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File system forensics is an important part of Digital Forensics. Investigators of storage media have
traditionally focused on the most commonly used file systems such as NTFS, FAT, ExFAT, Ext2-4, HFSþ,
APFS, etc. NTFS is the current file system used byWindows for the system volume, but this may change in
the future. In this paper we will show the structure of the Resilient File System (ReFS), which has been
available since Windows Server 2012 and Windows 8. The main purpose of ReFS is to be used on storage
spaces in server systems, but it can also be used in Windows 8 or newer. Although ReFS is not the current
standard file system in Windows, while users have the option to create ReFS file systems, digital forensic
investigators need to investigate the file systems identified on a seized media. Further, we will focus on
remnants of non-allocated metadata structures or attributes. This may allow metadata carving, which
means searching for specific attributes that are not allocated. Attributes found can then be used for file
recovery. ReFS uses superblocks and checkpoints in addition to a VBR, which is different from other
Windows file systems. If the partition is reformatted with another file system, the backup superblocks
can be used for partition recovery. Further, it is possible to search for checkpoints in order to recover both
metadata and content.

Another concept not seen for Windows file systems, is the sharing of blocks. When a file is copied, both
the original and the new file will share the same content blocks. If the user changes the copy, new data
runs will be created for the modified content, but unchanged blocks remain shared. This may impact file
carving, because part of the blocks previously used by a deleted file might still be in use by another file.
The large default cluster size, 64 KiB, in ReFS v1.2 is an advantage when carving for deleted files, since
most deleted files are less than 64 KiB and therefore only use a single cluster. For ReFS v3.2 this
advantage has decreased because the standard cluster size is 4 KiB.

Preliminary support for ReFS v1.2 has been available in EnCase 7 and 8, but the implementation has
not been documented or peer-reviewed. The same is true for Paragon Software, which recently added
ReFS support to their forensic product. Our work documents how ReFS v1.2 and ReFS v3.2 are structured
at an abstraction level that allows digital forensic investigation of this new file system. At the time of
writing this paper, Paragon Software is the only digital forensic tool that supports ReFS v3.x.

It is the most recent version of the ReFS file system that is most relevant for digital forensics, as
Windows automatically updates the file system to the latest version on mount. This is why we have
included information about ReFS v3.2. However, it is possible to change a registry value to avoid
updating. The latest ReFS version observed is 3.4, but the information presented about 3.2 is still valid. In
any criminal case, the investigator needs to investigate the file system version found.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
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Introduction

Reverse engineering of closed source file systems is a prereq-
uisite for digital forensic investigations (Marshall and Paige, 2018).
Hence, when investigating a digital storagemedium it is imperative
to retrieve the pertinent files from different file systems. Most in-
vestigators use digital forensic tools to retrieve this information,
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and depend on these tools because of large backlogs (Scanlon,
2016). Digital forensic tools do not support all existing file sys-
tems, and there might be deviations between which file systems
different tools support. Further, different tools might implement
support for the same file system differently, and all versions of the
file system are not necessarily supported. Because of limited bud-
gets, digital forensic investigators only have access to a limited
number of digital forensic tools (Garfinkel, 2010). Without tools to
parse the underlying file system in a forensically soundmanner, we
are left with a large unknown volume. It will still be possible to
carve files based on known file internal signatures (headers and/or
footers), but this approach will not find the metadata structures of
files, and often only partly retrieves the content of fragmented files
(Garfinkel, 2007).

Showing both metadata and the corresponding files in the
directory structure increases the evidentiary value of the evidence,
and the lack of file system parsing support in current digital
forensic tools motivated us to reverse engineer the Resilient file
system (ReFS). At the start of this research EnCase v.8 had support
for ReFS v1.2, and we needed to understand the structures of this
file system in order to verify results from this tool.

We found that Paragon Software now supports full forensic ReFS
access (Paragon Software, 2019b), but their implementation is
closed source.

Objectives

Themain research problem is that the low level structures of the
new ReFS file system are undocumented, and investigators are left
with just a few tools that support parsing. It is best practice to test
tools, but this is not feasible for tools that implement ReFS support
without describing the structures. Hence the objectives are:

� How can digital forensic investigators verify the reliability of
ReFS file system support in existing Digital Forensic tools?

� How will Bþ tree balancing impact the recoverability of files in
ReFS?

� Can digital forensic investigators be confident in the ReFS
integrity protection mechanism of metadata?

� How will ReFS impact the recovery of files compared to NTFS?

We aim to solve the first research question by describing the
structures necessary to parse the file system. Knowing the struc-
tures will give digital forensic investigators the ability to verify the
digital forensic tools that claim ReFS support. The investigator will
be able to verify tool results, if they understand the low level
structures, by manually parsing the file system on a low level of
abstraction. The investigator can do this by using an existing
methodology, for instance the Framework of Reliable Experimental
Design (FRED) (Horsman, 2018).

The second research question is about Bþ tree balancing, which
often leaves remnants (Stahlberg et al., 2007), and we aim to verify
if Bþ tree node remnants in ReFS contain artifacts relevant for file
recoverability. An introduction to Bþ trees related to file systems
has been described by Carrier [5, p.290]. The aim is to identify
possibilities for recovering files based on unallocated metadata
structures.

The third research question is to test if there are existing tools
that canmanipulatemetadata in ReFS in such away that impact our
confidence in the integrity protection mechanism. Would it be
possible to manually manipulate a timestamp using a hex editor,
without the file system detecting or fixing it. Will ReFS be resilient
for this kind of manipulations?

The fourth research question is about the use of remnants found
in unallocated space for recovery of files. This is important to know
since it may allow the investigator to restore previous files. We
compare this with NTFS, where unallocated records in the $MFTcan
be recovered as long as they are not overwritten [5, p.328].

In order to answer the research questions we will need to first
reverse engineer and interpret the structures used.

Features important for digital forensics

ReFS, Microsoft's newest file system, increases the availability of
data (Microsoft, 2018c). If integrity streams for data (file content)
are enabled, the integrity of the data is also increased. Unfortu-
nately, integrity streams for data are not enabled by default
(Microsoft, 2018b). However, integrity streams for metadata are
enabled. This is a very important feature, because it means
increased reliability of the metadata.

ReFS still uses the concept of attributes. The attributes found in
the NTFS $MFT are similar to the attributes found in ReFS, but not
identical (Head, 2015). However, the $MFT is not a part of ReFS
(Head, 2015). Instead, the attributes are now located in Bþ tree
nodes.

If Bþ tree reorganizing leaves remnants of confidential infor-
mation, then these remnants might further support recovery of
deleted data, highly relevant to digital forensics. The use of Bþ trees
in databases implies remnants of privacy data (Stahlberg et al.,
2007).

Currently, there are tools used for manipulation of metadata on
NTFS, for instance SetMace (Schicht, 2014), and we tested this tool
on ReFS, but it did not work since there was no $MFT in ReFS. This
will be similar for other tools that depend on manipulating the
$MFT. As long as no ReFS metadata manipulation tools exist, digital
forensic investigators may have increased trust in the validity of the
metadata.

In this paper we describe the main structures necessary to
manually interpret ReFS, and we have published a prototype tool
that is able to parse the structures of ReFS v1.2. We have published
the prototype tool under an open source license, and the tool is
available from: https://github.com/chef2505/refs. Publishing the
tool allows peers to review our interpretation of ReFS, and to test
our research reproducability in order to make it comply with the
Daubert criteria (US-Supreme-Court, 1993). Making the prototype
tool available as open source also allows other developers to
implement support for newer versions. Its purpose is to automate
the manual parsing of the file system in order to test our hypoth-
eses. Therefore, the prototype tool is not discussed further in this
paper.

Limitations

This reverse engineering of ReFS, a closed source file system,
was initially performed without the checked/debug version of
Windows 10, and therefore the names of the structures might not
correspond with the names given by the file system developers.
When finalizing this paper, we debugged the file system using the
partly debug/checked version from Windows 10.0.17134x64 bit,
including their symbols. We found that the names for structures
and structure field names were not included, only the function
names. Therefore, the real names of the structures are still
unknown.

The selections of file system instances does not handle all
possible use cases. Further, the results of this study are only valid
for the file system versions described.

We describe only ReFS v1.2 and ReFS v3.2 in this paper. A driver
is a software running within the kernel, and as all software it may
be updated to newer versions. Microsoft may develop new features
that may change the structures described in this paper. During the

https://github.com/chef2505/refs
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finalizing of this paper we found that the latest ReFS version was
ReFS v3.4 (Unknown, 2019). We were able to manually parse the
ReFS v3.4, using the same structures as those defined for ReFS v3.2.

Organization of this paper

The remainder of this paper describes previous work and our
contributions in section 2. Then we describe the main methods we
have used to reverse engineer ReFS in section 3. Our results for ReFS
v1.2 are described in section 4, and the results for ReFS v3.2 are
described in section 5. In section 6 we discuss the results, and
finally in section 7 we summarize and describe further work.

Literature review

Little peer-reviewed research on ReFS has been published, and
therefore we will describe similar research performed on other
popular file systems in addition to previous work on ReFS. This is
relevant because there are similarities between file systems.

Jeff Ham (Hamm, 2009) was the first to publish documentation
about the ExFAT file system structures, and this work helped
practitioners to understand and analyze this file system. The sys-
tem is similar to the old FAT systems, but each file has multiple
directory entries which describe metadata about files. In addition
there is a file allocation table which is used mainly for fragmented
files, and a bitmap file for describing which cluster (block) is allo-
cated. Vandermeer et al. (2018) continued research of ExFAT and
were able to separate deleted entries from renamed entries by
correlation of the FAT table, the bitmap file and the directory
entries.

Brian Carrier (2005) has documented the NTFS file system, a
work based on the reverse engineering performed by the Linux-
NTFS Project. In NTFS everything is a file, and one of the most
important system files with forensic value is the master file table
($MFT). All files have at least one entry, even the $MFT itself. NTFS is
the main file system on Windows, and is still used on Windows
system volumes including Windows 10.

Microsoft (2018a) has built the new Resilient File System (ReFS)
on the basis of NTFS. However, instead of using a master file table,
they now use a single Bþ tree where metadata, bitmaps (alloca-
tors), files and folders can be found. Unfortunately, the inner
structures are not documented.

Metz (2013) has partly described some of the structures within
the ReFS file system, we assume it is for ReFS v1.1 and 1.2, however,
the results are preliminary. He identified structures that he referred
to as Object identifiers at levels 0,1,2 and 3. These object identifiers
are metadata structures that are 16 KiB in size. We have named
level 0 as the superblock, level 1 as checkpoint, level 2 as
$Object_tree and level 3 as directories which can contain files and
subdirectories.

