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ABSTRACT 
A model for the computation of failure probabilities for 

partly reshaping mass-armored berm breakwaters in the Arctic 

is presented. The model consists of a reliable tool for the design 

of port structures in the rapidly changing Arctic environment and 

considers the simultaneous effects of wave and ice forces. 

The applied probabilistic approach was based on Bayesian 

inference. Hydrodynamic and ice historical data from Prudhoe 

Bay, Alaska were collected and analyzed to supply the Bayesian 

network with a large pool of information for the analysis. The 

model performed real-time predictions based on historical data 

and the user's prior knowledge and assigned relevant values to 

load and resistance parameters. The predictive skill of the 

Bayesian network was validated with log-likelihood tests. 

Furthermore, the main outputs were applied for a Level III (fully 

probabilistic) reliability assessment of the structure. 

The study shows that a well-formulated Bayesian network 

can be a powerful tool in the design process and for the purpose 

of reliability analysis of coastal structures in highly 

unpredictable environments, such as the Arctic. The model can 

represent the dependencies between wave and ice loads in 

relation to the characteristics of the breakwater, as well as, its 

response. The average deviation of computed probabilities of 

failure relative to the prior estimates was 58.7%.  

Keywords: Arctic; Bayesian network; berm breakwaters; 

damage prediction; probabilistic design. 

NOMENCLATURE 
α slope angle [degrees o] 

βi  angle of incidence [degrees o] 

γβ wave angle obliqueness factor [-] 

γΒΒ berm factor [-] 

1 Address all correspondence to this author, at maro.pontiki@gmail.com. 
2 Norwegian University of Science and Technology.

Δ relative buoyancy density [-] 

μd friction coefficient between rock units [-] 

μi friction coefficient between ice and rock [-] 

ξ Iribarren number [-] 

ρa air density [kg/m3] 

ρi ice density [kg/m3] 

ρw mass density of the water  [kg/m3] 

A top surface area ice floe [m2] 

b width of ice on structure's slope [m] 

Br berm width [m] 

Dn50 armor stone dimension [m] 

g gravitational acceleration [m/sec2] 

Hd design wave height [m] 

hice ice thickness [m] 

Hs significant wave height  [m] 

L slope’s length covered by ice pieces [m] 

La ice sheet length on the slope above water [m] 

N number of waves [-] 

Ns number of storms  [-] 

qc critical overtopping discharge [m3/m/sec] 

R return period [years] 

Rc crest freeboard [m] 

Rec recession [m] 

Sd damage number [-] 

sop wave steepness  [-] 

u current speed 1 meter below ice [m/sec] 

u10 wind velocity at an altitude of 10 m [m/sec] 

Z function of reliability  [-] 

INTRODUCTION 
Coastal structures in the Arctic and subarctic regions, are ice 

prone and vulnerable to damages due to ice action. In these areas, 
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attention is mainly paid to offshore structures due to the 

considerable oil and gas deposits. However, offshore field 

developments are inextricably connected to the structures on the 

shoreface and at the backshore. The proper design of these 

structures is therefore essential to withstand the external forces 

and protect the environment and the economy.  

The most pressing threat for Arctic coastal structures in the 

last decades is the climate change. The rapidly shrinking sea ice 

cover and the more frequent extreme events, which are recorded 

in the Arctic zone, increase the uncertainties in the design 

process and hint at fundamental difficulties in the assessment of 

potential risks. To tackle the uncertainties and deal with the 

limited available data and knowledge about the Arctic, engineers 

need to utilize and further develop probabilistic design methods.  

The necessity of the probabilistic analysis methods 

increases in the case of breakwaters. Breakwater design relies 

upon prominent experimental methods and expert’s judgement 

as the existing codes and standards have not yet addressed 

guidelines for potential design cases. Additionally, the selection 

of their type highly depends on the environmental conditions.  

For the Arctic environment, previous researchers [1] have 

already proved that berm breakwaters demonstrate a better 

response.  

