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Summary in English 
 

Background and objectives:  

Musculoskeletal pain is frequent and the most common cause of sick leave in Norway. 

Although chronic musculoskeletal pain is conceived to be related to social or mental 

stress, the mechanism for such a relation is not known. The overall objective of the 

present thesis was to elucidate whether stress-associated musculoskeletal pain and 

stress-induced muscle activity may be related to activation of the autonomic nervous 

system.  

 

Methods:  

The present work is carried out in the laboratory where subjects performed a complex 

two-choice reaction time test designed to mimic mental load in a work place, 

resembling stressful and repetitive office work. Subjects were investigated while 

performing this stressful task for one hour, as well as during a baseline period 

immediately before and during a recovery period. We measured muscle activity and 

different parameters indicative of activity in the autonomic nervous system, as well as 

subjective variables as pain, tension and fatigue. We included patients with generalised 

(fibromyalgia) and patients with regionalised (shoulder/neck) musculoskeletal pain, as 

well as healthy controls. A group of patients with musculoskeletal pain were also 

subject to a block of peripheral sympathetic nerves with a unilaterally anaesthetic block 

of the lower cervical sympathetic ganglion before the stressful task. 

 

Results:  

We found the vascular response to the stressful task to be more protracted than other 

bodily responses (paper I). We found the muscular responses to the stressful task to be 

an unlikely explanation for the simultaneously developing pain response for all subjects, 

irrespective of diagnostic group (paper II). We found delayed pain recovery in both 

patients groups, but not in the healthy controls (paper II). We found an attenuated 

cardiovascular response to the stressful task in the fibromyalgia group compared to the 

healthy controls, with the shoulder/neck pain patients in an intermediate position (paper 

III). We also found an inverse relation between the heart rate response and the pain 
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response for the fibromyalgia group (paper III). Lastly, we found that a block of 

peripheral sympathetic fibres did not affect neither pain nor muscle responses to the 

stressful task for patients with musculoskeletal pain. 

 

Conclusions: 

From the studies presented in the present thesis one may conclude that stress-associated 

musculoskeletal pain is probably not directly related to muscle activity or autonomic 

activation at a peripheral level. We found indications of central sensitisation of pain in 

both patient groups. In patients with generalised musculoskeletal pain (fibromyalgia), 

the pain may be related to a reduced physiological ability to respond adequately to 

stress. 

 



 

7 

 

Summary in Norwegian: 
Bakgrunn: 

Muskel/skjelett smerter er svært hyppig og er den vanligste årsaken til sykefravær i 

Norge. Til tross for en svært vanlig oppfatning av at kroniske muskel/skjelett smerter er 

relatert til sosialt eller psykisk stress er eventuelle mekanismer for en slik sammenheng 

ukjent. Hovedmålet for denne doktorgraden var å finne ut om stressindusert 

muskel/skjelett smerte og stressindusert muskelaktivitet er relatert til aktivering av det 

autonome nervesystemet. 

 

Metoder:  

Forsøkspersoner ble undersøkt i et laboratorium mens de utført en sammensatt 

tovalgstest under tidspress som var utviklet for å etterligne den psykiske belastning en 

finner på en arbeidsplass med mye stress og rutinepreget arbeid. Forsøkspersonene ble 

undersøkt mens de utførte denne stressende arbeidsoppgaven i en time, samt i en 

periode før og en periode etter arbeidet. Vi målte muskelaktivitet og ulike markører for 

aktivitet i det autonome nervesystemet i tillegg til de subjektive variablene smerte, 

anspenthet og tretthet. Vi undersøkte pasienter med generalisert (fibromyalgi) og 

regionalisert (skulder/nakke) muskel/skjelett smerte i tillegg til friske kontroller. En 

gruppe pasienter med muskel/skjelett smerter ble også undersøkt etter en blokade av 

perifere sympatiske nerver med en bedøvende blokade av det nedre sympatiske gangliet 

på den ene siden av halsen.  

 

Resultater: 

Vi fant ut at den vaskulære reaksjonen på arbeidsoppgaven var mer langvarig enn de 

andre kroppslige reaksjonene (artikkel I). Den muskulære reaksjonen på den stressende 

arbeidsoppgaven er neppe forklaringen på den samtidige smertereaksjonen, verken for 

pasienter eller kontroller (artikkel II). Vi fant forsinket restitusjon av smertereaksjonen i 

begge pasientgruppene, men ikke hos de friske kontrollene (artikkel II). 

Fibromyalgipasientene hadde mindre puls og blodtrykksendring enn de friske 

kontrollpersonene som reaksjon på den stressende arbeidsoppgaven, med skulder/nakke 

pasientene i en mellomstilling (artikkel III). Vi fant også en omvendt sammenheng 

mellom pulsendringen og smertereaksjonen for fibromyalgigruppen (artikkel III). Til 

slutt viste vi at en blokade av perifere sympatiske fibere ikke affiserer verken smerten 
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eller muskelaktiviteten som utvikles under en stressende arbeidsoppgave for en gruppe 

av pasienter med muskel/skjelett smerter. 

 

Konklusjon:  

Ut fra arbeidet som er gjort i denne doktorgradsavhandlingen kan en konkludere med at 

stressindusert muskel/skjelett smerter trolig ikke er direkte relatert til muskelaktivitet 

eller aktivering av det autonome nervesystemet på et perifert nivå. Vi fant tegn til 

sentral sensitivisering av smerte i begge pasientgruppene. Generalisert muskel/skjelett 

smerte kan være relatert til en manglende evne til å reagere kroppslig på stress.  
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General introduction 
  

Musculoskeletal pain is a frequent complaint in the general population [1-3] and the 

most common cause of sick leave in Norway [4]. The aetiology is most often not 

obvious and these patients represent a huge challenge for the clinician.   

 Both epidemiological and laboratory studies, as well as studies with a qualitative 

design has related chronic musculoskeletal pain to mental stress, and especially to 

stressful work situations [5-11]. There is a large literature on both stress and 

musculoskeletal pain, but relatively little solid evidence exist on the mechanisms linking 

the two phenomena.  

 

  

Stress, autonomic activation and autonomic-somatomotor 

interactions 

 

The word stress may have different meanings depending on the context. When 

referring to stress at work one usually put weight on the cognitive or mental aspects of 

the word. A dictionary may define stress as: “one of bodily or mental tension resulting 

from factors that tend to alter an existent equilibrium” [12], and a textbook of 

physiology may define stress as: “a state of threatened homeostasis” [13]. The bodily 

reactions to stress are mediated by the central autonomic network which coordinates the 

physiological and behavioural response to a stressful stimulus (Figure 1).  Depending on 

the emotional significance of the stressful stimulus the central autonomic network will 

respond through endocrine, autonomic or somatomotor outputs. The central integrator 

for the central autonomic network is the paraventricular nucleus of the hypothalamus 

which controls the balance between the autonomic nervous system and the 

neuroendocrine system [14]. The cardiovascular response to stress is an example of an 

effect through the autonomic nervous system, and the secretion of cortisol in the adrenal 

cortex in response to ACTH secreted from the pituarity gland (the hypothalamo-

pituitary-adrenocortical (HPA) axis) is an example of a response in the neuroendocrine 

system [15-18]. The autonomic response to stress is multifaceted. The concept of the 

stress response as generalised withdrawal of parasympathetic activity and increased 

sympathetic activity which is found in most textbooks [19] as originally introduced by 
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Hans Selye [20], has been questioned [21]. Several reports during the last decade 

indicate that the stress response is probably much more organ-specific and differential 

than suggested by Selye [22-24]. For example, orthostathic stress have opposite 

circulatory effects in skin and muscle [25]. 

 

 

 
  

Figure 1. The central autonomic network (CAN) receives and integrates humoral, 
viscerosensory and environmental inputs to generate specific endocrine, autonomic and 
somatomotor outputs. The central autonomic network has reciprocal connections with 
the brain stem and basal forebrain involved in behavioural state control. (From Eduardo 
E. Benarrroch: Central autonomic network, Futura Publishing company, New York, 
1997)  
 

While the endocrine and autonomic responses to stress are well described, less is 

known about the somatomotor responses to stress. Respiratory and sacral motoneurons 

are known to be controlled by the autonomic nervous system. Respiration is regulated 

by the parabrachial nucleus, and the urethral sphincter is regulated from an area in the 

rostral dorsolateral pons. The central autonomic network will also affect the 

somatomotor system expressed as emotionally motivated motor behaviour [13]. 

However, there exists some evidence that the central autonomic network may affect 

motoneurones directly and not only indirectly by changing motor behaviour. The 

concept of a descending “emotional motor system” was introduced by Holstege [26, 

27], and the existence of dual-function neurons with projections to both somatomotor 

and sympathetic targets has been found in the brainstem of rats  [28]. Others have 

shown that transmission of signals from the upper to the lower motor neuron is not 

always in a 1:1 ratio, but is modulated by brainstem monoaminergic inputs [29-31]. 
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Another question is whether there exist any peripheral autononomic-

somatomotor interactions. There exist a large number of publications on the potential 

sympathetic modulation of muscle spindles [32-38]. However, the vast amount of these 

studies is animal studies, and the conclusions cannot with certainty be applied to 

humans. One human study report sympathetic modulation of muscle spindles [39]. 

However, while the animal studies describe a depression of the stretch reflex during 

sympathetic activation, this human study reports the opposite; a facilitation of the 

stretch reflex during sympathetic activation. At least two studies are published with 

negative results regarding the possible sympathetic modulation of muscle spindles in 

humans [40, 41].  

Furthermore, although the force of a motor unit is normally considered to be a 

result solely of the discharge rate of the accompanying motor neuron, there are some 

reports describing a modulation of muscle force mediated through beta-adrenergic 

receptors on skeletal muscles [42-46]. 

  

 

 

Autonomic activation and pain 

 
It is known that acute stress with autonomic activation has an antinociceptive 

effect referred to as stress-induced analgesia (SIA)[47, 48]. The central autonomic 

network is important for this effect, and the midbrain periaqueductal gray (PAG) and 

the rostral ventromedial medulla (RVM) is essential for stress-induced antinociception 

and other homeostatic autonomic effects [49]. The analgesia provided by the PAG-

RVM-dorsal horn circuit during acute stress is considered to be opioid-dependent and 

closely related to placebo analgesia [47, 50].  

 Some animal studies indicate that chronic stress may have the opposite effect on 

nociception, in other words a nociceptive effect [51-56]. However, less is known about 

the potential mechanisms of this phenomenon although peripheral effects of circulating 

adrenaline may be relevant [57].  

Diffuse pain in one part of the body may also inhibit acute pain in another part 

of the body. This mechanism is known as “diffuse noxious inhibitory control” (DNIC). 

However, this mechanism is not necessarily a result of the sympathetic activation which 

pain causes, as this mechanism is independent of PAG and RVM [58, 59].  



 

13 

 From a biochemical point of view, several of the neurotransmitters associated 

with the autonomic nervous system are important for central pain regulation at both the 

brainstem and the spinal level. Central modulation of pain involves both facilitating and 

inhibiting  mechanisms, and neurotransmitters such as noradrenaline, dopamine, 

serotonin, acetylcholine and nitric oxide are important for these mechanisms [60-63].  

 The peripheral sympathetic nervous system is not directly involved in pain 

transmission in healthy tissues [64-67]. However, in some pathophysiological 

conditions the peripheral sympathetic nervous system may interact directly with afferent 

neurons [64, 68-76], but also have an antinociceptive effect through interaction with 

peripheral immune cells [77].  

 

 

  

Theoretical models for the potential deleterious effects of 

stress on health 

 

 How organic disease may be related to a psychobiological process as stress has 

been discussed for a long time [20, 78]. Various theoretical models have been 

developed in order to describe how stress may lead to disease and subjective 

complaints, and these models have been tested experimentally to a varying degree.  It 

must be noted that not all of these models are easily amenable to experimentally testing.  

 Karasek and Theorell formulated a model which describes how psychological 

demands and decision latitude at work predict health [79]. Melin and Lundberg 

formulated another model which incorporated the off-work situation, and hypothesized 

that certain work conditions cause slow physiological “unwinding” (recovery) with 

sustained endocrine and muscular responses after work causing musculoskeletal pain for 

the exposed individual [80].  

 A few years before Melin and Lundberg presented their model another and more 

general model of the stress – disease relationship was presented by McEwen and Stellar. 

They introduced the concept “allostatic load”, i.e. the strain on the body produced by 

elevated and repeated stress responses, ultimately leading to disease [81]. This model 

was later refined with more emphasis on how lack of adaptation and prolonged 

responses lead to disease [82]. McEwen’s model is less focused on the work situation 
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and muscle activity with a more general physiological approach than Melin and 

Lundberg’s model. 

 Another model presented by Eriksen and Ursin also focus on prolonged stress 

responses. The model is named “The cognitive activation theory of stress” (CATS). 

With elements both from cognitive psychology and neurophysiology they describe  how 

stress and sustained arousal may lead to subjective health complaints [83, 84]. In the 

CATS model lack of coping is a prerequisite for the deleterious effect of stress on 

health, and thus incorporates elements from the model of Karasek and Theorell.  

 

 

   

Neuronal plasticity and pain 

 

 Neural transmission is not only a function of the stimuli applied. Neurons may 

change their properties over time and are highly modifiable. This is relevant for both 

primary and dorsal horn pain associated neurons, and such neuronal plasticity is 

involved in the development of pain hypersensitivity. Some forms of this plasticity are 

brief with transient changes in ion channel properties, others relatively long-lasting 

involving changes in protein phosphorylation and altered gene expression, and some are 

even irreversible with loss of neurons and formation of new synapses [85]. Most 

knowledge about neural plasticity in pain is from animal studies of activity-dependent 

neural plasticity, i.e. how activity in pain pathways induce increased pain sensitivity. 

Little is known about how other stimuli may modulate the transmission of pain. 

However, there is an increasing awareness that modulation of pain transmission may be 

a result of physiological processes not directly related to the neural process in question. 

This includes microglial activation in the central nervous system [86] and peripheral 

effects of long-term stress [57].   

Classic central sensitization of pain refers to the increased synaptic efficacy 

established in somatosensory neurons in the dorsal horn of the spinal cord following 

intense peripheral noxious stimuli, tissue injury or nerve damage. This heightened 

synaptic transmission leads to a reduction in pain threshold, an amplification of pain 

responses and a spread of increased pain sensitivity to non-injured areas [87]. Normally 

innoxious stimuli via low-treshold afferents become painful (allodynia), and noxius 

input results in augmented pain responses (hyperalgesia). However, the term central 
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sensitisation is often used beyond its classical definition in several kinds of pain 

hypersensitivity resulting from plasticity in the central nervous system [88].  

Amplification of pain responses in second order neurons can be elegantly shown 

in animal experiments. For example, a progressive increase in action potential output 

from dorsal horn neurons after repeated peripheral stimulation of nociceptors [89] is a 

form of activity-dependent neural plasticity and denominated “wind-up”. This may be 

considered to result from integration of afferent activity to repeated stimuli. A correlate 

to wind-up can be produced in humans and is then referred to as temporal summation of 

pain [90-92]. It is more pronounced for the C-fibre mediated second pain than for the 

Aδ-fibre mediated first pain. Temporal summation of pain is also frequency-dependent: 

stimulation at frequencies lower than 0.3 Hz (3 second intervals) does not normally 

induce temporal summation [93].  

Pain sensations outlasting the stimulus period (painful aftersensations) has been 

suggested as an additional parameter indicative of sensitised second or higher order 

neurons [94]. Animal studies has also shown that the pain hypersensitivity induced by 

repetitive high frequency stimulation (wind-up) can be maintained by subsequent 

stimulation at low frequencies [95].  

 

Muscle activity and pain 

 

Muscle pain is most often diffuse, dull and aching. The pain is mediated through 

myelinated Aδ fibres (group III) or unmyelinated C fibres (group IV) with free nerve 

endings which most typically is located in the wall of muscle arterioles or in the 

surrounding connective tissue. They are not normally activated during physiological 

muscle contractions but may be sensitised by inflammation or ischemia [96].  

Muscle pain may be related to high biomechanical load, i.e. force-demanding 

work with heavy loads [97]. High biomechanical load is clearly a risk factor for 

developing musculoskeletal pain, but the vast majority of subjects with chronic 

musculoskeletal pain are not exposed to heavy loads.  

Several models of how chronic muscle pain may be related to low-grade muscle 

activity have been formulated, but none of them have been experimentally verified. 

Both ischemia and trauma result in the release of kinins and prostaglandins which again 

result in vasodilatation and an increase in vascular permeability with edema and 

increased interstitial pressure as a possible end result. Increased interstitial pressure may 
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compress venous vessels, resulting in venous congestion and ischemia. In this way a 

vicious circle is formed [98]. Muscle ischemia may also result in failure of the calcium 

pump and local tonic contraction due to lack of adenosintriphosphate (ATP). The local 

muscle contraction is not necessarily a part of the vicious circle, but may be a 

supplementary mechanism. In other words: the initiating event for such a vicious circle 

may also be increased muscle contraction via descending motor pathways [98].  

Another variant of these vicious circle models is that a painful lesion of 

whatever origin (trauma, ischemia, inflammation etc.) excites nociceptive muscle 

afferents which activates γ-motoneurons through spinal interneurones. The activated γ-

motoneurons result in contraction of intrafusal muscle fibres, activating α-motoneurons 

via afferent fibres from the muscle spindle primary endings (Ia afferents). Local muscle 

contractions may again induce pain by compression of blood vessels and ischemia as 

delineated above, or by metabolic products related to muscle contraction [99]. 

These models assume that chronic musculoskeletal pain is a result, partly or 

entirely, of muscle activity. However, based on a review of the literature on muscle 

function in several musculoskeletal pain disorders Lund et al (1991) concluded that 

chronic musculoskeletal pain not likely to be a result of muscular hyperactivity. Instead 

of pain resulting in increased muscular activation as in the “vicious circles” models they 

conclude that pain most likely will inhibit motor activity in the afflicted muscle. This 

model is referred to as the pain-adaptation model  [100].  

 There is still considerable doubt about the extent to which muscle activity is a 

physiological trigger for chronic musculoskeletal pain in subjects without high 

biomechanical exposure in their work [101-103]. 
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Objectives 

The overall objective of the present thesis was to elucidate whether stress-

associated musculoskeletal pain and muscle activity may be related to activation of the 

autonomic nervous system.  

 Laboratory studies of physiological responses to stress have mostly used models 

with short-lasting stress. Furthermore, although relevant theoretical models of the 

interaction between stress and disease/subjective complaints have focused on the 

recovery period after the stressful episode, studies on stress-related physiology have not 

paid attention to the recovery period. In the first paper (paper I) we wanted to describe 

the physiological response and recovery in healthy controls, including autonomic 

activation, to mental stress of long duration and discuss the findings with reference to 

relevant theoretical models.  

 One earlier study of fibromyalgia patients using the same model showed 

equivocal results regarding muscle activity as a potential causative factor for the pain 

development during a stressful task [8]. Regional pain syndromes like chronic 

shoulder/neck pain have often been perceived as a result of muscular hyperactivity or 

”overuse” [104]. In paper II we therefore included both patients with generalised pain 

(fibromyalgia) and patients with regional pain (shoulder/neck pain) in addition to 

healthy controls. The specific question in this paper was whether the muscular 

responses to a stressful task were different between the groups and whether the 

muscular responses were related to pain development. 

  In the third paper we asked whether the autonomic response to a stressful task 

was different for the investigated groups, and whether the autonomic response was 

related to the pain development. 

 Lastly, in order to specifically test whether the peripheral sympathetic nervous 

system may be directly involved in the stress-related pain we investigated whether a 

peripheral sympathetic block influenced the pain and muscle response to a stressful task 

(paper IV).
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Methods and materials 

 
In the present thesis subjects were investigated in the laboratory while 

performing a complex two-choice reaction time test designed to mimic mental load in a 

work place with a high degree of information processing and low general muscle load, 

i.e. mimicking mentally stressful and repetitive office work [105]. Subjects were 

investigated while performing this stressful task for one hour, as well as during a 

baseline period immediately before and during a 30 minute recovery period (10 minute 

recovery period in study IV). The same model has earlier been used in a series of 

studies of healthy controls, headache patients and patients with generalised 

musculoskeletal pain [8, 106-108]. However, while the stressful task induced both pain 

and muscular activity not related to movements, the former studies did not give any 

clear conclusions regarding the mechanism of the pain in neither of the patient groups. 

For the present work the previously used experimental setup was supplemented with 

measurements of blood pressure, heart rate, respiration frequency and finger skin blood 

flow as well as biochemical parameters as noradrenaline, adrenaline and cortisol, i.e. 

different parameters indicative of activity in the autonomic nervous system. In addition 

to the physiological measurements we obtained the subjects recordings of pain, tension 

and fatigue every 10th minute during the stressful task and the recovery period.  

  

 

The experimental procedure 

 

All potential controls and patients first went through a short telephone interview 

with a research nurse (Grethe Helde). All patients went through a detailed consultation 

and examination by a specialist in physical medicine and rehabilitation (Magne Rø). 

Patients and controls not excluded by this initial screening received written information 

about the general aims of the study, and a questionnaire on background data, within two 

weeks of the test day. After a short interview on the morning of the test day, venous 

blood was drawn from the right cubital fossa. Subjects emptied the bladder before 

starting the test. Brassieres were removed and subjects wore only a light shirt on the 

upper part of the body.  The laboratory temperature was regulated to 24.5 ± 1°C.  
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The subjects were seated in an office chair with the forearms resting on the table top 

before, during and after the test. Subjects became acquainted with the work-task by 

performing a mini-trial with instructions before the test started. The mini-trial was 

performed before introducing the stress-imposing feedback on reaction time and was 

used to determine the subjects’ habitual, non-stressed reaction time. Short maximal 

voluntary contractions were performed on each pair of muscles twice (frontalis muscle – 

raising eyebrows, temporalis – clenching teeth, neck – pushing head back against 

resistance, trapezius – pushing extended arms upwards against resistance at 45° angle 

out from the body). The maximal contractions were carried out in order to normalize the 

muscle activity during test to a percent of maximal force. However, the variability 

between the two maximal muscle contractions in the frontalis muscle was too large to 

make a reliable estimate of the maximal muscle force and thus none of the muscle 

activity measurements were normalized. In order to measure the habitual level of 

physiological activation the laboratory experiment started with a five minute period 

which served as a basis for the evaluation of physiological responses during the test and 

the subsequent rest period. The subjects were alone in the room and were not given any 

instructions other than to find a comfortable position with their arms resting on the table 

in front of them (uninstructed rest). A five minute feedback period with muscular 

activity visualised on a screen followed. The subject experienced how it was possible to 

influence the level of muscle activity by adopting different postures and thereafter 

concentrated on minimising any muscle activity. The stressful task was then presented:  

a two-choice reaction-time test on a monitor, lasting one hour. An open ("frame") and a 

solid ("brick") quadrangle were placed in a square pattern, and a written suggestion on 

how to move the brick to superimpose on the frame was given (Figure 2). The subject 

responded by pressing one of two keys ("correct" or "wrong"), with the right middle or 

index finger. The test was to be carried out as quickly and correctly as possible. The PC 

program provided feedback on whether an answer was correct or wrong, and on the 

response time (very slow, slow, normal, fast, very fast), related to the subject’s 

performance in the mini-trial carried out before the experiment started. Together with 

the feedback a new task was presented. After the end of the stressful task, all 

measurements continued for thirty minutes. The subject was instructed to sit still and 

relax during the recovery period.   
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Figure 2. The stressful task involved a grid (7 columns, 5 rows) in which an open 
(frame) and a solid quadrangle were placed. A suggestion on how to move the solid 
quadrangle into the frame was given and the subject answered “correct” or “wrong” by 
pressing one of two keys.  
 

 

Pain, perceived tension and fatigue were reported every ten minutes before, during, and 

after the test by scoring on a 100 mm visual analogue scale (VAS) with the endpoints 

marked “no pain/tension/fatigue” and “worst imaginable pain/tension/fatigue”. 

Perceived tension was considered to reflect subjective stress during and after the test.  

The subjects were asked to assess pain in locations corresponding to the SEMG 

electrode positions in the shoulders, neck, temples and forehead on both sides. The 

subjects were not allowed to see previous records when scoring. 

