
AccountabilityFS:
A file system monitor for forensic readiness

Rune Nordvik, Yi-Ching Liao, and Hanno Langweg
Norwegian Information Security Laboratory

Gjøvik University College, Norway
Email: {rune.nordvik, yi-ching.liao, hanno.langweg}@hig.no

Abstract—We present a file system monitor, AccountabilityFS,
which prepares an organization for forensic analysis and incident
investigation in advance by ensuring file system operation traces
readily available. We demonstrate the feasibility of Accountabil-
ityFS in terms of performance and storage overheads, and prove
its reliability against malware attacks.

I. INTRODUCTION

Forensic analysis and incident investigation can be ex-
pensive if an organization is not well-prepared. The cost
can be greatly reduced by continuously gathering information
that crime investigators or incident responders require and
preserving the collected information in a legally acceptable
manner. Even though preparing for forensic analysis and
incident investigation might appear to be burdensome, the
advantages outweigh the disadvantages. For instance, a data
breach occurs when an insider violates data security policies
and steals sensitive information by copying files to a USB
drive. Organizations that fail to prepare for the link between
the user and file system operations have to pay high price for
the data breach, and may have no lead to figure out who is
responsible.

Current system loggers cannot provide enough information
for forensic analysis and incident investigation, and crime
investigators and incident responders demand fine-grained
information for crime scene reconstruction and root cause
analysis. Process activity tracking, which monitors and records
information about the execution of programs, can be a suitable
method to achieve forensic readiness. Comprehensive process
activity tracking should cover several system resources, such
as file system, network, and memory [1]. In this paper, we
focus on tracking file system operations, and present a file
system monitor, AccountabilityFS, which tracks system-wide
file system operations for forensic readiness.

Prior research on file system monitor mostly implemented
through file integrity monitoring and system call interposition.
File integrity monitoring is insufficient for forensic readi-
ness due to lack of fine-grained activity traces. Compared to
implementing system call interposition in user space being
vulnerable to forgery and manipulation, in-kernel interposition
is a better way to provide admissible evidence for forensic
readiness. Since in-kernel interposition requires modification
of kernel source code, which is not publicly available on
Microsoft Windows, most previously research employed sys-
tem call interposition to track file system operations remains
limited in Unix-like operating systems.

Since most desktop and laptop computers use Windows ac-
cording to the usage share of operating systems, we implement
AccountabilityFS for modern versions of Windows, including
Windows 7, 8 and 8.1 (32-bit and 64-bit). We demonstrate
the feasibility of AccountabilityFS for tracking file system
operations by analysing its performance and storage overheads.
For admissibility of collected traces, we evaluate the reliability
of AccountabilityFS through malware attack simulation. We
show that AccountabilityFS can suitably prepare an organiza-
tion for forensic analysis and incident investigation in advance
by tracking system-wide file system operations.

II. RELATED WORK

File integrity monitoring is a commonly used technique
for intrusion detection and policy compliance. Tripwire [2], a
file system integrity checker, monitors unauthorized or unex-
pected modifications within file systems by identifying changes
through the message digests and meta-data of designated file
system objects. I3FS [3] enhances Tripwire with real-time
support by reducing the performance overhead, and improves
the system robustness through a loadable kernel module for
file systems. Even though monitoring the modifications within
file systems is beneficial for intrusion detection and policy
compliance, for traceability, incident investigation and forensic
analysis demand more fine-grained activity records than merely
file integrity verification.

For fine-grained activities, previously research mainly em-
ployed system call interposition to track file system operations.
A file system tracing package for Berkeley UNIX [4] tracks
file system operations through system call hooking inside the
kernel. Modified BSD kernel [5] intercepts file system relevant
system calls to analyse the BSD file system. DFSTrace [6]
supports long-term file system activity monitoring through
instrumenting system calls in kernel. Tracefs [7], implemented
as a loadable kernel module, intercepts file system relevant
system calls by stacking on top of the underlying file system.
//TRACE [8] captures I/O system calls through dynamic library
interposition [9], which utilizes LD PRELOAD environment
variable to interpose on system calls. While tracing through
dynamic libraries causes significant performance overhead and
is easily compromised in user space, in-kernel system call
interposition requires the kernel source code, which is not
publicly available on Windows.

