, since N-acetylaspartate 

levels remained unchanged. Glutamate synthesis from 13C labeled precursors was not influenced by 

a single dose of MK801. Only unlabeled glutamate was enhanced in the temporal lobe, implying 

that vesicular and initially unlabeled neurotransmitters are not in rapid balance with the cytosolic 

amino acid pool of [4-13C]glutamate. In contrast, GABA synthesis from [1-13C]glucose was

affected by acute  NMDA receptor antagonism, since [3-13C]GABA from the second turn of the 

TCA cycle was increased in the temporal lobe. 

Thus, a single dose of MK801 severely disturbs the “glutamine-glutamate-GABA-cycle” between 



53

neurons and astrocytes as was seen by the significant increase in labeled and unlabeled glutamine in 

both TE and CRFC. Presumably, NMDA receptor blockade reduces Ca2+ influx into the cell and 

consequently increases activity of glutamine synthetase.  Phosphate activated glutaminase, however, 

appears not capable of transforming the increased amount of glutamine into glutamate, possibly due 

to impaired activation secondary to the low intracellular Ca2+ concentration. As a consequence, 

glutamine probably accumulates in astrocytes.  See Figures 5a and 5b for a schematic presentation.  

Figure 5a. Interactions of an astrocyte with pre- and post-synaptic neurons. Glutamate synthesized 
by neurons is released into the synaptic cleft, activating NMDA receptors on astrocytes and neurons 
and is deactivated by uptake mostly into astrocytes. In these glutamate is converted to glutamine by 
glutamine synthetase, an enzyme modulated by nitric oxide. For abbreviations see Figure 5b. 



54

Figure 5b. Schematic presentation of the interactions of an astrocyte with pre- and post-synaptic 
neurons after a single administration of MK801. Reduced NO production due to reduced activation 
of the NMDA receptor will lead to increased activity of GS. This will be most pronounced in the 
synaptic region and will affect the glutamine-glutamate cycle between neurons and astrocytes. *, 
Glutamine in the non-synaptic region mostly labeled from [1,2-13C]acetate; , increased enzyme 
activity; , decreased enzyme activity; stippled lines, modulation of enzyme activity. 
Abbreviations: GS, glutamine synthetase; NMDA receptor, N-methyl-D-aspartate receptor; NO, 
nitric oxide; NOS, nitric oxide synthase; PAG, phosphate activated glutaminase; PC, pyruvate 
carboxylase; PDH, pyruvate dehydrogenase.

No morphological changes were found after repetitive of MK801. Since repeated MK801 

administration did not induce any morphological changes detectable by light microscopy, neuronal 

changes were probably functional, not structural, underlining earlier findings (Brosnan-Watters et 

al., 1999). While absolute levels and turnover of noradrenaline, dopamine and serotonin were not 

changed, significant increases in the concentrations of glutamate, glutathione and taurine were 

found. Glutamate and glutamine, derived from [1,2-13C]acetate and thus astrocytes, were 

significantly decreased in CRFC. Labeling from [1-13C]glucose and thus mostly neuronal 
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metabolism was disturbed  in the same brain region with lowered  labeling of glutamate and GABA. 

The decreased amount of [4,5-13C]glutamate might have its cause in impaired efflux of [4,5-

13C]glutamine from astrocytes to neurons, suggesting that the glutamine-glutamate cycle is 

disturbed during repeated NMDA-antagonist administration  and possibly schizophrenia. The 

decreased acetate-versus-glucose utilization ratio for glutamate, pointing towards  lowered 

astrocytic contribution to glutamate formation, is in line with this assumption. An intriguing 

interpretation might be that glutamate, released from neurons, accumulates in astrocytes. The 

present model of repeated MK801 administration mimics the increased glutamate/glutamine activity 

found in drug naive patients with first episode schizophrenia (Theberge et al., 2002; Hashimoto et 

al., 2005). Additionally, the decreased labeling both in astrocytes and neurons may mirror the 

transition to lower glutamatergic function seen in chronic schizophrenia patients. The decreases in 

astrocytic function and the glutamine-glutamate-GABA cycle might add to the disturbances of the 

cortico-striato-thalamo-cortical loop caused by NDMA receptor blockade. The impaired thalamic 

filter  probably evokes sensory gating deficits with a decreased signal-to-noise-ratio, which has its 

clinical correlate in the characteristic difficulties of psychotic patients to differentiate between 

relevant and irrelevant information.  Consequently, sensory overstimulation of the cortex and 

psychosis develop (Figure 6).
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Figure 6.  A presentation of the so-called cortico-striato-thalamo-cortical loop, which is believed to 
be impaired in schizophrenia and in NMDA hypofunction induced by glutamate antagonists such as 
MK801, PCP or ketamine. Basically, the thalamic filter function appears disturbed, which is 
clinically mirrored by the well-known fact that psychotic patients have great difficulties to separate 
important from irrelevant information. Altered glial-neuronal interactions in the cortex might 
contribute to this. 

5.4. Is there a common pattern of glial-neuronal interactions in different brain disorders? 

Do astrocytes preserve or protect neuronal metabolism? In the study on hydrocephalus astrocyte 

metabolism was impaired first. In the kainate model of temporal lobe epilepsy early astrocyte 

hyperactivity lead to delayed changes in neuronal neurotransmitter metabolism (Müller et al., 2000; 

Qu et al., 2003). These findings might indicate that glial cells either protect neurons initially or, 

alternatively, damaged glial cells cause delayed neuronal hypermetabolism. Bear in mind, however, 

that in this thesis the term “metabolism” mainly refers to glial-neuronal interactions involving 

glutamate and related metabolites, but does not include other substances such as the catecholamines 

dopamine, noradrenaline and adrenaline, which of course might have been significantly affected in 
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the present experiments. At least in the experiment of repeated MK801 administration, cortical 

dopamine was not decreased. 

In contrast to the hydrocephalus and temporal lobe epilepsy experiments, the studies of epilepsy in 

SAMP8 and of NMDA receptor hypofunction did not show primary astrocytic impairment, thus 

indicating that there is no general pattern of glial-neuronal interactions, but that astrocytic function 

differs from disorder to disorder. After a single MK801 dose, astrocytic metabolism remained 

relatively unaffected, but evidence was found for a decreased neurotransmitter release from synaptic 

vesicles and impaired conversion of glutamine to glutamate in neurons. Repeated MK801 

administration lead primarily to altered neuronal and to a lesser extent impaired astrocytic 

metabolism. Moreover,  neuronal  glutamate turnover was decreased in all brain regions after acute 

generalized seizures induced by a single PTZ-injection, whereas astrocyte metabolism remained 

unchanged (Eloqayli et al., 2003).

Even  neurotoxic properties of astrocytic metabolism have been described: In the stroke model of 

middle cerebral artery occlusion both astrocytic and neuronal metabolism was impaired early in the 

core of the ischemic infarct, but in the penumbra glutamine from preserved astrocytes lead to 

glutamate neurotoxicity (Haaberg et al., 2001). Furthermore, neuronal-glial relationship changes 

with age, as shown by the SAMP8 study, in which disturbed metabolism  was observed in the 

astrocytes of young and of glutamatergic neurons in old animals.

5.5. Validation of Methods 

What additional information of disordered brain biochemistry does 13C NMRS reveal compared to 

HPLC? HPLC-results in the PTZ-model of epilepsy suggested that glutamate metabolism was 

altered in old SAMP8 and that excessive glutamate was transformed into glutamate related 

metabolites, possibly in astrocytes. This was only partly confirmed by NMRS results showing 

altered glutamate metabolism, but a decrease, not an increase in glutamate labeling. Moreover, 

although HPLC indicated undisturbed brain metabolism in young SAMP8 treated with 

Phenobarbital and PTZ or PTZ alone, NMRS revealed profound changes in astrocytic metabolism 



58

in these animals. However, HPLC results were interpreted such that aging in control SAMP8 lead to 

impaired astrocytic metabolism, which was corroborated by NMRS showing decreased glutamine 

synthesis from [1,2-13C]acetate.

In the hydrocephalus studies, HPLC and NMRS revealed lower levels of amino acid, respectively 

labeling, in the brainstem compared to cerebrum, probably reflecting the greater content of gray 

matter in the cerebrum. Moreover, with both methods  evidence was found for impaired neuronal 

metabolism in the cerebellum during the chronic phase of kaolin-hydrocephalus. In the experiment 

of acute MK801 induced NMDA hypofunction a significant increase in [4-13C]glutamine and a 

decrease in [2-13C]aspartate was noted in the CRFC (NMRS) with corresponding alterations for the 

absolute levels of aspartate and glutamine (HPLC). 

Compartmentation, intercellular and intracellular, is well-documented and 13C NMRS studies have 

also confirmed this concept (Waagepetersen et al., 2003; Sonnewald et al., 2004; Qu et al., 2005). 

Recently, the first in vivo evidence of the compartmentation of uptake and metabolism of glucose in 

neurons and astrocytes has been reported (Nehlig et al., 2004).  Also in the present experiments 

evidence for compartmentation was found. For example, in rats treated with a single dose of 

MK801 glutamine labeled from neuronal glutamate ([4-13C]glutamate) was handled differently than 

glutamine from astrocytic glutamate ([4,5-13C]glutamate). However, since HPLC only measures 

absolute metabolite levels, its contribution to the study of intracellular compartmentation is very 

limited.    

In conclusion it can be stated that, although NMR studies are very expensive, 13C NMRS will 

presumably gain considerable clinical impact in the future. Elegant human in vivo studies are 

already emerging (for a review see Ross et al., 2003)and also combinations of in vivo and ex vivo 

studies have been published (Garcia-Espinosa et al., 2004; Martinez-Bisbal et al., 2004).  The 

dynamic picture of metabolic changes obtained by 13C NMRS complements the rather static facts 

obtained by 1H NMRS and methods such as HPLC. Combination of 13C and 1H NMRS allows the 

detection of energy metabolism and neurotransmission during functional activation, thereby further 

strengthening our understanding of the neurochemical basis of brain function (de Graaf et al., 2003). 
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However, when possible, NMRS and HPLC data should always be interpreted together, since 

differences in the amounts of unlabeled and labeled metabolites can give valuable information. 
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6. Conclusions 

1.  PTZ-kindling alters mainly metabolism of astrocytes in younger and of glutamatergic neurons in 

older SAMP8.

2. In the presence of PTZ, phenobarbital decreases labeling of most metabolites from both [1-

13C]glucose and [1,2-13C]acetate in young SAMP8, although in older animals only GABAergic 

neurons are concerned. In addition, phenobarbital normalizes glutamate labeling from  [1-

13C]glucose in the old PTZ/phenobarbital animals. 

3. Aging of SAMP8 leads to decreased mitochondrial activity in glutamatergic neurons, as shown 

by decreased glutamate labeling from [1-13C]glucose in old control animals compared to young 

controls. Moreover, old SAMP8 mice have disturbed astrocytic metabolism, which is indicated by 

lowered glutamine synthesis from [1,2-13C]acetate.

4. Astrocyte metabolism is impaired in the early development of kaolin-hydrocephalus and only 

later, at the chronic stage, neuronal metabolism becomes affected as well.  

5. A decrease in [4,5-13C]glutamate and unchanged [4,5-13C]glutamine indicates impaired transport 

of astrocytic glutamine to glutamatergic neurons 4 weeks after hydrocephalus induction. 

6. While a single dose of MK801 mainly disturbs metabolism in the temporal lobe, repeated 

administration leads mostly to metabolic impairment in the CRFC. 

7. A single dose of MK801 profoundly affects the glutamine-glutamate-GABA-cycle between 
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neurons and astrocytes and evidence has been found for decreased neurotransmitter release from 

synaptic vesicles and impaired conversion of glutamine to glutamate in neurons.  

8. MK801 leads to compartmentation of glutamine metabolism, where glutamine labeled from 

neuronal glutamate is handled in a different compartment than glutamine from astrocytic glutamate. 

9. Repeated MK801 administration provokes primarily altered neuronal metabolism, while 

astrocytic metabolism appears to be relatively unaffected.

10. Although the glutamate antagonist MK801 induces a state of NMDA hypofunction, it increases 

glutamate concentration in the TE of rats subjected to a single dose and in the CRFC of rats treated 

with repeated doses. 

11. In contrast to the hydrocephalus experiment, the studies of epilepsy in SAMP8 and of NMDA 

receptor hypofunction do not show primary astrocytic impairment. Thus, astrocytic function differs 

from disorder to disorder and there is no general pattern of glial-neuronal interactions. 
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Abstract

This work describes a novel epilepsy model, combining pentylenetetrazole (PTZ) kindling with the senescence-accelerated mouse P8
(SAMP8) a model for aging. The 2- and 8-month-old SAMP8 mice were treated with PTZ, phenobarbital plus PTZ or saline every 48 h
during a period of 40 days. Both 2- and 8-month-old PTZ-kindled mice showed a behavioral pattern that was very similar to severe
chronic epilepsy with secondary generalized seizures. Two out of six 8-month-old animals died in the PTZ group. Interestingly, atypical
absence seizures were limited to the 8-month-old PTZ group. Furthermore, 8-month-old mice were more sensitive to the sedative effect
of phenobarbital. The concentrations of several amino acids were examined by HPLC. Lower levels of amino acids were found in the
8-month-old compared to the 2-month-old control animals. No biochemical changes were observed between the groups of 2-month-old
animals, while in the 8-month-old animals both treatment groups showed significantly higher concentrations of GABA, glutamine and
glutathione. Thus, it could be shown that cerebral metabolism of 8-month-old SAMP8 mice was more sensitive to PTZ and phenobarbital
than metabolism of 2-month-old mice. Furthermore, it is suggested that glutamate metabolism in brains of 8-month-old SAMP8 mice is
altered and that excessive glutamate is transformed, in considerable amounts, into glutamate related metabolites, possibly in astrocytes.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The prevalence and incidence of epilepsy are highest in
later life with around 25% of new cases occurring in elderly
people, many of whom will have concomitant neurodegen-
erative, cerebrovascular, or neoplastic diseases (Stephen and
Brodie, 2000). Thus, the aim of the present study was to com-
bine an animal model of epilepsy with one of aging, senes-
cence-accelerated mouse P8 (SAMP8), with spontaneously
occurring age-related deficits in learning and memory a
genetic model for gerontological studies (Fujibayashi et al.,
1994). They are characterized by a short life span (ca. half a
normal mouse life) and normal growth (Abe et al., 1994). In
the present study this model was combined with the penty-
lenetetrazole (PTZ) kindling model for chronic epilepsy.

Epilepsy can be described as a group of neurological
disorders characterized by recurrent episodes of convulsive
seizures, loss of consciousness, sensory disturbances, ab-

∗ Corresponding author. Tel.: +47-73-590492; fax: +47-73-598655.
E-mail address: ursula.sonnewald@medisin.ntnu.no (U. Sonnewald).

normal behavior or all of these. Excessive excitatory ac-
tivity and/or low inhibitory activity are thought to lead to
seizures due to disturbances of specific membrane functions
and disturbed amounts of extra- and intracellular ions (Brad-
ford, 1989). Common to all types of epilepsy are uncon-
trolled electrical discharges of neurons with excessive high
frequency and synchronicity.

A well-established model in epilepsy research is the
PTZ-kindling of mice and rats. PTZ is a substance that is
thought to suppress the inhibitory effects of some neuro-
transmitters, especially GABA (Bradford, 1989; De Deyn
and Macdonald, 1995; De Boer et al., 1982). It was found
that concentrations as low as 10−5 M increased both the re-
lease of GABA and glutamate in rat cortical slices by about
25% (De Boer et al., 1982), and lead to an easier depolar-
ization of neurons and thus possibly to epileptic seizures.
The enhanced GABA release appears contradictory at first,
but may be explained by a desensitization of GABA re-
ceptors due to the long-lasting enhancement (Kamphuis
et al., 1990). PTZ-kindling is the regular appliance of
sub-threshold doses of PTZ. After several injections treated

0197-0186/02/$ – see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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animals develop a behavioral pattern that is very similar to
chronic epilepsy with secondary generalized seizures.

The kindling model can be combined with the study of an-
ticonvulsant drugs such as phenobarbital. Although the use
of phenobarbital has decreased over the last few decades, it
is still a very common clinical drug with a high anti-epileptic
potential. Phenobarbital prevents seizures by supporting the
inhibitory effects of GABA and both its neurotoxicity and
the efficacy are supposed to increase with age of the animals
(Macdonald and Barker, 1977; Kitani et al., 1988).

The aim of the present study was to examine the behav-
ioral pattern of SAMP8 mice and the amount of glutamate,
GABA, glutathione, glutamine, aspartate, alanine and tau-
rine in 2- and 8-month-old mice kindled with PTZ, and PTZ
plus phenobarbital.