A probabilistic model capable of capturing the simultaneous 

effects of ice and wave loads on a berm breakwater is missing 

and thus the development of a new tool is necessary. 

Nevertheless, its development is anticipated to be challenging as 

there are only few analytical relations which contribute in this 

effort. Bayesian networks appear to be an attractive solution, as 

they can be trained based on historical data and expert 

predictions of breakwater damages by considering dependencies 

among the studied parameters and conditional probabilities.  

Bayesian networks have already been applied in Arctic 

Engineering. They have been used to model the ice-stream 

dynamics [2], the ship performance in ice [3], even the ice loads 

on offshore structures [4]. Bayesian networks have also been 

used in the Arctic coastal engineering field [5], as well as, in ice-

free coastal environments [6]. 

 

1.1 Berm Breakwaters – Typical Characteristics 
Around sixty berm breakwaters exist so far around the world 

as part of ports and coastal defense systems with their 

construction dating back to the nineteenth century [1]. Berm 

breakwaters are rubble mound structures with big natural rocks 

comprising their armor layer and smaller ones in their cores. The 

development of their design was based on an idea for initially 

unstable structures whose main armor slopes could be modified 

by the wave forces to a stable S-shape (Fig. 1). Nevertheless, 

berm breakwaters have been differentiated from the dynamically 

changing structures and adopted resiliency; the ability to 

withstand severe wave conditions in a more stable way and 

without longshore transportations [1].  

 

 
 
FIGURE 1: TYPICAL PROFILE OF BERM BREAKWATER 

(TOP), PRINCIPAL IDEA OF RECESSION (BOTTOM). 
 

1.2 Ice Action 
The Arctic is a unique environment with harsh weather 

conditions. The ice covers the littoral zone and complicates the 

construction and maintenance of coastal structures. Berm 

breakwaters can be subjected to ice impact during the formation 

of ice in the autumn, as well as, to destructed fast-ice in the 

spring when the structures experience both hydrodynamic and 

ice forces.  

The ice loads on structures with rocky slopes, such as the 

berm breakwaters are in general quite moderate. However, their 

magnitude depends on variables with an inherent stochastic 

character. The dominant parameter in the statistical analysis of 

ice loads is the thickness of the features which also determines 

their categorization. This study focused on the examination of 

level ice features whose thickness does not exceed 3.2 m.  

The ice-structure interaction depends on specific conditions 

(states): (a) the limit force state, (b) the limit stress, (c) the limit 

momentum (Fig. 2), with the first being the vital loading scenario 

in the case of a berm breakwater. According to this, the driving 

forces on ice features determine the magnitude of the load. This 

is typically the condition in structures with large diameters/width 

which can limit loads caused either by thin annual floes, multi-

year level ice, or bigger features [7]. 

 

 
  

FIGURE 2: DESIGN SCENARIOS IN CASE OF ICE-STRUCTURE 

INTERACTION. (A) LIMIT FORCE, (B) LIMIT STRESS, (C) LIMIT 

MOMENTUM [7].  
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1.3 Study Area 
The Bayesian probabilistic model was developed for an 

elaborated example case. An interesting area for demonstration 

was found in Prudhoe Bay, in Alaska (Fig. 3), which is the largest 

oil field in North America, covering 86,418 ha. The relatively 

shallow waters in the area in combination with the various ice 

features and high waves showed a necessity for construction of 

berm breakwaters as a part of the oil platforms’ and coastal 

defense system.  

 
 

FIGURE 3: PRUDHOE BAY, ALASKA. BUOY LOCATION [8]. 

 

 

DATA ANALYSIS 
The wind and wave conditions in the area were provided by 

BMT ARGOSS (WaveClimate.com database) [9]. The data 

source was a wave model (WaveWatchIII) and the results were 

based on 73056 model records where each group was recorded 

every 3 hours. The model wind and wave data were calibrated by 

means of satellite measurements covering a rectangular area with 

size 400x400 km. The analysis was performed for the years 

1992-2016.  

