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a b s t r a c t 

This paper introduces a bi-objective model for the offshore supply vessel planning problem (SVPP) in the 

oil & gas industry. The SVPP consists of determining a new weekly plan for sailing the platform supply 

vessels whenever the sailing plan needs revising due to some major events, such as the arrival or re- 

moval of drilling rigs, and demand increase or reduction in the current platforms. Apart from remaining 

cost-efficient, the new weekly plan is required to be persistent , i.e., exhibiting few changes from the pre- 

vious plan. To achieve this, we propose a bi-objective optimization framework that enables the planners 

to simultaneously take into account both costs and persistence-related objectives. The framework encom- 

passes a bi-objective SVPP model and a genetic search algorithm adapted from Borthen et al. (2018). We 

show that the proposed algorithm is able to provide high-quality solutions in reasonable time and has 

the decision support capability in real offshore operation planning. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In the offshore oil and gas industry, Platform Supply Vessels

PSVs) provide crucial logistic support for the daily operations of

ffshore oil platforms (also called offshore installations). These

pecially designed ships transport goods, tools, equipment and per-

onnel to and from offshore installations, and keep the installations

rovisioned and supplied for smooth and continuous production.

he Norwegian State Oil Company, Equinor (previously called Sta-

oil), acquires PSVs on time charter to supply their offshore instal-

ations on the Norwegian continental shelf. The PSVs are a costly

esource, as the charter rates and the fuel costs for operating the

SVs are expensive. Efficient use of the PSVs is therefore of great

nterest. 

Upon request by Equinor, Halvorsen-Weare et al. (2012) studied

he Supply Vessel Planning Problem (SVPP) with a set of offshore

nstallations, each requiring several services per week, and one on-

hore supply depot where PSVs load supply cargoes and discharge

ack-loads from the installations. The aim was to determine the

ptimal fleet of PSVs and their corresponding weekly sailing plan,

.e., the routes and schedules from the onshore depot, in order to
∗ Corresponding author. 

E-mail address: kjetil.fagerholt@ntnu.no (K. Fagerholt). 
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inimize the total expenses related to chartering and operating

he PSVs while fulfilling the demand for services of all installations.

ig. 1 illustrates two example weekly sailing plans for an SVPP in-

luding one PSV servicing four and five offshore installations from

n onshore supply depot by sailing two and three voyages every

eek, respectively, in the base plan and the updated plan. Each

oyage starts and ends at the supply depot (the arcs back to the

epot are not shown in the figure). In the base plan, servicing four

nstallations, the first voyage starts every Monday from the supply

epot and visits installations 1, 2 and 4 prior to sailing back to the

upply depot; its second voyage, on the other hand, starts every

hursday and visits installations 4, 3 and 2. 

The weekly sailing routes and schedules for the PSVs are nor-

ally valid for several weeks or months until some changes are

bserved or expected. These may include, e.g., the arrival or re-

oval of drilling rigs, and demand changes at the installations.

hen such events take place, the planners at Equinor would per-

orm a rescheduling by solving the SVPP again with updated infor-

ation. However, the new solution after rescheduling is often very

ifferent from the previous solution prior to the change. For ex-

mple in Fig. 1 , the new installation 5 has arrived and needs two

eekly services. To accommodate this, a new updated plan with

hree PSV voyages is proposed, which changes the times for when

ome offshore installations are serviced. For example, installation

, which was previously (in the base plan) serviced by two voy-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Two example weekly plans for a vessel servicing four and five installations. 
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a  
ages starting on Monday and Thursday, respectively, is now ser-

viced from Wednesday and Saturday voyages according to the up-

dated plan. This can lead to disruption to the operations at the in-

stallation, as the facilities and workforce establish their own sched-

ules and shifts according to the weekly plan of the PSVs. When too

many installations must adapt to such disruptions, the extra costs

for these adaptions might no longer be negligible when planning

new routes and schedules. The planners are therefore interested in

new solutions (weekly plans) that are persistent , i.e., close to or ex-

hibiting few changes from the current plan, the baseline solution . 

The contribution of this paper is the development of a bi-

objective framework that encompasses a bi-objective SVPP model

and an efficient solution approach that can find and identify a set

of high quality solutions to offshore supply vessel planning prob-

lems. We show that the Hybrid Genetic Search with Adaptive Di-

versity Control (HGSADC) proposed in Borthen et al. (2018) for

solving the single-objective SVPP and for other routing problems

in Vidal et al. (2012) can be generalized into a simple bi-objective

solution approach for this problem with a limited number of adap-

tations and extensions: (1) generalization of the fitness functions,

(2) addition of new local search operators and 3) the management

of an archive of non-dominated solutions. Furthermore, we demon-

strate using a set of real instances that this approach can pro-

vide valuable decision support for Equinor, regarding the tradeoffs

between cost and persistence when planning for new routes and

schedules for the PSVs. Moreover, we emphasize that the proposed

framework can be modified and applied to other bi-objective or

multi-objective contexts in offshore logistics planning where other

objectives are considered. 

The remainder of the paper is organized as follows.

Section 2 discusses the relevant studies in the literature. The

bi-objective SVPP model is proposed in Section 3 . The solution

method is described in Section 4 , while Section 5 presents the

computational study. We conclude in Section 6 . 

