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SUMMARY 

 

Disturbance of neuronal metabolism has implications for a 

number of neurological and psychiatric conditions, and enhanced 

knowledge of this is important in developing new methods for treating 

such disorders. The present research was undertaken to aid 

understanding of diseases related to disturbance in glutamate and    

γ-amino butyric acid (GABA) metabolism.  

 Two different types of neuronal cell cultures were used in these 

studies; one containing GABAergic neurons of cerebral neocortical 

origin and one containing cerebellar neurons. The latter consists 

primarily of glutamatergic granule neurons in addition to ~6 % 

GABAergic neurons and a small number of astrocytes. Metabolism was 

studied by 13C magnetic resonance spectroscopy (MRS) and mass 

spectrometry (MS) after adding 13C-labeled precursors                  

([1-13C]glucose, [U-13C]glutamate or [U-13C]glutamine) to the 

medium of these cultures. High performance liquid chromatography 

(HPLC) was used to quantify different amino acids in cell extracts and 

medium. The amount of protein in the cultures was determined to 

assess cell damage. 

 In the cerebellar neuronal cultures, GABA was present in 

surprisingly large amounts compared to neocortical GABAergic 

cultures. 13C MRS experiments showed that GABA was actively 

synthesized throughout the culture period by the subpopulation of 

glutamate decarboxylase (GAD) positive (GABAergic) neurons and 

subsequently distributed to the other cells in the culture, i.e. to the 

granule neurons. The function of GABA in these glutamatergic neurons 

still remains uncertain; however, roles as neurotrophic and 

neuroprotective agent as well as substrate for energy production have 

been suggested. 
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As shown previously, both glutamate and glutamine were 

shown to be excellent precursors for intermediary metabolism in 

cerebellar neurons. However, it was concluded that glutamate was 

preferred over glutamine, suggesting that these neurons rely more on 

reuptake of released glutamate than of supply of glutamine from 

astrocytes for glutamate homeostasis. This is not surprising when 

considering the cerebellar structure, with few astrocytes compared to 

neurons and a relatively large distance between astrocyte and 

synapse.   

Exposure of cerebellar cultures to 50 μM kainic acid (KA), a 

potent glutamate agonist, which is known to eliminate vesicular 

release of GABA in these cultures, only marginally affected glutamate 

and GABA metabolism, whereas increasing the KA concentration to 

0.5 mM led to a reduction of both GABA and glutamate metabolism 

compared to unexposed cultures. It was previously believed that 

treatment with 50 μM KA eliminated the GABAergic neurons in 

cerebellar cultures, and KA has therefore been added in order to 

obtain essentially pure glutamatergic granule cell cultures. Although 

KA treatment abolishes vesicular GABA release, the GABA 

synthesizing cells are not eliminated by this treatment and still 

produce GABA in substantial amounts.  

Results from the present studies can only be understood in 

terms of inter- and intracellular compartmentation of metabolism. The 

main focus of metabolic compartmentation studies has been on the 

two compartments made up by neurons and astrocytes. One pathway 

previously believed to take place in the astrocytic but not in the 

neuronal compartment, is the pyruvate recycling pathway for 

complete tricarboxylic acid (TCA) cycle oxidation of glutamate. 

Despite this, in one of the present studies, such recycling was clearly 

present in both astrocytic and neuronal cultures from cerebellum. 
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1 INTRODUCTION 

 

1.1 Medical Aspects of Neuronal Metabolism 

 

Normal energy metabolism in the brain has several unusual 

features compared to other organs, and disturbance of this 

metabolism is considered important in many brain disorders (Balázs et 

al., 2006). One of the features of normal brain function is the high 

metabolic rate; in fact, the brain is one of the most metabolically 

active organs in mammals, illustrated by the fact that despite 

constituting modest 2 % of the total body mass, the brain accounts 

for an astounding 20 % of the resting body’s oxygen consumption 

(McKenna et al., 2006a). This oxygen is almost exclusively used for 

oxidation of glucose (Sokoloff, 1960), the main energy source of the 

brain. Under extraordinary conditions, like prolonged starvation, the 

mature brain can adapt to using ketone bodies produced in the liver 

from fat to cover some of the energy needs (Stryer, 1995b). 

Nevertheless, the brain is not very flexible when it comes to energy 

substrates compared to other organs and is critically dependent on 

aerobic metabolism of glucose (Dugan and Kim-Han, 2006; 

McKenna et al., 2006a). Another feature is the limited intrinsic 

energy stores of the brain. Although some glycogen can be stored, 

mainly in astrocytes (Pfeiffer-Guglielmi et al., 2003; McKenna et al., 

2006a), the brain has no significant energy reserve. It has been 

estimated that if glycogen was the only source of fuel, it would be 

consumed in a few minutes (McKenna et al., 2006a). Thus, the brain 

is dependent on a constant supply of glucose and oxygen via the 

blood.  

The dependence of a constant blood supply carrying glucose 

and oxygen makes the brain particularly vulnerable to ischemic injury 
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(Dugan and Kim-Han, 2006). This is most often seen as a disruption 

of blood supply to a part of the brain caused by a thromboembolic 

occlusion of an intracranial artery, commonly known as a stroke 

(Smith, 2004). This is the most common neurological disorder in 

terms of both morbidity and mortality (De Girolami et al., 1999). 

When the blood flow, and thereby the energy supply, to the brain is 

impaired, ATP levels decreases, which in turn affects the active ion 

pumps, such as the Na+/K+ ATPase. The ion gradients over the cell 

membrane, and thus the membrane potential will be disrupted, and 

the neurons are depolarized (Smith, 2004; Balázs et al., 2006; Dugan 

and Kim-Han, 2006). This causes a cascade of events ultimately 

leading to cell death. With the reduction of cerebral blood flow in 

ischemia, the extracellular glutamate concentration is substantially 

elevated (Smith, 2004). This leads to excessive activation of 

excitatory amino acid receptors, in particular glutamate receptors, 

causing cell death, a mechanism referred to as excitotoxicity (Olney, 

1978).  

A role for excitotoxicity has been implicated in the etiology of 

many neurodegenerative diseases, including Alzheimer’s disease, 

Parkinson’s disease and amyotrophic lateral sclerosis (ALS) (Mattson, 

2003; Balázs et al., 2006). Excessive or prolonged activation of 

specific glutamate receptors results in a rise in intracellular Ca2+ 

concentration, triggering a cascade of intracellular events culminating 

in neurodegeneration. Different types of neurons have different 

vulnerability to excitotoxicity, depending on their receptors, Ca2+ 

permeability and ability to handle an increase in intracellular Ca2+ 

(Balázs et al., 2006). The glutamatergic N-methyl-D-aspartate 

(NMDA) receptors are the primary receptors activating excitotoxicity 

because of their high permeability to Ca2+, although other glutamate 

receptors can initiate excitotoxicity by allowing excessive Ca2+ entry. 

Studies have shown that cytoplasmic Ca2+ is insufficient to cause 
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neuronal death in itself, and that mitochondrial Ca2+ accumulation is 

essential for excitotoxic cell death (Stout et al., 1998; Nicholls et al., 

2003). Ca2+ causes mitochondria to generate reactive oxygen species, 

and this oxidative damage can initiate cell death. Diseases such as 

Alzheimer’s disease, Parkinson’s disease and ALS are accompanied by 

increased oxidative stress, and in these patients, neurons are more 

susceptible to excitotoxic death (Balázs et al., 2006). Thus, 

excitotoxicity contributes to oxidative stress, which in turn reduces 

the threshold for excitotoxicity, leaving cells more vulnerable to 

injury. This is one of the reasons why excitotoxicity contributes to 

many neurodegenerative diseases. Knowledge of regulation of 

glutamate receptors in Alzheimer’s disease, Parkinson’s disease and 

ALS have resulted in clinically efficacious drugs and new therapeutic 

medications are continually being developed (Mattson, 2003).  

Another common neurological disorder is epilepsy, 

characterized by recurrent, spontaneously occurring seizures with 

symptoms caused by abnormal excessive or hypersynchronous 

neuronal activity in the brain (Blume et al., 2001; Fisher et al., 2005). 

The epileptic seizure is a pathophysiological process characterized by 

a synchronous activation of a large group of neurons in the brain. This 

may be caused by a disturbance in the fine-tuned balance between 

excitatory glutamatergic and inhibitory GABAergic neurotransmission, 

a theory supported by the fact that inhibition of γ-amino butyric acid 

(GABA) synthesis and administration of GABA antagonists and 

glutamate agonists induce seizures (Bradford, 1995; Hosford, 1995). 

Studies of glutamate and GABA contents in epileptogenic brain tissue 

have shown contradictory results. An increased level of glutamate 

compared to GABA in superfusates and microdialysates from 

hyperactive focal tissue was presented by Bradford, (1995), whereas 

Aasly et al. (1999) showed an increased GABA concentration in brain 

tissue from epilepsy surgery. This indicates that a high concentration 
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of GABA in tissue not necessarily provides protection against seizures. 

Activation of glutamate receptors is essential for seizure activity and 

mediates excitotoxic neuronal damage and death (Balázs et al., 

2006). Antiepileptic drugs such as phenobarbital, phenytoin and 

carbamazepine work by suppressing excitability by different 

mechanisms.  

Glutamate and glutamate receptors also appear to have a role 

in several non-degenerative neurological and psychiatric disorders. 

One example is schizophrenia, a psychiatric disorder characterized 

by psychosis, impaired perception or expression of reality (positive 

symptoms) and by significant social dysfunction (negative symptoms) 

(Morrison and Murray, 2005). For decades, theories and treatment of 

schizophrenia have focused on dopaminergic neurons. However, in 

recent years it has been suggested that glutamatergic neuro-

transmission is also involved in the pathophysiology of this disease 

(Carlsson et al., 2001; Carlsson et al., 2004; Balázs et al., 2006; 

Kondziella et al., 2006). Numerous in vivo and ex vivo studies have 

shown disturbances of glutamate signaling in schizophrenia patients 

(for review, see de Bartolomeis et al., 2005). This supports the 

glutamate hypofunction theory, which focuses on the NMDA receptors. 

Pharmacological inhibition of these receptors leads to a state with 

positive and negative symptoms resembling those of schizophrenia 

(Rujescu et al., 2006). Levels of glutamine have been shown to be 

altered in patients experiencing their first episode of schizophrenia 

(Theberge et al., 2002), whereas in postmortem brain biopsies of 

schizophrenic patients, a reduction of glutamine synthetase (GS), the 

enzyme catalyzing the formation of glutamine from glutamate, was 

reported (Burbaeva et al., 2003). The recent advances in knowledge 

on glutamate involvement in schizophrenia pathophysiology pave the 

way for new pharmacological strategies in treating schizophrenia (de 

Bartolomeis et al., 2005; Balázs et al., 2006).        
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In order to understand the pathophysiological mechanisms, a 

premise for the development of pharmacological treatment of these 

diseases, basic research on neuronal metabolism is of importance. 

 

 

1.2 The Cells of the Brain 

 

The functional unit responsible for transmitting and processing 

information in the nervous system is the neuron (De Girolami et al., 

1999; Augustine, 2004). These are cells anatomically and functionally 

specialized for transmission of electrical and chemical signals. 

However, in the cerebrum the neurons are greatly outnumbered by 

the other main cell type of the brain, the glia (Nedergaard et al., 

2003). During phylogenetic development, the glia to neuron ratio has 

increased at the same time as the cerebrum and especially the 

cerebral cortex has expanded in size (Karlen and Krubitzer, 2006). 

The human brain has the largest neocortical surface relative to brain 

size and the highest glia to neuron ratio of all land mammals, which 

can suggest that glial cells play important roles in higher cognitive 

functions (Nedergaard et al., 2003). In contrast to the cerebrum, the 

cerebellum is one of the most evolutionary primitive brain regions. In 

the cerebellum, the neurons greatly outnumber the glial cells 

(Andersen et al., 1992). This is because of the numerous 

glutamatergic granule cells, in fact this single cell type is by far the 

most numerous neuronal cell type in the brain. It has been calculated 

that the human cerebellum consists of approximately 105 x 109 

granule cells (Andersen et al., 1992), whereas the number of neurons 

in the neocortex is approximately 20 x 109 (Pakkenberg and 

Gundersen, 1997; Gredal et al., 2000).     
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1.2.1 Neurons and Neurotransmission (Augustine, 2004) 

The intracellular signal of the neuron is an electric impulse 

caused by ion movement across the cell membrane. This action 

potential propagates from its point of initiation at the cell body and 

runs down the axon to the nerve ending, where the neuron forms 

synapses with other cells, either neurons or effector cells (muscle- or 

glandular cells). In the nerve ending the electrical signal is 

transformed to a chemical signal consisting of neurotransmitters, 

which lead the signal to the next cell.  

Chemical transmission between neurons involves synthesis, 

storage, release, receptor binding, and inactivation (including 

uptake or reuptake) of the transmitter substance. The 

neurotransmitter is first formed and stored in vesicles where it is 

protected from enzymatic degradation. When the neuronal cell 

membrane is depolarized by an action potential, the vesicles release 

the transmitter to the synaptic cleft. The transmitter molecules diffuse 

passively in the synaptic cleft between the two cells and bind to 

receptors typically on the postsynaptic cell. Receptor binding leads to 

a change in the cell membrane’s permeability to one or more ions, 

and the membrane potential of the postsynaptic cell can temporarily 

be changed. An excitatory impulse will cause membrane 

depolarization and decrease the membrane potential, whereas an 

inhibitory impulse will lead to membrane hyperpolarization and 

increase the membrane potential. The direction of the change in 

membrane potential is determined by the neurotransmitter and the 

receptor it binds to. Since most neurons are innervated by thousands 

of synapses, the postsynaptic effects of each active synapse can be 

added together in space and time, and determine whether the 

postsynaptic neuron will generate a new action potential or not. 

Excitatory impulses are mainly transferred through the 

neurotransmitter glutamate. Binding of glutamate to receptors on 
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the postsynaptic neuron brings it closer to the threshold for triggering 

of an action potential. Inhibitory impulses are mainly caused by the 

neurotransmitter GABA. Under influence of GABA, the postsynaptic 

neuron will be brought further away from the action potential 

threshold, and thus GABA works against the formation of an action 

potential. 

There are two main types of receptors, ionotropic, ligand-

gated ion channels, and metabotropic receptors. On the ionotropic 

receptors, the binding site is located on the ion channel itself, and 

these receptors therefore transfer fast postsynaptic signals. The 

metabotropic receptors have an indirect connection between binding 

site and ion channel through second messengers. These receptors 

have a modulating effect by increasing or decreasing the probability 

for an action potential to be triggered by the sum of postsynaptic 

signals. In addition to receptors on the postsynaptic neuron, there are 

autoreceptors responding to the neurotransmitter released from the 

neuron itself and modulating release or synthesis.  

After receptor binding the transmitter is inactivated, either 

actively (through enzymatic degradation (e.g. acetylcholine), reuptake 

into the presynaptic neuron or uptake in glia) or passively (by 

diffusion).  

Chemical neurotransmission thus involves five steps; 

synthesis, storage, release, receptor binding and inactivation, each a 

potential target for pharmacological modulation. 

 

1.2.2 Glia 

 Historically, glial cells were considered a type of passive 

connective tissue, which provided structural support to the neurons, 

which were considered to be the only true functional cells of the brain. 

Today, glial cells are recognized as partners to neurons in virtually 
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every function of the brain, and as participants in the pathophysiology 

of the dysfunctional or diseased brain (Nedergaard et al., 2003).  

There are three main types of glial cells in the brain; 

microglia, oligodendrocytes and astrocytes (the last two are 

sometimes referred to as macroglia). Microglia are derived from 

macrophages and serve a phagocytic function in the brain. 

Oligodendrocytes produce myelin in the central nervous system 

(CNS). Myelin consists of multiple layers of oligodendrocyte 

membranes wrapped concentrically around one or more axons, acting 

like insulation allowing the action potentials to be conducted at high 

speed. The astrocytes’ main task is regulation of the chemical 

environment of the brain. These glial cells have endfeet surrounding 

the blood vessels in the brain. The astrocytes interact with the 

vasculature to form a gliovascular network, which has been subject 

for intense research activity the past decade (Nedergaard et al., 

2003). It has been suggested that astrocytes influence the integrity of 

the blood-brain barrier consisting of the endothelial cells connected 

with tight junctions (Ransom et al., 2003). This barrier keeps many 

substances from entering the brain, and is one of the ways the brain 

is protected against potentially harmful substances. Astrocytes also 

envelop synapses in the CNS, preventing neuroactive transmitters 

from moving freely in the brain, and play an important role in 

inactivation of these and other substances through efficient uptake 

and conversion into other substances. These glial cells also play a 

significant role in supplying neurons with a number of metabolites and 

precursors for amino acid neurotransmitters. This is described in the 

following section.  

 

1.2.3 Neuronal-Glial Interaction and Compartmentation 

 In this thesis, metabolism is studied in vitro in cell cultures 

consisting of mainly one cell type (Hertz et al., 1985). By analyzing 
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the metabolites in different cell types separately, useful information 

can be provided. However, it is important to acknowledge that the in 

vivo situation is different from in vitro. Brain tissue is a metabolically 

heterogeneous system including two distinct compartments consisting 

of neurons and glia (van den Berg et al., 1969; Berl and Clarke, 1983; 

McKenna et al., 2006a). There is an extensive exchange of 

metabolites between the two cell types, and this is essential for 

normal brain function.  

 A component of the compartmentation is that astrocytes 

contain a different set of enzymes than neurons. They can 

therefore supply neurons with substrates the neurons themselves are 

unable to synthesize. Pyruvate carboxylase (PC) is for example 

present only in glia (Yu et al., 1983; Shank et al., 1985), and this 

enables these cells to convert pyruvate to oxaloacetate (OAA), which 

is part of the tricarboxylic acid (TCA) cycle. Neurons are depending on 

a flux of precursors for TCA cycle intermediates from astrocytes. 

Without this the TCA cycle in neurons would be drained of carbon 

atoms because neurons have no net synthesis of TCA intermediates, 

and by releasing the neurotransmitters glutamate and GABA carbon 

atoms derived from the cycle are lost.  

Another astrocyte specific enzyme is glutamine synthetase 

(GS), and thus glutamine is only produced in astrocytes (Norenberg 

and Martinez-Hernandez, 1979), but is exported to a great extent to 

neurons, where it is an important precursor for amino acids, such as 

glutamate and GABA (Schousboe et al., 1977; Sonnewald et al., 

1993; Schousboe, 2003; McKenna et al., 2006a). This constitutes the 

basis for the “glutamate-glutamine-GABA cycle” (Berl and Clarke, 

1969; van den Berg and Garfinkel, 1971; Benjamin and Quastel, 

1975; Berl and Clarke, 1983; for review see Bak et al., 2006), which 

is discussed later, and in detail in paper 3.    
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1.3 Transport and Metabolism of Glucose, Glutamate and GABA 

 

1.3.1 Glucose 

 As mentioned, the brain is one of the most metabolically active 

organs in mammals, and glucose is the brain’s main energy source 

(McKenna et al., 2006a). Delivery of glucose from the blood to the 

brain requires transport across the blood-brain barrier. This is 

facilitated by glucose transporter proteins (GLUTs). Three of these 

proteins have been established as cell specific transporters in 

mammalian brain (Vannucci et al., 1997). Firstly, two isoforms of 

GLUT1, the 55 kDa and 45 kDa isoforms, which are primarily detected 

in endothelial cells of the blood-brain barrier and in astrocytes, 

respectively (Maher et al., 1994; Maher, 1995). Secondly, GLUT3, 

which is a neuronal glucose transporter and lastly GLUT5, which is 

exclusively expressed in microglia of the human and rat brain (Payne 

et al., 1997). 

 Inside the cells, glucose (C6H12O6) is eventually converted to 

carbon dioxide (CO2) and water (H2O) in three phases, this oxidation 

generates energy in the form of ATP (Stryer, 1995c; McKenna et al., 

2006a). In glycolysis, occurring in the cytoplasm of the cell, glucose 

is divided into two C3-fragments in the form of pyruvate. The latter 

can be converted to lactate, alanine or acetyl coenzyme A (acetyl 

CoA), which can be processed in the TCA cycle. This cycle takes place 

in mitochondria, and produces reducing equivalents for oxidative 

phosphorylation. In addition to energy production, the TCA cycle also 

supplies carbon skeletons for the synthesis of metabolites such as 

glutamate and GABA. The last phase of metabolism, the one 

generating the most ATP, occurs in the inner membrane of the 

mitochondria and is called the electron transport chain. In this 

aerobic catabolism of one glucose molecule in the brain a total of 36 

molecules of ATP are produced (Stryer, 1995c). 



Glutamate and GABA: Major Players in Neuronal Metabolism 

 

 11 

 

1.3.2 Glutamate 

Glutamate is an excitatory amino acid mediating fast 

excitatory synapse responses in the CNS (Storm-Mathisen et al., 

1983; Fonnum, 1984). It is widespread in all of the CNS and the brain 

contains large amounts, about 5-15 mmol per kg wet weight, 

depending on the region (Schousboe, 1981). In addition to being the 

most important excitatory neurotransmitter, glutamate has an 

important metabolic function.  

Glutamate does not cross the blood-brain barrier, and is thus 

produced from glucose within the brain itself (Gruetter et al., 1994; 

McKenna et al., 2006a). There are mainly two mechanisms for 

synthesis of glutamate. The amino acid can be formed from the TCA 

cycle intermediate α-ketoglutarate by transamination (catalyzed by 

one of the aminotransferases, most commonly aspartate 

aminotransferase (ASAT) or alanine aminotransferase (ALAT)) or 

reductive amidation (catalyzed by glutamate dehydrogenase (GDH)). 

The other mechanism of glutamate synthesis is conversion from 

glutamine synthesized in glial cells and exported to neurons where it 

enters mitochondria, where the enzyme phosphate activated 

glutaminase (PAG) catalyzes the reaction (Kvamme et al., 2000; 

Kvamme et al., 2001). Regulation of the transmitter pool of glutamate 

and the availability of this pool is based on an elaborate interaction 

between neurons and glia.  

After synthesis, glutamate is stored in synaptic vesicles in high 

concentrations and released to the synapse after increase in 

intracellular calcium following depolarization of the nerve ending. The 

release is modulated by a metabotropic auto-receptor on the 

presynaptic neuron. The concentration of glutamate in the synapse 

can rise from 2-5 µM before release to as much as 50-100 µM after 

depolarization.      
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There are both ionotropic and metabotropic glutamate 

receptors. The ionotropic glutamate receptors located on the 

postsynaptic neuron are divided into three classes; the NMDA 

receptor, the AMPA receptor and the KA receptor. These subtypes 

are named after the first synthetic agonists, which bound strongly and 

relatively specific to them, N-methyl-D-aspartate, α-amino-3-

hydroxy-5-methyl-isoxazole-4-propionic acid, and kainic acid, 

respectively. Binding of glutamate to one of these receptors can lead 

to depolarization of the membrane of the postsynaptic neuron.  

In papers 1 and 4, cell cultures were exposed to the potent 

glutamate agonist kainic acid (KA), binding to the KA and AMPA 

classes of ionotropic receptors (Lerma, 1998). KA injection has been 

used as an epilepsy model and the effects of KA have previously been 

studied both in animals and cell cultures, increasing the knowledge of 

the epileptogenesis (Ben-Ari and Cossart, 2000). Animals injected 

with KA (systemic or intracerebral) have seizures resembling complex 

partial epileptic seizures (Ben-Ari, 1985; Sperk, 1994; Bradford, 

1995; Muller et al., 2000; Qu et al., 2003). The synchronized neuronal 

hyperactivity starts in the CA3-region of the hippocampus and spreads 

to other limbic structures. The seizures are followed by cell loss 

comparable to the cell loss seen in patients with temporal lobe 

epilepsy (Nadler, 1981). Some time after the injection (weeks to 

months), the animals develop spontaneous epileptic seizures, thus 

they develop epilepsy (Ben-Ari, 1985; Leite et al., 2002).  

In cell cultures, KA has shown effects on survival of neurons; 

however, these effects are not fully understood (Balázs et al., 1990; 

Kato et al., 1991; Jensen et al., 1999; Drian et al., 2001). The 

complexity is illustrated by KA having a trophic effect with increased 

survival of cerebellar neurons in culture at low doses, whereas high 

doses are toxic to these cells (Balázs et al., 1990). Studies have also 

shown that KA has different, even opposite, effects on neurons in 
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different developmental stages (Frandsen and Schousboe, 1990; 

Drian et al., 2001;). In papers 1 and 4, KA effects on cell survival and 

metabolism in neuronal cultures were studied. 

The receptors are, as previously mentioned, named after their 

synthetic agonists. It is of great value that also glutamate receptor 

antagonists are known. This makes selective inhibition of receptors 

possible. In papers 3, 4 and 5, cell cultures were incubated in medium 

containing [U-13C]glutamate in order to study glutamate metabolism. 

In these experiments glutamate receptor antagonists DNQX (6,7 

dinitroquinoxaline-2,3(1H,4H)-dione, an AMPA/kainate-selective 

glutamate receptor antagonist), and D-AP5 (D-2-amino-5-

phosphonopentanoic acid, which inhibits the NMDA receptor), were 

added to the incubation medium of the cell cultures to avoid toxic 

effects of glutamate during incubation (Frandsen et al., 1989). 

As mentioned, a high glutamate concentration has neurotoxic 

effects, and it is of critical importance to keep the extracellular 

glutamate concentrations low. Glutamate receptors are widespread, 

and can be found on most of the cellular elements (dendrites, nerve 

endings, neuronal cell bodies as well as glial cells) in the brain. After 

release glutamate can diffuse out of the synaptic cleft and interact 

with glutamate receptors in other locations than the postsynapse, and 

it is therefore important to remove the transmitter from the cleft after 

release. This is mainly done by uptake through sodium dependent 

glutamate transporters in the cell membranes of astrocytes 

surrounding the synapse (for review, see Danbolt, 2001). Five distinct 

high affinity subtypes of glutamate (excitatory amino acid) 

transporters are at present identified; EAAT1 (GLAST), EAAT2 (GLT), 

EAAT3 (EAAC), EAAT4 and EAAT5. EAAT1 and EAAT2 are responsible 

for most of the glutamate uptake, and until recently they were 

believed to be found exclusively on astroglia. However, Danbolt et al. 

(2006) reported that in hippocampal slices, about 15 % of EAAT2 was 
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distributed in nerve terminals and axons, and that neuronal glutamate 

reuptake through these was quantitatively significant. EAAT3 is 

present in several types of neurons as well as in glia, particularly in 

oligodendrocytes (Conti et al., 1998). EAAT4 is expressed mainly in 

the purkinje cells of the cerebellum, while EAAT5 is found in the retina 

(Arriza et al., 1997).  

Glutamate taken up by astrocytes can be metabolized to 

glutamine by the above mentioned astrocyte specific enzyme 

glutamine synthetase (GS). Glutamine can then be released from the 

astrocytes and taken up in the nerve ending of the glutamatergic 

neuron, where it once again is converted to glutamate by the enzyme 

PAG. Thus, a recycling of the neurotransmitter called the glutamate-

glutamine cycle based on neuronal-glial interaction occurs (see 

above). This cycle is the main subject of paper 3 and is illustrated in 

Figure 1.1. 

 
FIGURE 1.1 Glutamate is formed from α-ketoglutarate in the TCA cycle and from 

glutamine synthesized in astrocytes. After release to the synaptic cleft, glutamate is 

taken up in astroglia and converted to glutamine, which can be exported back to 

neurons, where it can be converted to glutamate again. This glutamine-glutamate cycle 

thus involves both neurons and glia.  
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Glutamate can also be converted to α-ketoglutarate, which can 

be further processed in the TCA cycle for production of energy or 

intermediate metabolites in both astrocytes and neurons. 

 

1.3.3 GABA       

GABA is, like glutamate, an amino acid neurotransmitter, but 

whilst glutamate is excitatory, GABA is the most abundant inhibitory 

neurotransmitter in the brain (Storm-Mathisen, 1974; Storm-Mathisen 

et al., 1983). GABA is mainly formed by decarboxylation of glutamate, 

a process catalyzed by the enzyme glutamate decarboxylase 

(GAD), which exists in two isoforms, GAD65 and GAD67. GAD65 appears 

to be targeted to membranes and axonal regions including nerve 

endings, and has been hypothesized to preferentially synthesize GABA 

for vesicular release (Waagepetersen et al., 1999; Waagepetersen et 

al., 2001), whereas GAD67 is more widely distributed throughout the 

cell. GAD has been detected in various GABAergic neurons, but also in 

glutamatergic hippocampal granule cells (Schwarzer and Sperk, 1995; 

Gutierrez and Heinemann, 2006). However, the role of GABA in these 

cells is yet to be understood. The study of GABA in glutamatergic 

cerebellar neurons is discussed in papers 1, 2, 3 and 4. 

It should be noted that there are other possible pathways of 

GABA synthesis. It can be formed from putrescine in two ways; by 

oxidative deamination catalyzed via diamine oxidase and by 

transformation into monoacetylputrescine which then undergoes 

deamination via monoamine oxidase. However, this GABA synthesis 

pathway has been shown to be insignificant in the brain (Seiler, 

1980). Also in paper 2, it was shown that GABA in cerebellar neuronal 

cultures was not synthesized by this pathway.  

 When the presynaptic GABAergic neuron is depolarized, GABA 

is released from vesicles to the synaptic cleft by exocytosis 

(Augustine, 2004). The transmitter molecules cross the cleft by 
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passive diffusion and are bound to receptors on the postsynaptic 

neuron. The most important postsynaptic GABA receptor is the 

GABAA-receptor, an ionotropic receptor where the GABA binding 

sites are located on the alpha subunits. When GABA is bound to the 

receptor, Cl- ions flow into the cell, and the postsynaptic membrane is 

hyperpolarized (Augustine, 2004). The GABAA receptor is a target for 

a number of pharmacological agents, for example benzodiazepines 

and various anesthetics. Auto regulation of GABAergic neurons is 

mainly mediated through metabotropic GABAB receptors in the 

presynaptic cell membrane. A third receptor, the presynaptic 

ionotropic GABAC receptor is also described. 

 The effect of GABA is rapidly terminated by reuptake of the 

transmitter into the presynaptic neuron and to a lesser degree uptake 

by surrounding astrocytes (Schousboe, 1981; Borden, 1996; 

Schousboe, 2003) via GABA transporters (GAT). Four subtypes of 

transporters have so far been identified; GAT-1, primarily present on 

GABAergic neurons and to a lesser extent in astrocyte membranes, 

GAT-2, GAT-3 and the low affinity subtype BGT-1. The antiepileptic 

agent tiagabine inhibits GAT-1 (Borden, 1996), and thus increases the 

GABA concentration in the synaptic cleft, making more GABA available 

to the receptors. GABA taken up in the nerve terminal can be stored 

in vesicles and used again. Another option for intracellular GABA is 

conversion via GABA aminotransferase (GABA-T) to succinic 

semialdehyde, which is subsequently oxidized to succinate in the 

GABA shunt (Balázs et al., 1970). GABA-T can be inhibited by γ-vinyl-

GABA (GVG) and aminooxyacetic acid (AOAA) (Wu and Roberts, 1974; 

Lippert et al., 1977). AOAA can also inhibit GAD and a number of 

transaminases when present in high concentration (Wu and Roberts, 

1974). In paper 2, GVG and AOAA were added to the medium of 

cerebellar neuronal cultures.  
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Succinate formed from GABA can be utilized for energy 

production or formation of intermediate metabolites in the TCA cycle, 

for example α-ketoglutarate which can be converted to glutamate and 

glutamine (the latter only in astrocytes). Glutamine can be transferred 

from the astrocyte back to the neuron, where it can be converted to 

glutamate in the mitochondria via the enzyme PAG. Glutamate can 

also be converted to α-ketoglutarate and thus enter the TCA cycle of 

the neuron or be transformed into GABA again by the enzyme GAD. 

Figure 1.2 shows the GABA recycling, and its involvement of both 

neurons and astrocytes (Sonnewald et al., 1993). 

 

 
FIGURE 1.2 GABA is produced in neurons from glutamate, which either comes from α-

ketoglutarate in the TCA cycle or from glutamine transferred from astroglia. After 

release to the synaptic cleft, GABA is taken up in neurons and glia via transporter 

proteins. Inside the neuron, the transmitter can be stored in vesicles and be re-used, or 

succinate from GABA can be metabolized in the TCA cycle of both neurons and 

astrocytes.  
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2 OBJECTIVES 

  

Disturbance of neuronal metabolism has implications for a 

number of neurological and psychiatric conditions, and enhanced 

knowledge of this will hopefully lead to new methods for treating such 

disorders. The present research was undertaken to aid understanding 

of diseases related to disturbance in glutamate and GABA metabolism. 

 

The specific questions addressed were the following:  

 

Glutamate and glutamine 

• It is known that glutamate and glutamine serve as substrates 

for intermediary metabolism in cerebellar neurons. Is there a 

substrate preference between these two amino acids? 

• Is glutamate and glutamine metabolism in cerebellar neurons 

affected by long-term exposure to KA? 

• The pyruvate recycling pathway has been shown to operate in 

astrocytes. Is it also active in cultured neurons from 

cerebellum? 

 

GABA   

• Is GABA present in cerebellar neuronal cultures, and if so, how 

is the concentration compared to that in neocortical neuronal 

cultures?  

• If GABA is present in these neurons, how does it get there; is it 

taken up from serum in the medium or is it synthesized by the 

cerebellar neurons (GABAergic and/or glutamatergic)?  

• If it is synthesized, what is the mechanism and time course 

throughout the culturing period for this synthesis? 

• Does long-term KA exposure affect GABA synthesis in these 

cultures?  
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3 METHODS 

 

3.1 Neuronal Cell Cultures 

 

 Cell cultures represent an important in vitro method in 

neurobiology, and primary cultures of neurons from cerebral cortex 

and cerebellum from mice are frequently used as models for studying 

basic physiological mechanisms as well as pathological conditions and 

pharmacological intervention (Schousboe et al., 1985). Primary 

cultures are prepared by taking cells directly from an organism, in 

contrast to cultures from cell lines which originate from one individual 

cell or a group of cells, often from tumors. The advantage of primary 

cultures is that they consist of “normal” diploid cells and thus their 

properties and metabolism more closely resembles that of the 

corresponding cells in vivo than do cell lines (Hertz et al., 1985). 

 In order to obtain viable cells, timing is crucial. Tissue must be 

at the developmental stage which favors cultivation of the preferred 

cell type. For neuronal cultures, the tissue must be at a proliferating 

or early post-mitotic stage (Hertz et al., 1985). The reason for this is 

that older neurons with established axons and dendrites will be more 

vulnerable to mechanical damage during the culture preparation. 

Different CNS cells are ready for cultivation at different ontogenetic 

stages. In mice, neurogenesis is nearly completed at the time of birth, 

with a few exceptions, one of them being interneurons in cerebellar 

cortex. Granule neurons are such cerebellar interneurons which 

develop approximately from day two until 15 after birth. The 

cerebellar neuronal cultures, consisting of about 90 % glutamatergic 

granule neurons, are therefore prepared from tissue taken from 

seven-day-old mice (Messer, 1977; Schousboe et al., 1989). A 

photomicrograph of cerebellar neurons in culture is shown in Figure 
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3.1. Neuronal cultures from cerebral cortex consisting mainly of 

GABAergic interneurons, are established with tissue from 15-day-old 

mouse fetuses (Drejer et al., 1987; Hertz et al., 1989). 

  

 
FIGURE 3.1 Photomicrograph of cerebellar neurons cultured for seven days. The 

majority of the cells are glutamatergic granule neurons characterized by their small size 

and the presence of granules in the cell body. The bar represents 0.100 mm. 

 

In the present studies, cerebellar neuronal cultures are used in 

all papers, whereas neocortical cultures in addition are used in paper 

1. The cultures are prepared by dissecting out the brain region of 

interest, i.e. cerebral cortex or cerebellum. The tissue then undergoes 

a multiple step purification, first it is finely cut with a razorblade. 

Subsequently the tissue is trypsinized followed by trituration in a 

DNase solution containing a trypsin inhibitor from soybeans. The steps 

of chemical and mechanical division result in single cells in 

suspension, which is transferred to a Dulbecco’s minimum essential 

medium (DMEM). The medium contains 31 mM glucose and 10 % 
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(v/v) fetal calf serum (FCS), which has been through heat inactivation 

of the complement system. The cell suspension is seeded in poly-D-

lysine coated Petri dishes after adjustment of cell density based on 

cell counting. Poly-D-lysine has an electrostatic attraction of 

negatively charged cell membranes, which gives high affinity for 

neurons and makes it easier for these cells to attach to the dishes. 