2. Experimental procedures

2.1. Materials

All animal procedures were approved by the local ethics
committee. SAMP8 mice were kindly provided by the coun-
cil of SAM research, Kyoto, Japan. Details of this mouse
strain are given in Abe et al. (1994).

Seventeen 2-month-old and seventeen 8-month-old
SAMP8 mice of both sexes were divided into three groups
each: one group received PTZ (35 mg/kg), a second group
received PTZ (35 mg/kg) and phenobarbital (10 mg/kg), one
group served as control (0.3 ml saline). The weight of the 2-
and 8-month-old animals was slightly different (2-month-
old: 27.8 ± 2.05 g; 8-month-old 31.5 ± 3.1 body weight).
However, it was decided to administer the drug relative to
body weight since the distribution volume will be larger in
heavier animals. The solutions were given intraperitoneal
every second day between 09.00 h and 15.00 h for 40 days.

Table 1
Individual scores of 2-month-old (A) and 8-month-old (B) SAMP8 mice receiving PTZ (35 mg/kg) intraperitoneally every second day for 40 daysa

Injection no.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(A) 2-month-old SAMP8 mice
Mouse A 0 0 0 0 0 0 0 3 0 2 2 2 4 3 3 5 4 4 4 4
Mouse B 0 0 0 0 0 0 0 5 3 5 4 4 4 3 4 3 5 5 3 1
Mouse C 0 0 0 0 0 0 1 1 2 3 5 4 1 3 3 3 4 3 3 3
Mouse D 0 0 0 0 1 4 3 0 3 5 4 5 5 4 5 3 5 5 3 2
Mouse E 0 0 0 0 1 1 0 0 1 5 0 4 4 3 1 1 4 3 3 0

(B) 8-month-old SAMP8 mice
Mouse A 4 0 0 0 0 0 3 3 4 3 3 3 5 3 3 4 3 3 3 4
Mouse B 0 0 0 0 0 1 0 1 1 4 3 4 2 6
Mouse C 0 0 0 0 0 1 0 2 5 5 4 4 3 3 4 4 4 4 4 3
Mouse D 0 0 0 0 1 2 1 1 4 3 4 3 4 4 2 4 4 4 3 2
Mouse E 0 0 0 0 0 2 3 3 5 5 3 3 6
Mouse F 0 0 0 0 0 0 0 0 2 0 4 0 3 3 4 4 3 3 3 3

a All mice were observed for 30 min after each injection and their behavior was judged with a score out of the score list below; 0 = normal behavior,
1 = myoclonic jerks, 2 = minimal seizures without Straub-tail, 3 = minimal seizures with Straub-tail, 4 = generalized tonic-clonic seizures with loss of
consciousness and postictal phase, 5 = like 4 with rotation on their axis, 6 = like 5 and death, underlining = absence-seizure.

Mice treated also with phenobarbital received the barbitu-
rate 30 min before the PTZ, as the anticonvulsive effect of
phenobarbital is highest after 30 min (Loscher et al., 1991).
Animals were kept at 22 ◦C, 60% humidity, one per cage at
a light/dark shift of 12 h and had water and food ad libitum.
All mice were observed for 30 min after each injection and
their behavior was judged with a score using the score list
given the footnote of Table 1.

After 40 days the mice were decapitated, and the heads
dropped into liquid nitrogen. The brains were homogenized
in 7% perchloric acid and extraction was performed as
described earlier (Håberg et al., 1998). The amounts of glu-
tathione, glutamine, glutamate, GABA, aspartate, alanine
plus taurine were measured by HPLC (HP 1100 System
with fluorescence detection, Agilent, CA, USA) using a hy-
percoil AA-ODS column (5 �m, 2.1 mm × 200 mm). The
results were analyzed using the ANOVA test followed by
the independent samples t-test and P > 0.05 was consid-
ered as significant.

MR imaging was performed on a 2.3T DRX 100
Biospec from Bruker (Germany) essentially as described
by Bouilleret et al. (2000). Two mice were imaged: one
young PTZ animal that had several severe seizures and one
young control. The animals were anesthetized with a sub-
cutaneous injection of Hypnorm/Dormicum/sterile water
(1:1:2), 1 ml/kg and imaged before and 30 min after admin-
istration via a tail vein of the contrast agent gadodiamide
(Omniscan; Nycommed Amersham, Oslo, Norway) at a
dose of 0.5 mmol/kg.

3. Results

Both 8- and 2-month-old animals treated with PTZ alone
developed a behavioral pattern very similar to chronic
epilepsy with focal onset and secondary generalized
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Table 2
Concentrations of amino acids (�mol/g brain weight) in 2-month-old and 8-month-old SAMP8 mice treated every 48 h over a period of 40 days with
PTZ or with PTZ and phenobarbital (Phb)a

2 months 8 months

Control PTZ PTZ/Phb Control PTZ PTZ/Phb

Glutathione 1.25 ± 0.26∗ 1.34 ± 0.14∗ 1.50 ± 0.41∗ 0.90 ± 0.25 1.25 ± 0.14∗ 1.21 ± 0.17
Aspartate 2.63 ± 0.45 2.32 ± 0.38 2.31 ± 0.13 2.12 ± 0.26 2.484 ± 0.13 2.32 ± 0.10
Glutamate 9.06 ± 3.47 9.14 ± 0.68 9.30 ± 0.93 8.03 ± 0.91 9.01 ± 0.68 9.01 ± 0.46
Glutamine 4.95 ± 0.43∗ 4.72 ± 0.39∗ 4.74 ± 0.47∗ 4.03 ± 0.24 4.76 ± 0.21∗ 4.65 ± 0.25∗
Alanine + taurineb 9.14 ± 0.80∗ 9.71 ± 0.89∗ 9.75 ± 1.22∗ 7.61 ± 1.27 9.66 ± 0.67∗ 9.52 ± 0.32∗
GABA 2.47 ± 0.50∗ 2.46 ± 0.25∗ 2.75 ± 0.38∗ 1.89 ± 0.47 2.57 ± 0.25∗ 2.53 ± 0.14∗

a The control mice received NaCl-solution. The metabolites were measured by HPLC, for details see Section 2. The results were analyzed using the
ANOVA test followed by the independent samples t-test.

b These two compounds could not be separated.
∗ Significantly different from the 8-month-old control mice (P < 0.05).

seizures. All animals with one exception needed 4–8 injec-
tions to show the first symptoms and 9–13 injections to show
severe secondary generalized seizures, as shown in Table 1.
The seizures appeared to reach a plateau within only two to
six injections after onset of seizures. There was no statistical
difference between the scores of the tow groups of animals.
However, it should be noted that each mouse had an indi-
vidual behavioral pattern. Thus, all mice had generalized
seizures from only three to nine times out of a possible 20.
A mouse that had reacted with severe generalized seizures
at one time, could show only minor symptoms or even a to-
tal lack of symptoms the next time. This can be clearly seen
in the first animal in the 8-month-old PTZ group (Table 1B)
which received a score of four after the first injection, but
showed no symptoms at all after the next five injections.

Seizures leading to death were observed in the 8-month-old
PTZ group only, where two out of six animals died, while
no deaths were found in the 2-month-old PTZ group. The
8-month-old PTZ animals also showed impaired conscious-
ness before the onset of generalized tonic-clonic seizures. In
these three cases (numbers underlined in Table 1B) 1–2 min
after PTZ application the mice did not react either to acous-
tic, sensory or tactile stimulation. They all regained con-
sciousness before having the typical generalized seizures.
Two out of three animals died shortly afterwards due to
severe tonic-clonic seizures. Theses phases of impaired con-
sciousness could clearly be differentiated from the normal
postictal unconsciousness phase after generalized seizures
and can be best described as atypical absence seizures.

Furthermore it is worth mentioning that it is possible to
evoke seizures in mice by vestibular stimulation. When held
up in the air and turned on their axis (tail-twisted) mice
showed tonic seizures lasting for up to 3 s, involving all of
the body musculature including the facial muscles. In the
present experiments this was the case for the control mice
and especially for the PTZ treated mice. Mice treated with
PTZ and phenobarbital showed this pattern only within half
an hour after the PTZ application. No seizures were observed
in the presence of phenobarbital with the single exception

of a 2-month-old animal that received a score of three after
the application of phenobarbital followed by PTZ. In con-
trast to the 2-month-old, the 8-month-old animals were more
sensitive to the sedative effect of the first three phenobarbi-
tal injections. Three out of six animals died in the group of
8-month-old animals receiving both PTZ and phenobarbital.

The average weight of the mouse brains was 0.42±0.03 g,
and there were no differences between groups. The con-
centrations of GABA, glutamate, glutamine, aspartate, glu-
tathione and alanine plus taurine were measured using HPLC
(Table 2). The 8-month-old control group showed lower
values than all other groups for GABA, glutamine, glu-
tathione and alanine plus taurine. No significant changes in
the metabolite levels of 2-month-old mice were found, but
significant alterations were found indeed between the differ-
ent groups of 8-month-old animals. Compared to the con-
trols the concentrations of glutathione, glutamine, GABA,
alanine and taurine were increased both in the old mice
treated with PTZ alone or together with phenobarbital.

Although it was possible to differentiate between several
brain structures like cortex and the basal ganglia using MRI,
no differences between the images of a PTZ-kindled mouse
and a control were found.

4. Discussion

The kindling model of epilepsy is currently the most
used animal model for the study of epilepsy. The regular
systemical application of PTZ in rats and mice is, together
with electrical kindling, one of the most common kindling
models (Bradford, 1989). The PTZ-kindling model mimics,
in a very reliable way, the development of complex-partial
epilepsy with secondary generalization due to its relatively
slow onset and offers the opportunity to study the epilep-
togenic process in a detailed manner. Once maximally
kindled, the PTZ-kindling model allows the induction of
maximum seizures at will and thus makes it possible to
examine seizure-related events (Bradford, 1989).
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4.1. Aging

SAMP8 mice are known as a murine model of accelerated
aging and memory dysfunction (Fujibayashi et al., 1994). It
has been shown that gliosis markedly increased with aging
in the cerebral cortex and hippocampus of SAMP8 (Nomura
et al., 1996). Furthermore, a generally increased metabolism
of glucose has been described for this mouse strain
(Fujibayashi et al., 1994; Sato et al., 1994). In the present
study, striking differences were found between 8- and
2-month-old SAMP8 in the concentrations of GABA, glu-
tamine, glutathione and alanine plus taurine. These metabo-
lites all decreased in the 8-month-old animals compared
to the 2-month controls, while the glutamate and aspartate
levels remained unchanged. These findings are in line with
former published values for aspartate in C57/B1/6J mice,
but differ in the concentrations of other examined metabo-
lites (Kirzinger and Fonda, 1978). Kirzinger and Fonda
(1978) found unchanged values for glutathione, GABA,
alanine and glutamate, but an increase in glutamine with
age. However, Fonda et al. (1973) reported unchanged val-
ues for glutamate, an increase in aspartate and a decrease
in GABA in extremely old mice (36 months) of the same
mouse strain. These differences might reflect the fact that
different mouse strains were evaluated.

4.2. The effects of PTZ

It has been shown that age has an effect on the kindling
phenomenon. Different electrical stimuli are necessary to
produce kindling in suckling rats as compared to adult
rats (Moshe, 1981). Fanelli and McNamara (1986) showed
that development of kindling required greater numbers of
stimulations in middle-aged than in young–adult animals.
In the present study no statistically significant difference
was found between the scores of the 8- and 2-month-old
kindled animals. However, an age-dependent decrease in
the lethal threshold of PTZ in “old age” mice (27 months
for males and 30 months for females) has been shown
by Nokubo and Kitani (1988). This is in agreement with
the present findings, where two out of six animals died in
the 8-month-old group. Also, changes in metabolism were
only detected in the 8-month-old animals. Thus, cerebral
metabolism in young SAMP8 mice is less sensitive to
PTZ than metabolism in old SAMP8 mice. No statistical
differences were found in glutamate and aspartate concen-
trations in all groups, although the amount of glutamate
was characteristically lower in the old control mice but did
not reach statistical significance. It is well known that high
extracellular concentrations of glutamate, the major excita-
tory neurotransmitter (Fonnum, 1984), are severely neuro-
toxic (Schousboe et al., 1992). Removal of glutamate from
the extracellular space is mediated by Na+/K+-dependent
high-affinity glutamate transporters, termed GLAST and
GLT1 in astrocytes and EAAC1 in neurons (for review
see Gegelashvili and Schousboe, 1998). Astrocytes take

up glutamate and form glutamine as part of the so called
“glutamate–glutamine cycle” (Van den Berg and Garfinkel,
1971), and also glutathione and other products. Whereas in
GABAergic neurons glutamate can be converted to GABA,
glutathione and other products. Since in the 8-month-old
animals the glutamate concentration is unchanged while an
increase is seen in GABA, glutamine and glutathione in the
kindled animals (Table 2), it appears likely that an increased
glutamate release lead to increased production of glutamate
related products as a possible neuroprotective adaptation. It
has been shown that PTZ-kindling in rats enhanced the re-
lease of glutamate into the extracellular space and lead to a
distinct decrease of its removal into the cells (Li et al., 2000;
Schunzel et al., 1992). Furthermore, Muller et al. (2000)
showed that neuronal metabolism was enhanced in rats
receiving kainic acid, another model of epilepsy. Whether
these phenomena are a causative factor for the kindling pro-
cess or a result of the seizures remains unclear. However,
SAMP8 mice receiving both PTZ and phenobarbital had
the same glutamate concentration as the PTZ-kindled mice,
thus it is more likely that the glutamate levels are influ-
enced by PTZ rather than seizures. Other published findings
are in line with this hypothesis (Bradford, 1989; Meldrum
et al., 1999; Schroeder et al., 1998). It is interesting to note
that GABA levels were increased in the 8-month-old PTZ
treated animals. An increased GABA concentration was also
observed in brain biopsies from patients with intractable
epilepsy (Aasly et al., 1999). This is paradoxical since
most of the anti-epileptic treatment aims at increasing the
GABA concentration.

Furthermore, it has been shown that PTZ leads to an in-
creased regional cerebral metabolic glucose rate (rCMGlcR)
(Pereira de Vasconcelos et al., 1990). The increase in gly-
colysis is connected to a higher production of pyruvate. This
pyruvate can be converted into lactate or alanine. Indeed,
increased levels of alanine plus taurine were found in the
present study. Furthermore, the concentration of glutathione,
the major antioxidant in brain (Dringen et al., 2000), was
increased and can thus have had an enhanced protective
effect.

It is worth noticing that the concentrations of the mea-
sured metabolites in the 8-month-old mice treated with
PTZ increased in such a way that they became similar to
the concentrations in the 2-month-old mice. The treated
mice became so to speak “biochemically younger”. This
observation was also reflected somewhat in the behavior
of the treated animals who appeared livelier than con-
trol. It has earlier been reported that different doses of
PTZ had either facilitating, disruptive, or no effect on
avoidance learning (Krivanek, 1971a,b). However, it has
been shown that PTZ-kindling has a negative effect on
shuttle-box learning, as it might contribute to impaired
memory storage (Becker et al., 1994). Furthermore it has
been shown that kindling related impairment effects on
cognitive functions increase with age (Grecksch et al.,
1997).
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4.3. The effects of phenobarbital plus PTZ

Phenobarbital is believed to exert its effect by support-
ing the GABAergic inhibition by binding at the GABA
receptor–ionophore complex and by altering the conduc-
tance at the chloride channel associated with the GABA
receptor (Ito et al., 1996) and showed a good anti-epileptic
profile. Epileptic symptoms were shown neither by young
nor old animals receiving both PTZ and phenobarbital,
with the single exception by a 2-month-old animal that
received a score of three after the application of phenobar-
bital followed by PTZ. In contrast to the 2-month-old, the
8-month-old animals were more sensitive to the sedative
effect of the first phenobarbital injection. This phenomenon
vanished, however, after two more applications. Three out
of six animals died in the group of 8-month-old animals
receiving both PTZ and phenobarbital, even though they
had never shown any kind of epileptic symptoms or other
possible reactions to PTZ. This is in agreement with a study
by Kitani et al. (1988) showing that both the neurotoxicity
and efficacy of phenobarbital increased with age.