2. Literature review 

There are a number of papers in the literature that consider

the SVPP in offshore logistics. Common to all these studies are the

determination of the periodic (weekly in most cases) routes and

schedules for the voyages sailed by the PSVs, where each voyage

represents a route with a start day, a duration and a visiting se-

quence of installations. The SVPP therefore shares many similari-

ties with the Periodic Vehicle Routing Problem (PVRP), discussed

in the survey of Francis et al. (2008) . 

A simplified version of the SVPP where the “periodicity”

requirements on the installation visits were disregarded was
rst studied by Fagerholt and Lindstad (20 0 0) . These require-

ents were later included by Halvorsen-Weare et al. (2012) who

resented a voyage-based model using pre-generated voyages

or all PSVs, whereas Shyshou et al. (2012) proposed a large

eighborhood search heuristic to solve the SVPP. Recently,

orthen et al. (2018) presented a genetic search-based heuristic for

olving the problem, which is able to provide better solutions using

horter computation time compared with methods of Halvorsen-

eare et al. (2012) and Shyshou et al. (2012) . Some studies also

xtend the SVPP by considering uncertain weather conditions and

missions, see for example Halvorsen-Weare and Fagerholt (2011) ,

orlund and Gribkovskaia (2013, 2017) , Norlund et al. (2015) , and

isialiou et al. (2018a) . Furthermore, Kisialiou et al. (2018b) con-

idered flexible departure times for the PSVs and vessel coupling,

here installations have a one-week planning horizon and the

SVs have a two-week planning horizon, and where PSVs can swap

heir schedules in the second half of their planning horizon. 

In this paper, we propose a bi-objective optimization

odel that extends the model and solution method of

orthen et al. (2018) with the addition of a persistence-related

bjective. Brown et al. (1997b) pointed out that lack of persistence

s a major source of complaints when optimization models are

sed in real life, and that new solutions that “retain the features

f prior published plans” are more acceptable to decision makers

han solutions that require more changes. Brown et al. (1996) de-

cribed a problem of scheduling coast guard district cutters,

here the original objective is replaced with a surrogate objective

hat preserves persistence when revising an accepted schedule.

rown et al. (1997a) optimized submarine berthing with a persis-

ence incentive, by introducing a penalty in the objective function

or moving submarines when the current berthing plan is revised,

hereas Fagerholt et al. (2009) studied persistence in ship routing

nd scheduling. The term consistency is also frequently used as a

ynonym for persistence in the literature. The bi-objective SVPP

hares common traits with the consistent vehicle routing problem

 Kovacs et al., 2015 ), in which consistency is measured relatively

o customer’s service times and the assignment of drivers to

ustomers. Moreover, consistent delivery quantities are sometimes

esirable in inventory routing solutions ( Coelho et al., 2012 ). In the

VPP, consistency (or persistence) is mainly relevant for service

imes at offshore installations. More precisely, as explained in

ection 3.1 , our application case requires to consider consistency

n the departure days of vessels visiting the installations. 

It should be noted that in this paper, we have, in order to fo-

us on the bi-objective with the persistency, made two simplifi-

ations compared to some previous studies on the SVPP, see for

xample Halvorsen-Weare et al. (2012) , Shyshou et al. (2012) , and

isialiou et al. (2018a) . Firstly, we assume a homogeneous fleet of

SVs. Secondly, we do not consider that some offshore installations

ight be closed for service during nights. The reasons for making

hese simplifications, in addition to keeping the focus on the bi-

bjective model, are that the company considers all PSVs as simi-

ar for all practical purposes in the SVPP, and that the number of

nstallations that are closed for service during nights is small. 

The bi-objective SVPP that we consider in this paper is, like

he consistent vehicle routing and inventory routing problems dis-

ussed above, a type of multi-objective optimization problem where

ore than one (and usually conflicting) objectives are to be opti-

ized simultaneously. We refer to Deb (2014) for an introduction

o multi-objective optimization. The optimal solutions to a multi-

bjective optimization problem, all having the property that one

annot improve one objective without impairing other objectives

referred to as Pareto-optimal or non-dominated ), make up a so-

alled Pareto front in the objective space. The advantage of present-

ng a Pareto front is that decision makers can easily see how much

n improvement in one objective affects the remaining objectives,
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nd may subsequently use their preference for each objective to

elect which solution to use. 

For multi-objective optimization problems, it is often compu-

ationally infeasible to find the entire Pareto front, and most ap-

roaches aim to find an approximation. One of the common ap-

roaches is the ε-constraint method . The main idea is to optimize

nly one of the objectives while adding the remaining objectives as

onstraints, each limited by some value referred to as ε. When us-

ng the ε-constraint method, the problem needs to be solved once

or a number of ε values to create a Pareto front. Therefore a chal-

enge is setting ε values that give enough granularity without too

uch computation time. 

Genetic algorithms are also popular methods for solv-

ng multi-objective optimization problems. A genetic algorithm

 Mitchell, 1998 ) is a method based on natural selection that

evolves” a population of individuals , representing solutions to-

ards the optimal solution. The reason for the popularity of ge-

etic algorithms in multi-objective optimization is that they are

opulation-based and can thus search multiple regions of the

earch space simultaneously ( Konak et al., 2006 ). In addition, they

equire neither convex, continuous nor unimodal (having only one

aximum) solution spaces. 