The cultures are incubated at 37 °C in 95 % atmospheric air with 5 % 

CO2.   

The presence of glia in neuronal cultures is unfortunate 

because these cells will proliferate and thus displace the neurons. In 

order to reduce the content of non-neuronal cells in the culture, the 

cytotoxic chemical cytosine arabinoside is added to the culture 

medium 24-48 hours after preparation. The proliferation of dividing 

cells like glia will be inhibited by this treatment, whereas neurons are 

at a post-mitotic stage and not dividing at this point in time, and will 

therefore not be affected (Hertz et al., 1985). Despite the cytotoxic 

treatment, some glial cells are present in the neuronal cultures. 

Approximately 5 % of the cells in the cerebellar neuronal cultures are 

glial cells (Messer, 1977). 

 In the present studies the cell cultures were exposed to 

different chemical substances and extracted after various days in vitro 

as described in the papers. In the extraction procedure, the cultures 

are divided into three fractions; medium, cell extract and protein. 

Different parameters were analyzed in medium and cell extract, and 

the protein amount was quantified as described later. 
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3.2 Identification of Metabolites and Metabolic Pathways by MRS 

 

3.2.1 MRS in Neurobiological Research 

 Magnetic resonance spectroscopy (MRS) is a method that can 

be used to detect metabolites and map metabolic pathways in cells. It 

has a number of advantages in studies of cell metabolism. The atomic 

nuclei most frequently used in metabolic MR research are 1H, 31P and 
13C (for review, see Bachelard and Badar-Goffer, 1993). 

 1H and 31P have a high natural abundance, and are often used 

for studying differences in concentration of biological compounds 

under different metabolic conditions. In contrast to these nuclei, 13C 

has a natural abundance of only 1.1 %. This makes detection difficult, 

and 13C MRS is of limited use in studies of endogenous metabolites 

unless the compounds occur in large amounts. The low natural 

abundance of 13C can, however, be used as an advantage in the study 

of metabolic pathways (Cerdan and Seelig, 1990; Bachelard and 

Badar-Goffer, 1993; Sonnewald et al., 1994). 13C-labeled precursors 

can be added to cell cultures or be injected into animals or humans, 

and MRS can be used to detect and quantify 13C atoms and their 

position in different metabolites are detected and quantified. Thus, 

metabolic pathways can be monitored with little background 

interference from endogenous metabolites. As a result, 13C MRS is an 

important tool in analyzing brain metabolism and the metabolic 

trafficking between different cellular compartments.      

 

3.2.2 Basic MR Theory (Derome, 1987; Hornak, 1997) 

 The background for magnetic resonance spectroscopy is the 

phenomenon of nuclear magnetic resonance. MR was first discovered 

in 1946 by Felix Bloch and Edward Purcell, and for this work they were 

jointly awarded the Nobel price in physics in 1952 (Hornak, 1996). 

The phenomenon is based on the nuclear magnetic momentum of the 
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atom, and the nuclear resonance arises when the nuclei of certain 

atoms are situated in a static magnetic field and in addition are 

exposed to an oscillating magnetic field.  

 Only those nuclei which possess the quality called “spin” can 

experience this phenomenon. Individual unpaired electrons, protons 

and neutrons possess spins of ½. This means that spin can have 

values that are multiples of ½, and spin can be positive or negative. 

Two or more particles with spin in opposite direction can neutralize 

the observable effect of the spin, and these particles will not be 

detectable by MRS. The nucleus of the 12C-atom (which constitutes 

most of the natural carbon) has a spin of 0, and cannot be detected, 

whereas the nucleus of the 13C-atom contains six protons and seven 

neutrons, and has a net spin of ½.   

 Nuclei with spin behave like small magnets, which point in 

different directions. If an externally applied magnetic field is imposed, 

the nuclei will orientate themselves with respect to the direction of the 

field to minimize their energy and point in one of two possible 

directions, either in the same direction as the magnetic field, which is 

the lower energy position (E1) or opposite to the magnetic field 

(antiparallel), which is a position of higher energy (E2). The nuclei will 

precess around its own axis with a certain frequency called the Larmor 

frequency.  

In addition to the static magnetic field (B0), an oscillating 

magnetic field (B1) in the form of electromagnetic waves (radio 

waves) is applied perpendicular to B0. This adds energy to the system, 

and makes some of the nuclei in the low energy position change to 

the high energy position, as illustrated in Figure 3.2. This excitation 

can only happen if the frequency of the radio waves matches the 

energy difference, ΔE, between the two energy levels. The energy 

difference and thus the resonance frequency, is different for different 

nuclei, there can only be resonance for one type of nucleus at the 
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time. 13C has a resonance frequency of 10.71 MHz per Tesla, where 

Tesla (T) denotes the strength of the magnetic field. 

 

 
FIGURE 3.2 In a static magnetic field, B0, the 13C nuclei will behave like small magnets, 

illustrated by arrows. They will orientate themselves in a position with low energy, E1, 

or in a position with high energy, E2. The difference between the two energy levels is 

ΔE. When energy in the form of radio waves is added, B1, some of the spins will be 

excited and change direction to the high energy position, as shown on the right. 

 

 When the oscillating magnetic field B1 is turned off, the system 

is in a high energetic, unstable state. The system will return to the 

equilibrium state in a process called spin relaxation, where the excited 

spins are restored to their low energy position. In this process electric 

current is generated in a detection coil as a signal called the Free 

Induction Decay (FID). The procedure of applying electromagnetic 

waves with the right frequency is repeated numerous times, and the 

FID signals are stored in a computer. The FID spectra are acquired in 

the time domain and cannot be analyzed directly. Through the 

mathematical operation known as the Fourier transformation, the FID 

spectra are therefore converted into MR spectra in the frequency 

domain. Under the right circumstances the area under each peak in 

the MR spectra is directly proportional to the number of nuclei, and 

thus to the concentration of the different compounds. In the present 

experiments, lyophilized cell extracts were redissolved in D2O 

containing 0.10% ethylene glycol as an internal standard. The MR 
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analyses were done using different instruments; details are given in 

papers 1 and 5.           

       

3.2.3 13C MRS (Derome, 1987; Hornak, 1997) 

 The resonance frequency of the 13C nucleus is determined by 

the strength of the magnetic field, as described previously (10.71 MHz 

per Tesla). In addition, the structure of the molecule containing the 
13C-atom and the atoms surrounding the 13C influence the resonance 

frequency. This means that there are slightly different Larmor 

frequencies for the same nuclear type in different positions within a 

molecule. The reason for this is that the electrons also work as 

magnets which affect the nuclei. The electrons in the chemical bonds 

give rise to magnetic fields which can locally modify the external 

magnetic field. The carbon nucleus will for example have a higher 

affinity for the electrons than the hydrogen nucleus in a C-H bond. 

The carbon nucleus is referred to as shielded, and the resonance 

frequency of the 13C nucleus is decreased. In a C=O bond, the 

situation is opposite, the oxygen nucleus has the highest electron 

affinity, the 13C nucleus becomes unshielded and the Larmor 

frequency is increased. The fact that different carbon atoms will have 

a slightly different frequency because of their chemical environment is 

called chemical shift. This makes it possible to distinguish between 

different metabolites and also different nuclei within each metabolite 

as they appear in specific locations in the spectrum. This can be seen 

in Figure 3.3, showing an MR spectrum of cell extracts from cerebellar 

neuronal cultures incubated in medium containing [U-13C]glutamate. 
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FIGURE 3.3 A 13C NMR spectrum of cell extracts from cerebellar neuronal cultures 

incubated in medium containing [U-13C]glutamate, for details see paper 5. Peak 

assignments: (1) malate C-2, (2) ethylene glycol (internal standard), (3) glutamate C-

2, (4) aspartate C-2, (5) malate C-3, (6) aspartate C-3, (7) glutamate C-4, (8) 

glutamate C-4 in glutathione, (9) glutamine C-4, (10) glutamate C-3, (11) glutamine C-

3. 

  

Looking at the MR spectrum in Figure 3.3 it can be seen that 

the peaks have different configurations, most of them are multiplets 

consisting of more than one peak with different heights. This is 

because magnetic nuclei also are influenced by surrounding magnetic 

nuclei. This can be a nucleus of the same (homonuclear coupling) or a 

different kind (heteronuclear coupling). If a 13C atom only has 12C 

neighboring atoms, it is observed as a single peak (a singlet) in the 

spectrum. However, if it has one or two 13C neighboring atoms, it will 

be represented as a doublet, a triplet or a doublet of doublets. The 

splitting occurs because the labeled neighbors will influence the first 
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13C atom, changing the spin-spin coupling constant (J) or the 

frequency separation, between the different peaks in a multiplet. This 

is illustrated in Figure 3.4 taken from paper 5 of a part of an 13C MR 

spectrum from cell extracts of cerebellar neurons after incubation with 

[U-13C]glutamate, for details see paper 5.  

 
FIGURE 3.4 Part of a 13C MR spectrum of cell extracts from cerebellar neuronal cultures 

incubated in medium containing [U-13C]glutamate, for details see paper 5. The 

aspartate C-3 multiplet and the isotopomers responsible for the configuration of the 

peaks are shown. The effect of homonuclear 13C-13C coupling can be seen by the 

difference in coupling constants (given in Hz). ● represents 13C and ○ represents 12C 

atoms. No information can be obtained about labeling in the C-1 position indicated by 

broken gray lines. 

 

13C nuclei will also be affected by neighboring protons 

(heteronuclear coupling), because these nuclei posses spin. This leads 

to splitting of the peaks in an MR spectrum. To avoid this splitting, the 

protons are exposed to radio waves around their Larmor frequency, so 

that the same number of protons are in the low (E1) as in the high 

(E2) energy position, and by this operation the spectra become proton 

decoupled. When energy is added to the system to decouple the 
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protons, ΔE for the 13C nucleus increases and some of the carbon 

peaks (those representing 13C atoms bound to protons) in the 

spectrum appear artificially large. This is called the nuclear 

Overhauser effect (nOe), and when quantifying the peaks, the values 

must be adjusted for this effect.       

 By adding 13C labeled precursors such as [1-13C]glucose, [U-
13C]glutamate or [U-13C]glutamine to neuronal cell cultures, the cells 

will incorporate the 13C-compounds in their metabolism. Using 13C 

MRS, the different metabolites in which 13C has been incorporated can 

be identified and quantified. In addition the method can be used to 

distinguish between 13C-labeling in different positions in the 

metabolites.  

 

 

3.3 Mass Spectrometry 

 

3.3.1 Detection of 13C Labeling in Metabolites by MS  

 Mass spectrometry (MS) coupled to a separation method can 

also be used to obtain information about 13C labeling in different 

metabolites (Biemann, 1962). The advantage of using MS is that it is 

far more sensitive than MRS. In cell extracts from cerebellar neurons 

incubated for two hours with [U-13C]glutamate or [U-13C]glutamine it 

was possible to detect labeling in glutamate, glutamine, GABA and 

aspartate in addition to the TCA intermediates malate, succinate, 

fumarate and citrate. When six of the same cell extract samples were 

pooled together and analyzed by 13C MRS, only labeling in glutamate, 

glutamate incorporated into glutathione, glutamine, aspartate, and 

occasionally malate was seen (Figure 3.3). On the other hand, the 

disadvantage of MS compared to MRS is that it only gives the percent 

distribution of different masses (M (the mass of the parent ion), M+1 

(the mass of the parent ion plus 1 unit of molecular weight (Dalton) 
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corresponding to one atom of 13C), M+2, M+3, etc.) of the metabolite 

isotopomers, whereas the position of the 13C atoms within the 

molecule is not detected by this method as it is by MRS.    

 

3.3.2 Basic GC/MS Theory (McMaster and McMaster, 1998) 

Mass spectrometry is often used in combination with gas 

chromatography (GC/MS). In experiments described in papers 3, 4 

and 5, cell extract samples were lyophilized, redissolved in 10 mM 

HCl, adjusted to pH<2 and dried under atmospheric air. The amino 

acids were extracted into an organic phase of ethanol and benzene 

and dried again under atmospheric air before derivatization with 

MTBSTFA (N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide) + 

1% t-BDMS-Cl (tert-butyldimethylchlorosilane) as described by 

Mawhinney et al. (1986). The cell extract sample is then injected into 

the injection port of the GC, where it is immediately vaporized and 

carried to the column by the carrier gas. It is important that the 

carrier gas is inert and does not react with the sample or column, and 

for this reason helium was used in the present studies. The column 

used was a capillary column coated with silica (Varian WCOT fused 

silica 25 m x 0.25 mm ID coating CP-Sil 5CB-MS). The various 

components in the cell extract sample travel through the column at 

different speeds based on their chemical and physical characteristics 

(mass, shape, interaction with column surface, etc.), and they are 

separated. Each component ideally produces a specific peak which 

appears in the chromatogram after a characteristic retention time.      

After separation of the different metabolites in the cell extracts 

by GC, MS is used to separate molecules of the same metabolite with 

different masses (M, M+1, M+2, etc.), i.e. different isotopomers of 

each metabolite. The gas carrying the separated metabolites is let into 

the ionization chamber where a beam of electrons is accelerated with 

a high voltage. The molecules in the sample are shattered into ionized 
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fragments upon collision with the high voltage electrons. The charged 

fragments are electrically focused into an intense ion beam which 

enters the quadrupole analyzer. The electrically charged poles of the 

quadrupole create an electromagnetic field, and the ion beam is 

forced into a corkscrew, three-dimensional sine wave. Across the 

quadrupole rods a combined field of direct current and an oscillating 

radio frequency signal is applied. This interrupts the paths of all ions 

except for those with one specific mass to charge ratio. A mass 

spectrum is obtained by scanning through the mass range of interest 

over time. When using the instrument’s SCAN mode, the whole mass 

range is scanned. However, when knowing which masses to look for, 

the instrument is set to scan over a very small mass range, the 

selected ion monitoring (SIM) mode. The narrower the mass range 

the more specific the SIM assay. The method used in the present 

studies was developed using the SCAN mode for analyzing standard 

solutions of individual compounds to determine the retention time and 

the masses of interest for the compounds. When this was done, a SIM 

method was set up with retention time windows in which the 

instrument was set to scan over a few masses in order to enhance 

sensitivity. After being selected in the quadrupole, the charged 

particles travel in a curved path towards the detector, and on the way 

the charge is amplified through collisions with the detector surface.   

The computer linked to the GC/MS instrument gives a plot of 

relative abundance against the mass to charge ratio value of the ions. 

An example of two gas chromatograms and mass spectra is shown in 

Figure 3.5. The peaks are integrated and the percentage of mono-, 

double-, triple labeling etc. in a compound is calculated after 

correction for natural abundance determined in a standard solution of 

unlabeled compounds. However, as mentioned earlier, this method 

does not differentiate between isotopomers containing the same 

number of 13C atoms in different positions. 
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FIGURE 3.5 Parts of gas chromatograms (top) and mass spectra (bottom) from a 

standard solution of unlabeled compounds (left) and a sample of cell extract from 

cerebellar neuronal cultures incubated for two hours in medium containing 0.25 mM [U-
13C]glutamate, for details see paper 3. The chromatograms show the malate, aspartate 

and glutamate peaks, and the mass spectra show masses M (unlabeled) to M+5 

(uniformly labeled) for glutamate. 
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3.4 13C Labeling Patterns 

 

Understanding the labeling patterns from 13C labeled 

precursors involves knowledge about cell metabolism. This can be 

found in a biochemistry textbook, for example the one written by 

Stryer (1995a) 

 

3.4.1 Labeling from [1-13C]glucose 

 In papers 1 and 2, neuronal cell cultures prepared for MRS 

analysis were cultured in medium containing [1-13C]glucose for the 

whole culture period. Glucose is the most important substrate for 

neuronal metabolism, and the metabolites made from this labeled 

glucose, will contain 13C and thus be detectable by 13C MRS. In order 

to interpret the MR-spectra and understand the results obtained from 

these spectra, it is necessary to know the relevant metabolic 

conversions of [1-13C]glucose. This is illustrated in Figure 3.6. 

 
FIGURE 3.6 Metabolism of [1-13C]glucose in neurons. ● represents 13C and ○ represents 
12C atoms. PDH is the enzyme pyruvate dehydrogenase which catalyzes the reaction 

from pyruvate to acetyl-CoA. *Unlabeled pyruvate will have the same conversions as [3-
13C]pyruvate, but the products will not be detectable by 13C MRS. 
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Through glycolysis, [1-13C]glucose is converted to two 

pyruvate molecules. One of them will contain a 13C-atom in the third 

position ([3-13C]pyruvate), whereas the other one will contain only 
12C-atoms (the natural abundance of 13C of 1.1 % is not taken into 

consideration). [3-13C]pyruvate can be converted to [3-13C]lactate or 

[3-13C]alanine. Alternatively, [3-13C]pyruvate may enter the 

tricarboxylic acid cycle via pyruvate dehydrogenase (PDH) as [2-
13C]acetyl-CoA. In the TCA cycle, [2-13C]acetyl-CoA is combined with 

oxaloacetate (OAA) and converted through several steps to α-

ketoglutarate with 13C-labeling in the C-4 position, which may leave 

the TCA cycle and form [4-13C]glutamate, which in turn can be 

converted to [2-13C]GABA. 

If α-[4-13C]ketoglutarate does not leave the cycle, it will (after 

several steps) appear as [2-13C]oxaloacetate (OAA) or [3-
13C]oxaloacetate (because succinate, one of the intermediate 

compounds between α-ketoglutarate and OAA in the TCA cycle, is a 

symmetrical molecule). 13C-labeled OAA can be converted to [2-
13C]aspartate or [3-13C]aspartate by transamination, or condense with 

a new acetyl-CoA-molecule, labeled or unlabeled with 13C (from 

labeled or unlabeled pyruvate), and make a second turn in the TCA 

cycle. If 13C-labeled OAA reacts with unlabeled acetyl-CoA, the 

resulting labeling (after several steps) in glutamate and GABA is [2-
13C]- and [3-13C]glutamate and [3-13C]- and [4-13C]GABA. If 13C-

labeled OAA reacts with [2-13C]acetyl-CoA, [2,4-13C]- and [3,4-
13C]glutamate and [2,4-13C]- and [2,3-13C]GABA are formed. The 

labeling [1-13C]glucose in glutamate and GABA after one and two 

turns in the TCA cycle is shown in Figure 3.7.  

After more turns in the TCA cycle and reactions between 

molecules with and without 13C-atoms in different positions, the 

possibilities are many for 13C-labeling of the different metabolites, and 
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the picture becomes more complicated than shown in Figures 3.6 and 

3.7. 

 

 
FIGURE 3.7 Labeling of 13C in glutamate and GABA from [1-13C]glucose in the first and 

second turn of the TCA cycle. ● represents 13C and ○ represents 12C atoms. 

  

3.4.2 Labeling from [U-13C]glutamate and [U-13C]glutamine  

 In papers 3, 4 and 5, neuronal cell cultures from cerebellum 

were incubated in medium containing [U-13C]glutamate or [U-
13C]glutamine. When taken up by the neurons, the latter can be 

converted into the former, and from here on the labeling patterns are 

the same for the two precursors. [U-13C]glutamate can together with 

cysteine and glycine form the tripeptide glutathione (GSH). The 

labeled glutamate incorporated in glutathione can be identified by 13C 

MRS; its peaks will appear in a different location in the spectrum than 

free glutamate (Figure 3.3). Another possibility for [U-13C]glutamate 
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is conversion into [U-13C]GABA catalyzed by the enzyme GAD. [U-
13C]GABA could not be detected in cell extracts by MRS after two 

hours incubation in medium containing [U-13C]glutamate. However, 

using MS, the M+4 isotopomer of GABA (representing [U-13C]GABA) 

was detected. A third option for [U-13C]glutamate is the formation of 

α-[U-13C]ketoglutarate, which is metabolized in the TCA cycle. After 

several steps in the TCA cycle, labeled α-ketoglutarate is turned into 

[U-13C]oxaloacetate, which can condense with unlabeled acetyl CoA to 

form [3,4,5,6-13C]citrate. The resulting glutamate isotopomer (after 

several steps) is [1,2,3-13C]glutamate formed from α-[1,2,3-
13C]ketoglutarate. This first turn for [U-13C]glutamate in the TCA cycle 

is shown in Figure 3.8.  

 
FIGURE 3.8 Metabolism of [U-13C]glutamate in neurons. ● represents 13C and ○ 

represents 12C atoms. Glutathione is a tripeptide, and the black box is representing 

labeled glutamate, while cysteine and glycine are amino acids without 13C labeling, 

represented by white boxes.  
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 If α-[1,2,3-13C]ketoglutarate does not leave the TCA cycle as 

[1,2,3-13C]glutamate, but continues its voyage in the cycle, 13C 

labeling is distributed amongst the TCA cycle intermediates as 

presented in Figure 3.9.    

 
FIGURE 3.9 Schematic representation of possible isotopomers of metabolites arising 

from [U-13C]glutamate or [U-13C]glutamine via the three first turns in the TCA cycle in 

neurons: ● represents 13C and ○ represents 12C atoms. For clarity, the labeling of 

fumarate, malate, OAA and isocitrate is left out; the three first compounds are labeled 

in the same manner as succinate and the latter as citrate, although the numbering of 

the C atoms differs. GLU: glutamate; αKG: α-ketoglutarate; SUC-CoA: succinyl-CoA; 

SUC: succinate; FUM: fumarate; MAL: malate; OAA: oxaloacetate; CIT: citrate; 

ISOCIT: isocitrate.  
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From labeled intermediates of the first TCA cycle turn, [U-
13C]aspartate and [U-13C]lactate can be formed, the former from 

transamination of [U-13C]OAA and the latter derived from [U-13C]OAA 

or [U-13C]malate. The presence of [U-13C]lactate implies that also [U-
13C]pyruvate is present in the cells, and as mentioned, this compound 

can enter the TCA cycle through acetyl CoA. Pyruvate derived from 

TCA cycle intermediates re-entering the cycle as acetyl CoA 

constitutes the pyruvate recycling pathway. In paper 5, it was shown 

that this recycling, previously believed to be astrocyte specific in cell 

cultures (Håberg et al., 1998; Waagepetersen et al., 2002), also take 

place in cerebellar neurons. In this case acetyl CoA is 13C labeled, and 

this gives rise to particular labeling patterns in metabolites derived 

from the TCA cycle. The labeled isotopomers in glutamate and 

aspartate resulting from TCA cycle activity involving labeled and 

unlabeled acetyl CoA are shown in paper 5.  

 After more turns in the TCA cycle and entry of unlabeled or 

labeled acetyl CoA condensing with different isotopomers of OAA, the 

possibilities are many for 13C-labeling of the different metabolites, and 

the picture becomes more complicated than shown in the illustrations.  

 

 

3.5 Identification and Quantification of Amino Acids by HPLC 

  

High Performance Liquid Chromatography (HPLC) is a type of 

chromatography which in the present studies was used to quantify 

different amino acids in cell extracts and medium. The amino acids 

were pre-column derivatized with o-phthaldialdehyde and 

subsequently separated on a ZORBAX SB-C18 (4.6 × 250 mm, 5 µm) 

column from Agilent using a phosphate buffer (50 mM, pH = 5.9) and 

a solution of methanol (98.75 %) and tetrahydrofuran (1.25 %) as 

eluents (Geddes and Wood, 1984). A gradient of the two eluents was 
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used to obtain a faster and more optimal separation. The separated 

amino acids were detected with fluorescence and quantified by 

comparison to a standard curve derived from standard solutions of 

amino acids run after every twelve samples. An example of an HPLC 

chromatogram is presented in Figure 3.10. 

 

 
FIGURE 3.10 An HPLC chromatogram showing peaks representing glutathione and 

different amino acids in solution eluted at different retention times, the x axis shows 

time in minutes, and the y axis shows fluorescence intensity.  

 

 

3.6 Protein Quantification 

 

The amount of protein in the cell cultures was determined using 

the Pierce BCA protein assay. Bicinchoninic acid (BCA) is a water-soluble 

sodium salt and a sensitive, stable and specific reagent for the copper ion 

Cu+. When samples containing protein are treated with BCA protein 

assay reagent, protein reduces Cu2+ to Cu+ in an alkaline solution, and a 

purple colored product is then formed by the interaction between two 

BCA-molecules and one copper ion (Smith et al., 1985). This product is 

water soluble and exercises strong absorbance at 570 nm. The amount of 

protein is determined by measuring absorbance on a spectrophotometer 

and comparing to standard samples made from bovine serum albumin. 
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4 SUMMARY OF PAPERS 

 

Paper 1 

Neocortical and cerebellar neurons were cultured in medium 

containing [1-13C]glucose for seven days to evaluate neuronal metabolism.  

In the cerebellar cultures consisting mainly of glutamatergic granule 

cells, a surprisingly extensive content and 13C labeling of GABA was 

seen. The intracellular amount of GABA in these cultures was 20 ± 4 

nmol/mg protein compared to 32 ± 2 nmol/mg protein in cultures of 

neocortical neurons (predominantly GABAergic). GABA labeling was similar 

in the two types of cultures.  

The cerebellar neurons contained only 6 % glutamate 

decarboxylase (GAD)-positive neurons as shown using immunolabeling 

of GAD67, whereas a dense network of neurons in the neocortical cultures 

stained positively for GAD67.  

Exposure of the cerebellar cultures to 50 µM KA, which is known to 

eliminate vesicular release of GABA, only marginally affected GABA labeling 

and cellular content and had no effect on the number of GAD67 positive 

neurons in the cerebellar cultures. However, KA exposure eliminated a 

massive punctate immunostaining observed in control cultures. It can 

be postulated that this staining represents GAD close to vesicles, and that 

this synthesis is eliminated by 50 µM KA. Increasing the KA concentration to 

0.5 mM in the culture medium for seven days led to a reduction of GABA 

labeling and content compared to cerebellar cultures not exposed to KA.  

Although it is likely that this large capacity for GABA synthesis 

resides in the relatively few GAD-positive neurons, it seems unlikely that 

they could contain the large GABA content in the cultures. Therefore it must 

be concluded that the newly synthesized GABA is redistributed among 

the majority of the cells in these cultures, i.e. the glutamatergic 

neurons. The function of GABA in these neurons is yet to be understood. 
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Paper 2 

The time course of glutamate and GABA synthesis and 

degradation in cerebellar neuronal cultures (maintained in vitro for 1-13 

days) was investigated in this study. Moreover, the enzymes involved in 

GABA synthesis in these cultures were probed pharmacologically.  

The intracellular amount of GABA increased the first five days 

before decreasing, whereas glutamate was constant until day six and 

thereafter decreased. Furthermore, GABA content in the medium 

increased with time in culture, indicating release from cells in a non-

depolarization dependent manner. Formation of labeled GABA after 

incubation with either [1-13C]glucose or [U-13C]glutamine demonstrated 

GABA synthesis during the first three days in vitro, and synthesis after one 

week was shown by labeling from [U-13C]glutamine added on day seven. 

Thus, there was a continuous GABA synthesis and degradation 

throughout the culture period in cerebellar neuronal cultures. 

Adding aminooxyacetic acid (AOAA, 10 μM), an inhibitor of 

transaminases and other pyridoxalphosphate dependent enzymes including 

GABA-T, to the culture medium caused an increase in intracellular GABA and 

a decrease in glutamate. The specific GABA-T inhibitor γ-vinyl GABA also 

increased GABA, but had no effect on glutamate content. In the presence of 

10 µM AOAA, GABA labeling from [U-13C]glutamine was not affected, ruling 

out the putrescine pathway for GABA synthesis. Increasing the AOAA 

concentration to 0.5 mM led to a decrease in GABA, presumably due to a 

partial inhibition of GAD. In order to block both GAD and the transaminases 

completely, 5 mM AOAA was used, this abolished GABA labeling. The results 

indicate that GABA synthesis in cerebellar cultures is catalyzed by 

GAD and takes place in the subpopulation of GAD positive cells. In 

the presence of 5 mM AOAA glutamate and protein content in the cultures 

was reduced, most likely through inhibition of transaminases involved in 

glutamate synthesis as well as those involved in the malate-aspartate 

shuttle resulting in impaired oxidative metabolism of glucose. 
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Paper 3 

In this study the role of the glutamate-glutamine cycle in cultures 

of cerebellar neurons was evaluated.  

Cells were incubated in medium containing [U-13C]glutamate or [U-
13C]glutamine in the presence and absence of unlabeled glutamine and 

glutamate, respectively. Both [U-13C]glutamate and [U-13C]glutamine 

were shown to be excellent precursors for synthesis of neuroactive 

amino acids and TCA cycle intermediates. Labeling from [U-13C]glutamate 

was higher than from [U-13C]glutamine in all metabolites measured. The 

presence of [U-13C]glutamate plus unlabeled glutamine in the experimental 

medium led to labeling very similar to that from [U-13C]glutamate alone. 

However, incubation in medium containing [U-13C]glutamine in the presence 

of unlabeled glutamate almost abolished labeling of metabolites. Thus, 

glutamate was the preferred substrate for intermediary metabolism in 

cerebellar neurons. It can be concluded that the cerebellar neurons rely 

more on reuptake of glutamate than supply of glutamine from 

astrocytes for glutamate homeostasis. This is not surprising when 

considering the cerebellar structure, with few astrocytes compared to 

neurons and a relatively large distance between astrocyte and synapse.   

Label distribution indicating TCA cycle activity showed more 

prominent cycling from [U-13C]glutamine than from [U-13C]glutamate, 

showing compartmentation of metabolism.  

Labeling of succinate from [U-13C]glutamate or [U-13C]glutamine 

was lower than of the other TCA cycle intermediates. This could be caused 

by the unlabeled carbon skeleton of GABA (synthesized in GAD positive 

neurons during the culture period and distributed throughout the culture) 

entering the TCA cycle in granule cells as succinate. Thus, a possible 

function of GABA in glutamatergic neurons is as a substrate for energy 

production, the results indicate an active role of the GABA shunt in these 

cultures.  
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Paper 4 

The long-term effects of the glutamate agonist kainic acid (KA) on 

glutamate and glutamine metabolism in cerebellar neurons were investigated 

in this study. Neurons were cultured in medium containing 0.05 or 0.50 mM 

KA for seven days and subsequently incubated in medium containing [U-
13C]glutamate or [U-13C]glutamine. 

The protein amount and number of cells was greatly reduced in 

cultures exposed to 0.50 mM compared to those exposed to 0.05 mM KA. 

Glutamine consumption was not affected by KA concentration, 

whereas high KA led to decreased glutamate consumption. This 

confirmed the role of KA as an inhibitor of glutamate transport reported 

earlier.  

Neurons cultured with 0.50 mM KA and incubated with [U-
13C]glutamate contained decreased amounts of glutamate, aspartate and 

GABA compared to those cultured with 0.05 mM KA. Incubation of cells 

exposed to 0.50 mM KA with [U-13C]glutamine led to an increased amount of 

glutamate compared to cells exposed to 0.05 mM KA, whereas the 

intracellular amounts of aspartate and GABA was unaffected by KA 

concentration. 

Furthermore, mitochondrial metabolism of α-[U-13C]keto-

glutarate derived from [U-13C]glutamate and [U-13C]glutamine was 

significantly reduced by 0.50 mM KA.  

Intracellular compartmentation was illustrated by the fact that 

TCA cycling of the carbon skeleton from [U-13C]glutamine was more 

pronounced than that from [U-13C]glutamate. Moreover, cycling of the carbon 

skeleton from [U-13C]glutamate subsequently used to form GABA was affected 

by KA, whereas cycling of the carbon skeleton from [U-13C]glutamine was not, 

showing compartmentation of the GABAergic cellular population. Finally, 

intercellular compartmentation was evident because the carbon skeleton 

from [U-13C]glutamate had a higher turnover in the GABAergic than in the 

glutamatergic compartment which constitute these cultures. 
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Paper 5 

In this study the pyruvate recycling pathway for complete 

oxidation of glutamate was investigated in cultures of astrocytes and 

neurons* from cerebellum. The two types of cultures were incubated in 

medium containing [U-13C]glutamate. Previous cell culture studies have 

reported pyruvate recycling taking place in astrocytes, but it has not been 

detected in neurons.  

Using mass spectrometry, the M+4 mass in glutamate and glutamine 

and M+3 in aspartate are the only isotopomer masses resulting from TCA 

cycle activity involving pyruvate recycling that can be distinguished from 

those derived from TCA cycling using unlabeled acetyl CoA. Atom percent 

excess of M+4 in glutamate was similar for astrocytes and neuron-

enriched cultures. However, the latter showed more recycling in glutamine 

(synthesized in the small fraction of astrocytes) than the pure astrocyte 

cultures, whereas the reverse was the case for aspartate. In fact, the atom 

percent excess of the isotopomer representing pyruvate recycling in 

glutamine was slightly but significantly higher than that in glutamate in the 

neuron-enriched cultures.  

In order to verify pyruvate recycling in neurons, cell extracts were 

analyzed using 13C MRS, and recycling was clearly detectable in 

glutamate and aspartate. The reason why such recycling in neurons was 

detected now, but not earlier could be the enhanced sensitivity of the cryo 

MR probe used in the present experiment.  

It can be concluded that pyruvate recycling is taking place in neurons 

as well as in astrocytes. 

 

 

 

*Because these cultures have been shown to contain a small number of astrocytes in 

addition to the neurons, they are referred to as “neuron-enriched” in this publication. It 

should be noted that they are identical to the cultures called granule cell cultures and 

cerebellar neuronal cultures in other parts of this thesis and in other publications. 
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5 DISCUSSION 

 

GABA in cerebellar neuronal cultures 

 Cell cultures are excellent model systems for the study of 

specific aspects of cellular function. Neuronal cultures have been used 

to obtain information about regional differences in the brain, and the 

neurotransmitter phenotype has been of great interest. Two types of 

neuronal cultures have been used in these studies in our laboratory; 

neocortical and cerebellar.  

 The GABAergic nature of neocortical neuronal cultures has 

been shown in various studies (Yu et al., 1984; Drejer et al., 1987; 

Belhage et al., 1993; Waagepetersen et al., 2001). Upon 

depolarization of the cell membrane, these cells release GABA in a 

Ca2+-dependent fashion. GABA labeling from 13C labeled glucose has 

been reported in cortical neuronal cultures (Sonnewald et al., 1991; 

Sonnewald et al., 1993; Waagepetersen et al., 1998). In addition to 

GABA, these cultures contain substantial amounts of glutamate, which 

is not surprising because glutamate is the direct precursor of GABA 

and also takes part in cell metabolism. 

 On the other hand, neuronal cultures prepared from 

dissociated cerebella of seven-day-old rats and mice have been shown 

to express both GABAergic and glutamatergic characteristics, due to 

the fact that they primarily consist of cerebellar glutamatergic granule 

cells with a minor contribution of GABAergic stellate and basket 

neurons (Thangnipon et al., 1983; Schousboe et al., 1989). Upon 

depolarization of the cell membrane, these cells show vesicular 

release of both glutamate and GABA (Pearce et al., 1981; Drejer et 

al., 1982; Palaiologos et al., 1988; Palaiologos et al., 1989; Belhage 

et al., 1992; Damgaard et al., 1996). Different explanations for the 

presence of GABA and GABA release in these cultures have been 

suggested.  
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One suggestion has been that GABA is synthesized and 

released by the small number of GABAergic neurons in these cultures 

(Damgaard et al., 1996). This is in concurrence with the “one neuron 

one neurotransmitter” hypothesis. The same hypothesis makes it 

difficult to accept the presence of GABA (thought to be a 

neurotransmitter only) in glutamatergic cells. However, there have 

been reports of the presence of GABA in glutamatergic neurons both 

in vivo and in vitro (Sandler and Smith, 1991; White et al., 1994; 

Schwarzer and Sperk, 1995; Lehmann et al., 1996; Jaffe and 

Figueroa, 2001; Sperk et al., 2003; Gutierrez and Heinemann, 2006). 

Jaffe and Figueroa (2001) reported GABA release from granule cells in 

the olfactory bulb, and showed that this partly was due to reversing of 

GABA transporters. Lehmann et al. (1996) showed 

immunocytochemical localization of GABA immunoreactivity in dentate 

granule cells, both in control rats and in rats, in which epilepsy had 

been induced through kindling. Sandler and Smith (1991) 

demonstrated coexistence of GABA and glutamate in mossy fiber 

terminals of the primate hippocampus, whereas White et al. (1994) 

found the same in striatal projection neurons in rats. An explanation 

for this has been that GABA is taken up from the surrounding (in vivo) 

or from serum in the medium (in vitro) by these glutamatergic 

neurons. 