Interestingly, the glutamate conversion described above
seemed to be enhanced also in those animals that due to the
phenobarbital showed no seizures. This may seem contra-
dictory since, in contrast to PTZ, phenobarbital is known
to suppress the rCMGlcR (Pereira de Vasconcelos et al.,
1990). However, to our knowledge, no study has yet ex-
amined glucose metabolism, when PTZ and phenobarbital
were co-administered. The present results suggest that the
PTZ effect dominates the phenobarbital effect on the con-
centrations of the measured metabolites, even though phe-
nobarbital is able to completely antagonize the PTZ induced
seizures. This assumption is supported by the finding that
Methotrexat also suppresses the rCMGlcR, but does not in-
crease the phenobarbital effect when given simultaneously
(Hoffman and Alfon, 1992).

4.4. Magnetic resonance imaging

Although it was possible to differentiate between sev-
eral brain structures like cortex and the basal ganglia using
MRI, no differences between the images of a PTZ-kindled
mouse and a control were found. In man MRI is able to
demonstrate brain abnormalities in some epilepsy patients,
sometimes due to the scar tissue which replaces the lost
neuronal cells. However, no MRI study yet was able to
demonstrate these changes in PTZ-kindled rodents. Pohle
et al. (1997) showed by microscopic analysis that PTZ
induced seizures lead to neuronal cell loss in the rat hip-
pocampus, while other studies did not find any histological
alterations (De Feo et al., 1986; Laroia et al., 1997). Pohle
et al. (1997) examined PTZ-kindled rats, while all the other
studies were carried out on rodents receiving only a single
large PTZ dose. Thus, it appears likely that only chronic
seizures lead to demonstrable histological changes. How-
ever, these changes are too small to be detected by MRI at

present. Interestingly, Bouilleret et al. (2000) could show
morphological changes in MR-images using the kainic acid
model of mesial temporal lobe epilepsy (mTLE). In this
model a hippocampal sclerosis is induced in mice by di-
rect intrahippocampal injection of kainic acid. A unilateral
increased T2 signal could be detected in the hippocampus
120 days after the injection which was interpreted as a sign
of gliosis. The PTZ-kindling model does not lead to mTLE
but to generalized seizures with focal onset, and the con-
vulsive drug is not injected directly into the brain, but was
given intraperitoneal. Thus, it is likely that the PTZ-kindling
model in mice does not cause histological alterations in the
brain demonstrable with present MR techniques.

5. Conclusion

It can be stated that the present animal model is well
suited to examine epilepsy related changes of behavior and
cerebral metabolism in the aged.
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Abstract

Recently, a new experimental model of epilepsy was introduced by the authors [Neurochem. Int. 40 (2002) 413]. This model combines
pentylenetetrazole (PTZ)-kindling in senescence-accelerated mice P8 (SAMP8), a genetic model of aging. Since imbalance of glutamate
and GABA is a major cause of seizures, the study of glial–neuronal interactions is of primary importance. Nuclear magnetic resonance
spectroscopy (NMRS) is an excellent tool for metabolic studies. Thus, we examined whether NMRS when combined with administration
of [1-13C]glucose and [1,2-13C]acetate might give valuable insights into neurotransmitter metabolism in this new model of epilepsy and
aging. The 2- and 8-month-old SAMP8 were kindled with PTZ alone, received PTZ and phenobarbital (PB), or served as controls. In older
animals, PTZ-kindling decreased labeling in glutamate C-4 from [1-13C]glucose, whereas, in the younger mice, labeling in glutamine C-4
was decreased both from [1-13C]glucose and [1,2-13C]acetate. It could be concluded that PTZ-kindling affected astrocytes in younger and
glutamatergic neurons in older animals. In the presence of PTZ, phenobarbital decreased labeling of most metabolites in all cell types,
except GABAergic neurons, from both labeled precursors in the younger animals. However, in older animals only GABAergic neurons
were affected by phenobarbital as indicated by an increase in GABA labeling.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: 13C NMRS; PTZ-kindling; SAMP8; Amino acids; Metabolism; Aging

1. Introduction

Most animal models involve young adult rodents, which
are not comparable in age to the majority of patients.
Senescence-accelerated mice P8 (SAMP8) are an excellent
genetic model for studying age-related diseases (Abe et al.,
1994; Sato et al., 1994) and have been used e.g. to examine
the glucose metabolism in the older brain (Fujibayashi et al.,
1994; Sato et al., 1994). SAMP8 mice live only half the
normal life of a mouse, but show normal growth (Abe et al.,
1994). Additionally, they are characterized by spontaneous
age-related impairment in higher functions such as learning
and memory (Fujibayashi et al., 1994). Furthermore, gliosis
is markedly increased with aging in the cerebral cortex and
hippocampus of SAMP8 (Nomura et al., 1996) which makes
it very interesting to analyze glial–neuronal interaction by
13C magnetic resonance spectroscopy (see later).

Epilepsy is the tendency to epileptic seizures, associated
with paroxysmal discharge of cerebral neurons. Tradition-

∗ Corresponding author. Tel.: +47-73-590492; fax: +47-73-598655.
E-mail address: ursula.sonnewald@medisin.ntnu.no (U. Sonnewald).
1 On leave from Hanover Medical School, Hanover, Germany.

ally it is divided into generalized or partial epilepsy and
characterized by a large variety of symptoms including
disturbances in sensorimotor systems and alterations of be-
havior and consciousness. However, epilepsy is one of the
most common serious neurological disorders affecting man
(Sander and Shorvon, 1996). The prevalence and incidence
of epilepsy is high in later life (Stephen and Brodie, 2000)
and medical therapy is often complicated by cardiovascu-
lar, renal and hepatic disorders. Furthermore, associated
neoplastic, degenerative, ischemic and hemorrhagic brain
diseases worsen the condition in many geriatric patients.
Presently, very little is known about the biochemical alter-
ations in the brain of elderly patients with epilepsy. In order
to develop appropriate treatment strategies relevant animal
models have to be developed.

Animal models of epilepsy often involve inhibition
of the synthesis of GABA. Such inhibition has been
shown to promote seizures, as does the administration
of GABA antagonists and glutamate agonists (Hosford,
1995). Pentylenetetrazole (PTZ) is a chemical convulsant
frequently used in the study of seizures. It should be noted
that the mechanism of action of PTZ is only partially un-
derstood. It is generally believed that PTZ exerts its effects

0197-0186/$ – see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0197-0186(03)00093-7
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by binding to the picrotoxin-binding site of the postsy-
naptic GABAA receptor (Macdonald and Barker, 1977,
1978). PTZ is known to decrease the effects of GABA and
other inhibitory neurotransmitters, thus leading to an easier
depolarization of neurons (Bradford, 1989; De Deyn and
Macdonald, 1995; De Boer et al., 1982). The regular appli-
cation of sub-threshold doses of PTZ is called PTZ-kindling
and provokes a behavior very similar to chronic secondary
generalized seizures. These are probably due to disturbances
of specific membrane functions and disturbed amounts of
extra- and intracellular ions caused by excessive excita-
tory and/or low inhibitory activity (Bradford, 1989). The
barbiturate phenobarbital (PB) can prevent these seizures
(Kondziella et al., 2002, and references therein) by support-
ing the inhibitory effect of GABA. Like other barbiturates,
phenobarbital is more potent and toxic with increasing age
of the individual (Macdonald and Barker, 1977; Kitani et al.,
1988).

Nuclear magnetic resonance spectroscopy (NMRS) is a
useful tool for the study of alterations in neuronal–glial in-
teractions (Lapidot and Gopher, 1994; Hassel et al., 1997;
Håberg et al., 1998; Chapa et al., 2000) and has also been
used to study glutamate–glutamine cycling in the epileptic
human hippocampus (Petroff et al., 2002). Acetate is selec-
tively taken up by astrocytes by a specialized transport sys-
tem, which is absent or less active in neurons (Waniewski
and Martin, 1998), whereas glucose is thought to be metab-
olized more in the neuronal tricarboxylic acid (TCA) cycle
(Minchin and Beart, 1975; Sonnewald et al., 1991). Using
13C NMRS it has been calculated that acetyl CoA derived
from glucose is predominantly metabolized in the neuronal
tricarboxylic acid cycle in rats (Qu et al., 2000). Thus, by si-
multaneous injection of [1-13C]glucose and [1,2-13C]acetate
and NMRS analysis of brain extracts information about neu-
ronal and astrocytic metabolism can be obtained in the same
animal (Taylor et al., 1996).

Recently, PTZ-kindling in SAMP8 mice was performed
in our laboratory and it could be concluded that signifi-
cant information concerning behavior and metabolism can
be obtained using this new model for epilepsy in the elderly
(Kondziella et al., 2002). As described previously, glutamate
metabolism and the so-called glutamine–glutamate–GABA
cycle (Berl and Frigyesi, 1969; Van den Berg and Garfinkel,
1971; Hertz, 1979) as an expression of glial–neuronal in-
teraction is of particular interest in the pathophysiology of
epilepsy. Consequently, NMRS might be useful in the ex-
amination of this. The central question in the present study
was whether NMRS could provide new information about
neurons, astrocytes and their metabolic interaction in our
new model of PTZ-kindling in SAMP8 mice. Thus, 2- or
8-month-old SAMP8 were kindled with PTZ, received PTZ
together with phenobarbital or served as controls. Before
decapitation, mice were injected with [1-13C]glucose and
[1,2-13C]acetate and metabolic changes associated with ag-
ing, seizures and phenobarbital were analyzed using 13C
NMRS.

2. Materials and methods

2.1. Materials

SAMP8 mice were a generous gift from The Coun-
cil of SAM Research, Kyoto, Japan. For details of this
mouse strain, see Abe et al. (1994). The [1-13C]glucose
and [1,2-13C ]acetate (99% enriched) and D2O (99.9%)
were from Cambridge Isotopes Laboratories (Woburn, MA,
USA), ethylene glycol from Merck (Darmstadt, Germany).
PTZ from Sigma (St. Louis, MO, USA). All other chemicals
were of the purest grade available from regular commercial
sources.

2.2. Animal procedures

All animal procedures were approved by the local ethics
committee. The experiments were performed on seventeen
2-month-old and seventeen 8-month-old SAMP8 of both
sexes. The 2-month-old animals weighed 27.8 ± 2.05 g, the
8-month-old animals weighed 31.5±3.1 g. Because the vol-
ume of distribution increases with increasing weight of the
animal, we injected the drugs relative to body weight. The
mice were separated into six groups receiving the following
solutions intraperitoneally every second day between 9 a.m.
and 3 p.m. for 40 days: PTZ (35 mg/kg), PTZ (35 mg/kg)
+ phenobarbital (10 mg/kg), 0.3 ml saline. Since the anti-
convulsive effect is maximal after 30 min (Loscher et al.,
1991), phenobarbital was always given 30 min before ad-
ministration of PTZ. For 30 min after each injection all an-
imals were monitored and drug effects were judged with a
score as explained earlier (Kondziella et al., 2002).

Animals were kept one per cage at a light/dark cycle of
12 h and had free access to water and food. Temperature was
22 ◦C and humidity 60%.

On day 40, the mice received intraperitoneal injec-
tions of [1-13C]glucose (0.3 M solution, 543 mg/kg) plus
[1,2-13C]acetate (0.6 M solution, 504 mg/kg). Fifteen min-
utes after 13C injection, animals were sacrificed by decap-
itation and the heads were snap frozen in liquid nitrogen.
The whole brain was dissected and extracted as described
earlier by Håberg et al. (1998). The amounts of some un-
labelled metabolites in the brain specimen were measured
by high pressure liquid chromatography (HPLC) and these
results together with the findings in behavior, judged by
the score list mentioned previously, have been published
separately in this journal (Kondziella et al., 2002).

2.3. NMR spectroscopy

Proton decoupled 125.5 MHz 13C NMR spectra were ob-
tained on a Bruker DRX-500 spectrometer. Samples were
re-dissolved in D2O containing ethylene glycol 0.1% as an
internal standard. Spectra were accumulated using a 35◦
(pulse angle), 25 kHz spectral width with 64K data points.
The acquisition time was 1.3 s, and a 2.5 s relaxation delay
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was used. The number of scans was typically 10,000. Factors
for nuclear Overhauser effects were applied to all spectra.

2.4. Data analysis

Relevant peaks from NMR spectra were obtained, and the
amounts of 13C were quantified from the integrals of the peak
areas using ethylene glycol as an internal standard. Results
are presented as mean ± standard deviation. Differences
between groups were analyzed statistically with ANOVA
followed by independent samples t-tests and P < 0.05 was
considered significant.

3. Results

Without exception and regardless of the animals’ age,
PTZ-kindling induced a behavioral pattern virtually identical
to chronic epilepsy with focal onset and secondary general-
ized seizures. The latter occurred after a mean of 10 injec-
tions, started between 2 and 5 min after PTZ administrations
and lasted up to 30 s with a postictal period of a few min-
utes. PTZ evoked seizures leading to death occurred in two
of the six 8-month-old animals, but not in any 2-month-old
animal. An overview of these results is given in Fig. 1. Phe-
nobarbital efficiently prevented seizures, however, three of
the six 8-month-old animals treated with phenobarbital and
PTZ died. For more details see Kondziella et al. (2002).

Fig. 2. 13C NMR spectrum of mouse brain extract (2-month-old PTZ group). SAMP8 were injected with [1-13C]glucose and [1,2-13C]acetate and brains
were extracted. Ala: alanine; Asp: aspartate; Gln: glutamine; Glu: glutamate; Lac: lactate; NAA: N-acetyl aspartate; Suc: succinate.

Fig. 1. Scores of 2-month-old ( ) and 8-month-old (�) SAMP8 mice
receiving pentylenetetrazole (35 mg/kg) intraperitoneally every second day
for 40 days. All mice were observed for 30 min after each injection and
their behavior was judged with a score from the following list: (0) normal
behavior, (1) myoclonic jerks, (2) minimal seizures without Straub-tail,
(3) minimal seizures with Straub-tail, (4) generalized tonic–clonic seizures
with loss of consciousness and postictal phase, (5) like (4) but with rotation
on their axis. Figures based on numbers from Kondziella et al. (2002).

Injection of 13C-labeled glucose and acetate led to effi-
cient labeling of many metabolites as can be seen in Fig. 2.
Label from [1-13C]glucose is thought to be mainly metab-
olized in the neuronal compartment and can be quantified
by analyzing the singlet peaks in the different metabo-
lites. The doublets seen in the spectrum were derived from
[1,2-13C]acetate and thus astrocytic metabolism. Simplified
schemes of the metabolic pathways of these two substrates
are shown in Figs. 3 and 4. [1-13C]glucose is converted to
pyruvate via glycolysis and can form alanine and lactate.
Pyruvate can enter the TCA cycle via [2-13C]acetyl CoA
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Fig. 3. Schematic representation of isotopomers arising from [1-13C]glucose after the first turn of the tricarboxylic acid cycle and via pyruvate carboxylation,
represents 13C. PC: pyruvate carboxylase; PDH: pyruvate dehydrogenase.

or after carboxylation by pyruvate carboxylase to oxaloac-
etate (Fig. 3). Pyruvate carboxylase is localized in astro-
cytes, not neurons (Shank et al., 1985). [1,2-13C]acetate
can also be converted to acetyl CoA, however, the product
[1,2-13C]acetyl CoA will be having two 13C atoms (Fig. 4),
resulting in doublet formation. Since both acetyl CoA and
oxaloacetate can be labeled in the present experiments,
the number of possible isotopomers of the metabolites de-
rived from the TCA cycle is large and not all compounds
presented in Tables 1 and 2 are represented in Figs. 3
and 4. By comparing the doublets with singlets, it can
be seen in Fig. 2 that glutamine was labeled more from
[1,2-13C]acetate (doublet) than [1-13C]glucose (singlet), the
opposite was the case for glutamate, GABA and lactate.
Alanine, N-acetyl aspartate (NAA) and succinate are only
labeled from glucose. Creatine and taurine are not labeled,
the naturally abundant 13C is gives rise to the observed
singlets.

In Table 1, values are given for the amounts of 13C in the
different metabolites in the 2-month-old mice. PTZ only af-
fected labeling in glutamine C-4 both from [1-13C]glucose
and [1,2-13C]acetate as seen in the singlet and doublet. Phe-
nobarbital, however, had a profound effect on labeling from

Fig. 4. Schematic representation of isotopomers arising from [1,2-13C]acetate after the first turn of the tricarboxylic acid cycle, represents 13C. For more
details, see Cerdan et al. (1990).

both precursors. Glutamine and glutamate C-4 both singlet
and doublet were decreased as compared to control, glu-
tamine C-4 singlet was also different from that of the PTZ
group. Furthermore, the doublet of doublets in glutamate
C-4 (Fig. 2) obtained from repetitive cycling (Cerdan et al.,
1990) was also decreased compared to control. NAA C-6
(data not shown) and aspartate C-3 were decreased com-
pared to control and alanine C-3 and succinate C-2 + C-3
were decreased compared to the PTZ group.