 Immediately after the stressful task, before the 30 minute rest period, a second 

blood sample was drawn. Subjects reported pain, tension and fatigue both before (60 

min) and after the venipuncture (65 min). An overview of the experimental procedure is 

shown in Figure 3. 

The laboratory personnel were blinded as to the diagnosis (healthy control, 

fibromyalgia or shoulder/neck pain) of the subjects, and the subjects were instructed not 

to disclose their diagnostic status. Furthermore, the laboratory personnel monitored the 

experiment visually from another room, only communicating with the subjects briefly 

every 10th minute with a strictly established monologue when subjective ratings were 

collected, in order to maintain blinding. All data processing before the statistical 

analysis was made without knowledge of diagnostic status of the subjects.  
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Figure 3. Overview of the experimental procedure 
 

Physiological recordings 

Muscle activity was quantified by bipolar recording of surface 

electromyography with custom made electrode assemblies with built in amplifiers to 

reduce the degradation of the signals by electrical interference (Ag-AgCl sircular 

electrodes, electrode diameter 6 mm, inter-electrode distance 20 mm). The skin surface 

at the electrode site was cleaned with custom made pumice stone paste  to reduce the 

electrode-skin impedance. The signals were bandpass-filtered (10-1250 Hz) and stored 

on a digitizing recorder (Earth Data 128). Data were subsequently reconverted to 

analogue signals and fed into an A/D converter (Powerlab 16S; ADInstruments Pty Ltd, 

Sydney, Australia; sampling rate 2kHz, 16 bits) , for rectification and calculation of the 

RMS values (100 ms running time window). Sharp transients and electrical activity 

from the heart in the SEMG signals were removed with a medianfilter (Matlab ver 6, 

The MathWorks inc.). The system noise level was less than 1.5 µV RMS (unpublished 

results). The recording depth of comparable surface electromyography electrodes is 

considered to be less than 20 mm [109].  

Continuous non-invasive finger blood pressure were measured with Portapres 

equipment (Portapres, TNO Biomedical Instrumentation, Amsterdam, The 

Netherlands). This method is based on the Finapres technology which is a fast 

pneumatic servo system which transmit arterial blood pressure to cuff air pressure. A 

pressure waveform is created with a sampling rate of 100 Hz. The Finapres technology 

is a reliable alternative for invasive measurements of continuous blood pressure 

responses [110-113] 
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Finger skin blood flow were measured with the laser Doppler technique using 

surface electrodes with fibre separation 0.5 mm (Moorlab, 4 channels, time constant 

0.02s, low-pass filter 22 kHz; Moor Instruments Ltd, Devon, England). The technique 

uses the Doppler shift of the reflected laser light to estimate the blood volume in the 

underlying tissue. The probes used in the present thesis gives information about blood 

flow in the underlying capillaries, arterioles and venules in the tissue down to 1mm 

from the surface [114-117]. 

 Heart rate was calculated from the blood pressure recordings and respiration 

frequency were calculated based on recordings from a thermistor (Embla S-AF-010, 

Flaga, Reykjavik, Iceland) which were placed below the nose with active elements in 

each nostril and in front of the mouth. 

 

 

Subjects  

 

Two different patient groups were investigated. Patients included had chronic 

pain with at least one episode of pain lasting more than 3 months the last year. The pain 

should was either generalised to the whole body (fibromyalgia) or localised to the 

shoulder/neck region with local tenderness (chronic shoulder/neck pain).  

  Patients with generalised pain were diagnosed according to the 1990 ACR 

criteria [118]. The ACR criteria for classification of fibromyalgia were originally 

developed as a minimal standard for entry of subjects into research studies, but have 

later been used also as diagnostic criteria for clinicians. The combination of a typical 

history of chronic (> 3 months) widespread pain and tenderness to palpation at18 

anatomically defined points exhibited has been shown to differentiate fibromyalgia 

patients from patients with other pain conditions like rheumatoid arthritis and lupus 

erythematosus with moderately high sensitivity (88.4 %) and specificity (81.1 %). 

Widespread pain means bilateral pain from both above and below the waist.  

Patients with chronic shoulder/neck pain were included if they had local 

tenderness. We did not search specifically for “trigger points”[119, 120] because the 

reproducibility of these have been questioned [121, 122]. Patients with chronic localised 

pain are labelled with different diagnostic entities highly dependent on the tradition of 

the particular investigating speciality, often assuming a particular mechanism for the 

pain. A few examples are:  trapezius myalgia, myofascial pain syndrome, repetitive 
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strain injury, and temporomandibular joint pain. Our chronic shoulder/neck pain 

patients were included also if they reported pain from other body regions, however, pain 

in the shoulder and neck region had to be their main problem. No shoulder/neck pain 

patients fulfilled the ACR fibromyalgia criteria.  

 Subjects were excluded if they had: (1) neoplastic disease, (2) high blood 

pressure or were taking anti-hypertensive medication, (3) infectious disease, including 

those who had caught a cold with fever, cough or muscle pain, (4) metabolic, endocrine 

or neuromuscular disease, (5) connective tissue disorder, (6) tendinitis or capsular 

affection of the shoulder joint, (7) recent accident or injury affecting function, (8) 

symptomatic heart disease or were taking medication for any vascular disease, (9) lung 

disease affecting function or were taking medication for such, (10) cerebrovascular 

disease, (11) chronic neurological disease, (12) or if headaches were a major part of the 

pain syndrome, (13) or were taking any medication with a possible interaction on 

neural, vascular or muscular function (e.g. antiepileptics, β-blockers, antidepressants).  

 

 

Statistics 

In the first published paper (paper II) we used primarily non-parametric statistics 

(Kruskal-Wallis test, Mann-Whitney test and Wilcoxon’s signed rank test) on summary 

variables because the subjective response variables pain, tension and fatigue were not 

normally distributed. Non-parametric statistics were chosen for all variables, also for 

those variables which were normally distributed. The summary variables were 

calculated as the mean of the baseline period, the mean of the stressful task period, and 

the mean of the recovery period for all physiological variables. Summary variables for 

the subjective variables (pain, tension and fatigue) were calculated as the increase from 

baseline to the maximal pain during the stressful task. Pain recovery was evaluated by 

simply counting the number of patients who recovered to baseline during the recovery 

period. Other methods of assessing the pain recovery were considered [123, 124], but 

the chosen method were considered to be least biased by either baseline level or the 

relative response during the stressful task. 

After advice from reviewers and our departments’ statistician we later used 

ANOVA models for repeated measurements as the primary statistical model for all 

variables, including the subjective variables. Thus, by including a value for every 10th 

minute instead of a single average value for stressful task and a single value for the 
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recovery period we achieved higher statistical power. While the subjective response 

summary variables were not Gauss-distributed, the absolute values used in the ANOVA 

models were all Gauss-distributed, and the assumption of normally distributed data for 

parametric statistics was thus justified.  

Using summary variables instead of more advanced statistical models based on 

“raw” data results in fewer effects and p-values to consider and the physiological 

relevance may be easier to interpret [125, 126]. On the other side, repeated measures 

models may give larger statistical power with less potential for type II errors. 

Multivariate methods, with or without repeated measures design, is another possible 

approach for the type of data obtained in the present thesis. Relevant multivariate 

methods for the present thesis would have been very complex and highly dependent on 

assumptions on the structure of covariance [127] and were not performed. Furthermore, 

because of the explorative nature of paper I-III, corrections for multiple comparisons 

were not performed. Although not correcting for multiple comparisons increase the risk 

of type I errors [128], several statistical review articles have criticised the use of 

corrections for multiple comparisons in medical research because the risk of making 

type II errors markedly increases [129, 130].   
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Synopsis of results  
Paper I : Autonomic and muscular responses and recovery to one-hour laboratory 

mental stress in healthy subjects. 

Kristian B Nilsen, Trond Sand, Lars J Stovner, Rune B Leistad, Rolf H Westgaard 

 

Background:  

Stress is a risk factor for musculoskeletal pain. We wanted to use an experimental 

model to explore stress related physiology in healthy subjects in order to gain insight in 

mechanisms of pain development which may relate to the pathophysiology of 

musculoskeletal pain disorders.  

Methods:  

Continuous blood pressure, heart rate, finger skin blood flow, respiration, surface 

electromyography together with perception of pain, fatigue and tension were recorded 

on 35 healthy women and 9 healthy men before, during a 60 minute period with task-

related low-grade mental stress, and in the following 30 minute recovery period.  

Results:  

Subjects responded physiologically to the stressful task with an increase in trapezius and 

frontalis muscle activity, increased blood pressure, respiration frequency and heart rate 

together with reduced finger skin blood flow. The blood pressure response and the 

finger skin blood flow response did not recover to baseline values during the 30-minute 

rest period, whereas respiration frequency, heart rate, and surface electromyography of 

the trapezius and frontalis muscles recovered to baseline within 10 minutes after the 

stressful task.  Sixty-eight percent responded subjectively with pain development and 64 

% reported at least 30% increase in pain  

Conclusion:  

The findings suggest that the blood pressure increase and the acral finger skin blood 

flow reduction to mental stress are more protracted than other physiological stress 

responses.
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Paper II: Pain induced by low-grade stress in patients with fibromyalgia and chronic 

shoulder/neck pain, relation to surface electromyography  

Kristian B Nilsen, Rolf H Westgaard, Lars J Stovner, Grethe Helde, Magne Rø, Trond 

Sand 

 

Background:  

The mechanisms of pain causation in fibromyalgia and chronic shoulder/neck pain are 

still debated. We wanted to compare muscle activity and pain development during and 

after low-grade mental stress in fibromyalgia and shoulder/neck pain patients.  

Methods:  

Twenty-three women with fibromyalgia, 29 women with chronic shoulder/neck pain, 

and 35 healthy women performed a stressful task lasting 60 minutes followed by a 30 

minutes recovery period. We recorded surface electromyography over the trapezius, 

neck, temporalis and frontalis muscles. Subjects reported their pain at the corresponding 

locations together with the development of fatigue and perceived tension.  

Results:  

Significant differences between fibromyalgia and shoulder/neck pain groups were not 

observed for either muscular or subjective responses. Shoulder/neck pain patients and 

controls responded with more pain in the trapezius and neck regions than in the 

forehead, in contrast to fibromyalgia patients who had a more generalized pain 

response. Development of pain, tension and fatigue was not related to muscle activity 

for any group.  

Conclusion:  

The findings suggest that fibromyalgia and shoulder/neck pain patients have similar 

pain and electromyographic responses to a stressful mentally demanding task. Muscular 

activity did not explain the pain which developed during the stressful task for either 

group. Pain lasted longer during recovery in both fibromyalgia and shoulder/neck pain 

patients compared to healthy controls, possibly a result of disease-related sensitisation 

in pain pathways. 
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Paper III: Autonomic activation and pain in response to low-grade mental stress in 

fibromyalgia and shoulder/neck pain patients.  

Kristian B Nilsen, Trond Sand, Rolf H Westgaard, Lars J Stovner, Linda White, Rune B 

Leistad, Grethe Helde, Magne Rø 

 

Background:  

Psychosocial stress is a risk factor for musculoskeletal pain, but how stress affects 

musculoskeletal pain is poorly understood. We wanted to examine the relationship 

between low-grade autonomic activation and stress-related pain in patients with 

fibromyalgia and localised chronic shoulder/neck pain. 

Methods:  

Twenty-three female patients with fibromyalgia, 29 female patients with chronic 

shoulder-neck pain, and 35 healthy women performed a stressful task lasting 60 

minutes. With a blinded study design, we recorded continuous blood pressure, heart 

rate, finger skin blood flow and respiration frequency before (10 minutes), during (60 

minutes) and after (30 minutes) the stressful task. The physiological responses were 

compared with subjective reports of pain.  

Results:  

The increase in diastolic blood pressure and heart rate in response to the stressful task 

were smaller in fibromyalgia patients compared with the healthy controls. Furthermore, 

fibromyalgia patients had reduced finger skin blood flow at the end of the stressful task 

compared to healthy controls. We also found an inverse relation between the heart rate 

response and development and recovery of the stress-related pain in fibromyalgia 

patients. 

Conclusion:  

We found abnormal cardiovascular responses to a 60 minute long stressful task in 

fibromyalgia patients. Furthermore, we found a negative association between the heart 

rate response and the pain which developed during the stressful task in the fibromyalgia 

group, possibly a result of reduced stress-induced analgesia for fibromyalgia patients. 
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Paper IV: A unilateral sympathetic blockade does not affect stress-related pain and 

muscle activity in patients with chronic musculoskeletal pain. 

Kristian B Nilsen, Trond Sand, Petter Borchgrevink, Rune B Leistad, Magne Rø, Rolf 

H Westgaard 

 

Background:  

Chronic musculoskeletal pain is often exacerbated by mental and social stress. The 

association between stress and musculoskeletal pain is potentially mediated by 

peripheral sympathetic nerves, either directly or indirectly through muscle activity. In 

the present study we wanted to determine if sympathetic blockade could affect either the 

pain or the muscular activity seen during mental stress in patients with chronic 

musculoskeletal pain.  

Methods:  

We performed a unilateral anesthetic blockade of the lower cervical sympathetic 

ganglion (ganglion stellatum) in 18 patients with chronic musculoskeletal pain (10 with 

fibromyalgia and 8 with chronic shoulder/neck pain). After the blockade the patients 

performed a 60-minute stressful task with low-grade mental stress which has induced 

pain and muscle activity in earlier experiments. Surface electromyography of the head, 

neck and shoulders, heart rate and blood pressure were recorded together with ratings of 

pain. 

Results:  

Neither pain nor muscle responses were affected by the sympathetic blockade. Other 

explanatory models must be implemented and tested experimentally in order to further 

investigate the clinical impression that mental stress exacerbates pain in patients with 

chronic musculoskeletal pain. 

Conclusion:   

Peripheral sympathetic activity is probably not directly involved in modulation of pain 

and muscle responses to a stressful task in patients with musculoskeletal pain. 
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General discussion 
 

The interpretation and validity of the different results of the study have been 

discussed in detail in the four papers. Here, some of the results will be discussed in a 

broader context. A complete overview of all relevant literature is however very difficult 

to achieve considering the vast amount of published papers on this subject. A search on 

PubMed in April 2007 revealed 2480 papers with the word fibromyalgia in the title. The 

default PubMed search including fibromyalgia in all fields revealed 4285 different 

papers.  

 

Different approaches to the subject with chronic 

musculoskeletal pain 

 

Research on musculoskeletal pain may be approached very differently 

depending on the vocational training of the researcher. Medical doctors generally focus 

on subjects who have attended a physician with musculoskeletal pain and their research 

subjects are divided into healthy subjects and patients. There is also a large amount of 

research on this topic performed by researchers with a main focus on occupational 

safety and health. Supposedly motivated by the high incidence of sick leave related to 

musculoskeletal pain in different occupations they approach the same subjects but not 

necessarily with the same division of the subjects into either healthy subjects or patients. 

The present thesis is an interdisciplinary approach to this group of subjects. The 

laboratory model is developed by a research group which has had their main focus on 

occupational health, and the investigated group of subjects was included as either 

patients or healthy controls. Patients were either diagnosed with chronic generalised 

pain (fibromyalgia) or with chronic regional pain localised to the shoulder/neck region. 

It was considered reasonable to compare these two groups partly because they present 

with different symptom distributions and partly because there has been a “common 

understanding” that the aetiologies are different. Pain syndromes with a regional 

distribution have been regarded as more likely to be a result of “overuse” whereas 

fibromyalgia with its generalised distribution has been considered to be a result of 

generalised neurosensory dysfunction [104]. An additional reason for including two 
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different clinical entities is the need to compare a finding in one diagnostic entity with 

another to see if the finding is specific to one diagnostic entity or if the findings may be 

a common phenomenon for pain afflicted subjects independent of diagnostic entity.  

 When comparing two groups with musculoskeletal pain of unknown origin one 

must bear in mind that there is usually an overlap in the definition of different 

unexplained clinical conditions [131, 132]. The patients investigated in the present 

thesis were classified on the basis of the dominating presentation of their pain. Although 

a generalised pain distribution with mechanical allodynia in all extremities is the 

defining feature for fibromyalgia patients, they still may have their most intense pain in 

a localised region.  The pain in fibromyalgia patients is reported to be most prevalent in 

the shoulders, chest and lower back [133]. In the present thesis we found the shoulder 

and neck region to be the dominating pain region also for the fibromyalgia patients 

(paper II).  

 

The model 
 

The experimental setup is designed to mimic stressful and repetitive computer 

work, minimizing the physical activity [105]. The induced muscle activity has been 

most evident in the trapezius and frontalis muscles and has been labelled “attention-

related” or psychogenic [134, 135]. However, while the stressful task induced both pain 

and muscular activity not related to movements, no consistent relation between the 

induced pain and the observed muscle activity has been observed [103] except for a 

weak correlation in the trapezius in a study of fibromyalgia patients [8].  Moreover, 

subjectively perceived general tension was found to be a powerful risk factor for 

musculoskeletal pain in field studies [10, 136].  Perceived tension may represent the 

perception of physiological activation, but not necessarily involving muscle fibre 

activation, an annotation which was later confirmed by qualitative studies of service 

workers [137]. On this background the experimental setup was supplemented with 

measurements of activity in the autonomic nervous system and utilized in the present 

thesis.  

 The model is a laboratory approach to the everyday situation of many office 

workers, and it’s resemblance to real life enhances its external validity. However, one 

must admit, even after the present and other studies with the same model, that we lack a 

clear understanding of the pain initiating process. As reported in paper II muscle activity 
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does not seem to be a cause for the pain development during the stressful task. The 

results of paper IV implicate that the peripheral part of the sympathetic nervous system 

is probably not implicated in the pain initiating process, at least not directly. 

Importantly, the pain initiating process is not specific to any of the investigated 

diagnostic entities as 68 % of the healthy controls reported increased pain during the 

stressful task (paper I). In this context one must mark that the present model is a model 

of an occupation situation of stressful work with low physical activity and not a 

reductionistic neurophysiological pain model, i.e. pain is not a stimulus but one of the 

dependent variables in the model.  

 The model is complex and not perfect, but nevertheless attractive because of 

similarity to real life. More experiments must be undertaken in order to increase the 

understanding of the mechanism for the pain initiated by the stressful task. 

Manipulations with the amount of stress has already partially been done [134], but may 

be extended with more sophisticated experimental design. Extending the experimental 

model with pharmacological manipulations with different physiological systems may 

also give valuable information. This may for example be performed with naloxone 

infusions interfering with the PAG-RVM antinociceptive system in the brainstem [48, 

50, 138, 139] or with manipulations with the peripheral autonomic (i.e. beta blockers) or 

neuromuscular receptors (i.e. botulinum toxin).  Microneurographic recordings of 

sensory nerves during the stressful task are an intriguing but expensive and time-

consuming approach.   

 

Musculoskeletal pain as a result of overexertion of muscle 

fibres 

 

Repeated activation of muscle fibres leading to hypoxia and pain has been 

suggested as an important mechanism for musculoskeletal pain, i.e. occupational muscle 

pain [140]. Considering the observation that there is a relatively fixed order of 

recruitment of motor units at increasing levels of muscle force, often referred to as the 

Henneman principle [141], this is an attractive hypothesis. Furthermore, prolonged 

activation of low-threshold motor units as a possible causal factor for development of 

work-related muscle pain was supported by the finding that type I muscle fibres (slow-

oxidative fibres) were selectively injured in a sample of female workers with trapezius 

myalgia [142]. These two observations is the basis for the so-called Cinderella 
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hypothesis[143], which has been a popular model for understanding occupational 

muscle pain, named after the girl who was forced to work continuously in the well 

known fairy tale. However, injured muscle fibres with damaged mitochondria resulting 

in the appearance of “ragged-red fibres” have also been found in workers without 

muscle pain [144] and is thus not consistently linked to the development of occupational 

trapezius myalgia. Although not related to spontaneous pain, “ragged-red fibres” may 

be related to the findings of tender points in the trapezius muscle [145].  

 Higher muscle activity as measured by surface electrodes has been reported for 

workers with shoulder/neck pain during manual work or work with high work load, but 

the association between shoulder/neck pain and muscle activity is not consistent for 

office workers or workers with low work load [11, 146-152]. The lack of correlation 

between muscle activity and pain development during a stressful task, also for the 

shoulder/neck pain patients, as reported in the present thesis (paper II), further add to 

the available evidence that sustained low-level motor activity is not essential for 

development of shoulder/neck pain in stressful work situations with a low physical 

workload.  

Nevertheless, because measuring every single motor unit in a muscle is not 

possible with current available methodology it is difficult to completely reject the 

Cinderella hypothesis. Static muscle contractions in a small subset of muscle fibres, i.e. 

a focal dystonia in a small part of a muscle, leading to ischemic pain forms the 

theoretical framework behind the diagnostic term “myofascial pain syndrome” [119, 

120, 153] which is a regionalised pain disorder with characteristics not very different 

from occupational muscle pain [140] but with terminology from another profession. The 

focal contractions are the presumed cause of tender areas or trigger points in muscles 

[154, 155], and have been suggested to result either from an endplate dysfunction [156-

158] or from sympathetic-motor crosstalk [159-163]. Focal muscle contractions have 

also been suggested as a mechanism in occupational muscle pain as a result of a vicious 

feedback loop starting with activation of muscle nociceptors which sensitise muscle 

spindles through excitation of γ-motoneurons, which secondarily raise the activation 

level of the α-motoneurones projecting to the primary muscle [99].  

The various hypothesis claiming the tender areas in patients with 

musculoskeletal pain to be a result of excessive muscle activity has been opposed by 

other studies [164, 165]. Regarding the fibromyalgia syndrome, both increased [166-

170], reduced [171-179] and normal muscular activity have been found [165, 180-186]. 

A few studies have now investigated the muscular response to a stressful task in 
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fibromyalgia patients, and although one study reported an increased electromyographic 

activity in the neck muscles (but not other muscles) during a stressful task [8], two 

studies, including paper II, have reported similar muscular activity during a stressful 

task for fibromyalgia patients and healthy controls [187 and paper II] 

 In the studies of the present thesis the tender points of the patients were not 

investigated in particular, neither in the muscles of the shoulder/neck pain patients, nor 

in the areas defined by the ACR fibromyalgia criteria [118]. Instead, the thesis focused 

on the muscle activity as measured by surface electrodes and in particular the muscle 

activity induced by a stressful task.   

 Overexertion of muscle fibres is at the time being not the most plausible 

explanation for musculoskeletal pain in persons with low manual work load. New 

technology, i.e. functional magnetic resonance imaging, may in the future make it 

possible to fully test the Cinderella hypothesis which is difficult with the current 

available methodology. From paper II one may conclude that the pain response to a 

stressful task is unrelated to muscle activity as measured by surface electrodes. Paper IV 

also raises objections to the view that muscle hyperactivity is a more likely explanation 

for regionalised shoulder/neck pain than to generalised musculoskeletal pain. Based on 

the results from paper II and the conclusions in several review articles, one must 

consider other physiological mechanisms than muscle activity as more plausible 

explanations for both fibromyalgia [101] and shoulder/neck pain [188]. This was also 

investigated further in paper I, III and IV in the present thesis. 

 

Musculoskeletal pain and the autonomic nervous system 

 

 The autonomic nervous system has been suspected as a causal or contributing 

factor to both localised shoulder/neck pain and fibromyalgia. The sympathetic part of 

the autonomic nervous system regulates the blood flow throughout the body. Reduced 

muscular blood flow, or an inability to increase the muscular blood flow on demand, has 

been suggested as a mechanism for chronic pain in the trapezius region [189-196]. 

Reduced  muscular blood flow in response to exercise has also been suggested as 

contributing factor to fibromyalgia pain [197]. However, in the present thesis 

intramuscular blood flow was not investigated.  