Stating that GABA is present in neuronal cultures from the 

cerebellum, leads to the question of whether GABA is actively 

synthesized in these cultures. This was investigated in paper 1, where 

[1-13C]glucose was present in the culture medium for the entire 

incubation period (seven days). 13C MRS analyses showed an 

extensive GABA labeling from [1-13C]glucose which proves that GABA 

is actively synthesized by the cells from glucose via glycolysis and TCA 

cycle. The amount and labeling of GABA in neuronal cerebellar 

cultures were surprisingly high compared to cultures of neocortical 



Glutamate and GABA: Major Players in Neuronal Metabolism 

 

 49 

 

neurons, which almost entirely consist of GABAergic neurons (Hertz et 

al., 1985).  

In order to find out more about GABA synthesis in cerebellar 

neuronal cultures, GAD immunostaining was done by a collaborating 

research group. Results from this are also presented in paper 1. 

Immunostaining showed that approximately 6 % of neurons in the 

cerebellar cultures exhibit GAD-like immunostaining, and there was 

pronounced punctuate staining in the cell processes of these cells. 

This is in compliance with the earlier mentioned studies reporting a 

minor contribution of GABAergic stellate and basket neurons in these 

cultures (Thangnipon et al., 1983; Schousboe et al., 1989).    

Various studies have shown that by exposing cerebellar 

neuronal cultures to 50 µM KA, vesicular release of GABA is eliminated 

(Drejer and Schousboe, 1989; Simmons and Dutton, 1992; Damgaard 

et al., 1996). KA treatment has thus been thought to eradicate the 

GABAergic neurons and has been used in order to obtain pure 

glutamatergic granule cell cultures (Drejer and Schousboe, 1989). The 

belief that KA eliminates GABAergic neurons in the cerebellar cultures 

has been supported by the fact that GABAergic neurons in neocortical 

cultures are vulnerable to KA toxicity at low concentrations as 

assessed by measurement of lactate dehydrogenase leakage 

(Frandsen and Schousboe, 1990).  

In paper 1, addition of 50 µM KA to the cell culture medium 

essentially eliminated the punctate immunostaining most likely 

corresponding to GABA-containing vesicles, whereas the number of 

GAD67-positive cells remained unchanged. GABA labeling and cellular 

content of GABA was only marginally affected. This indicates that KA 

treatment does not eliminate the GABAergic neurons in cerebellar 

cultures, as previously believed, but rather alters the GABAergic 

neurons so that their vesicular GABA release is terminated.  
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It can be discussed whether the GABAergic neurons in 

cerebellar cultures can account for all the GABA present in these 

cultures. Calculations based on previously published data suggest that 

the 6 % GABAergic cells are not sufficient to contain all the GABA 

detected in the cell extract from these cultures (see paper 1). The 

granule cells most likely also contain a share of the detected GABA, 

the size of this share and the function of GABA in these glutamatergic 

cells is unknown. A discussion of GABA function in granule cells is 

found in papers 1 and 2. In paper 3 it was proposed that the GABA 

distributed from GABAergic to glutamatergic neurons enters the TCA 

cycle as succinate and is used for energy metabolism. This was 

suggested because a dilution of labeling was seen in succinate 

compared to the other TCA intermediates after incubation with [U-
13C]glutamate or [U-13C]glutamine. 

Another question arises when GABA synthesis in cerebellar 

neuronal cultures is established; what is the time course of GABA 

synthesis in these cultures? MRS studies have shown that short time 

incubation with [U-13C]glutamate and [1-13C]glucose leads to labeling 

of GABA in cortical neurons (Westergaard et al., 1995; 

Waagepetersen et al., 1998). Using similar incubation conditions with 

both [U-13C]glutamate and [U-13C]glucose for cerebellar neurons did 

not lead to MRS detectable labeling of GABA (Qu et al., 2000; 

Waagepetersen et al., 2000). However, using mass spectrometry, a 

more sensitive method, labeled GABA was detected in the cerebellar 

neurons after incubation with [U-13C]glutamate (Qu et al., 2000). 

Labeling of GABA from [U-13C]glutamate and [U-13C]glutamine was 

also detected by MS in papers 3, 4 and 5. In paper 1, the cultures 

were given labeled glucose not only for a short time, but for the entire 

culturing period. This led to significant GABA labeling in both 

neocortical and cerebellar cultures. Thus, it is clear that GABA is 

present, but, since labeling after short exposure is very small (Qu et 
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al., 2000), it appears that there is a much slower turnover of GABA in 

cerebellar neurons compared to cortical GABAergic neurons.  

Investigations of the time course of GABA formation and 

degradation in cerebellar neuronal cultures is presented in paper 2, in 

which cultures were extracted after 1-13 days in vitro and amounts of 

GABA and glutamate in cell extracts and media were quantified by 

HPLC. The experiments showed that the amount of GABA increased 

the first five days before decreasing. Protein increased until day four, 

whereas glutamate was constant until day six and thereafter 

decreased. The study demonstrated GABA synthesis in the cultures 

since the amount of GABA more than doubled during the first five 

days in culture. This was accompanied by an increase in the amount 

of protein. It should be noted that the number of neurons does not 

increase after the brain tissue is removed from the animals, on the 

contrary approximately 50% die (Westergaard et al., 1991). Thus, the 

increase in protein reflects cell growth and possibly differentiation. 

After day five the amount of GABA decreased slightly until the end of 

the culture period (day 13). The prominent increase of GABA during 

the first week in culture may reflect its functional importance during 

differentiation (Belhage et al., 1998; Waagepetersen et al., 1999). 

Experiments using [U-13C]glutamine and [1-13C]glucose presented in 

the same paper showed that there was a continuous GABA synthesis 

and degradation throughout the culture period in cerebellar neuronal 

cultures.  

In paper 2, pharmacological agents were used in order to 

identify the enzymes involved in GABA synthesis in the cerebellar 

neuronal cultures. The presence of the specific GABA-T inhibitor γ-

vinyl-GABA (GVG) in the medium led to an increase in intracellular 

GABA content compared to untreated cultures. This was also seen in 

cultures where aminooxyacetic acid (AOAA) was added. In low 

concentrations (10 µM), AOAA has been shown to block GABA-T, and 
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thus inhibit the conversion of GABA to succinic semialdehyde and 

subsequently succinate (Wallach, 1961; Schousboe et al., 1974). Cell 

cultures exposed to AOAA were therefore expected to have higher 

GABA concentrations than control cultures analogous to the effect of 

GVG. The experiments showed that this indeed was the case, an 

increase in GABA concentration was observed in the AOAA group 

compared to the control group. In addition, exposure of cerebellar 

neuronal cultures to 10 µM AOAA led to an increase in glutamate 

content compared to untreated control cultures. This is because this 

concentration of AOAA also inhibits other transaminases besides 

GABA-T, among them transaminases responsible for glutamate 

synthesis (Kihara and Kubo, 1989). Transaminases are also involved 

in the malate aspartate shuttle, and synthesis of glutamate has been 

shown to be dependent of the function of this shuttle in cerebellar 

neuronal cultures (Palaiologos et al., 1988). The fact that GABA was 

increased in the presence of AOAA, rules out that the putrescine 

pathway is responsible for GABA synthesis in these cultures, because 

this pathway also involves transamination (Seiler, 1980). GABA 

synthesis in these cultures is thus likely to be catalyzed by GAD. This 

was supported by using 5 mM AOAA on some cultures in paper 2, a 

concentration that blocks both GAD and transaminases completely 

(Wu and Roberts, 1974; Kihara and Kubo, 1989), and that abolished 

GABA labeling from [U-13C]glutamine completely. 

 In conclusion, the present studies have shown that GABA is 

present and is actively synthesized during the entire culture period in 

cerebellar neuronal cultures. The enzyme GAD which catalyzes the 

conversion of glutamate to GABA is most likely responsible for the 

GABA synthesis and this takes place in the ~6 % GAD positive cells in 

the cultures. GABA content and labeling from [1-13C]glucose is not 

affected by the presence of 50 µM KA in the culture medium, even 

though vesicular GABA release is eliminated by this treatment. After 
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synthesis, GABA is released to the medium in a non-depolarization 

dependent manner, and is probably taken up by the granule neurons 

constituting the majority of the neurons in these cultures. The 

function of GABA in these glutamatergic neurons still remains 

uncertain; however roles of neurotrophic and neuroprotective agent 

as well as substrate for energy production have been suggested. 

 

Compartmentation of metabolism 

The brain is a highly heterogeneous organ on various levels. 

Macroscopically this can be seen as a difference between different 

parts of the brain, as for example between the cerebrum and the 

cerebellum. Moving closer, the brain regions can be divided into gray 

and white matter, and these subdivisions can be further separated 

into the type of cellular elements constituting them; mainly neurons 

and glia. As mentioned in the introduction, there are subdivisions of 

these cell types as well. Thus, it is to be expected that brain 

metabolism is compartmentalized, and this has indeed been shown in 

several studies from the beginning of the 1960s, first by Berl, Clarke, 

Lajtha and Waelsch (for review, see Hertz, 2004). They injected 

radioactively labeled glutamate intracisternally, and observed that a 

small pool of this glutamate was rapidly used to synthesize glutamine. 

This “small compartment has been shown to be made up by glia, most 

likely predominantly or exclusively astrocytes. The neurons have been 

shown to be unable to synthesize glutamine and constitute the “large 

compartment” (Berl and Clarke, 1983; Hertz, 2004; McKenna et al., 

2006a). The main focus in studies of brain compartmentation has thus 

been on the two compartments made up by neurons and astrocytes.  

In the first study of brain compartmentation when injecting 

radioactive glutamate (Berl et al., 1961 as cited in Hertz, 2004) the 

labeling of glutamine was higher than that of the precursor glutamate. 

This was because the activity of the glutamine-forming glutamate 
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pool, into which the precursor selectively entered, was “diluted” by 

unlabeled glutamate from other pools (Hertz, 2004). The same was 

the case with other precursors (Waelsch et al., 1964; Berl and 

Frigyesi, 1969). However, glucose injections did not cause more 

labeling of product (glutamine) than precursor (glutamate), 

suggesting that it entered both compartments equally well (Hertz, 

2004). A few years later, van den Berg and Garfinkel (1971) did 

simulation studies of metabolite flow and inter-compartmental 

trafficking of compounds. GABA was shown to be formed in one 

compartment and predominantly degraded in another, thus there was 

a flow of GABA between compartments. This was balanced by a 

glutamine flow going in the other direction (van den Berg and 

Garfinkel, 1971). An analogous glutamate-glutamine cycle was 

suggested by Benjamin and Quastel (1975). 

In all the papers in this thesis, evidence of compartmentation 

of metabolism has been seen. This may seem surprising since cell 

cultures consisting of predominantly one cell type have been used. 

However, the cerebellar neuronal culture model system has been 

shown to be well suited for studying metabolic compartmentation. 

Firstly because of the resemblance to the in vivo situation both in 

respect to glutamate and glutamine metabolizing enzymes (Drejer et 

al., 1985). Secondly, the cultures show similarities to the in vivo 

situation due to expression of both GABAergic as well as glutamatergic 

characteristics (Pearce et al., 1981; Hertz et al., 1985; Hertz and 

Schousboe, 1987; Drejer and Schousboe, 1989; Kovacs et al., 2003). 

The glutamatergic granule cells dominate quantitatively in the 

cultures, just as in the cerebellum in vivo (Drejer and Schousboe, 

1989; Andersen et al., 1992). In addition, the cultures contain about 

6 % GABAergic stellate and basket neurons, and a small number of 

glial cells (Messer, 1977; Drejer et al., 1985; Damgaard et al., 1996, 
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paper 1). Thus, cellular compartmentation of metabolism can readily 

be studied in these cultures.  

In paper 1, cerebellar neurons were cultured in medium 

containing [1-13C]glucose. From the first turn in the TCA cycle, [4-
13C]glutamate and [2-13C]GABA can be formed as shown in Figure 3.6. 

In calculating the cycling ratio of the two amino acids, the ratio of the 

product GABA was higher than that of glutamate (results not shown in 

the paper). This is a classical example of compartmentation analogous 

to that seen by (Berl et al., 1961). The same type of 

compartmentation was seen in paper 5 by the atom percent excess of 

the isotopomer derived from recycling in glutamine being higher than 

that in glutamate in the neuronal cultures.  

In paper 2, it was shown that GABA synthesis in cerebellar 

neuronal cultures takes place in a compartment constituted by the 

subpopulation of GAD positive GABAergic neurons present in these 

cultures. In paper 4, a further compartmentation of the GABAergic 

compartment was reported. This was evident from the fact that 

cycling of the carbon skeleton from [U-13C]glutamate subsequently 

used to form GABA was affected by KA, whereas cycling of the carbon 

skeleton from [U-13C]glutamine was not. Since the cerebellar cultures 

consist of two types of GABAergic neurons, stellate and basket 

neurons, it is not surprising that the GABAergic compartment shows 

further compartmentation.    

The compartmentation of metabolism discussed so far has 

been due to differential metabolism in different cell types; glia and 

neurons, glutamatergic and GABAergic neurons, and also subtypes of 

GABAergic neurons. This intercellular compartmentation is partly due 

to the fact that different cell types contain different enzymes. 

Although most enzymes involved in cell metabolism are present in all 

cell types, some are cell specific. Examples are the presence of GAD in 

the GABAergic, but not the glutamatergic neurons in the cerebellar 
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cultures (paper 1) and that of GS and PC in astrocytes, but not in 

neurons (Norenberg and Martinez-Hernandez, 1979; Yu et al., 1983; 

Shank et al., 1985). The latter two enzymes enable astrocytes to 

convert glutamate to glutamine and pyruvate to OAA, whereas 

neurons are unable to make these conversions. Another metabolic 

pathway believed to be astrocyte specific is the pyruvate recycling 

pathway for complete oxidation of glutamate in the TCA cycle (Håberg 

et al., 1998; Waagepetersen et al., 2002). However, experiments 

presented in paper 5 proved this belief wrong by showing pyruvate 

recycling in cultured cerebellar neurons.   

Compartmentation has also been shown in monocultures 

consisting of one type of cells (Westergaard et al., 1995; 

Waagepetersen et al., 1998; Waagepetersen et al., 2006). This can be 

due to differential intracellular distribution of enzymes between 

cytosol and mitochondria as proposed in paper 1 to explain the 

differential effect of KA on labeling in alanine and lactate. Moreover, 

intracellular compartmentation of processes that occur exclusively in 

or on mitochondria, such as conversion of glutamine to glutamate by 

the enzyme PAG located in the inner mitochondrial membrane 

(Kvamme et al., 2000; Kvamme et al., 2001) have also been 

reported. This is called mitochondrial heterogeneity, and is 

presumably caused by differential distribution of enzymes in different 

mitochondria (McKenna et al., 2000; McKenna et al., 2006b). This 

was seen from results presented in papers 3 and 4 since TCA cycling 

of the carbon skeleton from [U-13C]glutamine was more pronounced 

than that from [U-13C]glutamate. This is in accordance with 

intracellular compartmentation previously reported in cultured cortical 

neurons, where TCA cycle metabolism of the carbon skeleton 

subsequently used in formation of GABA was higher from [U-
13C]glutamine than from [U-13C]glutamate (Westergaard et al., 1995). 
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From the minute scale of metabolic compartmentation between 

different cell types, different organelles (cytosol and mitochondria) 

inside one cell type and between different organelles (mitochondria) 

inside one individual cell, it is time to change perspective and view the 

findings in the present papers on a larger scale. As mentioned in the 

introduction, there are several obvious differences between the 

cerebrum and the cerebellum, one being the glia to neuron ratio. 

Thus, it is not surprising that this has implications for the neuron glial 

interactions resting on neuron glial compartmentation and the 

extensive exchange of metabolites between the two cell types. One of 

the most studied pathways is the glutamate-glutamine-GABA cycle 

(Berl and Clarke, 1969; van den Berg and Garfinkel, 1971; Berl and 

Clarke, 1983; for review, see Bak et al., 2006). Although the 

glutamine-GABA cycle was first to be described (van den Berg and 

Garfinkel, 1971), it has been believed to be of less importance than 

the glutamate-glutamine cycle due to the fact that a smaller part of 

the neurotransmitter released from GABAergic neurons is taken up by 

surrounding astrocytes than that released from glutamatergic neurons 

(Schousboe et al., 1977; Danbolt, 2001; Schousboe, 2003). The 

glutamate-glutamine cycle was the subject of paper 3, in which it was 

shown that glutamatergic cerebellar neurons rely more on reuptake of 

glutamate than supply of glutamine from astrocytes for glutamate 

homeostasis, and thus it can be proposed that the glutamate-

glutamine cycle is of less importance to the cerebellum than in cortex. 

This reminds us of how highly heterogeneous the brain is and that 

extrapolation of findings from one region of the brain or from one cell 

type to another should be exercised with care.  

 

Future perspectives 

The present studies have been performed using cell cultures. 

This offers a simplified system for metabolic studies. Even though the 
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enzymes involved in glutamate metabolism in these cultures have 

been shown to be similar to those in vivo (Drejer et al., 1985; Larsson 

et al., 1985), it should be taken into consideration that there still are 

many differences between the in vitro and in vivo situations. The main 

weakness is perhaps that the cultures are established using immature 

cells of mainly one type that are taken out of their structural context. 

The importance of testing findings from cell culture work by different 

methods and comparing them to in vivo studies cannot be emphasized 

enough. With this said, the detailed information about metabolic 

fluxes in the intact functioning brain obtained during the last decade 

using new technology like in vivo MRS, would not have been possible 

without the knowledge on metabolic pathways and compartmentation 

obtained using isolated cell types (Hertz, 2004). Perhaps the biggest 

challenge lies in combining the methodical tools to reach a higher 

level of knowledge. It therefore remains to be seen whether the 

findings from the present studies have implications in vivo.  
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6 CONCLUSIONS 

  

The questions addressed in the objectives section can now be 

answered:  

 

Glutamate and glutamine 

 It is known that glutamate and glutamine serve as substrates for 

intermediary metabolism in cerebellar neurons. Is there a 

substrate preference between these two amino acids? 

 As shown previously, both glutamate and glutamine were 

shown to be excellent precursors for intermediary metabolism 

in cerebellar neurons (papers 3 and 4), however, in paper 3 it 

was concluded that glutamate is preferred over glutamine. 

 

 Is glutamate and glutamine metabolism in cerebellar neurons 

affected by long-term exposure to KA? 

 In paper 1 it was shown that a KA concentration of 50 µM 

present in the culture medium of cerebellar neurons did not 

affect the glutamate metabolism in these cells. However, 

increasing the KA concentration in the medium to 0.50 mM, led 

to a decrease in intermediary metabolism of both glutamate 

and glutamine (paper 4). Thus, KA does affect glutamate and 

glutamine metabolism, at least when present in a high 

concentration (>50 µM)  

 

 The pyruvate recycling pathway has been shown to operate in 

astrocytes. Is it also active in cultured neurons from cerebellum? 

 Despite results from previous cell culture studies, which have 

shown pyruvate recycling in astrocytes but not in neurons, this 
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pathway was clearly present in both astrocytic and neuronal 

cultures from cerebellum in experiments presented in paper 5. 

 

GABA   

 Is GABA present in cerebellar neuronal cultures, and if so, how is 

the concentration compared to that in neocortical neuronal 

cultures?  

 Yes, GABA was present in both the GABAergic and 

glutamatergic neurons in cerebellar cultures (papers 1 and 2). 

In paper 1, the average content of intracellular GABA was 20 ± 

4 nmol/mg protein in cerebellar and 32 ± 2 nmol/mg protein in 

neocortical cultures. 

 

 If GABA is present in these neurons, how does it get there; is it 

taken up from serum in the medium or is it synthesized by the 

cerebellar neurons (GABAergic and/or glutamatergic)?  

 The GABA content in cerebellar neurons cannot be the result of 

uptake from the medium alone, because 13C MRS analyses 

presented in paper 1 showed incorporation of 13C label in GABA 

from [1-13C]glucose, i.e. GABA is actively synthesized in these 

cultures. In paper 2 it was shown that GABA is synthesized by 

the subpopulation of GAD positive neurons present in these 

cultures and distributed to the other cells in the culture. This 

was supported by findings in paper 3, suggesting an active role 

of the GABA shunt in these cultures.  

 

 If it is synthesized, what is the mechanism and time course 

throughout the culturing period for this synthesis? 

 GABA in cerebellar neurons is synthesized mainly by 

decarboxylation of glutamate catalyzed by GAD. It seems 

unlikely that the putrescine pathway contributes to the 
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synthesis. Experiments presented in paper 2 showed that the 

amount of GABA in cell extract of cerebellar neuronal cultures 

more than doubled during the first five days in culture. After 

day five the amount decreased slightly until the end of the 

culture period (day 13). 

 Does long-term KA exposure affect GABA synthesis in these 

cultures?  

 Treatment with 50 µM KA only marginally affected cellular 

content and labeling from [1-13C]glucose of GABA compared to 

untreated cerebellar neuronal cultures. However, the 

phenotype of the GAD positive neurons seems to be changed 

(paper 1). Exposure to 0.50 mM KA for seven days led to 

differential effects on GABA content in the cells depending on 

medium was changed (paper 4) or not (paper 1) and in the 

presence of glutamate or glutamine in the fresh medium 

(paper 4). In conclusion, there are indications that 50 µM KA 

present in the medium during the culture period does not 

affect metabolism of cerebellar neurons, whereas 0.50 mM has 

complex effects on GABA synthesis in these cultures.  
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Abstract
Cultures of dissociated cerebella from 7-day-old mice were maintained in vitro for 1–13 days. GABA biosynthesis and degradation were studied

during development in culture and pharmacological agents were used to identify the enzymes involved. The amount of GABA increased, whereas

that of glutamate was unchanged during the first 5 days and both decreased thereafter. The presence of aminooxyacetic acid (AOAA, 10 mM) which

inhibits transaminases and other pyridoxal phosphate dependent enzymes including GABA-transaminase (GABA-T), in the culture medium

caused an increase in the intracellular amount of GABA and a decrease in glutamate. The GABA content was also increased following exposure to

the specific GABA-T inhibitor g-vinyl GABA. From day 6 in culture (day 4 when cultured in the presence of AOAA) GABA levels in the medium

were increased compared to that in medium from 1-day-old cultures. Synthesis of GABA during the first 3 days was demonstrated by the finding

that incubation with either [1-13C]glucose or [U-13C]glutamine led to formation of labeled GABA. Synthesis of GABA after 1 week in culture,

when the enzymatic machinery is considered to be at a more differentiated level, was shown by labeling from [U-13C]glutamine added on day 7.

Altogether the findings show continuous GABA synthesis and degradation throughout the culture period in the cerebellar neurons. At 10 mM

AOAA, GABA synthesis from [U-13C]glutamine was not affected, indicating that transaminases are not involved in GABA synthesis and thus

excluding the putrescine pathway. At a concentration of 5 mM AOAA GABA labeling was, however, abolished, showing that glutamate

decarboxylase, which is inhibited at this level of AOAA, is responsible for GABA synthesis in the cerebellar cultures. In conclusion, the present

study shows that GABA synthesis is taking place via GAD in a subpopulation of the cerebellar neurons, throughout the culture period.

# 2006 Elsevier Ltd. All rights reserved.

Keywords: Cerebellar granule neurons; GABA-transaminase; Glutamate
1. Introduction

Neuronal phenotypes are classically connected to expression

of specific enzymes and other entities such as the vesicular

glutamate transporters for glutamatergic neurons (Fremeau
Abbreviations: AOAA, aminooxyacetic acid; DIV, days in vitro; GABA, g-

aminobutyric acid; GABA-T, GABA-transaminase; GAD, glutamate decarbox-

ylase; GVG, g-vinyl GABA; MCL, molecular carbon labeling; PAG, phosphate

activated glutaminase; TCA, tricarboxylic acid
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et al., 2004). Characteristics of GABAergic neurons are GABA

transporters in vesicles and plasma membranes and glutamate

decarboxylase (GAD), the main GABA synthesizing enzyme

(Saito et al., 1974; Borden, 1996; Chaudhry et al., 1998).

GABA may also be formed via the putrescine pathway;

however, this pathway appears to be operational mostly during

early development (Seiler, 1980). Degradation of GABA takes

place via GABA-transaminase (GABA-T) and succinate

semialdehyde dehydrogenase, which are not only character-

istics of GABAergic neurons, but are ubiquitously present in

neurons and astrocytes throughout the brain (McGeer et al.,

1983).
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Dissociated cultures of cerebella consist of a majority of

neurons with glutamatergic and some with GABAergic

phenotype since both glutamate and GABA are released in a

Ca2+ dependent manner upon depolarization of the cell

membranes (Pearce et al., 1981; Drejer et al., 1982, 1987;

Drejer and Schousboe, 1989). However, the neuronal character-

istics of cerebellar cultures can be influenced by exposure of the

cells to kainic acid (KA). This is reflected by the finding that

vesicular release of GABA can be essentially eliminated by

culturing the cells in the presence of 50 mM KA (Drejer and

Schousboe, 1989; Damgaard et al., 1996). In spite of this it has

been demonstrated that the ability of these cultures to synthesize

GABA is not affected by KA (Sonnewald et al., 2004).

Immunohistochemistry using a GAD67 antibody demonstrated

GAD-like immunostaining in �6% of the cell bodies and

additionally punctate fluorescence was observed in the processes

throughout the cultures grown in the absence of KA. Exposure of

the cerebellar neurons to KA (50 mM) eliminated the punctate

staining but had no effect on the GAD-like immunostaining in

cell bodies. Replacing KAwith a glutamate transport inhibitor to

induce excitotoxicity led to reduced levels of GAD and the

vesicular GABA transporter (Kovacs et al., 2003). Surprisingly,

the cellular content of GABA in 7-day-old cerebellar cultures

was similar to that observed in cultures of cortical neurons of the

same age which contain a dense layer of GAD positive neurons

(Sonnewald et al., 2004).

It is intriguing that GABA synthesis in these cerebellar

cultures after a 7-day culturing period reached a magnitude

comparable to that observed in neocortical neurons, since the

intensity of GAD67 immunofluorescence was considerably

lower in the cerebellar neurons. Little is known about the time

course of GABA synthesis in the latter cultures. Results

presented in this study describe the metabolism of GABA and

glutamate in cerebellar cultures. It has been shown that, during

the course of a week, both cerebellar and cortical neurons in

culture develop an enzymatic machinery analogous to that of

the brain in vivo (Drejer et al., 1985; Larsson et al., 1985).

Hence, most experiments were done on days 3, 5 and 7 in

culture. Cerebellar neurons were cultured in the presence of

50 mM KA and [1-13C]glucose or [U-13C]glutamine to monitor

GABA synthesis. Glutamine may serve as precursor for GABA

involving either GAD or the putrescine pathway. To probe the

involvement of GABA degrading enzymes in the maintenance

of GABA homeostasis, experiments were performed using

10 mM aminooxyacetic acid (AOAA) which inhibits GABA-T,

other transaminases and other pyridoxal phosphate dependent

enzymes or 100 mM g-vinyl GABA (GVG) to selectively

inhibit GABA-T (Schousboe et al., 1974; Lippert et al., 1977).

In order to inhibit GAD completely, a concentration of 5.0 mM

AOAA was used (Wu and Roberts, 1974).

2. Materials and methods

2.1. Materials

Plastic tissue culture dishes were purchased from Nunc A/S (Roskilde,

Denmark), fetal calf serum from Seralab Ltd. (Sussex, UK) and culture medium
from GIBCO BRL, Life Technologies A/S (Roskilde, Denmark). 7-day-old

mice (NMRI) were purchased from Møllegaard Breeding Center (Ejby, Den-

mark) or were obtained from the animal facility at the Department of Pharma-

cology, The Danish University of Pharmaceutical Sciences. [1-13C]Glucose and

[U-13C]glutamine (98%+ enriched) were from Cambridge Isotopes Labora-

tories (Woburn, MA, USA). KA was from Sigma Chemical Co. (St. Louis, MO,

USA) or Tocris Cookson Inc. (Ellisville, MO, USA). All other chemicals were

of the purest grade available from regular commercial sources.

2.2. Cerebellar neurons and culture conditions

All animal procedures were conducted according to national regulations.

Cerebellar cells were isolated from cerebella of 7-day-old mice (Schousboe

et al., 1989). The brain tissue was trypsinized followed by trituration in a DNase

solution containing a trypsin inhibitor from soybeans. Cells were suspended

(3 � 106 cells/ml) in a slightly modified Dulbecco’s minimum essential med-

ium (DMEM) containing 28 mM glucose and 0.45 mM glutamine, 50 mM KA

and 10% (v/v) fetal calf serum and seeded in poly-D-lysine coated culture dishes

or flasks. Six-well plates were used for HPLC and 25 cm2 flasks for liquid

chromatography mass spectrometry (LC–MS) analyses. In some cultures,

[1-13C]glucose (28 mM) or [U-13C]glutamine (0.45 mM) were used instead

of unlabeled substrate. Some cultures were exposed to 10 mM or 0.5 mM

AOAA or 100 mM GVG from day 0. Cytosine arabinoside (20 mM) was added

after 24–48 h to prevent astrocyte proliferation (Schousboe et al., 1989). After

the indicated number of days in vitro (DIV), medium was removed and cells

were washed with 0.9% saline and extracted with 70% (v/v) ethanol, followed

by centrifugation at 3000 � g for 5 min. The supernatants were lyophilized and

stored at �20 8C. In some cases media were collected, deproteinized with

ethanol (70% (v/v) final concentration), lyophilized and stored at �20 8C.

Cellular protein in the ethanol pellets was determined after re-dissolving in 1 M

KOH at 37 8C for 30 min, using the Pierce BCA protein assay with bovine

serum albumin as standard.

2.3. Acute exposure to AOAA

In order to investigate the ability of AOAA to inhibit GAD completely,

cultures were treated with 5.0 mM AOAA which was added to the medium on

day 7 in vitro. After 30 min, half (2.5 ml) of the culture medium was removed

and 1 ml fresh serum-free DMEM was added. This medium contained pyruvate

(5.0 mM, final concentration), [U-13C]glutamine (0.5 mM, final concentration)

and AOAA (5.0 mM, final concentration). After 3 h, the cultures received 8 ml

of [U-13C]glutamine (219 mM) to the incubation media (3.5 ml) to preserve an

adequate amount of the labeled precursor in the medium and the incubation was

continued for another 3 h. Control cultures were treated identically except that

AOAA was not added. At the end of the incubation period, the medium was

removed and the cells were washed twice with ice-cold PBS prior to extraction

using 70% (v/v) ethanol. The procedures for centrifugation and protein analysis

were as described above. The cell extracts were analyzed for percent labeling

employing LC–MS.

2.4. HPLC and LC–MS analyses

Glutamate and GABA were quantified in cell extracts and in some cases

GABA was quantified in the culture media by high performance liquid

chromatography (HPLC) analysis using fluorescence detection, after pre-col-

umn derivatization with o-phthaldialdehyde (Geddes and Wood, 1984). All LC–

MS analyses were performed using a Shimadzu LCMS-2010 mass spectrometer

coupled to a Shimadzu 10AVP HPLC system. The Phenomenex EZ:faast amino

acid analysis kit for LC–MS was used for analysis of labeling in glutamate and

GABA.

2.5. Data analysis

Percent 13C (atom percent excess) was determined for M + 1 (the mass of

the parent ion (M) plus 1 unit of molecular weight (Dalton) corresponding to 1

atom of 13C), M + 2, M + 3, M + 4 plus in the case of glutamate M + 5 after

correction for natural abundant 13C as described by Biemann (1962). To obtain a
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Fig. 2. The amount (nmol/well) of glutamate (A) and GABA (B) in cell extracts

of cerebellar neurons. The cells were seeded in 6-well plates and maintained in

medium containing KA (50 mM) in the presence or absence of AOAA (10 mM)

for 13 days as described in Section 2. Results are means � S.D. of 3–6 samples.

Filled squares represent the control cells, and open squares the AOAA treated

cultures. Statistically significant differences between the different days in vitro

(controls) were analyzed using ANOVA followed by the LSD (least significant

difference) post hoc test, and p < 0.05 was considered significant. For the

development in culture of glutamate contents values for DIV 7–13 were

significantly reduced compared to DIV 1–6, and for GABA DIV 3–6 were

significantly higher than DIV 1 and DIV 7–13 significantly lower than DIV 6.

No difference for GABAwas found between DIV 5 and 6. Likewise, differences

between control cultures and AOAA treated cells were assessed using the same

procedure and statistically significant differences ( p < 0.05) are indicated by

asterisks.
measure of total incorporation of 13C label, the average percent of labeled

carbon atoms for each metabolite was calculated, i.e. percent molecular carbon

labeling (MCL, for further details see Bak et al. (2006)). The [U-13C] labeling

(percent of total amount) of GABA and glutamate is the atom percent excess for

M + 4 and M + 5, respectively, following subtraction of natural abundances. All

results are presented as means � S.D. Differences between cultures of different

developmental stages or exposed to various pharmacological agents were

analyzed statistically with one-way ANOVA followed by the LSD (least

significant difference) post hoc test for multiple comparison or Student’s t-test

for two groups, and p < 0.05 was considered statistically significant.

3. Results

As a measure of cell growth the amount of protein in the

cultures was shown to almost double over a period of 4 days in

vitro and this level was maintained until day 13 (Fig. 1).

Treatment of the cultures with AOAA (10 mM) had no effect on

the protein content (Fig. 1).

The developmental patterns of the amounts (nmol/well) of

glutamate and GABA in the cerebellar neurons maintained in

the presence or absence of 10 mM AOAA during the culture

period (13 days) are shown in Fig. 2A and B. The amount of

glutamate was constant until day 6 in culture after which it was

decreasing with time until day 10 in culture. In the presence of

AOAA the amount of glutamate was lower than that of age

matched untreated cultures from days 4 to 9. The amount of

GABA more than doubled till day 5 and decreased

subsequently to a level similar to that at the beginning of the

culture period. In the presence of AOAA the GABA levels were

significantly increased compared to the age matched untreated

cultures from day 4 and throughout the culture period.

Fig. 3 shows the amount of protein (mg/well, A) and the

GABA (B) and glutamate (C) contents (nmol/mg protein) in

cerebellar neurons cultured for 3, 5 and 7 days. Culturing the cells

in medium containing GVG (100 mM) had no effect on the

protein content, whereas that of glutamate was slightly higher on

day 5 and lower on day 7 compared to the age matched untreated

cultures. The GABA content was increased in the presence of

GVG at days 5 and 7 in culture compared to age matched

untreated cultures. Culturing in the presence of 0.5 mM AOAA
Fig. 1. The amount of protein (mg/well) in cerebellar neurons. The cells were

seeded in 6-well plates and maintained in medium containing KA (50 mM) in

the presence or absence of AOAA (10 mM) for 13 days as described in Section

2. Results are means � S.D. of 3–6 samples. Filled squares represent the control

cells, and open squares the AOAA treated cultures. Differences between days 1

or 2 and subsequent days in vitro were analyzed using ANOVA followed by the

LSD (least significant difference) post hoc test, and p < 0.05 was considered

statistically significant. Protein at DIV 3–13 was statistically significantly

different from DIV 1 and 2 regardless of the presence of AOAA.
led to decreased amounts of protein and glutamate at all days

investigated and the GABA content was decreased on days 3 and

5 compared to age matched untreated cells.

Fig. 4 shows the GABA concentration (nmol/ml) in media

from neurons cultured in the absence or presence of 10 mM

AOAA for 1, 4 and 6 days. For comparison the GABA

concentration in medium (without cells) kept in the incubator

for 3 and 6 days was determined and the average value is shown

in Fig. 4. It is necessary to determine the GABA concentration

in medium without cells since fetal calf serum contains GABA

and also to evaluate the effect of incubation at 37 8C for several

days. The concentration of GABA in the medium of cells

maintained for 1 and 4 DIV was the same as that in medium

without cells. At 6 DIV the GABA concentration in the medium

was higher than that at 1 and 4 DIV. In the presence of AOAA

the GABA concentration was increased already on day 4

compared to medium from AOAA treated cultures on day 1 and

it was increased further on day 6 reaching a level significantly

higher than that of the age matched untreated cultures.

The MCL (see Section 2) of GABA and glutamate in

cerebellar neurons cultured in media containing either

[1-13C]glucose or [U-13C]glutamine is presented in Table 1.
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Fig. 3. The amount (mg/well) of protein (A), and contents (nmol/mg protein) of

GABA (B) and glutamate (C) in cerebellar neurons cultured in 6-well plates.