In the control groups, differences were also observed be-
tween the 2- and 8-month-old animals. In the 8-month-old
group values for glutamine C-4 doublet and glutamate C-4
singlet and doublet were decreased (Table 2). Fewer changes
were observed in label incorporation between the differ-
ent groups in the 8-month-old animals. PTZ-kindling lead
to a decreased label incorporation into glutamate C-4 and
C-2. Compared to the controls and the PTZ group the only
changes in the group receiving PTZ and phenobarbital were
an increase in GABA and a decrease in alanine labeling
(Table 2). Cycling ratios and pyruvate carboxylation com-
pared to dehydrogenation ratios were also calculated and
statistically evaluated. No differences were found between
the groups (results not shown).
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Table 1
Amounts of 13C in 10−9 mol/g of tissue in brain extracts from 2-month-old SAMP8

Amounts of 13C

Control (n = 5) PTZ (n = 6) PTZ + PB (n = 6)

[1,2-13C]acetate
Glutamine C-4 336.1 ± 88.9 274.5 ± 70.20 a 210.9 ± 14.5 a
Glutamine C-2 53.0 ± 16.7 56.5 ± 17.4 34.3 ± 2.5 a,b
Glutamate C-4 167.5 ± 50.9 132.7 ± 42.3 96.4 ± 6.9 a
Glutamate C-4 90.3 ± 25.2 77.2 ± 16.6 48.7 ± 16.1 a
Glutamate C-2 64.6 ± 22.9 44.9 ± 12.7 34.3 ± 3.9 a
Lactate C-2 28.0 ± 2.6 23.6 ± 8.2 13.0 ± 3.1 a,b

[1-13C]glucose
Glutamine C-4 134.5 ± 42.2 121.5 ± 21.2 a 86.0 ± 3.7 a,b
Glutamine C-2 100.1 ± 24.7 94.9 ± 13.1 76.9 ± 3.3 a
Glutamate C-4 462.9 ± 150.8 381.6 ± 98.5 325.8 ± 10.9 a
Glutamate C-2 242.7 ± 84.4 197.0 ± 43.0 156.8 ± 12.2 a
GABA C-2 83.1 ± 22.8 79.1 ± 26.0 63.3 ± 4.8
GABA C-4 55.7 ± 17.0 50.0 ± 11.7 38.7 ± 5.4 a
Aspartate C-3 76.3 ± 26.0 67.4 ± 15.7 54.1 ± 3.5 a
Alanine C-3 22.8 ± 8.8 28.6 ± 12.6 15.2 ± 3.5 b
Lactate C-3 359.2 ± 137.7 358.0 ± 134.2 303.1 ± 25.2
Succinate C-2 + C-3 23.3 ± 7.3 22.7 ± 6.1 10.0 ± 2.5 b
Taurine C-2 62.3 ± 11.6 72.4 ± 17.1 63.2 ± 7.2

Mice were treated every 48 h over a period of 40 days with pentylenetetrazole (PTZ) or with PTZ and phenobarbital (PB) and were thereafter injected
with [1-13C]glucose and [1,2-13C]acetate (for details see Section 2). The results are expressed as mean ± standard deviation and were analyzed using
ANOVA followed by the independent samples t-test. PTZ: pentylenetetrazole; PB: phenobarbital. The letter ‘a’ implies statistically different from control,
and the letter ‘b’ implies statistically different from PTZ.

3.1. Discussion

The accelerated senescence-prone mouse strain, SAMP8,
with spontaneously occurring age-related deficits in learn-

Table 2
Amounts of 13C in 10−9 mol/g of tissue in brain extracts from 8-month-old SAMP8

Amounts of 13C

Control (n = 5) PTZ (n = 4) PTZ + PB (n = 3)

[1,2-13C]acetate
Glutamine C-4 200.6 ± 60.1 c 202.8 ± 41.3 244.5 ± 46.4
Glutamine C-2 45.1 ± 12.8 38.5 ± 7.2 53.0 ± 2.3
Glutamate C-4 89.2 ± 21.9 c 91.4 ± 21.8 91.6 ± 16.0
Glutamate C-4 62.2 ± 20.2 c 44.2 ± 21.2 64.9 ± 3.1 b
Glutamate C-2 43.5 ± 12.1 c 32.2 ± 13.6 46.1 ± 11.9
GABA C-3 12.0 ± 4.0 17.7 ± 2.5 26.0 ± 12.3 a

[1-13C]glucose
Glutamine C-4 117.7 ± 13.1 102.5 ± 5.8 114.7 ± 13.7
Glutamine C-2 89.5 ± 5.7 81.7 ± 6.4 99.4 ± 12.9
Glutamate C-4 350.6 ± 33.8 c 262.2 ± 27.8 a 384.9 ± 25.7
Glutamate C-2 179.0 ± 7.2 c 151.2 ± 22.3 a 185.9 4.7
GABA C-2 79.4 ± 11.1 70.8 ± 4.3 99.7 ± 16.0 b
GABA C-4 47.8 ± 7.1 37.4 ± 5.1 48.6 ± 0.5
Aspartate C-3 68.3 ± 6.1 54.1 ± 14.4 73.7 ± 3.1
Alanine C-3 21.9 ± 4.8 32.0 ± 10.7 16.4 ± 0.4 b
Lactate C-3 378.1 ± 129.5 366.1 ± 100.8 343.7 ± 23.4
Succinate C-2 + C-3 18.5 ± 5.8 14.7 ± 2.0 17.6 ± 2.5
Taurine C-2 62.0 ± 8.4 66.5 ± 2.7 64.4 ± 2.4

Mice were treated every 48 h over a period of 40 days with pentylenetetrazole (PTZ) or with PTZ and phenobarbital (PB) and were thereafter injected
with [1-13C]glucose and [1,2-13C]acetate (for details see Section 2). The results are expressed as mean ± standard deviation and were analyzed using
ANOVA followed by the independent samples t-test. The letter ‘a’ implies statistically different from control, the letter ‘b’ implies statistically different
from PTZ, and the letter ‘c’ implies statistically different from 2-month-old SAMP8.

ing and memory may help provide new information on
the metabolic changes in aging. Cerebral glucose transport
and metabolism has been investigated by several authors
to study abnormalities in glucose handling in relation to
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age. Fattoretti et al. (2001) documented an age-dependent
decrease in glucose transporter Glut3 expression in discrete
areas of rat hippocampus. Glut3 is the predominant glucose
transporter in neurons and is found abundantly in regions
with high synaptic density characterized by frequent bursts
of functionally adequate metabolic activity. These findings
lend support to the critical role of an impaired metabolism
in age-related brain dysfunction and disease. Fujibayashi
et al. (1994) studied 2-[14C]deoxyglucose accumulation in
the SAMP8 brain and found that it was not different from
control at 1 month of age, but decreased from 2–3 months
of age, corresponding with the impairment of memory in
the SAMP8 at 2–3 months. In contrast to this, Sato et al.
(1994) found increased glucose metabolism in 4–8-week-old
SAMP8 and correlated this with a transient overproduction
of the glucose transporter protein in the cerebral cortex.
In the present study glucose concentration could not be
measured. However, lactate production from glucose was
unchanged in the two groups and was not affected by PTZ
or PTZ plus phenobarbital. Thus it seems unlikely that gly-
colysis was affected by aging. This is possibly because the
transient change in transporters was already finished by 2
months.

Glutamate, which is the major excitatory neurotransmit-
ter (Fonnum, 1984), is a potential neurotoxin (Olney and
Ho, 1970; Schousboe et al., 1992). Disruption in glutamate
homeostasis is thought to be a factor in the pathogene-
sis of a number of neurological and psychiatric disorders
including epilepsy. Although both neurons and astrocytes
take up glutamate, it has been shown that astrocytes are
responsible for the major part of this uptake (Gegelashvili
and Schousboe, 1998). Astrocytes take up glutamate and
metabolize it to form glutamine as part of the so-called
glutamate–glutamine cycle (Berl and Frigyesi, 1969; Van
den Berg and Garfinkel, 1971; Hertz, 1979). Moreover, part
of the exogenous glutamate enters the TCA cycle after con-
version to 2-oxoglutarate (Yu et al., 1982; Sonnewald et al.,
1993). Analysis of labeling patterns and amounts of 13C in
metabolites derived from the TCA gives information about
mitochondrial activity. Thus, the decrease in glutamate
labeling from [1-13C]glucose in the 8-month-old animals
compared to the 2-month-old indicates that glutamater-
gic neurons displayed decreased mitochondrial activity,
whereas GABAergic neurons were not affected. Decreased
mitochondrial activity with aging was also observed by
Omata et al. (2001) using incubation of fresh brain slices
from SAMP8 with [18F]2-fluoro-2-deoxy-d-glucose and
positron autoradiography. In the present study it was shown
that astrocytic metabolism was also impaired. As men-
tioned earlier, acetate is only metabolized by astrocytes
and thus acetate labeling can be used to monitor astro-
cytic processes. In addition, glutamine synthesis is also an
astrocytic event since glutamine synthetase, the enzyme
responsible for glutamine synthesis, is only present in glia
(Martinez-Hernandez et al., 1977). Synthesis of glutamine
from [1,2-13C]acetate was decreased in the 8-month-old

SAMP8 indicating impaired astrocytic metabolism. Fur-
thermore, compared to the values for the 2-month-old
group, glutamate synthesis from [1,2-13C]acetate was also
decreased in the 8-month-old animals. This indicates that
transport of glutamine to glutamatergic neurons was also
impaired. Decreased astrocytic function was also reported
in our previous study using HPLC, showing decreased glu-
tamine concentration in brain extracts from of 8-month-old
SAMP8 (Kondziella et al., 2002).

3.2. Pentylenetetrazole

PTZ activates excitatory mechanisms in brain cells and
glutamate is thought to play a central role in this context.
Li et al. (2000) studied the extracellular concentration of
glutamate and taurine in the frontal cortex of freely-moving
PTZ-kindled rats using in vivo microdialysis. A significant
and sustained increase in glutamate was observed, whereas,
no significant changes were found in taurine in the kin-
dled rats (Li et al., 2000). However, our previous results
showed that the total amount of glutamate was unchanged
(Kondziella et al., 2002). In agreement with the study by
Li et al. (2000), no changes were detected in the tau-
rine concentration in the present study in both age groups
treated with PTZ. Surprisingly, PTZ-kindling did not en-
hance glutamate labeling in 2- or 8-month-old SAMP8.
On the contrary, glutamate labeling was significantly de-
creased in the 8-month-old animals, receiving PTZ. A
possible explanation could be that PTZ-kindling, in addi-
tion to decreasing glutamate turnover in the 8-month-old
animals enhances the density of glutamate-binding sites
on excitatory neurons. In this way PTZ-kindling could
lead to epileptic seizures without interfering greatly with
metabolism. This hypothesis is supported by the results of
Schroeder et al. (1999) and Silva Brum and Elisabetsky
(2000). Schroeder et al. (1999) showed that amino acid
release is increased in the early phase of PTZ-kindling
development, whereas after completion of kindling, the
density of excitatory amino acid-binding sites is enhanced.
In the 2-month-old animals receiving PTZ only glutamine
labeling from both [1-13C]glucose and [1,2-13C]acetate
was decreased. No differences were observed in gluta-
mate labeling, indicating again that an increase in exci-
tatory receptors could be the mechanism of action for
PTZ.

Our previous evaluations showed only metabolic changes
in the 8-month-old mice compared to controls, but not in
the 2-month-old animals (Kondziella et al., 2002). However,
the results of the present study using NNMR spectroscopy
point not only towards a more impaired metabolism in glu-
tamatergic neurons in older animals but also towards altered
astrocytic metabolism in younger animals.

Although no deaths occurred in the group of younger an-
imals, in the 8-month-old receiving PTZ, two of the six an-
imals died during seizures. As explained earlier (Kondziella
et al., 2002), this is in line with findings of Nokubo and
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Kitani (1988) demonstrating that the necessary lethal
amount of PTZ in old mice is significantly lower than that
for the respective younger groups.

3.3. Phenobarbital and pentylenetetrazole

As stated previously, it has been shown that in aged ani-
mals both the potency and the neurotoxicity of phenobarbital
are enhanced (Kitani et al., 1988). Phenobarbital probably
acts by increasing the effect of inhibitory GABAergic neu-
rons, as it binds at the GABA receptor–ionophore complex
and, as a consequence, alters the conductance at the chloride
channel related to the GABAA receptor (Ito et al., 1996).
Phenobarbital showed a good anti-epileptic profile in the
present study. However, three of the six animals died in the
group of 8-month-old animals receiving both PTZ and phe-
nobarbital, even though they had never shown any kind of
epileptic symptoms or other possible reactions to PTZ. The
lethal complications might be caused by the well-known
respiratory depression of phenobarbital. Although the cause
of death remains unclear, this is in agreement with the
study by Kitani et al. (1988) mentioned before. The re-
sults obtained in this group were statistically significant.
However, caution should be used when generalizing these
results, because of the reduced number of animals in this
group.

Amino acid levels were not affected in SAMP8 mice re-
ceiving phenobarbital together with PTZ as compared to
animals only receiving PTZ, as was shown by our previ-
ous study (Kondziella et al., 2002). In the present study,
labeling of most metabolites from both [1-13C]glucose and
[1,2-13C]acetate in the phenobarbital plus PTZ group was
significantly decreased in the 2-month-old but not in the
8-month-old animals. This, together with the unchanged
concentrations of the amino acids, indicated that turnover
of metabolites was decreased in the 2-month-old group re-
ceiving PTZ and phenobarbital. It should be noted that the
co-administration of PTZ and phenobarbital lead to consid-
erably more significant alterations in the measured metabo-
lites than PTZ alone. There are two possible explanations
for this finding. Either these changes are due to the com-
bined effect of phenobarbital and PTZ, or they are due
to phenobarbital alone. Since PTZ probably acts more by
enhancing the glutamate-bindings sites than by interfering
with metabolism, as was explained previously, the latter ex-
planation is most likely. Indeed, phenobarbital depressed
cerebral metabolism in rat brain as shown by Shank et al.
(1993).

It should be noted that intraperitoneal administration
of phenobarbital produces dose-dependent decreases in
cerebral blood flow with no significant difference between
young and aged rats (Baughman et al., 1986). However, the
same authors found that the difference in cerebral oxygen
consumption between young versus aged rats suggested that
high-dose phenobarbital may depress cerebral metabolic
processes more in aged rats. The opposite was observed in

the present study. Most metabolic processes measured were
decreased in the 2-month-old animals, only lactate, taurine
and GABA C-2 labeling were unchanged in the presence of
phenobarbital and PTZ. This indicated that glycolysis was
unchanged and that GABAergic neurons were less sensitive
to the effects of phenobarbital in the 2-month-old mice. In-
terestingly, the GABAergic neurons responded most to phe-
nobarbital in the 8-month-old animals. GABA labeling was
increased both from [1,2-13C]acetate and [1-13C]glucose
compared to control and PTZ groups respectively. Thus,
2-month-old animals showed a decreased GABA label-
ing, whereas 8-month-old animals showed an increased
labeling. What mechanisms induced this changed sensitiv-
ity to phenobarbital is presently unclear, but the findings
presented here underline the important role of GABA for
efficacy and neurotoxicity of barbiturates and changes with
increasing age (Macdonald and Barker, 1977; Kitani et al.,
1988).

Alanine labeling from [1-13C]glucose and glutamate C-4
from repeated [1,2-13C]acetate labeling were decreased in
the PTZ plus phenobarbital group compared to the PTZ
group in the 2-month-old animals. Alanine labeling in the
cortex is presumably an astrocytic process (Sonnewald
et al., 1991; Westergaard et al., 1993). Thus, the results indi-
cate impaired astrocytic metabolism and transfer of labeled
glutamine from astrocytes to neurons in the 2-month-old
animals.