. The bi-objective offshore supply vessel planning problem 

In what follows, we describe the bi-objective SVPP in

ection 3.1 , and present its mathematical model in Section 3.2 . 

.1. Problem statement 

Each PSV can sail more than one voyage during a week, where

ach voyage should respect a minimum and maximum duration

imit stated in days (e.g., two and three days, respectively). Each

oyage should also respect a minimum and maximum limit on the

umber of installations visited. Indeed, short voyages lead to unex-

loited capacity and long ones involve too much uncertainty. Each

oyage starts and ends at the supply depot. The PSVs’ capacities

urther restrict the number and selection of installations that are

isited along a voyage. Since the supply depot has limited opening

ours (between 8 am and 4 pm on weekdays) and the time for

reparing a PSV for a new voyage (e.g., loading/unloading) takes

ne working day, a PSV should arrive at the supply depot before 8

m to be able to start a new voyage on the same day. For similar

easons, only a limited number of PSVs can be prepared for a new

oyage in any given day. 

Each installation demands a certain number of visits during a

eek (service frequency), and has a given service duration. For

ach installation, the departures of the voyages servicing this in-

tallation must be evenly spread throughout the week in order to

rovide regular supplies, and no installation can be visited more

han once a day. Indeed, consider an installation that requires two
 a

Fig. 2. Example of the current and two new weekly plans. N
ervices a week, and a solution in which the PSVs servicing it de-

arts from the depot on Tuesdays and Wednesdays. If the instal-

ation places a delivery request just after the second PSV has left

n Wednesday, the next departure occurs six days later, leading

o very significant delays or expensive express deliveries by heli-

opters. 

Satisfying these requirements and constraints, the weekly plan

etermines: for each PSV, which day to start the voyages; then for

ach such voyage, which installations to visit in what sequence. At

ny point in time, the weekly plan by which the PSVs operate is

eferred to as the baseline solution . From time to time, the existing

lan or baseline solution needs to be revised. This can, for exam-

le, be the case when some offshore installations experience ma-

or demand changes (e.g., when moving from drilling to production

hase), new installations are to be serviced or installations are re-

oved and do not need service anymore, or when the number of

isits at some installations changes. 

When the weekly plan is to be revised, it is required that the

ew plan, while remaining cost-efficient, is such that the work-

rs and managers at any installation will not experience too many

hanges in the departures of the voyages servicing the installation.

or one installation, for example, a change is incurred if a previous

onday voyage servicing this installation is now serviced through

 Wednesday voyage instead. A new weekly plan having few such

hanges is regarded as persistent . Therefore, whenever the base-

ine solution needs to be revised, the bi-objective SVPP that we

ddress in this paper seeks to find a new weekly plan that min-

mizes the total costs, computed as the costs for sailing the PSVs,

nd at the same time minimizes its total changes from the baseline

olution. 

Fig. 2 illustrates three weekly plans for a small example with

nly one PSV and four installations, including the current plan and

wo possible new plans. The schedules of the voyages sailed by the

SV are indicated with rectangle boxes, and the sailing route for

ach voyage is represented by a sequence of installation numbers

ndicating the order in which the installations are visited. In this

xample, New Plan 1 and New Plan 2 have equal total costs be-

ause the voyages included are the same except for their starting

ays. However, considering the Current Plan as the baseline solu-

ion, New Plan 1 is preferable since it is more persistent than New

lan 2 from the perspective of the installations. Persistent plans

ake the operations at the installations more predictable for both

anagers and workers, who can focus on working as efficiently as

ossible instead of adapting to changes. For New Plan 2, the voyage

ervicing installation 4 is moved from Thursday in Current Plan to

onday in New Plan 2 – this leads to two changes for installation 4

f New Plan 2 is to replace the Current Plan (one cancellation and

ne addition). In fact, in this example, the number of changes for

ew Plan 1 from the baseline solution are {0, 0, 0, 0} for installa-

ions 1, 2, 3 and 4; whereas for New Plan 2 the number of changes

re {2, 0, 2, 2}. 
ew Plan 1 is preferred because it is more persistent. 
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γit ∈ { 0 , 1 } i ∈ N ∩ N , t ∈ T . (13) 
It should be noted that we measure the solution persistence for

installations relatively to the departure days of the vessels visit-

ing them. This is a direct requirement of the company, which con-

siders persistence in the departure days for the offshore installa-

tions much more important than persistence in the visiting days.

Irregular departure days would also force the offshore installations

to dynamically change their ordering procedures. Finally, we make

a small simplification of the SVPP in comparison to Halvorsen-

eare et al. (2012) and Shyshou et al. (2012) by removing time-

window requirements for offshore installations. This simplification

has been made in accordance with the company since very few in-

stallations have such opening hours in practice (only four out of

27), such that the solutions are likely to be directly feasible or eas-

ily adjustable, if needed. 