To track file system operations on Windows, display-
only file server [10], built on FileMon [11], defends against
information theft by intercepting I/O Request Packet (IRP)
requests associated with reading and creating files. The filter



driver of FileMon can also intercept all requests to an ex-
isting file system device for performance improvement [12].
Capture [13], an application behavioural analysis tool, utilizes
minifilter driver as a file monitor which resides between the I/O
manager of Windows kernel. A minifilter driver can intercept
requests before they reach the intended resource, and monitor
system-wide file system activities without hacking the kernel.
Capture-honeypot client [14] also employs minifilter driver to
monitor states of changes on the file system. Tarantula [15], a
behaviour-based malware detection system, identifies system
files and registry as critical system resources, and utilizes
minifilter driver to prevent malicious activities from accessing
the critical system resources. Compared to hooking native ker-
nel API functions, a minifilter driver is more recommendable
by Microsoft due to its compatibility and reliability. However,
these file system monitors are either outdated or incompatible
with modern versions of Windows.

III. DESIGN GOALS

To meet the two objectives of forensic readiness: max-
imizing the usefulness and minimizing the cost [16], we
set the following design goals to guide us throughout the
implementation of AccountabilityFS for forensic readiness:

A. Feasibility

To meet the objective of minimizing the cost for forensic
readiness, AccountabilityFS should cost no extra system over-
head before activation, and cause unnoticeable performance
and storage overheads during tracking. In other words, Ac-
countabilityFS should record system-wide file system opera-
tions without interfering with business processes.

B. Comprehensiveness

To provide a detailed full picture of file system activities,
AccountabilityFS has to record all the relevant file operations
without collecting the irrelevance. Complete and accurate in-
formation allows malicious file system operations to be traced
back to one or more processes or programs, which ensures the
traceability of file system operations.

C. Reliability

To provide admissible evidence, AccountabilityFS should
secure the collected traces from being forged, manipulated or
planted to incriminate others. Moreover, since the credibility of
AccountabilityFS will cause severe impact on the authenticity
of collected traces, AccountabilityFS should defend itself
against errors or attacks during tracking.

D. Flexibility

To keep up with evolving hacking techniques, Accountabil-
ityFS needs to provide flexibility for different tracking scenar-
ios. Furthermore, system administrators should be able to acti-
vate and deactivate AccountabilityFS dynamically without any
disruption. However, for reliability concerns, AccountabilityFS
must be activated and deactivated with administrator privilege.

Applications

Filter Manager

File System Driver

Storage Driver Stack

Hardware

I/O System Services

I/O Manager

AccountabilityFS

User mode

Kernel mode

Subsystem

Fig. 1. A simplified Windows I/O architecture with AccountabilityFS

TABLE I. FILE SYSTEM OPERATIONS TRACKED BY
ACCOUNTABILITYFS

Major function codes File system operations
IRP MJ CREATE Create/Open a file or I/O device
IRP MJ READ Read data from the specified file or I/O device
IRP MJ WRITE Write data to the specified file or I/O device
IRP MJ SET INFORMATION File system operation information
IRP MJ QUERY INFORMATION Retrieve file information for the specified file
IRP MJ CLEANUP Cleanup outstanding I/O requests
IRP MJ CLOSE Close the last open object handle

IV. IMPLEMENTATION

To implement AccountabilityFS, we choose C as the pro-
gramming language, and employ Microsoft Visual Studio 2013
and Windows Driver Kit 8.1 as development tools. Currently
AccountabilityFS tracks file system operations successfully on
Windows 7, 8 and 8.1 (32-bit and 64-bit). We explain the
implementation details as follows:

A. Architecture

Fig.1 presents a simplified Windows I/O architecture with
AccountabilityFS [17]. Applications send I/O requests to sub-
system, and the subsystem passes I/O requests by calling I/O
system services exported by the I/O manager. The I/O manager
generates I/O request packets (IRPs) for I/O requests to kernel-
mode drivers. Afterwards, the filter manager intercepts IRPs,
and calls the preoperation callback routines registered by Ac-
countabilityFS. The file system driver processes the modified
IRPs from the filter manager, and forwards them to the storage
driver stack, which prepares requests for hardware.