4. Conclusions

In conclusion, the present results demonstrate that the cur-
rent practice of using young rodents as models for neurologi-
cal diseases in adult and older humans may be unsuitable and
findings should therefore be interpreted with caution, since
it is not possible to extrapolate results obtained in young ex-
perimental animals to old ones. Fundamental changes in the
biochemical interactions between neurons and astrocytes as
well as in the amounts of excitatory and inhibitory neuro-
transmitters occur during aging in response to pharmaco-
logical agents. For example PTZ-kindling seems to affect
astrocytes predominately in younger and glutamatergic neu-
rons mainly in older animals. In addition, we showed that
13C NNMR spectroscopy is a valuable tool for the study
of neuronal–glial interaction in the PTZ-kindling model of
epilepsy in SAMP8 mice.
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Abstract

Paradoxically, glutamate receptor antagonists have neurotoxic and psychotogenic properties in 

addition to their neuroprotective potential during excessive glutamate release. In the present 

study the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK801 was used 

to examine glial-neuronal interactions in NMDA receptor hypofunction. Rats were given a 

subanesthetic dose of MK801 together with [1-13C]glucose and [1,2-13C]acetate, and brains were 

removed 20 min later. Analyses of extracts from cingulate, retrosplenial plus middle frontal 

cortices (CRFC) and temporal lobe were performed using HPLC and 13C and 1H nuclear 

magnetic resonance spectroscopy. Hypofunction of the NMDA receptor induced similar changes 

in both brain areas investigated, however, the changes were most pronounced in the temporal 

lobe. Generally, only labeling from [1-13C]glucose was affected by MK801. In CRFC and 

temporal lobe amounts of both labeled and unlabeled glutamine were increased, whereas those of 

aspartate were decreased. In the CRFC the decrease in labeling of aspartate was greater than the 

decrease in concentration, leading to decreased 13C enrichment. In temporal lobe, not in CRFC, 

increased concentrations of glutamate, GABA, succinate, glutathione and inositol were detected 

together with increased labeling of GABA and succinate from [1-13C]glucose. 13C Enrichment 

was decreased in glutamate and increased in succinate. The results point towards a disturbance in 

glutamate-glutamine cycling and thus interaction between neurons and glia, since labeling of 

glutamate and glutamine from glucose was affected differently.  

Running title: Effects of MK801 on metabolism 

Key words: GABA, glutamine, NMR spectroscopy, rats, neuroprotection, neurotoxicity. 
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Introduction 

The dual potential of glutamate, both vitally important and highly toxic, has been known for a 

long time (Blood et al. 1969). Altered glutamate homeostasis is implicated in a variety of 

neurological and psychiatric disorders ranging from Alzheimer’s disease and epilepsy to 

schizophrenia. N-methyl-D-aspartate (NMDA) and other glutamate receptor antagonists have 

been developed in order to establish new treatments. Several have been in clinical trials such as 

Riluzole against amyotrophic lateral sclerosis (Bensimon et al. 1994), memantine in Alzheimer’s 

disease (Fleischhacker et al. 1986), selfotel in stroke (Davis et al. 2000) and CP-101,606 in brain 

trauma (Bullock et al. 1999). These agents are thought to reduce neurotoxicity of excessive 

glutamate release mediated by increased Ca2+ influx into neurons. Unfortunately, results from 

clinical studies have been quite disappointing (Festoff et al. 2003; Miller et al. 2003; Muir and 

Lees 2003). While earlier experimental studies reported mainly a neuroprotective potential of 

glutamate antagonists (Park et al. 1988; Ozyurt et al. 1988; Faden et al. 1989; Foster et al. 1988; 

Choi et al. 1988; Shapira et al. 1990), soon the additional neurotoxic potential of NMDA 

antagonism was recognized (Farber et al. 1995; Olney and Farber 1994; Farber et al. 1996; 

Farber et al. 1998; Kim et al. 1999). Another problematic feature of NMDA antagonists such as 

phencyclidine (PCP) and ketamine is that they elicit psychotic and other neuropsychiatric 

symptoms such as psychomotor, spatial and memory impairment.(Javitt and Zukin 1991; Krystal

et al. 1994). 

One of the best-studied NMDA receptor antagonists is the noncompetetive antagonist 

MK801 (Dizocilpine; [5R, 10S]-[+]-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-

imine) that binds at the phencyclidine (PCP) binding site inside the ion channel. MK801 was first 

studied due to its ability to minimize cell damage in models of ischemic attacks (Gill et al. 1987) 

and epilepsy (Collins and Olney 1982; Sloviter 1983). This compound is a more selective and 

potent NMDA receptor antagonist than both PCP and ketamine (Carlsson et al. 2001), which is 
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why MK801 is preferentially used in studies of NMDA receptors in psychosis and schizophrenia 

(Olney and Farber 1995). Systemic injection of MK801 in rats has been shown to induce 

concentration and time dependent pathomorphological changes in specific brain regions. Toxic 

effects were most pronounced and first observed in the retrosplenial cortex (Olney et al. 1989). 

With increasing antagonist concentration, changes were also seen in other brain areas including 

piriform and enthorinal cortex, dentate gyrus and amygdale (Horvath et al. 1997). 

A major function of NMDA receptors in polysynaptic circuitry is to increase the signal to 

inhibitory GABAergic interneurons. It is hypothesized that the neurotoxic potential of NMDA 

receptor antagonists results from blockade of NMDA receptors on GABAergic interneurons 

alleviating the GABAergic inhibition on the downstream glutamatergic neurons. Thus, glutamate 

release is indirectly increased (Farber et al. 1995). However, blockade of NMDA receptors at the 

glutamatergic neurons at the end of the chain might be neuroprotective. This circuitry, which is 

thought to underlie both the neurotoxic and psychotogenic properties of NMDA receptor 

antagonism, is well studied (Carlsson et al. 2001; Farber et al. 2002), but few studies have 

focused on astrocyte-neuronal interaction during treatment with NMDA receptor antagonists. 

The major role of astrocytes in the adult brain is to support neurons metabolically, whereas under 

pathological conditions their role can both be deleterious and neuroprotective (Aschner et al.

2002). The glutamate-glutamine cycle, linking glutamatergic neurons and astrocytes, is an 

important part in the supportive role of astrocytes (van den Berg and Garfinkel 1971). Glutamate 

released from neurons in glutamatergic neurotransmission is mainly taken up by astrocytes 

(Gegelashvili and Schousboe 1997; Gegelashvili and Schousboe 1998) and this is compensated 

for by a flow of glutamine from astrocytes to neurons. Since astrocytes are intensely involved in 

glutamate homeostasis (Sonnewald et al. 1997), it is important to examine glial-neuronal 

interactions in a state of NMDA receptor hypofunction produced by MK801. An excellent tool 

for the study of these interactions is 13C nuclear magnetic resonance (NMR) spectroscopy, which 
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enables studies of the fate of glutamate, glutamine, GABA and other metabolites in both 

astrocytes and neurons in the same animal (Taylor et al. 1996). It is possible to distinguish 

between neuronal and glial pathways by using specifically labeled precursors such as [1-

13C]glucose and [1,2-13C]acetate. Acetate is selectively taken up by astrocytes since they contain 

a specialized transport system, which is absent or less active in neurons (Waniewski and Martin 

1998), whereas acetyl CoA derived from glucose has been calculated to be metabolized more in 

the neuronal tricarboxylic acid (TCA) cycle in rats (Qu et al. 2000). NMR spectroscopy provides 

a dynamic picture of brain metabolism in particular when combined with proton (1H) NMR 

spectroscopy and HPLC (Sonnewald and Kondziella 2003). These methods were used to 

examine alterations in glutamate-glutamine-GABA metabolism and glial-neuronal interaction in 

the cingulate and the retrosplenial cortices and part of the temporal lobe, the brain areas that are  

most affected by NMDA receptor antagonists, after a single injection of MK801.  

Materials and Methods

Materials 

Fifteen male Sprague Dawley rats with an average weight of 250 g were obtained from 

Möllegaard Breeding Centre, Copenhagen, Denmark and used for the experiment. [1-

13C]Glucose, [1,2-13C]acetate and D2O (99,9%) were purchased from Cambridge Isotopes 

Laboratories (Woburn, MA, USA), ethylene glycol from Merck (Darmstadt, Germany). o-

phthaldialdehyde and MK801 (Dizocilpine; [5R, 10S]-[+]-5-methyl-10,11-dihydro-5H-

dibenzo[a,d]cyclohepten-5,10-imine) were from Sigma-Aldrich (St. Louis, MO, USA). All other 

chemicals were of the purest grade available from local commercial sources. 
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Methods

All animal procedures were approved by the Norwegian Animal Research Authority. Prior to 

experiments the animals had free access to food and water and were kept five per cage at a 

light/dark cycle of 12 h, humidity 60%, temperature 22ºC. During the experiment each animal 

was placed in its own cage and allowed 30 min for acclimatization. The animals in the treatment 

group (8 rats) received a solution consisting of MK801 (0.5 mg/kg), [1-13C]glucose (543 mg/kg) 

and [1,2-13C]acetate (504 mg/kg), the control animals (7 rats) were given a solution with the 

same concentration of [1-13C]glucose and [1,2-13C]acetate in sterile water, but without MK801. 

Animals in both groups were injected intraperitoneally with 10 ml/kg of the respective solutions. 

Twenty minutes after the injection the animals were killed by decapitation and the head snap 

frozen in liquid nitrogen, and later stored at -80ºC. Brains were removed, and two different areas 

of each hemisphere were dissected. The first area included the cingulate, the retrosplenial and the 

medial parts of the frontal cortices (CRFC). The second area, which in the present study will be 

referred to as the temporal lobe, was dissected using a horizontal cut from the most lateral point 

of the hemisphere extending approximately 3 mm medially and a second sagittal cut extending 

ventrally through the whole brain. This resulted in a sample including temporal cortex, piriform 

cortex, entorhinal cortex, amygdala and parts of the hippocampus. The dissection lasted max. 3 

min and was performed on ice with the brains still frozen. After dissection, brain tissue was 

homogenized in 7% (w/v) perchloric acid and centrifuged at 4,000 g for 5 min. The procedure 

was repeated with dH2O, the supernatants pooled and neutralized with 1 M KOH followed by 

lyophilization.

High Pressure Liquid Chromatography (HPLC) 

HPLC analyses to determine the total amounts of amino acids were carried out using the HP 

1100 System from Agilent (Palo Alto, CA, USA) with fluorescence detection, after 
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derivatization with o-phthaldialdehyde (Geddes and Wood 1984). Amino acids were separated 

on a ZORBAX SB-C18 (4.6×250 mm, 5 m) column from Agilent using 50 mM sodium acetate 

buffer (pH 7.0) and methanol as eluents.  

13C NMR spectroscopy 

 A Bruker DRX-600 spectrometer (Fälladen, Germany) was used to obtain proton decoupled 

150.92 MHz 13C NMR spectra. For this procedure the samples were re-dissolved in 400 L D2O

containing ethylene glycol 0.1% as an internal standard. Scans were accumulated with a 30º 

pulse angle and 30 kHz spectral width with 64K data points. The acquisition time was 1.08 s, the 

relaxation delay 2.5 s and the number of scans was typically 10,000. To all spectra factors to 

correct for nuclear Overhauser and relaxation effects were applied.  

1H NMR spectroscopy 

A Bruker DRX-600 spectrometer was used to obtain 1H NMR spectra with a sweep width of 12 

kHz with 32K data points. The pulse angle was 90°, the acquisition time 1.36 s and the relaxation 

delay was 10 s. The number of scans was 400. Water suppression was set at the residual H2O

resonance.

Data analysis 

To interpret the results it is necessary to analyze the metabolism of [1-13C]glucose and [1,2-

13C]acetate. Via glycolysis [1-13C]glucose can be transformed to [3-13C]pyruvate, which can be 

metabolized to [3-13C]alanine or [3-13C]lactate. [3-13C]pyruvate can also enter the TCA cycle via 

[2-13C]acetyl-CoA and then [4-13C]glutamate can be formed, which in turn can be converted to 

[4-13C]glutamine in astrocytes or [2-13C]GABA in GABAergic neurons (Figure 2). However, if 

the label stays in the TCA cycle for an additional turn, [2-13C] or [3-13C]glutamate and glutamine 
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and [4-13C] or [3-13C]GABA can be formed (Figure 2). All these compounds are represented in 

the spectra by singlets (Figure 1). [1,2-13C]Acetate labeling is very similar to labeling from [1-

13C]glucose, however, not only one, but two adjacent carbon atoms are labeled resulting mainly 

in doublet formation in the NMR detectable products (Figure 1). [1,2-13C]acetate can be 

converted to [1,2-13C]acetyl-CoA, which can, after several steps, give rise to [4,5-13C]glutamine 

in astrocytes (Figure 3). This glutamine can be converted to [4,5-13C]glutamate or [1,2-

13C]GABA in the appropriate neurons. [1,2-13C]glutamine is formed from [1,2-13C]glutamate, if 

2-[4,5-13C]oxoglutarate does not leave the cycle after the first turn but stays for an additional turn 

(Figure 3). In fact, many more isotopomers arise from the TCA cycle, since both acetyl-CoA and 

oxaloacetate can be labeled or unlabeled (Figure 2). 

 Metabolic ratios were calculated as follows: The acetate versus glucose utilization ratio 

is an approximation for the relative contribution from astrocytes and neurons to glutamate, 

glutamine and GABA formation (Taylor et al. 1996). Incorporation of [1,2-13C]acetate yields 

[4,5-13C]glutamate, [4,5-13C]glutamine and [1,2-13C]GABA, whereas [1-13C]glucose gives rise 

to [4-13C]glutamate, [4-13C]glutamine and [2-13C]GABA. The acetate versus glucose utilization 

ratios are expressed as [4,5-13C]glutamate (glutamine)/[4-13C]glutamate (glutamine), and [1,2-

13C]GABA/[2-13C]GABA. The 13C cycling ratio gives an indication of how long label stays in 

the TCA cycle before incorporation into glutamate and glutamine.  The cycling ratio for 13C

from 1,2-13C acetate was calculated as follows: 2×[1,2-13C]glutamate (glutamine) /[4,5-

13C]glutamate (glutamine).  

 The amounts of 13C and 1H in the different metabolites were quantified from integrals of 

the relevant peaks obtained from NMR spectra. Ethylene glycol served as an internal standard, 

and was set to 157.79 nmol for the analyses of 13C spectra and to 43.035 μmol for 1H spectra. 13C

Enrichment was calculated by subtracting the naturally abundant 13C obtained from HPLC or 1H

spectroscopy from the amount of 13C in the singlet of a particular peak, dividing the difference 
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by the amount of metabolite and multiplying by 100. All results are given as mean ± standard 

deviation. Statistics were performed using the unpaired two-tailed Student’s t-test and p <0.05 

was regarded as significant.
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Results

Intraperitoneal injection of MK-801 led to hyperlocomotion, ataxia, abducted hindlimbs, flat 

body posture and stereotyped behavior such as head weaving in all rats, as described by others 

(Loscher and Honack 1991). Metabolites were efficiently labeled by [1-13C]glucose and [1,2-

13C]acetate as can be seen in Figure 1. It is important to notice that most of the singlet peaks are 

derived from [1-13C]glucose and thus predominantly neuronal metabolism, whereas the doublets 

in the spectrum (Figure 1) mainly originate from astrocytic metabolism of [1,2-13C]acetate.

Figures 2 and 3 are simplified schemes of the metabolic conversions of [1-13C]glucose and [1,2-

13C]acetate respectively. It becomes apparent, when comparing the doublets with the singlets in 

Figure 1, that glutamate and GABA are labeled more from [1-13C]glucose (singlet) than from 

[1,2-13C]acetate (doublet) in contrast to glutamine, which is labeled predominantly from [1,2-

13C]acetate (Figure 1). Lactate, alanine and aspartate are mostly labeled from glucose. MK801 

affected the CRFC much less than the temporal lobe. As can be seen in Table 1, there was a 

significant increase in the amount of [4-13C]glutamine in the CRFC of animals treated with 

MK801, while [2-13C]aspartate was decreased compared to controls. In the temporal lobe, 

however, amounts of [4-13C]glutamine, [2-13C]glutamine, [1,2-13C]glutamine, [3-13C]GABA 

and [2-13C] plus [3-13C]succinate were significantly increased, whereas the amount of [2-

13C]aspartate was significantly reduced. In the CRFC cycling in the TCA cycle of precursors for 

glutamine derived from [1,2-13C]acetate increased significantly from 0.49 0.05 to 0.56 0.04.

Cycling of 13C from [1,2-13C]acetate in glutamate and GABA was unaltered. Pyruvate 

carboxylation was not affected by MK801 as (C-2-C3)/C-4 ratios in glutamate and glutamine 

and (C-4-C3)/C-2 in GABA were unchanged (results not shown). Not only labeling but also 

amounts of metabolites were affected by MK801 (Table 2). Again, changes were most 

pronounced in temporal lobe where levels of glutathione, glutamate, glutamine, GABA, lactate, 
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succinate and inositol were significantly increased. In CRFC the concentration of aspartate was 

decreased, whereas that of glutamine was significantly increased. Serine, taurine, alanine 

(measured by HPLC), NAD and ADP plus ATP (measured by 1H NMRS) were not affected by 

MK801 (results not shown). The changes in the metabolic pathways leading to the results 

presented above have been incorporated into a model shown in Figure 4 a,b. From the amounts 

of metabolite and the 13C contents in the singlets it is possible to calculate % enrichment. For 

calculation see Materials and Methods. Only singlets are relevant in this context since the 

doublets are 100% labeled in most cases since naturally abundant doublets appear only if 

compounds are present in extremely high concentration. In most cases labeling and amount 

were either increased or decreased to the same extent and thus enrichment was unchanged. 