3.2. The bi-objective model 

We now present the mathematical formulation of the bi-

objective model for the SVPP. This model is based on Halvorsen-

eare et al. (2012) and Shyshou et al. (2012) . However, it dif-

fers from previous models in that: (a) a persistence-related objec-

tive is added, and (b) the fleet of PSVs is given as input (though

Section 4.3 explains how to determine the optimal fleet size when-

ever needed). 

We use the label-setting dynamic programming algorithm pro-

posed in Borthen et al. (2018) to generate the set of non-

dominated candidate voyages for the PSVs. Furthermore, V is the

set of PSVs, N the set of all offshore installations, T the set of days

in the planning horizon, L the set of all possible voyage duration

(in days), and F the set of all possible visit frequencies (number

of weekly visits) for installations. Let N f ⊆ N be the set of instal-

lations with frequency f , R v ⊆ R the set of candidate voyages that

PSV v can sail, R v i ⊆ R the set of candidate voyages for PSV v that

visit installation i , and R v l ⊆ R the set of candidate voyages for

PSV v that have duration l (in days). 

We denote by C S v r the cost of using PSV v for sailing voy-

age r . Let S i be the service frequency required (minimum num-

ber of weekly visits) by installation i, F v the number of days PSV

v is available to sail during the planning horizon, and B t the up-

per bound on the number of PSVs that may depart the supply

depot on day t . To ensure evenly spread departures we define

0 ≤ h f ≤ |T | to represent the length of an auxiliary sub-horizon

for those installations requiring f visits per week ( Shyshou et al.,

2012 ). During any sub-horizon h f , there must be at least P f and

no more than P f departures to an installation whose visit fre-

quency is f . For example an installation with f = 3 , i.e., requir-

ing three visits per week, would need at least one and no more

than two departures every three days to ensure even spread

of departures. This can be achieved by setting h 3 = 3 , P f = 1

and P f = 2 . 

Finally, we define x vrt to be a binary decision variable which

equals one if PSV v sails voyage r starting on day t , and zero oth-

erwise. 

Based on the above definitions, we first recall the constraints

of the SVPP model ( Borthen et al., 2018 ) before discussing the two

objectives: ∑ 

v ∈V 

∑ 

r∈R v i 

∑ 

t∈T 
x v rt ≥ S i i ∈ N (1)

∑ 

l∈L 

∑ 

r∈R v l 

∑ 

t∈T 
lx v rt ≤ F v v ∈ V (2)

∑ 

v ∈V 

∑ 

r∈R v 

x v rt ≤ B t t ∈ T (3)
∑ 

r∈R v l 

x v rt + 

∑ 

r∈R v 

l−1 ∑ 

τ=1 

x v r, (t+ τ ) mod|T | ≤ 1 v ∈ V, t ∈ T , l ∈ L (4)

P f ≤
∑ 

v ∈V 

∑ 

r∈R v i 

h f −1 ∑ 

h =0 

x v r, (t+ h ) mod|T | ≤ P f f ∈ F, i ∈ N f , t ∈ T (5)

x v rt ∈ { 0 , 1 } v ∈ V, r ∈ R v , t ∈ T . (6)

Constraints (1) ensure that the required service frequency for

ach installation is satisfied. Constraints (2) ensure that each PSV

oes not sail more than its availability. Constraints (3) restrict the

umber of PSVs departing the supply depot on every given day,

here a mod b denotes the remainder when dividing a ∈ N by

 ∈ N . Constraints (4) state that a PSV cannot begin a new voy-

ge before returning from its previous one. Constraints (5) make

ure that the departures to each installation are properly spread.

inally, constraints (6) enforce binary requirements on the decision

ariables. 

.2.1. Objective 1: minimizing cost 

inimize 
∑ 

v ∈V 

∑ 

r∈R v 

∑ 

t∈T 
C S v r x v rt (7)

The first objective function (7) , minimizes the sum of all sailing

osts. 

.2.2. Objective 2: minimizing changes from the baseline solution 

The second objective of the model is to minimize the total

umber of changes in the departures of the voyages as experienced

y the installations, i.e., maximizing persistence. Furthermore, we

nly consider the common installations that are serviced both be-

ore and after the revision of the baseline solution, i.e., we do not

onsider the installations that will be added or removed. 

Let N 

B be the set of installations considered in the baseline so-

ution. We then define σ it to be a binary variable that equals one

f there is a PSV departure servicing installation i on day t , and

ero otherwise. Recall that no installation can have more than one

eparture per day; σ it can therefore be represented as: 

it = 

∑ 

v ∈V 

∑ 

r∈R v i 

x v rt , i ∈ N ∩ N 

B , t ∈ T . (8)

Then, using σ B 
it 

to represent the corresponding values as input

rom the baseline solution, the second objective (minimizing the

otal number of changes in PSV departures experienced by the in-

tallations) can be written as: 

inimize 
∑ 

i ∈N ∩N B 

∑ 

t∈T 
| σit − σ B 

it | . (9)

Objective function (9) can be linearized by introducing a bi-

ary variable γ it that equals one if there is a change in depar-

ure to installation i on day t , and zero if otherwise, together with

he following objective function (10) and the additional constraints

11) to (13) : 

inimize 
∑ 

i ∈N ∩N B 

∑ 

t∈T 
γit (10)

γit ≥ σit − σ B 
it i ∈ N ∩ N 

B , t ∈ T (11)

γit ≥ σ B 
it − σit i ∈ N ∩ N 

B , t ∈ T (12)

B 
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Algorithm 1 The HGSADC algorithm for bi-objective SVPP. 