 Other aspects of the autonomic nervous system have been investigated 

thoroughly for fibromyalgia patients, but less for shoulder/neck pain patients. The 
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possible autonomic dysfunction in fibromyalgia has been reviewed and a possible 

blunted stress response has been suggested [198, 199]. The particular studies on blunted 

cardiovascular stress responses relevant for the findings in the present thesis are 

discussed in paper III. The present thesis supports the conclusions of the 

abovementioned review articles as we report a blunted cardiovascular response to the 

stressful task, but also adds important information on the relation to pain development, 

as we report an inverse relation between the pain and the heart rate response to the 

stressful task for the fibromyalgia group. A smaller heart rate response to the stressful 

task was associated with a higher and longer lasting pain response (paper III). This 

inverse relation has been hypothesised earlier [200-202]. An inverse autonomic-pain 

relationship has also been reported between baseline pain obtained by the McGill Pain 

Questionnaire and the blood pressure decrease in response to ingested buspiron 

(anxiolytika with effects on dopamine and histamine receptors) in fibromyalgia patients. 

A reduced ability to respond adequately with an autonomic response to stress may 

explain a general hypersensitivity to painful stimuli through the mechanism known as 

stress-induced analgesia [47, 48]. If reduced stress-induced analgesia is an important 

factor for these patients, this would imply a central cause of the reduced stress response, 

e.g. a reduced central level of corticotrophin-releasing hormone as suggested by Clauw 

and Chrousus [201], or reduced central levels of dopamine as suggested by Wood et al. 

[203]. There are several reports indicative of a reduced central autonomic response to 

various stimuli in fibromyalgia patients supporting this view [200, 204-209].  

 Principally, an inverse relation between an autonomic response and pain 

development is however not necessarily a result of a reduced central stress response. 

Baroreceptor activation (as during an increase of blood pressure) is known to increase 

pain threshold [210] also due to activation of lower brainstem reflexes involving the 

nucleus tractus solitarius and the A5 cell group, but without engaging the more rostrally 

periaqueductal gray and rostral ventromedial medulla associated with stress-induced 

analgesia [211].  

 A peripheral interaction between efferent sympathetic and afferent 

somatosensory fibres, often referred to as sympathetically maintained pain , has been 

suggested as a mechanism for the pain experienced in the fibromyalgia syndrome [212]. 

Although the concept of sympathetically maintained pain is controversial [213, 214] a 

few important studies make it difficult to reject the concept in general [70, 74]. 

Sympathetic maintained pain is normally included in the concept “neuropathic pain”. 

Applying the term neuropathic pain on a syndrome like fibromyalgia (without any 
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anatomically localised pathology) is highly controversial [215-217] The peripheral 

sympathetic nervous system has also been suggested as a contributing factor for 

regionalised muscle pain, though mainly indirectly trough interactions with muscle 

spindles [33, 36-38] or “trigger-points” [162]. The fact that sympathetic blockade did 

not inhibit pain in our paper IV refute hypothesis claiming that interaction between 

peripheral sympathetic fibres and somatosensory afferents or somatomotor fibres is 

important for the pain seen in fibromyalgia and shoulder/neck pain, at least the pain 

induced by a stressful task.  

Further research on the potential contribution of the autonomic nervous system 

to chronic musculoskeletal pain is necessary. Based on the findings of an inverse 

relation between the heart rate response and the pain response to the stressful task for 

the fibromyalgia patients in paper III, further research should in particular investigate 

whether the antinociceptive effects of the central autonomic network is deranged in 

patients with chronic musculoskeletal complaints. This may be done by manipulating 

the central autonomic network with corticotropin-releasing-hormone agonists or 

antagonists  [218, 219] or by manipulating the baroreflex by unloading baroreceptors in 

the neck by neck suction techniques [220] while testing for changes in pain thresholds 

and temporal summation. Furthermore, the autonomic nervous system may contribute to 

musculoskeletal pain more indirectly than tested in paper IV. For example, one must 

clarify whether the autonomic nervous system is capable of sensitising nociceptive 

neurons (and not only test the potential direct pain mediating effect of peripheral 

sympathetic nerves as in paper IV). Repeated daily iontophoresis of noradrenaline did 

not sensitise heat sensitive nociceptors in healthy subjects in one study [221], while 

another study found a decrease in heat pain threshold but no changes for mechanical 

pain threshold after injection of noradrenaline [222]. The pain sensitising effect of 

peripherally administrated noradrenaline and adrenaline should be tested explicitly for 

patients with musculoskeletal pain, preferable also in muscle tissue. While the concept 

of activity-dependent neural plasticity of sensory fibres is widely accepted [87], the idea 

that sensory fibres may be sensitised by “extra-sensory” stimuli (e.g. stress related 

hormones or interleukins) is far less investigated. Recent publications do however 

indicate that “extra-sensory” stimuli may be important for sensitisation of  pain 

transmission, for example reports of activation of microglia in the dorsal horn as a 

mechanism in chronic pain [86] and enhancement of mechanical allodynia mediated by 

stress-induced circulating adrenaline [57].  
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Musculoskeletal pain as a result of sustained arousal 

 

 The concept of chronic musculoskeletal pain as a result of sustained activation 

of one or more physiological systems as delineated in the theoretical models of how 

stress leads to disease or subjective complaints [82, 83] is attractive. Reported “need for 

recovery after work” has been found to increase the risk for cardiovascular disease in a 

large epidemiological study with 7944 workers investigated during 32 months [223]. 

“Need for recovery after work” also increases the risk for future sickness leave among 

truck drivers [224]. The variable “need for recovery after work” was in these studies 

calculated as an average score of 11 questions from a larger questionnaire. However, 

whether slow physiological recovery after psychological stress really predicts somatic 

disease has hardly been investigated [225]. In the present thesis we investigated the 

physiological response and recovery to a stressful task in detail. We found that the 

blood pressure was surprisingly high even after 30 minutes of recovery, but we were not 

able to test the predictive value of slow physiological recovery on future health. We also 

found the delayed blood pressure recovery to be related to the fatigue response to the 

stressful task (paper I).  

 The physiological basis for the models of how sustained arousal results in 

disease is largely unexplored. Future studies must first explore the normal physiology 

during the recovery period and extend the duration of the recovery period substantially. 

In addition, one should manipulate with both the quality and the length of the stress 

applied. Subsequently, one must investigate the predictive value of slow physiological 

recovery on future health. Because emotional factors is so important for the 

physiological response to stress and also for the cognitive modulation of pain [226], 

more knowledge on the neurobiological basis for interaction of emotions on pain may 

be essential in order to understand how sustained arousal may affect chronic 

musculoskeletal pain. 

 

Musculoskeletal pain and neural plasticity 

 

 The fibromyalgia syndrome has usually been understood as a generalised pain 

hypersensibility syndrome, including both hyperalgesia, allodynia and increased 

temporal summation of pain [227-230]. The hypersensibility may be a result of primary 

pathology in central pain modulatory systems. The endogenous pain inhibitory 
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mechanism known as diffuse noxious inhibitory control (DNIC) has been reported to be 

deficient in fibromyalgia patients [231-234]. However, other reports have partly 

opposed these results as relevant for fibromyalgia patients in general [235, 236]. The 

hyperalgesia, allodynia and increased temporal summation of pain observed in 

fibromyalgia patients may also be a result of central sensitisation after continuous 

stimulation from peripheral nociceptive processes. The view of fibromyalgia as a result 

of primarily peripheral pathology and not a result of pathology in central pain 

modulatory mechanisms has been advocated in several recent review articles and seems 

to represent a paradigmatic shift on the view of fibromyalgia among some of the leading 

“authorities” in the field [133, 237-240]. A primary dysfunction of peripheral afferents 

has also been proposed as a causal factor in fibromyalgia: based on a series of animal 

experiments which has demonstrated that cutting vagal afferents results in generalised 

mechanical allodynia [241, 242], it has been suggested that fibromyalgia is caused by 

decreased vagal afferent activity [243].  

 Pain hypersensibility as a result of central sensitisation is probably also found 

regionally in patients with chronic shoulder/neck pain as it may be found in any chronic 

pain state, but is far less investigated. However, one study of healthy subjects reported 

not only lower pain pressure threshold in the trapezius region compared to the anterior 

tibial region, but also that temporal summation of muscle pain is more pronounced than 

temporal summation of cutaneous pain for the trapezius region [244]. This relative 

difference between painful stimulation of muscle and skin was not found in the anterior 

tibial region, indicating that the lower pain pressure threshold in the trapezius region is 

mainly a result of increased muscle sensitivity in this region [244]. This finding from 

the trapezius region accords with those of other studies where nociceptive input from 

muscles has been reported to sensitise the central nervous system to a higher extent than 

nociceptive input from cutaneous tissue [245, 246]. Although a regional dysfunction 

may be the most plausible explanation for a regional pain disorder, increased pressure 

pain sensitivity has also been found in a pain-free site for patients with chronic trapezius 

myalgia. However, the endogenous pain inhibitory system reported to be defective in 

fibromyalgia is reported normal for these patients [247].  

More specifically related to the present thesis is the finding of pain sensations 

outlasting the stimulation period in fibromyalgia patients. The relative increase in pain 

score after repetitive painful stimulation of skin with heat and cold [138, 248], as well 

as with deep mechanical stimulation of muscle tissue [249], is higher in fibromyalgia 

patients compared to healthy controls. This is interpreted as increased temporal 
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summation of pain in the dorsal horn, supporting the view of fibromyalgia as a 

generalised pain hypersensibility syndrome. These studies also showed that the pain 

sensations lasted longer for fibromyalgia patients. The pain outlasting the stimulation 

period was called painful after-sensations. Later, the same group reported that after 

cessation of the repetitive stimulation which first induced temporal summation of pain, 

the painful after-sensations could be maintained by continuing with low-frequent 

repetitive stimulation at a frequency which is not capable of inducing temporal 

summation on its own [250]. The amount of these painful after-sensations was related to 

the baseline pain reported by the same fibromyalgia patients [251].  

In the present thesis both patients groups were found to recover from the pain 

more slowly than the healthy controls (paper II). Although the experimental model in 

the present thesis is completely different from the different experimental setup of Staud 

et. al. our observation of reduced pain recovery in the patient groups may be interpreted 

as painful after-sensations. The finding may indicate that central sensitisation is a 

phenomenon found in both patient groups alike. Based on the findings in the present 

thesis one may draw the conclusion that central sensitisation of pain is probably 

essential for chronic musculoskeletal pain disorders of unknown aetiology, whether the 

pain is localised or widespread.  

When studying central modulation of pain and neural plasticity in future studies 

of musculoskeletal pain one must keep in mind that the division between regional and 

generalised pain syndromes may not reflect fundamental differences in pathogenetic 

mechanisms. Because of the problems with diagnostic accuracy with these patient 

groups, combining functional genetic methodology (studying the expression of genes) 

with laboratory studies of pain physiology may be a more fruitful approach for future 

studies. In order to understand the pain related mechanism one must not restrict the pain 

measurements to self reported pain or pain threshold measurements, but include 

measurements of parameters reflecting descending modulatory mechanisms and pain 

amplification.  
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Conclusions 
 

The overall objective of the present thesis was to elucidate whether stress-associated 

musculoskeletal pain and muscle activity may be related to activation of the autonomic 

nervous system.  

 

First, we found that the vascular response to a stressful task as measured by blood 

pressure and finger skin blood flow is more protracted than other physiological 

responses. This is new knowledge and is of great value when designing new studies to 

experimentally test the available theoretical hypotheses on how stress relates to 

musculoskeletal complaints.  

 

Second, we found no differences in the muscular response to a stressful task when 

comparing patients with generalised musculoskeletal pain (fibromyalgia), patients with 

regionalised musculoskeletal pain (shoulder/neck pain), and healthy controls. The 

muscle response was not related to pain development for neither group.  

 Furthermore, both patient groups had a delayed pain recovery which indicate 

that sensitisation in pain pathways was not specific for either group. 

 

Third, we found an attenuated cardiovascular response to the stressful task when 

comparing the fibromyalgia group to healthy controls, with the shoulder/neck pain 

patients with an intermediate response between healthy controls and fibromyalgia 

patients.  

Furthermore, there was a negative association between the heart rate response 

and pain development for the fibromyalgia group. 

 

Fourth, we found that a peripheral sympathetic block did not affect neither pain nor 

muscle responses to a stressful task in patients with musculoskeletal pain.  

 

From the studies presented in the present thesis one may conclude that stress-associated 

musculoskeletal pain is probably not directly related to muscular activation or to 

autonomic activation at a peripheral level. In patients with generalised pain as in 

fibromyalgia, the pain may be related to a reduced physiological ability to respond 

adequately to stress.  
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Abstract

Background:
Stress is a risk factor for musculoskeletal pain. We wanted to explore stress related

physiology in healthy subjects in order to gain insight in mechanisms of pain

development which may relate to the pathophysiology of musculoskeletal pain

disorders.

Methods:
Continuous blood pressure, heart rate, finger skin blood flow, respiration, surface

electromyography together with perception of pain, fatigue and tension were recorded

on 35 healthy women and 9 healthy men before, during a 60 minute period with task-

related low-grade mental stress, and in the following 30 minute rest period.

Results:

Subjects responded physiologically to the stressful task with an increase in trapezius

and frontalis muscle activity, increased blood pressure, respiration frequency and

heart rate together with reduced finger skin blood flow. The blood pressure response

and the finger skin blood flow response did not recover to baseline values during the

30-minute rest period, whereas respiration frequency, heart rate, and surface

electromyography of the trapezius and frontalis muscles recovered to baseline within

10 minutes after the stressful task. Sixty-eight percent responded subjectively with

pain development and 64 % reported at least 30% increase in pain. Reduced recovery

of the blood pressure was weakly correlated to fatigue development during stress, but

was not correlated to pain or tension.
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Conclusion:
Based on a lack of recovery of the blood pressure and the acral finger skin blood flow

response to mental stress we conclude that these responses are more protracted than

other physiological stress responses.
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Background

A substantial epidemiological literature has shown that mental and social

stress is a risk factor for development of musculoskeletal pain, especially for pain in

the shoulder and neck [1-4]. Different theoretical models for possible causal links

between stress and health complaints have been described. Eriksen and Ursin [5]

describe a process of psychological sensitisation and arousal leading to intolerable

subjective complaints. McEwen and co-workers [6, 7] describe a similar model with

more emphasis on physiological responses, introducing the concept of allostatic load

(i.e., the physiological result of chronic exposure to stress). The lack of physiological

recovery after stress is considered by both groups a key factor linking stress and

disease. Furthermore, laboratory studies indicate that autonomic activation and

dysfunction is implicated in chronic pain [8]. In the search for possible biological

correlates for the link between stress and disease, earlier laboratory studies have used

short lasting stressors with analytical focus on the physiological reactivity (response

to the stress), while the important physiological recovery period has received little

attention [9]. Little is known about the physiology of the recovery period after

stressful and repetitive work-related tasks.

In order to explore further the physiological basis for the link between stress

and muscle pain, which again may relate to chronic pain development, we performed

this study on healthy subjects performing a long-lasting stressful task (1 hour) with a

30 minute recovery period. We used a stressful task of sufficient duration to mimic

real-world (e.g. work-related) stress, adding external validity to the methodology [10].

The stressful task has previously been used to explore the development of subjective

complaints and muscular activity to stress in pain-free controls [11] and in patient

groups with musculoskeletal pain or headache [12-15]. However, activity in the
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autonomic nervous system was not assessed in the previous studies. In the present

study we measured muscle activity (surface electromyography) together with blood

pressure, heart rate, acral finger skin blood flow and respiration frequency 10 minutes

before, during the 60 minute stressful task and 30 minutes after. Development of pain,

fatigue and tension was recorded immediately before and every 10 minutes during the

stressful task and in the 30 minute rest period.

Firstly, we wanted to describe the autonomic and muscular response and

recovery profiles after low-grade mental stress of long duration in healthy subjects.

Secondly, we hypothesized that development of subjective complaints during a long

lasting low-grade stressful task were related to the physiological response to the task.

Lastly, we hypothesized that those variables with the slowest recovery profile would

be related to the subjective complaints induced by the stressful task.

Methods

Subjects

Forty-four healthy subjects participated in the study (Table 1). The participants were

recruited as controls for a group of pain patients with a female predominance, and

therefore comprised thirty-five women and nine men. They were recruited from

public institutions and private companies in Trondheim. Subjects were excluded if

they fulfilled all of the three following criteria: (1) headache or musculoskeletal pain

for more than one day per month, and (2) had visited a physician, and (3) took

medication for the complaint (all three conditions to be fulfilled). In addition, subjects

considering their headache or pain to be more than “unpleasant” (i.e. a higher degree

of pain) were excluded if (1) they experienced the pain more than one day per month,

or (2) had visited a physician for the pain, or (3) took medication for the pain (i.e. any
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of the three conditions fulfilled). No participants took drugs with a possible

interaction with neural, vascular or muscular function (e.g. antiepileptics, β-blockers,

and antidepressants)

Procedure
All subjects answered a questionnaire on biographical data (marital status,

weight, medication, and stimulants), exercise habits, and the neuroticism index of the

Eysenck Personality Questionnaire (EPQ-N)[16]. The questionnaire further included

an index of symptoms concerning the autonomic nervous system (“autonomic

symptom index”). For this purpose a subset of ten questions were chosen (No. 26-35)

from the Composite Autonomic Symptom Profile [17]. The questions assessed

different domains of autonomic symptoms (orthostatic, sudomotor, gastrointestinal,

visual, vasomotor, reflex syncope). Sub-indexing different autonomic domains was

not done due to the limited number of questions. The answers were graded. A serious

extent of a symptom was given a higher value than a less serious. E.g. the answer to

the questions: "In the last year, to what extent have you been in a cold sweat?", were

graded as : "have not had" (value 0), mild (value 1), moderate (value 2), severe (value

3). The highest possible sum score was 30.

All potential participants went through a short telephone interview to exclude

those not fulfilling inclusion criteria. Subjects not excluded by the initial screening

received the questionnaire by post within two weeks of the test day. On the morning

of the test day the subjects first went through a short interview controlling the answers

from the questionnaire. Afterwards venous blood was sampled from the right cubital

fossa. Subjects were instructed to empty their bladder before starting the test.

Brassieres were removed and subjects wore only a light shirt on the upper part of the
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body. The laboratory temperature was regulated to 24.5 ± 1.0 °C and was recorded

every ten minutes during the experiment.

The subject was seated in an office chair with the lower arms resting on the

table top before, during and after the test. Subjects got acquainted to the work-task by

performing a mini-trial with instructions before the test started. The mini-trial was

performed without introducing stress-imposing feedback on reaction time and was

used to determine the subjects’ habitual, non-stressed reaction time. Short maximal

voluntary contractions were performed on each pair of muscles twice (frontalis

muscle – raising eyebrows, temporalis – clenching teeth, neck – pushing head back

against resistance, trapezius – pushing extended arms upwards against resistance at

45o angle out from the body). The maximal contractions were carried out in order to

normalize the muscle activity during test to a percent of maximal force. However, the

variability between the two maximal muscle contractions in the frontalis muscle was

too large to make a reliable estimate of the maximal muscle force and thus none of the

muscle activity measurements were normalized. In order to measure the subjects

habitual level of physiological activation, the laboratory experiment started with a five

minute period which served as a baseline period for the physiological variables. The

subjects were alone in the room and were not given any instructions other than to find

a comfortable position with their arms resting on the table in front of them. To ensure

that all subjects had the same low level of muscle activity before the test started a five

minute feedback period with muscle activity visualized on a screen followed. The

subject experienced how it was possible to influence the level of muscle activity by

adopting different postures and thereafter concentrated on minimising any muscle

activity. The stressful task [18] was then performed: a two-choice reaction-time test

on a monitor, lasting one hour. An open ("frame") and a solid ("brick") quadrangle
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were placed in a square pattern, and a written suggestion on how to move the brick to

superimpose on the frame was given. The subject responded by pressing one of two

keys ("correct" or "wrong") with the right middle or index finger. The task was to be

carried out as quickly and correctly as possible. The PC program provided feedback

on whether an answer was correct or wrong, and on the response time (very slow,

slow, normal, fast, very fast) related to the subjects performance in the mini-trial

carried out before the experiment started. Together with the feedback a new task was

presented. After the end of the stressful task, all measurements continued for thirty

minutes. The test person was instructed to sit still and relax during the rest period.

Pain, perceived tension and fatigue was reported immediately before (baseline) and

every ten minutes during and after the test by scoring on a 100 mm visual analogue

scale (VAS) with the endpoints marked no pain/tension/fatigue and worst imaginable

pain/tension/fatigue. The subjects were asked to assess pain in locations

corresponding to the electromyography electrode positions; in the shoulders, neck,

temples and forehead on both sides. The subjects were not allowed to see previous

records when scoring.

A second blood sample was drawn during 5 min immediately after the test,

before the 30 minute recovery period. Blood analysis was not a major aim of the study

and these results are reported elsewhere (Nilsen et al., submitted).

Physiological recordings
Muscle activity was quantified by bilateral bipolar recording of surface

electromyography (SEMG) (electrode diameter 6 mm, inter-electrode distance 20

mm). The system noise level was less than 1.5 μV root mean square (RMS). The

signals were bandpass-filtered (10-1250 Hz) and stored on a digitizing recorder (Earth

Data 128). Data were subsequently fed into an A/D converter (Powerlab 16S;
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ADInstruments Pty Ltd, Sydney, Australia; sampling rate 2kHz) for calculation of the

RMS values (100 ms running time window). Sharp transients and electrical activity

from the heart in the SEMG signals were removed with a median filter (Matlab ver 6,

The MathWorks inc.).

The following electrode sites were used: (1) Frontalis muscle; both electrodes

placed on a vertical line crossing the pupil, 10 mm and 30 mm above the upper border

of the eyebrow. (2) Temporal muscle; the lower electrode 10 mm posterior to the

lateral canthus of the orbit, and the second electrode 20 mm above. (3) Splenius

muscle; upper electrode 35 mm lateral to the spinous process of C2, and the second

electrode 20 mm below. (4) Trapezius muscle; medial electrode 10 mm lateral to the

midpoint of a line connecting the acromion and the spinous process of C7, and the

second electrode 20 mm lateral to the first electrode. The ground electrode was placed

on the spinous process of C7.

Activity in the autonomic nervous system was assessed by measurements of

continuous non-invasive finger blood pressure (Portapres)[19], measurements of skin

blood flow with Laser-Doppler flowmetry (Moorlab, 4 channels, time constant 0.02s,

low-pass filter 22 kHz), and measurements of the respiration pattern with a thermistor

(Flaga, Embla S-AF-010) below the nose with active elements in each nostril and in

front of the mouth. The blood pressure cuffs were mounted on the intermediate

phalanx at the left middle and ring fingers. Finger skin blood flow was measured

bilaterally with the electrodes (fibre separation 0.5mm) placed on the volar side of the

distal phalanx (pulp) of the thumb. Signals were sampled at 200 Hz.

Respiration frequency was calculated by the Chart 4.2 software

(ADInstruments Pty Ltd, Sydney, Australia). Heart rate and blood pressure were
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calculated with the Beatscope 1.0 software (TNO, Amsterdam, the Netherlands). One

blood pressure recording could not be analyzed due to technical difficulties.

Technical difficulties resulted in exclusion of seven subjects from analysis of

respiration frequency and exclusion of two subjects from analysis of heart rate and

blood pressure responses.

Analysis and statistics
Mean values for each 10-minute period were calculated for all physiological

recordings. Muscular activity and finger blood flow values are reported as the average

of the left and right side for each region because ANOVA repeated measures analysis

(rANOVA) revealed no side differences for the finger skin blood flow and muscle

activity except for the frontalis muscle SEMG (left side (10.9 μV) > right side (9.2

μV); F(43) = 8.0, p = 0.007). However, performing all subsequent tests separately for

right and left frontalis muscles did not give deviant results from those reported. Pain

scores are reported from the side with the highest response (there were no side

differences in neither pain level (side effect) nor pain development (side x time effect)

for any of the four regions (rANOVA, Fs ≤ 3.2, p ≥ 0.08).

ANOVA with repeated measurements was used for evaluation of subgroup

effects (sex, marital status, employment status, regular exercise, smokers, and alcohol

drinking introduced sequentially one at a time as between-subject factors) with ten

time intervals. For subgroup analysis of the recovery period we calculated a recovery

variable (the difference between the mean of the last 10 minutes of rest (85-95 min)

and the baseline period mean), a measure considered to be more meaningful than the

absolute level when comparing groups [9]. Feedback data is displayed in figures, but

feedback was not included in ANOVAs because we intended to study responses
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related to stress in this study. Recovery variables were analysed with one-way

ANOVA tests.