Daily ice reports with an overview of the ice-covered waters 

of Prudhoe Bay, including 3D physical ocean and sea ice 

variables were obtained from online catalogues in Copernicus 

Marine Environment Monitoring Service (CMEMS) [10].  The 

records had a spatial resolution of 12.5 km x 12.5 km. The 

offshore sea ice thickness of the Copernicus reanalysis was used 

in combination with the relevant historical data provided by [11] 

for the period 2012-2016. 

 

Ice Conditions 
Prudhoe Bay experiences high dissimilarities in ice 

concentration over the year. The area is ice free in late summer 

while the ice thickness is at its average maximum at the end of 

April (Fig. 4). The ice thickness is also greater in the coastal zone 

due to the accumulation of ice features in shallower waters. 

The long-term analysis of the ice field proved that the 

physical phenomenon of ice generation is not stationary. Thus, 

the trustworthiness of any forecasts is reduced. The ice data 

analysis showed a linear thinning of the ice thickness over the 

years, described by the function -0.0076 x + 1.76, where x is the 

examined time interval. It was also estimated that the spring 

mean ice thickness offshore Prudhoe Bay has been reduced by 

59.65% between the years 2012 and 2016.  
 

 

 
 

FIGURE 4: ICE THICKNESS VARIATIONS AT THE ALASKAN 

BEAUFORT SEA. COMPARISON OF RECORDS BETWEEN 

APRIL (TOP) AND AUGUST (BOTTOM) 2013. THE AREA UNDER 

EXAMINATION IS DENOTED BY A CYAN RECTANGLE.  

 

Wave Climate 
Prudhoe Bay has a northeasterly orientation where the wave 

field energy is determined by the wind generated waves (Fig. 5). 

Thus, the extreme storm waves were of interest while swells 

were disregarded. The dataset of storms was derived after 

processing the timeseries by means of the peak-over-threshold 

(PoT) method. With a threshold level of 2m, 11 storms per year 

were found (Fig. 6). The threshold level was quite low, but a 

good rule of thumb is to aim for approximately Ns = 10 storms 

per year [12].  

The future wave heights and the corresponding probabilities 

of exceedance (Q) were estimated after statistical data analysis 

for a return period (R) of 500 years. The Exponential distribution 

was used for the extreme value analysis. The computed mean 

value of the design wave height was Hd,500
 = 6.26 m with Q = 5E-

04. 
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FIGURE 5: HOMOGENEITY EXAMINATION OF THE WAVE 

CLIMATE AT PRUDHOE BAY, ALASKA.  
 

 
 
FIGURE 6: STORMS IN THE WAVE CLIMATE OF PRUDHOE 

BAY OBTAINED AFTER APPLYING THE PEAK OVER 

THRESHOLD (POT) METHOD ON THE TARGET DIRECTIONAL 

RANGE. 

 

Ice-Wave Correlation 
Correlation analysis among the wave and ice records was 

performed for the construction of the conditional probability 

tables (CPTs) which provide the input to the Bayesian network. 

The investigation of the dependencies of wave heights on wind 

speeds and ice fraction showed that in case of wind waves the 

wind velocity is crucial only in the case of an open water 

environment. The wave impact was drastically decreased where 

the ice fraction rates were higher. Despite the existence of intense 

winds, the wave properties were negligible during intervals with 

more ice features at Prudhoe Bay (Fig. 7).  

Figure 8 demonstrates the relation between wave heights 

and ice fraction in comparison with ice thickness. It appeared 

that the higher the ice fraction, the thicker the ice features were. 

Nevertheless, wind waves seemed to be significantly affected by 

the ice thickness as noticeable wave height records existed in 

case of increased fraction rates but not necessarily when bigger 

ice features were present in Prudhoe Bay.  