B. Operations Tracked

AccountabilityFS tracks file system operations by inter-
cepting major function codes in its preoperation callback
routine. Table I summarizes the major function codes we
specify to intercept along with the file system operations.



TABLE II. TRACE STRUCTURE OF ACCOUNTABILITYFS

Field Description
host Host name, retrieved from Windows registry
pname Name of the process in full path
time Event start time in ISO8601 time format
msg Operation type, retrieved from IoStatus parameter
msgid Message identifier, used as globally unique identifier for event
pri Event priority (ERROR/WARN/DEBUG/CRIT)
pid Process identifier for the event
file.path Target object in full path, null for the IRP MJ CLEANUP request
cmdline Command line used to launch the process, null if unavailable
user.id Security Identifier (SID) of user
user.name User name
action Action type (e.g., create, write, read, close and remove)
status Action execution status (e.g., success and failure)
native Includes other important information non-compulsory in CEE CLS

C. Trace Structure

To facilitate trace analysis for incident investigation and
forensic analysis, AccountabilityFS records file system oper-
ations as Common Event Expression (CEE) [18] events, and
represents the collected traces in Common Log Syntax (CLS)
with JavaScript Object Notation (JSON) and UTF-8 encoding.
Table II illustrates the trace structure of AccountabilityFS.
Currently we extend the CEE CLS by storing parent process
identifier, intercepted major function codes, action execution
status in detail, target object type, CPU number, volume serial
number, volume path, and media type in the native field.

D. Flexibility Enhancement

In addition to comprehensive file system operation
tracking, AccountabilityFS supports whitelisting/blacklisting
functionalities for flexibility enhancement. System
administrators can include or exclude the processes, programs,
or even files for tracking by specifying them in the set-up
information (INF) file. For instance, the command HKR,
,"whitelistpname",0x00010000,"EXPLORER.EXE"
excludes the EXPLORER.EXE program from tracking by
setting the registry value of whitelistpname.

E. Protection Mechanism

We employ discretionary access control lists (DACLs) to
protect AccountabilityFS against unauthorized access. We set
access control entry (ACE), a pair of account and access-
rights in the DACLs, to restrict built-in users from gaining
access to AccountabilityFS system file, collected traces, and
configuration settings in registry. For reliability enhancement,
we employ the GRR rapid response framework [19] for remote
logging if internet connection is available. The GRR rapid
response framework secures the trace transfer with Advanced
Encryption Standard (AES) 256-bit encryption, and authenti-
cates the transmitter through X.509 certificate.

V. EVALUATION

To evaluate AccountabilityFS for forensic readiness, we
utilize the four design goals described in section III as the
evaluation criteria for quality assurance. We present the eval-
uation results as follows:

TABLE III. PERFORMANCE OVERHEAD OF ACCOUNTABILITYFS

Evaluation scenario AccountabilityFS CPU usage
Kernel User Idle

Minimum activity Deactivated 3.53% 0.91% 95.56%
Activated 3.97% 0.75% 95.28%

Maximum activity Deactivated 9.03% 8.42% 82.55%
Activated 16.09% 8.1% 75.81%

A. Feasibility

To analyse the performance and storage overheads, we
deploy the experimental testbed using VMware virtual machine
installed with Windows 8.1 64-bit operating system, which
utilizes a single CPU core and 1 GB of memory. We employ
the CPU usage as the indicator of performance overhead,
which is retrieved by Kernrate, CPU profiler tool available
from Windows Driver Kit 7.1. We evaluate the performance
overhead in two scenarios: minimum activity, which simply
executes Kernrate for 300 seconds, and maximum activity,
which unzipping a 1.5 GB file. We run each scenario with and
without tracking twice, and calculate the average of kernel-
mode CPU usage, user-mode CPU usage, and idle CPU usage
in percentage, which is shown in Table III. As for the storage
overhead, AccountabilityFS requires an average of 0.1036 MB
per second to record file system operations in the scenario of
minimum activity, and 0.3825 MB per second in the scenario
of maximum activity.