For evaluation of the total response to the test we first performed repeated

measures ANOVA tests (no between-subjects factors, evaluating the within-subject

effect of time) with the same time intervals as in the subgroup analysis. For further

post-hoc exploration of the response and recovery time-course we performed a series

of paired-sample tests (Student´s t-tests for physiological variables (Gauss-

distributed) and Wilcoxon signed rank test for subjective variables (not Gauss-

distributed)): We first evaluated the early response to the stressful task by comparing

the first part (0-10 min) of the stressful task to baseline (immediately before the

stressful task for the subjective variables). Secondly, changes during the stressful task

(adaptation/summation effects) were investigated by a comparison of the first (0-10

min) and the last (50-60 min) part of the stressful task. Thirdly, we evaluated the

recovery by comparing the change from the end of the stressful task (50-60 min) with

the first part of the recovery period (65-75 min) and the first (65-75 min) and last (85-

95 min) part of the recovery period with baseline.

Physiological responses (the difference between the average of the whole

stressful task (0-60 min) and the average of the baseline period) and subjective

responses to the stressful task (the difference between the maximal value during the

60 minute stress period and the value reported immediately before starting the test)

were calculated as summary-variables for correlation analysis. Subjects with a pain

response larger than zero were defined as pain responders. For each subject the

location with the highest pain response during the task was identified (i.e. only one

location for each subject). The pain response in this location (maximal pain location)
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was treated as a separate summary variable in the analysis (and it is the pain scores in

this specific location we have displayed graphically).

Possible associations between variables were investigated by correlating the

muscular responses (trapezius, splenius, temporalis, frontalis) with the autonomic

responses (systolic and diastolic blood pressure, heart rate, respiration frequency and

finger skin blood flow), and by correlating physiological responses (as above) with

subjective responses (maximal pain, tension and fatigue), and finally by correlating

the subjective responses with each other (i.e. maximal pain, tension and fatigue). The

correlation coefficients between pain and muscular responses were calculated

separately for each localisation (i.e. left temple pain with left temporalis muscle

activity). Furthermore, as post-hoc analysis we searched for possible correlations

between blood pressure/finger skin blood flow recovery variables and physiological

responses, subjective responses and other recovery variables. We used Pearson

correlation (rp) for physiological variables (Gauss-distributed) and Spearman’s rank

order correlation (rs) when subjective data were involved (not Gauss-distributed).

Because Mauchly's test of sphericity was significant in all ANOVA repeated

measures tests with time as a within-subject effect we used Huynh-Feldt correction of

degrees of freedom for these results. Two-tailed p-values less than 0.05 were

considered to be significant. Because the hypotheses testing in this study involved

several autonomic subsystems with insufficient a priori knowledge on possible

relation to pain, we did not correct for multiple comparisons.

Ethics
For transport expenses and the inconvenience (total time expenditure for each

participant was 4 hours) participants received NOK 500 (USD 75). The Regional

Committee for Medical Ethics approved the protocol, and all participants gave written
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informed consent before volunteering. Experiments were performed according to the

Helsinki Declaration.

Results

All variables are listed in Table 2 with the results of the paired comparisons

summarised in Table 3.

Physiological responses
The development of all physiological variables is illustrated in Figure 1, 2 and 3.

The stressful task induced a clear response evident in all physiological variables

(Table 2 and 3; baseline vs. 0-10 min, p ≤ 0.006) except for the splenius (p = 0.28)

and temporalis muscle SEMG (p = 0.96).

Furthermore, age correlated negatively with the average respiration frequency

response (rp = -0.44, p = 0.006) and height correlated negatively with the average

systolic blood pressure response (rp = -0.41, p = 0.008). None of the other

physiological responses (Table 2) correlated with age, height or weight.

Comparing the last ten minutes of the stressful task to the first ten minutes of the

stressful task (Table 2 and 3) revealed a fall in heart rate with 2.5 beats/min (p =

0.001) and a reduced respiration frequency with 0.89 breaths/min (p = 0.04),

indicating adaptation to the task for these two variables only. However, in the same

time interval temporalis muscle activity increased with 0.82 μV (p = 0.03) and finger

skin blood flow showed a trend towards lower values (p = 0.09). The other

physiological variables were stable throughout the stressful task (p ≥ 0.33).

The heart rate response correlated with the trapezius muscle response (rp =

0.44, p = 0.004) and the temporalis muscle response (temporalis vs. heart rate, rp =
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0.41, p = 0.008). The other correlations in the SEMG vs autonomic respons matrix

were non-significant (p > 0.06).

Physiological recovery
Upon cessation of the stressful task, heart rate (p < 0.001), respiration frequency (p <

0.001) and muscle activity in the trapezius (p < 0.003) and the frontalis (p < 0.002)

decreased significantly (50-60 min vs. 65-75 min). Trapezius and frontalis SEMG

recovered to the baseline level (baseline vs. 65-75 min, p ≥ 0.10) while heart rate and

respiration frequency recovered to a level lower than baseline (baseline vs. 65-75 min,

p ≤ 0.03). However, systolic and diastolic blood pressure, finger skin blood flow and

muscle activity in the splenius and temporalis muscles did not change significantly

upon cessation of the stressful task (50-60 min vs. 65-75 min and 50-60 min vs. 85-95

min, p > 0.10). The systolic and diastolic blood pressure level remained elevated and

finger skin blood flow was reduced during the whole recovery period (baseline vs. 85-

95 min p ≤ 0.001).

The finger skin blood flow recovery variable (Table 2) correlated negatively

the systolic and diastolic blood pressure recovery variables (rp = -0.52, p = 0.001 and

rp = -0.40, p = 0.01 respectively). This means that a high blood pressure at the end of

the recovery period was associated with a small finger skin blood flow at the same

time. The finger skin blood flow and blood pressure recovery variables did not

correlate with other physiological (HR, muscle, respiration) response or recovery

variables (r ≤ 0.25, p ≥ 0.11).

Subjective responses and recovery
Development of tension, fatigue and pain scores in the maximal pain location is

illustrated in Figure 4. Subjects reported increased tension (p = 0.02) and increased

pain in the temples (p = 0.03) and forehead (p = 0.01) already ten minutes into the
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stressful task (0 min vs. 10 min), while fatigue (p = 0.52) and pain in the shoulder and

neck (p > 0.52) did not increase during the first ten minutes (Table 2 and 3). All

subjective variables increased further during the stressful task (10 min vs. 60 min; p <

0.008 except for a trend in temple pain (p = 0.06)), and were significantly reduced ten

minutes into the recovery period (60 min vs. 75 min, p < 0.008). However, fatigue and

pain in neck (and maximal pain) did not recover to baseline (0 min vs. 95 min; p <

0.04). Pain in the shoulders showed a trend towards non-recovery ten minutes into the

recovery period (p = 0.08) but recovered to baseline after 30 minutes (p = 0.20), while

tension and pain in temples and forehead returned to baseline ten minutes into the

recovery period (p > 0.48).

Thirty subjects (68.2 %) reported an increase in pain in at least one location

during the test and twenty-eight subjects (63.6 %) had an increase in pain VAS score

of more than 30 mm during the test (Table 4). The pain response was most evident in

the neck and/or shoulder (Table 4).

Pain responses did not correlate with tension and fatigue responses (rs ≤ 0.19, p

≥ 0.20), however, fatigue and tension responses were correlated (rs = 0.48, p =0.001).

Pain, tension and fatigue responses did not correlate significantly with

physiological responses (rs ≤ 0.28, p ≥ 0.071, correlation coefficients between pain

and muscular responses were calculated separately for each localisation). However,

the fatigue response correlated with systolic (rs = 0.34, p = 0.03, Figure 5) and

diastolic blood pressure recovery (rs = 0.31, p = 0.047) indicating a larger fatigue

response during the stressful task for those subjects who recovered less during the rest

period. However, no significant correlations were found between the blood pressure

recovery and the pain and tension response variables (rs ≤ 0.16, p ≥ 0.31) and finger
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skin blood flow recovery was not correlated to subjective responses (rs ≤ 0.16, p ≥

0.29).

Except for a correlation between the autonomic symptom index (Table 1) and

the blood pressure response (Table 2, rs= 0.38, p = 0.014), the physiological responses

were not correlated to the Nevroticism index or the “autonomic symptom index”. The

Nevroticism index (EPQ-N, Table 1) correlated with pain and fatigue responses (rs ≥

0.36, p ≤ 0.016).

Subgroup analyses
Subgroup analyses with the dichotomized variables in Table 1 (sex, marital

status, employment status, regular exercisers, smokers, and alcohol drinking) revealed

that women had lower respiratory frequency (15.2 vs. 17.1 breaths/min, rANOVA;

sex effect F(1,35) = 4.5, p= 0.04) and higher frontalis SEMG (11.1 vs. 6.1 μV,

rANOVA; sex effect F(1,42) = 6.7, p = 0.01). Moreover, smokers had higher blood

systolic blood pressure level (130 mmHg vs. 120 mmHg, rANOVA; smoking effect F

(1,36) = 4.7, p = 0.04) and we found a time x marital status interaction for maximal

pain (rANOVA; F(3.0,141.2) = 2.6, p = 0.048) with higher maximal pain response for

those living alone compared to cohabitants (17.7 vs 14.5 mm VAS). Subgroup

analysis of the recovery variables did however not reveal any differences (One-way

ANOVA Fs ≤ 2.9, p ≥ 0.097). It must be noted that some subgroups had few cases

(Table 1), and were not ideal for subgroup effect analysis.
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Discussion

Major findings in the present study on stress responses in healthy subjects can be

summarized as: 1) A significant proportion of healthy subjects (64 %) respond with a

pain increase of more than 30 mm (VAS 0-100) in at least one of the four muscle

groups investigated. 2) Pain develops gradually as a response to a stressful task. 3)

The trapezius and frontalis muscles are activated in response to the task with fast

recovery after a stressful task. 4) The HR-response habituates gradually during a long-

lasting stressful task and recovers fully afterwards. 5) There is a lack of skin blood

flow and blood pressure recovery after a stressful task of long duration. 6)

Physiological responses (and recovery) are not correlated with pain responses, but 7)

lack of blood pressure recovery is correlated to the fatigue response to the preceding

stressful task.

The most important finding is that blood pressure and finger skin blood flow

did not recover to baseline during the 30-min rest period, contrasting the recovery

pattern of the other autonomic and muscular responses. The finger skin blood flow

apparently had biphasic response pattern with a fast reduction during the first ten

minutes of the stressful task and a further monotonic reduction (trend) during the

stressful task, while the blood pressure increased during the first ten minutes of the

stressful task and stayed elevated both during and after the stressful task.

Slow recovery of blood pressure following experimental stress has previously

been reported by Steptoe and co-workers [20, 21]. They applied the colour-word test

and mirror tracing for a total stress period of 10 min, causing a stress response

marginally higher than in the present series, judged by the increase in heart rate

(Δheart rate ~7 vs. 5 bpm) and blood pressure (Δblood pressure ~14 vs. 11 mmHg). In

their study blood pressure had partially recovered 20-25 min after the test (female



18

subjects) while in the present study no recovery was observed after 30 min.

Assuming a similar level of stress in the two series, the slower time course of blood

pressure recovery in the present study can be due to the longer duration of the stress

period.

The present study of healthy controls shows that slow vascular recovery after

mental stress is a normal phenomenon and is not related to simultaneous pain

development. The theoretical models linking stress and subjective health complaints

emphasize lack of recovery after stress as an important factor for development of

subjective complaints [5-7]. According to these models, a person with a reduced

ability to recover after stress is more prone to develop subjective complaints.

However, as the present study illustrates, when re-examining these theoretical models

in the laboratory one may have to register physiological variables over longer

recovery periods than we have done in our study to be able do detect possible

differences in physiological recovery between patients and healthy controls.

A long-lasting, presumably sympathetically mediated vasoconstriction is

evident in the present study. Environmental temperature was monitored throughout

the experiment and was stable and not related to skin blood flow (data not shown).

The slightly different time course of blood pressure and the finger skin blood flow

response indicate differential control of vascular beds. This is interpreted as an

example of the specificity of different neuroanatomical circuits within the autonomic

nervous system [22] and corresponding differentiation of sympathetic responses with

respect to target organ and response localisation within the vascular system [23-25].

Although the reduction of finger skin blood flow was not related to subjective

complaints in the present study, it is potentially relevant that some patients with

musculoskeletal complaints report a cold feeling in wrist/hand [26, 27]. A recent
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study, using infrared thermography to measure dorsal hand skin temperature, showed

that post-exercise hyperaemia was blunted in patients with chronic upper extremity

pain who reported cold hands induced by keyboard use [28].

A previous study on pain-free subjects using a similar protocol , but without

measurements of blood pressure, heart rate and respiration frequency, found a

correlation between pain development and muscle activity in the right trapezius

muscle (r = 0.37, p < 0.03) during the stressful task [11]. In the present study we

found no correlation between pain response and muscle activity. Because the

protocols were so similar and the study group were larger in the present study (44

subjects in the present study, 36 subjects in the previous study), we believe the

different finding in the present study indicate that the earlier reported correlation may

have been a chance finding. In the previous study increased muscular activity during

the stressful task was found for the frontalis muscle and for the trapezius muscles

(significant for the frontalis and a trend for the trapezius muscles), whereas no

response to the stressful task was found for the splenius and temporalis muscles. The

present study confirms the earlier findings of the frontalis and trapezius muscles as

more responsive to a stressful task than the splenius and temporalis muscles.

In the present study most cardivascular vs. EMG correlations were not

significant. However, we found correlations between the heart rate response and

trapezius and temporalis muscle responses. The correlations were strong (p<0.005),

and we cannot exclude that it is relevant. The electrical activity from the heart was

filtered out of the electromyographic signals, and a correlation with heart rate was not

observed for the splenius muscles, hence it is probably not related to an ECG-artefact.

Increased muscular activity in a rather large muscle like trapezius is reasonably
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paralleled by increased HR if the increased muscular activity demands a higher

cardiac output to satisfy the metabolic needs.

The low-grade stress response in the present experiments is shown by the heart

rate only being elevated by 4 beats per minute (bpm) on average, and 5 bpm the first

10 min. Other studies of stress responses have exposed subjects to stress for a shorter

period of time and report elevated heart rate responses of 10-20 bpm indicating a

higher level of stress [29-31]. The pain reported in the present study is indeed low-

level and not directly comparable to laboratory studies of acute pain. The level of

tension and fatigue was considerably higher than the pain level in the present study.

However, the levels of pain, tension and fatigue obtained in this laboratory study

corresponds well with the values obtained from healthy subjects in field studies of

workers in stressful work situations with low biomechanical load [32, 33]. Therefore,

we believe that the level of subjective complaints reported in this laboratory study is

comparable to the subjective complaints healthy subjects experience during stressful

and repetitive office work, although laboratory experiments never can substitute real-

life experiments. Extending the duration of the stress exposure (as we have done in

the present study) has been suggested as one way to increase the external validity of

studies on cardiovascular responses to stress [10].

The subject's perception of the stressor was not considered in terms of stress

level in the present study, but evaluated using the term “tension”. Holte et al. [34]

investigated the concept of tension in Norwegian subjects with questionnaires and

qualitative interviews and found that subjects described tension in terms of both

stress-related autonomic symptoms and musculoskeletal activation (the Norwegian

word for tension (“anspenthet”) conveys almost the same meaning as the word stress).

Furthermore, different perception of the stressor may partly explain the large inter-
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subject variation in physiological responses [35, 36]. Moreover, the lack of

association between pain and tension responses may indicate that the pain is linked to

physiological factors and not to cognitive factors alone.

The feedback period was necessary in order to ensure that all subjects had the

same low level of muscle activity before the stressful task. The feedback was given

solely on muscular activity. The feedback was introduced after the baseline period in

order to get a true baseline period without influence from the feedback procedure. It is

possible that the feedback procedure influenced the measured muscle activity during

the stressful task by teaching the subjects how to relax their muscles. However, this

effect was supposedly similar for all subjects. Furthermore, subjects did not receive

any feedback on the measured variables during the stressful task.

In the correlation analysis we have used summary variables in order to

minimize the number of calculated correlations. While the subjective variables were

steadily increasing through the task, most physiological responses were more stable

(although not without exceptions). The physiological variables were measured

continuously and we did not want to place emphasis on any (possible random) peak

value. Instead, the average value was considered a summary variable reflecting the

total physiological “burden” of the stressful task. However, the average pain score

will in our opinion not reflect the subjective “burden” of the stressful task. An average

pain score would underestimate the pain-inducing effect of the stressful task in case

the subject’s pain pathways would have been sensitised in any way, thus potentially

neglecting the effect of any temporal summation of pain. We have chosen to use the

maximal value during the task as an approximation of this “burden”, and this is in line

with others [37-39].
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Our subgroup analysis did not reveal any differences between groups

regarding the recovery variables, and the present study thus confirms the findings of

Steptoe [20] who reported no relationship between prolonged cardiovascular stress

responses and sedentary lifestyle. We have not found any other studies related to our

findings of lower respiration frequency and higher frontalis muscle activity in women.

Considering that smoking is well-known risk factor for cardiovascular disease [40]

our finding of increased blood pressure among smokers is not surprising. The higher

pain response found for those living alone is very difficult to explain and we are not

aware of any other study who has investigated this. However, as already noted,

subgroup sizes were partly asymmetric and not optimally sensitive for subgroup factor

effect analysis.

We are not aware of other studies investigating the relation between

development of fatigue during stress and degree of physiological recovery and thus

our finding of a correlation between lack of blood pressure recovery and fatigue

development during stress should be further investigated. It must be emphasized that

the correlation was weak and may be a chance finding because of the large number of

correlations performed. Nevertheless, the correlation may indicate that psychological

mechanisms are important when considering the mechanisms for the protracted

vascular response. Moreover, the correlation between the blood pressure and finger

skin blood flow recovery variables may point to a common mechanism responsible

for the lack of recovery in these two variables.

Steptoe (2003) proposed sustained changes in centrally mediated neurogenic

vasoconstriction, or disturbance of nitric-oxide-dependent endothelial function, as

explanations for lack of recovery of blood pressure after mental stress [21]. However,
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theories for mechanisms underlying the lack of blood pressure recovery are

speculative at this stage.

Conclusion

In the present study of healthy subjects exposed to mental stress in 60 minutes the

blood pressure and acral finger skin blood flow response did not recover to baseline

even after 30 minutes rest. This was in clear contrast to other physiological stress

response variables (heart rate, respiration frequency and muscle activity) which

recovered to baseline values early in the rest period. The protracted blood pressure

response was correlated to fatigue development, but not to pain development, possibly

implicating psychological mechanisms. However, because of the large number of

correlations performed in the present study, one must keep in mind that this

correlation may be a chance finding. The results imply that a long recovery period is

necessary when the physiological recovery to mental stress is studied. Moreover, a

thorough exploration of different aspects of the subjective complaints that develops

during and after low-grade stress of long duration is needed. Examplewise, a valid and

reliable way to distinguish between mild fatigue and unpleasantness in contrast to

pain should be established in later studies of the relation between stress and

development of subjective complaints. Furthermore, the duration of stress period may

be of importance and should be addressed in future studies of physiological recovery

after mental stress. Finally, further studies should in a prospective design investigate

whether healthy subjects with a slow vascular recovery after mental stress is at risk

for developing chronic stress-related disorders later in life.
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Figure legends:

Figure 1: Surface electromyographic (SEMG) activitity before (Baseline, Feedback),

during (0-10, 10-20,.., 50-60 min) and after (65-75, 75-85, 85-95 min) the stressful

task. Mean RMS values for periods of 10 minutes (Baseline, Feedback: 5 min) are

shown.

Figure 2: Mean blood pressure and finger skin blood flow (SBF) before (Baseline,

Feedback), during (0-10, 10-20,.., 50-60 min) and after (65-75, 75-85, 85-95 min) the

stressful task. Mean values for periods of 10 minutes (Baseline, Feedback: 5min) are

shown. Au = arbitrary units.

Figure 3: Respiration frequency and heart rate before (Baseline, Feedback), during

(0-10, 10-20,.., 50-60 min) and after (65-75, 75-85, 85-95 min) the stressful task.

Mean values for periods of 10 minutes (Baseline, Feedback: 5min) are shown.

Figure 4: Tension, fatigue and pain scores in the maximal pain location before (0

min), during (10, 20, .., 60 min) and after (75, 85, 95 min) the stressful task.

Figure 5: Blood pressure recovery (value at 95 min – baseline) plotted against the

fatigue response with linear regression line shown. The association is significant (rs =

0.34, p = 0.03).
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Table 1. Subject characteristics for the 44 participants

Mean (SD) Range

Age all (n=44, years) 41 (12) 21-61

Age women (n=35, years) 40 (12) 21-61

Age men (n=9, years) 37 (12) 19-56

Weight (kg) 72 (14) 47-103

Height (cm) 168 (8) 145-190

Autonomic symptom index 5 (3) 1-13

EPQ-N 7 (4) 0-15

No. of subjects (%)

Married / cohabitant (n) 31 (71 %)

Working (≥ 50 %) (n) 38 (86 %)

Regular exercisers (≥1 session pr. week) (n) 14 (32 %)

Smokers (n) 12 (27 %)

Drinking alcohol ≥ 2 days pr. week * (n) 9 (20 %)

* One person drinking more than 3 days pr. week
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Table 2. Mean values and the average responses for all variables

Baseline During the stressful task Response*

Variable Mean

(SD)

0-10 min

Mean (SD)

10-20 min

Mean (SD)

20-30 min

Mean (SD)

30-40 min

Mean (SD)

40-50 min

Mean (SD)

50-60 min

Mean (SD) Mean (SD)

Surface electromyography

Trapezius (μV) 6.2 (6.2) 11.8 (13.7) 12.0 (12.8) 11.6 (13.8) 10.5 (11.3) 11.2 (12.4) 10.7 (11.8) 5.1 (11.4)

Splenius (μV) 5.3 (3.2) 4.7 (2.7) 4.6 (2.3) 4.6 (2.6) 4.5 (3.0) 4.6 (3.5) 4.6 (3.1) -0.7 (3.1)

Temporalis (μV) 6.5 (3.2) 6.4 (4.7) 7.0 (6.1) 6.6 (5.6) 7.1 (5.2) 7.3 (5.5) 7.2 (5.1) 0.5 (5.4)

Frontalis (μV) 8.0 (5.9) 11.1 (5.8) 11.1 (6.1) 11.0 (6.6) 11.3 (6.4) 11.1 (6.5) 11.4 (6.5) 3.2 (4.8)

Systolic BP (mmHg) 112 (16) 126 (17) 122 (16) 122 (15) 123 (15) 123 (15) 125 (15) 11.4 (7.8)

Diastolic BP (mmHg) 62 (11) 72 (13) 69 (13) 69 (11) 71 (12) 70 (11) 71 (10) 8.6 (5.0)

Heart rate (beats/min) 71 (8) 75 (10) 74 (9) 73 (9) 72 (9) 72 (9) 72 (8) 2.3 (4.3)

Respiration (breaths/min) 15 (3) 17 (3) 17 (3) 16 (3) 16 (3) 16 (3) 16 (3) 1.5 (2.5)

Skin blood flow (au) 279 (112) 248 (122) 251 (130) 246 (127) 249 (126) 237 (127) 229 (120) -35.3 (56.7)

Pain (VAS 0-100 mm) 10 min 20 min 30 min 40 min 50 min 60 min

Maximal location (mm) 2.4 (6.1) 3.0 (5.3) 3.6 (5.8) 6.7 (11.1) 9.0 (14.4) 11.9 (15.5) 14.0 (17.1) 15.4 (18.0)

Shoulder (mm) 2.8 (6.3) 2.4 (5.6) 4.5 (7.0) 5.4 (8.8) 6.5 (12.4) 8.7 (13.3) 10.3 (14.4) 12.9 (16.1)

Neck (mm) 2.4 (5.1) 3.1 (5.6) 3.5 (6.4) 5.0 (9.1) 6.4 (8.2) 8.6 (12.2) 9.8 (11.9) 11.5 (13.7)