 

 
 

FIGURE 7: WIND WAVE HEIGHTS AT PRUDHOE BAY, IN 

NORTHERN ALASKA, PLOTTED VERSUS THE ICE FRACTION 

AND THE WIND SPEED VELOCITY. 
 

 
 

FIGURE 8: WIND WAVE HEIGHTS AT PRUDHOE BAY, IN 

NORTHERN ALASKA, PLOTTED VERSUS THE ICE FRACTION 

AND THE ICE THICKNESS. 

 

 

FAILURE MECHANISMS 
Reliability analysis of the structure requires a good insight 

into the loads acting on it and the corresponding response of the 

structure. A berm breakwater is considered as a reliable system 

only if it can be verified that the resistance (R) of the structure is 

bigger than the forces (S) acting on it, such that the limit state 

function is positive (Z=R-S>0). Failure could occur whenever a 

specific limit state condition is exceeded. Some of the most 

important initiating failure mechanisms that threaten the 

integrity of a berm breakwater in the Arctic could be wave 
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overtopping, recession and the instability of individual rocks due 

to ice action.  

In an open sea environment and during the period of the 

degradation of the ice cover, the waves are a threat for a berm 

breakwater.  The static stability of the armor layer was evaluated 

with the original Van der Meer formulae [13] in an open sea 

environment. Prudhoe Bay is dominated by plunging waves and 

thus the design formula (Eq. 1) was rewritten and formed the 

reliability function (Eq. 2). 
 

Hs,t

Δ ∗ Dn,50

 = 6.2 ∗ P0.18 ∗ ξ−0.5 ∗ (
Sd

√N
)

0.2

   

 

(1) 

 

Z =
Hd

Δ ∗ Dn,50

 −  6.2 ∗ P0.18 ∗ ξ−0.5 ∗ (
Sd

√N
)

0.2

   

 

(2) 

 

The calculation of the wave overtopping over a berm 

breakwater was based on the formula that is used in the case of 

a conventional rubble mound breakwater [1,12]. Hence, the 

reliability function is (Eq. 3): 
 

Z = qc −  0.1035 ∗ exp [ (−1.35 
Rc

γβ γBB Hs

)

1.3

] (3) 

 

where the reduction factors γ are defined as: 

 

γβ = 1 - 0.0063 *│βi│,  if 0o ≤  βi  ≤ 80o 

γβ = 0.5    if 80o ≤ βi    

the berm factor: γΒΒ = 0.68 – 4.5 * sop – 0.05 * Br/Hs 

and Hs is Hmo in shallow waters. 

 

The failure mechanism of recession may take place when 

the wave run-up exceeds the height of the breakwaters and water 

reaches the rear side of the structure. The average recession 

distance Rec, is the recession of the average profile, averaged 

between the water level and the top of the structure’s berm. The 

limit state function is formed as follows: 
 

Z = Xcr  −  1.6 ∗ (
Hs

Δ ∗ Dn50

− 1.0)
2.5

  

 

(4) 

 

The armor stones should also withstand the ice-generated 

forces. The horizontal driving forces of the ice floes impact the 

stability of the stones and this can lead to edge failure of the 

structure [14]. The berm breakwater can also be affected by the 

ice ride-up (Fig. 9).  

The horizontal driving force on the floe is expressed as [15]: 

 

Fex = Fwind + Fwater (5) 

Fwind =  0.003  ρα u10
2  Α (6) 

Fwater =  0.003  ρw u Α (7) 
 

The weight of a rock and the buoyancy were estimated as: 
 

W = ρd g Dn50
3  (8) 

B = ρw g Dn50
3  (9) 

 

The friction force acting on a rock is: 
 

Ffric = μd (W − B) cos α (10) 
 

Individual rock instability occurs when Z < 0 (Eq. 11).  
 

Z = (W − B) [ tan α + μd ] − Fex (11) 

 

 
 
FIGURE 9: ICE SHEET IN CONTACT WITH THE ARMOUR 

ROCKS AND ICE RIDE-UP. 
 