1: Initialize population � Borthen et al. (2018) 

2: while Iterations without improving Pareto front < I NI and time < T MAX do 

3: Select parent individuals s 1 and s 2 � Borthen et al. (2018) 

4: Generate offspring s new 

from s 1 and s 2 (crossover) � Borthen et al. (2018) 

5: Educate offspring s new 

� Section 4.2* 

6: if s new 

is infeasible then 

7: Repair s new 

with probability ρREP � Borthen et al. (2018) 

8: end if 

9: if s new 

is still infeasible then 

10: Insert s new 

into infeasible subpopulation 

11: else 

12: Insert s new 

into feasible subpopulation 

13: end if 

14: if maximum subpopulation size μ + λ reached then 

15: Select survivors � Section 4.2* 

16: end if 

17: Penalty parameters adjustment � Borthen et al. (2018) 

18: if Pareto front is not improved for I DIV iterations then 

19: Diversify population � Borthen et al. (2018) 

20: end if 

21: Update the current Pareto front S PARET O � Section 4.2* 

22: end while 
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. Solution method 

In this section, we present a Hybrid Genetic Search with

daptive Diversity Control (HGSADC) algorithm for solving the

i-objective SVPP. The algorithm is adapted from the genetic

ethod of Borthen et al. (2018) for the single-objective SVPP,

hich was again adapted from the HGSADC metaheuristic in-

roduced in Vidal et al. (2012) . In the present case, solving a

ulti-objective optimization problem amounts to producing a col-

ection of non-dominated, possibly Pareto-optimal, solutions in-

tead of a single one. We therefore extended the algorithm pre-

ented in Borthen et al. (2018) with a (1) generalized fitness func-

ion, (2) new local search operators to promote persistence, and

3) a management of the best non-dominated solutions in an

rchive. Section 4.1 provides an overview of the algorithm and

ection 4.2 details the needed adaptations. 

.1. Overview of the algorithm 

The general structure of our HGSADC algorithm is summarized

n Algorithm 1 . Through reproduction and variation, the algorithm

radually evolves an initial population of individuals to obtain bet-

er non-dominated individuals that provide an accurate approxi-

ation of the Pareto front. Algorithm 1 contains links to the sec-

ions where each method component is discussed. A star ( ∗) sign

ndicates that major modifications have been made when adapt-

ng the single-objective method of Borthen et al. (2018) to our bi-

bjective problem. These changes are detailed in Section 4.2 . The

ther parts of the HGSADC algorithm are only briefly summarized

ere, and we refer to Borthen et al. (2018) for more details. 

The initialization of the population is carried out by systemat-

cally creating a predefined number of individuals and allocating

hem to the feasible or infeasible sub-population after perform-

ng a local search-based education procedure. Then, when gen-

rating offspring individual, each parent is selected by a binary

ournament, i.e., randomly picking two individuals from the en-

ire population and choosing the one with the best biased fitness

 Section 4.2 ) as the parent. The crossover operator then takes over

nd combines the chromosomes of the two parent individuals into

 new offspring individual. The algorithm keeps generating off-
pring individuals until there have been I NI iterations without im-

rovement to the Pareto front, or the maximum running time limit

 

MAX is attained. Here, one iteration refers to the creation and im-

rovement of one individual, and the Pareto front is comprised of

he best non-dominated individuals found, which are stored in an

dditional solution archive through the search. 

Each newly generated individual, either in the population ini-

ialization or through crossover, undergoes education , and also re-

air if necessary, to improve its performance on one or both of

he two objectives. The new education procedures compared to

orthen et al. (2018) are described in Section 4.2 . Throughout the

earch the HGSADC algorithm keeps the population separated in

wo disjoint subpopulations: a subpopulation of feasible individu-

ls, and a subpopulation of infeasible individuals. Infeasible indi-

iduals are kept during the search because of the numerous ob-

ervations in the literature (e.g., Cordeau et al., 2001; Vidal et al.,

014; 2015 ) that underline the fact that allowing a controlled ex-

loration of infeasible solutions in the search process often im-

roves its performance, as optimal solutions often lie at the bound-

ry of feasibility. Here, individuals can be infeasible with respect to

he constraints on voyage duration, capacity and number of visited

nstallations. 

The size of each subpopulation is governed by parameters μ
nd λ, where μ is the minimum size and λ is the generation size

number of offspring), such that the maximum subpopulation size

s μ + λ. When the maximum size of any subpopulation is reached,

ts individuals are removed using a survivor selection process until

here are only μ individuals left in the subpopulation again. A di-

ersification procedure is also used to recover population diversity

hen no improvement to the Pareto front has been made during

he last I DIV iterations. 

.2. Adaptations of the HGSADC algorithm 

We now describe the modifications operated on the algorithm

f Borthen et al. (2018) to handle the bi-objective problem. 

.2.1. Generalized fitness function 

Appropriate individual fitness evaluations are essential in keep-

ng the search guided according to the desired objectives in the

urvival selection process. The fitness evaluation for an individual
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Algorithm 2 Changing installation pattern. 