B. Comprehensiveness

As shown in Fig.1, the I/O manager generates IRPs for
all I/O requests, and the filter manager intercepts IRPs and
calls the preoperation callback routines registered by Account-
abilityFS. Therefore, in theory, AccountabilityFS can track
file system operations we specify. In addition to employing
specification-based testing with several test cases (e.g., remove,
move, copy, open, create, write, and read file objects), we
also utilize IOzone [20], a filesystem benchmark tool, to
assure AccountabilityFS works as expected and records all the
specified file operations.

C. Reliability

For admissibility of collected traces, we evaluate the relia-
bility of AccountabilityFS through malware attack simulation.
We utilize the same experimental testbed for feasibility evalu-
ation, and use 500 malware samples confirmed by VirusSign
[21] to evaluate the robustness of AccountabilityFS. The exe-
cution result shows that AccountabilityFS successfully tracks
file system operations of all the malware samples without
causing system crash.

D. Flexibility

Through supporting whitelisting/blacklisting functionali-
ties, AccountabilityFS is capable of tracking file system opera-
tions by specified processes, programs, or even files. Moreover,
since the filter manager provides safe removal for minifilter
drivers, AccountabilityFS can be loaded and unloaded with
administrator privilege while the system is still running without
any disruption.



VI. DISCUSSION

According to the feasibility evaluation results, Accountabil-
ityFS can record system-wide file system operations without
interfering with business processes when file system operations
are not intensive. To reduce the storage overhead, in addition to
making a trade-off between feasibility and comprehensiveness,
we can consider data compression or storing the collected
traces in compact binary format. As for comprehensiveness,
even though we have assured AccountabilityFS works as
expected and tracks file system operations we specify, the
scope of file system operation tracking is still limited by
major function codes intercepted, which can be extended
after analysing the relevance and frequency of file system
operations. With regard to reliability, AccountabilityFS proves
its resistance to 500 malware samples confirmed by VirusSign
while the GRR rapid response framework secures the trace
transfer. However, we still need to conduct further security
and vulnerability assessments to identify unknown problems
for ensuring the collected traces as admissible evidence, such
as simulating a DoS or insider attack. About flexibility, sup-
porting whitelisting/blacklisting functionalities and dynamic
deactivation also raise new security concerns to be addressed.

VII. CONCLUSIONS AND FUTURE WORK

Process activity tracking, which monitors and records in-
formation about the execution of programs, is among the
solutions for the problem of incomplete logging in incident
investigation and forensic analysis. In this paper, we present
a file system monitor for forensic readiness. We implement
AccountabilityFS as a file system minifilter driver, since a
minifilter driver is more recommendable by Microsoft due
to its compatibility and reliability. To ensure the objectives
of forensic readiness are met, we set four design goals for
AccountabilityFS: feasibility, comprehensiveness, reliability,
and flexibility. In addition to utilizing the four design goals
throughout the implementation, we use them as evaluation
criteria for assessing AccountabilityFS. The evaluation results
show that AccountabilityFS archives the goals of comprehen-
siveness, reliability, flexibility, and partial feasibility if file
system operations are not intensive.

We will continue the evaluation and examine the privacy
implications of file system operation tracking. We will assess
the feasibility of AccountabilityFS for other benefits of foren-
sic readiness, including due diligence, regulatory compliance,
and human error reduction. In the future, we plan to extend
the tracking scope to memory management, network, inter-
process communication, etc. We will make the source code of
AccountabilityFS available to interested researchers under an
appropriate open source licenses.

ACKNOWLEDGMENT

Yi-Ching Liao is supported by the COINS Research School
of Computer and Information Security.

REFERENCES

[1] Y.-C. Liao and H. Langweg, “A survey of process activity tracking
system,” Norsk informasjonssikkerhetskonferanse (NISK), pp. 49–60,
2013.

[2] G. H. Kim and E. H. Spafford, “The design and implementation of
tripwire: A file system integrity checker,” in Proceedings of the 2Nd
ACM Conference on Computer and Communications Security, ser. CCS
’94. New York, NY, USA: ACM, 1994, pp. 18–29.

[3] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok, “I3fs: An in-kernel
integrity checker and intrusion detection file system,” in Proceedings of
the 18th Conference on Systems Administration (LISA 2004), Atlanta,
USA, November 14-19, 2004, L. Damon, Ed. USENIX, 2004, pp.
67–78.