Ice starts to ride-up the slope once [15]: 
 

Fex cos a > R (12) 

Fex >  La γi b h (tan α + μi) (13) 
 

The resistance R was found as: 
 

R = L wi b h (sin α + μi cos α) (14) 
 

Rock stability is lost when equation 15 obtains negative values. 
 

Z = R + (W − B) [ tan α + μd] − Fex  (15) 

 

 

PROBABILISTIC MODEL 
Uncertainty is the very reason that the application of 

probabilistic design becomes a necessity. In the case of marine 

terminal and shore protection structures there are many elements 

which cannot be controlled due to their stochasticity and the not-

well-defined correlations between them. Uncertainties in the 

safety of the system also exist because of the empirical character 

of the design formulas which are obtained based on laboratory 

tests and modelling, as well as, there might be differences 

between the properties of construction materials even if they are 

of the same type.  

A berm breakwater can be considered strong enough to 

withstand the acting forces if it is at a specific stability state. To 

ensure a desired reliability target in this study, the probabilistic 

method of Bayesian networks is applied.  
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3.1 Bayesian Network  
Bayesian networks are probabilistic graphical models that 

can predict the likelihood of damages given a certain forcing. 

They are based on Bayes rule [16], which assigns probabilistic 

relations between two stochastic variables, in case their 

conditional dependencies are provided (Eq. 16) 

 

P(X|Y) =
P(Y|X)P(X)

P(Y)
 

 

(16) 

 

where, P(X|Y) is the conditional (posterior) probability of A 

given that Y occurs, P(X) is the independent (prior) probability 

of X occurring and P(Y|X) is the conditional probability of 

observing Y given that A occurs and P(Y) is the probability of Y 

occurring. 

 

Probabilistic Model Development  
The developed Bayesian network was decided to be a pure 

belief net which would consist only of nature nodes, 

probabilistically connected to their direct predecessors. The links 

started from the node which could cause an event or contribute 

to that (parent node) and ended in one or more nodes which could 

accept this influence (child node) (Fig. 10). For the development 

of the Bayesian network the NETICA Application [17] was 

implemented. 

Findings (evidences) were inserted in the Bayesian network 

for the two main categories of variables; the structural and the 

load parameters. For the first group, the size of the crest 

freeboard was considered as critical, especially in the 

overtopping prediction, as the lower the crest, the higher the 

discharge is expected to be. Moreover, the slope of the structure 

has a noticeable effect on the stone stability and the recession of 

the breakwater. In berm breakwaters a steeper slope could cause 

instabilities, while a smaller slope angle is acceptable and 

expected after a storm event and the recession of the breakwater. 

The examination of the berm width was also necessary as it is 

one of the structural parameters which is expected to change after 

recession. The longer the width of the berm is the more wave 

energy is attenuated and thus less overtopping is assumed. 

Finally, the stone size has a strong influence on the breakwater 

stability. The resistance and stability of the stones and thus of the 

structure’s section, increase rapidly as the stone diameters 

increase. All the structural parameters were defined as discrete 

variables. 

The second group of findings was inserted in the nodes 

related to hydrodynamic and ice parameters, all of which are 

stochastic variables. Waves was the first variable inspected in the 

breakwater’s design and probably the most important.  It is not 

only the wave overtopping that is larger in a storm scenario, but 

also the probability of loss of structural stability is growing. 

Additionally, wave overtopping is a function of wave steepness, 

which is combined with the seaward slope of the breakwater by 

the means of the Iribarren number (surf similarity parameter) and 

characterize the breaking type of the waves. For these load parent 

nodes, the historical records per variable were sorted in intervals 

and inserted as continuous variables in NETICA. 

The probability distributions of the stochastic variables were 

discretized before being inserted in the model. Each node then 

followed the same discretization without deviating from the real 

distribution of the recorded data. Plant and Holland [18] mention 

that wider value ranges in a node could reduce the computational 

time significantly. Nevertheless, node bins had to be narrow 

enough to embody several data points, prevent the production of 

extra uncertainties and generate meaningful predictions. 