Head (2015) has compared FAT32, NTFS and ReFS and he found
that the File System Recognition Structure was used in the ReFS
volume boot record. Head also described that there is no $MFT in
ReFS, and there are no instances of FILE0 or FILE to indicate anyMFT
records. Further, Head found attribute style entries, and a $I30 in-
dex attribute in every folder. Head also describes that ReFS file
content is not saved resident within an attribute. Head also shows
that a previous name of a renamed folder was found in an earlier 16
KiB metadata block.

Gudadhe et al. (2015) describe some of the features that ReFS
has and describe that ReFS uses Bþ trees. Further they describe that
a checksum is always used for preserving the integrity of metadata,
and that a checksum for preserving file content can be enabled per
file, directory, or volume. They do not describe structures or arti-
facts that might be important for digital forensic investigation.
Ballenthin has published information about ReFS in memory
structures (Ballenthin, 2018a) and ReFS on disk structures
(Ballenthin, 2018b). Our work started on the basis of this work.

Georges (2018) has published a masters thesis about the reverse
engineering of ReFS v1.2, and his interpretation is at a low level. We
scrutinize his work, and improve it. Georges describes that he was
unable to document the structures of ReFS v3.2, therefore, we
continue the reverse engineering of ReFS v3.2.

Paragon Software (Paragon Software, 2019a) was the first to
release a ReFS driver for Linux, and it supports ReFS v1.x and ReFS
v3.x. They have not released the source code for the driver, and
customers need to contact them in order to get information about
this driver. They have also included support for ReFS in their digital
forensic tool (Paragon Software, 2019b).

Brian Carrier (2005) has also documented Ext2 and Ext3, which
use superblocks and group descriptors for file system layout, and
inodes for file metadata.

Kevin Fairbanks (2012) has documented Ext4, which is similar to
Ext2 and Ext3, but Ext4 has additional features.

Hansen and Toolan (2017) reverse engineered the APFS file
system, which enabled investigators to analyse iOS and Mac de-
vices. In 2017, none of the commercial digital forensic tools had
support for APFS. APFS also uses inodes for describing metadata
about files. The APFS file system uses Bþ trees extensively.

Plum and Dewald (2018) continued the work where they pro-
posed novel methods for file recovery in APFS. They utilize known
structures in order to recover files.

In October 2018 Apple released the APFS specifications which
show the actual structures and their meaning (Apple, 2018a), which
also could be used for digital forensic purposes. Apple has also
published technical information about the HFSþ file system, which
also uses Bþ trees (Apple, 2018b).

Stahlberg et al. (2007) describe the threat of privacy when using
database systems that utilize Bþ trees. They propose a system that
overwrites obsolete data when the Bþ tree is balanced and still in
memory. This is relevant for this paper because this gave us the
hypothesis that Bþ tree balancing in ReFS will leave remnants of
confidential information.

Method

We used reverse engineering as a method for finding the
structures of ReFS. Initially we used the diskpart command or the
format command in Windows 10x64 (ver 10.0.14393) to format
different partitions with ReFS file systems on one disk. We tried to
use different cluster sizes when formatting ReFS partitions, how-
ever this was not possible for ReFS v1.2. We also created ReFS
volumes where we added both small files and large files.

In order to enable formatting of ReFS v1.2 we added a registry
hack which allows formatting ReFS over non-mirrored volumes
(Winaero, 2018). In Windows 10 Pro we were able to format ReFS
v3.2 without any hack. Even when the registry hack was enabled,
we were not able to format USB thumb drives using ReFS. We have
observed that Microsoft has removed the option to format ReFS in
Windows v 10.0.17134x64 Pro, and the previous Registry hacks do
not work. We are still able to mount with read and write support in
this version of Windows 10. We can still use one of the Windows
Server editions to format a ReFS volume, and they can be attached
to Windows 10, which automatically update the volume to the
latest ReFS version.We are not surewhyMicrosoft has removed the
support for formatting ReFS volumes in Windows 10 Pro.

We used FTK Imager or ewfacquire to create forensic images of
the disks, and mounted these forensic images using ewfmount in
Linux.

In order to find the volume boot records we parsed the MBR or
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the GPT using a hex viewer/editor. Then we skipped to the sector
location where the volume boot record starts in order to interpret
the volume (Carrier, 2005). This start sector location is always
important when investigating a disk image with multiple ReFS
volumes, because the ReFS file system volume uses pointer offsets
that are relative to the start of the volume boot record.

ReFS volume boot record

Using knowledge about the NTFS volume boot record, we
assumed ReFS should contain information such as sector size,
cluster size, volume serial number, the location of the metadata
structure for files ($MFT), etc. Since the command line tool fsutil
can yield important properties for the file system, we used this tool
to verify our interpretation of the fields found in the VBR.

Bþ tree

We knew from the sparse documentation from Microsoft that
they extensively used Bþ trees in ReFS (Microsoft, 2018a). Microsoft
describes that one single Bþ tree structure was used that could
include other Bþ tree structures (Microsoft, 2018a). Therefore, we
started searching for blocks of data that could have a typical node
structure. Thenwe tried to identify the entry point that gives access
to the top node of the Bþ tree. When analyzing the Bþ tree
structures we used knowledge about the HFS þ file system (Apple,
2018b).

We knew from Stahlberg et al. (2007) that Bþ trees in database
systems could be a threat to privacy, because balancing Bþ trees
without wiping the content might leave remnants. For ReFS rem-
nants of previous metadata records, for example records containing
attributes, could have an evidentiary value for digital forensic
investigation. Therefore, we tried to identify if attributes are intact
evenwhen they are not pointed to by pointers in the pointer area of
a node.

Keywords or signatures

When we found different keywords or signatures, we searched
for information about these to see if they could be connected to
known structures.

In memory structures

Often structures in memory are saved directly to disk. We used
previous work on ReFSmemory structures in order to see if they are
also found on disk (Ballenthin, 2018a). We did not perform any in
depth kernel debugging or memory analysis, but rather used
structures from previous work. The main reason for this was that
we were not able to get hold of a checked/debug build of Windows
10. When using partly checked Windows 10, we did not get access
to private symbols for the refs.sys driver. We did, however, list
public function names that were available in the partially checked
Windows 10 version.

Known structures

We used our knowledge of known structures and compared
them to patterns discovered in hexdumps in order to give them
meaning. Whenever a structure was interpreted, multiple tests
were performed in order to try to falsify our interpretation (Popper,
1953). We also compared our observations with the ReFS structures
on disk that Ballenthin has published (Ballenthin, 2018b), which
also gave us an indication of searching for the entry block 0x1E and
the standard block size of an entry block.
Comparing to other solutions

When we started this research only EnCase v7 or newer had
support for parsing ReFS v1.2, but no tool was able to parse ReFS
v3.2. We used information we observed when opening our forensic
images in EnCase v7, and have tried to use the same names on
system files as EnCase used.

Automation

Manually performing every test in a hex viewer is time
consuming, and therefore we created a prototype tool to parse the
structures found. This tool was used in our testing of ReFS v1.2. We
havemade the tool available as open source for other researchers to
validate our work.

Experiments

When we reverse engineered ReFS v1.2, we used several ex-
periments comparing different states of sectors within the file
system, and we started by trying to understand the first sector of
the file system, the volume boot record. Describing all these ex-
periments is beyond the scope of this paper. Based on observations,
we defined research hypotheses that could explain what we
observed. Thenwe performed new experiments trying to falsify the
null hypothesis, in order to indirectly get support for our main
hypothesis about the meaning of a field.

For example one field that was unknownwas the two bytes from
0x28 in the VBR. We observed the values 0x0102. When the ReFS
file system was upgraded to version 3.2 we saw that the value was
changed to 0x0302. Therefore, we defined the H1 that this was the
field for the file system major and minor version. We tested by
formatting new instances of the file system with the old and the
new version several times, and always the fields were corre-
sponding to the version of the file system. We also identified that
the file system was automatically updated after Microsoft released
a new version of the driver. When we used fsutil to verify the file
system version, it always corresponded to the value found in the
VBR. We had to reject our null hypothesis H0 that the changes of
these values was only a result by chance alone. We did not observe
once that the null hypothesis H0 was true. Therefore, the alternate
hypothesis H1 was indirectly supported. Similar experiments were
performed for the other values in the VBR, and values found in
other structures.

After the reverse engineering of the ReFS file system, we per-
formed a number of experiments in order to test if ReFS is resilient
to metadata manipulation. First we tested the tool SetMace
(Schicht, 2014) to see if it succeeds in changing the timestamp of a
file located on a ReFS volume. We also tested to manually change
the timestamp in a FNA file attribute.

We also checked if there are remnants of attributes not currently
in use by the system, and if it is possible to recover data based on
information found in these remnants.

Results - ReFS v1.2

In this section we will describe the structures necessary to
manually parse the ReFS v1.2 file system. The forensic container file
refs-v1_2.E01, available at Mendeley (Nordvik, 2019), allows the
reader to follow our examples. These structures are the result of
performing reverse engineering on the file system and testing
forensic image containers containing ReFS file systems. We present
the results as a guided tour through the structures necessary to
interpret in order to find the metdatata, files and their contents.

We will start by describing our results for ReFS v1.2. The first



Fig. 1. File system recognition structure.

Table 1
Structure of the volume boot record.

Offset Length Description

0x00 3 Jmp (Jump instructions)
0x03 8 FSName
0x0B 5 MustBeZero
0x10 4 Identifier
0x14 2 Length (of FSRS)
0x16 2 Checksum (of FSRS)
0x18 8 Sectors in volume
0x20 4 Bytes per sector
0x24 4 Sectors per cluster
0x28 1 File system major version
0x29 1 File system minor version
0x2A 14 Unknown
0x38 8 Volume Serial Number

Table 2
Structure of the entry block descriptor.

E offset Length Description

0x00 0x8 Entry Block number
0x08 0x08 Unknown
0x10 0x08 Unknown
0x18 0x08 Node ID
0x20 0x08 Unknown
0x28 0x08 Unknown
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thing to note is that ReFS v1.2 always has 64 KiB clusters. The
format tools in Windows 10 did not support formatting ReFS v1.2
with cluster sizes other than 64 KiB, even though the documenta-
tion (Microsoft, 2018c) claims support for both 4 KiB (default) and
64 KiB cluster sizes. Our observations show that ReFS v3.2 corre-
sponds to the documentation in (Microsoft, 2018c).

ReFS volume boot record

For ReFS, the volume boot record is in the first sector of the file
system volume, as it is for FAT32 and NTFS (Carrier, 2005). For
FAT32 and NTFS the first 3 bytes are jump instructions to the boot
code [5, p. 254]. However, since ReFS v1.2 and ReFS v3.2 can not be
booted, the 3 first bytes are just zeros. We also found a C structure
from Microsoft (Computing, 2018) defining the fields of the file
system recognition structure (FSRS) as can be seen in Fig. 11.
Therefore, we got a kick start in interpreting the ReFS VBR. The first
6 fields in Table 1 were found by using Fig. 1. When interpreting the
length of the types, we assume a Windows OS.