1: Given individual s 

2: while N � = ∅ do 

3: i ← installation randomly selected from N 

4: if i / ∈ N 

B or πi (s ) = πB 
i 

then 

5: Remove i from N 

6: else 

7: Remove all visits to installation i in individual s 

8: πi (s ) ← πB 
i 

9: for t ∈ πB 
i 

do 

10: v = argmin v ∈V ψ(i, v , t) 
11: Insert i into r v t at the least cost position 

12: end for 

13: Return the updated individual s 

14: end if 

15: end while 
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s  
consists in Borthen et al. (2018) of two terms. The first is the pe-

nalized cost, which is a modified cost value that takes penalties for

infeasibility into account. The second term is a diversity contribu-

tion, which is included to represent the individual’s representation

to the population diversity. However, in our bi-objective SVPP, the

second persistence objective is to minimize changes from the base-

line solution. Therefore, we add a third term to the fitness evalua-

tion: the number of changes from the baseline solution. 

For a given individual s , the number of changes can easily be

calculated using (8) and (9) . To evaluate the overall fitness of an in-

dividual, the three measures, i.e., penalized costs, number of changes

from the baseline and diversity contribution , must be considered as a

whole. However, since they have different scales and units, we use

ranking to avoid any scaling issue ( Vidal et al., 2012 ): let Rank C ( s ),

Rank P ( s ) and Rank D ( s ) be the ranks of individual s in terms of pe-

nalized costs, number of changes from the baseline and diversity

contribution, respectively (rank 1 being the best). Then, we define

the biased fitness of an individual as a weighted sum of all three

ranks as follows: 

BF (s ) = Rank C (s ) + Rank P (s ) + 

(
1 − n 

ELI 

|S| 
)

Rank D (s ) , (14)

where parameter n ELI governs the weight of the diversity contribu-

tion in the evaluation. A higher value of n ELI gives lower weight to

diversity, meaning that the biased fitness of an individual depends

mostly on the objective values of the individual. 

4.2.2. New education operators 

Each newly generated individual, either during initialization or

through crossover of two parents, undergoes a local search-based

education process, and also repair if it is infeasible, to improve its

performance on one or both of the two objectives. The educa-

tion process is selected among the following four procedures with

equal probability: 

• Cost education 

• Persistence education 

• First cost education, then persistence education 

• First persistence education, then cost education 

The cost education aims to improve the individual in terms of

its performance on penalized costs through various types of local

searches, e.g., changing the order of visits in each voyage, changing

installation and PSV patterns, and attempting to merge two voy-

ages into one. The persistence education, on the other hand, aims

to improve the individual in terms of its number of changes from

the baseline solution. We now describe in more details the persis-

tence education; and we refer to Borthen et al. (2018) for the cost

education. 

Two procedures are designed for persistence-education, chang-

ing installation pattern and moving PSV departures to other days ,

both aiming to reduce the number of changes from the baseline

solution. For each persistence education, the changing installation

pattern procedure is applied once, followed by one run of the mov-

ing PSV departures to other days procedure. 

Changing installation pattern. This procedure is described in

Algorithm 2 . It selects a random installation and changes its in-

stallation pattern to the one given by the baseline solution. The

pattern for installation i of individual s is given by π i ( s ), which

provides the departure days for the voyages servicing installation

i . For example, πi (s ) = 1 , 4 means that installation i is serviced on

voyages starting on days 1 and 4. Similarly, πB 
i 

gives the installa-

tion patterns in the baseline solution. If the selected installation is

not in the baseline solution, or the patterns are the same, a new

random installation is selected. Let ψ( i, v, t ) be the minimum pe-

nalized cost for the insertion of installation i into the voyage sailed
y PSV v on day t . Then for each day in the new pattern, the instal-

ation visit is inserted into the position that results in the lowest

enalized costs. 

oving PSV departures to other days. Similar to changing installa-

ion pattern , this procedure aims to transform an individual to be-

ome more similar to the baseline solution, by moving a PSV de-

arture from one day to another and the installation visits along

ith it. Meanwhile it also tries to ensure that there are enough

SVs departing on each day to maintain feasibility, i.e., to service

ll the installations requiring a departure on that day as specified

y the installation patterns. 

The procedure is described in Algorithm 3 and consists of three

teps: (1) selecting a day t − to remove a PSV departure and a day

 

+ to add a new PSV departure, (2) moving installation visits from

ay t − to the new voyage on t + and (3) distributing the remaining

nstallation visits on t − to the remaining voyages. 

In Step 1, the procedure begins by calculating the number of

SVs that need to depart on each day in order to attain the base-

ine solution and the number of PSVs departing in the current indi-

idual. It then selects a random pair of days (t −, t + ) , where day t −

as more PSVs departures than required to attain zero change from

he baseline solution and day t + has fewer. Line checks that there

s at least one PSV departure on t − that can be moved to t + , i.e.,

hat the previous voyage of the PSV is finished before t + . It also

hecks that there is sufficient depot capacity for another PSV to

epart on t + . If no such PSV exists, a new pair of days is selected.

he PSV with the most time from t + until its next departure is

hosen as the PSV v to move, since it can sail the longest voyage,

nd a new voyage r v ,t + is created for PSV v on day t + . In Step 2,

andomly selected installations are removed from the set of instal-

ations with a departure on t −, N t − , and added to the end of r v ,t + .
his is done until the new voyage visits the maximum number of

nstallations, or there are no more installation visits left on t −. An

nstallation i is moved only if it has no departure on t + already

nd if t − is not in the baseline solution for i . Finally, the remaining

nstallations from the removed voyage are inserted into the least

ost positions in the other voyages on that day. 