However, in the CRFC enrichment in aspartate C-2 decreased from 5.76 0.60 to 4.91 0.60,

p<0.03. In temporal lobe glutamate C-4 enrichment decreased from 5.86 1.16 to 4.31 1.03,

p<0.02, also glutamate C-2 and 3 had similar decreases, whereas succinate increased from 

2.21 1.07 to 3.67 0.62, p<0.02. 
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Discussion  

Energy metabolism 

Duncan et al. (1999) showed that injection of subanesthetic doses of ketamine (25 mg/kg) or 

MK801 (1 mg/kg) caused, 35 min later, pronounced increase in [14C]-2-deoxyglucose (2-DG) 

uptake in the structures in the temporal lobe and also in cingulate and retrosplenial cortex. In 

light of this we investigated the effects of MK801 on [1-13C]glucose metabolism in cingulate 

plus retrosplenial cortex and temporal lobe. No differences were found in [1-13C]glucose

concentration in brain 20 min after injection of MK801 (0.5 mg/kg), confirming earlier reports 

(Loubinoux et al. 1994). The glycolysis product lactate was, however, increased in MK801 

treated animals in the present study in both areas. This is in line with enhanced 2-DG uptake, 

followed by increased glycolysis. Loubinoux et al. (1994) showed an overall increase in lactate 

production in rat brain 20 min after MK801 (0.5 mg/kg) injection using in vivo 1H NMRS. These 

authors did not detect any changes in N-acetylaspartate (NAA) levels. NAA is the most abundant 

amino acid in the brain and is located in neurons (Baslow 2003). It is synthesized from aspartate 

and acetyl CoA through the reaction catalyzed by acetyl-CoA-aspartate N-acetyltransferase, an 

enzyme localized in neuronal mitochondria. Loss of NAA can indicate both mitochondrial 

dysfunction and/or cell death. In agreement with Loubinoux et al. (1994) no differences were 

found in the NAA concentration in the present study indicating that mitochondrial metabolism in 

neurons was not affected by MK801. Our findings that ATP, ADP levels were not altered by 

MK801 lends further support to this interpretation, and is in agreement with previous reports of 

unchanged ATP levels ATP levels. 

Glutamine

Activation of NMDA receptors by the natural agonist glutamate opens the ion channel allowing 

entry of Ca2+ and Na+ into the postsynaptic neuron. Recent evidence suggests that NMDA 
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receptors are also present on astrocytes (Krebs et al. 2003). Metabolic interaction between 

astrocytes and neurons is essential, since neurons lack the anaplerotic enzyme pyruvate 

carboxylase (Yu et al. 1983). Glutamine synthetase (GS), a glial specific enzyme (Norenberg and 

Martinez-Hernandez 1979), catalyses the reaction between ammonia and glutamate. In order to 

synthesize glutamate and GABA for release, neurons depend on glutamine supply from 

astrocytes. In the present study glutamine concentrations were increased in response to MK801. 

This is in agreement with a study by Kosenko et al. (2003), that showed evidence of a nitric 

oxide (NO) mediated control of GS. These authors showed that in the presence of 2 mg/kg 

MK801 the decreased entry of Ca2+ through the NMDA receptors caused reduced production of 

calmoduline, leading to impaired activity of nitric oxide synthase and subsequently decreased 

NO production. Glutamine synthetase is inhibited by NO and thus more glutamine is produced at 

low NO levels (Kosenko et al. 2003; 1994). Loscher and Honack (1991) also reported increase 

of glutamine in the frontal cortex, 3 h after injection of MK801 (0.1 mg/kg). Increased glutamine 

concentrations were also detected in both brain areas investigated in the present study. Glutamine 

concentration and also [4-13C]glutamine formed from [1-13C]glucose were increased. Glutamate 

was also increased, but [4-13C]glutamate was unchanged, resulting in decreased 13C enrichment. 

These results indicate a disruption in the glutamate–glutamine cycle caused by MK801. 

Interestingly, the amount of glutamine formed from [1,2-13C]acetate derived from the first turn of 

the TCA cycle, [4,5-13C]glutamine, was unchanged, whereas [1,2-13C]glutamine was increased in 

the temporal lobe. The latter form of glutamine is derived from [1,2-13C]acetate as well, 

however, 2-oxoglutarate for synthesis of [1,2-13C]glutamine via [1,2-13C]glutamate has stayed in 

the TCA cycle for an additional turn. Thus, in the temporal lobe, mitochondrial function was 

altered in the astrocytes. No changes were observed in [4,5-13C]glutamine, [4,5-13C]glutamate 

and [1,2-13C]GABA from [1,2-13C]acetate demonstrating unperturbed metabolic flux from 

astrocytes to neurons in both areas of the brain. These observations indicate that not all GS was 



14

affected by MK801, and point towards compartmentation of glutamine metabolism, where 

glutamine labeled from neuronal glutamate ([4-13C]glutamate) is handled in a different 

compartment than glutamine from astrocytic glutamate. A possible mechanism is that Ca2+ was 

decreased at the dendritic part of the cell body, near the synapses, and only there the NO 

production was reduced. Less NO would then diffuse over the astrocytic membrane leading to 

increased GS activity in the synaptic region of the astrocyte. The glutamate taken up by 

astrocytes in the synaptic region is mostly glutamate released from neuronal vesicles and 

therefore labeled from [1-13C]glucose. In  parts of astrocytes bordering synapses there could be 

an increased conversion of [4-13C]glutamate to [4-13C]glutamine. Since NO is a very reactive 

species, it cannot diffuse far and reduced NO production near the synapses will not influence GS 

activity in other parts of the astrocytes, where glutamate is predominantly derived from 

astrocytic metabolism (i.e. [4,5-13C]glutamate) and levels of [4,5-13C]glutamine will not be 

changed.

The increased amounts of both labeled and unlabeled glutamine have to be compensated 

for by anaplerosis via pyruvate carboxylase or decrease in metabolites that can be converted to 

oxaloacetate, such as glutamate. In the present study the pyruvate carboxylase to dehydrogenase 

ratio was not affected by MK801. Furthermore glutamate, GABA, succinate and glutathione 

concentrations were increased, and only the amount of aspartate was decreased. However, this 

decrease was not sufficient to account for the increase in the other metabolites. Another 

possibility is a decrease in pyruvate recycling, but this pathway is not very prominent 

(Waagepetersen et al. 2002; Lapidot and Gopher 1994; Kunnecke et al. 1993) and there were no 

indications of increased pyruvate recycling in the present study. Altogether the results indicate 

that MK801 disrupted the metabolic balance in the synaptic region of the astrocytes and thus the 

glutamate-glutamine cycle. In additional support of astrocytic dysfunction is the finding that 
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inositol, an osmoregulator, was increased in the temporal lobe of rats treated with MK801, which 

can be considered to indicate glial cell swelling (Brand et al. 1993). 

Glutamate

In the present study increased concentration of glutamate was detected 20 min after injection of 

MK801 in the temporal lobe. In previous studies elevated glutamate levels have been observed 3 

h after injection of MK801 in the piriform cortex, which is a part of the temporal lobe. Löscher et 

al. (1991) suggested that the increased glutamate levels resulted from feedback elevation of 

glutamate synthesis induced by MK801 blockade of postsynaptic NMDA receptors. However, 

results in the present study challenge this hypothesis since 13C enrichment in glutamate was 

decreased.

GABA  

Glutamine released by astrocytes can also function as precursor for the inhibitory 

neurotransmitter GABA via glutamate (Sonnewald et al. 1993). Thus the concept of the 

glutamate-glutamine cycle was extended to a glutamate–glutamine-GABA cycle. Löscher et al.

(1991) reported increased concentrations of GABA in the piriform and frontal cortices after 

injection of MK801. .The same was observed in the present study in temporal lobe but not in the 

CRFC. GABA is converted to succinate via the GABA shunt, which accounts for approximately 

10% of the TCA cycle flux (Martin and Rimvall 1993). GABA amount and labeling from the 

TCA cycle were increased to the same extend in temporal lobe whereas succinate labeling 

increased more than the amount leading to increased 13C enrichment. Thus the glutamate–

glutamine-GABA cycle was altered in addition to the glutamate–glutamine cycle. However, the 

drain of GABA from neurons to astrocytes is relatively modest (Schousboe and Waagepetersen 

2004; Peng et al. 1993), and glutamine transport has been shown to be more intense in 
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glutamatergic neurons than cortical neurons and astrocytes (Su et al. 1997; Varoqui et al. 2000). 

Disturbances in the glutamate–glutamine-GABA cycle might therefore not be as deleterious as in 

the glutamate–glutamine cycle. 

The fact that effects on GABA were only observed in temporal lobe might be due to 

higher GABAergic activity in the temporal lobe as reflected by the larger amount of GABA in 

the temporal lobe compared to CRFC. 

Glutathione

Being the major antioxidant in the brain (Dringen and Hirrlinger 2003), glutathione (GSH) plays 

a fundamental role in protecting cells from damage by reactive oxygen species generated among 

others from dopamine metabolism. A deficit in GSH might lead to degenerative processes in the 

surrounding of dopaminergic terminals resulting in loss of connectivity (Schulz et al. 2000). 

GSH also potentiates the NMDA receptor’s response to glutamate (Janaky et al. 1999). The 

increased level of GSH in rats in the present study could point to a decreased use of antioxidants, 

possibly caused by decrease in NO production due to decrease Ca2+ influx. It should be noted 

that GSH could increase the effect of glutamate on the NMDA receptors.  

Conclusion

Hypofunction of NMDA receptors induces similar changes in glutamate-glutamine cycling in 

both areas investigated, however, the changes were most pronounced in the temporal lobe, where 

also the glutamate-glutamine-GABA cycle was impaired. It can be postulated that increase of 

glutamine synthetase activity is the cause of the neurotoxic effects of MK801. 
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Table 1 Amounts of 13C in nmol/g of tissue in brain extracts of control and MK-801-treated rats 

 Cingulate/Retrosplenial/Frontal Cortex  Temporal Lobe 

Control

(n=6) 

MK801

(n=6) 

Control

(n=6) 

MK801

(n=7) 

From [1,2-13C]acetate               

[4,5-13C]glutamate 258.4 ± 40.7  235.1 ± 32.1  212.2 ± 31.6  211.1 ± 31.4 

[4,5-13C]glutamine 343.7 ± 51.2  386.7 ± 59.9  342.0 ± 53.0  393.0 ± 47.6 

[1,2-13C]glutamine 85.5 ± 19.8  109.0 ± 17.8  79.6 ± 8.1  105.6 ± 9.3* 

From [1-13C]glucose               

[4-13C]glutamate 641.2 ± 86.1  641.0 ± 77.6  567.8 ± 36.3  536.3 ± 75.8 

[2-13C]glutamate 337.0 ± 52.2  354.6 ± 36.1  279.5 ± 23.9  275.2 ± 41.6

[4-13C]glutamine 137.3 ± 13.3  161.1 ± 19.5*  125.4 ± 10.0  150.8 ± 21.9* 

[2-13C]glutamine 104.3 ± 17.4  121.5 ± 12.2  92.5 ± 13.2  114.3 ± 11.5*

[2-13C]aspartate 133.7 ± 16.2  105.2 ± 12.3*  105.2 ± 13.6  80.6 ± 16.9* 

[3-13C]GABAa 51.2 ± 5.8  47.5 ± 10.3  47.5 ± 9.5  56.9 ± 3.8* 

[2-13C] or 

[3-13C]succinate 
32.0 ± 7.6  32.4 ± 4.4  22.6 ± 6.5  39.2 ± 4.3* 

[1-13C]glucose 76.6 ± 25.5  94.7 ± 25.5  53.5 ± 16.9  44.5 ± 18.6 

Rats were treated with a single intraperitoneal injection of MK801 (0.5mg/kg) or saline together with [1,2-

13C]acetate and [1-13C]glucose. Twenty minutes later they were sacrificed (for details see Materials and 

Methods). The results are expressed as mean ± SD and were analyzed with the Student’s t-test.  *, significantly 

different from control; a, [3-13C]GABA  can also be derived from [1,2-13C]acetate after the second turn of the TCA 

cycle. 
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Table 2. Amounts of metabolites in mol/g of tissue in brain extracts of control and MK-801-treated rats. 

 Cingulate/Retrosplenial/Frontal Cortex  Temporal Lobe 

Control

(n=7) 

MK801

(n=7) 

Control

(n=8) 

MK801

(n=8) 

Glutathionea 1.2 ± 0.1  1.3 ± 0.1  1.3 ± 0.1  1.5 ± 0.1* 

Aspartatea 2.0 ± 0.3  1.7 ± 0.1*  1.8 ± 0.2  1.6 ± 0.2 

Glutamatea 9.4 ± 1.2  10.3 ± 1.1  8.6 ± 0.9  10.1 ± 1.4* 

Glutaminea 3.2 ± 0.2  3.5 ± 0.2*  3.3 ± 0.3  4.2 ± 0.2* 

GABAa 1.3 ± 0.1  1.3 ± 0.1  2.0 ± 0.3  2.5 ± 0.6* 

Lactatec 4.1 ± 0.6  5.7 ± 0.7*  5.4 ± 0.8  6.2 ± 0.6* 

Succinateb 0.7 ± 0.1  0.8 ± 0.1  0.7 ± 0.1  0.8 ± 0.1* 

NAAb 9.2 ± 0.8  9.6 ± 0.9  8.7 ± 0.8  8.5 ± 0.7 

Inositolb 6.5 ± 1.7  6.0 ± 1.2  6.2 ± 0.6  8.8 ± 1.5* 

Rats were treated with a single intraperitoneal injection of MK801 (0.5mg/kg) or saline and were decapitated 

twenty minutes later (for details see Materials and Methods). The results are expressed as mean ± SD and were 

analyzed with the Student’s t-test. NAA, N-acetyl-apartate; a, results from HPLC analysis; b, results from 1H-NMR 

analysis; c, results from 13C-NMR analysis; *, significantly different from control. 



28

Legends

Figure 1. 13C NMR spectrum of temporal lobe extracts from rats injected with MK801 together 

with [1,2-13C]acetate and [1-13C]glucose. Peak assignments; 1: glutamate C-2; 2: glutamine C-2; 

3: aspartate C-2; 4: aspartate C-3; 5: GABA C-2; 6: succinate C-2/C-3; 7: glutamate C-4; 8: 

glutamine C-4; 9: glutamate C-3; 10: glutamine C-4; 11: GABA C-3; 12: N-acetyl-aspartate C-3; 

13: lactate C-3. The singlets are mostly derived from [1-13C]glucose and the doublets in the 

spectrum from [1,2-13C]acetate.

Figure 2. Schematic presentation of isotopomers of glutamate, glutamine and GABA derived 

from [1-13C]glucose after the first and second turn of the tricarboxylic acid (TCA) cycle. 

Figure 3. Schematic presentation of isotopomers of glutamate, glutamine and GABA derived 

from [1,2-13C]acetate after the first and second turn of the tricarboxylic acid (TCA) cycle.

Figure 4 

a. Schematic presentation of the interactions of an astrocyte with pre- and post-synaptic neurons. 

Glutamate synthesized by neurons is released into the synaptic cleft, activating NMDA receptors 

on both astrocytes and neurons and is deactivated by uptake mostly into astrocytes. In astrocytes 

glutamate is converted to glutamine by glutamine synthetase, an enzyme modulated by nitric 

oxide.

b. Schematic presentation of the interactions of an astrocyte with pre- and post-synaptic neurons 

in the presence of MK801. Reduced NO production due to reduced activation of the NMDA 

receptor will lead to increased activity of GS. This will be most pronounced in the synaptic 

region and will affect the glutamine-glutamate cycle between neurons and astrocytes. *, 

Glutamine in the non-synaptic region mostly labeled from [1,2-13C]acetate; , increased enzyme 
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activity; , decreased enzyme activity; stippled lines, modulation of enzyme activity. 