The names used for the FSRS structure are the names from the
developers of ReFS, while the names frombyte offset 0x18 are given
based on our experiments.

Entry block

During our reverse engineering we found blocks of 16 KiB and
blocks of 64 KiB. The blocks of 16 KiB were used for metadata and
system files. However, for data streams 64 KiB allocation blocks
were used. We named the 16 KiB blocks, entry blocks.

The first entry blocks we identified were file system metadata
blocks with pointers to other entry blocks, and finally to the first
entry block containing a Bþ tree. We will describe how we found
these entry blocks in section 4.4. Entry blocks in the Bþ tree include
nodes that followed a typical Bþ tree pattern. We found a similar
structure as used by other file systems that use Bþ trees. We
identified that all these 16 KiB blocks started with a descriptor for
the block. The entry block includes a descriptor (size 0x30) and can
include one or more nodes as shown in Fig. 2. When using the
structure tables presented in this paper, the E offset means a byte
offset relative to the entry block, while the Roffsetmeans a relative
offset to the actual structure. Whenever the E and R offsets are
equal, we will only show the E offset.

The first 8 byte field found at offset 0x0 of the entry block
descriptor contains its entry block number. We also found at offset
0x18 a field describing the node identifier (Node ID). However,
nodes that contain metadata will typically have the value 0 for the
node id.

We found just one or two nodes in an entry block, but it could be
more. Each node can have one or more records. A record contains
the sub entries of a node. A node describing a directory will contain
1 We added comments to make the structure easier to read for those not familiar
with C structures.
records of files and sub directories. There will be more than one
record per file. In NTFS each file has at least one MFT record, which
consists of a number of attributes, while in ReFS each of the attri-
butes are contained within records in directory nodes. A file's
standard information attribute is often more than 1000 bytes,
whichmeans there are not many files required until the entry block
node is full. If an entry block contains a node that runs out of space
for new records, then the Bþ tree system will utilize a new entry
block which consists of a node that has extent records. Extents
make it possible for a node to extend its capacity by including re-
cords to other entry blocks, and adding more nodes, which for
instance allows for more files within a directory node. In this case
record 1 will contain an extent pointer to the entry blocks con-
taining the existing node that is running out of space, and record 2
will have another extent pointer that points to a new entry block
where the new records can be stored in a new node. We have not
tested if the records could be reorganized between the two nodes.
The order of records within a node is decided by the order of
pointers in the pointer area. This means that records can appear in
any order in the hex dump. We detected the extents records when
wewere experimenting with different numbers of files in the same
directory.
Superblock

At first we had only identified this superblock as an entry block
that points to $Tree_Control. When we reversed engineered ReFS
v3.2, we found the string SUPB in the entry block descriptor, which
we believe is an abbreviation for superblock. From other file sys-
tems, such as ext4, we know the superblock is similar to the volume
boot record. We were experimenting by trying to find pointers to
the structures within the volume boot record, however we were
looking in thewrong place. Microsoft has included these pointers in
these superblock entries. We find it strange that they did not
included all the information found in the VBR within the
superblock.



Fig. 2. Standard structures used by ReFS.

Table 3
Structure of the superblock.

E Offset R offset Length Description

0x30 0x00 0x10 GUID
0x40 0x10 0x10 Unknown
0x50 0x20 0x04 Offset to first entry block pointer
0x54 0x24 0x04 Amount of entry block pointers
0x58 0x28 0x04 Offset to first record
0x5C 0x2C 0x04 Length of record each record
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Finding the Bþ tree check point

In order to find the Bþ tree check point, the root of the Bþ tree,
we first need to find the superblock, then we follow the pointer to
the check point. In this section we will try to manually find the
starting node for the ReFS Bþ tree. EnCase had a system file named
$Tree_Control, which we believe is a check point. In ReFS v3.2
Microsoft includes the string CHKP in the entry block descriptor for
$Tree_Control. Using the sector offset to this structure, we found
the location where this structure started. However, Guidance
Software/Open Text does not explain how to find the structure. In
order to find out how, we searched for the values in the 0x1E entry
block, the superblock, that could point to the check point. Assuming
every entry block was 16 Kib, we could find the entry block (EB)
offset number of the checkpoint $Tree_Control by multiplying the
sector offset with 512 (sector size), and dividing it by 16 KiB (entry
block size). Since the EB offset is relative to the start of the VBR, we
subtract the VBR sector. The equation used to find the EB offset is
shown in Equation (1).

EB offset¼EB sector*Sector size
EB size

� VBR sector (1)

Converting the value to a hex value, made it easy to find the
same value in the superblock. By searching for this EB offset hex
value (using Big Endian), we always found the superblock in entry
block 0x1E. However, it was not just one superblock.

We found three superblocks that had records with pointers to
$Tree_Control. One of these three superblocks was always found in
entry block 0x1E, and another one was found in the third last entry
block in the volume. In addition we found an extra superblock
backup in the entry block after the second one. When using ewf-
mount (in order to mount E01 files) and tools like dd and xxd (a
hex viewer), we could show the content of the 0x1E super block.
The command used is shown in Listing 1. The start of the VBR
volume is at sector 0x800 on the test image, and 0x1E is the entry
block we would like to show. In Listing 1 we have used a block size
of 512 bytes, and a count of 1 block, which will only show 512 bytes
of output. However, in the figures showing hex dumps, we have not
included all 512 bytes to make it more understandable. In Equation
(2) we show howwe compute the sector offset to the sector start of
the entry block, which we use in the skip option of the dd
command.
EB sector¼VBR sectorþ EB number*EB size
Sector size

(2)

Listing 1: Command to show the superblock at 0x1E.
Both the 0x1E superblock and $Tree_Control check point have a

special structure. Table 3 shows the structure of these in order to
parse the superblock (entry point), and an extract from the hex
dump is shown in Fig. 3.

In the superblock 0x1E at offset 0x50 (4 bytes in length) the
value 0xA0 was found, which is the byte offset to where we find the
first entry block pointer. At the entry block byte offset 0xA0 (8 bytes
in length) we find the entry block pointer to $Tree_Control. There is
another pointer offset in 0xA8 (8 bytes in length), and we assume
this is a pointer to the backup $Tree_Control. The highlighted value
found in the hex dump shown in Fig. 3 is 0x1471 (LE) for the first
pointer and 0xF3F7 (LE) for the second pointer.

To show the content of entry block 0x1471, we use the same
command as shown in Listing 1, but we change 0x1E with the value
0x1471. This will change location to $Tree_Control, which is the
checkpoint for our Bþ tree structure.

In this sectionwe have shown how to navigate to the entry block
that controls the Bþ tree. This entry block is a check point to the Bþ
tree. This entry block is named $Tree_Control because it can be
used to navigate the Bþ tree.

Top of the node tree

The entry block containing the top node of the Bþ tree is called
$Tree_Control by EnCase. From this entry block we can find



Fig. 3. Hex dump of the superblock 0x1E.

Table 4
Structure of the tree control checkpoint entry block.

E Offset R offset Length Description

0x30 0x00 0x4 Unknown
0x34 0x04 0x2 Major version
0x36 0x06 0x2 Minor version
0x38 0x08 0x04 Offset to first record
0x3C 0x0C 0x04 Size of a record
0x40 0x10 0x10 Unknown
0x50 0x20 0x8 Unknown
0x58 0x28 0x04 Amount of additional records
0x5C 0x2C Var 4 byte offset to each records
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pointers to six different nodes that have a special purpose, and are
shown by EnCase as system files. In section 4.4we show how to find
the $Tree_Control checkpoint manually by using a hex viewer. Now
we continue to interpret the top level checkpoint node
($Tree_Control).

We skip the first 0x30 bytes in Fig. 4, which is for the entry block
descriptor, and focus on the checkpoint descriptor. This entry block
does not contain a typical Bþ tree node, because the pointer area at
the end is missing.

When using Table 4 we saw, in the hex dump, in Fig. 4 that the
offset to the first record was 0x80, and this first record was a record
entry for this $Tree_Control check point. Further, we saw from the
major and minor version that this was ReFS v1.2. At offset 0x80 we
found a 0x18 byte record. The first 8 bytes of this record had the
value 0x1417 (LE). This was the same as the entry block number of
the $Tree_Control check point as also could be seen in the first 8
bytes of the entry block. This means that each of the records in this
checkpoint started with an entry block number to where the record
points.

According to byte offset 0x58 the number of records was 0x06.
At byte offset 0x5C we found a table of offsets, where each offset
was 4 bytes and included byte offsets to each of the additional
records in this entry block. In the example hex dump in Fig. 4 we
found the following offset values: 0x98, 0xB0, 0xC8, 0xE0, 0xF8,
0x110. The offsets were relative to the start of the entry block. The
first record started at offset 0x98, the next at 0xB0, etc. The list
below showswhat wewill find in these records. Each of the records
start with an entry block pointer.

� Pointer offset to the $Object_Tree system file can be found in
entry block at offset 0x98, and in this example it was pointing to
entry block 0x23F (LE). This system file includes nodes and re-
cords that have information about directories, and files in sub
entry blocks.
Fig. 4. Hex dump of the first part of check point $Tree_Control.
� Pointer offset to the $Allocator_Lrg system file can be found in
the entry block at offset 0xB0, and in this example it was
pointing to entry block 0x38 (LE). This system file includes a
bitmap of large blocks (512 MiB).

� Pointer offset to the $Allocator_Med system file can be found in
the entry block at offset 0xC8, and in this example it was
pointing to entry block 0x20 (LE). This system file includes a
bitmap of medium sized blocks (64 KiB).

� Pointer offset to the $Allocator_Sml system file can be found in
the entry block at offset 0xE0, and in this example it was
pointing to entry block 0x21 (LE). This system file includes a
bitmap of small sized blocks (16 KiB).

� Pointer offset to the $Attribute_List system file can be found in
the entry block at offset 0xF8, and in this example it was
pointing to entry block 0x244 (LE). We are uncertain of the
meaning of this system file.

� Pointer offset to the $Object system file can be found in the entry
block at offset 0x110, and in this example it was pointing to
entry block 0x240 (LE). This system file describes the child-
parent dependencies, and can be used to rebuild the directory
paths for files.

Until now we have used special entry blocks (superblock and
check point), but in order to parse the normal nodes we introduce
the structure for the standard node descriptor in Table 5 and the
standard node header in Table 6. We will use them to interpret the
normal nodes which we find in the sub nodes pointed to by
$Tree_Control. We can think of $Tree_Control as the top block that
maintains control of all the sub Bþ trees, or as the root of the single
Bþ tree.

The standard node descriptor and standard node header can be
used from the level we have described as MSBþ and below in the
illustration in Fig. 5. The MSBþ is a magic signature for ReFS v3.2,
and includes one or more nodes. In ReFS v1.2 the magic signature is
not available, but we decided to name Entry Blocks containing
nodes for MSB þ anyway to make this consistent with ReFS v3.2.
The abbreviation, we assume, is for Microsoft Bþ tree.