Temples (mm) 1.0 (2.2) 2.3 (5.2) 1.9 (4.1) 3.7 (8.2) 4.2 (9.1) 5.6 (10.8) 5.5 (11.7) 7.5 (13.7)

Forehead (mm) 1.1 (2.5) 1.6 (3.3) 2.5 (6.0) 3.8 (8.8) 4.2 (9.1) 4.7 (9.5) 5.3 (11.1) 6.3 (12.0)

Fatigue (VAS 0-100 mm) 8.9 (15.3) 7.7 (13.5) 10.8 (14.6) 19.0 (20.5) 22.2 (21.2) 29.8 (22.5) 33.1 (25.4) 27.2 (23.1)

Tension (VAS 0-100 mm) 7.0 (12.4) 11.2 (13.2) 12.9 (14.0) 18.0 (19.1) 19.4 (20.2) 21.7 (20.6) 25.3 (23.1) 21.2 (21.2)

Recovery period Recovery §

Variable 65-75 min 75-85 min 85-95 min

Surface electromyography

Trapezius (μV) 5.4 (4.7) 5.6 (4.5) 6.2 (6.4) 0.14 (7.7)

Splenius (μV) 4.7 (2.7) 4.9 (3.0) 4.9 (3.4) -0.33 (3.6)

Temporalis (μV) 7.7 (4.9) 7.4 (5.3) 7.1 (4.2) 0.68 (3.8)

Frontalis (μV) 9.0 (6.9) 8.2 (5.5) 8.3 (5.1) 0.26 (3.9)

Systolic BP (mmHg) 123 (15) 122 (14) 124 (14) 12.1 (11.7)

Diastolic BP (mmHg) 71 (10) 69 (9) 71 (10) 9.5 (6.6)

Heart rate (beats/min) 69 (7) 69 (8) 69 (8) -1.9 (3.8)

Respiration (breaths/min) 14 (2) 14 (2) 14 (3) -0.68 (2.7)

Skin blood flow (au) 215 (105) 229 (111) 211 (106) -67.5 (89.1)

Pain (VAS 0-100 mm) 75 min 85 min 95 min

Maximal location (mm) 6.9 (15.2) 7.6 (14.9) 5.8 (13.5) 3.3 (11.4)

Shoulder (mm) 6.2 (15.0) 6.2 (14.9) 5.3 (13.7) 2.5 (11.4)

Neck (mm) 5.5 (11.0) 6.1 (12.5) 5.5 (11.5) 3.0 (10.1)

Temples (mm) 1.9 (5.9) 1.7 (4.5) 1.7 (5.2) 0.67 (4.7)

Forehead (mm) 2.2 (6.1) 1.8 (4.5) 1.8 (5.1) 0.63 (4.6)

Fatigue (VAS 0-100 mm) 17.2 (20.2) 17.5 (21.8) 15.0 (20.2) 6.7 (19.3)

Tension (VAS 0-100 mm) 8.2 (16.0) 8.1 (16.5) 4.8 (12.0) -1.4 (12.0)

au: arbitrary units. BP: blood pressure
* Response = Average during stressful task (0-60 min) – baseline for the physiological variables, and maximal
during stressful task (0-60 min) – baseline for the subjective variables.
§ Recovery = The last ten minutes of the recovery period (85-95 min) – baseline (summary statistics used in
correlation analysis).
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Table 3. Test statistics for evaluation of the response and recovery to the stressful task

Variable rANOVA* Baseline vs. 0-10 min 0-10 vs. 50–60 min 50-60 vs. 65–75 min

Surface electromyography

Trapezius (μV) F(2.5,105.6) = 7.3, p < 0.001 t(43) = -2.9, p = 0.006 t(43) = 1.0, p = 0.33 t(43) = 3.1, p = 0.003

Splenius (μV) F(3.3,144.0) = 0.96, p = 0.42 t(43) = 1.1, p = 0.28 t(43) = 0.5, p = 0.62 t(43) = -0.2, p = 0.80

Temporalis (μV) F(2.7,117.8) = 1.2, p = 0.31 t(43) = 0.0, p = 0.96 t(43) = -2.3, p = 0.03 t(43) = -0.9, p = 0.39

Frontalis (μV) F(3.2,138.2) = 11.3, p < 0.001 t43) = -3.8, p < 0.001 t(43) = -0.4, p = 0.69 t(43) = 3.3, p = 0.002

Systolic blood pressure (mmHg) F(2.8,14.3) = 11.4, p < 0.001 t(40) = -7.0, p < 0.001 t(40) = 0.3, p = 0.78 t(41) = 1.5, p = 0.15

Diastolic blood pressure (mmHg) F(3.0,118.2) = 17.4, p < 0.001 t(40) = -7.6, p < 0.001 t(40) = 0.4, p = 0.66 t(41) = 0.1, p = 0.96

Heart rate (beats/min) F(2.6,103.2) = 24.1, p < 0.001 t(40) = -4.5, p< 0.001 t(42) = 3.7, p = 0.001 t(42) = 8.1, p < 0.001

Respiration (breaths/min) F(4.3,155.2) = 21.7, p < 0.001 t(36) = -4.6, p < 0.001 t(36) = 2.1, p = 0.04 t(36) = 6.1, p < 0.001

Finger skin blood flow (au) F(2.6,113.2) = 6.2, p < 0.001 t(43) = 3.6, p = 0.001 t(43) = 1.8, p = 0.09 t(43) = 1.6, p = 0.12

Pain (VAS 0-100 mm)

Maximal location (mm) F(3.2,139.4) = 7.8, p < 0.001 Z =-1.4, p = 0.17 Z =-4.6, p < 0.001 Z =-4.0, p < 0.001

Shoulder (mm) F(2.7,112.5) = 3.8, p = 0.02 Z =-0.3, p = 0.75 Z =-4.3, p < 0.001 Z =-3.5, p < 0.001

Neck (mm) F(2.4,98.9) = 4.5, p = 0.01 Z =-0.6, p = 0.52 Z =-4.3, p < 0.001 Z =-3.2, p = 0.001

Temples (mm) F(2.0,86.5) = 4.1, p = 0.02 Z =-2.2, p = 0.03 Z =-1.9, p = 0.06 Z =-2.7, p = 0.006

Forehead (mm) F(2.1,89.5) = 4.0, p = 0.02 Z =-2.5, p = 0.01 Z =-2.7, p = 0.008 Z =-2.7, p = 0.008

Fatigue (VAS 0-100 mm) F(3.2,129.0) = 17.0, p < 0.001 Z =-0.6, p = 0.52 Z =-5.2, p < 0.001 Z =-4.4, p < 0.001

Tension (VAS 0-100 mm) F(2.6,104.7) = 16.1, p < 0.001 Z =-2.4, p = 0.02 Z =-4.5, p < 0.001 Z =-4.9, p < 0.001

50-60 vs. 85-95 min Baseline vs. 65-75 min Baseline vs. 85-95 min

Surface electromyography

Trapezius (μV) t(43) = 2.8, p = 0.008 t(43) = 0.9, p = 0.40 t(43) = -0.12, p = 0.99

Splenius (μV) t(43) = -7.1, p = 0.48 t(43) = 1.4, p = 0.16 t(43) = 0.65, p = 0.54

Temporalis (μV) t(43) = 0.2, p = 0.83 t(43) = -2.0, p = 0.05 t(43) = -1.2, p = 0.24

Frontalis (μV) t(43) = 4.5, p < 0.001 t(43) = -1.7, p = 0.10 t(43) = -0.44, p = 0.67

Systolic blood pressure (mmHg) t(41) = 0.54, p = 0.60 t(40) = -7.1, p < 0.001 t(40) = -6.5, p < 0.001

Diastolic blood pressure (mmHg) t(41) = -0.4, p = 0.69 t(40) = -9.5, p < 0.001 t(40) = -9.2, p < 0.001

Heart rate (beats/min) t(42) = 7.0, p < 0.001 t(40) = 3.1, p = 0.004 t(40) = 3.2, p = 0.003

Respiration (breaths/min) t(36) = 5.6, p < 0.001 t(36) = 2.2, p = 0.03 t(36) = 1.5, p = 0.14

Finger skin blood flow (au) t(43) = 1.7, p = 0.10 t(43) = 5.4, p < 0.001 t(43) = 5.0, p < 0.001

Pain (VAS 0-100 mm) 60 vs. 95 min 0 vs. 75 min 0 vs. 95 min

Maximal location (mm) Z =-4.0, p < 0.001 Z =-2.5, p = 0.01 Z =-2.4, p = 0.015

Shoulder (mm) Z =-3.5, p < 0.001 Z =-1.7, p = 0.08 Z =-1.3, p = 0.20

Neck (mm) Z =-2.7, p = 0.007 Z =-2.1, p = 0.04 Z =-2.2, p = 0.03

Temples (mm) Z =-2.7, p = 0.007 Z =-0.4, p = 0.72 Z =-0.51, p = 0.61

Forehead (mm) Z =-2.7, p = 0.007 Z =-0.7, p = 0.48 Z =-0.40, p = 0.69

Fatigue (VAS 0-100 mm) Z =-4.4, p < 0.001 Z =-3.2, p = 0.001 Z =-2.6, p = 0.009

Tension (VAS 0-100 mm) Z =-4.8, p < 0.001 Z =-0.3, p = 0.78 Z =-1.5, p = 0.13

au: arbitrary units. BP: blood pressure

* ANOVA repeated measures (no between-subjects factors, time effect) with ten time intervals (baseline, 0-

10, .., 85-95 min) and Huynh-Feldt corrected degrees of freedom. All other statistics are paired statistics

(Student’s paired t-tests for physiological variables and Wilcoxon paired statistics for subjective variables

used in explorative contrast analysis).
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Table 4: Subjective responses categorized in three groups

VAS = 0 VAS 1-30 VAS > 30

Pain:

Shoulders (n (%)) 17 (38.6%) 3 (6.8%) 24 (54.5%)

Neck (n (%)) 19 (43.2%) 1 (2.3%) 24 (54.5%)

Temples (n (%)) 27 (61.4%) 5 (11.4%) 12 (27.3%)

Forehead (n (%)) 24 (54.5%) 8 (18.2%) 12 (27.3%)

Maximal pain location b 14 (31.8%)* 2 (4.5%) 28 (63.6%)

Fatigue (n (%)) 5 (11.6%) 1 (2.3%) 37 (86.0%)

Tension (n (%)) 4 (9.5%) 3 (7.1%) 35 (83.3%)

a Pain response = (maximal pain during test – pain before test), b Maximal pain response

irrespective of location,*= No pain development in any location.
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Abstract

The mechanisms of pain causation in fibromyalgia (FMS) and chronic shoulder/neck pain (SNP) are still debated. We wanted to
compare muscle activity and pain development during and after low-grade mental stress in FMS and SNP patients. Twenty-three
women with FMS, 29 women with chronic SNP and 35 healthy women performed a stressful task lasting 60 min followed by a
30 min recovery period. We recorded surface electromyography over the trapezius, neck, temporalis and frontalis muscles. Subjects
reported their pain at the corresponding locations together with the development of fatigue and perceived tension. Significant dif-
ferences between FMS and SNP groups were not observed either for muscular or subjective responses. SNP patients and controls
responded with more pain in the trapezius and neck regions than in the forehead, in contrast to FMS patients who had a more
generalized pain response. Development of pain, tension and fatigue was not related to muscle activity for any group. We conclude
that FMS and SNP patients have similar pain and electromyographic responses. The results suggest that similar pathophysiological
mechanisms are involved although the responses are more generalised in FMS than in SNP patients. Muscular activity did not
explain the pain which developed during the stressful task for either group. Pain lasted longer during recovery in both FMS and
SNP patients compared to healthy controls, possibly a result of disease-related sensitisation in pain pathways.
� 2005 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All

rights reserved.

Keywords: Musculoskeletal pain; Myofascial pain; Aftersensation; Psychosocial

1. Introduction

There is a long-standing discussion among clinicians
as to whether generalised and localised non-arthritic
musculoskeletal pain, as in patients with fibromyalgia
(FMS) or shoulder-neck pain (SNP), represent different
entities or are on a pain continuum with the same etio-
logical factors (McCain and Scudds, 1988; Wolfe et al.,
1992; Goldenberg, 1999; Buskila, 2001). A noted simi-
larity between FMS and SNP patients is pain in

response to sustained psychosocial or mental stress,
which is also a risk factor for musculoskeletal pain in
a healthy population (Linton, 2000; van der Windt
et al., 2000; Ariëns et al., 2001; Bongers et al., 2002).
Low-grade cognitive stress in a laboratory environment
(intended to simulate office work) has been shown to
induce both upper-body pain and increased muscle
activity in FMS patients (Bansevicius et al., 2001) and
in healthy controls (Bansevicius et al., 1997). However,
there is still considerable doubt about the extent to
which muscle activity is a physiological trigger for
musculoskeletal pain (Simms, 1996; Westgaard, 1999;
Sjøgaard et al., 2000).

1090-3801/$32 � 2005 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights

reserved.
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In the present study, we intended to compare pain
and muscle activity during and after cognitive stress in
patients with generalised musculoskeletal pain (FMS)
and localised chronic shoulder/neck pain (SNP) using
a blinded study design. Furthermore, we intended to
investigate whether musculoskeletal pain, subjective
fatigue and perceived tension correlated with muscular
activity during and after stress. One may posit that sim-
ilar physiological and subjective responses to stress in
the two patient groups point to similar physiological
mechanisms for pain generation and pain modulation,
while response differences may indicate that these mech-
anisms differ between the syndromes in question.

In this study, we measured muscular activity (with
surface electromyography) and pain development in
the trapezius, neck, temporal, and frontal regions before
and during 60 min of low-grade stress, and in the follow-
ing 30 min rest period.

2. Subjects and methods

2.1. Subjects

Twenty three female FMS patients, 29 female
patients with chronic SNP and 35 healthy women (con-
trols) participated in the study (Table 1). Patients were
mainly referred from primary care centres and physio-
therapists. Controls were recruited from public institu-

tions and private companies in Trondheim, and they
answered specific pain-related questions in a structured
interview. Controls were allowed to report sporadic or
situation-related minor headache and/or muscle aches
because of the universal nature of such symptoms. Con-
trols who described these symptoms as unpleasant but
not as bothersome pain were only excluded if two of
the following three conditions were fulfilled: (1) symp-
toms for more than one day per month, (2) had visited
a physician for the complaint, and (3) usually took med-
ication for the complaint. Controls who considered their
headache or pain to be more than ‘‘unpleasant’’ (i.e.
bothersome pain) were excluded if at least one of the
three conditions above was fulfilled.

Inclusion criteria for all participants were: (1) adults
aged 18–65 years and (2) submitted written informed
consent. FMS patients were included if they fulfilled
the 1990 American College of Rheumatology Criteria
(ACR criteria) for fibromyalgia (Wolfe et al., 1990).
SNP patients were included if they reported chronic
shoulder/neck pain (more than 3 months during the pre-
vious year) with local tenderness or triggerpoints. SNP
patients were included although they reported pain also
from other body regions, however, pain in the shoulder
and neck region had to be their main problem. No SNP
patients fulfilled the ACR criteria.

Subjects were excluded if they had: (1) neoplastic dis-
ease, (2) high blood pressure or were taking anti-hyper-
tensive medication, (3) infectious disease, including

Table 1
Subject characteristics

Controls
(n = 35)

Fibromyalgia
(n = 23)

Shoulder/neck pain
(n = 29)

Mean (SD) Range Mean (SD) Range Mean (SD) Range

Age (years) 39.7 (12.3) 21–61 48.3 (7.2) 32–63 41.1 (11.3) 19–59
Weight (kg) 70.9 (12.7) 47–103 69.4 (12.4) 51–96 70.5 (12.2) 50–95
Height (cm) 167.3 (7.3) 145–179 166.1 (5.6) 157–178 169.0 (6.7) 155–182
Duration of pain (years) 11 (9) 1–40 8 (8) 1–30
EPQ-N score 7.7 (4.3) 0–15 11.8 (4.8) 2–21 10.4 (4.4) 3–18
Autonomic Symptom Index 5.3 (3.0) 1–13 12.5 (4.4) 5–21 8.7 (4.3) 1–16
General tension (last 3 months) (VAS) 28.6 (24.5) 0–84 47.8 (22.9) 0–100 43.4 (23.9) 8–89

Answers to selected questions from questionnaire

n % n % n %
Married/cohabitant 11 31.4 12 52.2 14 48.3
Working (P50%) 32 91.4 13 56.5 22 75.9
Habitual trainers (P1 session pr. week) 21 60.0 17 73.9 17 58.6
Smokers 24 68.6 15 65.2 19 65.5
Drinking alcohol P2 days per week 31 88.6 11 47.8 24 82.8
I have problems falling asleep more than once a month 5 14.3 22 95.7 16 55.2
I have problems with day-time sleepiness more than 7 days per month 7 20.0 17 73.9 9 31.0
I have continuous and undisturbed sleep 22 62.9 4 17.4 11 37.9
I have frequent mood changes 13 37.1 13 56.5 15 51.7
I do sometimes feel depressed without reason 18 51.4 16 69.6 19 65.5
Life is often a strain for me 13 37.1 16 69.6 16 55.2
I have forebodings about the future 7 20.0 10 43.5 11 37.9
I am anxious about something or somebody most of the time 3 8.6 6 26.1 5 17.2
My complaints cause reduced activity in my leisure time 23 100.0 14 48.3
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those who had caught a cold with fever, cough or muscle
pain, (4) metabolic, endocrine or neuromuscular disease,
(5) connective tissue disorder, (6) tendinitis or capsular
affection of the shoulder joint, (7) recent accident or
injury affecting function, (8) symptomatic heart disease
or were taking medication for any vascular disease, (9)
lung disease affecting function or were taking medica-
tion for such, (10) cerebrovascular disease, (11) chronic
neurological disease, (12) or if headaches were a major
part of the pain syndrome, (13) or were taking any
medication with a possible interaction on neural, vascu-
lar or muscular function (e.g. antiepileptics, b-blockers,
antidepressants).

Fourteen FMS patients used analgesics on a regular
basis, three of these used prescription drugs (Tramadol
or Paracetamol/Codein combination). Sixteen SNP
patients used analgetics, eight of these used prescription
drugs (Piroxicam, Meloxicam, Karisoprolol, Celecoxib
or Paracetamol/Codein combination). Analgesics were
withdrawn 2 days prior to the experiment. None of the
healthy controls used analgesics on a regular basis.

2.2. Questionnaire and interview

All subjects answered a questionnaire on biographi-
cal data (marital status, weight, medication, and stimu-
lants), exercise habits, and the neuroticism index of the
Eysenck Personality Questionnaire (EPQ-N) (Eysenck
and Eysenck, 1981). The questionnaire further included
an index of symptoms concerning the autonomic ner-
vous system (‘‘autonomic symptom index’’). For this
purpose a subset of 10 questions were chosen (No. 26–
35) from the Composite Autonomic Symptom Profile
(Suarez et al., 1999). The questions assessed different
domains of autonomic symptoms (orthostatic, sudomo-
tor, gastrointestinal, visual, vasomotor, reflex syncope).
Sub-indexing different autonomic domains was not done
due to the limited number of questions. The answers
were graded. A serious degree of a symptom was given
a higher value than a less serious; e.g. the answers to
the question: ‘‘In the last year, to what extent have
you been in a cold sweat?’’ were graded as : ‘‘have not
had’’ (value 0), mild (value 1), moderate (value 2), severe
(value 3). The highest possible total score was 30.

A structured interview guide concerning musculoskel-
etal complaints (distribution, severity, and duration)
was formulated. Subjects were asked to grade pain in
different body regions on a VAS scale (0–100 mm). They
were also asked to grade their level of general tension
(last 3 months) on a VAS scale. The comprehension of
tension was not specified by the investigators. The Nor-
wegian word for tension (‘‘anspenthet’’) conveys almost
the same meaning as the word stress. Holte et al. inves-
tigated the concept of tension in Norwegian subjects
with questionnaires and qualitative interviews and
found that subjects described tension in terms of both

stress-related autonomic symptoms and musculoskeletal
activation (Holte et al., 2003).

2.3. Procedure

All potential controls and patients first went through
a short telephone interview. All patients went through a
detailed consultation and examination by a specialist in
physical medicine and rehabilitation. Patients and con-
trols not excluded by this initial screening received writ-
ten information on the study background, and a
questionnaire on background data, within two weeks
of the test day. After a short interview on the morning
of the test day, venous blood was drawn from the right
cubital fossa. Subjects emptied the bladder before start-
ing the test. Brassieres were removed and subjects wore
only a light shirt on the upper part of the body. The lab-
oratory temperature was regulated to 24.5 ± 1 �C.

The subjects were seated in an office chair with the
forearms resting on the table top before, during and after
the test. Subjects became acquainted with the work-task
by performing a mini-trial with instructions before the
test started. The mini-trial was performed before intro-
ducing the stress-imposing feedback on reaction time
and was used to determine the subjects� habitual,
non-stressed reaction time. Short maximal voluntary
contractions were performed on each pair of muscles
twice (frontalis muscle-raising eyebrows, temporalis-
clenching teeth, neck-pushing head back against resis-
tance, trapezius-pushing extended arms upwards against
resistance at 45� angle out from the body). The maximal
contractions were carried out in order to normalize the
muscle activity during test to a percent of maximal force.
However, the variability between the two maximal mus-
cle contractions in the frontalis muscle was too large to
make a reliable estimate of the maximal muscle force
and thus none of the muscle activity measurements were
normalised. In order to measure the habitual level of
physiological activation the laboratory experiment
started with a 5 min period which served as a basis for
the evaluation of physiological responses during the test
and the subsequent rest period. The subjects were alone
in the room and were not given any instructions other
than to find a comfortable position with their arms rest-
ing on the table in front of them (uninstructed rest;
‘‘UIR’’). A 5 min feedback (‘‘FB’’) period with muscular
activity visualised on a screen followed. The subject expe-
rienced how it was possible to influence the level of
muscle activity by adopting different postures and there-
after concentrated on minimising any muscle activity.
The stressful task (Westgaard and Bjørklund, 1987)
was then presented: a two-choice reaction-time test on
a monitor, lasting one hour. An open (‘‘frame’’) and a
solid (‘‘brick’’) quadrangle were placed in a square
pattern, and a written suggestion on how to move the
brick to superimpose on the frame was given (Fig. 1).
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The subject responded by pressing one of two keys (‘‘cor-
rect’’ or ‘‘wrong’’), with the right middle or index finger.
The test was to be carried out as quickly and correctly as
possible. The PC program provided feedback on whether
an answer was correct or wrong, and on the response
time (very slow, slow, normal, fast, very fast), related
to the subject�s performance in the mini-trial carried
out before the experiment started (Wærsted et al.,
1994). Together with the feedback a new task was pre-
sented. After the end of the stressful task, all measure-
ments continued for 30 min. The subject was instructed
to sit still and relax during the rest period.

Pain, perceived tension and fatigue were reported
every 10 min before, during, and after the test by scoring
on a 100 mm visual analogue scale (VAS) with the end-
points marked ‘‘no pain/tension/fatigue’’ and ‘‘worst
imaginable pain/tension/fatigue’’. Perceived tension
was considered to reflect subjective stress during and
after the test. The subjects were asked to assess pain in
locations corresponding to the SEMG electrode posi-
tions in the shoulders, neck, temples and forehead on
both sides. The subjects were not allowed to see previous
records when scoring.

Immediately after the stressful task, before the 30 min
rest period, a second blood sample was drawn. Subjects
reported the pain, tension and fatigue both before
(60 min) and after the venipuncture (65 min). The results
of the blood analysis are not reported in this article.

The laboratory personnel were blinded as to the diag-
nosis (healthy control, FMS or SNP) of the subjects,
and the subjects were instructed not to disclose their
diagnostic status. Furthermore, the laboratory personnel
monitored the experiment visually from another room,
only communicating with the subjects briefly every
10th minute with a strictly established monologue when
subjective ratings were collected, in order to maintain

blinding. All data processing before the statistical anal-
ysis was made without knowledge of diagnostic status of
the subjects.