Abbreviations: GS, glutamine synthetase; NMDA receptor, N-methyl-D-aspartate receptor; NO, 

nitric oxide; NOS, nitric oxide synthase; PAG, phosphate activated glutaminase; PC, pyruvate 

carboxylase; PDH, pyruvate dehydrogenase.
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Abstract 

Schizophrenia-mimicking compounds such as phencyclidine (PCP) and MK801 are antagonists 

at the N-methyl-D-aspartate (NMDA) receptor and produce the whole spectrum of positive and 

negative symptoms, including cognitive disturbances.   This is one of the most important pillars 

of the hypoglutamatergic hypothesis of schizophrenia. Since the synthesis of glutamate and 

GABA in neurons is closely connected to astrocyte metabolism, the study of  astrocytic function 

is essential in this context. In the present study, we induced a state of NMDA receptor 

hypofunction by administering MK801 every other day for twelve days. The last dose was given 

together with [1-13C]glucose and [1,2-13C]acetate. Frontal, retrosplenial and cingulate cortices 

(CRFC) and temporal lobes were examined by 13C and 1H nuclear magnetic resonance 

spectroscopy, HPLC and light microscopy. Significant increases in the levels of glutamate, 

glutathione and taurine were seen, whereas amounts and turnover of noradrenaline, dopamine and 

serotonin were not changed. Glutamate and glutamine, derived from [1,2-13C]acetate and thus 

astrocytes, were significantly decreased in CRFC as compared to controls. Labeling from [1-

13C]glucose and thus mostly neuronal metabolism was affected in the same brain region with 

decreased labeling of glutamate and GABA. The present model mimics the increased 

glutamate/glutamine activity found in drug naive patients with first episode schizophrenia. 

Moreover, the decreased labeling both in astrocytes and neurons shows the transition to lower 

glutamatergic function seen in chronic schizophrenia patients. The decreases in astrocytic 

function and the glutamine-glutamate-GABA cycle are of significant importance and might add 

to the disturbances of the cortico-striato-thalamo-cortical loop caused by NDMA receptor 

blockade and hence to the sensory gating deficits provoking sensory overstimulation of the cortex 

and psychosis. 
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Introduction 

The hyperdopaminergic hypothesis of schizophrenia was for a long time based upon indirect 

pharmacological evidence, but has recently received more direct support from neuroimaging 

studies.1,2,3,4 Recently, a modified dopamine hypothesis of schizophrenia has been proposed, 

postulating dysfunctional dopaminergic synapses leading to secondary alterations in 

dopaminergic neuronal activity.5 In the past years glutamatergic hypofunction has been 

recognized to play a significant role as well. N-methyl-D-aspartate (NMDA) glutamate-receptor 

antagonists, such as phencyclidine (PCP), ketamine or dizocilpine-maleate (MK801), have been 

shown to cause strong psychomimetic effects with hallucinations and psychomotor signs and 

have been used extensively in schizophrenia research. In contrast to dopaminergic agonists, 

which only mimic the positive symptoms of schizophrenia, NMDA antagonists produce the 

whole spectrum including negative and cognitive symptoms. Another mechanism, which has 

been suggested many years ago, involves the serotonin-5HT-2 -receptor, since the 5-HT2 

agonists such as lysergic acid diethylamid (LSD) produce psychotic symptoms.6 Thus, evidence 

is accumulating showing that the hypothesis of exclusive dopaminergic hyperfunction causing 

schizophrenia has to be revised or at least, extended. A more differentiated approach includes, in 

addition to the dopaminergic, also glutamatergic and serotonergic neurotransmitter systems. 7

It has been suggested that the dysregulation of dopamine transmission in 

schizophrenia might be secondary to alterations in glutamatergic NMDA receptor mediated 

transmission. 8,9 A direct linkage between the two hypothesis has recently been shown in an 

experiment performed in healthy volunteers. It was observed that the amplitude of amphetamine 

induced dopamine release was significantly enhanced compared to control conditions, when 

NMDA receptor-mediated transmission was decreased by ketamine administration. 10 Thus, the 
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elevated dopamine release seen in schizophrenic patients after amphetamine administration might 

very well be secondary to a failure in glutamatergic control of dopamine neurons. Analogous 

studies in rats support this interpretation. 11 NMDA receptor hypofunction models not involving 

dopamine have also been proposed. 12,13,14 

The synthesis of glutamate and GABA in neurons is closely connected to astrocyte 

metabolism. Being the most important excitatory neurotransmitter in the mammalian CNS, 

glutamate and its homeostasis are crucial to brain function for several reasons. Firstly, fast 

removal of glutamate from the synaptic cleft by astrocytes guarantees short glutamate action on 

the postsynaptic target cell and thereby precise information signaling. Secondly, high 

extracellular concentration of glutamate is neurotoxic and it has been shown that excessive 

glutamate release plays a part in the pathophysiology of many brain disorders. Thirdly, since 

neurons lack the main anaplerotic enzyme in the brain, pyruvate carboxylase,15 they depend on 

astrocytic supply of tricarboxylic acid (TCA) cycle intermediates because drain of amino acid 

neurotransmitters would otherwise lead to a shortage of neurotransmitter precursors. 16

Astrocytes release glutamine into the extracellular space, from where it is taken up by neurons 

and converted to glutamate and GABA or channeled into the TCA cycle via 2-oxoglutarate to 

provide carbon skeletons for the synthesis of other metabolites. As mentioned earlier, after 

release from neurons glutamate is cleared from the synapses by astrocytes, which transform 

glutamate to glutamine again, and the so-called “glutamine-glutamate- cycle” is closed. 17

An excellent tool to obtain information about metabolic pathways and glial-neuronal 

metabolic interaction is 13C nuclear magnetic resonance spectroscopy (NMRS) - see Sonnewald 

and Kondziella18 for a review. When [1,2-13C] acetate and [1-13C]glucose are given 

simultaneously, it is possible to study astrocytic and neuronal metabolism in the same animal. 19

MK801 is one of the best characterized non-competitive antagonists of the PCP binding site of 
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the NMDA receptor which is also present on astrocytes. 27 Since it is even more selective than 

PCP7, MK801 is a widely studied substance in experimental research of both schizophrenia and 

glutamate neurotoxicity. It causes behavioral changes in rodents such as hyperlocomotion, 

stereotyped behavior, head weaving and ataxia. 20 Altered cerebral metabolism with excessive 

cerebral glucose supply has been reported by Loubinoux et al. 21 MK801 is able to minimize cell 

damage in the rodent hippocampus during ischaemia, but also to induce neuronal degeneration. 

Toxic effects of MK801 were first observed and are most pronounced in the retrosplenial and 

cingulate cortex. 22,23 With increasing MK801 concentrations, alterations are also seen in other 

brain areas including entorhinal and piriform cortices, dentate gyrus and amygdala. 24

 In the present study, we induced a state of NMDA receptor hypofunction in rats by 

repeated administration of MK801. Then astrocytic-neuronal interactions in frontal, retrosplenial 

and cingulate cortices and temporal lobe were examined by means of NMRS, HPLC and light 

microscopy to test the hypothesis that glial-neuronal metabolism is disturbed during experimental 

schizophrenia provoked by repeated MK801 treatment.



6

Materials and Methods  

Materials

Twenty-six male Sprague Dawley rats with an average weight of 250 g were obtained from 

Möllegaard Breeding Centre, Copenhagen, Denmark. [1-13C]glucose, [1,2-13C]acetate (both 99% 

13C enriched) and D2O (99,9%) were purchased from Cambridge Isotopes Laboratories (Woburn, 

MA, USA), ethylene glycol from Merck (Darmstadt, Germany). o-phthaldialdehyde and MK801 

(Dizocilpine; [5R, 10S]-[+]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine) 

were from Sigma-Aldrich, St. Louis, MO, USA, ketamine (ketalar) from Werner Lambert, Nordic 

AB, Solna, Sweden and medotomidinehydrochloride from Jansen, Cilag Ltd., Southerton, UK. 

All other chemicals were of the purest grade available from local commercial sources. 

Methods 

All animal procedures were approved by the Norwegian Animal Research Authority. Prior to 

experiments the animals received food and water ad libitum and were kept at a light/dark cycle of 

12 h, humidity 60%, temperature 22ºC. During the experiment the animals were housed in 

individual cages. Saline (13 animals) or MK801 (13 animals; 0.5mg/kg body weight) were 

administered intraperitoneally every other day for twelve days. The last dose was given together 

with [1-13C]glucose (543mg/kg, 0.3 M solution) and [1,2-13C]acetate (504mg/kg, 0.6 M solution) 

followed by decapitation twenty minutes later. The heads were snap frozen in liquid nitrogen and 

stored at -80ºC. Brains were removed, and two different areas of each hemisphere were dissected. 

The first area included the cingulate, the retrosplenial and the frontal cortices (CRFC). The 
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second area, which in the present study will be referred to as the temporal lobe, was dissected by 

a horizontal cut from the most lateral point of the hemisphere extending approximately 3 mm 

medially and a second sagittal cut extending ventrally through the whole brain. The resulting 

sample consisted of the temporal cortex, piriform cortex, entorhinal cortex, amygdala and parts of 

the hippocampus. The dissection was performed on ice while the brains were still frozen and 

lasted max. 3 min. After dissection, brain tissue was homogenized in 7% (w/v) perchloric acid 

and centrifuged at 4.000 g for 5 min. The procedure was repeated, the supernatants pooled and 

neutralized with 1 M KOH followed by lyophilization.      

Histology 

Three MK801 treated rats and five controls did not receive [1-13C]glucose and [1,2-13C]acetate in 

their last injection. They were deeply anesthetized with ketamine (100mg/kg) and 

medotomidinehydrochloride (0.5mg/kg) and underwent cardiac perfusion with 20ml heparinized 

0.9% saline and a modified Karnovsky solution (2% formaldehyd, 2.5% glutaraldehyd, 0.1M 

natriumcacodylate buffer, 0.025% CaCl2; pH 7.4). Brains were removed immediately after 

perfusion and stored in the same fixative until slicing. All slices were processed by sequential 

alcohol dehydration, cleared, infiltrated, embedded in paraffin and stained with Hematoxilin-

Eosin or Nissl-stained. Using the atlas of Paxinos and Watson25 CRFC, TE and hippocampus 

were identified and examined by light microscopy for signs of neuronal degeneration such as 

intracytoplasmatic vacuoles, remnant nuclear debris, brightly eosinophilic cytoplasm and local 

glial reaction, which have been described earlier. 14
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High Pressure Liquid Chromatography (HPLC) 

Total amounts of amino acids were determinated by HPLC using the HP 1100 System from 

Agilent (Palo Alto, CA, USA) with fluorescence detection, after derivatization with o-

phthaldialdehyde. Amino acids were separated on a ZORBAX SB-C18 (4.6×250 mm, 5mm) 

column from Agilent with 50 mM sodium acetate buffer (pH 7.0) and methanol as eluents.  

The monoamine transmitter substances (NA, DA, 5-HT) and acid (DOPAC, 5-HIAA, HVA) 

metabolites were quantified in brain tissue homogenates by HPLC separations and 

electrochemical detection. The analytical method is based on two chromatographic separations 

for amines and acids. Both systems are equipped with a reverse phase coloumn (Luna C18(2), dp 

3μm, 50 x 2mm i.d., Phenomex), and electrochemical detection is accomplished at two potentials 

on glassy carbon electrodes (MF-1000, Bioanalytical Systems, Inc.). The aqueous mobile phase 

(0.4 ml/min) for the acid system contains citric acid 14mM, sodium citrate 10mM, MeOH 15% 

(v/v) and EDTA 0.1mM. Detection potentials relative to Ag/AgCl reference are 0.45 and 0.6V. 

The aqueous ion pairing mobile phase (0.5 ml/min) for the amine system contains citric acid 

5mM, sodium citrate 10mM, MeOH 9%(v/v), decane sulfonic acid 0.45mM and EDTA 0.1 mM. 

Detection potentials relative to Ag/AgCl reference are 0.45 and 0.65V.  

13C NMR spectroscopy 

Proton decoupled 150.92 MHz 13C NMR spectra were obtained using a Bruker DRX-600 

spectrometer after the samples had been re-dissolved in 200 μL D2O containing ethylene glycol 

0.1% as an internal standard. Scans were accumulated with a 30º pulse angle and 30 kHz spectral 

width with 64K data points. The number of scans was typically 10,000. The acquisition time was 
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1.08 s, the relaxation delay 0.5 s.  Factors for nuclear Overhauser and relaxation effects were 

applied to all spectra. 

1H NMR spectroscopy 

A DRX-600 spectrometer was used to obtain 1H NMR spectra with a sweep width of 12 kHz with 

32K data points. The pulse angle was 90°, the acquisition time 1.36 s and the relaxation delay 

was 10 s. The number of scans was 400. Water suppression was set at the residual H2O

resonance. 

Labeling patterns 

Label from [1-13C]glucose can be quantified by analyzing the singlet peaks in the different 

resonances (Figure 1). 18 In contrast, the doublets seen in the spectrum (Figure 1) are mostly 

derived from [1,2-13C]acetate and thus astrocytic metabolism. 26 Glutamine is labeled more from 

[1,2-13C]acetate (doublet) than [1-13C]glucose (singlet); the opposite is the case for glutamate and 

GABA. Alanine, lactate, N-acetylaspartate (NAA) in the C-6 position and succinate are mainly 

labeled from glucose. Creatine, taurine and the aspartate group in NAA are not labeled; the 

naturally abundant 13C gives rise to the observed singlets (Figure 1). Since both acetyl-CoA and 

oxalacetate can be labeled or unlabeled, the number of possible isotopomers of the TCA  cycle 

derived metabolites is large and only compounds derived from the first and the second turns are 

presented in Figure 2. In addition to analysis of the single peaks, conclusions about the 

predominant metabolic pathways can be drawn from metabolic ratios (see below). [1-13C]glucose 

is converted to pyruvate via glycolysis and can form [3-13C]alanine and [3-13C]lactate. Pyruvate 
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may enter the TCA cycle via [2-13C ]acetyl-CoA, which will lead to the formation of [4-

13C]glutamate and glutamine or [2-13C]GABA. After the second turn of the TCA cycle this label 

will be in the [2-13C] or [3-13C] positions of glutamate and glutamine or in the [3-13C] or [4-13C] 

positions of GABA. Alternatively, pyruvate can be carboxylated by pyruvate carboxylase (PC) to 

oxalacetate, which will lead to the synthesis of [2-13C]glutamate and glutamine or [4-13C]GABA. 

[1,2-13C]acetate can also be converted to acetyl-CoA, however, the product, [1,2-13C]acetyl-CoA, 

will have two 13C atoms resulting in doublet formation. Thus, [4,5-13C]glutamate and glutamine 

or [1,2-13C]GABA are formed (Figure 2). After the second turn of the TCA cycle this label will 

be in the [1,2-13C] or [3-13C] positions of glutamate and glutamine and the [2-13C] or  [3-13C] 

positions of GABA.  

Metabolic ratios 

The acetate versus glucose utilization ratio is an estimation of the relative contribution from 

neurons and astrocytes to glutamate, glutamine and GABA formation. 19 Incorporation of [1,2-

13C]acetate yields [4,5-13C]glutamate, [4,5-13C]glutamine and [1,2-13C]GABA, whereas [1-

13C]glucose gives rise to [4-13C]glutamate, [4-13C]glutamine and [2-13C]GABA. The acetate 

versus glucose utilization ratios are expressed as [4,5-13C]glutamate (glutamine)/[4-13C]glutamate 

(glutamine), and [1,2-13C]GABA/[2-13C]GABA. 

The 13C cycling ratio gives an indication of how long label stays in the TCA cycle before 

incorporation into glutamate and glutamine. The cycling ratio for 13C from [1,2-13C]acetate was 

calculated as follows: [1,2-13C]glutamate (glutamine) / [4,5-13C]glutamate (glutamine).   The 

cycling ratio for 13C from [1-13C]glucose was calculated: {[3-13C]glutamate (glutamine) – [1,2-

13C]glutamate (glutamine)} / [4-13C]glutamate (glutamine). Ratios of pyruvate carboxylase and 
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pyruvate dehydrogenase (PC/PDH ratios) give information about the importance of anaplerosis 

and can be calculated like this: {[2-13C]glutamate (glutamine) - [3-13C]glutamate (glutamine} / 

[4-13C]glutamate (glutamine). The labeling of GABA from the second turn is identical for [1- 

13C]glucose and [1,2- 13C]acetate.  