In this section we have shown how to find the starting check
point, named $Tree_Control. This checkpoint makes it possible to
find all other nodes in the file system. In the illustration in Fig. 5 we
have visualized the main structures of ReFS. The superblock was
Table 5
Structure of the standard node descriptor.

E Offset R offset Length Description

0x30 0x00 0x04 Length of Node descriptor
0x34 0x04 0x14 Unknown
0x48 0x18 0x02 Number of extents
0x4A 0x1A 0x06 Unknown
0x50 0x20 0x04 Number of records in node
0x54 0x24 var Unknown



Table 6
Structure of the standard node header.

E Offset R offset Length Description

0x120 0x00 0x04 Length of Node header
0x124 0x04 0x04 Offset to next free record
0x128 0x08 0x04 Free space in node
0x12C 0x0C 0x04 Unknown
0x130 0x10 0x04 Offset to first pointer
0x134 0x14 0x04 Number of pointers in node
0x138 0x18 0x08 Offset to end of node
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found in entry block 0x1E, and we have found the checkpoint
$Tree_Control. There was also another $Tree_Control which we
assume is a backup.We have already found the pointers to the child
nodes of $Tree_Control.

Files and folders

In this section we will show how the Bþ tree structures can be
parsed to find directories and files. We start by looking at the entry
block for $Object_Treewhich, in this example, was located at 0x23F.
We used the command described in Listing 1, but changed 0x1E
with the entry block we wished to investigate. The hex dump of
$Object_Tree is shown in Fig. 6. We skipped the entry block
descriptor, which was 0x30 bytes. Here we found the node
descriptor that started with a length field, which had the value
0xF0. We skipped the node descriptor tomake this section easier to
read.

From byte offset 0x120 we found the node header which
included information about the length of the node header (0x20
bytes), offset to the next free record, free space in node and offset to
first record pointer (0x354C (LE)) This is a relative offset from the
start of the node header. To find the entry block byte offset we
added 0x120. Therefore, the pointer area started at offset 0x366C.
Fig. 5. Illustration of t
We also found the number of pointers (this should be equal to the
amount of allocated records), which was 9. These pointers are 4
bytes in size and pointed to records in this node, and the offset was
relative to the node header (we needed to add 0x120 in this case).
In the node header we also found an offset to the end of the node.
We skipped to the first record by moving to offset 0x20 þ 0x120 ¼
0x140. This record is followed by the fourth record 0x70 þ 0x120 ¼
0x190.

We could have used the pointers from the pointer area to find all
allocated records, which we actually should do for any node.
However, we only showed two of the records here. It is the pointers
that decide the order of records, we can not assume that all records
are in sequence or that all records are in use.

At offset 0x140 in Fig. 6 we found the start of the records area.
Each record was 0x50 bytes. All the records were related to di-
rectories, either directories the user created or system created di-
rectories. These records could be analyzed using Table 7. The first
record was a pointer to $Volume (node id 0x500), which contained
information about the volume and also included a timestamp for
volume creation, which could have a value for the investigation.
The fourth record contained a pointer for the root directory (node
id 0x600). At this level in the Bþ tree we did not see the names of
the nodes, but most of the names could be found within the entry
blocks pointed to by the records at this level. We observed that
records with node IDs from 0x700 and above were normal di-
rectories either created by the user or system created directories.
We have illustrated this in Fig. 7. All the records with a node id
within the 0x500 range were metadata directories, and not shown
by File Explorer when parsing the root directory. All node IDs of
root sub-directories were in the 0x700 range.
Volume information
We used Table 7 to interpret the records in the entry block

$Object_Tree. The record for the 0x500 node id was found in entry
he ReFS structure.



Fig. 6. Hex dump of the $Object_Tree.

Table 7
Structure of the $Object_Tree entry block.

E Offset R offset Length Description

0x140 0x00 0x4 Record size
0x144 0x04 0x06 Unknown
0x14A 0x0A 0x2 Record header size
0x14C 0x0C 0x2 Record value size
0x14E 0x0E 0x2 Unknown
0x150 0x10 0x8 Unknown
0x158 0x18 0x4 Node ID
0x15C 0x1C 0x4 Unknown
0x160 0x20 0x8 Entry block number
0x170 0x30 0x8 Checksum
0x178 0x38 0x18 Unknown

Fig. 7. Level of directories found in $Object_Tree.
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block offset 0x140, and from offset 0x160 in Fig. 6 the entry block
pointer could be found. In this case it pointed to the entry block
0x24B (LE), which described the $Volume directory. In the hex
dump shown in Fig. 8 we show parts of the 0x24B entry block (the
$Volume directory). We could see from the entry block descriptor
at byte offset 0x18 that this was the entry block for the 0x500 node
id. From the start of the node descriptor at offset 0x30 we saw that
the node descriptor was 0xE8 (LE) in size. Adding 0x30 to this gave
the start of the node header at offset 0x118. In entry block byte
offset 0x128 we found the value 0x3570 (LE), which was the rela-
tive byte offset to the record pointer area. We added 0x118 to this
and found the entry block offset 0x3688. We could see the first
pointer pointed to 0x208 þ 0x118 ¼ 0x320, and the second record
pointer pointed to 0x20 þ 0x118 ¼ 0x138. We have focused on this
second record.

This record has two main parts. The first part is the record
header, and the second part is the record value. Records found
within entry blocks for directories contain attributes. We verified
the use of attributes by performing kernel debugging, where we
found functions such as:
� ReFS!RefsCreateAttributeWithValue
� ReFS!RefsFoundAttributeName

Unfortunately, the attribute header and the attribute value
might be different based on the type attribute.

Using Table 8 we see that this attribute is used for the attribute
type 0x20050000, and the total size of the attribute is 0x1E8.

The value of the attribute only has a few bytes of information,
and Table 9 is used to interpret this attribute value. The timestamp
found at offset 0x1E0 was when this volume was created (Sun, 21
Oct 2018 09:29:39 UTC). At offset 0x1F0 we found the last time the
volume was mounted (Sun, 21 Oct 2018 10:55:48 UTC).



Fig. 8. Volume 0x500 directory entry block.

Table 9
Structure of the attribute value in $Volume.

E Offset R offset Length Description

0x150 0x00 0x80 Unknown - not used
0x1D0 0x80 0x1 Major version
0x1D1 0x81 0x1 Minor version
0x1D2 0x82 0x1 Major version
0x1D3 0x83 0x1 Minor version
0x1D4 0x84 0x0C Unknown
0x1E0 0x90 0x8 Volume created
0x1E8 0x98 0x8 Unknown
0x1F0 0xA0 0x8 Volume last mounted
0x1F8 0xA8 0x8 Unknown

Fig. 9. $Object_Tree record 0x600.
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Root directory
We use Table 7 when interpreting the fourth record in the

$Object_Tree entry block, shown highlighted in the hex dump in
Fig. 9. The Node ID value was 0x600 (which we found at record
offset 0x18 or entry block offset 0x1A8). In all our experiments we
found the root directorywhen parsing the 0x600 node id. The entry
block pointer was found at relative record offset 0x20 or entry block
offset 0x1B0. In this example it pointed to the entry block 0xA7D
(LE).

Therefore, we show the 0xA7D entry block by using the same
command syntax as we have used previously.

Fig. 10 shows a few important parts of the 0xA7D Node ID 0x600
(the root directory in this case). The first 0x30 bytes contain the
entry block descriptor. We used Table 2 to interpret the entry block
descriptor. The next part of the hexdump was the node descriptor,
which can be parsed using Table 5. We found that the node
descriptor structure was 0xE8 in size. The node did not have any
extents, and it contained 7 records. In order to find the start of the
node header, we added the size of the entry block descriptor to the
size of the node descriptor.
Offset Node Header ¼ Size of EB descriptorþ Size of node descriptor
Offset Node header ¼ 0x30þ 0xE8 ¼ 0x118

(3)
The offset to the node header is important because the pointers
found in the pointer area are all relative to the start of the header
node.
Table 8
Structure of the attribute header in $Volume.

E Offset R offset Length Description

0x138 0x00 0x04 Attribute Size
0x13C 0x04 0x02 Offset to next part of header
0x13E 0x06 0x02 Used size of header from next part of header
0x140 0x08 0x02 Flags? (0x04 ¼ Deleted)
0x142 0x0A 0x02 Size of attribute header
0x144 0x0C 0x02 Size of attribute value
0x146 0x0E 0x02 Unknown/Reserved?
0x148 0x10 0x04 Attribute Type
We parsed the node header from offset 0x118 using Table 6, and
found that it is 0x20 bytes in length, and the offset to the first re-
cord pointer in the pointer area was 0x3564. Since this is a relative
offset from the start of the node header, we added 0x118 so the
entry block byte offset is 0x367C. Each of the pointer offsets are 4
bytes in size, and in this case there were 7 record pointers. The first
pointer was 0x20, and the next was 0xA60. In order to find the
correct byte offset in the entry block we added 0x118. Therefore, we
got the entry block offset 0x138 for the first record and 0xB78 for
the second one. The fifth record is shown in the hex dump in Fig. 10
and it started at entry block offset 0x668. We saw it had the
Fig. 10. Hex dump of entry block 0xA7D (Root directory).
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directory name Pictures, and its node id was 0x704. In addition we
saw 4 timestamps. Each timestamp is 8 bytes in length, and they
should be interpreted in a similar manner to the timestamps in the
$SIA attribute in NTFS. The order of these timestamps are File
Created, File Content Changed, File Metadata Changed, and File
Accessed.

We are now ready to parse a directory entry, and we will start
with the attribute describing the current directory.
Fig. 12. Node inside an attribute value.

Table 10
Structure for the SIA/FNA attribute node descriptor.

E Offset R offset Length Description

0x150 0x00 0x04 Size of structure
0x154 0x04 0x02 Offset to first timestamp
0x156 0x06 0x22 Unknown
0x178 0x28 0x08 Created
0x180 0x30 0x08 Modified
0x188 0x38 0x08 Metadata Modified
0x190 0x40 0x08 Last Accessed
Standard information attribute (SIA)
We used the first pointer and looked at offset 0x138, which is

shown in the hex dump in Fig. 11, we saw that the structure is large,
it contained 0x428 (LE) bytes and it had the attribute type
0x10000000 (BE), which is the same identifier as used in NTFS for
standard information attribute (SIA). We used Table 13 to interpret
the SIA attribute header. After the attribute header, we found the
value area, which in this case was 0x410 bytes and contained a Bþ
tree node.