After the education process, if the resulting individual is fea-

ible, it is referred to as naturally feasible ; otherwise, repair takes

lace with a given probability. The repair procedure consists in

epeating the (same type of) education process with 10 × higher

enalty parameters. If the individual is still infeasible, the educa-

ion process is run again with 100 × higher parameter values. 

.2.3. Management of the non-dominated solution archive 

Any individual s created by the education procedure is in-

erted into the adequate (feasible or infeasible) subpopulation in



T. Borthen, H. Loennechen and K. Fagerholt et al. / Computers and Operations Research 111 (2019) 285–296 291 

Algorithm 3 Moving PSV departures to other days. 

1: Given individual s 

STEP 1: SELECT DAYS TO MOVE DEPARTURE FROM AND TO 

2: for t ∈ T do 

3: n B t ← Number of PSV departures required on day t to attain baseline solution 

4: n t (s ) ← Number of PSV departures on day t in current individual s 

5: end for 

6: T − ← { t ∈ T | n t (s ) < n B t } � Days with too few PSVs departing 

7: T + ← { t ∈ T | n t (s ) > n B t } � Days with excess PSVs departing 

8: T C ← T − × T + 
9: (t −, t + ) ← pair of days randomly selected from T C 

10: if not feasible to move PSV departure from t − to t + then 

11: T C ← T C \ { (t −, t + ) } 
12: if T C � = ∅ then 

13: go to 9 

14: else 

15: Terminate procedure 

16: end if 

17: end if 

18: v ← PSV with highest number of days from t + until next departure 

STEP 2: MOVE INSTALLATION VISITS TO NEW DAY 

19: Create new voyage r v ,t + 
20: N t − ← installations with departure on t −

21: while | r v ,t + | < N 

MAX and N t − � = ∅ do 

22: i ← installation randomly selected from N t −
23: if i has no departure on t + already and t / ∈ πb 

i 
then 

24: Remove i from its voyage on t −

25: Add i at the end of r v ,t + 
26: end if 

27: Remove i from N t −
28: end while 

STEP 3: DISTRIBUTE REMAINING INSTALLATION VISITS 

29: if N t − � = ∅ then 

30: for i ∈ N t − do � Remaining installations in the removed voyage, r v ,t −
31: v = argmin v ∈V t − ψ(i, v , t −) 

32: Insert i into r v ,t − at least cost position 

33: end for 

34: end if 

35: Return the updated individual s 
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elation to its feasibility. In addition to the population, an archive

 

PARET O containing the best non-dominated individuals found so

ar is maintained. Each individual s is compared to the set of in-

ividuals in the archive. If s is non-dominated, then it is added to

 

PARET O and any individual that it dominates is excluded. Other-

ise s is not added to S PARET O . The archive is not limited in size so

s to contain all relevant solutions, in contrast to the population

hich is managed to retain a diverse and limited set of individ-

als by operating survivor selection phases based on their biased

tnesses ( Borthen et al., 2018 ). 

.3. Fleet-size optimization 

The algorithm described in the previous subsections considers

 fixed fleet size. However, some scenario changes (e.g., the ad-

ition of services to offshore installations) can lead to infeasible

roblems if the fleet size remains unchanged. This section explains

ow to determine the fleet size in such settings. As in our compu-

ational study in Section 5 , we consider here the case of a homo-

eneous fleet since the PSVs used by Equinor are for most practical
lanning purposes all similar to each other. In our application set-

ing, finding the optimal fleet size reduces to finding the minimum

easible fleet size. Indeed, any increase of the fleet size beyond its

inimum size is very costly, since the time charter cost is by far

he dominant part of the total cost. Equinor would therefore never

onsider a solution that uses more vessels than really required, no

atter how much this would increase the solution persistence. 

To find this minimum fleet size, we start with a large fleet size

nd perform a feasibility check (i.e., run the HGSADC algorithm).

s soon as one feasible solution is found, we remove one PSV from

he fleet and perform another feasibility check. The process iterates

ntil it is no longer possible to recover feasibility after the removal

f a PSV, in which case the last vessel is added back to obtain the

nal fleet size. 

It could be mentioned in the end that since they have already

n existing fleet of PSVs on longer or shorter contracts (used in

he baseline solution), the fleet size problem in practice usually

educes to evaluating whether the existing fleet still is sufficient,

r alternatively add or remove one PSV to find a feasible solution

ith minimum fleet size. 
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Table 1 

The test cases. 