Cells were cultured in medium containing KA (50 mM) in the presence or

absence of GVG (100 mM) or AOAA (0.5 mM) as described in Section 2.

Results are means � S.D. of 3–8 samples. Filled bars represent control cells.

Open and hatched bars represent GVG and AOAA treated cultures, respectively.

Statistically significant differences between treated and untreated (control)

cultures as well as between cells cultured for different number of days were

analyzed using ANOVA followed by the LSD (least significant difference) post

hoc test, and p < 0.05 was considered significant. (a) Significantly different

from the untreated cells on the same day, (*) significantly different from the

corresponding cultures on day 3, and (#) significantly different from the

corresponding cultures on day 5.

Fig. 4. The concentration (nmol/ml) of GABA in medium from cerebellar

neurons cultured in 6-well plates and maintained in medium (2 ml) containing

KA (50 mM) in the presence or absence of AOAA (10 mM). Results are corrected

for evaporation and are expressed as means � S.D. of 3–5 samples. Filled bars

represent untreated cultures (control) and open bars AOAA treated cultures. The

hatched bar represents the average of the GABA concentration in media kept in the

incubator for 3 or 6 days. It was possible to use the average since no difference was

found comparing media kept for 3 and 6 days. Statistically significant differences

between AOAA treated and not-treated (control) cultures as well as between cells

cultured for different number of days were analyzed using ANOVA followed by

the LSD (least significant difference) post hoc test, and p < 0.05 was considered

significant. (*) Significantly different from the corresponding cultures at 1 DIV,

(#) significantly different from the corresponding cultures at 4 DIV, (¤) signifi-

cantly different from medium without cells, and (a) significantly different from

control cultures at the same DIV.

Table 1

The MCL (%) of GABA and glutamate from [1-13C]glucose and [U-13C]glu-

tamine in cerebellar neurons cultured for 3 and 7 DIV

Amino acid MCL (%)

[1-13C]Glucose [U-13C]Glutamine

GABA

3 Days

AOAA 19.7 � 0.2a 12.1 � 0.4

Control 23.6 � 0.8 10.9 � 1.3

7 Days

AOAA 26.1 � 0.3a,b 4.2 � 0.2a,b

Control 28.8 � 0.2b 1.3 � 0.3b

Glutamate

3 Days

AOAA 23.2 � 0.1c 7.0 � 1.3c

Control 23.1 � 0.8 5.7 � 1.8c

7 Days

AOAA 28.3 � 0.4b,c 0.8 � 0.3b,c

Control 27.9 � 0.1b,c 1.1 � 0.5b

Cerebellar neurons were cultured in 25 cm2 flasks in media containing KA

(50 mM) in the presence or absence of AOAA (10 mM) using [1-13C]glucose or

[U-13C]glutamine as described in Section 2. The average labeling of molecular

carbon (MCL) in percent (see Section 2) of GABA and glutamate is

shown � S.D. of four cultures. Statistically significant differences between

experimental conditions and culture ages were analyzed using ANOVA fol-

lowed by the LSD (least significant difference) post hoc test, and p < 0.05 was

considered statistically significant.
a Significantly different from the corresponding control cultures.
b Significantly different from similarly treated cultures at 3 DIV.
c Significantly different from the percent 13C labeling in GABA in cultures

treated identically.
When [1-13C]glucose was present in the medium, the MCL of

GABA was increased at 7 compared to 3 DIV, regardless of the

presence of 10 mM AOAA. MCL of GABAwas lower in AOAA

treated compared to untreated cultures kept for 3 or 7 DIV. No

differences were observed in the MCL of glutamate from

[1-13C]glucose between AOAA treated and untreated cultures

maintained for 3 or 7 DIV. However, an increase in the MCL of

glutamate was observed in cerebellar neurons cultured for 7 days

compared to 3 days. Following 3 days in culture in medium

containing [1-13C]glucose and AOAA the MCL of glutamate was

higher than that of GABA whereas in the untreated cultures no

difference was observed. After 7 days in culture in medium



U. Sonnewald et al. / Neurochemistry International 48 (2006) 572–578576

Fig. 5. The [U-13C] labeling (percent of total amount) of GABA and glutamate

in cerebellar neurons (7 DIV) incubated in medium containing [U-13C]gluta-

mine in the presence or absence of AOAA (5.0 mM) as detailed in Section 2.

Results are means � S.D. of 4 to 5 samples. Filled bars represent the untreated

and open bars the AOAA treated cells. Statistically significant differences

between these were analyzed using the unpaired two tailed Student’s t-test, and

p < 0.05 was considered statistically significant. (a) Significantly different from

the corresponding AOAA treated cultures, (b) significantly different from

[U-13C]GABA in cultures maintained under similar conditions, and n.d. means

not detectable.
containing [1-13C]glucose the MCL of glutamate was slightly

higher in AOAA treated than that observed for GABA and the

opposite relationship was observed in untreated cultures. When

[U-13C]glutamine was present in the medium from the beginning

of the culture period, the MCL of both GABA and glutamate was

decreased in cells cultured for 7 compared to 3 DIV. The MCL of

GABA was higher than that of glutamate regardless of the

experimental conditions, except at day 7 in cultures not exposed

to AOAA. Furthermore, the MCL of GABAwas increased in the

AOAA treated cells in 7-day-old cultures but unchanged in 3-

day-old cultures. This is in contrast to cells cultured in the

presence of [1-13C]glucose, in which label was decreased in the

presence of AOAA both at 3 and 7 DIV. However, as shown in

Fig. 5, when AOAA (5 mM) was added to the medium on day 7,

conversion of [U-13C]glutamine to [U-13C]glutamate took place

whereas no [U-13C]GABA was detected. In these cultures

pyruvate was added to the culture medium together with

[U-13C]glutamine to ensure TCA cycle metabolism and cell

survival in the presence of AOAA which prevents a continuous

oxidation of glucose due to the inhibition of the malate aspartate

shuttle (McKenna et al., 2006). Cell viability was checked by

microscopic inspection of the cultures and cell morphology was

not affected by the AOAA treatment (results not shown).

4. Discussion

The present study demonstrates GABA synthesis via GAD

in cerebellar neurons throughout the first week in culture. The

cellular content of GABA in the cerebellar neurons more than

doubled during the first 5 days in culture, whereas that of

glutamate remained unchanged. This was accompanied by an

increase in the amount of protein. It should be noted that the

number of neurons does not increase after the brain tissue is
removed from the animals and subsequently seeded in the

culture dishes. Actually, approximately 50% of the seeded cells

die (Westergaard et al., 1991). Thus, the increase in protein

reflects cell growth and possibly differentiation. The enzymatic

machinery of cerebellar neurons after 1 week in culture is

comparable to that observed in the brain in vivo (Drejer et al.,

1985). After day 5 in culture the amount of GABA and

glutamate inside the cells decreased slightly until the end of the

culture period (day 13). However, GABA content in the

medium increased with time. This indicates that GABA is

released from the cerebellar cells in a non-depolarization

dependent manner, presumably via reversal of transporters and

may reflect its functional importance during differentiation

(Belhage et al., 1985; Waagepetersen et al., 1999). Further-

more, GABA release is a prerequisite for its neurotrophic action

and may also play a role in neuroprotection.

Synthesis of GABA during the first 3 days was demonstrated

by the finding that incubation with either [1-13C]glucose or

[U-13C]glutamine led to formation of labeled GABA. It may be

conceivable that GABA synthesis could be especially prominent

during the first few days in culture since it has been reported that

in hippocampus, GAD67 is expressed in the mossy fibers of the

developing rat brain, whereas in adults, GAD67 was no longer

detectable, unless seizures were induced (Maqueda et al., 2003).

To investigate the possibility that GABA synthesis is not only

taking place during the early phase of the culturing period but

continues also during later stages, [U-13C]glutamine was added

on day 7 in culture and both GABA and glutamate labeling was

pronounced. Furthermore, when [1-13C]glucose was present in

the culture medium for 3 and 7 days, labeling on day 7 was clearly

higher than on day 3. Labeling from [U-13C]glutamine under the

same conditions was less pronounced than that from glucose,

which may reflect that the amount of [U-13C]glutamine available

in the medium was insufficient to sustain neuronal metabolism

for 7 days. That this may be the case is supported by the finding

that when [U-13C]glutamine was added on day 7, GABA labeling

was much higher.

To investigate the enzymatic pathways responsible for

GABA synthesis and degradation, enzyme inhibitors were

added to the culture medium. The enzyme responsible for

degradation of GABA, GABA-T, is inhibited by GVG (Lippert

et al., 1977). As expected (Gram et al., 1988), GVG at a

concentration of 100 mM increased the GABA content of the

cultures. GVG had no effect on the protein content which may

indicate that the GABA concentration even in the absence of

GVG was adequate for maintenance of normal neuronal

growth. This is supported by the finding that GABA at 50 mM, a

value comparable to that observed in the present study, acts as a

trophic factor in the development of cerebellar neuronal

cultures (Hansen et al., 1984). The transaminase inhibitor

AOAA was used at 10 mM, a concentration sufficient to inhibit

mainly GABA-T (Schousboe et al., 1974) but also other

transaminases (Kihara and Kubo, 1989). As expected, the

amount of GABA increased with time even more than in the

absence of AOAA whereas the glutamate concentration

decreased compared to that in untreated cells. The latter

finding may be compatible with the previous demonstration that
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biosynthesis of neurotransmitter glutamate in the glutamatergic

neurons in these cultures is dependent upon the function of the

malate aspartate shuttle which involves transamination

(Palaiologos et al., 1988). Glutamate formed via transamination

seems to be important for GABA labeling from [1-13C]glucose

(for pathway see Brenner et al. (2005)) since such labeling was

decreased in the presence of 10 mM of AOAA. Conversion of

a-ketoglutarate to glutamate is mostly achieved by transamina-

tion, which will be blocked by AOAA. However, glutamate

dehydrogenase is also present in the cerebellar neurons

(Zaganas et al., 2001) and can convert a-ketoglutarate to

glutamate. The efficiency of this process is evident from the

unchanged glutamate labeling in the presence of 10 mM

AOAA. This, together with a decreased GABA labeling, points

towards compartmentation of glutamate metabolism, indicating

GABA synthesis in a different cellular compartment from

where the majority of glutamate synthesis is taking place.

There are two known pathways for conversion of glutamine

to GABA. One is called the putrescine pathway (Seiler, 1980)

which involves transamination and the other conversion of

glutamine to glutamate and subsequent decarboxylation to

GABA which is referred to as the GAD pathway. Labeling of

GABA from [U-13C]glutamine was not affected by 10 mM

AOAA, indicating that transamination is not involved in the

process. Thus, it appears likely that the GAD pathway is

responsible for GABA synthesis from glutamine in the

cerebellar cultures. This, together with the fact that metabolism

of glutamate and GABA seems compartmentalized as

mentioned above, indicates that GABA synthesis takes place

in the �6% GAD positive cells observed by Sonnewald et al.

(2004).

An increase in the AOAA concentration from 10 mM to

0.5 mM led to a pronounced decrease in the GABA and

glutamate content as well as the amount of protein at 3 and 5

DIV. As mentioned above, in the presence of the transaminase

blocker, the decrease in glutamate content was expected. The

large decrease in GABA may to a certain extent be explained by

partial inhibition of GAD in the presence of 0.5 mM AOAA

(Wu and Roberts, 1974) and the decrease in protein content

may to some extent reflect the decrease in the availability of the

neurotrophic agent GABA. However, it is conceivable that an

impaired oxidative metabolism of glucose played a prominent

role in the large decrease of the protein content since this

metabolism is dependent upon the malate aspartate shuttle

which was inhibited by 0.5 mM AOAA (Kauppinen et al.,

1987). An impaired glucose metabolism will affect neurons and

therefore it may indirectly contribute to the decrease in

glutamate as well as GABA contents. Interestingly, on day 7 in

culture, the GABA content was not different from that of age

matched untreated cells, whereas glutamate and the protein

content were lower.

To obtain further information about GABA synthesis,

AOAA was used at a concentration of 5 mM, which is expected

to block both GAD and transaminases completely (Wu and

Roberts, 1974; Kihara and Kubo, 1989). Indeed, GABA

labeling from [U-13C]glutamine was totally abolished even

though glutamate was extensively labeled.
In conclusion, the present results show that GABA synthesis

is taking place via GAD in a subpopulation of the cerebellar

neurons, throughout the culture period. Labeling of GABA

occurs from both [1-13C]glucose and [U-13C]glutamine and can

be blocked by AOAA. Moreover, it is confirmed that net

synthesis of glutamate is dependent on the activity of the malate

aspartate shuttle.
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The glutamate–glutamine cycle is thought to be of paramount importance in the mature brain;
however, its significance is likely to vary with regional differences in distance between astrocyte and
synapse. The present study is aimed at evaluating the role of this cycle in cultures of cerebellar
neurons, mainly consisting of glutamatergic granule cells. Cells were incubated in medium
containing [U-13C]glutamate or [U-13C]glutamine in the presence and absence of unlabeled
glutamine and glutamate, respectively. Cell extracts and media were analyzed using high-
performance liquid chromatography (HPLC) and gas chromatography combined with mass
spectrometry (GC/MS). Both [U-13C]glutamate and [U-13C]glutamine were shown to be excellent
precursors for synthesis of neuroactive amino acids and tricarboxylic acid (TCA) cycle
intermediates. Labeling from [U-13C]glutamate was higher than that from [U-13C]glutamine in all
metabolites measured. The presence of [U-13C]glutamate plus unlabeled glutamine in the
experimental medium led to labeling very similar to that from [U-13C]glutamate alone. However,
incubation in medium containing [U-13C]glutamine in the presence of unlabeled glutamate almost
abolished labeling of metabolites. Thus, it could be shown that glutamate is the preferred substrate
for intermediary metabolism in cerebellar neurons. Label distribution indicating TCA cycle activity
showed more prominent cycling from [U-13C]glutamine than from [U-13C]glutamate. Labeling of
succinate was lower than that of the other TCA cycle intermediates, indicating an active role of the
c-amino butyric acid shunt in these cultures. It can be concluded that the cerebellar neurons rely
more on reuptake of glutamate than supply of glutamine from astrocytes for glutamate homeostasis.
Journal of Cerebral Blood Flow & Metabolism advance online publication, 11 October 2006; doi:10.1038/sj.jcbfm.9600400
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Introduction

Glutamate is a multipurpose amino acid in the
mature central nervous system. It is not only the
major excitatory neurotransmitter, in addition it
takes part in transamination and thus nitrogen
homeostasis and is the precursor for other important
molecules, including the main inhibitory neuro-
transmitter, g-amino butyric acid (GABA). Although
glutamate is ubiquitous in all parts of the central
nervous system and present in large amounts in the
brain, it is of critical importance that brain gluta-

mate homeostasis is strictly controlled. The extra-
cellular concentration of glutamate needs to be kept
low, both to increase the signal-to-noise ratio in
binding of transmitter substance in the synaptic cleft
and to prevent excitotoxicity caused by excessive
excitation of glutamate receptors and subsequent
cell injury or death (for references, see Daikhin and
Yudkoff, 2000). Rapid transport of glutamate from
the synaptic cleft is performed through several types
of specific transporter proteins, and uptake into
astrocytes surrounding the synapse is believed to be
more important than reuptake into the presynaptic
neuron (Schousboe et al, 1977; Danbolt, 2001). Thus
neurons experience a net loss of glutamate, which
must be replenished by astrocytes because of the
lack of the anaplerotic enzyme pyruvate carboxylase
in neurons (Shank et al, 1985). This constitutes the
basis for the pathway known as the glutamate–
glutamine cycle (Berl and Clarke, 1983) in which
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neurotransmitter released from neurons is taken up
by surrounding astrocytes, where it is converted to
glutamine by the glial-specific enzyme glutamine
synthetase (Norenberg and Martinez-Hernandez,
1979). Glutamine is not neuroactive and can move
in the extracellular space without interfering with
receptors, and is the most abundant amino acid in
blood and cerebral spinal fluid with a concentration
of B0.5 mmol/L (Grill et al, 1992; White et al, 2004).
Glutamine uptake into neurons is mediated by
different general amino-acid transporters (Su et al,
1997; Dolinska et al, 2004). In neurons, glutamine
can be converted into glutamate by the enzyme
phosphate activated glutaminase and act as pre-
cursor for restoring the neurotransmitter pool,
completing the glutamate–glutamine cycle. Indeed,
several studies have confirmed the importance of
glutamine as precursor for neurotransmitter gluta-
mate (for a review, see Peng et al, 1993). As
described, the cycle necessitates extensive inter-
action between neurons and astrocytes. This will,
however, vary because of differences in the number
of glial cells per neuron and also in respect to
how closely the astrocytes envelop the synapses.
Thus, it can be expected that the importance of the
glutamate–glutamine cycle varies with location in
the brain.

The present study is aimed at evaluating the role
of the glutamate–glutamine cycle in cultured cere-
bellar neurons. It has been shown that after 7 days in
vitro, these mainly glutamatergic cultures express
glutamate and glutamine metabolizing enzymes
analogous to the brain in vivo (Drejer et al, 1985).
The cells were incubated in medium containing
[U-13C]glutamate or [U-13C]glutamine in the pre-
sence and absence of unlabeled glutamine and
glutamate, respectively. High-performance liquid
chromatography (HPLC) and gas chromatography/
mass spectrometry (GC/MS) analysis of cell extracts
and media revealed that both [U-13C]glutamate and
[U-13C]glutamine were excellent precursors for
synthesis of neuroactive amino acids and tricar-
boxylic acid (TCA) cycle intermediates in these
cultures. However, glutamate was shown to be the
preferred substrate.

Materials and methods

Materials

NMRI mice were obtained from Taconic M&B (Copenha-
gen, Denmark). Plastic tissue culture dishes were pur-
chased from Nunc A/S (Roskilde, Denmark) and fetal calf
serum from Seralab Ltd. (Sussex, UK). Culture medium,
glutamate receptor antagonists DNQX (6,7-dinitroquinoxa-
line-2,3-dione) and D-AP5 (D-2-amino-5-phosphonopenta-
noic acid) were from Sigma Chemical Co. (St Louis, MO,
USA). [U-13C]Glutamate and [U-13C]glutamine were
from Cambridge Isotope Laboratories (Woburn, MA,
USA), and the GC/MS derivatization reagent MTBSTFA
(N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide)+ 1%

t-BDMS-Cl (tert-butyldimethylchlorosilane) was purchased
from Regis Technologies, Inc. (Morton Grove, IL, USA).
All other chemicals were of the purest grade available
from regular commercial sources.

Cell Cultures

Cerebellar neurons were isolated and cultured from 7-day-
old mice as described by Schousboe et al (1989). Briefly,
tissue was trypsinized followed by trituration in a DNase
solution containing a trypsin inhibitor from soybeans.
Cells were suspended (2.5� 106 cells/ml) in a modified
Dulbecco’s minimum essential medium containing
24.5 mmol/L KCl, 31 mmol/L glucose, 7 mmol/L p-amino-
benzoic acid, 0.05 mmol/L kainic acid, and 10% (v/v) fetal
calf serum, and seeded in poly-D-lysine coated Petri
dishes (2 ml/35 mm). After 48 h in culture, 20 mmol/L
(final concentration) cytosine arabinoside was added to
the medium to prevent astrocytic proliferation.

Experiments Using [U-13C]Glutamate and
[U-13C]Glutamine for Gas Chromatography/Mass
Spectrometry Analysis

The culture medium was removed from 7-day-old cultures
and the cells were incubated for 2 h at 371C in 2 ml serum-
free experimental medium (prepared without glutamine)
containing 3 mmol/L glucose and either no additions (for
HPLC analysis), [U-13C]glutamate (0.25 mmol/L), [U-13C]
glutamine (0.50 mmol/L), [U-13C]glutamate (0.25 mmol/L)
plus unlabelled glutamine (0.50 mmol/L) or [U-13C]
glutamine (0.50 mmol/L) plus unlabelled glutamate
(0.25 mmol/L). To avoid toxic effects of glutamate during
the incubation period, two glutamate receptor antagonists
DNQX (25 mmol/L), a selective antagonist at the a-amino-3-
hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) and
kainate receptor subtypes, and D-AP5 (100 mmol/L), an N-
methyl-D-aspartate (NMDA) antagonist, were also present
in the experimental medium (Frandsen et al, 1989). After
2 h, the experimental medium was collected and the cells
were washed twice with cold phosphate-buffered saline
and extracted with 70% (v/v) ethanol. The cell extracts
were scraped off the dishes and centrifuged at 10,000g for
15 min to separate the metabolites from the insoluble
proteins. The supernatants (cell extracts) were divided
into two parts, one directly analyzed with HPLC and the
other lyophilized for subsequent sample preparation for
GC/MS analysis. Cellular protein in the ethanol pellets
was determined after dissolving in 1 mol/L KOH at 371C
for 60 mins, using the Pierce BCA (Pierce, Rockford, IL,
USA) protein assay with bovine serum albumin as
standard.

High-Performance Liquid Chromatography

Amino acids in cell extracts and experimental media
were quantified by HPLC on a Hewlett Packard 1100
system (Agilent Technologies, Palo Alto, CA, USA).
The amino acids were precolumn derivatized with
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o-phthaldialdehyde (Geddes and Wood, 1984) and subse-
quently separated on a ZORBAX SB-C18 (4.6� 250 mm,
5 mm) column from Agilent using a phosphate buffer
(50 mmol/L, pH = 5.9) and a solution of methanol (98.75%)
and tetrahydrofuran (1.25%) as eluents. The separated
amino acids were detected with fluorescence and com-
pared with a standard curve derived from standard
solutions of amino acids run after every 12 samples.

Gas Chromatography/Mass Spectrometry

Lyophilized cell extracts were redissolved in HCL
(10 mmol/L), adjusted to pH < 2 with 6 mol/L HCL, and
dried under atmospheric air. The amino acids were
extracted into an organic phase of ethanol and benzene
and dried again under atmospheric air before derivatiza-
tion with MTBSTFA in the presence of 1% t-BDMS-Cl
(Mawhinney et al, 1986). The samples were analyzed on a
Hewlett Packard 5890 Series II gas chromatograph linked
to a Hewlett Packard 5972 Series mass spectrometer.

Data Analysis

Peaks from MS spectra were integrated, and atom percent
excess (13C) of glutamate, glutamine, GABA, succinate,
malate, aspartate, and citrate was determined after
calibration using unlabeled standard solutions (Biemann,
1962). Results from HPLC quantification of amino acids in
cell extracts were combined with values of atom percent
excess obtained from GC/MS to give nmol/mg protein of
different 13C labeled isotopomers of glutamate, aspartate,
and GABA. Consumption of [U-13C]glutamate and
[U-13C]glutamine was calculated by subtracting the re-
maining amounts of the two amino acids measured in the
experimental medium from the amounts added followed
by correction for the amount of cellular protein in the
culture. Results are presented as means7s.d. Differences
between groups were analyzed statistically using one-way
analysis of variance followed by the least significant
difference post hoc test, and P < 0.05 was considered
statistically significant.

Results

Cerebellar neurons were incubated in medium with
different additions: no addition (control group),
[U-13C]glutamate, [U-13C]glutamine, [U-13C]gluta-
mate plus glutamine, and [U-13C]glutamine plus
glutamate (see Materials and methods). Since HPLC
analysis does not distinguish between isotopomers,
the latter two groups were combined in Table 1,
which shows the cellular content of selected amino
acids in cerebellar neurons and the consumption of
glutamate and glutamine. Compared with control,
adding glutamate to the experimental medium led to
increased intracellular levels of aspartate, gluta-
mate, glutamine, and GABA. Cultures incubated
with glutamine contained increased levels of GABA
corresponding to the increase seen when glutamate
was added. Aspartate and glutamate also increased
as a response to glutamine addition, but not to the
same extent as when glutamate was added. As
expected, intracellular glutamine concentration also
increased when glutamine was added to the med-
ium. When both glutamate and glutamine were
added to the experimental medium, aspartate,
glutamate, and glutamine levels were increased
more than when the two amino acids were added
individually, whereas GABA content was increased
to the same extent as when glutamate and glutamine
were added alone. Quantification of glutamate and
glutamine in the experimental media showed that
glutamate consumption was much higher than
glutamine consumption despite the medium con-
centration of glutamine being twice that of gluta-
mate. Glutamate consumption was unaffected by the
presence of glutamine, whereas the consumption of
glutamine was reduced by nearly 50% when
glutamate was added to the medium.

[U-13C]Glutamate or [U-13C]glutamine from the
experimental medium enters neurons through spe-
cific transporter proteins. Once inside the cells,
[U-13C]glutamine can be converted to [U-13C]gluta-
mate, which can be decarboxylated to uniformly
labeled GABA in GABAergic neurons, or in all cells,

Table 1 Cellular content of selected amino acids (nmol/mg protein) in extracts of cultured cerebellar neurons and consumption of
glutamate and glutamine (mmol/mg protein/2 h) from the experimental medium

Cellular content (nmol/mg protein) Consumption (mmol/mg protein/2 h)

Aspartate Glutamate Glutamine GABA Glutamate Glutamine

Ctr 3171 8873 371 871 — —
Glu 231712a 445716a 2072a 1171a 1.570.1 —
Gln 7676a,b 134710a,b 5776a,b 1072a — 0.770.1
Glu+Gln 278720a,b,c 529731a,b,c 8475a,b,c 1171a 1.670.1 0.470.1c

Cerebellar neurons were incubated for 2 h in medium containing 3 mmol/L glucose, 25 mmol/L DNQX, and 100 mmol/L D-AP5 and either no addition (Ctr
(control), n = 3), 0.25 mmol/L glutamate (Glu, n = 6), 0.50 mmol/L glutamine (Gln, n = 6), or 0.25 mmol/L glutamate plus 0.50 mmol/L glutamine (Glu+Gln,
n = 12), for details see Materials and methods. Results are presented as means7s.d., and P < 0.05 was considered statistically significant.
aDifferent from the Ctr group.
bDifferent from the Glu group.
cDifferent from the Gln group.
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be turned into a-[U-13C]ketoglutarate and be meta-
bolized in the TCA cycle for energy production and
metabolite synthesis. The 13C label from the pre-
cursor’s carbon skeleton will in the latter case be
distributed among the TCA cycle metabolites and
GABA as illustrated in Figure 1.

The labeling of glutamate, GABA, succinate,
malate, aspartate, and citrate as detected by GC/MS
is presented in Figure 2 as atom percent excess (%
labeling). When [U-13C]glutamate is turned into
a-[U-13C]ketoglutarate and enters the TCA cycle,
[1,2,3-13C]glutamate (M + 3) is formed after one turn.
This isotopomer results from condensation of
uniformly labeled oxaloacetate (OAA) with un-
labeled acetyl-CoA forming [3,4,5,6-13C]citrate
(Figure 1), which can be turned into [1,2,3,6-13C]iso-
citrate, a-[1,2,3-13C]ketoglutarate and finally into
[1,2,3-13C]glutamate. After another turn in the TCA
cycle, half of the glutamate formed will be
[1,2-13C]glutamate (M + 2) and half [3-13C]glutamate
(M + 1). After a third turn, 25% of glutamate will be
unlabeled, whereas 75% will be labeled either in the
1, 2, or 3 position (M + 1) (Figure 1).

From [U-13C]glutamate entering the TCA cycle via
a-[U-13C]ketoglutarate, uniformly labeled succinate,
malate, and OAA are formed (Figure 1), and OAA
can be transaminated into aspartate. All of these
compounds have four C atoms, and their [U-13C]
isoforms have the mass M + 4 and are presented in
Figure 2. [U-13C]OAA can, as already mentioned,
condense with unlabeled acetyl-CoA to form
[3,4,5,6-13C]citrate with six carbon atoms, four of

which are 13C (M + 4). Hence, the mass M + 4
represents the first turn in the TCA cycle for all
these compounds. In the next turn, they will all
contain two labeled C atoms and appear as M + 2,
and in the third turn, they will contain one labeled C
atom (M + 1) (Figure 1).

As shown in Figure 2, labeling from [U-13C]gluta-
mate (column A) and [U-13C]glutamine (column B)
was substantial, with glutamate giving the highest
percent labeling in all metabolites analyzed. When
[U-13C]glutamate and unlabeled glutamine were
added to the experimental medium (column C),
percent label decreased only slightly compared with
when [U-13C]glutamate was added alone (column
A). However, when [U-13C]glutamine and unlabeled
glutamate were added to the medium, labeling was
almost abolished for all metabolites (column D).
Figure 2 shows that labeling of glutamate and
malate, aspartate and citrate was high ( > 65% from
[U-13C]glutamate and 40% to 60% from [U-13C]glu-
tamine (in the absence of glutamate)), whereas that
of succinate was much lower ( < 30% labeling from
glutamate and < 10% from glutamine). Although the
percent labeling in succinate was lower, the pattern
was the same as for the other TCA metabolites.

GABA can be formed from glutamate in GABA
ergic neurons, which constitute about 6% of cere-
bellar neuronal cultures (Sonnewald et al, 2004).
GABA formed directly from [U-13C]glutamate is
uniformly labeled (M + 4). From [1,2,3-13C]glutamate
(after one turn in the TCA cycle), [3,4-13C]GABA is
formed (M + 2). Another turn in the TCA cycle for
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Figure 1 Schematic representation of possible isotopomers of various metabolites arising from [U-13C]glutamate or [U-13C]glutamine
via the three first turns in the TCA cycle in neurons: K represents 13C and J represents 12C atoms; GLN: glutamine; GLU:
glutamate; aKG: a-ketoglutarate; SUC: succinate; FUM: fumarate; MAL: malate; OAA: oxaloacetate; ASP: aspartate; CIT: citrate;
GABA: g-amino butyric acid.
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the glutamate carbon skeleton and subsequent
formation of GABA will result in labeling in one C
atom in GABA (M + 1), from both [1,2-13C] and
[3-13C]glutamate, [4-13C] and [3-13C]GABA, respec-
tively. The same two isotopomers are also formed
after three turns in the TCA cycle (Figure 1). Figure 2
shows that the labeling of GABA analyzed by GC/
MS was lower than that of glutamate, malate,
aspartate, and citrate. Total labeling from [U-13C]glu-
tamate was B30% regardless of the presence of
unlabeled glutamine. Significantly less (17%)
GABA was labeled from [U-13C]glutamine alone,
and this was further reduced in the presence of
unlabeled glutamate (6%).

Intracellular amounts of glutamate, aspartate, and
GABA as quantified by HPLC are shown in Figure 3.
The amounts of glutamate and aspartate varied
considerably with addition of glutamate or gluta-
mine in the experimental medium, but followed the
same pattern, whereas GABA concentration was
independent of glutamate and glutamine content in
medium. Results from mass spectrometry provide

information about percent labeling, which com-
bined with information about amounts of metabo-
lites gives quantitative data. Amounts of different
13C labeled isotopomers of glutamate, aspartate, and
GABA from the first two turns in the TCA cycle are
shown in Figure 3. The intracellular amount of
uniformly labeled glutamate was 248 nmol/mg pro-
tein after incubation with [U-13C]glutamate. This
was reduced to 32 and 17 nmol/mg protein when
glutamine was the labeled precursor, in the absence
and presence of unlabeled glutamate, respectively.
When labeled glutamate was added in the presence
of unlabeled glutamine, the amount of intracellular
uniformly labeled glutamate was, however, in-
creased to 279 nmol/mg protein. The same trend
was seen in [U-13C]aspartate, although the amounts
were B50% of those of [U-13C]glutamate. These two
excitatory amino acids also showed similarities in
the next turn in the TCA cycle. GABA had a much
lower labeling from both labeled precursors than
glutamate and aspartate, labeling from [U-13C]gluta-
mine being lower than that from [U-13C]glutamate.
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Discussion

Metabolism of glutamate and glutamine in the
brain is closely connected via the glutamate–
glutamine cycle, in which neurotransmitter
glutamate taken up from the synaptic cleft by
astrocytes is converted to glutamine and trans-
ported back to neurons as a precursor for the
neurotransmitter pool (Berl and Clarke, 1983).
Similar mechanisms operate in the glutamate–
glutamine–GABA cycle (van den Berg and Garfinkel,
1971; Sonnewald et al, 1993b). However, reuptake
into the presynaptic neuron is believed to be
the preferred mechanism for removal of GABA
from the synapse (Schousboe, 2003). To which
extent glutamine and thus this cycle is impor-
tant for cultured cerebellar neurons has been
explored in the present study by comparing
[U-13C]glutamate and [U-13C]glutamine as substrates
for intermediary metabolism. In our model, addition
of glutamine to the neuronal cultures mimics
astrocyte–neuronal interactions in the brain, with
the advantage of isolating neuronal from glial
metabolism and thus making interpretation of
results unambiguous.

[U-13C]Glutamate and [U-13C]Glutamine Metabolism

Glutamine has been shown to be an excellent
precursor for the neurotransmitters glutamate
and GABA, both in cultured cerebellar neurons
(Waagepetersen et al, 2005), cortical neurons
(Westergaard et al, 1995), and in freshly isolated
cortical synaptosomes from rat brain (Yudkoff et al,

1989; Sonnewald and McKenna, 2002). Label
from [U-13C]glutamine was also found in glutamate
and GABA in the present study. Moreover, labeling
of TCA cycle intermediates and aspartate was
detected, showing that the carbon skeleton of
[U-13C]glutamine entered the TCA cycle. The
presence of isotopomers from subsequent turns also
showed that the carbon skeleton stayed in the TCA
cycle. This confirms that the glutamate–glutamine
cycle does not operate in a stochiometric fashion
(McKenna et al, 1993, 1994; Sonnewald et al, 1993a)
and that glutamine is readily oxidized by cerebellar
cultures for energy.

Exogenous glutamate has also been used to label
neuronal metabolites. Westergaard et al (1995)
showed that in cultured cortical neurons, which
are predominantly GABAergic, incubation with
[U-13C]glutamate gave high enrichment in aspartate
in addition to labeling of GABA. Incubating cere-
bellar neurons in medium containing [U-13C]gluta-
mate in the present study led not only to uniformly
labeled intracellular aspartate and glutamate, but to
some extent, the carbon skeleton also stayed in the
TCA cycle for several turns. This is in accordance
with similar studies of cerebellar neurons analyzed
with magnetic resonance spectroscopy (Sonnewald
et al, 1996; Santos et al, 2006). Using the more
sensitive method mass spectrometry, extensive
labeling of TCA cycle intermediates and GABA
was also detected in the present study. Labeling of
GABA in cerebellar cultures has earlier been shown
by Qu et al (2000). The present study confirms that
[U-13C]glutamate serves as an excellent precursor for
intermediary metabolism in cultured cerebellar
neurons.
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As shown in the previous paragraphs, both
[U-13C]glutamine and [U-13C]glutamate are well
suited as precursors for neurotransmitter formation
and substrates for neuronal intermediary metabo-
lism. However, in the present study [U-13C]gluta-
mate gave a higher percent labeling than
[U-13C]glutamine in all metabolites, including
GABA. Sonnewald and McKenna (2002) found that
[U-13C]glutamate was superior in labeling of aspar-
tate, whereas GABA labeling was only observed
from [U-13C]glutamine, and not from [U-13C]gluta-
mate when unlabeled glutamine was present, in
cortical synaptosomes. Although [U-13C]glutamate
was a better precursor for GABA than [U-13C]gluta-
mine in the present study, glutamine was a rela-
tively better precursor for GABA than for the other
metabolites investigated, indicating that GABA
synthesis occurs in a separate compartment (see
below) consistent with findings in cortical synapto-
somes (Sonnewald and McKenna, 2002). Wester-
gaard et al (1995) showed that in primary cultures
of cortical neurons labeling of aspartate, GABA,
and [1,2,3-13C]glutamate was very similar from
[U-13C]glutamine and [U-13C]glutamate. Thus, not
surprisingly, GABAergic neurons in the cerebellum
appear to have a different substrate preference for
GABA synthesis than GABAergic neurons in cere-
bral cortex. In cultured cortical neurons, TCA cycle
metabolism of the carbon skeleton subsequently
used in formation of GABA was more pronounced
from [U-13C]glutamine than from [U-13C]glutamate
(Westergaard et al, 1995). This was also observed in
the present study in cultured cerebellar neurons.
With [U-13C]glutamate as the precursor, approxi-
mately 60% of the labeled succinate, malate,
aspartate, and citrate was uniformly labeled and
thus derived from the first turn, B20% was from the
second and B10% from the third turn in the TCA
cycle. When [U-13C]glutamine was present in the
experimental medium, these numbers were B40%,
B30%, and B25%, respectively, and similar results
were seen in GABA. Thus, cycling from glutamine
was more prominent than that from glutamate. The
fact that mitochondrial metabolism of the carbon
skeleton of endogenous glutamate derived from
glutamine and glutamate taken up into the cells
differed could be due to differences in the distribu-
tion of the enzyme phosphate activated glutaminase
catalyzing the formation of glutamate from gluta-
mine. This compartmentation could perhaps be
related to intracellular mitochondrial heterogeneity
(Westergaard et al, 1995; Sonnewald et al, 1998).
Interestingly, label distribution indicating TCA
cycling of the carbon skeleton subsequently con-
verted into GABA was similar whether [U-13C]glu-
tamate or [U-13C]glutamine was the precursor
present in the experimental medium, showing
intercellular compartmentation in addition to the
intracellular compartmentation mentioned above.