We can use our knowledge of Bþ tree nodes to interpret this
structure. Microsoft described that a Bþ tree could have an
embedded Bþ tree structure (Microsoft, 2018a). This was exactly
what we saw here.We have tried to illustrate this in Fig.12. At offset
0x150 we found the SIA node descriptor. Table 10 was used to
interpret this. Interpreting the SIA node descriptor showed that the
created timestamp was Sun, 21 Oct 2018 09:29:51 UTC, and the
other timestamp was Sun, 21 Oct 2018 11:09:56 UTC. This entry did
not have any logical or physical size, because there was no corre-
sponding file on the disc.

We continue by interpreting the SIA node header, which gives
the pointer to the pointers area. The pointer area is not shown in
the hex dump in Fig. 11. The pointer area was located at 0x270 þ
0x1F8 ¼ 0x468. We found two pointers here. The first pointed to
record 1 at entry block offset 0xE0þ0x1F8 ¼ 0x2D8 and record 2
started in entry block offset 0x20 þ 0x1F8 ¼ 0x218.

We start by interpreting the first SIA record, it started in entry
block offset 0x2D8 and was 0x88 bytes in size. The attribute header
was 0x20 in size and the attribute value was 0x64 in size. The main
Fig. 11. Node within SIA attribute value.

0x198 0x48 0x8 Unknown (Attrib Flags?)
0x1A0 0x50 0x08 Parent Node ID
0x1A8 0x58 0x08 Child id (start on number 0)
0x1B0 0x60 0x08 Unknown
0x1B8 0x68 0x08 Logical file size (FNA)
0x1C0 0x70 0x08 Physical file size (FNA)
0x1C8 0x78 0x08 Unknown
0x1D0 0x80 0x08 Extra timestamp (FNA)
content was the text string: \REGISTRY\MACHINE\
SYSTEM\Con.

In Fig. 11 we have highlighted the second record with a blue
background, and our hypothesis was that this was a directory index
with a pointer to a directory index entry block. It is the text $I30
that hints about an index root attribute, which was also used in
NTFS to index the files in a directory. Here the attribute type is
90000000 (BE) and the attribute header is 0x28 in size, and the
attribute value size is 0x94. In entry block byte offset 0x250 we find
the two byte value 0x240. However, we observed that this value did
not change for other instances of ReFS, and the $Object entry block
was located in other entry blocks. Therefore, we had to falsify our
first hypothesis. We found that a node that describes a directory,
actually is the directory index.

Child attribute
Another attribute we found was what we called the child

attribute, which is shown in the hex dump in Fig. 13. It has attribute



Fig. 13. Hex dump of a child attribute.

Table 11
Structure for the child attribute header.

E Offset R offset Length Description

0xB78 0x00 0x04 Attribute Size
0xB7C 0x04 0x02 Offset to next part of header
0xB7E 0x06 0x02 Used size of header from next part of header
0xB80 0x08 0x02 Flags (0x04 ¼ Deleted)
0xB82 0x0A 0x02 Size of attribute header
0xB84 0x0C 0x02 Size of attribute value
0xB86 0x0E 0x02 Unknown/Reserved
0xB88 0x10 0x04 Attribute type
0xB8C 0x14 0x02 Unknown
0xB90 0x18 0x08 Parent Node Id
0xB98 0x20 0x08 Child number

Table 12
Structure for the child attribute value.

E Offset R offset Length Description

0xBA0 0x00 0x08 Unknown
0xBA8 0x08 0x02 Offset to file name relative to value start
0xBAA 0x0a 0x02 Size of file name
0xBAC 0x0c var Filename

Table 13
Structure of the directory attribute header.

E Offset R offset Length Description

0x668 0x00 0x04 Attribute Size
0x66C 0x04 0x02 Used size of header from next part of header
0x66E 0x06 0x02 Used size of header from next part of header
0x670 0x08 0x02 Flags (0x04 ¼ Deleted)
0x672 0x0A 0x02 Size of attribute header
0x674 0x0C 0x02 Size of attribute value
0x676 0x0E 0x02 Unknown/Reserved
0x678 0x10 0x04 Attribute type
0x67C 0x14 var Directory name

Table 14
Structure of the directory attribute value.

E Offset R offset Length Description

0x690 0x00 0x08 Node ID
0x698 0x08 0x08 Unknown
0x6A0 0x10 0x08 Created
0x6A8 0x18 0x08 Modified
0x6B0 0x20 0x08 Metadata Modified
0x6B8 0x28 0x08 Last Accessed
0x6C0 0x30 0x10 Unknown
0x6D0 0x40 0x08 Unknown
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id 0x20000080 (BE), and it has a parent node id, child number and
the file name. We used Table 11 to interpret the values. The size is
0x50 (LE) and the header is 0x28 bytes and the parent node in this
case is 0x600, which means that this entry is a child of the root
directory. It is child number 1 in this directory.

Using Table 12 we can see that the name is SmallFile.txt.
File name attribute (FNA) for directories
The File Name attribute is known from NTFS, but as we will see

there are two types in ReFS. We will use the fifth pointer as an
example. The fifth pointer has the value 0x550 (LE), and adding
0x118 gives 0x668.

In the hex dump shown in Fig. 10 we see that at byte offset
0x668 a directory entry starts. The relevant part of this record is
shown in Fig. 14.

We use Table 13 when parsing the directory attribute header.
The size of the complete attribute is 0x70 (LE), and the attribute id
is 0x30000200 (BE). This looks similar to the File Name attribute in
NTFS, which is 0x30000000 (BE). We have observed that all di-
rectories (not files) in our experiments have 0x30000200 (BE),
while files have 0x30000100 (BE). Therefore, we have decided to
use the name File Name attribute for both. The name of this entry
was Pictures, which was one of the directories we created.

If we look at the attribute value, using Table 14, it starts with the
node id 0x704. This must be correlated with the pointer we found
to the node id 0x704 in $Object_Tree Bþ tree node. Therefore, we
Fig. 14. Hex dump of a FNA directory attribute.
now know that 0x704 has the directory name Pictures. In addition
we found 4 timestamps, and these should be interpreted as 100 ns
intervals since 1.1.1601 UTC (FILETIME). This directory was created
at Sun, 21 Oct 2018 09:31:47 UTC. While the other timestamps all
had the time Sun, 21 Oct 2018 09:35:06 UTC. It is out of scope for
this study to identify which actions update the timestamps.

File name attribute (FNA) for files
In order to explain the FNA file attribute, we use the illustration

in Fig.15. Let us assume Record (attribute) 2 is the FNA file attribute.
The first part is the FNA File attribute header. We used Table 13
when we interpreted the FNA File attribute header, which started
at entry block offset 0x738. The hex dump is shown in Fig. 16.

Files have the attribute type 0x30000100. This structure is larger
than the one used for directory FNAs. The size of the complete
structure was, in this case, 0x440 (LE) and the name was
SmallFile.txt.

This attribute value contains its own Bþ tree node. It starts with
Fig. 15. Illustration of FNA file attribute.



Fig. 16. Hex dump of a FNA file.

Table 15
Structure of the Data attribute header.

E Offset R offset Length Description

0x830 0x00 0x04 Attribute Size
0x834 0x04 0x02 Offset to next part of header
0x836 0x06 0x02 Used size of header from next part of header
0x838 0x08 0x02 Flags? (0x8 ¼ Bþ tree node)
0x83A 0x0A 0x02 Size of attribute header
0x83C 0x0C 0x02 Size of attribute value
0x83E 0x0E 0x02 Unknown/Reserved
0x840 0x10 0x04 Size of attribute value
0x844 0x14 0x04 Unknown
0x848 0x18 0x04 Attribute type
0x84C 0x1C 0x04 Unknown

Table 16
Structure of the data run.

E Offset R offset Length Description

0x8F8 0x00 0x04 Size of data run record
0x8FC 0x04 0x02 Size of header
0x8FE 0x06 0x02 Offset to value
0x900 0x08 0x02 Unknown
0x902 0x0A 0x02 Size of data run
0x904 0x0C 0x04 Offset to data run
0x908 0x10 0x08 Unknown (rel entry block pos)
0x910 0x18 0x08 Number of entry blocks
0x918 0x20 0x08 Entry block start
0x920 0x28 0x08 Unknown

R. Nordvik et al. / Digital Investigation 30 (2019) 127e147 139
a FNA node descriptor which is 0xA8 in size, and we use Table 10 to
interpret it. We have four timestamps in this FNA node descriptor.
The created value was Sun, 21 Oct 2018 09:36:26 UTC. At the entry
block offset 0x7E8 (relative offset 0x80) we found a fifth timestamp
(we have not seen this fifth timestamp in all our ReFS volumes). In
this case this timestamp had a value before the other four time-
stamps, Sun, 21 Oct 2018 09:31:29 UTC. We do not know what this
timestamp represents, it may be a remnant from a previous
attribute.

The parent Node Id found in 0x7B8 was 0x600, and child
number found in 0x7C0 is 0x1. The data content in 0x7D0 is logical
14 bytes, and we see from 0x7D8 that it uses 0x10000 bytes (128
sectors, or 64 KiB). This means a file uses at least one 64 KiB cluster.
In ReFS the FNA file attribute will only provide the pointer to the
file, independent of the file size. These pointers are found within
the internal Data Run Attribute (see Fig. 15).

The next part in this attribute value was the FNA node header,
which started at offset 0x810 bytes. Here we found the offset to the
FNA node pointer area. The first and only pointer started at entry
block offset 0x274 þ 0x810 ¼ 0xA84. This pointer area is not
shown in the hex dump, but it contained the pointer record at offset
0x20 þ 0x810 ¼ 0x830.

Record 1, at entry block offset 0x830, is 0x180 in size and the
attribute type is 0x80000000. NTFS uses this value as a data
attribute. This record header is 0x20 in size (highlighted with white
background). The next part was the record value, which was 0x160
in size. This attribute value was also a Bþ tree node, which we call
the Data Node!

The Data Node descriptor started at entry block offset 0x850,
and was 0x88 in size. We observed within the node descriptor at
entry block offset 0x884 (4 bytes length) that we had the value
0x10000, which is the number of bytes within the 128 sectors
allocation size, and at entry block offset 0x88C (4 bytes length) we
had the value 0x14, which was the logical size of this file.

At offset 0x8D8 we found that the Data Node header had the
Data Records pointer area in 0xD4 þ 0x8D8 ¼ 0x9AC. Here we
found the pointer 0x20 þ 0x8D8 ¼ 0x8F8.

Here we found the Data Run attribute (record) (see Table 15).
The data run started at entry block offset 0x8F8 and was 0x30 in
size. The Data Run attribute header was 0x10 in size. We skipped
0x8 bytes in the Data Run attribute value, and found that the Data
Run used 0x04 (same as 1 cluster or 128 sectors) entry blocks. At
entry block offset 0x918 we found the entry block where the data
run started, here 0xA88. We used Table 16 to interpret the data run.
To recover the contents of the file, we used the command shown in
Fig. 2. The content of this file was exactly the same as the content of
the file SmallFile.txt when opened in File Explorer.