 

 
 
FIGURE 10: BAYESIAN NETWORK CONFIGURATION. 

CONCEPTUAL DESIGN IN A LABELLED-BOX FORMAT, 

WITHOUT PRIOR BELIEFS. 

 

The studied damages were the overtopping discharge, 

recession, armor stone instability, as well as, stone damage due 

to ice collision and ice ride-up. These parameters were inserted 

in the model in the form of nodes, as previously described for the 

load and structural variables. The damage nodes were considered 

as direct successors (children) of parent nodes. After that, link 

matrices were formed and made available to each child node. 

Each of these nodes was supplied with a conditional probability 

table (CPT) which included the probabilities of the variable, 

conditioned on the values of its parent nodes. 

 

 

6 Copyright © 2019 ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2019/58875/6444111/v008t07a010-om

ae2019-95139.pdf by N
TN

U
 U

niversitets Biblioteket, Bernt Leira on 19 January 2020



 

Model’s Logical Validation 
The Bayesian model was logically validated before the 

actual predictions to eliminate meaningless results and test the 

capability to give meaningful predictions. For this scope, a 

primary configuration that consisted of wider parameter ranges 

was implemented. Pitchforth and Mengersen, [19] describe this 

as a network’s face validity. 

For the test, concentration was applied in the higher range 

of wave height values, while the distributions in the rest of the 

nodes remained the same. In all the belief nodes of the failure 

mechanisms (Fig. 11) changes occurred. The overtopping graph 

was shifted to the right and presented a higher mean value but 

with more uncertainty. Larger mean values were found in the 

recession and armor stability graphs too. In contrast, the ice 

related nodes were not influenced significantly due to the weaker 

correlations among them. 

 

 
 
FIGURE 11: UPDATED FAILURE MECHANISMS NODES FOR 

THE FIRST VALIDITY TEST. 
 

 

BAYESIAN NETWORK RESULTS  
After performing the logical validity test a network was 

formed with non-normalized values. The new network followed 

the same configuration as the one in Figure 10. The ultimate 

results were extracted after updating the new network. The 

update was based on case files which were generated by scripts 

provided by OpenEarth [20]. Each case file consisted of nodes 

adjusted to different mean values of the loads.  

The prior distributions of the failure mechanisms were 

generated with a Monte Carlo (MC) sampler model. The idea 

was to produce a Markov chain that would have a stationary 

distribution after generating a noteworthy number of samples.  

 

 
 

FIGURE 12: FLOW CHART FOR THE DAMAGE PREDICTION 

ANALYSIS OF BERM BREAKWATERS. 
 

NETICA performed belief updating, which was a means of 

probabilistic inference in the compiled net, to find the missing 

probabilities in the nodes. In other words, the program assigned 

beliefs (marginal posterior probabilities) to nodes using the 

existing findings and posterior probabilities were generated by 

considering the prior ones. Subsequently, the damages were 

predicted, and the various failure probabilities were calculated 

after performing numerical integration.  The belief updating did 

not change the model structure nor the dependencies between the 

nodes. However, the conditional probability tables were adjusted 

to the new beliefs.  

A flow chart illustrates the main steps that were followed for 

the prediction analysis (Fig. 12). In Figure 13, there is a graphical 
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presentation of the obtained results. Prior and posterior 

distributions are compared for the different failure mechanisms. 

 

 
 

FIGURE 13: PRIOR AND POSTERIOR PROBABILITIES FOR A 

RETURN PERIOD OF 500 YEARS. 

 

 

FAILURE PREDICTION 
The posterior probabilities were implemented in a Level III 

probabilistic analysis and the failure probabilities and reliability 

indexes were estimated after performing numerical integration 

(MATLAB generated code) (Table 1). It was estimated that the 

lower probabilities in the higher ranges of the posterior results 

led to decreased failure probabilities. Another interesting finding 

is that the posterior failure probabilities satisfied the imposed 

requirements in all different scenarios, even though the relevant 

prior ones were higher in most cases. The scenarios 

corresponding to a significantly diminished ice cover in the 

Arctic in the forthcoming decades showed less damages on the 

coastal structures as caused by ice features. 