2.4. Physiological recordings

Muscle activity was quantified by bilateral bipolar
recording of surface electromyography (SEMG) (elec-
trode diameter 6 mm, inter-electrode distance 20 mm).
The system noise level was less than 1.5 lV root mean
square (RMS). The signals were bandpass-filtered (10–
1250 Hz) and stored on a digitizing recorder (Earth
Data 128). Data were subsequently reconverted to ana-
logue signals and fed into an A/D converter (Powerlab
16S; ADInstruments Pty Ltd, Sydney, Australia; sam-
pling rate 2 kHz) for calculation of the RMS values
(100 ms running time window). Sharp transients and
electrical activity from the heart in the SEMG signals
were removed with a medianfilter (Matlab ver 6, The
MathWorks inc.).

The following electrode sites were used: (1) Frontalis
muscle; both electrodes placed on a vertical line crossing
the pupil, 10 and 30 mm above the upper border of the
eyebrow. (2) Temporal muscle; the lower electrode
10 mm posterior to the lateral canthus of the orbit,
and the second electrode 20 mm above. (3) Splenius;
upper electrode 35 mm laterally to the spinous process
of C2 and the second electrode 20 mm below. (4) Trape-
zius; medial electrode 10 mm laterally to the midpoint of
a line connecting the acromion and the spinous process
of C7, and the second electrode 20 mm laterally to the
first electrode. The ground electrode was placed on the
spinous process of C7. Signals were stored with a sam-
pling rate of 200 Hz.

2.5. Data analysis

Subjective responses (pain, tension, fatigue) were
defined as the difference between the maximal rating of
pain, tension and fatigue during the 60 min stress period
and the corresponding ratings at baseline immediately
before the start of the test. Pain responses were calcu-
lated for all locations (shoulders, neck, temples, and
forehead on each side). The maximal pain response
was defined as the highest pain response irrespective of
location. The mean pain responses for each anatomic
region (average of right and left side) were also calcu-
lated. For evaluation of the pain recovery we counted
the number of subjects who did not recover to baseline
pain (0 min) after 10 min (early pain recovery) and
30 min (late pain recovery) of rest for each anatomic
region and for the maximal pain location.

Mean RMS values in lV for each 10-min period were
calculated for the SEMG recordings. Main outcome
variables for SEMG recordings were defined as: (1)
SEMG before test (UIR period); (2) SEMG test mean

Fig. 1. Example of one possible trial configuration in the stressful task.
The alphanumeric text suggests how to move the solid square (brick) to
superimpose the open quadrangle (frame). In this case the suggestion is
correct.
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(mean value of the 60 min stress period); (3) SEMG
after test (mean value of the 30 min rest period). Corre-
lation analyses between SEMG and pain responses were
carried out by using the pain responses corresponding to
the SEMG locations (e.g. the pain response in the left
temporal region with SEMG in the left temporalis mus-
cle), using the SEMG values from before, during and
after test.

2.6. Statistics

Between-group comparisons were made with Mann–
Whitney tests comparing the patient groups. Wilcoxon�s
signed rank test was used for within-subject comparisons
of response magnitudes, and for possible side differences.
Difference in responder rates was evaluated with v2 tests
in 3 · 2 tables and for post-hoc analysis also in 2 · 2
tables (Yates� correction was applied). Correlations
between the different SEMG variables, and between the
SEMG variables and the subjective variables were calcu-
lated using Spearman�s rank order correlation. Subgroup
analysis were performed with the Mann–Whitney test
(within each diagnostic group). Pain, tension and fatigue
scores and responses were not normally distributed and
are thus reported as median values in the tables, while
means have been reported in the figures.

Repeated measures analysis of variance (rANOVA)
with patient group as between-subject factor, time as
within subject factor and age as covariate was performed
for square-root transformed EMG and pain-response
data at each anatomical region, in order to get an over-
view of the results. Pearson correlations were computed
between age and transformed pain/EMG variables.

Two-tailed p-values less than 0.05 were considered to
be significant.

2.7. Ethics

The Regional Committee for Medical Research Eth-
ics approved the protocol, and all participants gave writ-
ten informed consent before volunteering. For transport
expenses and inconvenience (total time expenditure for
each participant was 4 h) participants received NOK
500 (USD 75). Experiments were performed according
to the Helsinki Declaration.

3. Results

Background variables are presented in Table 1. The
average age was higher for the FMS group than for
the SNP group and the controls (Kruskal–Wallis test
p = 0.022). For this reason we did also compare FMS-
group to an age-matched control subgroup (n = 23,
mean age = 45.8 years, s.d. 8.7 years, range 34–61
years). The EPQ-N score, Autonomic Symptom Index

and level of general tension were all higher for the
patient groups compared to healthy controls (Kruskal–
Wallis test p < 0.005), but FMS and SNP patients dif-
fered only in the magnitude of the Autonomic Symptom
Index (FMS > SNP, Mann–Whitney test p = 0.018).
Interestingly, FMS patients reported more habitual
exercise than the other groups. FMS patients have par-
ticularly high scores on questions about sleep problems
and restricted leisure time activity (Table 1). However,
neither age, EPQ-N score, Autonomic Symptom Index
nor general tension were correlated to the physiological
variables. Furthermore, those patients who exercised
more than 1 day per week did not respond differently
to the stressful task than the patients with less habitual
exercise (Mann–Whitney test).

Background body pain for different body regions
reported in the structured interview is shown in Table
2. The two patient groups did not differ in reported neck
pain but FMS patients reported more pain in the shoul-
der, lower back, hands and feet than SNP patients
(Mann–Whitney test p < 0.008). Therefore, we consid-
ered responses as previously defined, to be more appro-
priate than absolute levels of pain, fatigue and tension
when comparing the groups.

3.1. Electromyographic recordings

The SEMG results are presented in Fig. 2 and Table
3. The frontalis muscle SEMG during test was higher
than before test for both patient groups and the controls
(Wilcoxon test p < 0.008 for all groups). The trapezius
muscle SEMG was higher during test than before test
for the controls and the SNP group (Wilcoxon test
p < 0.001 for both groups), but the difference did not
reach significance for the FMS group (Wilcoxon test
p = 0.16). Frontalis EMG during test was lower in
FMS patients than in an age-matched control subgroup
(Mann–Whitney test, p < 0.05; Fig. 2). We found no side
differences in muscle activity, either when comparing the
left and right side, or when comparing the side with the
highest pain response to the side with less pain response
(Wilcoxon test). ANOVA repeated measures analysis
with age as a covariate revealed no differences between
groups for any region (between subjects p > 0.15). Sig-
nificant correlation between age and EMG was found
in the temporal region (p < 0.0005), and frontal region
(p = 0.05).

3.2. Subjective variables

The reported level of pain immediately before test
was higher in both shoulders, neck, and temples for
FMS compared to the SNP patients (Kruskal–Wallis
test p < 0.019, Mann–Whitney test p < 0.025 for all three
regions). The two patient groups also differed in baseline
fatigue, but not subjective tension (Table 4).
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Mean pain scores are shown in Fig. 3. Median values
for the subjective responses and the number of subjects
responding with an increase in pain score during the
stress period are presented in Table 5. We found no side
differences (Wilcoxon test) and thus only the average of
the right and left side is presented in the table. Pain, ten-
sion and fatigue increased during the stressful task for

all groups (Table 5). The groups were different regarding
the number of subjects who increased their pain in the
temples and in the maximal pain location (v2 tests in
3 · 2 tables p 6 0.025), and post hoc 2 · 2 table analysis
revealed that FMS patients responded more often than
the controls (Table 5). For the SNP group and the con-
trol group, the pain responses in the trapezius and neck

Table 2
Body pain reported in the structured interview to the question: ‘‘Did you have bothersome pain or stiffness in muscles or joints in the specified regions
during the last 6 months?’’(VAS)

Median (range)

Controls (n = 35) Fibromyalgia (n = 23) Shoulder/neck pain (n = 29)

Neck pain 0 59 (0–81) 50 (6–86)
Shoulder paina 0 62 (29–80)b 45 (0–86)
Low back paina 0 47 (3–100)b 14 (0–100)
Hand paina 0 53 (0–83)b 3 (0–100)
Foot paina 0 30 (0–85)b 0 (0–76)

a Groups are different (Kruskal–Wallis test, p < 0.05).
b Different from SNP patients (Mann–Whitney test, p < 0.05).

Fig. 2. Mean surface electromyographic (SEMG) amplitudes (root-mean-square values in lV), before test (uninstructed rest period = UIR; 5 min),
in the feedback period (fb; 5 min), during test (0–60 min), and during the rest period (75–95 min). Error bars show ± one standard error of the mean.
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regions were higher than the pain responses in the fore-
head (Table 5). In contrast, for the FMS patients, the
pain responses were not different in the various ana-
tomic regions, indicating a more generalised pain res-
ponse in this patient group (Table 5).

Both patient groups recovered less (i.e. more slowly)
from the induced pain than the healthy controls
(Fig. 4). The percentage of subjects without late pain
recovery was generally higher for both patient groups
compared to controls, indicating less pain recovery in
the rest period for patients (Table 6). Although not vis-
ible in the figures which present the average pain level

(Fig. 3) and average pain response (Fig. 4) except for
FMS group in the neck region, some subjects actually
report more pain after 30 min of rest than after 10 min
of rest (Table 6). The difference in pain recovery between
SNP patients and controls was more evident after
10 min of rest than after 30 min of rest, while the differ-
ence in recovery between FMS patients and controls was
most evident after 30 min. However, there was no differ-
ence in pain recovery between the FMS and SNP
patients for any location. Those subjects without pain
recovery (either early or late) did not differ from the sub-
jects with pain recovery regarding background variables
and muscle activity (Mann–Whitney tests performed
separately for each diagnosis group).

Themaximal pain response correlated better with both
the fatigue response (rsFMS = 0.50, p = 0.016; rsSNP =
0.49 p = 0.009) and the tension response (rsFMS = 0.52,
p = 0.011; rsSNP = 0.59, p = 0.001) for the patient groups
than for the healthy control group (rs = 0.18, p = 0.30
and rs = 0.17, p = 0.33, respectively).

ANOVA repeated measures analysis with age as a
covariate revealed no differences between groups regard-
ing the development of pain in any region (time · diag-
nosis p > 0.37). Furthermore, age did not affect pain
development (p > 0.31). Within group correlation bet-
ween age and pain variables were not significant in
FMS and control subjects. In SNP-patients neck pain
response increased with age (r = 0.38, p = 0.04).

Categorical pain and recovery responses in FMS
patients were also compared with responses in the
age-matched control subgroup. Results were generally
unchanged (Tables 5 and 6).

3.3. Correlation between subjective complaints and

electromyography

Associations between SEMG and the subjective vari-
ables were explored by comparing SEMG before test,
SEMG test mean, and SEMG after test, both with pain
responses at the corresponding locations and with the
maximal pain response irrespective of location. Muscu-
lar activity did not correlate with the subjective variables
pain, tension, or fatigue, with the exception of the tem-
poralis muscle SEMG during test for the FMS group
which correlated with the tension response (rs = 0.65
p = 0.0007).

4. Discussion

The stressful task induced pain and muscular activity
in both FMS and SNP patients. FMS patients had a
more generalised pain response than SNP patients.
More FMS patients responded with pain during test
compared to controls, while delayed pain recovery was
observed in both FMS and SNP patients. However,

Table 3
Surface electromyographic amplitudes (root-mean-square values in
lV) before (uninstructed rest period), during (mean of the 60 min
stress period), and after (mean of the 30 min rest period) the test

Mean (SD)

Controls Fibromyalgia Shoulder/neck pain

Trapezius

Before 5.0 (3.6) 6.0 (6.0) 4.3 (3.4)
During 11.7 (12.0)a 8.4 (6.8) 10.3 (9.7)a

After 5.8 (5.1) 5.3 (2.8) 6.0 (4.4)b

Splenius

Before 5.3 (3.5) 4.4 (2.3) 5.4 (2.4)
During 4.8 (3.0) 4.3 (1.7) 5.6 (2.3)
After 5.1 (3.0) 5.4 (2.7) 6.5 (2.9)b

Temporalis

Before 6.6 (3.1) 5.9 (2.3) 6.9 (3.7)
During 7.5 (5.7) 7.0 (3.2) 8.5 (4.7)a

After 7.9 (5.0) 8.2 (3.2)b 8.5 (5.1)b

Frontalis

Before 9.4 (7.2) 8.6 (5.0) 8.5 (6.1)
During 13.3 (7.7)a 10.8 (4.5)a 12.7 (9.1)a

After 10.5 (7.2) 10.2 (6.1)b 9.7 (7.0)

Values are the average of the right and left sides.
There were no significant differences between the groups (Kruskal–
Wallis test).
a significant difference during test versus before test, p < 0.05 (Wil-

coxon test).
b significant difference after test versus before test, p < 0.05 (Wilco-

xon test).

Table 4
Pain, tension and fatigue immediately before the stressful task (VAS)

Median (range)

Controls
(n = 35)

Fibromyalgia
(n = 23)

Shoulder/neck
pain (n = 29)

Shoulder paina 0.0 (0–10) 18.0 (0–57)b,c 5.0 (0–43)b

Neck paina 0.0 (0–19) 19.0 (0–60)b,c 6.5 (0–66)b

Temples paina 0.0 (0–10) 2.5 (0–100)b,c 0.0 (0–20)
Forehead pain 0.0 (0–9) 0.0 (0–100) 0.0 (0–26)
Fatiguea 0.0 (0–74) 7.0 (0–51)b,c 0.0 (0–82)
Tensiona 0.0 (0–43) 9.0 (0–82)b 3.5 (0–70)

a Groups are different (Kruskal–Wallis test, p < 0.05).
b Different from controls (Mann–Whitney test, p < 0.05).
c Different from SNP patients (Mann–Whitney test, p < 0.05).
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the magnitude of the muscular response did not differ
significantly between groups. Furthermore, the pain,
tension and fatigue responses to the stressful task were
not related to muscular activity for any group.

The first objective of the present study was to com-
pare muscular and subjective responses to low-grade
stress in patients with FMS, patients with SNP and
healthy controls. The pain responses were more wide-
spread in the FMS group than in the SNP group and
more FMS patients developed pain during the stressful
task than controls. However, none of the groups were
different regarding the magnitude of the pain responses.

Surface-recorded muscular activity was not enhanced
compared to controls in either pain syndrome. This is in
accordance with another study on FMS patients investi-
gating the muscular response to a stressful task (Svebak
et al., 1993), but contrast the finding of Bansevicius et al.
(2001) on FMS patients who found increased EMG
activity in the neck muscles compared to healthy con-
trols using a study design similar to the present study
The FMS group did not respond significantly with
increased muscle activity in the trapezius muscle to the

stressful task. This contrasts with the study of Bansevi-
cius et al. who found an increase in EMG activity during
test relative to pretest only for the trapezius muscle.
Inactivation of muscle activity as a response to pain
(Lund et al., 1991) is one possible explanation for this
finding. Relatively high basal EMG in FMS patients
may also explain why the moderate EMG-increase dur-
ing test did not reach statistical significance. A type II
error is another probable explanation.

Various authors have investigated muscular activity
in FMS patients with electromyography. Both increased
(Elert et al., 1989, 1992, 2001; Donaldson et al.,
2002a,b), reduced (Jacobsen and Danneskiold-Samsøe,
1987, 1992; Bäckman et al., 1988; Mengshoel et al.,
1990; Jacobsen et al., 1991; Lindh et al., 1994; Nørreg-
aard et al., 1994, 1997; Vestergaard-Poulsen et al.,
1995) and normal (Zidar et al., 1990; Stokes et al.,
1993; Mengshoel et al., 1995; Miller et al., 1996; Häkki-
nen et al., 2000, 2001, 2002; Valkeinen et al., 2004) mus-
cular activity has been found. However, the vast
majority of studies are on voluntary muscle work and
not on the muscular response to a mental stressor. A

Fig. 3. Mean pain ratings scored on a visual analogue scale (VAS) 0–100 mm, reported every 10th minute immediately before (0 min), during the
stress period (10–60 min), after the venipuncture (65 min) and during the rest period (75–95 min). Error bars show ± one standard error of the mean
(SEM).
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recent editorial article with a short review of the litera-
ture on FMS and muscle pathology concludes that there
is a defect not seen at rest or submaximal load, but evi-
dent under maximal load and static contraction (Bengts-
son, 2002).

Development of musculoskeletal pain during stress
was not related to muscular activity for either FMS
patients, SNP patients or controls. Bansevicius et al.
(2001) investigated fibromyalgia patients and found a
generalised pain response unrelated to SEMG in all
investigated muscle groups except for the trapezius mus-
cle. It must be noted that it is the low trapezius SEMG
acitivity among the controls in the study of Bansevicius
et al. that is the main difference from the present results,
and the correlation between pain development and tra-
pezius SEMG in FMS found by Bansevicius et al. was
weak. The differing results may be explained by the fact
that Bansevicius et al. (2001) used median SEMG values
in the analysis while we have used mean SEMG values.
Furthermore, in the study of Bansevicius et al. the inves-
tigator was not blinded to the diagnosis of the subjects.
Thus we conclude that the pain which develops in FMS
and SNP patients during a stressful task is generally not
related to the simultaneously observed muscle activity.

Various models for a causal relationship between
muscle activity and musculoskeletal pain have been
hypothesised. For example, Johansson and Sojka
(1991) proposed a model for a vicious circle where
metabolites and low pH from muscle activity cause
increasing muscle activity by sensitising muscle spindles
(Johansson and Sojka, 1991). However, as concluded in
several reviews (Simms, 1996; Westgaard, 1999; Knar-
dahl, 2002) and further corroborated by the results of
the present study, it is difficult to find support for a
potential causal relationship between stress-related mus-
culoskeletal pain and surface recorded low-grade muscle
activity. Still, the possibility exists that exhaustion of
small groups of motor units, too small to be detected
by SEMG recordings (Hägg, 1991) or dysfunction in
the pattern of motor unit recruitment and de-recruit-
ment (Westad et al., 2003), may serve as mechanisms
for musculoskeletal pain. However, several authors have
proposed that more research effort should be directed to
causal factors other than those related to muscle activity
or muscle pathology (Lund et al., 1991; Simms, 1996;
Rø, 2000; Knardahl, 2002).

Another objective of the present study was to relate
subjective reports of fatigue and tension to muscular
activity. Although we found the change in perceived ten-
sion during test (tension response) to be correlated with
temporalis SEMG during test in the FMS group, the
present study did not indicate that subjectively reported
tension is generally associated with muscular activity.
Earlier reports have shown equivocal associations
between SEMG and subjectively reported tension
(Vasseljen and Westgaard, 1996; Kendall et al., 2002;T
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Holte et al., 2003). Interestingly, a recent paper describes
a higher trapezius SEMG activity during ordinary work
in subjects who reported a feeling of muscular tension at
least a few times per week the past month, compared to
subjects who reported less muscular tension (Wahlström
et al., 2003). Moreover, we found that the tension
response was associated with development of pain, sug-
gesting that in the present model perceived tension is
more closely related to the mechanisms responsible for
pain development than to muscle activity.

The groups did not differ regarding the perceived
tension response. Although subjects did not report per-
ceived stress explicitly, we believe the stress task was
equally stressful for all groups as perceived tension has
been reported to reflect perceived stress including both
autonomic responses and the specific muscular response
of perceived elevation of shoulders (Holte et al., 2003).

The fact that our FMS patients exercise more than
the other groups is probably a result of our recruitment
protocol (patients were referred from primary care and
physiotherapists). TCA-users were excluded and the

FMS patient group is accordingly ‘‘selected’’ in this
sense, probably representing a rather well-functioning
FMS-subpopulation.

Performance of the stressful task (reaction time and/
or the rate of correct answers) was not measured in the
present study because we have previously observed that
the level of performance does not influence the muscular
response in this model unless a money-reward for high
performance is promised (Wærsted et al., 1994). We can-
not exclude that the level of performance affect per-
ceived stress/tension or fatigue, but since the groups
did neither differ in tension nor fatigue responses, both
stress task and (most likely) stress load was probably
similar between groups.

Although the second venipuncture had the potential
to add some stress, reported tension were unchanged
in both patients groups (from median VAS 31 to 30,
p = 0.51 in FMS and from median VAS 24.5 to 23,
p = 0.15 in SNP patients). The procedure was the same
for all groups, and blood sampling was very short last-
ing compared to the rest of the experiment. Although

Fig. 4. Mean differential pain ratings. Pain reported at start (0 min) was subtracted from the pain scored during the stressful task and in the rest
period. Pain was scored on a visual analogue scale (VAS) 0–100 mm, reported every 10th minute immediately before (0 min), during the stress period
(10–60 min), after the venipuncture (65 min) and during the rest period (75–95 min). Note that both patient groups recovered more slowly than the
healthy controls (from 60 min). For visual clarity the error bars are not shown.

624 K.B. Nilsen et al. / European Journal of Pain 10 (2006) 615–627



we cannot exclude that a part of the response was mod-
ified by the blood test, this effect is probably small and
short-lasting.

Bansevicius and co-workers (Bansevicius et al., 2001)
found that the pain response to low-grade stress in FMS
patients continued after termination of the stressful task,
but did not analyse or discuss the phenomenon. In the
present study, we analysed the recovery period more
thoroughly and observed that both patient groups
showed less pain recovery in the rest period than the
control group. This observation may relate to the find-
ings of prolonged aftersensations after windup of second
pain in FMS patients by Staud et al. (2001, 2003, 2004),
which have been interpreted as a sign of central sensiti-
sation. Regardless of the reason for the sensitisation
process (repetitive pain stimuli, stress, nerve damage,
etc.) the present study indicate that also pain experi-
enced in a situation simulating repetitive office-work
show a pattern which may be compatible with central
sensitisation. Further studies are needed to elucidate if
pain induced by cognitive low-grade stress in musculo-
skeletal pain patients exhibits other characteristics of
central sensitisation (like hyperalgesia and allodynia)
and to elucidate how low-grade stress of long duration
affects pain modulation in humans. The possibility of
attentional bias towards pain and somatic sensations
(Brosschot, 2002) and sympathetically maintained pain
should also be investigated further (Jänig and Häbler,
2000).

Pain recovery can be measured in different ways. Our
choice of a categorical pain recovery variable (recovery:
yes or no) is a conservative approach. This variable is in

our opinion less sensitive, but it is presumably more
robust than a scaled variable (e.g. the absolute difference
between pain at 75 min and pain at 0 min). Further-
more, it may be argued that pain change (response
and recovery) should be evaluated on a logarithmic scale
(or % change). This was not possible because many sub-
jects (particularly controls) were without pain at base-
line and after the recovery period.

We believe that the low-grade and long-lasting stress
induced in the present study is comparable to work-
related stress. However, it must be noted that laboratory
experiments can never substitute real-life experiments.
The fact that in the present study, both the laboratory
investigations and the following data reduction were
done without knowledge of the patient/control status
of the participant strengthens the conclusions of the
study.