Listing 2: Command to extract a file.

Traces of deleted files
When we created the image used as an example in this paper,

we also deleted a file from the root directory. The deleted file had
the name DeletedFile.txt. We found one child attribute within the
entry block of the root directory, as shown in the hex dump in
Fig. 17.

We did not find any pointer to this record in the pointer area at
entry block offset 0x367C in the hex dump shown in Fig.10. What is
interesting is that there were two pointer fields before the first
pointer. These fields have the same value as the first pointer, here
0x20 (LE). This is an indication that there had been more records in
this node. Wemay even be able to recover the content by searching
for patterns of data runs that are not part of any active records.With
active records, we mean a record that has a valid pointer in the
pointer area.

In the hex dump found in Fig. 18 we first saw a normal FNA
directory attribute which was 0x78 (LE) bytes in size. However,
directly after this we saw a timestamp, which we assumed was
from the Last Access timestamp of a FNA file attribute. We
Fig. 17. Traces of a deleted file.



Fig. 18. Traces of a deleted file part II.

Table 18
Structure of a bitmap record.

E Offset R offset Length Description

0x2E0 0x00 0x04 Size of bitmap record
0x2E4 0x04 0x02 Record header length
0x2E6 0x06 0x02 Unknown
0x2E8 0x08 0x04 Unknown
0x2EC 0x0C 0x04 Size of Record value
0x2F0 0x10 0x08 Entry Block start
0x2F8 0x18 0x08 Number of Entry blocks
0x300 0x20 0x04 Size of Record value
0x304 0x24 0x04 Total number of allocation blocks
0x308 0x28 0x04 Unknown (observed 0x02)
0x30C 0x2C 0x04 Free blocks (bit ¼ 0)
0x310 0x30 0x04 Bit offset to next free block (bit ¼ 0)
0x314 0x34 0x04 Number of free blocks after first free (bit ¼ 0)
0x318 0x38 0x08 Unknown
0x320 0x40 0x04 Offset to bitmap start relative to value start
0x324 0x44 0x04 Bytes in bitmap
0x328 0x48 0x80 The bitmap

Fig. 19. Hex dump of a bitmap record.
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compared this with the previous parsing of the FNA file attribute,
and found a data run at entry block offset 0xE60, which can be
interpreted using Table 17.

Here we see that the data run consisted of 4 entry blocks (1
cluster) and it started at entry block 0x7E040 (LE). We recovered
this file by extracting it. When we opened it, we recognized the
content from the file we deleted. To extract the file we used the
same command syntax as shown in Listing 2, but we changed the
entry block and the name of the output file.
Allocation tables

In section 4.6 we have shown how to interpret the structures for
files, including how we can find the file content. However, it is
important to know if the file was allocated (active) or unallocated
(not active). We show this using the data run we found in Fig. 18. It
should include the entry blocks 0x7E040, 0x7E041, 0x7E042 and
0x7E043, where each entry block is 16 KiB in size. Since this is an
ordinary file (FNA File) we will use the $Allocator_Med system file,
where each bit represents 64 KiB.

When interpreting $Tree_Control in section 4.5 we found
$Allocator_Med at entry block 0x20. Therefore, we just show the
hex dump from the correct bitmap record in Fig. 19 from this entry
block. We can interpret this by using Table 18.
Table 17
Structure of the data run.

E Offset R offset Length Description

0xE60 0x00 0x04 Size of data run record
0xE64 0x04 0x02 Size of header
0xE66 0x06 0x02 Offset to value
0xE68 0x08 0x02 Unknown
0xE6A 0x0A 0x02 Size of data run
0xE6C 0x0C 0x04 Offset to data run
0xE70 0x10 0x08 Unknown (rel entry block pos)
0xE78 0x18 0x08 Number of entry blocks
0xE80 0x20 0x08 Entry block start
0xE88 0x28 0x08 Unknown
It is the correct bitmap record because it starts from entry block
0x7E000 and it contains 0x1000 entry blocks. Our entry blocks
must fit in here since the first starts at 0x7E040 and is 4 entry
blocks in size. To find the correct bit we use the formula:

AB bit offset ¼ EB number� start EB
4

(4)

AB bit offset¼0x7E040� 0x7E000
4

¼ 0x10 ¼ 16 (5)

If we count from the top of the bitmap area (dark background) in
Fig. 19 we will see that the 16th bit has the value 0. Remember the
first bit is the 0th bit. This bit, the 16th bit, represents the allocation
block (AB). Each allocation block contains 4 entry blocks (EB).
Therefore, this allocation block represents the entry blocks
0x7E040, 0x7E041, 0x7E042 and 0x7E043. Since the allocation bit
is 0 these entry blocks are unallocated, which means the file is
deleted.

In another ReFS volume, refs-v1_2e3.E01 available at Mendeley
(Nordvik, 2019), we found the complete FNA file from a deleted file,
the datarun part of the FNA file attribute was zeroed, and the cor-
responding bit in the allocator was zeroed. This can be observed in
the screen shot in Fig. 20. All 0x30 bytes from offset 0x11D0 that
should have been there, are zeroed out. Before we deleted this file
the data run content was starting in entry block 0x17C and it
consisted of 4 entry blocks. In the screen dump in Fig. 21 we see the
bitmap where entry block 0x17C (380 in decimal) belongs.

AB bit offset¼380*
16384
65536

¼ 380*
1
4
¼ 95 (6)



Fig. 20. Traces of a deleted file (FNA file complete).

Fig. 21. Traces of a deleted file (Allocator Med (test3)).

Fig. 22. Content of a deleted file (Allocator Med (test3)).

Fig. 23. $Object system file.
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AB byte offset¼95
8

¼ 11 (7)

Remainder bits¼95 mod 8 ¼ 7 (8)

If we count 11 bytes from byte zero at 0xD0 we will find the
value 0x7F. Converted to bits this is 0111 1111. We count from the
right to left, where the least significant bit is 0 and the most sig-
nificant bit is 7. In this case we are looking for the most significant
bit, and its value is 0. This means that this allocation block is not
allocated. We show the content of the entry block 0x17c in Fig. 22.

We assess if our entry block is in the range of start entry block
and the number of entry blocks in the allocator record. If it is not,
we need to locate one allocator record that has the correct range.

AB bit offset¼ðEB number� start EBÞ*EB block size
AB block size

(9)

The first byte in the bitmap is byte number 0. And we can find
the byte offset by dividing by 8.

AB byte offset ¼ AB bit offset
8

(10)

We use modulus to find the remainder bits in order to find the
bit we are looking for. A value of 1 means the corresponding allo-
cation block is allocated while 0 means it is not allocated.
AB byte bit pos ¼ AB bit offset mod 8 (11)

We found three different allocation tables, one for small meta-
data structures, one medium one which we have shown for regular
files, and one large one used for large files. As previously described
they are named $Allocator_Lrg (for large files), $Allocator_Med (for
files) and $Allocator_Sml (system files and metadata).

Interpretation of the other structures is performed in a similar
manner, but it is important to use the correct values for allocation
block size.

The $Object entry block

Entry block 0x240 was used by the $Object system file. It con-
tains records showing the parent child relationship. We show this
system file in Fig. 23.

In this entry block we had 6 records, and we show the record
pointed to by the last pointer in the pointers area. This record
started from offset 0x1D0, and was 0x30 in size. We saw that the
child node id 703, found in the entry block offset 0x1F8, had the
parent node id 702, found in the entry block 0x1E8. This record did
not have any attribute type. The other records showed that the
node ids 520, 701, 702, 704, 705, and 706 had the root directory
(0x600) as parent.

Results - ReFS v3.2

We have described most of the structures for ReFS v1.2. In ReFS
v3.2 the structures are almost identical. The forensic container file
refs-v3_2.E01, available at Mendeley (Nordvik, 2019), allows the
readers to follow our examples. ReFS v3.2 uses a cluster size of 8
sectors (4096 bytes) as standard. The size of the metadata entry
blocks are still 16 KiB, which means ReFS v3.2 uses 4 clusters to
define one entry block as standard. In records pointing to an entry



Fig. 24. ReFS v3.2 Checkpoint Record ($Tree_Control).

Table 20
Structure of the ReFS v3.2 checkpoint record.

E Offset R offset Length Description

0x138 0x00 0x8 First cluster of entry block
0x140 0x08 0x8 Second cluster of entry block
0x148 0x10 0x8 Third cluster of entry block
0x150 0x18 0x8 Fourth cluster of entry block
0x158 0x20 0x8 Unknown
0x160 0x28 0x8 Checksum of entry block
0x168 0x30 0x8 Unknown
0x170 0x38 0x30 Unknown

Table 21
Conversion table for cluster pointer to Entry Block.

MSB Subtract value

1 0x10000
2 0x24000
3 0x28000
4 0x34000
5 0x38000
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block, we now have 4 cluster pointers. The first points to the start of
the entry block. This entry block consists of all the four clusters. The
main difference in the volume boot record is the major and minor
version fields.

Superblock

Finding the superblock can be done by using the command
shown in Listing 3, assuming a cluster size of 8 sectors (4 KiB). The
disk volume we use to explain the structures was using a GPT
partition system, and the ReFS partition started at sector 0x10800.

EB sector¼VBR sectorþ EB number*Cluster size
Sector size

(12)

Listing 3: Command to show the superblock at 0x1E (cluster size
4KiB).

We can use Table 3 for the ReFS v3.2 superblock also, but we
must add 0x20 to each offset. The 0x20 bytes are at the beginning of
the entry block, which makes each entry block header 0x50 in size.
The entry block descriptor starts with the magic signature
0x53555042 (BE) or SUPB in ASCII. This is why we have called the
0x1E block the superblock. We found the entry block pointer to the
$Tree_Control checkpoint at offset 0xC0, which was 0x2874.

Checkpoint

In the previous section we were able to find the pointer to the
$Tree_Control entry block, which is a checkpoint. We have 0x20
additional bytes at the top of this entry block. The magic signature
is 0x43484B50 (BE) or CHKP in ASCII.

Therefore, we had to add 0x20 to the previously presented
Table 4. We also had to add an additional 0x18 bytes to find the
amount of additional records. In Table 19 we have shown the new
offsets.

The main difference in the checkpoint entry block was that the
record size has increased, and there are more records. In ReFS v1.2
there were 6 additional records, but in ReFS v3.2 we observed 13
additional records.

In Fig. 24 we see the first additional record, which included a
pointer to $Object_Tree.