To evaluate the preference for glutamate and
glutamine as substrates for intermediary metabolism

in cultured brain cells or synaptosomes, both
substrates have to be present in the medium
simultaneously. When Sonnewald and McKenna
(2002) incubated synaptosomes with [U-13C]gluta-
mate in the presence of unlabeled glutamine, the
carbon skeleton from [U-13C]glutamate entered the
TCA cycle and labeled aspartate and [1,2,3-13C]glu-
tamate, but not GABA. However, label from
[U-13C]glutamine in the presence of unlabeled
glutamate was incorporated into GABA, but not
aspartate. This is consistent with what has been
reported in cortex for the two precursors applied
separately (Westergaard et al, 1995), showing that
the compartmentation is maintained under more
physiological conditions with both substrates pre-
sent (Sonnewald and McKenna, 2002). The impor-
tance of glutamine as a precursor and thus the
importance of the glutamate–glutamine–GABA cy-
cle for GABA synthesis is surprising since reuptake
of GABA into the presynapse is believed to be
prominent (Schousboe, 2003). Neurotransmitter
glutamate, however, is thought to be removed from
the synaptic cleft mainly by uptake into astrocytes
(Schousboe et al, 1977; Danbolt, 2001). On the basis
of this, it can be assumed that the importance of
the glutamate–glutamine cycle should be greater for
the synthesis of neurotransmitter glutamate than
for GABA. However, results from the present study
suggest otherwise. Consumption of glutamate in the
cerebellar neurons was twice that of glutamine
when given alone and together with glutamine,
even though the glutamine concentration in the
medium was twice as high as that of glutamate. Most
importantly, glutamine consumption was reduced
by nearly 50% in the presence of glutamate
compared with when glutamate was not present in
the experimental medium. Thus, glutamate could
substitute for glutamine, but the reverse was not the
case. Labeling of intracellular metabolites was only
slightly reduced when neurons were incubated in
medium containing [U-13C]glutamate in the pre-
sence of unlabeled glutamine compared with that
in the absence of glutamine. Surprisingly, when
unlabeled glutamate was present together with
[U-13C]glutamine, labeling was almost abolished
in all metabolites measured. The carbon skeleton
of [U-13C]glutamate and [U-13C]glutamine will, in
the TCA cycle, not only be distributed into the
metabolites mentioned above, but also be converted
to 13CO2, which is not detected by the experimental
setup used in the present study. As mentioned
above, the carbon skeleton of glutamine stayed in
the TCA cycle longer than that of glutamate and
thus it is likely that a higher percentage of glutamine
compared with that of glutamate was converted
to 13CO2.

Considering the results presented, it can be
postulated that the glutamate–glutamine cycle is of
less importance for neurons in the cerebellum than
what has been described for cerebral cortical
neurons. This is further supported by the fact that
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granule neurons are by far the most abundant cells
in the rat cerebellum (265� 106) and outnumber glia
(2.2� 106) in the granule layer significantly (Korbo
et al, 1993). A similar quantitative neuronal dom-
inance has been reported in human cerebellum
(Andersen et al, 1992). Thus, in the cerebellar
cortex, glial processes do not envelop all synapses.
Indeed, it has been shown that around synapses
between the parallel fibers, the axons of granule
neurons, and interneuron dendrites, astrocyte pro-
cesses are lacking (Danbolt, 2001). Therefore, the
distance from the synapse to the nearest glial cell is
quite large and, in addition, the relative number of
glutamate transporters on these astrocytes is low
(Danbolt, 2001). However, it has been shown that in
the cerebellar granule cell layer, the density of
mRNA for a neuronal glutamate transporter was
very high (Velaz-Faircloth et al, 1996). Considering
the relatively large distance between synaptic
regions of cerebellar granule cells and astrocytes
and the high level of glutamate transporters on these
neurons, it can be argued that reuptake of glutamate
must be important for granule neurons. This has
indeed been shown by Waagepetersen et al (2005),
who reported that the intracellular pool of glutamate
in cerebellar neurons was dependent on reuptake of
extracellular glutamate.

The ‘Partial Tricarboxylic Acid Cycle’

Battaglioli and Martin (1990) showed that in
synaptosomes, aspartate synthesis was strongly
stimulated by glutamate and glutamine, but the
stimulation by glutamate was greatest. Similarly, in
the present study, an increase in intracellular
glutamate concentration was always accompanied
by a corresponding increase in that of aspartate.
The intracellular glutamate concentration was
highest in the cells incubated with both glutamate
and glutamine, followed by those incubated with
glutamate alone, and thereafter cells incubated
with glutamine, which also led to an increase
compared with control. The coupling between
glutamate and aspartate can be explained by the
fact that cerebellar neurons have a high activity of
glutamate dehydrogenase and aspartate amino
transferase (Drejer et al, 1985; Westergaard et al,
1991; Zaganas et al, 2001). Thus, entry of glutamate
via a-ketoglutarate into the TCA cycle and conver-
sion of oxaloacetate to aspartate is very efficient
in the cerebellum and energy is obtained from this
so-called ‘partial TCA cycle’ (Hertz et al, 1991;
Sonnewald and McKenna, 2002).

GABA Shunt in Cerebellar Neurons

The cerebellar neuronal cultures consist primarily
of glutamatergic granule cells with a minor con-
tribution of GABAergic stellate and basket neurons,
that is, GABAergic as well as glutamatergic

characteristics are expressed in these cultures
(Pearce et al, 1981; Hertz et al, 1985; Hertz and
Schousboe, 1987; Drejer and Schousboe, 1989;
Kovacs et al, 2003). Thus, cultures of dissociated
cerebellum constitute an excellent model system for
the in vivo situation, in which the association of
GABAergic with glutamatergic neurons can be
investigated. The major enzyme responsible for
GABA synthesis in brain, glutamate decarboxylase,
was shown to be present in 6% of cultured
cerebellar neurons (Sonnewald et al, 2004) indicat-
ing the presence of two distinct cell types and thus,
at least two cellular compartments. In the present
study, the amount of intracellular GABA in the
cultures was increased to the same extent by all
experimental conditions, compared with control
cultures. This is in contrast to the results obtained
for aspartate, which increased with increasing
glutamate concentration, as mentioned above, show-
ing cellular compartmentation. It has been shown
that the glutamate decarboxylase positive neurons,
which constitute the GABAergic compartment,
produce GABA during the whole culture period
and that GABA is distributed throughout the whole
culture (Sonnewald et al, 2006). In the present
study, no labeled substrates were present in the
medium during the 7-day culture period, thus
GABA produced during this time was unlabeled.
When medium containing [U-13C]glutamate or
[U-13C]glutamine was added to the cultures for the
2-h incubation period, labeled GABA could be
formed only in the small number of GABAergic
cells. Hence, most GABA in the cultures in general,
and in the cerebellar granule neurons in particular,
was unlabeled at the time of culture extraction.

GABA can be catabolized via the GABA shunt, in
which the carbon skeleton of GABA enters the TCA
cycle after conversion to succinate. Interestingly,
percent labeling of succinate was very similar to that
of GABA and much lower than that of the other TCA
cycle intermediates measured. The number of
GABAergic neurons in the cultures is small, and
thus it seems unlikely that the succinate content
in these neurons could account for the dilution of
labeling in the total succinate pool. It can be
assumed that catabolism of GABA and entry of
the carbon skeleton of GABA into the TCA cycle
through the GABA shunt is taking place in the
glutamatergic cells from unlabeled GABA. Hence, a
possible function of GABA in the glutamatergic
neurons is the ability to produce a separate
succinate pool for potential energy production in
the TCA cycle, suggesting a special role for the
GABA shunt in the cerebellum.

Conclusion

Through the results presented, it could be shown
that glutamate is preferred over glutamine as a
substrate for intermediary metabolism in cultured
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cerebellar neurons. It can be concluded that these
neurons rely more on reuptake of glutamate than
supply of glutamine from astrocytes for glutamate
homeostasis.
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Abstract

Glutamate neurotoxicity is implicated in most neurodegenerative diseases, and in the present study the long-term effects of the glutamate

agonist kainic acid (KA) on cerebellar neurons are investigated. Primary cell cultures, mainly consisting of glutamatergic granule neurons, were

cultured in medium containing 0.05 or 0.50 mM KA for 7 days and subsequently incubated in medium containing [U-13C]glutamate or

[U-13C]glutamine. The amount of protein and number of cells were greatly reduced in cultures exposed to 0.50 mM KA compared to those exposed

to 0.05 mM KA. Glutamine consumption was not affected by KA concentration, whereas that of glutamate was decreased by high KA, confirming

reduction in glutamate transport reported earlier. Neurons cultured with 0.50 mM KA and incubated with glutamate contained decreased amounts

of glutamate, aspartate and GABA compared to those cultured with 0.05 mM KA. Incubation of cells exposed to 0.50 mM KA with glutamine led

to an increased amount of glutamate compared to cells exposed to 0.05 mM KA, whereas the intracellular amounts of aspartate and GABA

remained unaffected by KA concentration. Furthermore, mitochondrial metabolism of a-[U-13C]ketoglutarate derived from [U-13C]glutamate and

[U-13C]glutamine was significantly reduced by 0.50 mM KA. The results presented illustrate differential vulnerability to KA and can only be

understood in terms of inter- and intracellular compartmentation.

# 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Neurodegenerative diseases, characterized principally by

the progressive loss of neurons, can affect various brain regions

and include a number of different diagnoses. Typically, the

pattern of neuronal loss is selective, affecting one or more

groups of neurons, while leaving others intact. Ataxia-

telangiectasia is an example of a degenerative disorder, with

predominantly cerebellar neuronal degeneration with selective

loss of GABAergic Purkinje and glutamatergic granule cells

(Crawford, 1998; De Girolami et al., 1999). Selective

destruction of one or more groups of neurons is also seen

after exposure to different toxic substances. In the cerebellum,
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granule neurons are very sensitive to methyl mercury,

thiophene and 2-chloropropionic acid, whereas Purkinje cells

are sensitive to ethanol and diphenylhydantoin (Fonnum and

Lock, 2000; Sonnewald et al., 2002). Glutamate homeostasis

and metabolism is of supreme importance in the brain.

However, the balance between physiological and pathological

signaling is delicate, and thus glutamate neurotoxicity is

implicated in most neurodegenerative diseases. It has been

shown that the glutamate agonist kainic acid (KA) exerts toxic

effects after systemic or intracranial injection in rodents.

Systemic KA injections lead to seizures and subsequent

neuronal cell loss, and has therefore been widely used as an

epilepsy model (Ben-Ari, 1985; Bradford, 1995; Schwarzer and

Sperk, 1995; Müller et al., 2000; Qu et al., 2003). Injection of

KA directly into cerebella of hamsters and rats has been shown

to selectively damage neurons which receive synaptic input

from granule cells, while the granule cells themselves were

spared (Herndon and Coyle, 1977); leading to the hypothesis

that KA exerts its toxic effects through glutamate receptors. In
cid exposure reveals compartmentation of glutamate and glutamine
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contrast, Lovell and Jones (1980), found destruction of a

substantial number of granule cells in mouse cerebellar cortex

with sparing of many Purkinje cells after injection of KA in

mouse cerebellar cortex. In cell culture experiments, KA has

been shown to cause both positive and negative effects on

survival of neurons from this area (Balázs et al., 1990;

Frandsen and Schousboe, 1990; Kato et al., 1991; Jensen et al.,

1999; Drian et al., 2001). Furthermore, it has been reported

that KA exposure led to disturbed maturation of GABAA

receptor subunit expression in these neurons (Engblom et al.,

2003).

Although several authors have investigated neurotoxic

effects of short time exposure to KA, little is known about long-

term effects on neuronal metabolism. Thus, the purpose of the

present study was to investigate the effects of long-term

exposure of cerebellar neurons to KAwith respect to glutamate

and glutamine metabolism. Cerebellar neurons were cultured

in medium containing 0.05 or 0.50 mM KA for the whole 7-day

culture period, and subsequently incubated for 2 h in medium

containing [U-13C]glutamate or [U-13C]glutamine. High

performance liquid chromatography (HPLC) and gas chro-

matography/mass spectrometry (GC/MS) analyses were

performed on media and cell extracts, and cellular protein

was quantified. The cerebellar neuronal culture model system

is well suited for this kind of metabolic study because after 7

days in vitro, the cultures express glutamate and glutamine

metabolizing enzymes analogous to that of the brain in vivo

(Drejer et al., 1985). Moreover, the cultures show similarities

to the in vivo situation due to expression of both GABAergic as

well as glutamatergic characteristics (Pearce et al., 1981; Hertz

et al., 1985; Hertz and Schousboe, 1987; Drejer and

Schousboe, 1989; Kovacs et al., 2003). The glutamatergic

granule cells dominate quantitatively in the cultures, just as in

the cerebellum in vivo (Drejer and Schousboe, 1989; Andersen

et al., 1992). In addition, the cultures contain about 6%

GABAergic stellate and basket neurons, and a small number of

glial cells (Messer, 1977; Drejer et al., 1985; Damgaard et al.,

1996; Sonnewald et al., 2004). Thus, cellular compartmenta-

tion of metabolism can readily be studied in these cultures.

Furthermore, the blood–brain-barrier, which normally

excludes glutamate and glutamine from entering the brain,

is bypassed in this system.

2. Experimental procedures

2.1. Materials

NMRI mice were obtained from Taconic M&B (Copenhagen, Denmark).

Plastic tissue culture dishes were purchased from Nunc A/S (Roskilde, Den-

mark) and fetal calf serum (FCS) from Seralab Ltd. (Sussex, UK). Culture

medium, kainic acid, glutamate receptor antagonists DNQX (6,7-dinitroqui-

noxaline-2,3-dione) and D-AP5 (D-2-amino-5-phosphonopentanoic acid) were

from Sigma Chemical Co. (St. Louis, MO, USA). [U-13C]Glutamate and

[U-13C]glutamine were from Cambridge Isotope Laboratories (Woburn, MA,

USA), and the GC/MS derivatization reagent MTBSTFA (N-methyl-N-(tert-

butyldimethylsilyl)trifluoroacetamide) + 1% t-BDMS-Cl (tert-butyldimethyl-

chlorosilane) was purchased from Regis Technologies, Inc. (Morton Grove,

IL, USA). All other chemicals were of the purest grade available from regular

commercial sources.
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2.2. Cell cultures

Cerebellar neurons were isolated and cultured from 7-day-old mice as

described by Schousboe et al. (1989). Briefly, the tissue was trypsinized

followed by trituration in a DNase solution containing a trypsin inhibitor from

soybeans. Cells were suspended (2.75 � 106 cells/ml) in a modified Dulbecco’s

minimum essential medium (Hertz et al., 1982) containing 24.5 mM KCl,

31 mM glucose, 7 mM p-aminobenzoic acid, 10% (v/v) FCS and either 0.05 or

0.50 mM kainic acid, and seeded in poly-D-lysine coated Petri dishes (2 ml/

35 mm). After 48 h in culture, 20 mM (final concentration) cytosine arabinoside

was added to the medium to prevent astrocytic proliferation.

2.3. Microscopy

Cell morphology was assessed using a Nikon Eclipse TE 2000-S inverted

phase-contrast microscope (Nikon, Inter Instruments AS, Norway). The micro-

scope was equipped with a SPOT RT Digital Camera (SPOT Diagnostic

Instruments, Sterling Heights, MI, USA), and photomicrographs of cells were

taken after 7 days in vitro.

2.4. Experiments using [U-13C]glutamate and [U-13C]glutamine

The culture medium containing 0.05 or 0.5 mM KA was removed from 7-

day-old cultures and the cells were incubated for 2 h at 37 8C in 2 ml serum free

medium prepared without glutamine, containing 3 mM glucose and either no

additions (control, for HPLC analysis), [U-13C]glutamate (0.25 mM) or

[U-13C]glutamine (0.50 mM). KA was not present in this incubation medium.

In order to avoid the toxicity of glutamate during the incubation, two glutamate

receptor antagonists DNQX (25 mM), an AMPA/kainate-selective antagonist,

and D-AP5 (100 mM), an NMDA antagonist, were also present in the incubation

medium (Frandsen et al., 1989). After the incubation period, medium was

removed for HPLC analysis and the cells were washed twice with cold

phosphate buffered saline and extracted with 70% (v/v) ethanol. The cell

extracts were scraped off the dishes and centrifuged at 10,000 � g for

15 min to separate the metabolites from the insoluble proteins. The supernatants

were divided into two parts, one directly analyzed with HPLC; the other

lyophilized for subsequent sample preparation for GC/MS analysis.

2.5. Protein quantification

Cellular protein in the ethanol pellets was determined after dissolving in

1 M KOH at 37 8C for 60 min, using the Pierce BCA (Pierce, Rockford, IL,

USA) protein assay with bovine serum albumin as standard.

2.6. HPLC

Amino acids in cell extracts and medium were quantified by HPLC on a

Hewlett Packard 1100 system (Agilent Technologies, Palo Alto, CA, USA). The

amino acids were pre-column derivatized with o-phthaldialdehyde (Geddes and

Wood, 1984) and subsequently separated on a ZORBAX SB-C18

(4.6 mm � 250 mm, 5 mm) column from Agilent using a phosphate buffer

(50 mM, pH 5.9) and a solution of methanol (98.75%) and tetrahydrofurane

(1.25%) as eluents. The separated amino acids were detected with fluorescence

and quantified by comparison to a standard curve derived from standard

solutions of amino acids run after every twelve samples.

2.7. GC/MS

Lyophilized cell extracts were redissolved in HCl (10 mM), adjusted to

pH < 2 with 6 M HCl and dried under atmospheric air. The amino acids were in

multiple steps extracted into an organic phase of ethanol and benzene and dried

again under atmospheric air before derivatization with MTBSTFA in the

presence of 1% t-BDMS-Cl (Mawhinney et al., 1986). The samples were

analyzed on a Hewlett Packard 5890 Series II gas chromatograph linked to a

Hewlett Packard 5972 Series mass spectrometer. Atom percent excess (13C) of

glutamate, glutamine, GABA and aspartate was determined after calibration

using unlabeled standard solutions (Biemann, 1962).
cid exposure reveals compartmentation of glutamate and glutamine

i:10.1016/j.neuint.2006.11.004

http://dx.doi.org/10.1016/j.neuint.2006.11.004


E. Olstad et al. / Neurochemistry International xxx (2006) xxx–xxx 3

+ Models

NCI-1967; No of Pages 10
2.8. Metabolic fate of [U-13C]glutamate and [U-13C]glutamine

Incubating cerebellar neurons in medium containing [U-13C]glutamate or

[U-13C]glutamine and subsequent analysis of cell extracts by mass spectrometry

can provide useful information about the metabolism in these cells. In order to

interpret the mass spectrometry data, it is necessary to know the metabolic fate

of the two labeled precursors. [U-13C]Glutamate or [U-13C]glutamine from the

incubation medium enters the neurons through transporter proteins. Once inside

the cells, [U-13C]glutamine can be converted to [U-13C]glutamate. The latter

can be decarboxylated into uniformly labeled GABA in GABAergic neurons, or

it can be converted into a-[U-13C]ketoglutarate and be metabolized in the

tricarboxylic acid (TCA) cycle for energy production and metabolite synthesis.

The 13C label from the precursor’s carbon skeleton will in the latter case be

distributed among the TCA cycle metabolites as illustrated in Fig. 1. From the

first turn in the TCA cycle, all metabolites will be uniformly labeled to the

oxaloacetate (OAA) step. [U-13C]OAA can be transaminated to [U-13C]aspar-

tate and leave the TCA cycle, or continue cycling by condensing with unlabeled

acetyl-CoA to form [3,4,5,6-13C]citrate. In the TCA cycle, [3,4,5,6-13C]citrate

is converted into [1,2,3,6-13C]isocitrate and a-[1,2,3-13C]ketoglutarate as one

turn in the TCA cycle is completed. From a-[1,2,3-13C]ketoglutarate leaving

the TCA cycle, [1,2,3-13C]glutamate and [3,4-13C]GABA can be derived. If a-

[1,2,3-13C]ketoglutarate stays in the cycle (Fig. 1), [1,2-13C]succinyl-CoA is

formed. From [1,2-13C]succinyl-CoA, two possible isotopomers of succinate,

[1,2-13C]- or [3,4-13C]succinate arises due to the symmetrical nature of this

molecule. Fumarate, malate, OAA and aspartate formed from [1,2-13C]- or

[3,4-13C]succinate will all be present in both isoforms. After introduction of

another unlabeled acetyl-CoA into the TCA cycle and subsequent exit of
Fig. 1. Schematic representation of possible isotopomers of metabolites arising from

via three turns in the TCA cycle: (*) 13C and (*) 12C atoms. The labeling of fumarat

the same as that of citrate, although the numbering of the C atoms differs. GLU: gluta

fumarate; MAL: malate; OAA: oxaloacetate; CIT: citrate; ISOCIT: isocitrate.
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labeled a-ketoglutarate after two completed turns in the TCA cycle, the

isotopomers [1,2-13C]- and [3-13C]glutamate, and [3-13C]- and [4-13C]GABA

can be derived. Further oxidative metabolism of labeled a-ketoglutarate in the

cycle results in isotopomers labeled in either one of the four C positions for

succinate, fumarate, malate, OAA and aspartate (Fig. 1). The third turn in the

TCA cycle is concluded by the formation of a-ketoglutarate singly labeled in C-

1, C-2 or C-3 position with the possibility to form [1-13C]-, [2-13C]- and

[3-13C]glutamate or [3-13C]- and [4-13C]GABA.

2.9. Data analysis

Peaks from mass spectra were integrated, and atom percent excess values

were calculated for glutamate, aspartate and GABA by comparison with

unlabeled standard solutions. Atom percent excess values for masses larger

than M (i.e. M + 1, M + 2, etc.) were added to give percent 13C enrichment of the

different compounds (Table 1). Results from HPLC quantification of the above

mentioned amino acids in cell extracts were combined with values of atom

percent excess obtained from MS to give nmol/mg protein of the uniformly

labeled compounds and of the isotopomers from the first, second and third turn

of the TCA cycle (Table 2). Setting the percent enrichment presented in Table 1

to 100% made it possible to compare the groups incubated with [U-13C]glu-

tamate or [U-13C]glutamine directly with respect to which extent of glutamate

and GABA was derived without TCA cycle activity and from precursors from

consecutive turns of the TCA cycle, the latter also including aspartate. Con-

sumption of [U-13C]glutamate and [U-13C]glutamine was calculated by sub-

tracting the amounts of the two amino acids measured in the incubation media

after 2 h from the amounts added. Results are presented as mean � standard
[U-13C]glutamate or [U-13C]glutamine (after conversion to [U-13C]glutamate)

e, malate and OAA is the same as that of succinate, whereas isocitrate labeling is

mate; aKG: a-ketoglutarate; SUC-CoA: succinyl-CoA; SUC: succinate; FUM:

cid exposure reveals compartmentation of glutamate and glutamine

i:10.1016/j.neuint.2006.11.004

http://dx.doi.org/10.1016/j.neuint.2006.11.004


Table 1

Percent 13C enrichment in glutamate, aspartate and GABA in cell extracts of

cerebellar neurons cultured in medium containing 0.05 or 0.50 mM kainic acid

(KA)

Glutamate (% 13C) Aspartate (% 13C) GABA (% 13C)

glu

0.05 mM KA 90.6 � 0.5 85.4 � 0.4 29.2 � 0.8

0.50 mM KA 92.1 � 0.4a 86.3 � 0.7a 28.7 � 3.1

gln

0.05 mM KA 58.8 � 1.2 48.5 � 1.0 17.2 � 1.2

0.50 mM KA 64.7 � 1.4a 52.9 � 1.8a 20.7 � 1.7a

On day 7 in vitro, the culture medium was removed and the cells were incubated

for 2 h in medium containing 0.25 mM [U-13C]glutamate (glu, n = 6) or

0.50 mM [U-13C]glutamine (gln, n = 6), for details see Section 2. Results

are presented as mean % � S.D., and p < 0.05 was considered significant after

analysis using Student’s t-test.
a Different from the corresponding cells cultured in medium containing

0.05 mM KA.
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deviation (S.D.). Differences between more than two groups were analyzed

statistically using one-way analysis of variance (ANOVA) followed by the LSD

(least significant difference) post hoc test, and between two groups using

Student’s t-test, p < 0.05 was considered significant.

3. Results

3.1. Neuronal survival and cell morphology

Cerebellar neurons were cultured with medium containing

0.05 or 0.50 mM KA for 7 days before incubation in fresh

medium containing either no additions (control group),

[U-13C]glutamate or [U-13C]glutamine (see Section 2). The

amount of protein in the cultures was not affected by different

incubation conditions (results not shown); however, protein

amount in cultures exposed to medium with 0.50 mM KA for

the whole 7-day culture period was significantly decreased

compared to cultures exposed to medium with 0.05 mM KA, as

shown in Fig. 2A. The number of cells per culture dish was

visibly reduced, whereas the morphology of single cells as

assessed by microscopy was unaffected by KA concentration

(Fig. 2B).
Table 2

Cellular content of labeled glutamate, aspartate and GABA (nmol/mg protein) derive

containing 0.05 or 0.50 mM kainic acid (KA)

Glutamate (nmol/mg protein) Aspartate (nmol/m

Total

label

Uniformly First

turn

Second

turn

Total

label

First

turn

glu

0.05 mM KA 404 � 16 248 � 13 85 � 4 47 � 3 198 � 10 118

0.50 mM KA 300 � 34a 211 � 22a 50 � 7a 23 � 3a 107 � 16a 71

gln

0.05 mM KA 79 � 6 32 � 3 22 � 1 18 � 1 37 � 3 14

0.50 mM KA 103 � 9a 45 � 5a 28 � 2a 20 � 2a 42 � 4a 17

The amounts of differently labeled isotopomers of glutamate, aspartate and GAB

[U-13C]glutamate (glu, n = 6) or 0.50 mM [U-13C]glutamine (gln, n = 6) for 2 h, for

and p < 0.05 was considered statistically significant.
a Different from the corresponding cells cultured in medium containing 0.05 mM
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3.2. Intracellular concentrations and consumption of

amino acids

The cellular content of selected amino acids in cultured

cerebellar neurons is presented in Fig. 3. Compared to control,

intracellular concentrations of glutamate and aspartate were

increased after incubation in medium with [U-13C]glutamate

and to a lesser extent after incubation in medium with

[U-13C]glutamine in cultures exposed to either 0.05 or

0.50 mM KA compared to cells incubated in plain medium

(control group). Cells exposed to the high KA concentration,

had a lower glutamate and aspartate content after incubation in

control medium and medium containing [U-13C]glutamate

compared to cultures exposed to low KA. On the other hand,

after incubation with medium containing [U-13C]glutamine,

high KA led to an increase in glutamate content compared

to the low KA group, whereas the intracellular aspartate

concentration after incubation with medium containing

[U-13C]glutamine remained unaffected by KA concentration.

The intracellular concentration of aspartate followed that of

glutamate, and was approximately 50% of that of glutamate

under all conditions. Incubating neurons with medium

containing [U-13C]glutamate or [U-13C]glutamine increased

cellular content of glutamine in both KA groups compared to

control. Incubation in medium with [U-13C]glutamine gave a

higher intracellular glutamine level than incubation in the

presence of [U-13C]glutamate. Cultures incubated in control

medium had the same glutamine content whether cultured with

0.05 or 0.50 mM KA, whereas culturing cells in medium with

the high KA concentration led to decreased glutamine content

after incubation in the presence of [U-13C]glutamate and

increased glutamine content after incubation in medium with

[U-13C]glutamine compared to low KA. The amount of GABA

in cells cultured in the presence of 0.05 mM KA and incubated

with [U-13C]glutamate or [U-13C]glutamine was increased to

the same extent compared to control. Culturing cells in the

presence of 0.50 mM KA led to increased intracellular

concentration of GABA after incubation in plain medium

(control group), whereas incubation in medium with

[U-13C]glutamate led to reduced intracellular GABA content
d from different turns in the TCA cycle in cerebellar neurons cultured in medium

g protein) GABA (nmol/mg protein)

Second

turn

Third

turn

Total

label

Uniformly First

turn

Second/

third turn

� 6 45 � 3 22 � 2 3.2 � 0.3 1.5 � 0.1 0.9 � 0.1 0.6 � 0.1

� 11a 20 � 3a 8 � 1a 2.3 � 0.2a 1.2 � 0.1a 0.6 � 0.1a 0.3 � 0.1a

� 1 11 � 1 10 � 1 1.7 � 0.3 0.8 � 0.1 0.6 � 0.1 0.3 � 0.1

� 2a 12 � 1 11 � 1 1.7 � 0.3 0.8 � 0.1 0.5 � 0.1 0.3 � 0.1

A in cell extracts of cerebellar neurons incubated in medium with 0.25 mM

details see Section 2. Results are presented as mean � S.D. in nmol/mg protein,

KA.

cid exposure reveals compartmentation of glutamate and glutamine
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Fig. 2. The amount of protein in cultures (A) and photomicrographs (B) of cerebellar neurons cultured in medium containing 0.05 or 0.50 mM kainic acid (KA) in

35 mm Petri dishes. On day 7 in vitro, the culture medium was removed, and the cells were incubated for 2 h in medium containing either no additions, 0.25 mM

[U-13C]glutamate or 0.50 mM [U-13C]glutamine, for details see Section 2. The protein amount was not affected by different incubation conditions, thus cultures from

different incubation conditions are presented together. Results are mean � S.D. in mg protein per culture (n = 12 in each group), and p < 0.05 was considered

statistically significant. Bars in photomicrographs represent 0.100 mm. *Different from the group cultured in medium containing 0.05 mM KA.

Fig. 3. Cellular content of glutamate, aspartate, glutamine and GABA detected by HPLC in extracts of cultured cerebellar neurons. Cells were cultured in medium

containing either 0.05 or 0.50 mM kainic acid (KA). On day 7 in vitro, the culture medium was removed, and the cells were incubated for 2 h in medium with either no

additions (ctr, n = 3), 0.25 mM [U-13C]glutamate (glu, n = 6), 0.50 mM [U-13C]glutamine (gln, n = 6), for details see Section 2. Results are presented as mean � S.D.

in nmol/mg protein, and p < 0.05 was considered statistically significant. aDifferent from the ctr group; bDifferent from the glu group; *Different from the

corresponding group cultured in medium containing 0.05 mM KA.
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Fig. 4. Distribution of 13C label in glutamate, aspartate and GABA detected by mass spectrometry analysis of cell extracts of cultured cerebellar neurons after

incubation with 0.25 mM [U-13C]glutamate (A, n = 6) or 0.50 mM [U-13C]glutamine (B, n = 6). Cells were cultured in medium containing either 0.05 mM or

0.50 mM kainic acid (KA), for details see Section 2. Note that uniformly labeled glutamate and GABA is presented, and that GABA from the second and third turn is

presented together due to the fact that the same isotopomers arise from both turns. Results are presented as mean � S.D. in percent of the total labeled compound, and

p < 0.05 was considered statistically significant. *Different from the corresponding group cultured in medium containing 0.05 mM KA.
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compared to cells cultured in the presence of 0.05 mM KA.

Incubation in medium with [U-13C]glutamine led to similar

intracellular GABA concentrations regardless of KA exposure

during the culture period.

The cells’ consumption of [U-13C]glutamate or [U-13C]glu-

tamine was determined by quantifying the amounts of the two

precursors in the incubation media and subtracting these from

the amounts added. Cultures exposed to 0.50 mM KA and

incubated in medium containing [U-13C]glutamate, consumed

approximately half of the amount of glutamate compared to

cultures exposed to 0.05 mM KA, 734 � 184 nmol/mg protein

versus 1537 � 55 nmol/mg protein during the 2 h incubation,

respectively. In contrast, glutamine consumption by neurons

incubated in medium containing [U-13C]glutamine was not

affected by KA concentration. The consumption of glutamine

was 719 � 59 nmol/mg protein in the low KA group and

627 � 162 nmol/mg protein per 2 h in the high KA group.

3.3. 13C labeling of metabolites

In Table 1, percent 13C enrichment in glutamate, aspartate

and GABA in cell extracts after incubation in medium with

[U-13C]glutamate or [U-13C]glutamine is presented. In general,
Please cite this article in press as: Olstad, E. et al., Long-term kainic a
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in glutamate and aspartate, percent enrichment after incubation

in the presence of [U-13C]glutamate was very high (>85%),

and higher than after incubation in medium with [U-13C]glu-

tamine (approximately 45–65%). In GABA, percent enrich-

ment was much lower, but also in this metabolite, the

enrichment was higher after incubation in medium with

[U-13C]glutamate than with [U-13C]glutamine, �30% and

�20%, respectively. Cells cultured in the presence of 0.50 mM

KA and incubated in medium containing [U-13C]glutamate had

a higher percent enrichment in glutamate and aspartate, but not

in GABA, compared to cells cultured in the presence of

0.05 mM KA and incubated in medium with [U-13C]glutamate.

On the other hand, cells exposed to 0.50 mM KA and incubated

in the presence of [U-13C]glutamine, had a higher percent

enrichment in all metabolites than cells cultured in medium

containing 0.05 mM KA and incubated in medium with

[U-13C]glutamine.

In order to investigate the effect of KA on metabolism, 13C

labeling from [U-13C]glutamate and [U-13C]glutamine arising

from different turns in the TCA cycle was calculated. In Fig. 4

percent labeling from [U-13C]glutamate and [U-13C]glutamine

in uniformly labeled glutamate and GABA and also glutamate,

aspartate and GABA from precursors derived from the three
cid exposure reveals compartmentation of glutamate and glutamine
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first turns of the TCA cycle is presented. Cells cultured in the

presence of 0.05 mM KA and incubated in medium with

[U-13C]glutamate contained �60% uniformly labeled gluta-

mate, i.e. un-metabolized precursor. Approximately 20% was

[1,2,3-13C]glutamate derived from a-[1,2,3-13C]ketoglutarate

formed after one turn in the TCA cycle, and �10% was

[1,2-13C] or [3-13C]glutamate from labeled a-ketoglutarate

formed after two TCA cycle turns (see Fig. 1). Less than 1% of

the labeled glutamate was formed from labelled a-ketoglutarate

which had been through three full turns in the TCA cycle.

Culturing cells in medium containing 0.50 mM KA before

incubation with [U-13C]glutamate, led to a different distribu-

tion of intracellular labeled glutamate. In this case, approxi-

mately 70% was un-metabolized [U-13C]glutamate, whereas

�17% and �8% was from labelled a-ketoglutarate after one

and two TCA cycle turns, respectively. Only 0.1% of the

labeled glutamate was formed after three full turns in the TCA

cycle. A larger percentage of the labeled glutamate in the cells

was un-metabolized, and thus a smaller percentage was derived

from the different TCA cycle turns, in neurons cultured in

medium with a high KA concentration compared to neurons

cultured in medium with a low KA concentration. Cells

cultured in medium containing 0.05 mM KA and incubated

with [U-13C]glutamine, showed a more even label distribution

in glutamate derived from intermediates from different turns in

the TCA cycle. In this case, uniformly labeled glutamate

constituted �40% of the labeled glutamate in the cells, and

�30%, �20% and �10% was formed after one, two and three

TCA turns, respectively, indicating more prominent TCA

cycling of a-ketoglutarate derived from glutamine than of that

derived from glutamate. The metabolic effect of culturing

neurons in high KA followed by incubation in medium with

[U-13C]glutamine was similar to that seen in cells incubated in

the presence of [U-13C]glutamate, but less pronounced. The

distribution of label in aspartate formed from [U-13C]glutamate

and [U-13C]glutamine was similar to that in glutamate.