 

TABLE 1: COMPARISON TABLE OF RELIABILITY INDEXES 

(β) AND FAILURE PROBABILITIES (Pf) FOR THE EXAMINED 

FORCING MECHANISMS, BEFORE AND AFTER THE 

BAYESIAN NETWORK UPDATING FOR R = 500 YEARS. 

 

 Prior Posterior 

 Pf β Pf β 

Overtopping 0.0046 2.6403 0.0019 2.9970 

Recession 8.500e-04 3.1382 4.100e-04 3.3528 

Ice drift 7.430e-05 3.2047 3.150e-04 3.5701 

Ice ride-up 3.340e-05 3.4123 5.870e-05 3.2996 

Armor 

stability 
6.470e-04 3.2160 3.502e-04 3.3896 

 

 
PREDICTION TESTING 

Each set of findings that was entered in the nodes of the 

constructed Bayesian network was saved before a new update of 

the model as a different case. At the end of the predictions, the 

case files were used directly by the NETICA application to test 

the predictive skill of the network with log-likelihood tests. 

Specifically, the beliefs included in the case files were 

transformed to predictions. After that, the reliability of the 

outcomes and how far they were consistent with the historical 

wave and ice records at Prudhoe Bay were evaluated. The 

examination of the prediction accuracy allowed the detection of 

weak points in the structure.  

 

6.1 Log-likelihood test 
The log-likelihood test is a method of statistical inference 

that examines the predictive skill of a probabilistic model and is 

based on the likelihood ratio (LLR). In the developed Bayesian 

network, the likelihood ratios described whether a test was valid 

by comparing the prior odds to the posterior ones and were 

estimated with equation 17 [21]. The aggregate of individual 

ratios provided the network’s overall predictive skill. 

Nevertheless, the network’s credibility would be greater in case 

of an assessment based on posterior probabilities of the failure 

mechanisms and real damage observations. 

 

LLRj = log10{ P(Fi | 𝒪j)Fi=𝒪j
 } − log10{ P(Fi) Fi=𝒪j

}   

 

(17) 
 

where P (Fi | 𝒪j) is the posterior probability of prediction Fi given 

an observation 𝒪j  and P(Fi) is the prior probability of prediction 

Fi and j indicates the test case examined each time. 
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The prediction skill was characterized in terms of excellent, 

good and bad. The predictions with the larger positive LLR were 

characterized as excellent, and good corresponds to predictions 

with ratios closer to zero, while negative log-likelihood ratios 

imply bad forecasts. The positive rates proved that estimations 

with posterior probabilities provided better results than those 

where only prior probabilities were implemented. The numerical 

results from the analysis are presented in Table 2. 

 

TABLE 2: LOG-LIKELIHOOD SKILL TEST RESULTS 

PRESENTED PER FAILURE MECHANISM AND RETURN 

PERIOD. 

 

 
 

 

DISCUSSION 
Historical data can be used as informative priors in a 

probabilistic inference and their utilization is considered 

important in domains where numerical models have not yet been 

sufficiently developed. On the one hand, bulk recorded data can 

be filtered, analyzed and correlated against other data, based on 

empirical and analytical correlations. In this way, a probabilistic 

model is supplied with conditional dependencies from a large 

pool of information. On the other hand, Bayesian models 

represent a proficient tool for statistical inferences based on 

historical data as they extract parameters from different datasets 

and reasonably combine them by following assigned conditional 

dependencies. A Bayesian model could also adjust itself and 

perform meta-analysis as it is expected from its prior sets. This 

study verified that the strong dependencies between the wave 

and ice features directly affect failure mechanisms on a berm 

breakwater, although, these impacts have not been included in 

analytical solutions yet. 