In Table 20 we show how the checkpoint record should be
interpreted. When it comes to the entry blocks the second WORD
has a special meaning. For example in the hex dump in Fig. 24 we
saw the value 0xB83D01 (BE), which is 0x013DB8 (LE). We inter-
preted this as 0x013DB8ðLEÞ � 0x10000ðLEÞ ¼ 0x3DB8ðLEÞ,
because the second word starts with 01. We have observed when
working with ReFS volumes that the secondWORD could start with
01, 04, 06 or 0C. There could be other values. This value has an
impact onwhere to find the physical location of the entry block. For
example if the Entry block number value is 0x580104 (BE), which
has the value 04 in the first byte of the second WORD, then the
Table 19
Structure of the $Tree_Control checkpoint entry block.

E Offset R offset Length Description

0x50 0x00 0x8 Unknown
0x58 0x08 0x04 Offset to first record
0x5C 0x0C 0x04 Size of a record
0x60 0x10 0x10 Unknown
0x70 0x20 0x20 Unknown
0x90 0x40 0x04 Amount of additional records
0x94 0x44 Var 4 byte offset to each records
entry block location will be found in entry block 0x040158ðLEÞ �
0x34000ðLEÞ ¼ 0xC158ðLEÞ. Another example is the entry block
value 0x128006 (BE), where the physical location entry block was
in 0x068012ðLEÞ � 0x44000ðLEÞ ¼ 0x24012ðLEÞ. We have created a
structure table in Table 21, which shows the values to substract
from the Entry Block cluster pointers based on the value of the MSB
(not counting zero bytes).

Equation (13) shows a formula that can be used to find the
subtract value if the MSB is larger than 1.

Subtract value ¼ 0x10000þ ðMSB*0x8000Þþ
ðððMSBþ 1Þmod2Þ*0x4000Þ (13)

In this specific record we had cluster pointers to 0x3DB8,
0x3DB9, 0x3DBA and 0x3DBB. Since a record includes pointers to
four clusters, this mean that we need four clusters to get one
metadata entry block of 16 KiB, or 32 sectors. The first cluster
pointed to the start of the $Object_Tree entry block.

Table 21 is not complete, but computed using Equation (13).
Object tree

The $Object_Tree is a Bþ tree, and the difference from ReFS v1.2
is that an additional 0x20 is added to the top of the entry block
descriptor. This block starts with the magic signature 0x4D53422B
or MSBþ in ASCII. All entry blocks that include a Bþ tree will have
this signature.
6 0x44000
7 0x48000
8 0x54000
9 0x58000
A 0x64000
B 0x68000
C 0x74000
D 0x78000
E 0x84000
F 0x88000
E2 0x724000
E3 0x728000



Table 22
Structure of the ReFS v3.2 $Object_Tree record.

E Offset R offset Length Description

0xA10 0x00 0x4 Record size
0xA14 0x04 0x06 Unknown
0xA1A 0x0A 0x2 Record header size
0xA1C 0x0C 0x2 Record value size
0xA1E 0x0E 0x2 Unknown
0xA20 0x10 0x8 Unknown
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As for other Bþ trees we have the node descriptor, the node
header, records and a pointer area. The new part in the $Object_-
Tree is that the records are larger.

In the hex dump in Fig. 25 we show the record that points to the
0x600 root directory. We used Table 22 to interpret this record. The
node id is 0x600 (LE), and the first entry block was found in entry
block offset 0xA50 is 0x3D6C (LE). Notice that we subtracted
0x10000 because of the number 01 in the second WORD.
0xA28 0x18 0x4 Node ID
0xA2C 0x1C 0x4 Unknown
0xA30 0x20 0x8 Unknown
0xA38 0x28 0x4 Relative offset to first entry block
0xA3C 0x2C 0x4 Size of entry block section
0xA40 0x30 0x10 Unknown
0xA50 0x40 0x8 1st Entry block cluster number
0xA58 0x48 0x8 2nd Entry block cluster number
0xA60 0x50 0x8 3rd Entry block cluster number
0xA68 0x58 0x8 4th Entry block cluster number
0xA70 0x60 0x8 Unknown
0x178 0x68 0x8 Checksum of entry block
0x80 0x70 var Unknown
Root directory

In the root directory we will find the ordinary entry block
descriptor, node descriptor, node header, records (attributes) and
the pointer area. We interpret most of the entry blocks just as we
would do for ReFS v1.2. We show a FNA directory attribute in
Fig. 26.

This folder has the name TestFolder and the node id 0x702. It
was created on 19th of October 2018 at 05:46:45 UTC. The rest of
the timestamps had the same time, 19th of October at 05:47:30
UTC.
Fig. 26. ReFS v3.2 FNA directory attribute.

Fig. 27. ReFS v3.2 FNA file attribute.
FNA file

We have observed that the FNA file attribute might not always
include the data run as an internal node in the attribute value part.
In Fig. 27 we show the FNA file attribute of a small text file from the
entry block 0x3D6C.

The data run attribute was missing, and a record that pointed to
four other entry block clusters were found. We saw that they were
in sequence and therefore formed one entry block. In order to find
more information regarding the data runs we needed to go to this
entry block, in this case 0x3D70.

Browsing through 0x3D70 can give the impression that this is an
entry block that includes files and folders, but it is not. There is only
one main record/attribute in use. The rest are remnants from pre-
vious states of the B þ Tree. The reason for these remnants are that
ReFS uses Copy-On-Write (COW), which means it reads the allo-
cated content of the entry block into memory, make changes, and
writes the new entry block to a new location on disk (Wikipedia.
Copy-on-write, 2019), leaving the previous one unchanged and
unallocated. New ReFS operations can allocate previously unallo-
cated entries and overwrite parts or all of the previous information.

This main record/attribute had a node structure inside it, as
shown in Fig. 28. From entry block offset 0x20 we can see this entry
block contains information about the entry block 0x3D70.

From the data run header we saw in entry block offset 0x98 that
this was a data attribute (value 0x80 (LE)). We do not know much
Fig. 25. ReFS v3.2 Object tree record.
about the data run node descriptor, except the locations for physical
and logical sizes as shown in Table 23. The data run node header
starting at entry block offset 0x128 gave us the offset to the data run
pointer area from entry block offset 0x138. The pointer offsets were
relative to the start of the data run node header.

Using the pointers from the pointer area we found that record 1
started at entry block offset 0x150, and that record 2 started at
offset 0x168. These two records must be interpreted together, each
by using Table 24. Even though there were two records, this does
not necessarily mean the file is fragmented. The first record had the
start cluster value 0x52232ðLEÞ, and by using the subtraction
Table 21 we saw that this data run record started at cluster
0x52232 � 0x38000 ¼ 0x1A232. The second data run record in this
example had the start cluster value 0x18000 (LE), and started at
cluster 0x18000 � 0x10000 ¼ 0x8000. In this case, there is a gap
between the two data run records. This could mean the file is



Fig. 28. ReFS v3.2 FNA file DataRun attribute.

Table 23
Structure of ReFS v3.2 DataRun node descriptor.

E Offset R offset Length Description

0xA0 0x00 0x4 Record size
0xA4 0x04 0x30 Unknown
0xD4 0x34 0x8 Physical size of file
0xDC 0x3C 0x8 Logical Size
0xE4 0x44 0x8 Logical Size?

Table 24
Structure of ReFS v3.2 DataRun internal record.

E Offset R offset Length Description

0x150 0x00 0x8 Start Cluster
0x158 0x08 0x2 Unknown (seen 0x50)
0x15A 0x0A 0x2 Size of record? (seen 0x18)
0x15C 0x0C 0x4 Virtual start Cluster Number
0x160 0x10 0x4 Unknown (zeros)
0x164 0x14 0x4 Number of clusters in data run

Fig. 29. ReFS v3.2 FNA file with a fragmented DataRun.

Fig. 30. ReFS v3.2 FNA file with a not fragmented DataRun.
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fragmented. It is important to only include the number of allocated
data run records at the offsets given by the offset pointers in the
data run pointers area. Our hypothesis was that the data run frag-
ments could be located in any order on disk, however in this
example this can not be true. When we extracted the file using the
two fragments we got another hash value than the hash of the
original file. Therefore, we falsified this hypothesis. A visualization
of the falsified hypothesis is shown in Fig. 29.

The allocated clusters are represented by grey boxes in the
figure. The first two grey boxes, in this example, represents 0x460
clusters. The last 3 grey boxes represents 0x1DCE clusters. In this
case, the first data run started after the second data run.

A new hypothesis was constructed: The complete first data run
fragment must be located before the next, etc, but not necessarily
contiguous. If the next fragment is located before the start of the
previous, then this next fragment must be a contiguous fragment,
continuing directly after the previous fragment. However, if the
next fragment is after the end of the previous fragment, then the
cluster start of the next fragment should be interpreted normally.
This is illustrated in Fig. 30.
Extracting the data

Using the information from the data run records, and the logical
size from the data run node descriptor, we can extract the file using
simple dd commands. If we have hashed the file while the volume
was mounted in Windows, then we only have the hash of the
logical size of the file. Therefore, if we want to verify that we have
the same file, we need to extract the logical size of the file. In Fig. 4
we show how the extraction of the file can be done using simple dd
commands. Herewe showhowwe extracted using our first falsified
hypothesis.
Listing 4: Extracting the file from the image using first hypothesis.
Listing 5: Extracting the file from the image using the second
hypothesis.

In Listing 5 we show the commands we used to correctly extract
the file used in this example. The hash of the output file was the
same as the original file. However, when a file is fragmented, and
the next fragment is after the previous, we will need a similar
approach as in Listing 4.
Checksums

When we parsed the superblock and checkpoint, and the
directory records within $Object_Tree, a MSB þ node, we found
fields that we assumed were 64 bit checksums. We also found 64
bit fields that could be checksums within some of the attributes
within MSBþ nodes. One of our hypotheses was that the checksum
should be saved within some of the attribute in the MSBþ, espe-
cially the FNA File attribute or the FNA Directory attribute, but we
did not find any checksums in the FNA Directory attribute. In the



Fig. 31. ReFS v3.2 FNA file data attribute pointer.

Fig. 32. ReFS v3.2 Verify Crc64 checksum.
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FNA File attribute, we found a 64 bit checksum within its internal
data attribute pointer at relative byte 0x38. This attribute points to
a new entry block, and it is the checksum of this entry block that is
saved in the checksum field. In Fig. 27 highlighted in white it is the
last 8 bytes that is the checksum. In Fig. 31 we only show the part
that we previously had highlighted.

We found that attribute records do not have checksums for their
attribute content, but a record that points to another entry block
does include a 64 bit checksum. In order to compute the checksum
we need the sector to where the block starts, and the size of the
block. For metadata the entry block is 16 KiB (32 sectors). In Fig. 32
we verify the checksum found in Fig. 31. The checksum shown in
the hexdump in Fig. 31 must be read as little endian in order to give
the same output as the program verifychecksum. This program use
the same CRC64 algorithm as found in the NTFS-3g driver project
(Tuxera, 2017).