Moreover, the effect of KA on aspartate labeling was similar

in the glutamate and glutamine groups. However, distribution of

label in GABA after culturing cells in medium containing

0.05 mM KA and incubation in the presence of [U-13C]glu-

tamate or [U-13C]glutamine was similar to that from

[U-13C]glutamine in glutamate and aspartate. Neurons cultured

in the presence of 0.50 mM KA and incubated in medium with

[U-13C]glutamate showed similar KA effects in GABA as in

glutamate and aspartate. However, neurons incubated with

[U-13C]glutamine showed no differences in labeling distribu-

tion of GABA whether the cells were cultured in medium

containing 0.05 or 0.50 mM KA.

In Table 2, the effects of kainic acid on intracellular content of

glutamate, aspartate and GABA and the effects on metabolism as

detected in label distribution representing different TCA cycle

turns, are combined (see Section 2). Cells cultured in medium

containing 0.05 mM KA and subsequently incubated with

[U-13C]glutamate had a higher amount of labeled glutamate,

aspartate and GABA than cells cultured with the same KA

concentration, but incubated with [U-13C]glutamine. Culturing

neurons in medium with a high KA concentration led to a
Please cite this article in press as: Olstad, E. et al., Long-term kainic a

metabolism in cultured cerebellar neurons, Neurochem. Int. (2006), do
reduction of total label and uniformly labeled glutamate,

aspartate and GABA, as well as that derived from precursors

from all TCA cycle turns, after incubation with [U-13C]gluta-

mate compared to neurons cultured in medium with a low KA

concentration. In contrast, neurons cultured in the presence of

high KA and subsequently incubated with [U-13C]glutamine,

contained higher levels of total label and uniformly labeled

glutamate and that derived from precursors from all TCA cycle

turns compared to neurons cultured with low KA. The amounts of

total labeled and uniformly labeled aspartate were increased in

the high KA compared to the low KA group, whereas labeling

from the second and third turn of the TCA cycle was unaffected

by KA. Labeling of GABA from [U-13C]glutamine also

remained unaffected by KA concentration during the culture

period.

4. Discussion

The present study was conducted to elucidate the long-term

effects of KA with special emphasis on glutamate and

glutamine metabolism in cultured cerebellar neurons. As

discussed below, KA exerted neurotoxic effects and decreased

intermediary metabolism in these cells.

4.1. KA neurotoxicity

It has been shown in several studies that KA can act as a

neurotoxic agent (Seil et al., 1979; Ben-Ari, 1985; Balázs et al.,

1990; Schwarzer and Sperk, 1995). However, positive effects of

KA has also been reported. In order to illustrate the complexity

of KA effects on cells, it can be pointed out that exposure to low

KA concentrations enhances survival of cerebellar neurons in

culture with a maximal positive effect at �0.05 mM KA,

whereas high concentrations (>0.20 mM) are toxic to these

cells (Balázs et al., 1990). In the present study, we chose to

expose the cells in the control group to 0.05 mM KA, since this

has been shown to enhance cell survival (Balázs et al., 1990)

and give the purest glutamatergic preparation (Drejer and

Schousboe, 1989; Sonnewald et al., 2004). Even though

Engblom et al. (2003) reported disturbed maturation of GABAA

receptor subunit expression in cerebellar neuronal cultures after

exposure to 0.05 mM KA, glucose metabolism remained

unaltered by this treatment (Sonnewald et al., 2004). In addition

to the KA effects on cell survival mentioned above, KA is a

potent agonist at the kainate and AMPA subclasses of

ionotropic glutamate receptors (Lerma, 1998). Hence, admin-

istration of KA causes an acute excitatory response by direct

receptor activation (Ben-Ari, 1985; Sperk, 1994; Bradford,

1995; Qu et al., 2003). In the present study, cell protein was

reduced by approximately 25% in the cultures exposed to

0.50 mM KA compared to those cultured with 0.05 mM KA,

confirming a neurotoxic effect of high KA concentrations. In

cerebellar cultures, selective KA toxicity has been used as a tool

to obtain pure cerebellar granule cell cultures (Drejer and

Schousboe, 1989). Drejer and Schousboe added 0.05 mM KA

to the cultures from day 5 in vitro, and showed that evoked

[3H]GABA release from the cultures was abolished, whereas
cid exposure reveals compartmentation of glutamate and glutamine
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[3H]-D-aspartate release was unaffected by this treatment.

However, other studies have shown that GABAergic neurons in

these cultures are not eliminated by long-term exposure to

0.05 mM KA from day 0 in vitro (Sonnewald et al., 2004,

2006). The present study confirmed previous findings that

GABA is produced in the cultures despite the presence of a high

KA concentration in the culture medium. In fact, GABA

content in the control cultures (incubated without [U-13C]glu-

tamate or [U-13C]glutamine) increased after exposure to

0.50 mM KA compared to 0.05 mM KA (see below).

4.2. KA effect on amino acids metabolism

Culturing cerebellar neurons with 0.50 mM KA for the

whole culture period had profound effects on cellular content of

amino acids in the present study. These effects were

exacerbated when [U-13C]glutamate was present in the

incubation medium. The decrease in cellular content of all

amino acids detected in cells cultured with 0.50 mM KA

compared to those cultured with 0.05 mM KA could have been

caused by a decrease in uptake of [U-13C]glutamate into the

neurons. This theory was supported by the �50% reduction of

glutamate consumption in the high KA compared to the low KA

group. In fact, KA has been shown to be a selective inhibitor of

the high-affinity sodium dependent glutamate transporter

EAAT2 (GLT) (Koch et al., 1999; Danbolt, 2001; Bridges

and Esslinger, 2005). When cultures in the present study were

incubated with [U-13C]glutamine, the situation was very

different than after incubation with [U-13C]glutamate. In this

case, exposure to a high KA concentration during the culture

period led to an increase in cellular content of glutamine and

glutamate compared to cells exposed to a low KA concentra-

tion, whereas the consumption of glutamine from the medium

was not affected by KA concentration. Thus, glutamine uptake

in these cells was not impaired as a response to KA exposure.

An increased cellular content of glutamine and glutamate can

reflect both increased uptake of the precursors and decreased

metabolism. Indeed, turnover in the TCA cycle of the carbon

skeleton from [U-13C]glutamate and [U-13C]glutamine was

decreased in the neurons exposed to 0.50 mM KA compared to

those exposed to 0.05 mM, as discussed in the following.

In the previous paragraph, it was mentioned that the high KA

concentration reduced glutamate uptake by the cerebellar

neurons in culture by approximately 50% compared to the low

KA concentration. The intracellular glutamate concentration

was, however, only reduced by �25%. It can be assumed that

this discrepancy is due to decreased metabolism of intracellular

glutamate or a shift in metabolism resulting in an increased

production of endogenous glutamate. There are few studies on

the effect of KA on metabolism in cultured neurons. However,

several groups have used KA to probe mitochondrial viability.

Boje and Skolnick (1992) exposed cultured rat cerebellar

neurons to various amounts of KA which was added 12 h after

culture start, and assessed mitochondrial viability after 8 days

in vitro. Compared to cells cultured without KA, exposure to

0.05 mM KA led to a decrease in mitochondrial viability of

approximately 25%, and exposure to 0.50 mM KA led to a
Please cite this article in press as: Olstad, E. et al., Long-term kainic a

metabolism in cultured cerebellar neurons, Neurochem. Int. (2006), do
further 25% reduction in mitochondrial viability. This is in

agreement with the present study which suggests that a high KA

concentration leads to an impairment of mitochondrial

function, shown by the presence of more un-metabolized

[U-13C]glutamate or [U-13C]glutamine in cells cultured in

medium containing 0.50 mM KA compared to 0.05 mM KA,

and also by the labeling pattern indicating reduced TCA cycle

activity.

4.3. GABA in cerebellar neuronal cultures

As mentioned earlier, the presence of GABA in cultured

cerebellar neurons has been confirmed by the present study.

Sonnewald et al. (2006) reported that this GABA is produced by

the�6% GABAergic neurons in the culture and is distributed to

the other neurons, hence the glutamatergic neurons in these

cultures contain GABA. Olstad et al. (2006) proposed that a

possible function of GABA in these cells is energy production

through the GABA shunt, where the carbon skeleton of GABA

enters the TCA cycle as succinate. Interestingly, it has been

shown that KA injections in rodents can induce GABA

formation by glutamatergic neurons in the hippocampus

(Schwarzer and Sperk, 1995). It was suggested that the cells

were enabled to produce GABA for protection against

excessive excitation. In the present study, similar results were

obtained. Culturing the predominantly glutamatergic neurons

in the presence of a high KA concentration, and subsequently

incubating them in fresh medium without [U-13C]glutamate or

[U-13C]glutamine present (the control group), led to an increase

in intracellular GABA concentration compared to neurons

exposed to a low KA concentration. Whether this increase was

due to increased GABA production in GABAergic neurons,

decreased GABA catabolism or synthesis of GABA in

glutamatergic cells remains to be determined.

4.4. Compartmentation of glutamate and glutamine

metabolism

It is well established that glutamine serves the role as

precursor for neurotransmitter glutamate and GABA, and also

as energy substrate for intermediary metabolism in neurons

(Westergaard et al., 1995; Sonnewald and McKenna, 2002;

Waagepetersen et al., 2005; Olstad et al., 2006). In order to

fulfill this task, glutamine has to be converted to glutamate.

Thus, it could be assumed that providing cultured neurons with

[U-13C]glutamine or [U-13C]glutamate as precursors would

result in similar labeling patterns in metabolites. Several studies

have shown that this, however, is not the case (Westergaard

et al., 1995; Olstad et al., 2006). In a monoculture consisting

of one type of neurons, this is evidence for intracellular

compartmentation or mitochondrial heterogeneity. As men-

tioned, dissociated cell cultures from postnatal rodent

cerebellum consist of glutamatergic granule neurons, with a

small contribution of GABAergic stellate and basket neurons.

Despite adding an anti-mitotic agent (cytosine arabinoside) to

the cultures, a small number of glial cells are also present in the

culture. Thus, the fact that more than one cell type are present in
cid exposure reveals compartmentation of glutamate and glutamine
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these cultures, intercellular compartmentation can be observed.

Since only the GABAergic neurons have been shown to be

capable of producing GABA (Sonnewald et al., 2004, 2006)

and the astrocytes glutamine (Norenberg and Martinez-

Hernandez, 1979), it is possible to differentiate between

intercellular and intracellular compartmentation in cultures of

cerebellar neurons. Indeed, results from the present study

illustrate both inter- and intracellular compartmentation.

Intracellular compartmentation has previously been reported

in cultured cortical neurons, where TCA cycle metabolism of

the carbon skeleton subsequently used in formation of GABA

was higher from [U-13C]glutamine than from [U-13C]glutamate

(Westergaard et al., 1995). Also in the present study

intracellular compartmentation was seen since TCA cycling

of the carbon skeleton from [U-13C]glutamine was more

pronounced than that from [U-13C]glutamate in all metabolites

except GABA. In the latter, cycling from the two labeled

precursors was similar, indicating that in the GABAergic

compartment, the carbon skeleton from [U-13C]glutamate has a

higher turnover than in the glutamatergic compartment.

Although the cycling from [U-13C]glutamate and [U-13C]glu-

tamine was similar in the GABAergic compartment, results

from the present study suggest compartmentation inside the

GABAergic compartment. This is evident from the fact that

cycling of the carbon skeleton from [U-13C]glutamate

subsequently used to form GABA was affected by KA,

whereas cycling of the carbon skeleton from [U-13C]glutamine

was not. Since the cerebellar cultures consist of two types of

GABAergic neurons, stellate and basket neurons, it is not

surprising that the GABAergic compartment shows further

compartmentation.

5. Conclusion

Long-term exposure of cells to 0.50 mM KA led to a

profound loss of cerebellar neurons, i.e. a neurotoxic effect of

KA was seen in this study. Decreased glutamate consumption

caused by culturing cells in a medium containing a high KA

concentration was consistent with earlier reports of KA being a

glutamate transport inhibitor, whereas glutamine uptake

remained unaffected by KA concentration during the culture

period. Furthermore, mitochondrial metabolism of the carbon

skeleton from both [U-13C]glutamate and [U-13C]glutamine

was significantly reduced after long-term exposure to 0.50 mM

KA compared to exposure to 0.05 mM KA. The results

presented can only be understood in terms of inter- and

intracellular compartmentation of metabolism, since TCA

cycling of the carbon skeleton from [U-13C]glutamine was

more pronounced than that from [U-13C]glutamate, and since

the carbon skeleton from [U-13C]glutamate had a higher

turnover in the GABAergic than in the glutamatergic

compartment which constitute these cultures.

Acknowledgements

The excellent technical assistance of Bente Urfjell and Lars

Evje is greatly appreciated.
Please cite this article in press as: Olstad, E. et al., Long-term kainic a

metabolism in cultured cerebellar neurons, Neurochem. Int. (2006), do
References

Andersen, B.B., Korbo, L., Pakkenberg, B., 1992. A quantitative study of the

human cerebellum with unbiased stereological techniques. J. Comp. Neurol.

326, 549–560.

Balázs, R., Hack, N., Jorgensen, O.S., 1990. Selective stimulation of excitatory

amino acid receptor subtypes and the survival of cerebellar granule cells in

culture: effect of kainic acid. Neuroscience 37, 251–258.

Ben-Ari, Y., 1985. Limbic seizure and brain damage produced by kainic acid:

mechanisms and relevance to human temporal lobe epilepsy. Neuroscience

14, 375–403.

Biemann, K., 1962. Mass spectrometry. In: Organic Chemistry Applications,

McGraw, New York, pp. 223–227.

Boje, K.M., Skolnick, P., 1992. Nitric oxide does not mediate the neurotrophic

effects of excitatory amino acids in cultured cerebellar granule neurons. Eur.

J. Pharmacol. 212, 151–158.

Bradford, H.F., 1995. Glutamate, GABA and epilepsy. Prog. Neurobiol. 47,

477–511.

Bridges, R.J., Esslinger, C.S., 2005. The excitatory amino acid transporters:

pharmacological insights on substrate and inhibitor specificity of the EAAT

subtypes. Pharmacol. Ther. 107, 271–285.

Crawford, T.O., 1998. Ataxia telangiectasia. Semin. Pediatr. Neurol. 5, 287–

294.

Damgaard, I., Trenkner, E., Sturman, J.A., Schousboe, A., 1996. Effect of K+-

and kainate-mediated depolarization on survival and functional maturation

of GABAergic and glutamatergic neurons in cultures of dissociated mouse

cerebellum. Neurochem. Res. 21, 267–275.

Danbolt, N.C., 2001. Glutamate uptake. Prog. Neurobiol. 65, 1–105.

De Girolami, U., Anthony, D.C., Frosch, M.P., 1999. The central nervous

system. In: Cotran, R.S., Kumar, V., Collins, T. (Eds.), Robbins Pathologic

Basis of Disease. W.B. Saunders Company, Philadelphia, pp. 1294–1357.

Drejer, J., Larsson, O.M., Kvamme, E., Svenneby, G., Hertz, L., Schousboe, A.,

1985. Ontogenetic development of glutamate metabolizing enzymes in

cultured cerebellar granule cells and in cerebellum in vivo. Neurochem.

Res. 10, 49–62.

Drejer, J., Schousboe, A., 1989. Selection of a pure cerebellar granule cell

culture by kainate treatment. Neurochem. Res. 14, 751–754.

Drian, M.J., Bardoul, M., Konig, N., 2001. Blockade of AMPA/kainate recep-

tors can either decrease or increase the survival of cultured neocortical cells

depending on the stage of maturation. Neurochem. Int. 38, 509–517.

Engblom, A.C., Johansen, F.F., Kristiansen, U., 2003. Actions and interactions

of extracellular potassium and kainate on expression of 13 gamma-amino-

butyric acid type A receptor subunits in cultured mouse cerebellar granule

neurons. J. Biol. Chem. 278, 16543–16550.

Fonnum, F., Lock, E.A., 2000. Cerebellum as a target for toxic substances.

Toxicol. Lett. 112/113, 9–16.

Frandsen, A., Drejer, J., Schousboe, A., 1989. Direct evidence that excitotoxi-

city in cultured neurons is mediated via N-methyl-D-aspartate (NMDA) as

well as non-NMDA receptors. J. Neurochem. 53, 297–299.

Frandsen, A., Schousboe, A., 1990. Development of excitatory amino

acid induced cytotoxicity in cultured neurons. Int. J. Dev. Neurosci. 8,

209–216.

Geddes, J.W., Wood, J.D., 1984. Changes in the amino acid content of nerve

endings (synaptosomes) induced by drugs that alter the metabolism of

glutamate and gamma-aminobutyric acid. J. Neurochem. 42, 16–24.

Herndon, R.M., Coyle, J.T., 1977. Selective destruction of neurons by a

transmitter agonist. Science 198, 71–72.

Hertz, L., Juurlink, B.H.J., Fosmark, H., Schousboe, A., 1982. Astrocytes in

primary cultures. In: Pfeiffer, S.E. (Ed.), Neuroscience approached through

Cell Culture. CRC Press, Florida, pp. 175–186.

Hertz, L., Juurlink, B.H.J., Szuchet, S., 1985. Cell cultures. In: Lajtha, A.

(Ed.), Handbook of Neurochemistry. Plenum Press, New York, pp. 603–

661.

Hertz, L., Schousboe, A., 1987. Primary cultures of GABAergic and glutama-

tergic neurons as model systems to study neurotransmitter functions. I.

Differentiated cells. In: Vernadakis, A., Privat, A., Lauder, J.M., Timiras,

P.S., Giacobini, E. (Eds.), Model Systems of Development and Aging of the

Nervous System. Martinus-Nijhoff, Boston, pp. 19–31.
cid exposure reveals compartmentation of glutamate and glutamine

i:10.1016/j.neuint.2006.11.004

http://dx.doi.org/10.1016/j.neuint.2006.11.004


E. Olstad et al. / Neurochemistry International xxx (2006) xxx–xxx10

+ Models

NCI-1967; No of Pages 10
Jensen, J.B., Schousboe, A., Pickering, D.S., 1999. Role of desensitization and

subunit expression for kainate receptor-mediated neurotoxicity in murine

neocortical cultures. J. Neurosci. Res. 55, 208–217.

Kato, K., Puttfarcken, P.S., Lyons, W.E., Coyle, J.T., 1991. Developmental time

course and ionic dependence of kainate-mediated toxicity in rat cerebellar

granule cell cultures. J. Pharmacol. Exp. Ther. 256, 402–411.

Koch, H.P., Kavanaugh, M.P., Esslinger, C.S., Zerangue, N., Humphrey, J.M.,

Amara, S.G., Chamberlin, A.R., Bridges, R.J., 1999. Differentiation of

substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent

glutamate transporters. Mol. Pharmacol. 56, 1095–1104.

Kovacs, A.D., Cebers, G., Cebere, A., Liljequist, S., 2003. Loss of GABAergic

neuronal phenotype in primary cerebellar cultures following blockade of

glutamate reuptake. Brain Res. 977, 209–220.

Lerma, J., 1998. Kainate receptors: an interplay between excitatory and

inhibitory synapses. FEBS Lett. 430, 100–104.

Lovell, K.L., Jones, M.Z., 1980. Kainic acid neurotoxicity in the mouse

cerebellum. Brain Res. 186, 245–249.

Mawhinney, T.P., Robinett, R.S., Atalay, A., Madson, M.A., 1986. Analysis of

amino acids as their tert-butyldimethylsilyl derivatives by gas–liquid

chromatography and mass spectrometry. J. Chromatogr. 358, 231–242.

Messer, A., 1977. The maintenance and identification of mouse cerebellar

granule cells in monolayer culture. Brain Res. 130, 1–12.

Müller, B., Qu, H., Garseth, M., White, L.R., Aasly, J., Sonnewald, U., 2000.

Amino acid neurotransmitter metabolism in neurones and glia following

kainate injection in rats. Neurosci. Lett. 279, 169–172.

Norenberg, M.D., Martinez-Hernandez, A., 1979. Fine structural localization

of glutamine synthetase in astrocytes of rat brain. Brain Res. 161, 303–

310.

Olstad, E., Qu, H., Sonnewald, U., 2006. Glutamate is preferred over glutamine

for intermediary metabolism in cultured cerebellar neurons. J. Cereb. Blood

Flow Metab., doi:10.1038/sj.jcbfm.9600400, in press.

Pearce, B.R., Currie, D.N., Beale, R., Dutton, G.R., 1981. Potassium-stimu-

lated, calcium-dependent release of [3H]GABA from neuron- and glia-

enriched cultures of cells dissociated from rat cerebellum. Brain Res. 206,

485–489.
Please cite this article in press as: Olstad, E. et al., Long-term kainic a

metabolism in cultured cerebellar neurons, Neurochem. Int. (2006), do
Qu, H., Eloqayli, H., Müller, B., Aasly, J., Sonnewald, U., 2003. Glial–neuronal

interactions following kainate injection in rats. Neurochem. Int. 42, 101–106.

Schousboe, A., Meier, E., Drejer, J., Hertz, L., 1989. Preparation of primary

cultures of mouse (rat) cerebellar granule cells. In: Shahar, A., de Vellis,

J., Vernadakis, A., Haber, B. (Eds.), A Dissection and Tissue Culture

Manual of the Nervous System. Liss, New York, pp. 203–206.

Schwarzer, C., Sperk, G., 1995. Hippocampal granule cells express glutamic

acid decarboxylase-67 after limbic seizures in the rat. Neuroscience 69,

705–709.

Seil, F.J., Blank, N.K., Leiman, A.L., 1979. Toxic effects of kainic acid on

mouse cerebellum in tissue culture. Brain Res. 161, 253–265.

Sonnewald, U., McKenna, M., 2002. Metabolic compartmentation in cortical

synaptosomes: influence of glucose and preferential incorporation of endo-

genous glutamate into GABA. Neurochem. Res. 27, 43–50.

Sonnewald, U., Qu, H., Aschner, M., 2002. Pharmacology and toxicology of

astrocyte-neuron glutamate transport and cycling. J. Pharmacol. Exp. Ther.

301, 1–6.

Sonnewald, U., Olstad, E., Qu, H., Babot, Z., Cristofol, R., Sunol, C., Schous-

boe, A., Waagepetersen, H., 2004. First direct demonstration of extensive

GABA synthesis in mouse cerebellar neuronal cultures. J. Neurochem. 91,

796–803.

Sonnewald, U., Kortner, T.M., Qu, H., Olstad, E., Sunol, C., Bak, L.K.,

Schousboe, A., Waagepetersen, H.S., 2006. Demonstration of extensive

GABA synthesis in the small population of GAD positive neurons in

cerebellar cultures by the use of pharmacological tools. Neurochem. Int.

48, 572–578.

Sperk, G., 1994. Kainic acid seizures in the rat. Prog. Neurobiol. 42, 1–32.

Waagepetersen, H.S., Qu, H., Sonnewald, U., Shimamoto, K., Schousboe, A.,

2005. Role of glutamine and neuronal glutamate uptake in glutamate

homeostasis and synthesis during vesicular release in cultured glutamater-

gic neurons. Neurochem. Int. 47, 92–102.

Westergaard, N., Sonnewald, U., Petersen, S.B., Schousboe, A., 1995. Gluta-

mate and glutamine metabolism in cultured GABAergic neurons studied by
13C NMR spectroscopy may indicate compartmentation and mitochondrial

heterogeneity. Neurosci. Lett. 185, 24–28.
cid exposure reveals compartmentation of glutamate and glutamine

i:10.1016/j.neuint.2006.11.004

http://dx.doi.org/10.1038/sj.jcbfm.9600400
http://dx.doi.org/10.1016/j.neuint.2006.11.004


Paper 5 

 

 

Pyruvate recycling in cultured neurons from cerebellum 

 

Olstad E, Olsen GM, Qu H and Sonnewald U. 

 

J Neurosci Res (2006) in press 



 



Pyruvate Recycling in Cultured Neurons
From Cerebellum

Elisabeth Olstad,1,2 Grethe M. Olsen,1 Hong Qu,3 and Ursula Sonnewald1*
1Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
2St. Olavs Hospital, Trondheim, Norway
3Centre for Molecular Biology and Neuroscience, Department of Anatomy, University of Oslo,
Oslo, Norway

Pyruvate recycling is a pathway for complete oxidation of
glutamate and cellular location, and the physiological sig-
nificance of such recycling has been debated during the
last decade. The present study was aimed at elucidating
whether recycling takes place in neuron-enriched cultures
of dissociated cerebella, consisting mainly of glutamater-
gic granule cells, some GABAergic neurons, and few
astrocytes. These cultures and cultures of astrocytes
from cerebellum were incubated in medium containing
[U-13C]glutamate, and cell extracts were analyzed by gas
chromatography and mass spectrometry. Additionally, in
the case of the neurons, a magnetic resonance (MR)
spectrum was obtained. It could be shown that the atom
percentage excess of the isotopomer representing pyru-
vate recycling in glutamate (M + 4) was similar for astro-
cytes and neuron-enriched cultures. However, the latter
showed more recycling in glutamine (synthesized in the
small fraction of astrocytes) than the pure astrocyte cul-
tures, whereas the reverse was the case for aspartate. In
fact, the atom percentage excess of the isotopomer rep-
resenting pyruvate recycling in glutamine was slightly but
significantly higher than that in glutamate in the neuron-
enriched cultures. It can be concluded that pyruvate recy-
cling is clearly present in neurons, and this was verified
by MR spectroscopy. VVC 2007 Wiley-Liss, Inc.

Key words: astrocytes; glutamatergic neurons; mass
spectrometry; metabolism; tricarboxylic acid cycle

Pyruvate carboxylase located in astrocytes is thought
to be the enzyme responsible for anaplerosis in brain
(Patel, 1974), and carboxylation of pyruvate has been
demonstrated in rat, mouse, and human brain (Lapidot
and Gopher, 1994; Hassel et al., 1995; Öz et al., 2004;
Patel et al., 2005; Melø et al., 2006). Previous experiments
and results from cell cultures incubated in the presence of
[U-13C]glucose and 3-nitropropionic acid confirmed that
pyruvate carboxylation takes place in astrocytes but not
neurons (Yu et al., 1983; Shank et al., 1985; Waagepe-
tersen et al., 2001; Qu et al., 2001). During development
anaplerosis (filling up) is necessary, because concentrations
of glutamate and glutamine in brain increase (Tkáè et al.,
2003), whereas in adults anaplerosis is not self-evident. It is
generally accepted that the adult brain has to replenish the

tricarboxylic acid (TCA) cycle when a four (or more) car-
bon unit such as glutamine or a lactate molecule derived
from TCA cycle intermediates (malate or oxaloacetate)
leaves the brain. Glutamine is indeed released from the
brain (Grill et al., 1992), but it has not been shown that
lactate from brain is TCA cycle derived. Another possibil-
ity is that a four (or more) carbon unit is degraded in the
brain. Pyruvate recycling is such a pathway in which com-
pounds such as glutamate, glutamine, or aspartate, which
are originally derived from pyruvate carboxylation, can be
degraded to pyruvate and reenter the TCA cycle as acetyl
CoA (see Fig. F11). Previous studies have shown that pyru-
vate recycling takes place in rat brain, and initially the cel-
lular location was thought to be neurons (Cerdan et al.,
1990). However, cell culture studies pointed toward astro-
cytes as the site for recycling (Sonnewald et al., 1996a;
Bakken et al., 1997a,b, 1998a; Håberg et al., 1998; Alves
et al., 2000; Waagepetersen et al., 2002).

The present study was undertaken to reinvestigate
the cellular location of pyruvate recycling. By using 13C la-
beled compounds and 13C magnetic resonance spectros-
copy (MRS), it is possible to monitor cellular metabolism
and astrocyte–neuron interactions. Various 13C-labeled
substrates have been used to unravel different aspects of
cerebral metabolism. We incubated cerebellar neurons and
astrocytes with medium containing [U-13C]glutamate.
Analysis of neuronal cell extracts by MRS and the more
sensitive method gas chromatography/mass spectrometry
(GC/MS) revealed that pyruvate recycling takes place in
neurons as well as in astrocytes.

MATERIALS AND METHODS

Materials

NMRI mice were obtained from Taconic M&B (Co-
penhagen, Denmark). Plastic tissue culture dishes were pur-
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chased from Nunc A/S (Roskilde, Denmark) and fetal calf se-
rum (FCS) from Seralab Ltd. (Sussex, United Kingdom).
Culture medium and glutamate receptor antagonists DNQX
(6,7-dinitroquinoxaline-2,3-dione) and D-AP5 (D-2-amino-
5-phosphonopentanoic acid) were from Sigma (St. Louis,
MO). [U-13C]glutamate (98%+ enriched) and 99.9% D2O
were from Cambridge Isotope Laboratories (Woburn, MA);
ethylene glycol was from Merck (Darmstadt, Germany), and
the GC/MS derivatization reagent MTBSTFA (N-methyl-N-
(tert-butyldimethylsilyl)-trifluoroacetamide) + 1% t-BDMS-Cl
(tert-butyldimethylchlorosilane) was purchased from Regis
Technologies, Inc. (Morton Grove, IL). All other chemicals
were of the purest grade available from regular commercial
sources.

Cell Cultures

Neuron-enriched cerebellar cultures were isolated and
cultured from 7-day-old mice as described by Schousboe et al.
(1989). Briefly, the tissue was trypsinized, followed by tritura-
tion in a DNase solution containing a trypsin inhibitor from
soybeans. Cells were suspended (2.75 3 106 cells/ml) in a
modified Dulbecco’s minimum essential medium (DMEM;
Hertz et al., 1982), containing 24.5 mM KCl, 31 mM glu-
cose, 7 lM p-aminobenzoic acid, 0.05 mM kainic acid, and

10% (v/v) fetal calf serum (FCS) and seeded in poly-D-lysine-
coated Petri dishes (2 ml/35 mm). After 48 hr in culture,
20 lM (final concentration) cytosine arabinoside was added to
the medium to prevent astrocytic proliferation. Experiments
were performed on 7-day-old cultures.

Cerebellar astrocytes were cultured as described by
Hertz et al. (1989). Briefly, cerebellum was taken from 7-day-
old mice and passed through Nitex nylon netting (80-lm
pore size) into DMEM containing 20% (v/v) FCS. Medium
was changed 2 days after plating and subsequently twice per
week, gradually changing to 10% FCS. From the third week,
dibutyryl-cAMP was added to the medium to promote mor-
phological differentiation of the astrocytes. Experiments were
performed on 3-week-old cultures.

Experiments Using [U-13C]Glutamate for MRS and
GC/MS Analysis

The culture medium was removed, and the cells were
incubated for 2 hr at 378C in serum-free DMEM (prepared
without glutamine) containing 3 mM glucose and [U-13 C]
glutamate (neurons, 0.25 mM; astrocytes 0.5 mM). To avoid
the toxicity of glutamate to neurons during the incubation,
two glutamate receptor antagonists, DNQX (25 lM), an a-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA)/kainate-selective antagonist, and D-AP5 (100 lM),
an N-methyl-D-aspartate (NMDA) antagonist, were also
present in the incubation medium of neurons (Frandsen
et al., 1989). After the incubation period, the cells were
washed twice with cold phosphate-buffered saline and
extracted with 70% (v/v) ethanol. The cell extracts were
scraped off the dishes and centrifuged at 10,000g for 15 min
to separate the metabolites from the insoluble proteins. The
supernatants (cell extracts) were divided into two parts; one
was lyophilized for subsequent sample preparation for GC/
MS analyses (six samples), and the remaining halves were
pooled and lyophilized (one sample) for MR spectroscopy
(neurons).

GC/MS

Lyophilized cell extracts were redissolved in HCl (10 mM),
adjusted to pH <2 with 6 M HCl, and dried under atmos-
pheric air. The amino acids were extracted into an organic
phase of ethanol and benzene and dried again under atmos-
pheric air before derivatization with MTBSTFA in the pres-
ence of 1% t-BDMS-Cl (Mawhinney et al., 1986). The sam-
ples were analyzed on a Hewlett Packard 5890 Series II gas
chromatograph linked to a Hewlett Packard 5972 Series mass
spectrometer.

MR Spectroscopy

The lyophilized sample consisting of six pooled cell
extracts of neuron-enriched cultures was redissolved in D2O.
A proton decoupled 150.92-MHz 13C MR spectrum was
obtained on a Bruker 600 spectrometer using a Bruker Bio-
Spin CryoProbe (Bruker Analytik GmbH, Rheinstetten, Ger-
many). The spectrum was accumulated using a 308 pulse
angle, an acquisition time of 1.08 sec, and a 0.5-sec relaxation
delay. The number of scans was 129,024.
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Fig. 1. Schematic presentation of pyruvate recycling from glutamate,
which can be amidated to glutamine or enter the TCA cycle as a-
ketoglutarate and be converted to uniformly labeled succinate and af-
ter several steps malate (MAL) and oxaloacetate (OAA). The latter
can further be transaminated into aspartate. If pyruvate recycling is
active, malate via malic enzyme or oxaloacetate via phosphoenolpyr-
uvate carboxykinase plus pyruvate kinase can be converted to pyru-
vate, which can enter the TCA cycle via acetyl CoA and give rise to
unique labeling patterns in glutamate and aspartate.
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Data Analysis

Atom percentage excess (13C) of glutamate, glutamine,
and aspartate was determined after calibration with unlabeled
standard solutions (Biemann, 1962). In the following, the
sums of M + 1, M + 2, and M + 3 in glutamate or glutamine
and that of M + 1, M + 2, and M + 4 in aspartate are used
to describe TCA cycle activity, because these isotopomers are
derived from the TCA cycle using unlabeled acetyl CoA. To
describe pyruvate recycling, which is also part of TCA cycle
activity, M + 4 in glutamate or glutamine and M + 3 in
aspartate are used. It should be noted that this is a simplifica-
tion in which the pyruvate recycling pathway is underesti-
mated and the TCA cycle involving unlabeled acetyl CoA is
overestimated (see Figs.F2,F3 2, 3). The pyruvate recycling over
TCA cycle activity (PR/TCA) ratio was calculated by divid-

ing atom percentage excess for glutamate or glutamine M + 4
(aspartate, M + 3) by the sum of TCA cycle derived iso-
topomers M + 1, M + 2, and M + 3 (aspartate, the sum of
M + 1, M + 2, and M + 4). Results are presented as means
6 SD. Differences between astrocytes and neurons were ana-
lyzed statistically by Student’s t-test and differences in atom
percentage excess of the corresponding isotopomers between
glutamate, glutamine, and aspartate with one-way ANOVA
followed by the LSD (least significant difference) post hoc
test. P < 0.05 was considered statistically significant.

RESULTS

[U-13C]glutamate present in the incubation me-
dium can enter cells through specific transporter pro-
teins. Once inside the cells, [U-13C]glutamate has several
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Fig. 2. Schematic representation of possible isotopomers of glutamate and glutamine arising from
[U-13C]glutamate via the first turn in the TCA cycle (top) and pyruvate recycling (bottom): solid
ovals represent 13C, and open ovals represent 12C atoms. The masses (M, M + 1, M + 2, etc.) of
the different isotopomers are indicated, and the M + 4 isotopomers, which can only result from
pyruvate recycling, are shown in boldface.
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metabolic fates. Of interest for pyruvate recycling is the
conversion into a-[U-13C]ketoglutarate, which can enter
the TCA cycle to be converted to uniformly labeled
succinate and after several steps malate and oxaloacetate
(OAA). The latter can also be transaminated to aspartate
(Fig. 1). [U-13C]oxaloacetate can stay in the cycle and
condense with acetyl CoA to give rise, after several
steps, to particular labeling patterns in glutamate and glu-
tamine (Fig. 2) and aspartate (Fig. 3). However, if pyru-
vate recycling is active, malate via malic enzyme or
OAA via phosphoenolpyruvate carboxykinase plus pyru-
vate kinase can be converted to pyruvate, which can
enter the TCA cycle via acetyl CoA (Fig. 1) and give rise

to unique labeling patterns in glutamate (Fig. 2, bottom)
and aspartate (Fig. 3, bottom). It should be noted that uni-
formly labeled glutamate is formed when [U-13C]OAA
condenses with [1,2-13C]acetyl CoA, and this isotopomer
cannot be distinguished from the [U-13C]glutamate added
to the medium.