In conclusion, with a blinded study design, FMS and
SNP patients did not differ in muscular or subjective
responses to low-grade mental stress of 60 min duration.
Muscle activity measured by surface electromyography
generally did not correlate with the induced pain, ten-
sion and fatigue during the stressful task for either
group. Pain lasted longer in both FMS and SNP
patients compared to healthy controls, possibly as a
result of disease-related sensitisation in pain pathways.
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Table 6
Early (after 10 min rest) and late (after 30 min rest) pain recoverya

No recovery n (%)

Controls (n = 35) Fibromyalgia (n = 23) Shoulder/neck pain (n = 29)

After 10 min rest (early recovery)

Shoulderc 9 (26%) 10 (43%) 17 (59%)d

Neck 13 (37%) 12 (52%) 19 (66%)d

Templesc 5 (14%) 12 (52%)d,f 12 (41%)d

Foreheadc 6 (17%) 13 (57%)d,f 10 (34%)
Maximal pain locationb 13 (37%) 14 (61%) 19 (66%)d

After 30 min rest (late recovery)

Shoulder 11 (31%) 11 (52%) 12 (43%)
Neck 15 (43%) 15 (71%)e,g 17 (61%)
Temples 6 (17%) 9 (43%)e 10 (36%)
Foreheadc 5 (14%) 10 (48%)d,f 11 (39%)d

Maximal pain locationb 15 (43%) 16 (76%)e,f 19 (68%)e

Numbers and percents of subjects not recovering have been tabulated.
Two fibromyalgia patients and one shoulder/neck pain patient did not complete the rest period.
a Recovery is defined as return to baseline values.
b The number of subjects not recovering from the pain in the location with the highest pain response.
c Different between groups (v2 tests in 3 · 2 tables, p 6 0.05).
d Significantly different from controls (v2 tests with Yates� correction in 2 · 2 tables, p < 0.05).
e Trend towards difference from controls (v2 tests with Yates� correction in 2 · 2 tables, 0.05 6 p < 0.085).
f FMS vs age-matched control subgroup (v2 test with Yates correction. p < 0.05.
g FMS vs age-matched control subgroup (v2 test with Yates correction. p < 0.10).
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Abstract

Objective: Psychosocial stress is a risk factor for musculoskeletal pain, but how stress affects musculoskeletal pain is poorly under-
stood. We wanted to examine the relationship between low-grade autonomic activation and stress-related pain in patients with fibro-
myalgia and localised chronic shoulder/neck pain.
Methods: Twenty-three female patients with fibromyalgia, 29 female patients with chronic shoulder–neck pain, and 35 healthy
women performed a stressful task lasting 60 min. With a blinded study design, we recorded continuous blood pressure, heart rate,
finger skin blood flow and respiration frequency before (10 min), during (60 min) and after (30 min) the stressful task. The physi-
ological responses were compared with subjective reports of pain.
Results: The increase in diastolic blood pressure and heart rate in response to the stressful task were smaller in fibromyalgia patients
compared with the healthy controls. Furthermore, fibromyalgia patients had reduced finger skin blood flow at the end of the stress-
ful task compared to healthy controls. We also found an inverse relationship between the heart rate response and development and
recovery of the stress-related pain in fibromyalgia patients.
Conclusion: We found abnormal cardiovascular responses to a 60 min long stressful task in fibromyalgia patients. Furthermore, we
found a negative association between the heart rate response and the pain which developed during the stressful task in the fibromy-
algia group, possibly a result of reduced stress-induced analgesia for fibromyalgia patients.
� 2006 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All
rights reserved.

Keywords: Chronic pain; Sympathetic nervous system; SIA; Central sensitisation

1. Introduction

The pathophysiology for musculoskeletal pain disor-
ders as fibromyalgia syndrome (FMS) and localised
chronic shoulder/neck pain (SNP) has not been
explained. It has been difficult to find a causal relation-

ship between pain development and muscle pathology or
muscle activity in these disorders, and human models
exploring hypotheses not related to muscle activation
are wanted (Lund et al., 1991; Simms, 1996; Westgaard,
1999; Røe, 2000; Knardahl, 2002).

Psychosocial stress seems to be a risk factor for mus-
culoskeletal pain (Linton, 2000; van der Windt et al.,
2000; Ariëns et al., 2001; Bongers et al., 2002), but the
mechanism by which stress is related to pain is poorly
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understood. Abnormalities in sympathetic nervous sys-
tem function have been reported for FMS patients (e.g.
van Denderen et al., 1992; Martı́nez-Lavı́n et al., 1997;
Bou-Holaigah et al., 1997; Martı́nez-Lavı́n et al., 1998;
Kelemen et al., 1998; Torpy et al., 2000; Cohen et al.,
2000; Petzke and Clauw, 2000; Cohen et al., 2001). How-
ever, it is not known how sympathetic activation affects
musculoskeletal pain during low-grade stress. In FMS
patients, both a positive (Martinez-Lavin et al., 2002) and
an inverse relationship (Okifuji and Turk, 2002) between
sympathetic activity and pain has been hypothesised.

Chronic pain in the shoulder and neck region is
highly prevalent (Picavet and Schouten, 2003). The pain
distribution in SNP patients is by definition more local-
ised than in FMS patients and a clear differentiating cri-
terion. However, a noted similarity between the two
patient groups is that pain is worsened by mental stress
(Bansevicius et al., 2001; Holte and Westgaard, 2002;
Van Houdenhove and Egle, 2004). In the present study
we wanted to examine the relationship between mental
stress-induced autonomic activation and pain in patients
with FMS, in patients with chronic SNP and in healthy
controls. We used a laboratory model with a low-grade
stressful task previously proven to induce pain in
healthy controls (Bansevicius et al., 1997) and patients
with FMS (Bansevicius et al., 2001), tension type head-
ache (Bansvicius et al., 1999), cervicogenic headache
(Bansevicius and Sjaastad, 1996) and migraineurs (Leis-
tad et al., 2006). Our intention was to establish a setting
which is close to stressful and repetitive real office-work.

The following questions were addressed: (1) Is the
sympathetic response to the low-grade stressful task in
FMS patients and chronic SNP patients (a) different
from healthy controls, and (b) different when comparing
the two patient groups? (2) Can the response in the auto-
nomic nervous system be related to (a) the pain response
during the stressful task, or (b) the ability to recover
from pain after the stressful task?

With a blinded study design we investigated auto-
nomic responses together with development of pain dur-
ing 60 min of low-grade stress, and in the following
30 min rest period, comparing FMS patients, SNP
patients, and healthy controls. Physiological measure-
ments included heart rate, continuous blood pressure,
finger skin blood flow, and respiration frequency
together with determination of catecholamine levels in
venous blood before and after the stress period.

2. Methods

2.1. Subjects

Twenty-three female FMS patients (mean age 39.7
years, range 21–61 years), 29 female patients with chronic
SNP (mean age 48.3 years, range 32–63 years) and 35

healthy women as controls (mean age 41.1 years, range
19–59 years) participated in the study (F(2,86) = 4.7,
p = 0.012; posthoc: FMS/controls p = 0.011, SNP/con-
trols p = 0.85, FMS/SNP p = 0.053). More detailed sub-
ject characteristics are presented elsewhere (Nilsen et al.,
2006). Patients were mainly referred from primary care
centres and physiotherapists. Controls were recruited
from public institutions and private companies in Trond-
heim and they answered specific pain-related questions in
a structured interview. Sporadic or situation-related
minor headache and/or muscle aches were allowed in
the control group because of the universal occurrence of
such symptoms. Subjects who described their symptoms
as unpleasant but not as bothersome pain were only
excluded as healthy controls if two of the following three
conditions were fulfilled: (1) symptoms occurred formore
than one day per month, (2) the person had visited a phy-
sician for the complaint, and (3) usually took medication
for the complaint. Subjects who considered their head-
ache or pain to be more than ‘‘unpleasant’’ (i.e. bother-
some pain) were not accepted as controls if at least one
of the three conditions above was fulfilled.

Inclusion criteria for all participants were: (1) adults
aged 18–65 years and (2) submitted written informed
consent. FMS patients were included if they fulfilled
the 1990 American College of Rheumatology Criteria
(ACR criteria) for fibromyalgia (Wolfe et al., 1990).
SNP patients were included if they reported chronic
shoulder/neck pain (more than 3 months during the pre-
vious year) with local tenderness or triggerpoints. SNP
patients were included even if they reported pain also
from other body regions, but pain in the shoulder and
neck region had to be their main problem. No SNP
patients fulfilled the ACR criteria for fibromyalgia.

Patients were excluded if they had: (1) neoplastic dis-
ease; (2) high blood pressure or were taking anti-hyper-
tensive medication; (3) infectious disease, including
those who had caught a cold with fever, cough or muscle
pain; (4) metabolic, endocrine or neuromuscular disease;
(5) connective tissue disorder; (6) tendinitis or capsular
affection of the shoulder joint; (7) recent accident or
injury affecting function; (8) symptomatic heart disease
or were taking medication for any vascular disease; (9)
lung disease affecting function or were taking medica-
tion for such; (10) cerebrovascular disease; (11) chronic
neurological disease; (12) or if headaches were a major
part of the pain syndrome; (13) or if they were taking
any medicament with a possible interaction on neural,
vascular or muscular function (e.g. antiepileptics, b-
blockers, or antidepressants).

2.2. Procedure

All subjects first went through a short telephone
interview. Eligible patients went though a detailed
interview and examination by one specialist in physical

744 K.B. Nilsen et al. / European Journal of Pain 11 (2007) 743–755



Author's personal copy

medicine and rehabilitation (Magne Rø). Patients and
controls not excluded by this initial screening received
written information on the study background, and a
questionnaire on background data, less than two weeks
before the test day. After a short interview on the morn-
ing of the test day, venous blood was sampled from the
right cubital fossa. Subjects emptied the bladder before
starting the test. Brassieres were removed and subjects
wore only a light shirt on the upper part of the body.
The laboratory temperature was regulated to 24.5 ±
1 �C.

The subjects were seated in an office chair with the
forearms resting on the table top before, during and
after the test. Subjects got acquainted to the work-task
by performing a mini-trial with instructions before the
test started. The mini-trial was performed before intro-
ducing the stress-imposing feedback on reaction time
and was used to determine the subjects’ habitual,
non-stressed reaction time. Short maximal voluntary
contractions were performed on each pair of muscles
twice (frontalis muscle – raising eyebrows, temporalis
– clenching teeth, neck – pushing head back against
resistance, trapezius – pushing extended arms upwards
against resistance at 45� angle out from the body). In
order to measure the subjects habitual level of physio-
logical activation the laboratory experiment started
with a 5 min period which served as a basis for the
evaluation of physiological responses during the test
and the subsequent rest period. The subjects were alone
in the room and were not given any instructions other
than to find a comfortable position with their arms
resting on the table in front of them (uninstructed rest;
‘‘UIR’’). A 5 min feedback (‘‘FB’’) period with muscu-
lar activity visualised on a screen followed. The subject
experienced how it was possible to influence the level of
muscle activity by adopting different postures and
thereafter concentrated on minimising any muscle
activity. The stressful task (Westgaard and Bjørklund,
1987) was then presented: a two-choice reaction-time
test on a monitor, lasting 1 h. An open (‘‘frame’’)
and a solid (‘‘brick’’) quadrangle were placed in a
square pattern, and a written suggestion on how to
move the brick to superimpose on the frame was given.
The subject responded by pressing one of two keys
(‘‘correct’’ or ‘‘wrong’’), with the right middle or index
finger. The test was to be carried out as quickly and
correctly as possible. The PC program provided feed-
back on whether an answer was correct or wrong,
and on the response time (very slow, slow, normal,
fast, very fast), related to the subject’s performance
in the mini-trial carried out before the experiment
started (Wærsted et al., 1994). Together with the feed-
back a new task was presented. After the end of the
stressful task, all measurements continued for 30 min.
The test person was instructed to sit still and relax dur-
ing the rest period with unchanged posture; i.e. arms

resting on the table. Pain, tension and fatigue were
reported every 10 min before, during, and after the test
by scoring on a 100 mm visual analogue scale (VAS),
with the endpoints marked no pain and worst imagin-
able pain. The subjects were asked to assess pain in the
shoulders, neck, temples and forehead on both sides.
The subjects were not allowed to see previous records
when scoring.

A second blood sample was drawn immediately after
the test, before the 30 min rest period. The laboratory
personnel were blinded as to the diagnosis (control,
FMS or SNP) of the subjects, and the subjects were
instructed not to disclose their diagnostic status. All
data reduction was made without knowledge of diagnos-
tic status of the subjects.

2.3. Physiological recordings

Activity in the autonomic nervous system was
assessed by measurements of continuous non-invasive
finger blood pressure (Portapres, TNO Biomedical
Instrumentation, Amsterdam, The Netherlands)
(Imholz et al., 1993), finger skin blood flow with
Laser-Doppler flowmetry (Moorlab, 4 channels, time
constant 0.02 s, low-pass filter 22 kHz; Moor Instru-
ments Ltd, Devon, England), and respiration with a
thermistor (Embla S-AF-010, Flaga, Reykjavik, Ice-
land) below the nose with active elements in each nostril
and in front of the mouth. The blood pressure cuffs were
mounted on the intermediate phalanx of the left middle
and ring fingers. Finger skin blood flow was measured
bilaterally with the laser-doppler electrodes (fibre sepa-
ration 0.5 mm) placed on the volar side of the distal pha-
lanx (pulp) of the thumb. Signals were sampled at
200 Hz. Respiration frequency was calculated by the
Chart 4.2 software (ADInstruments Pty Ltd, Sydney,
Australia). Heart rate and blood pressure were calcu-
lated with the Beatscope 1.0 software (TNO, Amster-
dam, the Netherlands) (Wesseling et al., 1993). Room
temperature was measured every 10th minute with a log-
ging thermometer with an accuracy of ±0.2 C� (Digitron
2088 T, Digitron Instrumentation Ltd, Devon,
England).

2.4. Biochemical analysis

Blood was collected into EDTA-vacutainers and
immediately placed in ice-water or into vacutainers
without an anti-coagulant. Non-coagulated blood was
centrifuged within 10 min at 300g to obtain platelet-rich
plasma (PRP). After withdrawing an adequate sample
of PRP for catecholamine analysis and platelet count-
ing, samples were centrifuged again for 10 min at
3000g to obtain platelet-poor plasma (PPP). Serum
was collected after 30 min coagulation, by centrifuga-
tion at 1500g, 10 min, at room temperature. All samples
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were stored at �80 �C prior to analysis. Plasma cate-
cholamines were extracted by adsorption to aluminium
oxide (Smith et al., 1985) and analysed by HPLC
(Merck Hitatchi LaChrom system, Darm-Stadt, Ger-
many) with electrochemical detection. Catecholamines
were separated on a LiChroCART LiChrospher 100
RP-18 250-4 column (Merck, Darm-Stadt, Germany)
using sodium acetate buffer (pH 4.8) and methanol
(8.5 vol%) as eluents (Candito et al., 1996). Enzymatic
degradation of adrenaline in platelet-rich plasma leading
to lower values than in platelet-poor plasma (Pintar and
Breakefield, 1982) could not be ruled out and the results
are not reported here. Cortisol concentrations in serum
samples were determined using a competitive enzyme
immunoassay kit designed to measure cortisol in serum
(R&D Systems, Abingdon, United Kingdom). Serum
samples were diluted 8-fold, processed and analysed by
absorbance reading at 405 nm, according to the manu-
facturer’s procedure.

3. Analysis

Mean values for each 10-min period were calculated
for all physiological recordings. The time-course of the
physiological response to the stress was further charac-
terised by three test – baseline summary-variables for
each modality; early response (the difference between
the mean of the first 10 min of the stressful task and
the mean of the UIR period), late response (the differ-
ence between the mean of the last 10 min of the stressful
task and the mean of the UIR period), and average
response (the difference between the average of the
whole stressful task and the mean of the UIR period).
We found no side · group effect for the finger skin blood
flow neither when comparing the left and right side
(F11(2,82) = 1.78 p = 0.175) or when comparing the
most painful side with the contralateral side
(F11(2,66) = 3.19, p = 0.728) , and thus only the average
values of the right and left side are reported.

Pain, tension and fatigue responses were defined as
the difference between the maximal value during the
60 min stress period and the value reported immediately
before starting the test (0 min). Regional pain responses
were defined as the response on the most painful side in
that region. The highest pain response irrespective of
location was defined as the maximal pain response.
The relationship between physiological responses and
pain recovery was evaluated by categorizing in two sub-
groups; those subjects who did recover to baseline
(0 min) pain after the 30 min rest period in the anatomic
location with the highest pain response, and those who
did not. Calculations of heart rate and blood pressure
responses were not possible on two healthy controls
and four SNP patients because of technical problems
and the respiration signal was corrupted in seven

healthy controls, one FMS patient and two SNP
patients.

3.1. Statistics

Between-group comparisons were done with the
ANOVA repeated measurements technique with time
as within-subject factor (eleven different time intervals)
and patient groups as between-subjects factor (group)
if not otherwise specified explicitly. To evaluate the
response during the stressful task and the development
in the recovery period more specifically we also per-
formed ANOVA repeated measures with seven intervals
(baseline and 0–60 min) and three intervals (65–95 min).
When the group factor was significant we applied three
two-group posthoc ANOVAS (controls vs. FMS, con-
trols vs. SNP, FMS vs. SNP). The response to the stress-
ful task was further evaluated with one-way ANOVA
with posthoc Tukey test on the response variables (test
– baseline). When analysing for side differences side
was included as an additional within-subject factor.
ANOVA repeated measures with pain recovery as
between-subjects factor was also performed for each
patient group.

The average age was higher for the FMS group than
for SNP group and the controls (see subjects section),
and therefore we corrected for age in all ANOVA
models.

For within-subject comparisons of response magni-
tudes we used paired Student’s t-test for normally dis-
tributed data (physiological variables) and Wilcoxon’s
signed rank test for non-normally distributed data (sub-
jective variables). Correlation coefficients for the rela-
tionship between the physiological response variables
and the pain response were calculated with Spearman’s
rank order correlation. Interval estimates (95% confi-
dence intervals) of the correlation coefficients was calcu-
lated with StatXact 7 (Cytel Software Corporation). All
other analysis was performed with SPSS 14. Two-tailed
p-values less than 0.05 were considered to be significant.

4. Results

All physiological and biochemical measures are sum-
marised in Table 1. Responses relative to baseline (UIR)
are reported in Table 2 (physiological data) and in Table
3 (subjective data).

4.1. Baseline

When comparing the baseline values for the different
physiological recordings the SNP group had a higher
respiration frequency before test than the controls
(p = 0.031, posthoc: SNP/controls p = 0.035; SNP/
FMS p = 0.10, FMS/controls p = 0.96), but the groups

746 K.B. Nilsen et al. / European Journal of Pain 11 (2007) 743–755



Author's personal copy

Table 1
Physiological and biochemical interval parameters

ANOVA test statisticsa

time · group interaction
Controls
Mean (SD)

Fibromyalgia
Mean (SD)

Shoulder/neck
pain Mean (SD)

Heart rate (beats/min) Baseline 71 (9) 72 (6) 73 (10)
F1(2,77) = 0.55, p = 0.58 Feedback 70 (9) 71 (6) 72 (10)
F11(20,730) = 2.86, p < 0.001 0–10 min 75 (11) 73 (7) 74 (9)
F7(12,450) = 3.09, p < 0.001 10–20 min 74 (10) 73 (6) 74 (9)
F3(4,156) = 0.51, p = 0.73 20–30 min 73 (9) 73 (7) 73 (9)

30–40 min 72 (9) 73 (6) 74 (9)
40–50 min 72 (9) 72 (6) 74 (9)
50–60 min 72 (9) 72 (6) 73 (10)
65–75 min 69 (8) 71 (6) 72 (10)
75–85 min 69 (8) 70 (6) 71 (10)
85–95 min 69 (8) 70 (6) 71 (9)

Systolic blood pressure (mmHg) Baseline 111 (16) 109 (16) 109 (23)
F1(2,77) = 0.55, p = 0.58 Feedback 112 (16) 109 (17) 110 (21)
F11(20,720) = 1.87, p = 0.26 0–10 min 127 (18) 118 (18) 121 (22)
F7(12,450) = 1.29, p = 0.22 10–20 min 123 (17) 118 (20) 119 (23)
F3(4,154) = 0.73, p = 0.57 20–30 min 123 (16) 121 (22) 120 (22)

30–40 min 124 (16) 122 (18) 121 (20)
40–50 min 124 (15) 122 (20) 122 (20)
50–60 min 125 (16) 124 (19) 125 (20)
65–75 min 123 (15) 122 (16) 123 (18)
75–85 min 122 (15) 119 (18) 121 (23)
85–95 min 124 (15) 121 (17) 126 (16)

Diastolic blood pressure (mmHg) Baseline 63 (12) 58 (10) 60 (13)
F1(2,77) = 2.33, p = 0.10 Feedback 64 (11) 60 (9) 62 (12)
F11(20,720) = 2.06, p = 0.004 0–10 min 73 (14) 65 (12) 67 (12)
F7(12,450) = 1.86, p = 0.037 10–20 min 71 (12) 64 (10) 67 (12)
F3(4,154) = 0.66, p = 0.62 20–30 min 71 (11) 67 (11) 67 (13)

30–40 min 72 (11) 68 (10) 69 (11)
40–50 min 71 (10) 67 (9) 69 (11)
50–60 min 72 (10) 68 (10) 70 (12)
65–75 min 72 (9) 70 (9) 70 (10)
75–85 min 70 (9) 67 (10) 68 (15)
85–95 min 72 (9) 69 (9) 72 (10)

Respiration frequency (breaths/min) Baseline 15 (3) 15 (3) 17 (3)
F1(2,72) = 3.64, p = 0.031 Feedback 15 (2) 16 (3) 17 (3)
F11(20,710) = 0.59, p = 0.92 0–10 min 17 (3) 15 (3) 18 (4)
F7(12,432) = 2.38, p = 0.99 10–20 min 16 (3) 15 (2) 18 (4)
F3(4,142) = 0.82, p = 0.51 20–30 min 16 (2) 16 (3) 18 (4)

30–40 min 16 (3) 16 (3) 18 (4)
40–50 min 16 (3) 16 (3) 18 (4)
50–60 min 16 (3) 15 (3) 18 (5)
65–75 min 14 (2) 14 (3) 16 (4)
75–85 min 14 (2) 14 (3) 16 (4)
85–95 min 14 (3) 15 (2) 17 (3)

Finger skin blood flow (arbitrary units) Baseline 277 (122) 275 (95) 290 (100)
F1(2,83) = 0.14, p = 0.87 Feedback 305 (128.1) 278 (91.8) 298 (91.5)
F11(20,810) = 1.11, p = 0.33 0–10 min 238 (129) 230 (95) 253 (87)
F7(12,498) = 2.02, p = 0.021 10–20 min 240 (140) 205 (99) 246 (100)
F3(4,162) = 2.42, p = 0.051 20–30 min 241 (135) 188 (105) 236 (99)

30–40 min 237 (134) 190 (106) 228 (111)
40–50 min 226 (138) 177 (109) 221 (105)
50–60 min 217 (128) 163 (103) 205 (93)
65–75 min 203 (112) 194 (129) 211 (98)
75–85 min 219 (119) 178 (105) 199 (92)
85–95 min 200 (113) 168 (104) 190 (93)

(continued on next page)
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were not different on baseline regarding the other phys-
iological and biochemical variables (Table 1).

4.2. Response to the stressful task

Heart rate, blood pressure, finger skin blood flow and
respiration frequency is illustrated in Fig. 1. ANOVA
repeated measures analysis with all three groups

included revealed differences between groups in develop-
ment (time · group factor) of diastolic blood pressure
(p 6 0.037) and heart rate (p < 0.001; Table 1). When
comparing two and two groups these time · group
within-subjects effects (F11 and F7) were most clear when
comparing the FMS patients to controls (diastolic blood
pressure Fs P 2.57, p 6 0.019, heart rate FsP 2.98,
p 6 0.002) and more heterogenic when comparing the

Table 1 (continued)

ANOVA test statisticsa

time · group interaction
Controls
Mean (SD)

Fibromyalgia
Mean (SD)

Shoulder/neck
pain Mean (SD)

Noradrenaline PPP (10�2 nM) Baseline 175 (81) 165 (61) 153 (48)
F2(2,65) = 1.26, p = 0.29 After 60 min 157.6 (50) 173 (62) 150 (40)

Noradrenaline PRP (10�2 nM) Baseline 258 (88) 254 (81) 233 (57)
F2(2,64) = 6.0, p = 0.004 After 60 min 254 (75) 284 (85) 219 (55)

Adrenaline PPP (10�2 nM) Baseline 245 (97) 241 (67) 238 (113)
F2(2,62) = 0.20, p = 0.82 After 60 min 217 (67) 209 (83) 218 (74)

Cortisol 10�1 ng/ml Baseline 170 (47) 176 (66) 180 (42)
F2(2,52) = 1.32, p = 0.28 After 60 min 109 (43) 107 (46) 138 (46)

Measured at baseline, during feedback aided relaxation, during mental stress (0–60 min) and during the recovery period (65–95 min).
PPP = platelet-poor plasma, PRP = platelet-rich plasma.
a From repeated measures ANOVA models with diagnostic group as between-subjects factor: F11: full model with 11 time intervals, F7: model with

seven intervals during the stressful task (baseline, 0–10 min, . . . ,50–60 min), F3: model with three intervals during recovery (65–75 min, 75–85 min,
85–95 min), F2: model with two time points for biochemical data (baseline, 60 min). F1: One-way ANOVA comparing baseline values between
groups. All models are corrected for age.