Another hypothesis was that 64 bit checksums were imple-
mented in the MSB þ node $Object_Tree records. We found 64 bit
fields in this MSB þ node records that are 64 bit checksums of the
entry blocks they point to.
Experiment - manipulation of metadata

We performed experiments to see if it was possible to use
existing metadata tools in order to manipulate timestamps in ReFS.
We tested using the SetMACE v1.0.0.16 (Schicht, 2014). However,
the tool failed because it did not find any $MFT.

We performed another experiment where we manually
manipulated a timestamp using a hex editor. We changed one byte
of the file creation timestamp of the file Manipulated_Time.txt in
the root directory. The result of this manipulation was that the file
system could not be repaired or mounted.

We also tested by changing themetadata checksumvalue for the
corresponding record in the $Object_Tree, and the checksum that
corresponds in the $Tree_control for the record pointing to
$Object_Tree. The changes of metadata were performed by using a
hex editor on a physical hard disk with a ReFS v3.2 volume2. The
result was the same, both for ReFS 3.2 and/or ReFS 3.4, the file
system was not mountable.

These experiments show that manipulation of the metadata is
hard without the user detecting it. When we manually changed
2 During our multiple test, we observed that our mounted ReFS v.3.2 volume was
automatically updated to ReFS v 3.4 in our final tests.
back to original values, the file system was mountable again.
This does not mean it is impossible to change metadata. It

means we have not documented all the integrity features involved
in protecting metadata.

Discussion

Data attribute

The use of multiple data run records in ReFS v3.2, even for the
same contiguous data stream, will allow very large files. A file can
have a maximum size of 35 petabytes (Microsoft, 2018c), and we
assume this limit is because of the maximum size of the ReFS
volume. In the data attribute node record we find logical and
physical file sizes, where the physical size uses the boundaries of
clusters. Because of the maximum file size these fields most
probably are 8 bytes, but only 7 of the bytes are needed. This is
because 255 ¼ 32PiB<35PiB<256 ¼ 64PiB.

Another reason for multiple data runs for contiguous files might
be because of sharing blocks between files. If we copy a file it will
use the same data runs. If we change one of the files, both files
might need to split up in different data runs in order to share only
parts of the blocks. This sharing of blocks between files might make
carving more difficult without knowing the corresponding data
runs. Two files could for instance share the first two clusters, but
not the third cluster, then the fourth might be shared, etc.

Allocation unit

Using 128 sectors for small files is a waste of space, however it is
fast because the system does not need to reallocate a lot of clusters
frequently. According to Vogels (1999) most deleted files are very
small (only 4 percent of deleted files are more than 40 KiB in
Windows NT). The exact percentage of small files could have
changed since Volgels (Vogels, 1999) paper from 1999, but we still
assume that most deleted files are small. This is also important for
digital forensics, because most of the files will only use one cluster.
One of the problems with traditional carving techniques are frag-
mented data runs. However, any user file less than 64 KiB will only
occupy 1 cluster in ReFS v1.2. Typically user documents (text doc-
uments and office documents) are often less that 64 KiB, and
therefore carving of these will be very easy. We do not have this
advantage in ReFS v3.2, because the standard cluster size is now 4
KiB. However, it is possible to format ReFS v3.2 with 64 KiB cluster
size.

Finding traces of deleted files

When shift delete is used to delete a file it will not be saved in
the $Recycle.bin (Microsoft, 2019). $Recycle.bin does not really
include deleted files. We focused on traces of real deleted files. In
one of our experiments we observed that a record with the FNA
attribute was partly overwritten, and we saw the file child attribute
structure from the deleted file. The child attribute, if found, will
contain the file name and the parent node id. However since the
entry block uses node structures organized as Bþ trees we assume
that the different records containing attributes would easily be
overwritten when the Bþ tree is being balanced. As we have
observed, it is possible to find previous attributes containing data
runs. The same observations of remnants after Bþ tree balancing
have been seen on database systems using Bþ trees, as described by
Stahlberg et al. (2007). It is possible to perform a signature search
for data runs, for example searching ReFS v1.2 for the pattern
0x3000000010001000 and including 30 bytes maximum. When a
complete FNA file attribute from a deleted file is present, then the
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data run is normally zeroed. This means we can not easily find the
datarun, but we will see all other metadata for this deleted file.
However, we found complete FNA file attribute in previous used
entry blocks. For ReFS v3.2 we can use the pattern
0x4000000010000000 to find the FNA File data attribute pointer,
and from there find the Entry Block MSB þ node that includes the
data runs.

ReFS recoverability

We have observed that attributes no longer in use are still
available within entry blocks. When a user deletes a file, metadata
remnants might still be found in the same entry block or in a
previously used entry block. This is because of the Copy-On-Write
(COW) functionality of ReFS. Previous attributes in unallocated
entry blocks make it possible to use this metadata to recover files,
but also to connect previous metadata to previous versions of the
file content. This is because it is not only the metadata entry blocks
that use COW, but also the data entry blocks. This means if the user
changes a file, the changes are saved to another location, leaving
the previous version in unallocated space. We have only tested this
for files that use a single data block, and we could find previous
versions of the file in previous allocated area. Finding remnants on
SSD disks is not applicable because of the use of garbage collection.

The allocation blocks used by the file are notwipedwhen a file is
deleted, making metadata carving a possible technique to recover
the file content. For instance we could search for 0x30000100 (BE)
in order to search for FNA files, or we could search for
0x4000000010000000 (BE) in order to find data attribute pointers.
We also observed reused metadata entry blocks containing most of
the attributes from its previous use. This is good for criminal
investigationand recoverability, but bad for privacy.

Recovery of ReFS volumes

If the main VBR gets corrupted we can find the backup VBR, as
can be seen in Listing 6. The sectors in the volume can be found in
the corrupted VBR, assuming the sectors in volume field is not
corrupted or modified. If the main VBR is overwritten and no MBR
or GPT partition entries are found, we can search for the backup
VBR and computewhere the main one must have been located. The
VBR contains the string ReFS from byte offset 3. Therefore, using
sigfind, a Sleuthkit tool, to search for the hex value 0x52654653
(hex value of ReFS) from offset 3 in each sector would find any VBR
instances, we assume the FSName is not changed by the user. Then
we can recover the bytes of this volume and copy the backup VBR to
the position where the main VBR should have been located. Other
alternatives, without changing the evidence, are to manually parse
the volume in a hex viewer or develop a tool that can use the
backup VBR as input.

Listing 6: Command to show the backup VBR.

We described in section 4.4 that there were three superblocks, one
found at 0x1E, one found in the third last entry block, and the third
in the second last entry block. This means that if the main super-
block gets corrupted, we can compute the location of the second
backup superblock using the command shown in Listing 7. Using
multiple backup superblocks is well known from Ext2, 3 or 4 [5,
p.405], but the use of superblocks is new for Windows file systems.
ReFS use both VBR and superblocks.
Listing 7: Command to show the superblock backup.
We tested this by formatting an existing ReFS v3.2 volume with

FAT32, see the forensic container refs-v3_2-3-fat32.E01 available at
Mendeley (Nordvik, 2019). The VBR and the first superblock were
not available. We used the backup superblock to identify the entry
block for the checkpoint. This enabled recovery of the data. If we
have no idea where to find the superblock, we can just search for
the magic string SUPB.

Knowing the structures of ReFS enables the investigator to
recover the volume, and this might be successful even if the user
has reformatted the volume using another file system as long as the
structures and data content are not overwritten.

Data runs

We found that the next data run in a FNA file with multiple data
runs could point to a cluster before the current data run. However,
the real cluster start used was the next cluster after the clusters
used by the previous data run. This indicates that clusters used by
later data runs for a FNA file, will either be contiguous or start on a
cluster later in the file system.

The finding of previous FNA file attributes, with their included
data runs, will allow the digital forensic investigator to recover
previously allocated files.

Carving and metadata

We have described that metadata checksums are on by default,
and integrity streams for data can be enabled on files, directories
and volumes. If integrity streams for data are enabled, it should be
possible to compute the checksum of an integrity stream enabled
file, using the known crc64 algorithm, and then use the output
checksum to search for the associated metadata. Finding both the
file and the metadata will increase the evidential value of the
artifact.

We have also found signatures for some attributes, which could
be used for metadata carving. Finding FNA file attributes could be
used to locate the metadata and the data runs, and this way met-
adata carving can be used as a method for recovery of files, even for
previous versions of the files (assuming previously used clusters are
not overwritten). We found previous versions of the Bþ tree nodes,
which included previous versions of attributes.

Conclusion and further work

The first objective for our study was how digital forensic in-
vestigators can verify the reliability of ReFS support in existing
Digital Forensic tools. The result of our reverse engineering allows
digital forensic analysis of ReFS v1.2 and v3.2. Investigators now
have the knowledge to verify digital forensic tools that claim to
support ReFS. Microsoft is still implementingmore features in ReFS,
and ReFS v3.2 is the latest version we used for our study, which
currently is only supported by one Digital forensic tool. We found
that ReFS was updated to version 3.4 when we performed our final
tests on ReFS. This version information was found in the corre-
sponding VBR of volumes we mounted to Windows 10, but it did
not change the structures we have described in this paper. A
complete list of ReFS versions can be found on wikipedia
(Wikipedia. Refs. 2019).
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The second objective was to see how Bþ tree balancing impacts
the recoverability of files in ReFS. We have found metadata attri-
butes in previously used Bþ tree nodes, and this information can be
used for recovery of previously deleted information. This is a se-
curity vulnerability and an opportunity for law enforcement.
Therefore, metadata carving should be considered as a technique
for recovery of files on ReFS.

The third research question was to see if digital forensic in-
vestigators can be confident in the accuracy of integrity protection
mechanism of metadata structures. We found that manipulation of
metadata could currently not be manipulated by known file system
manipulation tools. We tested with one often used tool, SetMace
(Schicht, 2014), and we performed one manual manipulation of a
timestamp, and one manipulation where we updated checksums.
These simple experiments show that the manipulation of metadata
in ReFS was unsuccessful, and that a manual manipulation could
leave the file system in an unrecoverable state. Our results increase
the confidence of the metadata protection mechanism found in
ReFS. Since the integrity protection algorithm is known, we may
assume that others will be able to modify all elements of the pro-
tection mechanism. The latter will decrease our confidence.

The fourth research question was how ReFS will impact the
recovery of files compared to NTFS. Because of remnants of FNA file
attributes, the recovery of files could be possible. However, Bþ tree
balancing could also overwrite nodes and attributes making the
recovery more difficult than in NTFS. Carving of data content could
still be used, and because of the COW (Copy-On-Write) we can
expect to find previous versions of file content.

Our contribution allows investigators to recover files manually,
and to manually connect metadata structures to the recovered files
if possible. We have also described how investigators can recover a
ReFS volume that has been reformatted with FAT32.

This is the first major reverse engineering attempt of ReFS, and
there is a need for further verification of our findings. Our findings
can be used when implementing new digital forensic tools.
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