A Bayesian network could sufficiently perform failure 

predictions in complex natural systems, such as the Arctic. It was 

found that a well-constructed network can illustrate the cause 

and effect relations with a directed acyclic graph and 

automatically generate posterior findings with the use of the 

constructed CPTs. Moreover, an application like NETICA 

produces performance results which evaluate the accuracy of the 

posterior probability distributions. In this study, log-likelihood 

tests were used with similar overall results. In general, they 

demonstrated an improvement in the predictions when the 

number of files was larger. However, this was not noticed in the 

case of the ice ride-up force, maybe due to inadequate analytical 

approximations or weak estimated correlations. Therefore, the 

validation of the results with experimental data and actual 

damage observations from the site is necessary. 

The wave height and ice surface area were found to be the 

most important parameters in overtopping, with direct and 

indirect effects respectively, with the wave steepness coming 

third. The ice ride-up and ice drift loads are mainly affected by 

wind and current loads, with the size of the ice feature also 

having an important influence on the latter. Furthermore, the 

examination of armor stability and recession was based on 

analytical approximations which have been formed with only 

wave forcing variables. The ice impact was considered in the 

construction of the conditional probability tables though, as the 

data analysis showed considerable effects on the waves. 

The scenarios could be built with changing nodes (wave 

height, wave steepness, ice thickness and ice surface) after 

applying extreme value and trend value analysis over the next 

years. Updating the Bayesian network was an attempt to interpret 

the relations among the parent and child nodes, as well as, to 

obtain posterior distributions which could be used in the 

calculation of failure probabilities for different mean load values. 

This study was based on several assumptions and it was 

limited by practical issues. The validation of the model is 

recommended, and it can be achieved with laboratory 

experiments, as field experiments are restricted in the hostile 

Arctic Ocean. Close observations of berm breakwater damages 

would allow a better understanding of the complex failure 

mechanisms and the quantifications of wave and ice loads on the 

structure. 

 
 

CONCLUSIONS 
A Bayesian probabilistic analysis was performed with the 

scope to perform reliability analysis of berm breakwaters in the 

Arctic and compute the relevant probabilities of failure. The 

probabilistic analysis was based on the development of a 

Bayesian network in NETICA software. The NETICA program 

was suitable for the purposes of this study. It was found to be a 

complete and powerful application that could process large data 

amounts efficiently.  

The model was applied to data from Prudhoe Bay 

(Sagavanirktok), in Alaska. This area was selected as there are 

enough ice and wave records, as well as, actual coastal structures 

which facilitate the offshore activities in the largest oil field in 

the United States. In addition, Prudhoe Bay is noticeably 

susceptible to the consequences of climate change. Prudhoe Bay 

is mainly affected by waves, ice features and their interactions. 

The key role of short wind waves and the negligible height of 

swells in this area led to the exclusion of the latter from the 

probabilistic analysis. 

The extensive study of the seasonal variations in the ice 

cover showed a diminishing trend in ice extent and ice thickness. 

The ice thickness in the coastal zone demonstrated higher values 

than the ice thickness further offshore as the ice features could 

accumulate due to shallower waters. Yet, the bigger ice features 

were supposed to stop in front of the breakwater and act as a 

shield for the structure. Hence, loads due to ice features thicker 

than a threshold water depth (3.2 m) were not included in the 

network’s nodes. It was also observed that there were strong 
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correlations between the ice and wave forces; wave 

characteristics varied due to the existence or not of ice and the 

ice features could alter after being influenced by the wave action.  

These observations marked the need for a probabilistic 

model able to represent the conditional dependencies among the 

variables. A belief network was constructed, and the program 

carried out probabilistic inference. The Bayesian network 

appeared to be an attractive solution for high-level probabilistic 

design concepts. It was trained based on historical data and 

expert predictions on berm breakwater’s damages by 

incorporating the non-well investigated wave-ice interactions.  
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