With GC/MS, information about the percentage
distribution of isotopomers with different masses (M, M +
1, M + 2, etc.) of each metabolite is obtained. However,
the position of the 13C atoms in the isotopomers is not
readily available. From Figures 2 and 3, it can be seen that
M + 4 in glutamate and glutamine and M + 3 in aspartate
are the only isotopomer masses resulting from pyruvate
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Fig. 3. Schematic representation of possible isotopomers of aspartate arising from [U-13C]glutamate
via the first turn in the TCA cycle (top) and pyruvate recycling (bottom): solid ovals represent
13C, and open ovals represent 12C atoms. The masses (M, M + 1, M + 2, etc.) of the different
isotopomers are indicated, and the M + 3 isotopomers, which can only result from pyruvate recy-
cling, are shown in boldface.
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recycling that can be distinguished from those from TCA
cycling by GC/MS. By using this method, 13C labeling
was detected in glutamate, glutamine, GABA, aspartate,
succinate, fumarate, malate, and citrate in neurons and
astrocytes. For simplicity, only glutamate, glutamine, and
aspartate labelings are shown, because they illustrate the
point of this paper clearly. Glutamine (synthesized in
astrocytes only) was detected both in the astrocytes and in
the neuron-enriched cultures. In TableT1 I, the percentage
uniformly labeled glutamate and glutamine in neurons and
astrocytes is presented. The fraction of uniformly labeled
glutamate was higher in astrocytes than in neurons,
whereas the opposite was the case for glutamine. Further-
more, the isotopomers derived from the TCA cycle using
unlabeled acetyl CoA and those derived from pyruvate
recycling in glutamate, aspartate, and glutamine are pre-
sented in Table I. It should be noted that some isotopom-
ers from pyruvate recycling will also appear with the same
number of 13C atoms as those derived from the TCA cycle
(see Figs. 2, 3). In addition, uniformly labeled isotopomers
can also result from recycling. Therefore, the extent of py-
ruvate recycling is underestimated in Table I, insofar as
this pathway is represented only by the M + 4 isotopomer
in glutamate and glutamine and by M + 3 in aspartate.
From Table I it is clear that atom percentage excess of the
isotopomer from the TCA cycle is higher in neurons than
astrocytes for all three amino acids, whereas pyruvate recy-
cling in astrocytes and neuron-enriched cultures were sim-
ilar in glutamate but not in glutamine and aspartate. The
neuron-enriched cultures showed more atom percentage
excess in the isotopomer derived from recycling in gluta-
mine (synthesized in the small fraction of astrocytes) than
in pure astrocyte cultures, whereas the reverse was the case
for aspartate. In fact, the percentage isotopomer from recy-
cling in glutamine was slightly but significantly higher
than that in glutamate in the neuron-enriched cultures and
lower in the astrocytes.

To visualize pyruvate recycling in a representative
way, the ratio of M + 4 (PR) over the sum of M + 1,
M + 2, and M + 3 (TCA) for glutamate and glutamine
was calculated and is presented in parentheses in Table I.
For aspartate, the uniformly labeled isotopomer resulting
from the first TCA cycle turn (Fig. 3) is included in this
ratio [(M + 3)/S(M + 1, M + 2 and M + 4)]. Approxi-
mately half of the aspartate in the cells (49% 6 9% astro-
cytes; 51% 6 1% neurons) was uniformly labeled. In
evaluating the extent to which glutamate, glutamine,
and aspartate were derived from pyruvate recycling com-
pared with the extent to which isotopomers were
derived from TCA cycle activity (PR/TCA ratio), it is
clear that pyruvate recycling was more prominent in
glutamate in astrocytes than in neurons (Table I). As
mentioned, uniformly labeled aspartate was included in
the calculation of PR/TCA in Table I, and this makes it
evident that pyruvate recycling was much smaller than
TCA cycle activity in this metabolite. Furthermore, the
PR/TCA ratio for aspartate was much lower than the
ratios for glutamate and glutamine in neurons, and lower
than the ratio of glutamate in astrocytes (Table I). The
PR/TCA ratio for glutamine was similar to that of glu-
tamate in the astrocytes and similar in pure astrocyte cul-
tures and in astrocytes present in neuron-enriched cul-
tures.

With 13C MR spectroscopy, it is possible to detect
the position in which a particular compound is 13C labeled
in contrast to GC/MS, where only the extent of labeling
is detectable under the conditions used in the present
study. 13C-labeled glutamate and aspartate were observed
in the MR spectrum of extracts from neurons incubated
with medium containing [U-13C]glutamate (Fig. F44). To
show enough detail, only the parts of the spectrum that
contain glutamate C-4 and aspartate C-3 are shown.
Looking at the glutamate C-4 frequency range presented
in Figure 4A, peaks showing 13C labeling in the C-4 posi-
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TABLE I. Percentage of Uniformly Labeled Isotopomers ([U-13C], Glutamate, and Glutamine), Isotopomers Derived From the TCA

Cycle Using Unlabeled Acetyl CoA (TCA) and From the TCA Cycle Involving Pyruvate Recycling (PR)*

Glutamate Aspartate Glutamine

[U-13C] (%) TCA (%) PR (%) TCA (%) PR (%) [U-13C] (%) TCA (%) PR (%)

Neurons 55.7 6 1.5 30.4 6 1.1 4.6 6 0.1 79.8 6 0.4b 5.5 6 0.1b 59.6 6 1.1b 19.0 6 0.9b,c 5.1 6 0.5b,c

(0.15 6 0.01) (0.07 6 0.001b) (0.27 6 0.03b,c)

Astrocytes 62.9 6 6.8a 18.2 6 4.6a 5.8 6 1.7 68.0 6 2.1a,b 11.3 6 2.5a,b 46.1 6 6.1a,b 9.7 6 3.7a,b,c 2.5 6 0.7a,b,c

(0.33 6 0.13a) (0.17 6 0.04ab) (0.31 6 0.20)

*In parenthesis, the ratio of isotopomers derived from pyruvate recycling over those derived from TCA using unlabeled acetyl CoA is calculated for

glutamate, aspartate, and glutamine in cultured neurons and astrocytes from cerebellum. Neuron-enriched and astrocyte cultures from cerebellum were

incubated for 2 hr in medium containing 3 mM glucose, 25 lM DNQX, and 100 lM D-AP5 and 0.25 mM [U-13C]glutamate (neurons, n ¼ 6) or

0.5 mM (astrocytes, n ¼ 6) [U-13C]glutamate; for details, see Materials and Methods. The results are from GC/MS analyses, where [U-13C] is repre-

sented by M + 5 (glutamate and glutamine), isotopomers derived from the TCA cycle using unlabeled acetyl CoA (TCA) by S(M + 1, M + 2 and

M + 3) for glutamate and glutamine and S(M + 1, M + 2 and M + 4) for aspartate, and finally isotopomers from the TCA cycle involving pyruvate

recycling are represented by M + 4 (glutamate and glutamine) and M + 3 (aspartate). Results are presented as means 6 SD, and P < 0.05 was consid-

ered statistically significant.
aDifferent from the corresponding group in neurons.
bDifferent from atom percent excess of the corresponding glutamate isotopomers in the same cell type.
cDifferent from atom percent excess of the corresponding aspartate isotopomers in the same cell type.
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tion also give information about neighboring positions C-
3 and C-5, but not about the C-1 and C-2 positions. The
peaks consist of a doublet of doublets (indicated by arrows)
representing [3,4,5-13C]glutamate, one doublet with 52 Hz

splitting from [4,5-13C]glutamate, another doublet with
34 Hz splitting from [3,4-13C]glutamate, and finally a sin-
glet representing [4-13C]glutamate. Both doublets and the
singlet arise from pyruvate recycling and are indicated by
asterisks. The aspartate C-3 peaks (Fig. 4B) show a similar
pattern with a doublet of doublets (arrows) representing
[2,3,4-13C]aspartate, one doublet with 51 Hz splitting
representing [3,4-13C]aspartate arising from TCA cycling
(number sign), another doublet with 36 Hz splitting from
[2,3-13C]aspartate derived from pyruvate recycling (aster-
isks), and finally the [3-13C]aspartate singlet from TCA
cycling (number sign). [3,4,5-13C]glutamate seen in the
spectrum can be part of the precursor, [U-13C]glutamate,
whereas [2,3,4-13C]aspartate can also be included in
[U-13C]aspartate derived from [U-13C]glutamate via the
first turn of the TCA cycle (Fig. 3). [3,4-13C]aspartate
and [3-13C]aspartate are derived from the second and
third turns of the TCA cycle, respectively (Fig. 3).
[4,5-13C]-, [3,4-13C]-, and [4-13C]glutamate are all
derived from pyruvate recycling (Fig. 2). MR spectra of
astrocyte extracts were not obtained; they have been pub-
lished previously and showed recycling in glutamate and
aspartate (Håberg et al., 1998).

DISCUSSION

Pyruvate recycling is a well-known metabolic path-
way in the liver, but it was first detected in brain by
Cerdan et al. (1990). In a later study by the same authors,
the metabolism of [1,2-13C]glucose and [U-13C]-3-
hydroxybutyrate was investigated in rat brain via ex vivo
13C MR spectroscopy, taking advantage, in particular, of
homonuclear 13C-13C spin coupling patterns. A quantita-
tive analysis of the 13C spectra demonstrated a cerebral
pyruvate recycling system contributing maximally 17% of
the pyruvate metabolism through the pyruvate dehydro-
genase in brain (Künnecke et al., 1993). This recycling
was believed to take place in neurons and not astrocytes,
because it was apparent in glutamate but not in gluta-
mine. In 1995, Hassel and Sonnewald reported partial
pyruvate recycling in mouse brain astrocytes, because lac-
tate formation from the TCA cycle was detected from
[2-13C]acetate but not [1-13C]glucose. The enrichment
of total brain lactate from [2-13C]acetate reached approxi-
mately 1% in both the C-2 and the C-3 positions in
fasted mice. It was calculated that this could account for
20% of the lactate formed in the glial compartment
(Hassel and Sonnewald, 1995). Pyruvate recycling in
brain was also studied in fasted rats receiving either an in-
traperitoneal or a subcutaneous injection of [1,2-13C]ace-
tate (Håberg et al., 1998). MR spectroscopic analysis of
plasma showed larger amounts of [1, 2-13C]acetate in the
intraperitoneal group compared with the subcutaneous
group, and this was coupled to more pyruvate recycling
detected in the former group in glutamate and GABA.
However, Lapidot and Gopher (1994) were not able to
detect such recycling in rabbit brain.

Pyruvate recycling is a pathway for complete oxi-
dation of glutamate in the TCA cycle. In cultured corti-
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Fig. 4. Parts of the MR spectrum showing glutamate C-4 (A) and
aspartate C-3 (B) and the isotopomers responsible for the configura-
tion of the peaks: solid ovals represent 13C, and open ovals represent
12C atoms. Both peaks consist of a doublet of doublets (indicated by
arrows) representing [3,4,5-13C]glutamate and [2,3,4-13C]aspartate,
one doublet with approximately 50 Hz splitting from [4,5-13C]gluta-
mate (recycling, *) and [3,4-13C]aspartate (TCA cycling, #), another
doublet with approximately 35 Hz splitting from [3,4-13C]glutamate
(recycling, *) and [2,3-13C]aspartate (recycling, *), and finally a sin-
glet representing [4-13C]glutamate (recycling, *) and [3-13C]aspartate
(TCA cycling, #). No information can be obtained about labeling in
the C-1 and C-2 positions for glutamate and the C-1 position for
aspartate indicated by dashed ovals.
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cal astrocytes, pyruvate formed from [U-13C]glutamate
was shown to reenter the TCA cycle after conversion to
acetyl CoA, as demonstrated by the labeling patterns in
aspartate C-2 and C-3, lactate C-2, and glutamate C-4,
which provided evidence for pyruvate recycling in astro-
cytes (Håberg et al., 1998). Also, in neuron-enriched
cultures from cerebellum, labeling of lactate was detected
from [U-13C]glutamate and [U-13C]aspartate, but 13C
label was not shown to reenter the TCA cycle through
acetyl CoA in these cells (Sonnewald et al., 1996b;
Bakken et al., 1998a). Incubating cortical astrocyte cul-
tures with [U-13C]glutamine in the presence of gluta-
mate or [U-13C]aspartate also led to a small amount of
pyruvate recycling in glutamate (Sonnewald et al.,
1996a; Bakken et al., 1997b, 1998a). Recycling was also
demonstrated in astrocytes using [3-13C]glutamate but
could not be shown in cortical GABAergic neurons
(Waagepetersen et al., 2002). Hypoglycemia, a condition
in which acetyl CoA production is reduced, could possi-
bly lead to increased pyruvate recycling. However, recy-
cling was abolished in astrocytes under this condition
(Bakken et al., 1998b). It was hypothesized that cocul-
tures of astrocytes and neurons could possibly have
increased pyruvate recycling compared with astrocytes
because of transfer of lactate produced by astrocytic mi-
tochondria to neurons for glutamate synthesis. Surpris-
ingly, experiments with [3-13C]glutamate and neocorti-
cal cocultures did not show signs of pyruvate recycling
even though astrocytes were present (Waagepetersen
et al., 2002). However, recycling could be shown when
cerebellar cocultures were superfused with medium
containing [U-13C]lactate or [U-13C]glucose (Bak et al.,
2006).

In the present study, cerebellar astrocytes were
incubated with [U-13C]glutamate, and cell extracts were
analyzed by GC/MS. As expected, pyruvate recycling
was detected in glutamate and aspartate. Recycling in
aspartate was about twice as high as that evident in glu-
tamate. This is due to the fact that [U-13C]glutamate
was added to the medium and constituted 63% of all
glutamate in the astrocytes. The sum of the isotopomers
from the TCA cycle and recycling was 24% of total glu-
tamate (Table I). This was the case for 79% (Table I) of
aspartate. Glutamine labeling via pyruvate recycling in
astrocytes was much lower than that observed in gluta-
mate. This was, however, due not to a lower ratio for
pyruvate recycling/cycling in the TCA cycle but to the
fact that, under the chosen incubation conditions, only
12% of glutamine was derived from mitochondrial me-
tabolism compared with 24% of glutamate. The small
percentage of glutamine derived from TCA cycle activ-
ity in astrocytes could explain why Cerdan et al. (1990)
suggested that recycling took place in neurons, not astro-
cytes.

Neuron-enriched cultures from cerebellum are an
excellent model for studying cerebellar metabolism,
because they consist of a majority of glutamatergic with
about 5% GABAergic neurons, mimicking the distribu-
tion in brain (Sonnewald et al., 2004a, 2006; Olstad

et al., 2006), and also astrocytes are present, though only
very few. When these cultures were incubated in me-
dium containing [U-13C]glutamate, GC/MS analysis
clearly showed pyruvate recycling in glutamate, aspartate,
and glutamine. Furthermore, atom percentage excess of
the isotopomer derived from pyruvate recycling in gluta-
mate in astrocytes and neuron-enriched cultures was
similar, thereby ruling out that the few astrocytes present
in the neuron-enriched cultures were responsible for the
recycling. When evaluating the extent to which gluta-
mate was derived from pyruvate recycling compared
with the extent to which isotopomers were derived
from TCA cycle activity using unlabeled acetyl CoA, it
is clear that pyruvate recycling was more prominent in
glutamate in astrocytes than in neurons. However, this is
due to the fact that in astrocytes less glutamate is derived
from the TCA cycle than in neurons, whereas the per-
centage excess 13C labeling for glutamate derived from
pyruvate recycling (M + 4) was similar in astrocytes and
neurons.

Aspartate showed a very low pyruvate recycling
over TCA cycle activity ratio when all TCA-cycle-
derived isotopomers, including uniformly labeled aspar-
tate, were considered. However, comparing the atom
percentage excess of the aspartate isotopomer derived
from recycling and that of glutamate and glutamine,
aspartate recycling was highest in both cell types.

The pyruvate recycling over TCA cycle activity
ratio in glutamine (which is only synthesized in astro-
cytes) was similar to that in glutamate in the astrocytes
and similar in pure astrocyte cultures and in neuron-
enriched cultures containing some astrocytes. How-
ever, labeling from TCA cycle activity using unlabeled
acetyl CoA was more pronounced in glutamine
observed in neuron-enriched than in pure astrocyte
cultures. Thus, there was more pyruvate recycling in
glutamine from neuron-enriched than from astrocytic
cultures. In fact, the atom percentage excess of the iso-
topomer derived from recycling in glutamine in the
neuron-enriched cultures was slightly but significantly
higher than that in glutamate in the same cell type.
This could indicate that glutamate metabolism was
compartmentalized in these neurons, as previously
shown in various cell types (Waagepetersen et al.,
1999; Qu et al., 1999, 2005; Eloqayli et al., 2002;
Sonnewald et al., 2004b), and that glutamate derived
from recycling was preferentially released from neurons
in the neuron-enriched cultures to be converted to
glutamine in the astrocytes. Alternatively, astrocytes
might have a different metabolism in the presence of
neurons than in a monoculture.

To verify pyruvate recycling in neurons, an MR
spectrum was obtained of cell extracts, and recycling was
clearly detectable in glutamate and aspartate. The reason
why such recycling in neurons has not been detected
earlier could be the enhanced sensitivity of the cryo-
MR probe used in the present experiment. Taken to-
gether, these results clearly show significant pyruvate
recycling in cerebellar neurons.
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Eloqayli H, Qu H, Unsgård G, Sletvold O, Hadidi H, Sonnewald U. 2002.

Effects of pentylenetetrazole and glutamate on metabolism of [U-13C]glu-

cose in cultured cerebellar granule neurons. Neurochem Int 40:181–187.

Frandsen A, Drejer J, Schousboe A. 1989. Direct evidence that excito-

toxicity in cultured neurons is mediated via N-methyl-D-aspartate

(NMDA) as well as non-NMDA receptors. J Neurochem 53:297–299.

Grill V, Bjorkman O, Gutniak M, Lindqvist M. 1992. Brain uptake and

release of amino acids in nondiabetic and insulin-dependent diabetic

subjects: important role of glutamine release for nitrogen balance.

Metabolism 41:28–32.
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boe A, Waagepetersen H. 2004a. First direct demonstration of extensive

GABA synthesis in mouse cerebellar neuronal cultures. J Neurochem

91:796–803.

Sonnewald U, Schousboe A, Qu H, Waagepetersen HS. 2004b. Intracel-

lular metabolic compartmentation assessed by 13C magnetic resonance

spectroscopy. Neurochem Int 45:305–310.

Sonnewald U, Kortner TM, Qu H, Olstad E, Suñol C, Bak LK, Schous-
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Tkáè I, Rao R, Georgieff MK, Gruetter R. 2003. Developmental and

regional changes in the neurochemical profile of the rat brain deter-

mined by in vivo 1H NMR spectroscopy. Magn Reson Med 50:24–32.

Waagepetersen HS, Sonnewald U, Qu H, Schousboe A. 1999. Mito-

chondrial compartmentation at the cellular level: astrocytes and neu-

rons. Ann N Y Acad Sci 893:421–425.

Waagepetersen HS, Qu H, Schousboe A, Sonnewald U. 2001. Elucida-

tion of the quantitative significance of pyruvate carboxylation in cul-

tured cerebellar neurons and astrocytes. J Neurosci Res 66:763–770.

Waagepetersen HS, Qu H, Hertz L, Sonnewald U, Schousboe A. 2002.

Demonstration of pyruvate recycling in primary cultures of neocortical

astrocytes but not in neurons. Neurochem Res 27:1431–1437.

Yu AC, Drejer J, Hertz L, Schousboe A. 1983. Pyruvate carboxylase ac-

tivity in primary cultures of astrocytes and neurons. J Neurochem

41:1484–1487.

J_ID: Z3P Customer A_ID: 21208 Cadmus Art: JNR21208 Date: 24-JANUARY-07 Stage: I Page: 8

ID: 40459 Date: 24/1/07 Time: 17:30 Path: {Production}JNR#/Vol00000/070019/3B2/C2JNR#070019

8 Olstad et al.

Journal of Neuroscience Research DOI 10.1002/jnr



 



 



Dissertations at the Faculty of Medicine, NTNU 
 
1977 
1. Knut Joachim Berg: EFFECT OF ACETYLSALICYLIC ACID ON RENAL FUNCTION 
2. Karl Erik Viken and Arne Ødegaard: STUDIES ON HUMAN MONOCYTES CULTURED IN  

VITRO 
1978 
3. Karel Bjørn Cyvin: CONGENITAL DISLOCATION OF THE HIP JOINT. 
4. Alf O. Brubakk: METHODS FOR STUDYING FLOW DYNAMICS IN THE LEFT 

VENTRICLE AND THE AORTA IN MAN. 
1979 
5. Geirmund Unsgaard: CYTOSTATIC AND IMMUNOREGULATORY ABILITIES OF HUMAN    

BLOOD MONOCYTES CULTURED IN VITRO 
1980 
6. Størker Jørstad: URAEMIC TOXINS 
7. Arne Olav Jenssen: SOME RHEOLOGICAL, CHEMICAL AND STRUCTURAL PROPERTIES    

OF MUCOID SPUTUM FROM PATIENTS WITH CHRONIC OBSTRUCTIVE BRONCHITIS 
1981 
8. Jens Hammerstrøm: CYTOSTATIC AND CYTOLYTIC ACTIVITY OF HUMAN 

MONOCYTES AND EFFUSION MACROPHAGES AGAINST TUMOR CELLS IN VITRO 
1983 
9. Tore Syversen: EFFECTS OF METHYLMERCURY ON RAT BRAIN PROTEIN. 
10. Torbjørn Iversen: SQUAMOUS CELL CARCINOMA OF THE VULVA. 
1984 
11. Tor-Erik Widerøe: ASPECTS OF CONTINUOUS AMBULATORY PERITONEAL DIALYSIS. 
12. Anton Hole: ALTERATIONS OF MONOCYTE AND LYMPHOCYTE FUNCTIONS IN 

REALTION TO SURGERY UNDER EPIDURAL OR GENERAL ANAESTHESIA. 
13. Terje Terjesen: FRACTURE HEALING AN STRESS-PROTECTION AFTER METAL PLATE 

FIXATION AND EXTERNAL FIXATION. 
14. Carsten Saunte: CLUSTER HEADACHE SYNDROME. 
15. Inggard Lereim: TRAFFIC ACCIDENTS AND THEIR CONSEQUENCES. 
16. Bjørn Magne Eggen: STUDIES IN CYTOTOXICITY IN HUMAN ADHERENT 

MONONUCLEAR BLOOD CELLS. 
17. Trond Haug: FACTORS REGULATING BEHAVIORAL EFFECTS OG DRUGS. 
1985 
18. Sven Erik Gisvold: RESUSCITATION AFTER COMPLETE GLOBAL BRAIN ISCHEMIA. 
19. Terje Espevik: THE CYTOSKELETON OF HUMAN MONOCYTES. 
20. Lars Bevanger: STUDIES OF THE Ibc (c) PROTEIN ANTIGENS OF GROUP B 

STREPTOCOCCI. 
21. Ole-Jan Iversen: RETROVIRUS-LIKE PARTICLES IN THE PATHOGENESIS OF PSORIASIS. 
22. Lasse Eriksen: EVALUATION AND TREATMENT OF ALCOHOL DEPENDENT 

BEHAVIOUR. 
23. Per I. Lundmo: ANDROGEN METABOLISM IN THE PROSTATE. 
1986 
24. Dagfinn Berntzen: ANALYSIS AND MANAGEMENT OF EXPERIMENTAL AND CLINICAL 

PAIN. 
25. Odd Arnold Kildahl-Andersen: PRODUCTION AND CHARACTERIZATION OF 

MONOCYTE-DERIVED CYTOTOXIN AND ITS ROLE IN MONOCYTE-MEDIATED 
CYTOTOXICITY. 

26. Ola Dale: VOLATILE ANAESTHETICS. 
1987 
27. Per Martin Kleveland: STUDIES ON GASTRIN. 
28. Audun N. Øksendal: THE CALCIUM PARADOX AND THE HEART. 
29. Vilhjalmur R. Finsen: HIP FRACTURES 
1988 
30. Rigmor Austgulen: TUMOR NECROSIS FACTOR: A MONOCYTE-DERIVED REGULATOR 

OF CELLULAR GROWTH. 
31. Tom-Harald Edna: HEAD INJURIES ADMITTED TO HOSPITAL. 
32. Joseph D. Borsi: NEW ASPECTS OF THE CLINICAL PHARMACOKINETICS OF 

METHOTREXATE. 



33. Olav F. M. Sellevold: GLUCOCORTICOIDS IN MYOCARDIAL PROTECTION. 
34. Terje Skjærpe: NONINVASIVE QUANTITATION OF GLOBAL PARAMETERS ON LEFT 

VENTRICULAR FUNCTION: THE SYSTOLIC PULMONARY ARTERY PRESSURE AND 
CARDIAC OUTPUT. 

35. Eyvind Rødahl: STUDIES OF IMMUNE COMPLEXES AND RETROVIRUS-LIKE ANTIGENS 
IN PATIENTS WITH ANKYLOSING SPONDYLITIS. 

36. Ketil Thorstensen: STUDIES ON THE MECHANISMS OF CELLULAR UPTAKE OF IRON 
FROM TRANSFERRIN. 

37. Anna Midelfart: STUDIES OF THE MECHANISMS OF ION AND FLUID TRANSPORT IN 
THE BOVINE CORNEA. 

38. Eirik Helseth: GROWTH AND PLASMINOGEN ACTIVATOR ACTIVITY OF HUMAN 
GLIOMAS AND BRAIN METASTASES - WITH SPECIAL REFERENCE TO 
TRANSFORMING GROWTH FACTOR BETA AND THE EPIDERMAL GROWTH FACTOR 
RECEPTOR. 

39. Petter C. Borchgrevink: MAGNESIUM AND THE ISCHEMIC HEART. 
40. Kjell-Arne Rein: THE EFFECT OF EXTRACORPOREAL CIRCULATION ON 

SUBCUTANEOUS TRANSCAPILLARY FLUID BALANCE. 
41. Arne Kristian Sandvik: RAT GASTRIC HISTAMINE. 
42. Carl Bredo Dahl: ANIMAL MODELS IN PSYCHIATRY. 
1989 
43. Torbjørn A. Fredriksen: CERVICOGENIC HEADACHE. 
44. Rolf A. Walstad: CEFTAZIDIME. 
45. Rolf Salvesen: THE PUPIL IN CLUSTER HEADACHE. 
46. Nils Petter Jørgensen: DRUG EXPOSURE IN EARLY PREGNANCY. 
47. Johan C. Ræder: PREMEDICATION AND GENERAL ANAESTHESIA IN OUTPATIENT 

GYNECOLOGICAL SURGERY. 
48. M. R. Shalaby: IMMUNOREGULATORY PROPERTIES OF TNF-α AND THE RELATED 

CYTOKINES. 
49. Anders Waage: THE COMPLEX PATTERN OF CYTOKINES IN SEPTIC SHOCK. 
50. Bjarne Christian Eriksen: ELECTROSTIMULATION OF THE PELVIC FLOOR IN FEMALE 

URINARY INCONTINENCE. 
51. Tore B. Halvorsen: PROGNOSTIC FACTORS IN COLORECTAL CANCER. 
1990 
52. Asbjørn Nordby: CELLULAR TOXICITY OF ROENTGEN CONTRAST MEDIA. 
53. Kåre E. Tvedt: X-RAY MICROANALYSIS OF BIOLOGICAL MATERIAL. 
54. Tore C. Stiles: COGNITIVE VULNERABILITY FACTORS IN THE DEVELOPMENT AND 

MAINTENANCE OF DEPRESSION. 
55. Eva Hofsli: TUMOR NECROSIS FACTOR AND MULTIDRUG RESISTANCE. 
56. Helge S. Haarstad: TROPHIC EFFECTS OF CHOLECYSTOKININ AND SECRETIN ON THE 

RAT PANCREAS. 
57. Lars Engebretsen: TREATMENT OF ACUTE ANTERIOR CRUCIATE LIGAMENT INJURIES. 
58. Tarjei Rygnestad: DELIBERATE SELF-POISONING IN TRONDHEIM. 
59. Arne Z. Henriksen: STUDIES ON CONSERVED ANTIGENIC DOMAINS ON MAJOR OUTER 

MEMBRANE PROTEINS FROM ENTEROBACTERIA. 
60. Steinar Westin: UNEMPLOYMENT AND HEALTH: Medical and social consequences of a 

factory closure in a ten-year controlled follow-up study. 
61. Ylva Sahlin: INJURY REGISTRATION, a tool for accident preventive work. 
62. Helge Bjørnstad Pettersen: BIOSYNTHESIS OF COMPLEMENT BY HUMAN ALVEOLAR 

MACROPHAGES WITH SPECIAL REFERENCE TO SARCOIDOSIS. 
63. Berit Schei: TRAPPED IN PAINFUL LOVE. 
64. Lars J. Vatten: PROSPECTIVE STUDIES OF THE RISK OF BREAST CANCER IN A 

COHORT OF NORWEGIAN WOMAN. 
1991 
65. Kåre Bergh: APPLICATIONS OF ANTI-C5a SPECIFIC MONOCLONAL ANTIBODIES FOR 

THE ASSESSMENT OF COMPLEMENT ACTIVATION. 
66. Svein Svenningsen: THE CLINICAL SIGNIFICANCE OF INCREASED FEMORAL 

ANTEVERSION. 
67. Olbjørn Klepp: NONSEMINOMATOUS GERM CELL TESTIS CANCER: THERAPEUTIC 

OUTCOME AND PROGNOSTIC FACTORS. 



68. Trond Sand: THE EFFECTS OF CLICK POLARITY ON BRAINSTEM AUDITORY EVOKED 
POTENTIALS AMPLITUDE, DISPERSION, AND LATENCY VARIABLES. 

69. Kjetil B. Åsbakk: STUDIES OF A PROTEIN FROM PSORIATIC SCALE, PSO P27, WITH 
RESPECT TO ITS POTENTIAL ROLE IN IMMUNE REACTIONS IN PSORIASIS. 

70. Arnulf Hestnes: STUDIES ON DOWN´S SYNDROME. 
71. Randi Nygaard: LONG-TERM SURVIVAL IN CHILDHOOD LEUKEMIA. 
72. Bjørn Hagen: THIO-TEPA. 
73. Svein Anda: EVALUATION OF THE HIP JOINT BY COMPUTED TOMOGRAMPHY AND 

ULTRASONOGRAPHY. 
1992 
74. Martin Svartberg: AN INVESTIGATION OF PROCESS AND OUTCOME OF SHORT-TERM 

PSYCHODYNAMIC PSYCHOTHERAPY. 
75. Stig Arild Slørdahl: AORTIC REGURGITATION. 
76. Harold C Sexton: STUDIES RELATING TO THE TREATMENT OF SYMPTOMATIC NON-

PSYCHOTIC PATIENTS. 
77. Maurice B. Vincent: VASOACTIVE PEPTIDES IN THE OCULAR/FOREHEAD AREA. 
78. Terje Johannessen: CONTROLLED TRIALS IN SINGLE SUBJECTS. 
79. Turid Nilsen: PYROPHOSPHATE IN HEPATOCYTE IRON METABOLISM. 
80. Olav Haraldseth: NMR SPECTROSCOPY OF CEREBRAL ISCHEMIA AND REPERFUSION 

IN RAT. 
81. Eiliv Brenna: REGULATION OF FUNCTION AND GROWTH OF THE OXYNTIC MUCOSA. 
1993 
82. Gunnar Bovim: CERVICOGENIC HEADACHE. 
83. Jarl Arne Kahn: ASSISTED PROCREATION. 
84. Bjørn Naume: IMMUNOREGULATORY EFFECTS OF CYTOKINES ON NK CELLS. 
85. Rune Wiseth: AORTIC VALVE REPLACEMENT. 
86. Jie Ming Shen: BLOOD FLOW VELOCITY AND RESPIRATORY STUDIES. 
87. Piotr Kruszewski: SUNCT SYNDROME WITH SPECIAL REFERENCE TO THE 

AUTONOMIC NERVOUS SYSTEM. 
88. Mette Haase Moen: ENDOMETRIOSIS. 
89. Anne Vik: VASCULAR GAS EMBOLISM DURING AIR INFUSION AND AFTER 

DECOMPRESSION IN PIGS. 
90. Lars Jacob Stovner: THE CHIARI TYPE I MALFORMATION. 
91. Kjell Å. Salvesen: ROUTINE ULTRASONOGRAPHY IN UTERO AND DEVELOPMENT IN 

CHILDHOOD. 
1994 
92. Nina-Beate Liabakk: DEVELOPMENT OF IMMUNOASSAYS FOR TNF AND ITS SOLUBLE 

RECEPTORS. 
93. Sverre Helge Torp: erbB ONCOGENES IN HUMAN GLIOMAS AND MENINGIOMAS. 
94. Olav M. Linaker: MENTAL RETARDATION AND PSYCHIATRY. Past and present. 
95. Per Oscar Feet: INCREASED ANTIDEPRESSANT AND ANTIPANIC EFFECT IN 

COMBINED TREATMENT WITH DIXYRAZINE AND TRICYCLIC ANTIDEPRESSANTS. 
96. Stein Olav Samstad: CROSS SECTIONAL FLOW VELOCITY PROFILES FROM TWO-

DIMENSIONAL DOPPLER ULTRASOUND: Studies on early mitral blood flow. 
97. Bjørn Backe: STUDIES IN ANTENATAL CARE. 
98. Gerd Inger Ringdal: QUALITY OF LIFE IN CANCER PATIENTS. 
99. Torvid Kiserud: THE DUCTUS VENOSUS IN THE HUMAN FETUS. 
100. Hans E. Fjøsne: HORMONAL REGULATION OF PROSTATIC METABOLISM. 
101. Eylert Brodtkorb: CLINICAL ASPECTS OF EPILEPSY IN THE MENTALLY RETARDED. 
102. Roar Juul: PEPTIDERGIC MECHANISMS IN HUMAN SUBARACHNOID HEMORRHAGE. 
103. Unni Syversen: CHROMOGRANIN A. Phsysiological and Clinical Role. 
1995 
104. Odd Gunnar Brakstad: THERMOSTABLE NUCLEASE AND THE nuc GENE IN THE 

DIAGNOSIS OF Staphylococcus aureus INFECTIONS. 
105. Terje Engan: NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY OF PLASMA 

IN MALIGNANT DISEASE. 
106. Kirsten Rasmussen: VIOLENCE IN THE MENTALLY DISORDERED. 
107. Finn Egil Skjeldestad: INDUCED ABORTION: Timetrends and Determinants. 
108. Roar Stenseth: THORACIC EPIDURAL ANALGESIA IN AORTOCORONARY BYPASS 

SURGERY. 



109. Arild Faxvaag: STUDIES OF IMMUNE CELL FUNCTION in mice infected with MURINE 
RETROVIRUS. 

1996 
110. Svend Aakhus: NONINVASIVE COMPUTERIZED ASSESSMENT OF LEFT VENTRICULAR 

FUNCTION AND SYSTEMIC ARTERIAL PROPERTIES. Methodology and some clinical 
applications. 

111. Klaus-Dieter Bolz: INTRAVASCULAR ULTRASONOGRAPHY. 
112. Petter Aadahl: CARDIOVASCULAR EFFECTS OF THORACIC AORTIC CROSS-

CLAMPING. 
113. Sigurd Steinshamn: CYTOKINE MEDIATORS DURING GRANULOCYTOPENIC 

INFECTIONS. 
114. Hans Stifoss-Hanssen: SEEKING MEANING OR HAPPINESS? 
115. Anne Kvikstad: LIFE CHANGE EVENTS AND MARITAL STATUS IN RELATION TO RISK 

AND PROGNOSIS OF CANSER. 
116. Torbjørn Grøntvedt: TREATMENT OF ACUTE AND CHRONIC ANTERIOR CRUCIATE 

LIGAMENT INJURIES. A clinical and biomechanical study. 
117. Sigrid Hørven Wigers: CLINICAL STUDIES OF FIBROMYALGIA WITH FOCUS ON 

ETIOLOGY, TREATMENT AND OUTCOME. 
118. Jan Schjøtt: MYOCARDIAL PROTECTION: Functional and Metabolic Characteristics of Two 

Endogenous Protective Principles. 
119. Marit Martinussen: STUDIES OF INTESTINAL BLOOD FLOW AND ITS RELATION TO 

TRANSITIONAL CIRCULATORY ADAPATION IN NEWBORN INFANTS. 
120. Tomm B. Müller: MAGNETIC RESONANCE IMAGING IN FOCAL CEREBRAL ISCHEMIA. 
121. Rune Haaverstad: OEDEMA FORMATION OF THE LOWER EXTREMITIES. 
122. Magne Børset: THE ROLE OF CYTOKINES IN MULTIPLE MYELOMA, WITH SPECIAL 

REFERENCE TO HEPATOCYTE GROWTH FACTOR. 
123. Geir Smedslund: A THEORETICAL AND EMPIRICAL INVESTIGATION OF SMOKING, 

STRESS AND DISEASE: RESULTS FROM A POPULATION SURVEY. 
1997 
124. Torstein Vik: GROWTH, MORBIDITY, AND PSYCHOMOTOR DEVELOPMENT IN 

INFANTS WHO WERE GROWTH RETARDED IN UTERO. 
125. Siri Forsmo: ASPECTS AND CONSEQUENCES OF OPPORTUNISTIC SCREENING FOR 

CERVICAL CANCER. Results based on data from three Norwegian counties. 
126. Jon S. Skranes: CEREBRAL MRI AND NEURODEVELOPMENTAL OUTCOME IN VERY 

LOW BIRTH WEIGHT (VLBW) CHILDREN. A follow-up study of a geographically based year 
cohort of VLBW children at ages one and six years. 