[4] S. Zhou, H. Da Costa, and A. J. Smith, “A file system tracing package
for berkeley UNIX,” in Proc. USENIX Summer Conference. University
of California, 1985.

[5] J. K. Ousterhout, H. Da Costa, D. Harrison, J. A. Kunze, M. Kupfer,
and J. G. Thompson, “A trace-driven analysis of the UNIX 4.2 BSD
file system,” in Proceedings of the Tenth ACM Symposium on Operating
Systems Principles, ser. SOSP ’85. New York, NY, USA: ACM, 1985,
pp. 15–24.

[6] L. Mummert and M. Satyanarayanan, “Long term distributed file
reference tracing: Implementation and experience,” Carnegie Mellon
University, Tech. Rep. CMU-CS-94-213, 1994.

[7] A. Aranya, C. P. Wright, and E. Zadok, “Tracefs: A file system to
trace them all,” in Proceedings of the FAST ’04 Conference on File and
Storage Technologies, March 31 - April 2, 2004, Grand Hyatt Hotel,
San Francisco, California, USA, C. Thekkath, Ed. USENIX, 2004,
pp. 129–145.

[8] M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lpez, J. Hendricks,
G. R. Ganger, and D. R. O’Hallaron, “//TRACE: Parallel trace replay
with approximate causal events,” in 5th USENIX Conference on File and
Storage Technologies, FAST 2007, February 13-16, 2007, San Jose, CA,
USA, A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau, Eds. USENIX,
2007, pp. 153–167.

[9] T. W. Curry, “Profiling and tracing dynamic library usage via interpo-
sition,” in USENIX Summer 1994 Technical Conference, Boston, Mas-
sachusetts, USA, June 6-10, 1994, Conference Proceeding. USENIX
Association, 1994, pp. 267–278.

[10] Y. Yu and T.-c. Chiueh, “Display-only file server: A solution against
information theft due to insider attack,” in Proceedings of the 4th ACM
Workshop on Digital Rights Management, ser. DRM ’04. New York,
NY, USA: ACM, 2004, pp. 31–39.

[11] M. Russinovich and B. Cogswell, “FileMon for windows,” 2006.
[Online]. Available: http://technet.microsoft.com/en-us/sysinternals/
bb896642.aspx

[12] D. S. Roselli, J. R. Lorch, and T. E. Anderson, “A comparison of file
system workloads,” in Proceedings of the General Track: 2000 USENIX
Annual Technical Conference, June 18-23, 2000, San Diego, CA, USA.
USENIX, 2000, pp. 41–54.

[13] C. Seifert, R. Steenson, I. Welch, P. Komisarczuk, and B. Endicott-
Popovsky, “Capture - a behavioral analysis tool for applications and
documents,” Digital Investigation, vol. 4, Supplement, pp. 23–30, Sep.
2007.

[14] C. Seifert and R. Steenson, “Capture - honeypot client (capture-HPC),”
2006. [Online]. Available: https://projects.honeynet.org/capture-hpc

[15] S. Romana, S. Phadnis, H. Pareek, and P. R. L. Eswari, “Behavioral
malware detection expert system - tarantula,” in Advances in Network
Security and Applications, ser. Communications in Computer and
Information Science. Springer Berlin Heidelberg, Jan. 2011, no. 196,
pp. 65–77.

[16] J. Tan, “Forensic readiness,” Cambridge, MA:@ Stake, pp. 1–23, 2001.
[17] Microsoft, “Filter manager concepts (windows drivers),” 2014.

[Online]. Available: http://msdn.microsoft.com/en-us/library/windows/
hardware/ff541610(v=vs.85).aspx

[18] W. J. H. A. Chuvakin, J. T. J. R. Marty, and R. M. Mcquaid, “Common
event expression,” The MITRE Corporation, Tech. Rep., 2008.

[19] M. I. Cohen, D. Bilby, and G. Caronni, “Distributed forensics and
incident response in the enterprise,” Digital Investigation, vol. 8, Sup-
plement, pp. S101–S110, Aug. 2011.

[20] W. Norcott and D. Capps, “IOzone,” 2006. [Online]. Available:
http://www.iozone.org/

[21] VirusSign, “VirusSignList,” Mar. 2014. [Online]. Available: http:
//samples.virussign.com/samples