Table 2
Physiological responses to the stressful task

Healthy controls
Mean (SD)

Fibromyalgia
Mean (SD)

Shoulder/neck pain
Mean (SD)

ANOVA test statisticsa

Heart rate (beats/min)
Early 4.6 (6.1) 0.5 (3.9) 1.8 (4.5) F(2,77) = 5.47, p = 0.006
Average 2.8 (4.3) 0.1 (3.8) 1.3 (3.1) F(2,77) = 4.00, p = 0.022
Late 1.9 (4.2) �0.6 (4.4) 0.8 (3.0) F(2,77) = 3.20, p = 0.046

Systolic blood pressure (mmHg)
Early 15.5 (12.3) 9.8 (8.1) 13.3 (10.9) F(2,76) = 2.40, p = 0.10
Average 13.2 (7.3) 11.6 (10.0) 13.7 (8.3) F(2,77) = 0.75, p = 0.48
Late 14.2 (8.0) 14.4 (12.9) 17.4 (11.2) F(2,77) = 0.80, p = 0.45

Diastolic blood pressure (mmHg)
Early 10.5 (8.5) 6.3 (6.3) 7.7 (6.3) F(2,76) = 2.44, p = 0.094
Average 9.1 (5.1) 8.2 (4.7) 8.5 (5.1) F(2,77) = 0.21, p = 0.81
Late 9.2 (5.6) 10.2 (6.1) 11.0 (7.7) F(2,77) = 0.61, p = 0.55

Respiration frequency (breaths/min)
Early 1.7 (2.9) 0.5 (3.1) 1.4 (2.9) F(2,72) = 0.039, p = 0.96
Average 1.2 (2.7) 0.5 (2.0) 1.2 (2.5) F(2,72) = 0.082, p = 0.92
Late 0.8 (3.1) 0.2 (3.0) 0.9 (2.6) F(2,72) = 0.081, p = 0.092

Finger skin blood flow (arbitrary units)
Early �38.2 (58) �44.4 (67) �36.4 (64) F(2,83) = 0.25, p = 0.78
Average �43.4 (59.0) �82.3 (69.3) �58.0 (69.9) F(2,83) = 2.59, p = 0.081
Late �59.5 (74) �111.7 (81) �84.6 (73) F(2,83) = 3.30, p = 0.042

Early response = the difference between the mean of the first 10 min of stress and baseline. Baseline = mean of the UIR period. Late response = the
difference between the mean of the last 10 min of the stressful task and baseline. Average response = the difference between the average of the whole
stressful task and baseline. Bold values indicate responses significantly different from 0 (Student’s t-test).
a One-way ANOVA comparing groups, corrected for age.
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SNP group to controls (diastolic blood pressure
Fs P 1.93, p 6 0.075, heart rate Fs P 2.60, p 6 0.018).
Differences were not evident when comparing the two
patient groups except for a barely significantly difference
when comparing the heart rate response during the
stressful task (F7(2,258) = 2.16, p = 0.047), other
Fs 6 1.14, p P 0.33.

Further analysis of the physiological response to the
stressful task was done by comparing the early, average,
and late responses between groups (Table 2). The most
evident result from this analysis was a significantly
reduced early heart rate response in FMS patients com-
pared to the healthy controls (Table 2, p = 0.006, pos-
thoc FMS/controls p = 0.01; SNP/controls p = 0.097;
SNP/FMS p = 0.65) and a trend towards reduced early
diastolic blood pressure response (Table 2; p = 0.094,
posthoc FMS/controls p = 0.096; SNP/controls
p = 0.34; SNP/FMS p = 0.77), indicating a blunted
early cardiovascular response to the stressful task in
the FMS group (Fig. 2). One FMS patient responded
with a large negative heart rate response (Fig. 3), how-
ever, the early heart rate response in the FMS group
was still significantly different from the controls when

Table 3
Subjective responses to the stressful task (maximal VAS value during the stressful task – baseline value)

Controls
Mean (SD)

Fibromyalgia
Mean (SD)

Shoulder/neck pain
Mean (SD)

ANOVA test statisticsa

Maximal pain response 15 (16.1) 28 (24.8) 25 (20.0) F(2,83) = 2.8, p = 0.067
Shoulder pain response 10 (12.6) 19 (23.9) 17 (16.9) F(2,83) = 1.30, p = 0.28
Neck pain response 9 (11.1) 21 (19.6) 20 (20.3) F(2,83) = 3.99, p = 0.022b

Temples pain response 7 (14.0) 15 (17.8) 13 (17.0) F(2,83) = 1.23, p = 0.30
Forehead pain response 6 (11.9) 14 (16.4) 8 (13.0) F(2,83) = 1.60, p = 0.21
Tension response 23 (21.4) 28 (20.3) 24 (21.6) F(2,82) = 0.044, p = 0.96
Fatigue response 27 (24.3) 27 (26.3) 26 (25.1) F(2,82) = 0.074, p = 0.93

Regional responses refer to the most painful side. VAS range 0–100. All responses are significantly different from 0 (Wilcoxon paired test).
a One-way ANOVA (F and p values) comparing groups, corrected for age.
b Posthoc Tukey; FMS/controls p = 0.025, SNP/controls p = 0.033, FMS/SNP p = 0.97.
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this person was excluded from the analysis
(F(2,76) = 4.77, p = 0.011, posthoc FMS/controls
p = 0.026; SNP/controls p 0.085; FMS/SNP p = 0.85).

Furthermore, we found a higher respiration frequency
in the SNP group (Table 1) compared to the two other
groups (between-subject effect for group, all three groups
in the model: F11(2,71) = 4.71, p = 0.012; posthoc two-
group comparisons: SNP/controls F11(1,51) = 7.89,
p = 0.007, SNP/FMS F11(1,44) = 2.20, p = 0.15, FMS/
controls F11(1,46) = 3.65, p = 0.062). We did not find
significant group effects with the ANOVA repeated mea-
sure analysis for other variables with non-significant
time · group interactions.

Analysis of the finger skin blood flow during the
stressful task (baseline, 0–10 min, . . . , 50–60 min) reveals
a significant time · group interaction (Table 1; F7:
p = 0.021). Further analysis with two and two groups
revealed that it is the FMS group who differs from the
controls with less finger skin blood flow during the
stressful task (FMS/controls F7(6,330) = 2.89,
p = 0.009; FMS/SNP = F7(6,294) = 1.75, p = 0.11;
SNP/controls F7(6,366) = 1.12, p = 0.35). It is the late
finger skin blood flow response which is different

between groups (Table 2; p = 0.042; posthoc: FMS/con-
trols = 0.032, FMS/SNP p = 0.41, SNP/controls
p = 0.39), indicating a slowly developing exaggerated
sympathetic activity in vasoconstrictive sympathetic
fibres in acral skin (Fig. 1).

The FMS group also differed from the other groups
in the noradrenaline response (Table 1, p = 0.004), as
noradrenaline in platelet-rich plasma increased during
test in the FMS group (tFMS(16) = �2.2, p = 0.042),
but not in the other groups (tcontrols(24) = 0.46,
p = 0.65; tSNP(25) = 1.23, p = 0.23). We found a higher
level of noradrenaline in platelet-rich plasma after the
stressful task in the FMS group compared to SNP
patients (F(2,64) = 3.38, p = 0.040; posthoc FMS/SNP
p = 0.012; FMS/controls p = 0.37; SNP/controls
p = 0.19) and a trend towards higher cortisol level after
the stressful task for the SNP group compared to con-
trols (F(2,52) = 3.33, p = 0.044, posthoc SNP/controls
p = 0.092; SNP/FMS p = 0.12; FMS/controls
p = 0.99). Correlation analysis did not indicate any rela-
tion between the biochemical response variables and the
physiologic response variables in Table 2.

Analysis of pain, tension and fatigue are reported in
detail in another paper (Nilsen et al., 2006). In short,
the FMS patients reported a higher baseline level of
pain, tension and fatigue compared to healthy controls,
with the SNP patients in an intermediate position.
Although FMS patients reported pain more often than
healthy controls, the analysis did not indicate higher
pain responses in the patient groups. Furthermore, the
number of subjects without pain recovery in the rest per-
iod was higher for both patient groups compared to
controls.

Nevertheless, when looking at the most painful side
in each region (possibly more clinically relevant than
the mean of left and right as reported in the former
study) we find a significant difference between groups
regarding the neck pain response (Table 3, p = 0.022).
However, ANOVA repeated measures analysis of the
pain response (0 min, 10 min, . . . , 60 min) looking at
the most painful side in each region did not indicate
any difference in pain responses (time · group factor)
between groups for any region (F7s(12,480–
498) 6 1.40, p P 0.16, data not tabulated) as in the for-
mer study. Lastly, all subjects reported increased pain,
tension and fatigue during the stressful task (Table 3).

4.3. Relation to pain development

We found an inverse relationship between the heart
rate responses (Table 2) and the maximal pain response
(Table 3) for the FMS group (rs FMS 6 �0.53, p 6 0.009)
as opposed to the other groups (rs SNP P �0.12,
p P 0.58; rs controls P �0.06, p P 0.46), illustrated in
Fig. 3. The correlations between pain in the different
regions (Table 3) and the heart rate responses (Table
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2) were also negative and significant for all four regions
(shoulder, neck, temples, forehead: rs < �0.48,
p < 0.021). Omitting the outlier with negative heart rate
response in the FMS group from the correlation analysis
reduced the strength of the correlations slightly, but all
the abovementioned correlation coefficients remained
significant (rs FMS < �0.46, p < 0.034).

The 95% confidence interval of the correlation coeffi-
cient between the average heart rate response and the
maximal pain response was (�0.202,0.516) for the con-
trols, (�0.871,�0.208) for the FMS group, and
(�0.487,0.326) for the SNP group. Between the early
heart rate response and the maximal pain response the
95% confidence interval of the correlation coefficient

was (�0.402,0.283) for the controls, (�0.839,�0.229)
for the FMS group, and (�0.476,0.308) for the SNP
group, and between the late heart rate response and
the maximal pain response it was (�0.242,0.507) for
the controls, (�0.868,�0.300) for the FMS group, and
(�0.517,0.283) for the SNP group. Thus, non-overlap-
ping confidence intervals were observed for the compar-
ison between the FMS group and controls for the
correlation coefficients between the average heart rate
response and the maximal pain response and between
the late heart rate response and the maximal pain
response.

Those FMS patients who did not recover from the
pain in the following recovery period had lower heart

Table 4
Heart rate responses in subjects with and without pain recovery

ANOVA test statistics a

time · group interaction
Heart rate responses (beats/min)

With pain recovery Mean (SD) Without pain recovery Mean (SD)

Controls
F1(1,30) = 1.41, p = 0.25 Baseline 69 (7.3) 73 (10.5)
F11(10,300) = 0.47, p = 0.91 Feedback 68 (7.6) 71 (9.7)
F7(6,180) = 0.53, p = 0.79 0–10 min 73 (7.6) 78 (14.1)
F3(2,62) = 0.054, p = 0.95 10–20 min 71 (7.8) 76 (11.5)

20–30 min 71 (7.9) 76 (10.4)
30–40 min 71 (7.5) 75 (10.0)
40–50 min 71 (7.8) 74 (10.2)
50–60 min 71 (7.3) 74 (10.0)
65–75 min 68 (6.4) 71 (9.6)
75–85 min 67 (6.6) 71 (9.9)
85–95 min 67 (6.9) 71 (9.3)

Fibromyalgia
F1(1,20) = 2.71, p = 0.11 Baseline 69 (7.8) 74 (4.6)
F11(10,160) = 1.75, p = 0.075 Feedback 70 (8.6) 71 (5.6)
F7(6,108) = 4.00, p = 0.001 0–10 min 72 (9.2) 73 (5.7)
F3(2,36) = 1.28, p = 0.29 10-20 min 71 (7.9) 73 (5.8)

20–30 min 74 (9.2) 73 (5.9)
30–40 min 74 (7.7) 72 (5.7)
40–50 min 72 (6.8) 72 (5.5)
50–60 min 73 (7.4) 71 (5.4)
65–75 min 70 (7.3) 71 (6.1)
75–85 min 69 (7.1) 71 (5.9)
85–95 min 69 (6.3) 71 (6.1)

Shoulder/neck pain
F1(1,21) = 0.56, p = 0.46 Baseline 73 (15.2) 73 (7.3)
F11(10,210) = 0.23, p = 0.99 Feedback 73 (15.7) 72 (7.0)
F7(6,126) = 0.30, p = 0.94 0–10 min 75 (13.3) 74 (7.0)
F3(2,46) = 0.74, p = 0.48 10–20 min 74 (13.7) 73 (7.4)

20–30 min 74 (13.6) 73 (7.3)
30–40 min 74 (14.0) 74 (7.5)
40–50 min 74 (14.3) 73 (7.3)
50–60 min 74 (14.6) 73 (7.8)
65–75 min 73 (16.6) 71 (8.1)
75–85 min 72 (14.7) 71 (7.7)
85–95 min 71 (15.5) 71 (7.0)

Two FMS patients and one SNP patient did not complete the rest period. Eighteen controls recovered from the pain response, 15 did not. Seven FMS
patients recovered from the pain response, 16 did not. Seven SNP patients recovered from the pain, 17 did not.
a From repeated measures ANOVA models with diagnostic group as between-subjects factor. F11: full model with 11 time intervals, F7: model with

seven intervals during the stressful task (baseline, 0–10 min, . . . , 50–60 min), F3: model with three intervals during recovery (65–75 min, 75–85 min,
85–95 min), F1: One-way ANOVA comparing baseline values between groups. All models are corrected for age.
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rate response to the stressful task (baseline, 0–
10 min, . . . , 50 –60 min) than those who recovered from
the pain (Table 4, F7, p = 0.001), a phenomenon not evi-
dent for the two other groups (Fs < 0.53, p > 0.79).
There were no other physiological or biochemical differ-
ences when dividing the subjects in those with and with-
out pain recovery.

In the SNP group we found a significant correlation
between early finger skin blood flow response and the
maximal pain response (rs SNP = 0.52, p = 0.004;
rs FMS = 0.05, p = 0.82; rs controls = 0.06, p = 0.71), i.e.
less pain development for SNP subjects with more vaso-
constriction during the first 10 min of the stressful task.
The SNP group did however not differ from the other
groups in finger skin blood flow response (see above).

No other physiological or biochemical responses cor-
related with the pain response for any of the groups.

5. Discussion

In the present study the cardiovascular response to
low-grade stress was reduced in a group of female
FMS patients compared to healthy controls. The FMS
patients also had a larger finger skin blood flow response
(blood flow decreased more, i.e. more vasoconstriction)
during the 60 min stressful task compared to healthy
controls. Furthermore, the present study demonstrated
a negative association between the heart rate response
and pain development and recovery for the FMS group,
i.e. those FMS patients with a small heart rate response
experienced more pain during the stressful task and did
not recover from the induced pain in the rest period.

The 1-h stress provocation test used in the present
study has in previous studies induced pain in the head
and neck region both in healthy subjects (Bansevicius
et al., 1997) and in patients with headache (Bansevicius
and Sjaastad, 1996; Bansvicius et al., 1999; Leistad et al.,
2006), and the test induces generalised pain in FMS
patients (Bansevicius et al., 2001; Nilsen et al., 2006).
However, the present study is the first where we com-
pare activity in different parts of the autonomic nervous
system with development of pain during low-grade men-
tal stress.

A reduced heart rate response to stress in FMS
patients has also been found by others (van Denderen
et al., 1992; Martı́nez-Lavı́n et al., 1997, 1998; Bou-
Holaigah et al., 1997; Kelemen et al., 1998; Cohen
et al., 2000, 2001), and a review addressing the sympa-
thetic nervous system function in FMS concluded that
available data suggest an attenuated stress response in
FMS patients (Petzke and Clauw, 2000). Others have
postulated a possible connection between reports of a
reduced stress response and the hyperalgesic state of
the FMS patients (Clauw and Chrousos, 1997; Adler
et al., 1999; Okifuji and Turk, 2002). A recent study

found an increased heart rate response (and normal
blood pressure response) during static muscular contrac-
tion with no relation to pain development in FMS
patients, but cognitive stress was not applied (Kadetoff
and Kosek, 2007). We believe that the present study is
the first report of a negative association between pain
development and the heart rate response to a mentally
demanding stressful task in FMS patients.

The diastolic blood pressure response to the stressful
task was also reduced in the FMS group in the present
study. Both normal and pathological blood pressure
response to tilt-test in FMS patients has been reported
by others (Bou-Holaigah et al., 1997; Furlan et al.,
2005). An inverse relationship between pain sensitivity
and resting blood pressure level (hypertension related
hypoalgesia) has been reported (Maixner et al., 1997;
Bruehl et al., 2002). This phenomenon might be rele-
vant, but our data did not indicate that the blood pres-
sure level correlated with the pain response neither for
patients nor controls (correlation data not reported).
However, it must be noted that the present study was
not designed to investigate such a hypothesis.

One explanation for the low cardiovascular early
response to the mental stress in the FMS group could
be less engagement in the stressful task. If so, one could
suspect that the patients had focused their attention
towards potential pain and somatic sensations and not
the stressful task. However, the development of fatigue
and tension during the stressful task was not different
between groups (Nilsen et al., 2006). Perceived tension
(the Norwegian word ‘‘anspent’’) has been reported to
reflect perceived stress including the sensation of auto-
nomic and muscular activation (Holte et al., 2003) and
we used tension as an indirect measure of the level of
stress. Thus the level of stress was assumed to be equal
for all groups in the present study.

One potential confounding factor in the present study
is room temperature, as skin blood flow is an integral
part of temperature regulation. However, the room tem-
perature in our laboratory was kept within very strict
limits. Our analysis also indicates no differences between
groups regarding room temperature (F11(2,65) = 0.72,
p = 0.49, data not tabulated), and the increased finger
skin blood flow response in the FMS group showed no
correlation to room temperature (rs = 0.14, p = 0.53).
Moreover, the increase in finger skin blood flow seen
in the first 10 min of the rest period indicates that the
reduced finger skin blood flow in the FMS group is
related to the stressful task, and not a temperature effect.

Our finding of both a low cardiovascular response
and an enhanced finger skin vasoconstrictive response
in the FMS patients may seem contradictory. However,
because of the specificity and differential effect on differ-
ent target organs of the autonomic nervous system (Sved
et al., 2001; Jänig and Häbler, 2003; Gibbins et al.,
2003), different magnitude and even different direction
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of responses in different target organs are not surprising.
Low-grade stress elicited different response patterns in
different organs also in an extended analysis of the con-
trol group (unpublished data). Our results also suggest
that in the fibromyalgia group the sympathoneural sys-
tem (regulating skin blood flow) is de-coupled from the
hypothalamo-pituitary-adrenocortical system and the
adrenomedullary system because noradrenaline
increased during the test while cortisol and adrenaline
decreased in the fibromyalgia group.

Other studies investigating the skin blood flow
response to stress in FMS patients have used briefer
and more intense stress periods (Vaerøy et al., 1989;
Qiao et al., 1991; Bennett et al., 1991; Lapossy et al.,
1994; Jeschonneck et al., 2000) and not mental stress
as a stimuli as in the present study. We believe this is
the first study reporting increased acral skin vasocon-
striction to mental stress in FMS patients.

We are furthermore not aware of any other reports of
increased respiration frequency in this patient group.

The SNP patients seem to be in an intermediate posi-
tion between the FMS patients and the controls both
regarding the physiological responses and regarding
the difference in heart rate response for those with and
without pain recovery in the rest period. This may imply
that the two patient groups share pathological mecha-
nisms, but that FMS patients are more affected. On
the other hand, if our findings are a result of chronic
pain, the intermediate position of the SNP patients
may simply imply that our FMS patients have experi-
enced more pain than the SNP patients.

The results of the present study do not support find-
ings of general hypocortisolism in FMS patients (McC-
ain and Tilbe, 1989) or in persons with chronic shoulder/
neck pain (for review see Heim et al., 2000). Cortisol lev-
els were similar in the three groups before the test and
were almost identical after test in FMS patients and con-
trols. However, we found a trend towards higher corti-
sol after test in SNP patients as compared to controls,
and according to the ‘‘ı́ntermediate’’ hypothesis dis-
cussed above, it is still possible that the results in FMS
patients represent a relative hypoactivity compared to
an earlier stage in disease progression (inverse U
principle).

Regarding the possible mechanisms for the pain
induced in our model with low-grade stress, we have ear-
lier shown that muscle activity during stress does not
correlate with the induced pain in patients with FMS
and chronic shoulder/neck pain (Nilsen et al., 2006).
Although speculative, at least two other different mech-
anisms may be relevant.

First, the autonomic nervous system may influence
pain perception by a coupling between efferent sympa-
thetic fibres and afferent nociceptive fibres named ’sym-
pathetically maintained pain’ (Jänig and Häbler, 2000;
Baron et al., 2002). In a placebo-controlled study FMS

patients were more prone to develop pain after subcuta-
neously injected noradrenaline than rheumatoid arthri-
tis patients and healthy controls (Martinez-Lavin
et al., 2002). Pain worsening during a mentally demand-
ing stressful task as in the present study may thus be
hypothesised to be a direct result of efferent sympathetic
activity. It is possible that this mechanism is partially
relevant for the late part of the pain response in FMS
patients because noradrenaline increased and acral skin
blood flow decreased. On the other hand we found no
correlation between finger skin blood flow and pain
within the FMS group, and the association between pain
response and vasoconstriction was negative in the SNP
group. Sympathetic activation of muscle, not measured
in our study could however be more important for
stress-induced muscle pain.

Second, abnormalities in the central stress response
network may include or affect central pathways for pain
modulation (Clauw and Chrousos, 1997). One form of
central endogenous pain modulation, diffuse noxious
inhibitory control (DNIC) (Villanueva and Le Bars,
1995), has been shown to be deficient in FMS patients
(Kosek and Hansson, 1997; Lautenbacher and Rollman,
1997). Different FMS patients may thus have different
causes of peripheral nociception, although they may
have a common defect in the physiological reaction to
stress leading to a hyperalgesic state where non-painful
stimuli may be interpreted as painful (i.e. allodynia).

Stress-induced analgesia (SIA) is a similar mechanism
for pain modulation (Willer et al., 1981). Our finding of
an inverse relationship between pain development and
the heart rate response in the FMS group suggest
reduced SIA for the FMS patients. Because reduced pain
recovery suggest central sensitisation of pain (Gottrup
et al., 2003), our finding of a reduced heart rate response
among those FMS patients who did not recover from the
induced pain suggest a relationship between reduced SIA
and increased central sensitisation of pain.

Furthermore, our finding of an inverse relationship
between pain development and the heart rate response
in the FMS group bridges earlier reports of reduced
sympathetic response to stress (Petzke and Clauw,
2000) with reports of reduced endogenous pain inhibi-
tion (Kosek and Hansson, 1997; Lautenbacher and
Rollman, 1997) and increased central sensitisation
(Sörensen et al., 1998; Staud et al., 2001, 2003, 2004)
in FMS patients.

We did neither include a control task without cogni-
tive stress nor different levels of task difficulty because
we did not aim to disentangle the relative impact of
the different aspects of a stressful task (i.e. position,
movement, task type etc.). Our intention was to com-
pare these different groups in a setting which is as close
as possible to stressful and repetitive office-work. Add-
ing a second ‘‘sham’’ test on a separate day or an
extension of the time in the laboratory with another
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90 min was not feasible. The abrupt change in physio-
logical values and subjective ratings shortly after test
onset suggest that the task is much more relevant than
e.g. the sitting position. Motor activity in this test is
minimal and we believe that task-related mental stress
is the likely significant factor. It would be interesting
to investigate the effects of task type and task difficulty
in a future study.

In conclusion, FMS patients had a smaller cardiovas-
cular response, but a larger finger skin vasoconstrictive
response to 1 h low-grade stress, compared to healthy
controls. SNP patients seem to be in an intermediate
position between the FMS patients and the controls
regarding the physiological responses. A smaller heart
rate response to the stressful task was associated with
a higher and longer lasting pain response for the fibro-
myalgia group, suggesting that a reduced autonomic
response to mental stress is associated with increased
central sensitisation of pain in FMS patients, possibly
a result of reduced stress-induced analgesia.
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