127. Knut Bjørnstad: COMPUTERIZED ECHOCARDIOGRAPHY FOR EVALUTION OF 
CORONARY ARTERY DISEASE. 

128. Grethe Elisabeth Borchgrevink: DIAGNOSIS AND TREATMENT OF WHIPLASH/NECK 
SPRAIN INJURIES CAUSED BY CAR ACCIDENTS. 

129. Tor Elsås: NEUROPEPTIDES AND NITRIC OXIDE SYNTHASE IN OCULAR AUTONOMIC 
AND SENSORY NERVES. 

130. Rolf W. Gråwe: EPIDEMIOLOGICAL AND NEUROPSYCHOLOGICAL PERSPECTIVES ON 
SCHIZOPHRENIA. 

131. Tonje Strømholm: CEREBRAL HAEMODYNAMICS DURING THORACIC AORTIC 
CROSSCLAMPING. An experimental study in pigs. 

1998 
132. Martinus Bråten: STUDIES ON SOME PROBLEMS REALTED TO INTRAMEDULLARY 

NAILING OF FEMORAL FRACTURES. 
133. Ståle Nordgård: PROLIFERATIVE ACTIVITY AND DNA CONTENT AS PROGNOSTIC 

INDICATORS IN ADENOID CYSTIC CARCINOMA OF THE HEAD AND NECK. 
134. Egil Lien: SOLUBLE RECEPTORS FOR TNF AND LPS: RELEASE PATTERN AND 

POSSIBLE SIGNIFICANCE IN DISEASE. 
135. Marit Bjørgaas: HYPOGLYCAEMIA IN CHILDREN WITH DIABETES MELLITUS 
136. Frank Skorpen: GENETIC AND FUNCTIONAL ANALYSES OF DNA REPAIR IN HUMAN 

CELLS. 
137. Juan A. Pareja: SUNCT SYNDROME. ON THE CLINICAL PICTURE. ITS DISTINCTION 

FROM OTHER, SIMILAR HEADACHES. 
138. Anders Angelsen: NEUROENDOCRINE CELLS IN HUMAN PROSTATIC CARCINOMAS 

AND THE PROSTATIC COMPLEX OF RAT, GUINEA PIG, CAT AND DOG. 



139. Fabio Antonaci: CHRONIC PAROXYSMAL HEMICRANIA AND HEMICRANIA 
CONTINUA: TWO DIFFERENT ENTITIES? 

140. Sven M. Carlsen: ENDOCRINE AND METABOLIC EFFECTS OF METFORMIN WITH 
SPECIAL EMPHASIS ON CARDIOVASCULAR RISK FACTORES. 

1999 
141. Terje A. Murberg: DEPRESSIVE SYMPTOMS AND COPING AMONG PATIENTS WITH 

CONGESTIVE HEART FAILURE. 
142. Harm-Gerd Karl Blaas: THE EMBRYONIC EXAMINATION. Ultrasound studies on the 

development of the human embryo. 
143. Noèmi Becser Andersen:THE CEPHALIC SENSORY NERVES IN UNILATERAL 

HEADACHES. Anatomical background and neurophysiological evaluation. 
144. Eli-Janne Fiskerstrand: LASER TREATMENT OF PORT WINE STAINS. A study of the efficacy 

and limitations of the pulsed dye laser. Clinical and morfological analyses aimed at improving the 
therapeutic outcome. 

145. Bård Kulseng: A STUDY OF ALGINATE CAPSULE PROPERTIES AND CYTOKINES IN 
RELATION TO INSULIN DEPENDENT DIABETES MELLITUS. 

146. Terje Haug: STRUCTURE AND REGULATION OF THE HUMAN UNG GENE ENCODING 
URACIL-DNA GLYCOSYLASE. 

147. Heidi Brurok: MANGANESE AND THE HEART. A Magic Metal with Diagnostic and 
Therapeutic Possibilites. 

148. Agnes Kathrine Lie: DIAGNOSIS AND PREVALENCE OF HUMAN PAPILLOMAVIRUS 
INFECTION IN CERVICAL INTRAEPITELIAL NEOPLASIA. Relationship to Cell Cycle 
Regulatory Proteins and HLA DQBI Genes. 

149. Ronald Mårvik: PHARMACOLOGICAL, PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL 
STUDIES ON ISOLATED STOMACS. 

150. Ketil Jarl Holen: THE ROLE OF ULTRASONOGRAPHY IN THE DIAGNOSIS AND 
TREATMENT OF HIP DYSPLASIA IN NEWBORNS. 

151. Irene Hetlevik:  THE ROLE OF CLINICAL GUIDELINES IN CARDIOVASCULAR RISK 
INTERVENTION IN GENERAL PRACTICE. 

152. Katarina Tunòn: ULTRASOUND AND PREDICTION OF GESTATIONAL AGE. 
153. Johannes Soma: INTERACTION BETWEEN THE LEFT VENTRICLE AND THE SYSTEMIC 

ARTERIES. 
154. Arild Aamodt: DEVELOPMENT AND PRE-CLINICAL EVALUATION OF A CUSTOM-

MADE FEMORAL STEM. 
155. Agnar Tegnander: DIAGNOSIS AND FOLLOW-UP OF CHILDREN WITH SUSPECTED OR 

KNOWN HIP DYSPLASIA. 
156. Bent Indredavik: STROKE UNIT TREATMENT: SHORT AND LONG-TERM EFFECTS 
157. Jolanta Vanagaite Vingen: PHOTOPHOBIA AND PHONOPHOBIA IN PRIMARY 

HEADACHES 
2000 
158. Ola Dalsegg Sæther: PATHOPHYSIOLOGY DURING PROXIMAL AORTIC CROSS-

CLAMPING CLINICAL AND EXPERIMENTAL STUDIES 
159. xxxxxxxxx (blind number) 
160. Christina Vogt Isaksen: PRENATAL ULTRASOUND AND POSTMORTEM FINDINGS – A 

TEN YEAR CORRELATIVE STUDY OF FETUSES AND INFANTS WITH 
DEVELOPMENTAL ANOMALIES. 

161. Holger Seidel: HIGH-DOSE METHOTREXATE THERAPY IN CHILDREN WITH ACUTE 
LYMPHOCYTIC LEUKEMIA: DOSE, CONCENTRATION, AND EFFECT 
CONSIDERATIONS. 

162. Stein Hallan: IMPLEMENTATION OF MODERN MEDICAL DECISION ANALYSIS INTO 
CLINICAL DIAGNOSIS AND TREATMENT. 

163. Malcolm Sue-Chu: INVASIVE AND NON-INVASIVE STUDIES IN CROSS-COUNTRY 
SKIERS WITH ASTHMA-LIKE SYMPTOMS. 

164. Ole-Lars Brekke: EFFECTS OF ANTIOXIDANTS AND FATTY ACIDS ON TUMOR 
NECROSIS FACTOR-INDUCED CYTOTOXICITY. 

165. Jan Lundbom: AORTOCORONARY BYPASS SURGERY: CLINICAL ASPECTS, COST 
CONSIDERATIONS AND WORKING ABILITY. 

166. John-Anker Zwart: LUMBAR NERVE ROOT COMPRESSION, BIOCHEMICAL AND 
NEUROPHYSIOLOGICAL ASPECTS. 

167. Geir Falck: HYPEROSMOLALITY AND THE HEART. 



168. Eirik Skogvoll: CARDIAC ARREST Incidence, Intervention and Outcome. 
169. Dalius Bansevicius: SHOULDER-NECK REGION IN CERTAIN HEADACHES AND 

CHRONIC PAIN SYNDROMES. 
170. Bettina Kinge: REFRACTIVE ERRORS AND BIOMETRIC CHANGES AMONG 

UNIVERSITY STUDENTS IN NORWAY. 
171. Gunnar Qvigstad: CONSEQUENCES OF HYPERGASTRINEMIA IN MAN 
172. Hanne Ellekjær: EPIDEMIOLOGICAL STUDIES OF STROKE IN A NORWEGIAN 

POPULATION. INCIDENCE, RISK FACTORS AND PROGNOSIS 
173. Hilde Grimstad: VIOLENCE AGAINST WOMEN AND PREGNANCY OUTCOME. 
174. Astrid Hjelde: SURFACE TENSION AND COMPLEMENT ACTIVATION: Factors influencing 

bubble formation and bubble effects after decompression. 
175. Kjell A. Kvistad: MR IN BREAST CANCER – A CLINICAL STUDY. 
176. Ivar Rossvoll: ELECTIVE ORTHOPAEDIC SURGERY IN A DEFINED POPULATION. Studies 

on demand, waiting time for treatment and incapacity for work. 
177. Carina Seidel: PROGNOSTIC VALUE AND BIOLOGICAL EFFECTS OF HEPATOCYTE 

GROWTH FACTOR AND SYNDECAN-1 IN MULTIPLE MYELOMA. 
2001 
178. Alexander Wahba: THE INFLUENCE OF CARDIOPULMONARY BYPASS ON PLATELET 

FUNCTION AND BLOOD COAGULATION – DETERMINANTS AND CLINICAL 
CONSEQUENSES 

179. Marcus Schmitt-Egenolf: THE RELEVANCE OF THE MAJOR hISTOCOMPATIBILITY 
COMPLEX FOR THE GENETICS OF PSORIASIS 

180. Odrun Arna Gederaas: BIOLOGICAL MECHANISMS INVOLVED IN 5-AMINOLEVULINIC 
ACID BASED PHOTODYNAMIC THERAPY 

181. Pål Richard Romundstad: CANCER INCIDENCE AMONG NORWEGIAN ALUMINIUM 
WORKERS 

182. Henrik Hjorth-Hansen: NOVEL CYTOKINES IN GROWTH CONTROL AND BONE DISEASE 
OF MULTIPLE MYELOMA 

183. Gunnar Morken: SEASONAL VARIATION OF HUMAN MOOD AND BEHAVIOUR 
184. Bjørn Olav Haugen: MEASUREMENT OF CARDIAC OUTPUT AND STUDIES OF 

VELOCITY PROFILES IN AORTIC AND MITRAL FLOW USING TWO- AND THREE-
DIMENSIONAL COLOUR FLOW IMAGING 

185. Geir Bråthen: THE CLASSIFICATION AND CLINICAL DIAGNOSIS OF ALCOHOL-
RELATED SEIZURES 

186. Knut Ivar Aasarød: RENAL INVOLVEMENT IN INFLAMMATORY RHEUMATIC DISEASE. 
A Study of Renal Disease in Wegener’s Granulomatosis and in Primary Sjögren’s Syndrome  

187. Trude Helen Flo: RESEPTORS INVOLVED IN CELL ACTIVATION BY DEFINED URONIC 
ACID POLYMERS AND BACTERIAL COMPONENTS 

188. Bodil Kavli: HUMAN URACIL-DNA GLYCOSYLASES FROM THE UNG GENE: 
STRUCTRUAL BASIS FOR SUBSTRATE SPECIFICITY AND REPAIR 

189. Liv Thommesen: MOLECULAR MECHANISMS INVOLVED IN TNF- AND GASTRIN-
MEDIATED GENE REGULATION 

190. Turid Lingaas Holmen: SMOKING AND HEALTH IN ADOLESCENCE; THE NORD-
TRØNDELAG HEALTH STUDY, 1995-97 

191. Øyvind Hjertner: MULTIPLE MYELOMA: INTERACTIONS BETWEEN MALIGNANT 
PLASMA CELLS AND THE BONE MICROENVIRONMENT 

192. Asbjørn Støylen: STRAIN RATE IMAGING OF THE LEFT VENTRICLE BY ULTRASOUND. 
FEASIBILITY, CLINICAL VALIDATION AND PHYSIOLOGICAL ASPECTS 

193. Kristian Midthjell: DIABETES IN ADULTS IN NORD-TRØNDELAG. PUBLIC HEALTH 
ASPECTS OF DIABETES MELLITUS IN A LARGE, NON-SELECTED NORWEGIAN 
POPULATION. 

194. Guanglin Cui: FUNCTIONAL ASPECTS OF THE ECL CELL IN RODENTS 
195. Ulrik Wisløff: CARDIAC EFFECTS OF AEROBIC ENDURANCE TRAINING: 

HYPERTROPHY, CONTRACTILITY AND CALCUIM HANDLING IN NORMAL AND 
FAILING HEART 

196. Øyvind Halaas: MECHANISMS OF IMMUNOMODULATION AND CELL-MEDIATED 
CYTOTOXICITY INDUCED BY BACTERIAL PRODUCTS 

197. Tore Amundsen: PERFUSION MR IMAGING IN THE DIAGNOSIS OF PULMONARY 
EMBOLISM 



198. Nanna Kurtze: THE SIGNIFICANCE OF ANXIETY AND DEPRESSION IN FATIQUE AND 
PATTERNS OF PAIN AMONG INDIVIDUALS DIAGNOSED WITH FIBROMYALGIA: 
RELATIONS WITH QUALITY OF LIFE, FUNCTIONAL DISABILITY, LIFESTYLE, 
EMPLOYMENT STATUS, CO-MORBIDITY AND GENDER 

199. Tom Ivar Lund Nilsen: PROSPECTIVE STUDIES OF CANCER RISK IN NORD-
TRØNDELAG: THE HUNT STUDY. Associations with anthropometric, socioeconomic, and 
lifestyle risk factors 

200. Asta Kristine Håberg: A NEW APPROACH TO THE STUDY OF MIDDLE CEREBRAL 
ARTERY OCCLUSION IN THE RAT USING MAGNETIC RESONANCE TECHNIQUES 

2002 
201. Knut Jørgen Arntzen: PREGNANCY AND CYTOKINES 
202. Henrik Døllner: INFLAMMATORY MEDIATORS IN PERINATAL INFECTIONS 
203. Asta Bye: LOW FAT, LOW LACTOSE DIET USED AS PROPHYLACTIC TREATMENT OF 

ACUTE INTESTINAL REACTIONS DURING PELVIC RADIOTHERAPY. A PROSPECTIVE 
RANDOMISED STUDY. 

204. Sylvester Moyo: STUDIES ON STREPTOCOCCUS AGALACTIAE  (GROUP B 
STREPTOCOCCUS) SURFACE-ANCHORED MARKERS WITH EMPHASIS ON STRAINS 
AND HUMAN SERA FROM ZIMBABWE. 

205. Knut Hagen: HEAD-HUNT: THE EPIDEMIOLOGY OF HEADACHE IN NORD-TRØNDELAG 
206. Li Lixin: ON THE REGULATION AND ROLE OF UNCOUPLING PROTEIN-2 IN INSULIN 

PRODUCING ß-CELLS 
207. Anne Hildur Henriksen: SYMPTOMS OF ALLERGY AND ASTHMA VERSUS MARKERS OF 

LOWER AIRWAY INFLAMMATION AMONG ADOLESCENTS 
208. Egil Andreas Fors: NON-MALIGNANT PAIN IN RELATION TO PSYCHOLOGICAL AND 

ENVIRONTENTAL FACTORS. EXPERIENTAL AND CLINICAL STUDES OF PAIN WITH 
FOCUS ON FIBROMYALGIA 

209. Pål Klepstad:  MORPHINE FOR CANCER PAIN 
210. Ingunn Bakke: MECHANISMS AND CONSEQUENCES OF PEROXISOME PROLIFERATOR-

INDUCED HYPERFUNCTION OF THE RAT GASTRIN PRODUCING CELL 
211. Ingrid Susann Gribbestad: MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY OF 

BREAST CANCER 
212. Rønnaug Astri Ødegård: PREECLAMPSIA – MATERNAL RISK FACTORS AND FETAL 

GROWTH 
213. Johan Haux: STUDIES ON CYTOTOXICITY INDUCED BY HUMAN NATURAL KILLER 

CELLS AND DIGITOXIN 
214. Turid Suzanne Berg-Nielsen: PARENTING PRACTICES AND MENTALLY DISORDERED 

ADOLESCENTS 
215. Astrid Rydning: BLOOD FLOW AS A PROTECTIVE FACTOR FOR THE STOMACH 

MUCOSA. AN EXPERIMENTAL STUDY ON THE ROLE OF MAST CELLS AND SENSORY 
AFFERENT NEURONS 

2003 
216. Jan Pål Loennechen: HEART FAILURE AFTER MYOCARDIAL INFARCTION. Regional 

Differences, Myocyte Function, Gene Expression, and Response to Cariporide, Losartan, and 
Exercise Training. 

217. Elisabeth Qvigstad: EFFECTS OF FATTY ACIDS AND OVER-STIMULATION ON INSULIN 
SECRETION IN MAN 

218. Arne Åsberg: EPIDEMIOLOGICAL STUDIES IN HEREDITARY HEMOCHROMATOSIS: 
PREVALENCE, MORBIDITY AND BENEFIT OF SCREENING. 

219. Johan Fredrik Skomsvoll: REPRODUCTIVE OUTCOME IN WOMEN WITH RHEUMATIC 
DISEASE. A population registry based study of the effects of inflammatory rheumatic disease and 
connective tissue disease on reproductive outcome in Norwegian women in 1967-1995. 

220. Siv Mørkved: URINARY INCONTINENCE DURING PREGNANCY AND AFTER  
DELIVERY: EFFECT OF PELVIC FLOOR MUSCLE TRAINING IN PREVENTION AND 
TREATMENT 

221. Marit S. Jordhøy: THE IMPACT OF COMPREHENSIVE PALLIATIVE CARE 
222. Tom Christian Martinsen: HYPERGASTRINEMIA AND HYPOACIDITY IN RODENTS – 

CAUSES AND CONSEQUENCES  
223. Solveig Tingulstad: CENTRALIZATION OF PRIMARY SURGERY FOR OVARAIN CANCER. 

FEASIBILITY AND IMPACT ON SURVIVAL  



224. Haytham Eloqayli: METABOLIC CHANGES IN THE BRAIN CAUSED BY EPILEPTIC 
SEIZURES 

225. Torunn Bruland: STUDIES OF EARLY RETROVIRUS-HOST INTERACTIONS – VIRAL 
DETERMINANTS FOR PATHOGENESIS AND THE INFLUENCE OF SEX ON THE 
SUSCEPTIBILITY TO FRIEND MURINE LEUKAEMIA VIRUS INFECTION 

226. Torstein Hole: DOPPLER ECHOCARDIOGRAPHIC EVALUATION OF LEFT 
VENTRICULAR FUNCTION IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION 

227. Vibeke Nossum: THE EFFECT OF VASCULAR BUBBLES ON ENDOTHELIAL FUNCTION 
228. Sigurd Fasting: ROUTINE BASED RECORDING OF ADVERSE EVENTS DURING 

ANAESTHESIA – APPLICATION IN QUALITY IMPROVEMENT AND SAFETY 
229. Solfrid Romundstad: EPIDEMIOLOGICAL STUDIES OF MICROALBUMINURIA. THE 

NORD-TRØNDELAG HEALTH STUDY 1995-97 (HUNT 2) 
230. Geir Torheim: PROCESSING OF DYNAMIC DATA SETS IN MAGNETIC RESONANCE 

IMAGING 
231. Catrine Ahlén: SKIN INFECTIONS IN OCCUPATIONAL SATURATION DIVERS IN THE 

NORTH SEA AND THE IMPACT OF THE ENVIRONMENT 
232. Arnulf Langhammer: RESPIRATORY SYMPTOMS, LUNG FUNCTION AND BONE 

MINERAL DENSITY IN A COMPREHENSIVE POPULATION SURVEY. THE NORD-
TRØNDELAG HEALTH STUDY 1995-97. THE BRONCHIAL OBSTRUCTION IN NORD-
TRØNDELAG STUDY 

233. Einar Kjelsås: EATING DISORDERS AND PHYSICAL ACTIVITY IN NON-CLINICAL 
SAMPLES 

234. Arne Wibe: RECTAL CANCER TREATMENT IN NORWAY – STANDARDISATION OF 
SURGERY AND QUALITY ASSURANCE 

2004 
235. Eivind Witsø: BONE GRAFT AS AN ANTIBIOTIC CARRIER 
236. Anne Mari Sund: DEVELOPMENT OF DEPRESSIVE SYMPTOMS IN EARLY 

ADOLESCENCE   
237. Hallvard Lærum: EVALUATION OF ELECTRONIC MEDICAL RECORDS – A CLINICAL 

TASK PERSPECTIVE  
238. Gustav Mikkelsen: ACCESSIBILITY OF INFORMATION IN ELECTRONIC PATIENT 

RECORDS; AN EVALUATION OF THE ROLE OF DATA QUALITY 
239. Steinar Krokstad: SOCIOECONOMIC INEQUALITIES IN HEALTH AND DISABILITY. 

SOCIAL EPIDEMIOLOGY IN THE NORD-TRØNDELAG HEALTH STUDY (HUNT), 
NORWAY 

240. Arne Kristian Myhre: NORMAL VARIATION IN ANOGENITAL ANATOMY AND 
MICROBIOLOGY IN NON-ABUSED PRESCHOOL CHILDREN 

241. Ingunn Dybedal: NEGATIVE REGULATORS OF HEMATOPOIETEC STEM AND 
PROGENITOR CELLS 

242. Beate Sitter: TISSUE CHARACTERIZATION BY HIGH RESOLUTION MAGIC ANGLE 
SPINNING MR SPECTROSCOPY 

243. Per Arne Aas: MACROMOLECULAR MAINTENANCE IN HUMAN CELLS – REPAIR OF 
URACIL IN DNA AND METHYLATIONS IN DNA AND RNA 

244. Anna Bofin:  FINE NEEDLE ASPIRATION CYTOLOGY IN THE PRIMARY 
INVESTIGATION OF BREAST TUMOURS AND IN THE DETERMINATION OF 
TREATMENT STRATEGIES 

245. Jim Aage Nøttestad: DEINSTITUTIONALIZATION AND MENTAL HEALTH CHANGES 
AMONG PEOPLE WITH MENTAL RETARDATION 

246. Reidar Fossmark:  GASTRIC CANCER IN JAPANESE COTTON RATS 
247. Wibeke Nordhøy:  MANGANESE AND THE HEART, INTRACELLULAR MR RELAXATION 

AND WATER EXCHANGE ACROSS THE CARDIAC CELL MEMBRANE 
2005 
248. Sturla Molden:  QUANTITATIVE ANALYSES OF SINGLE UNITS RECORDED FROM THE 

HIPPOCAMPUS AND ENTORHINAL CORTEX OF BEHAVING RATS 
249. Wenche Brenne Drøyvold:  EPIDEMIOLOGICAL STUDIES ON WEIGHT CHANGE AND 

HEALTH IN A LARGE POPULATION.  THE NORD-TRØNDELAG HEALTH STUDY 
(HUNT) 

250. Ragnhild Støen:  ENDOTHELIUM-DEPENDENT VASODILATION IN THE FEMORAL 
ARTERY OF DEVELOPING PIGLETS 



251. Aslak Steinsbekk:  HOMEOPATHY IN THE PREVENTION OF UPPER RESPIRATORY 
TRACT INFECTIONS IN CHILDREN 

252. Hill-Aina Steffenach:  MEMORY IN HIPPOCAMPAL AND CORTICO-HIPPOCAMPAL 
CIRCUITS 

253. Eystein Stordal:  ASPECTS OF THE EPIDEMIOLOGY OF DEPRESSIONS BASED ON SELF-
RATING IN A LARGE GENERAL HEALTH STUDY (THE HUNT-2 STUDY) 

254. Viggo Pettersen:  FROM MUSCLES TO SINGING:  THE ACTIVITY OF ACCESSORY 
BREATHING MUSCLES AND THORAX  MOVEMENT IN CLASSICAL SINGING 

255. Marianne Fyhn:  SPATIAL MAPS IN THE HIPPOCAMPUS AND ENTORHINAL CORTEX 
256. Robert Valderhaug:  OBSESSIVE-COMPULSIVE DISORDER AMONG CHILDREN AND 

ADOLESCENTS:  CHARACTERISTICS AND PSYCHOLOGICAL MANAGEMENT OF 
PATIENTS IN OUTPATIENT PSYCHIATRIC CLINICS 

257. Erik Skaaheim Haug:  INFRARENAL ABDOMINAL  AORTIC ANEURYSMS – 
COMORBIDITY AND RESULTS FOLLOWING OPEN SURGERY 

258. Daniel Kondziella: GLIAL-NEURONAL INTERACTIONS IN EXPERIMENTAL BRAIN 
DISORDERS 

259. Vegard Heimly Brun:  ROUTES TO SPATIAL MEMORY IN HIPPOCAMPAL PLACE CELLS 
260. Kenneth McMillan:  PHYSIOLOGICAL ASSESSMENT AND TRAINING OF ENDURANCE 

AND STRENGTH IN PROFESSIONAL YOUTH SOCCER PLAYERS 
261. Marit Sæbø Indredavik:  MENTAL HEALTH AND CEREBRAL MAGNETIC RESONANCE 

IMAGING IN ADOLESCENTS WITH LOW BIRTH WEIGHT 
262. Ole Johan Kemi:  ON THE CELLULAR BASIS OF AEROBIC FITNESS, INTENSITY-

DEPENDENCE AND TIME-COURSE OF CARDIOMYOCYTE AND ENDOTHELIAL 
ADAPTATIONS TO EXERCISE TRAINING 

263. Eszter Vanky: POLYCYSTIC OVARY SYNDROME – METFORMIN TREATMENT IN 
PREGNANCY 

264. Hild Fjærtoft:  EXTENDED STROKE UNIT SERVICE AND EARLY SUPPORTED 
DISCHARGE.  SHORT AND LONG-TERM EFFECTS   

265. Grete Dyb:  POSTTRAUMATIC STRESS REACTIONS IN CHILDREN AND ADOLESCENTS 
266. Vidar Fykse: SOMATOSTATIN AND THE STOMACH 
267. Kirsti Berg: OXIDATIVE STRESS AND THE ISCHEMIC HEART:  A STUDY IN PATIENTS 

UNDERGOING CORONARY REVASCULARIZATION  
268. Björn Inge Gustafsson:  THE SEROTONIN PRODUCING ENTEROCHROMAFFIN CELL, 

AND EFFECTS OF HYPERSEROTONINEMIA ON HEART AND BONE 
2006 
269. Torstein Baade Rø:  EFFECTS OF BONE MORPHOGENETIC PROTEINS, HEPATOCYTE 

GROWTH FACTOR AND INTERLEUKIN-21 IN MULTIPLE MYELOMA 
270. May-Britt Tessem:  METABOLIC EFFECTS OF ULTRAVIOLET RADIATION ON THE 

ANTERIOR PART OF THE EYE 
271. Anne-Sofie Helvik:  COPING AND EVERYDAY LIFE IN A POPULATION OF ADULTS 

WITH HEARING IMPAIRMENT 
272. Therese Standal:  MULTIPLE MYELOMA:  THE INTERPLAY BETWEEN MALIGNANT 

PLASMA CELLS AND THE BONE MARROW MICROENVIRONMENT 
273. Ingvild Saltvedt:  TREATMENT OF ACUTELY SICK, FRAIL ELDERLY PATIENTS IN A 

GERIATRIC EVALUATION AND MANAGEMENT UNIT – RESULTS FROM A 
PROSPECTIVE RANDOMISED TRIAL 

274. Birger Henning Endreseth:  STRATEGIES IN RECTAL CANCER TREATMENT – FOCUS ON 
EARLY RECTAL CANCER AND THE INFLUENCE OF AGE ON PROGNOSIS 

275. Anne Mari Aukan Rokstad:  ALGINATE CAPSULES AS BIOREACTORS FOR CELL 
THERAPY 

276. Mansour Akbari: HUMAN BASE EXCISION REPAIR FOR PRESERVATION OF GENOMIC 
STABILITY 

277. Stein Sundstrøm:  IMPROVING TREATMENT IN PATIENTS WITH LUNG CANCER – 
RESULTS FROM TWO MULITCENTRE RANDOMISED STUDIES 

278. Hilde Pleym: BLEEDING AFTER CORONARY ARTERY BYPASS SURGERY -  STUDIES 
ON HEMOSTATIC MECHANISMS, PROPHYLACTIC DRUG TREATMENT AND EFFECTS 
OF AUTOTRANSFUSION 

279. Line Merethe Oldervoll:  PHYSICAL ACTIVITY AND EXERCISE INTERVENTIONS IN 
CANCER PATIENTS 



280. Boye Welde:  THE SIGNIFICANCE OF ENDURANCE TRAINING, RESISTANCE TRAINING 
AND MOTIVATIONAL STYLES IN ATHLETIC PERFORMANCE AMONG ELITE JUNIOR 
CROSS-COUNTRY SKIERS 

281. Per Olav Vandvik:  IRRITABLE BOWEL SYNDROME IN NORWAY,  STUDIES OF 
PREVALENCE, DIAGNOSIS AND CHARACTERISTICS IN GENERAL PRACTICE AND IN 
THE POPULATION 

282. Idar Kirkeby-Garstad:  CLINICAL PHYSIOLOGY OF EARLY MOBILIZATION AFTER 
CARDIAC SURGERY 

283. Linn Getz: SUSTAINABLE AND RESPONSIBLE PREVENTIVE MEDICINE.  
CONCEPTUALISING ETHICAL DILEMMAS ARISING FROM CLINICAL 
IMPLEMENTATION OF ADVANCING MEDICAL TECHNOLOGY  

284. Eva Tegnander: DETECTION OF CONGENITAL HEART DEFECTS  IN A NON-SELECTED 
POPULATION OF 42,381 FETUSES 

285. Kristin Gabestad Nørsett:  GENE EXPRESSION STUDIES IN GASTROINTESTINAL 
PATHOPHYSIOLOGY AND NEOPLASIA 

286. Per Magnus Haram:  GENETIC VS. AQUIRED FITNESS:  METABOLIC, VASCULAR AND 
CARDIOMYOCYTE  ADAPTATIONS 

287. Agneta Johansson:  GENERAL RISK FACTORS FOR GAMBLING PROBLEMS AND THE 
PREVALENCE OG PATHOLOGICAL GAMBLING IN NORWAY  

288. Svein Artur Jensen:  THE PREVALENCE OF SYMPTOMATIC ARTERIAL DISEASE OF THE 
LOWER LIMB 

289. Charlotte Björk Ingul:  QUANITIFICATION OF REGIONAL MYOCARDIAL FUNCTION BY 
STRAIN RATE AND STRAIN FOR EVALUATION OF CORONARY ARTERY DISEASE.  
AUTOMATED VERSUS MANUAL ANALYSIS DURING ACUTE MYOCARDIAL 
INFARCTION AND DOBUTAMINE STRESS ECHOCARDIOGRAPHY 

290. Jakob Nakling:  RESULTS AND CONSEQUENCES OF ROUTINE ULTRASOUND 
SCREENING IN PREGNANCY – A GEOGRAPHIC BASED POPULATION STUDY 

291. Anne Engum:  DEPRESSION AND ANXIETY – THEIR RELATIONS TO THYROID 
DYSFUNCTION AND DIABETES IN A LARGE EPIDEMIOLOGICAL STUDY 

292. Ottar Bjerkeset: ANXIETY AND DEPRESSION IN THE GENERAL POPULATION:  RISK 
FACTORS, INTERVENTION AND OUTCOME – THE NORD-TRØNDELAG HEALTH 
STUDY (HUNT) 

293. Jon Olav Drogset:  RESULTS AFTER SURGICAL TREATMENT OF ANTERIOR CRUCIATE 
LIGAMENT INJURIES – A CLINICAL STUDY  

294. Lars Fosse: MECHANICAL BEHAVIOUR OF COMPACTED MORSELLISED BONE – AN 
EXPERIMENTAL IN VITRO STUDY 

295. Gunilla Klensmeden Fosse: MENTAL HEALTH OF PSYCHIATRIC OUTPATIENTS BULLIED 
IN CHILDHOOD 

296. Paul Jarle Mork:  MUSCLE ACTIVITY IN WORK  AND LEISURE AND ITS ASSOCIATION 
TO MUSCULOSKELETAL PAIN 

297. Björn Stenström:  LESSONS FROM RODENTS:  I: MECHANISMS OF OBESITY SURGERY – 
ROLE OF STOMACH.  II: CARCINOGENIC EFFECTS OF HELICOBACTER PYLORI AND 
SNUS IN THE STOMACH 

298. Haakon R. Skogseth:  INVASIVE PROPERTIES OF CANCER – A TREATMENT TARGET?  
IN VITRO STUDIES IN HUMAN PROSTATE CANCER CELL LINES 

299. Janniche Hammer:  GLUTAMATE METABOLISM AND CYCLING IN MESIAL TEMPORAL 
LOBE EPILEPSY 

300. May Britt Drugli:  YOUNG CHILDREN TREATED BECAUSE OF ODD/CD:  CONDUCT 
PROBLEMS AND SOCIAL COMPETENCIES IN DAY-CARE AND SCHOOL SETTINGS 

301. Arne Skjold:  MAGNETIC RESONANCE KINETICS OF MANGANESE DIPYRIDOXYL 
DIPHOSPHATE (MnDPDP) IN HUMAN MYOCARDIUM.  STUDIES IN HEALTHY 
VOLUNTEERS AND IN PATIENTS WITH RECENT MYOCARDIAL INFARCTION 

302. Siri Malm:  LEFT VENTRICULAR SYSTOLIC FUNCTION AND MYOCARDIAL 
PERFUSION ASSESSED BY CONTRAST ECHOCARDIOGRAPHY 

303. Valentina Maria do Rosario Cabral Iversen:  MENTAL HEALTH AND PSYCHOLOGICAL 
ADAPTATION OF CLINICAL AND NON-CLINICAL MIGRANT GROUPS 

304. Lasse Løvstakken:  SIGNAL PROCESSING IN DIAGNOSTIC ULTRASOUND:  
ALGORITHMS FOR REAL-TIME ESTIMATION AND VISUALIZATION OF BLOOD FLOW 
VELOCITY 



305. Elisabeth Olstad:  GLUTAMATE AND GABA:  MAJOR PLAYERS IN NEURONAL 
METABOLISM  

306. Lilian Leistad:  THE ROLE OF CYTOKINES AND PHOSPHOLIPASE A2s  IN ARTICULAR 
CARTILAGE CHONDROCYTES IN RHEUMATOID ARTHRITIS AND OSTEOARTHRITIS 

307. Arne Vaaler:  EFFECTS OF PSYCHIATRIC INTENSIVE CARE UNIT IN AN ACUTE 
PSYCIATHRIC WARD 

 



 


	Preface, summary, etc.pdf
	blank side.pdf
	Blå sider.pdf
	Paper 1.pdf
	Paper 2.pdf
	Demonstration of extensive GABA synthesis in the small �population of GAD positive neurons in cerebellar cultures �by the use of pharmacological tools
	Introduction
	Materials and methods
	Materials
	Cerebellar neurons and culture conditions
	Acute exposure to AOAA
	HPLC and LC-MS analyses
	Data analysis

	Results
	Discussion
	Acknowledgements
	References


	Paper 3.pdf
	Paper 4.pdf
	Long-term kainic acid exposure reveals compartmentation of glutamate �and glutamine metabolism in cultured cerebellar neurons
	Introduction
	Experimental procedures
	Materials
	Cell cultures
	Microscopy
	Experiments using [U-13C]glutamate and [U-13C]glutamine
	Protein quantification
	HPLC
	GC/MS
	Metabolic fate of [U-13C]glutamate and [U-13C]glutamine
	Data analysis

	Results
	Neuronal survival and cell morphology
	Intracellular concentrations and consumption of amino acids
	13C labeling of metabolites

	Discussion
	KA neurotoxicity
	KA effect on amino acids metabolism
	GABA in cerebellar neuronal cultures
	Compartmentation of glutamate and glutamine metabolism

	Conclusion
	Acknowledgements
	References


	Doktoravhandlinger.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