Data analysis 

The amounts of 13C in the different metabolites were quantified from integrals of the relevant 

peaks obtained from NMR spectra with ethylene glycol as an internal standard. All results are 

given as mean ± standard deviation. Statistics were performed using the two-tailed, unpaired 

Student’s t-test; p <0.05 was regarded as significant. 
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Results 

MK-801 induced hyperlocomotion, ataxia, abducted hindlimbs, flat body posture and stereotyped 

behavior such as head waving, which were characterized by considerable inter- and 

intravariability. Injection of [1-13C]glucose  and [1,2-13C]acetate lead to efficient labeling of 

many metabolites (Figure 1). Particularly, labeling of glutamate and glutamine C-3 and C-4, 

GABA C-2 and C-3, aspartate and lactate C-3 are shown in Figure 1. Labeling patterns from [1-

13C]glucose and [1,2-13C]aspartate from the first and second turns of the TCA cycle are shown in 

Figure 2.    

MK801 affected the CRFC to a much greater extent than the temporal lobe. As can 

be seen in Table 1, there was a significant increase in the levels of glutamate, taurine and 

glutathione in the CRFC compared to control. Concentrations of serine, aspartate, alanine, NAD+

and ADP plus ATP (data not shown) and N-acetyl-aspartate (NAA) were not affected by MK801. 

Levels of noradrenaline, serotonin and dopamine remained unchanged, which was also true for 

the turnover (data not shown) of dopamine (DOPAC/DA and HVA/DA) and serotonin (5-

HIAA/5-HT). In the temporal lobe only inositol was increased. The amounts of [4,5-

13C]glutamate and [4,5-13C]glutamine, derived from [1,2-13C]acetate, were significantly 

decreased in CRFC as compared to controls (Table 2). Label from [1-13C]glucose was affected in 

the same brain region with decreases of [4-13C]glutamate, [2-13C]GABA and [4-13C]GABA, 

whereas in the temporal lobe both [1,2-13C]acetate and [1-13C]glucose derived metabolites were 

not altered. Concentration of [3-13C]lactate was unchanged in both areas (data not shown). In 

Table 3 it can be seen that the cycling ratios for 13C from [1-13C]glucose was increased for 

glutamate in both investigated brain areas. Moreover, acetate/glucose ratios for glutamate and 

glutamine were decreased in the CRFC. However, an increase of the cycling ratio for 13C from 
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[1,2-13C]acetate was found in the CRFC for glutamine. PC/PDH ratios were not changed (data 

not shown).    

Eosin- and Nissl-stained histological slices from CRFC, hippocampus and TE were 

examined by light microscopy, but no morphological changes were found between MK801 

treated rats and controls.



14

Discussion 

Glutamate - glutamine - GABA cycle and glial-neuronal interactions 

Increased levels of glutamate were found in the present study. As pointed out in the introduction 

glutamate and glutamine are very closely linked metabolically. Using HPLC and 13C it is possible 

to distinguish these two amino acids. However, 1H NMR at low field strength is not capable of 

fully discerning these two signals. Using  1H NMR it was suggested that the glutamine  signal in 

spectra of anterior cingulate and thalamus of drug naïve first episode schizophrenia patients was 

increased compared to age matched healthy controls. 51 Furthermore, in cerebrospinal fluid of this 

patient group an increased ratio of glutamine/glutamate was detected. 50 The authors of the latter 

study concluded that a dysfunction of the glutamate-glutamine cycle may play a role in the 

pathophysiology of schizophrenia. It appears that repeated injection of a low dose of MK801 in 

rats is a good model for first episode schizophrenia. In contrast to drug naive patients with first 

episode schizophrenia lower levels of glutamine and glutamate were found in the left anterior 

cingulate cortex of patients with chronic schizophrenia compared to healthy volunteers. 52 The 

decrease in labeling of glutamate and glutamine in the present study could indicate that a 

decrease in the amounts will eventually result when first episode patients develop chronic 

schizophrenia. Thus it is conceivable that the present model can give insight into the transition 

mechanisms of first episode to chronic state schizophrenia. 

In the present study of repeated MK801 administration, levels of glutamate were increased in the 

CRFC, whereas after a single dose of MK801 this was the case in the temporal lobe. 28 In contrast 

to acute administration, where the amounts of labeled glutamate were not altered, repeated 

MK801 injections lead to decreases of both [4-13C]glutamate and [4,5-13C]glutamate in the 
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CRFC. The fact that the amount of [4-13C]glutamine was unchanged indicates that transfer of 

glutamate from neurons to astrocytes was not altered and thus an intriguing explanation might be 

that glutamate, released from neurons, accumulates in astrocytes. The decreased amount of [4,5-

13C]glutamate points towards impaired efflux of [4,5-13C]glutamine from astrocytes to neurons, 

suggesting that the glutamine-glutamate cycle is disturbed during repeated NMDA-antagonist 

administration29 and possibly schizophrenia. In line with this is the decrease of the acetate-

versus-glucose utilization ratio for glutamate, which indicates lowered astrocytic contribution to 

glutamate formation. However, the reason for the increase in glucose cycling of glutamate, 

implying that label stays longer in the neuronal TCA cycle before incorporation into glutamate, is 

not clear. That the glutamate - glutamine cycle is disrupted in schizophrenia patients as well, is 

demonstrated by the finding that activity of glutamine synthetase is decreased in post-mortem 

studies of brains of schizophrenic patients. 30 This disruption of negative cortico-striato-thalamo-

cortical feedback might open the thalamic filter, leading to sensory overstimulation of the cortex 

and consequently to psychosis and other symptoms of schizophrenia (Figure 3). 7

Glutamine released by astrocytes serves additionally as precursor for the inhibitory 

neurotransmitter GABA via glutamate. 16 Therefore the concept of the glutamate - glutamine 

cycle has been extended to the glutamate - glutamine - GABA cycle. 17 The amount of GABA 

and [1,2-13C]GABA from [1,2-13C]acetate remained unchanged, whereas, [2-13C]GABA was 

decreased in the CRFC in the present study. Thus, GABA turnover from [1-13C]glucose was 

affected, which corroborates recent reports of impaired activity of glutamic acid decarboxylase 

(GAD) in schizophrenic patients. 31,32 In this context it is noteworthy that a decrease in GAD67

has been suggested as a link between the glutamatergic and dopaminergic theories of psychosis. 

33

It is interesting that the changes mentioned above occurred in the CRFC in the 
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model of repeated MK801 administration in accordance with findings in human schizophrenia 

patients 34-37 and not in the temporal lobe as seen with acute MK801 administration. 28 This 

indicates that the repeated administration might generate a better schizophrenia model than acute 

exposure and emphasizes the importance of the frontal and retrosplenial/cingulate cortex for the 

pathophysiology of schizophrenia. 

Dopamine and the interaction with glutamate metabolism 

Surprisingly, in contrast to the consequences of acute PCP exposure, repeated PCP 

administrations lowered dopamine turnover and utilization in the monkey and rat cortex. 38,39

NMDA antagonism appeared to be at least partly responsible for this effect, since a comparable, 

though smaller, reduction in dopamine transmission in the cortex of rats was seen after 

subchronic MK801 administration. 40 In these studies as well as in ours, absolute dopamine levels 

were unaltered. However, since metabolite ratios were unchanged, dopamine turnover was 

unaffected as well. Jentsch et al. proposed that the absence of PCP-induced changes in tissue 

concentrations of dopamine itself implied that no direct neurotoxic insult to dopaminergic 

neurons occurred during subchronic PCP administration. 41 A loss of dopaminergic neurons 

would otherwise be accompanied by a loss of dopamine content in the terminal fields of these 

projection neuron. 41

Decreased corticostriatal glutamatergic neurotransmission results in decreased 

negative feedback mediated via the so-called indirect striatothalamic pathway. 42 Consequently, 

thalamic filter function is impaired, leading to sensory overload of the cortex and decreased 

signal-to-noise-ratio, which has its clinical correlate in the characteristic difficulties of psychotic 

patients to differentiate between relevant and irrelevant information. Presuming that glutamate 
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homeostasis is dysfunctional in schizophrenia, the present and other studies suggest that 

secondary disturbances in glial-neuronal interactions and the glutamine-glutamate cycle may 

occur. 50,51,52 This will then contribute to imbalance of the cortico-striato-thalamo-cortical 

feedback as outlined in Figure 3.   

As in the study with acute exposure to MK801, 28 glutathione (GSH) concentration 

was increased during repeated MK801 injection, however, this time in the CRFC. Being the main 

antioxidant in the brain 43 GSH protects cells from damage by reactive oxygen species originating 

partly from dopamine metabolism. Decreased GSH levels might lead to degenerative processes in 

the surroundings of dopaminergic terminals with loss of connectivity as a result. The increased 

level of GSH in the present study could point to a decreased use of antioxidants, possibly caused 

by diminished NO production due to lower Ca2+ concentration and NMDA blockade. 

Interestingly, there is evidence that GSH also enhances the NMDA receptor response to 

glutamate. 44 

Energy metabolism and histology 

On histologic examinations no signs of neuronal degeneration were found, which is in agreement 

with observations by other authors. 45,46 Reversible changes were seen in rat brain exposed to 

both chronic and acute NMDA antagonist administration with neuronal vacuolar degeneration, 

remnant nuclear debris and local glial reaction 45,46 and appeared at the earliest 4h after MK801 

administration. 47 Permanent damage was only seen at doses twenty times higher than the one 

used in the present study. 23 Since MK801 administration at low doses induces only reversible 

morphological changes, neuronal damage must be considered functional, not structural. 

Especially in light of the normal NAA concentration observed in the present study, it appears that 
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NAA synthesis and thus neuronal mitochondrial metabolism 48 is not severely affected by 

MK801. However, decreased labeling of glutamate, GABA and aspartate from [1-13C]glucose 

indicated somewhat decreased mitochondrial function in neurons in the CRFC.  Glycolysis 

appeared normal as seen in unaltered alanine and lactate levels.  

The increase of inositol in the temporal lobe is surprising since it is the only change 

in metabolite concentration detected in this brain region and may indicate glial swelling. Increase 

in inositol in the temporal lobe was also reported earlier. 28 Only a minor change was found in 

labeling in the temporal lobe in the present study, with cycling of label from [1-13C]glucose being 

increased in glutamate.

Conclusions  

Injection of MK801 and other NMDA antagonists in rodents are considered appropriate 

schizophrenia models because these compounds induce both positive and negative symptoms in 

humans in contrast to other psychomimetics such as amphetamine. 49 In the present study, 

repeated MK801 exposure lead to increased glutamate concentration in the CRFC, which mimics 

the results seen in first episode schizophrenic patients. The decreased levels of [4-13C]glutamate, 

[4,5-13C]glutamate and [4,5-13C]glutamine could lead to the decrease in these metabolites seen in 

chronic patients. The present model appears very well suited to study the cascade of events taking 

place during the transition from first episode to chronic schizophrenia and might help develop 

new treatment strategies. Furthermore 13C studies can also be carried out in humans and thus 13C

NMR spectroscopy might become a tool in diagnosing and treating monitoring in patients. The 

imbalance in the glutamate homeostasis and thus impaired glial-neuronal interactions might 

contribute to disturbances in cortico-striato-thalamo-cortical feedback, resulting in sensory 
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overstimulation of the cortex and thus psychosis (Figure 3).  
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Table 1. Total amounts of metabolites in brain extracts of controls (n=8) and MK801-treated rats 

(n=10).

CRFC Temporal Lobe 

Metabolites Control MK801 Control MK801 
(μg/g braint)    

Glutamate 7.80±1.9 10.13±2.3 * 8.09±1.4 9.36±1.4 

GABA 1.48±0.5 1.89±0.7 2.02±0.5 2.16±0.6 

Glutamine 2.59±0.9 3.22±1.1 3.03±0.9 2.90±0.4 

Glutathione 1.02±0.2 1.30±0.3 * 1.15±0.2 1.05±0.2 

Taurine 4.35±0.8 5.20±0.9 * 4.85±0.7 5.41±0.7 

N-acetylaspartate 6.00±0.8 5.40±1.1 5.72±0.8 5.00±0.5 

Inositol 7.01±0.7 6.99±0.6 8.26±0.8 9.30±0.6 * 

(ng/g brain)     

Noradrenaline 193±11 208±11 256±38 283±27 

Dopamine 22±11 32±18  1049±194 933±114 

Serotonin 429±81 342±79 200±30 238±20 

NADH 137±77 165±66 112±65 172±53 

Rats received MK801 (0.5mg/kg) or saline intraperitoneally every 48h for six days. On day six 

[1,2-13C]acetate and [1-13C]glucose were administered (see Materials and Methods for details). 

All results were obtained by HPLC with the exception for levels of N-acetylaspartate, Inositol 

(assessed by 13C-NMR) and NADH (1H-NMR). The results are expressed as mean ± SD and were 

analyzed with the two tailed unpaired Student's t-test. CRFC = frontal/cingulate/retrosplenial 

cortex 

* significantly different from control 
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Table 2. Amounts of 13C in nmol/g of tissue in brain extracts from controls (n=8) and MK801-

treated rats (n=10).  

Metabolites CRFC Temporal Lobe 

[1,2-13C]acetate Control MK801 Control MK801 

[4,5-13C]Glutamate 260.8±44.6 201.0±23.3 * 198.0±29.4 201.5±24.3 

[1,2-13C]GABA 22.6±5.7 20.8±6.1 29.4±8.5 25.2±6.2 

[4,5-13C]Glutamine 324.0±59.5 268.4±21.1 * 306.5±50.2 285.6±28.6 

[1-13C]glucose     

[4-13C]Glutamate 800.7±137.1 666.7±68.5 * 634.0±80.5 622.9±97.8 

[2-13C]GABA 76.2±16.9 61.1±9.3 * 91.0±14.8 76.0±16.7 

[4-13C]Glutamine 163.8±22.2 166.0±18.4 146.8±17.5 157.3±26.6 

Rats were treated with intraperitoneal injection of MK801 (0.5mg/kg) or saline every 48h for six 

days. On day six [1,2-13C]acetate and [1-13C]glucose were given (see Materials and Methods for 

details). The results are expressed as mean ± SD and were analyzed with the two tailed unpaired 

Student's t-test.

CRFC = frontal/cingulate/retrosplenial cortex 

* significantly different from control 
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Table 3. Acetate/glucose utilization ratios and cycling ratios from [1,2-13C]acetate and [1-

13C]glucose from controls (n=8) and MK801-treated rats (n=10). 

Rats were treated with intraperitoneal injection of MK801 (0.5mg/kg) or saline every 48h for six 

days. On day six [1,2-13C]acetate and [1-13C]glucose were given and cycling and utilization ratios 

assessed by NMR spectroscopy (see Materials and Methods for details). The results are 

expressed as mean ± SD and were analyzed with the two tailed unpaired Student's t-test.

CRFC = frontal/cingulate/retrosplenial cortex 

* significantly different from control

 CRFC Temporal Lobe 

MK801 Acetate/glucose 
utilization  

glucose 
cycling 

acetate 
cycling  

Acetate/glucose 
utilization  

glucose 
cycling 

acetate 
cycling 

glutamate 0.29 0.02* 0.53 0.03* 0.39 0.06 0.31 0.04 0.41 0.03* 0.34 0.07 

glutamine 1.62 0.11* 0.83 0.05 0.33 0.05* 2.12 0.53 0.02 0.08 0.35 0.05 

GABA 0.35 0.10 0.94 0.16 0.33 0.11 0.83 0.08 

Controls       

glutamate 0.33 0.01 0.46 0.03 0.34 0.06 0.33 0.05 0.33 0.02 0.33 0.02 

glutamine 1.97 0.15 0.77 0.05 0.27 0.05 1.85 0.34 0.15 0.06 0.31 0.05 

GABA 0.31 0.04 0.80 0.06 0.33 0.06 0.85 0.06 
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Legends 

Figure 1. 13C NMR spectrum of temporal lobe extracts from rats injected with MK801 together 

with [1,2-13C]acetate and [1-13C]glucose. Peak assignments; 1: glutamate C-2; 2: glutamine C-2; 

3: aspartate C-2; 4: aspartate C-3; 5: GABA C-2; 6: succinate C-2/C-3; 7: glutamate C-4; 8: 

glutamine C-4; 9: glutamate C-3; 10: glutamine C-4; 11: GABA C-3; 12: N-acetyl-aspartate C-3; 

13: lactate C-3. 

Figure 2. 13C labeling patterns in glutamate, glutamine, and GABA from [1-13C]glucose or [1,2-

13C]acetate. Full circle represents 13C and empty circle 12C. 1st turn tricarboxylic acid (TCA) 

cycle: labeled acetyl CoA condensing with unlabelled oxaloacetate; 2nd turn: unlabeled acetyl 

CoA condensing with labeled oxaloacetate. 

Figure 3. Scheme of a possible mechanism for psychosis evoked by impaired cortical glial-

neuronal interactions, cortical hypoglutamatergia and basal ganglia hyperdopaminergia. See 

Discussion for details. 
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