Problem size Baseline 

Test cases # inst. # visits # inst. # visits Remarks 

Case S-1 12 40 9 29 adding 3 installations 

Case S-2 12 40 12 40 all load reduced by 25% 

Case S-3 12 40 15 52 removing 3 installations 

Case S-4 11 39 11 36 adding 3 weekly visits 

Case L-1 30 87 27 80 adding 3 installations 

Case L-2 27 80 27 80 all load reduced by 25% 

Case L-3 22 71 27 80 removing 5 installations 

Case L-4 27 83 27 80 adding 3 weekly visits 

Case L-5 27 85 27 80 adding 5 weekly visits 

Case L-6 29 85 27 80 adding 2 installations 
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5. Computational study 

In this section we present a computational study using data

provided by Equinor. To evaluate the performance of the proposed

HGSADC algorithm, ten problem cases have been used: four small

and six large (real-size) ones. For the four small cases, which have

up to 12 installations, we can compare the results of the HGSADC

algorithm with those of using the ε-constraint method on Model

( 1–8 , 10–13 ). 

The HGSADC algorithm has been implemented in Java 1.8 and

run on a MacBook Pro with an Intel Core i7-8650U CPU @ 1.90GHz,

2112Mhz, 4 Cores, 8 Logical Processors and 16GB of RAM. The ε-

constraint method was implemented and solved using the com-

mercial solver FICO Xpress 7.9.0 and run on a computer with a

3.4 GHz Intel Core i7 processor and 16GB of RAM running Windows

7 Enterprise. The parameters in the HGSADC algorithm have been

set to the same values as in Borthen et al. (2018) , where it was also

shown that the HGSADC algorithm produces better solutions to the

single-objective version of the SVPP than previous algorithms. 

In the following, we first describe the test cases in Section 5.1 .

Section 5.2 presents the comparison between the HGSADC algo-

rithm and the ε-constraint method when solving the four small

cases. Finally, the results on the six large real-size cases using the

HGSADC algorithm are discussed in Section 5.3 . 

5.1. Test cases 

All test cases consider one onshore supply depot, a planning

horizon of one week and a fixed fleet of two or four identical

PSVs (for small or large cases, respectively). The size of the cases

varies, considering 11 to 30 offshore installations, and 39 to 87 to-

tal weekly visits. The number of weekly visits required by an in-

stallation ranges from one to five, and the service time at each

installation ranges from one and a half to four hours. The supply

depot is open for eight hours (08.0 0–16.0 0) from Monday to Satur-

day and is closed on Sunday. Also, a PSV needs to be at the supply

depot before 08.00 to start on a new voyage the same day, and

all voyages depart from the depot at 16.00. Finally, every voyage is

constrained to visit between one and eight installations, and can

last a maximum of three days, with no requirement on the mini-

mum duration. 

The test cases we use in the computational study represent typ-

ical scenarios where the weekly plan must be revised due to some

major event, and are all based on the experience of the planners

at Equinor. We first describe the four small problem cases: 

• Case S-1: Adding new installations 

The original weekly plan servicing nine installations (29 total

weekly visits), which is used as baseline solution, must be re-

vised because of the addition of three new installations. The
new SVPP problem considers 12 installations and 40 weekly

visits. 
• Case S-2: Load reduction 

The original weekly plan servicing 12 installations (40 weekly

visits) must be revised because the demand, and hence the ser-

vice time, at each installation are reduced by 25%. The original

12–40 plan before load reduction is used as baseline solution. 
• Case S-3: Shutdown of installations 

The original weekly plan servicing 15 installations (52 weekly

visits) must be revised because three installations have been

shut down and removed from the problem. The new SVPP

problem considers 12 installations (40 weekly visits), and the

original 15–52 plan is used as baseline solution. 
• Case S-4: Adding visits to installations 

The original weekly plan servicing 11 installations (36 weekly

visits) must be revised because three installations now each re-

quires one extra visit every week. The new SVPP problem con-

siders 11 installations (39 weekly visits), and the original 11–36

plan is used as baseline solution. 

In addition to the small cases, we also use six large real-size

ases with increased number of installations and weekly visits,

overing the same four types of scenarios as described above. We

ummarize all test cases in Table 1 , where we under “Baseline”

how the characteristics of the original problem for each case from

hich the “baseline solution” is derived. 

.2. Comparison with ε-constraint method on small cases 

The small cases with 11 or 12 installations can be solved to

ptimality using the ε-constraint method. To implement the ε-

onstraint method to solve the bi-objective SVPP problem, we start

y setting ε to the largest possible number of changes from the

aseline solution, i.e., the maximum feasible value the objective

unction (10) can take, which equals |N ∩ N 

B | × |T | . The objective

unction (10) is then replaced by the following constraint: ∑ 

 ∈N ∩N B 

∑ 

t∈T 
γit ≤ ε. (15)

The resulting single-objective problem is solved to optimality

sing FICO Xpress to obtain a Pareto-optimal solution. This process

s then repeated after reducing ε by one, until no feasible solution

an be found. The final set of Pareto-optimal solutions constitutes

he optimal Pareto front. It should be noted that this method re-

uires pre-generating the feasible PSV voyages, which we do using

he label-setting algorithm of Borthen et al. (2018) . 

Fig. 3 shows the results obtained by our bi-objective HGSADC

lgorithm for the small cases. Each case is solved ten times with

he HGASDC algorithm using different initial seeds. For each case,

e display the combined Pareto front obtained among all ten runs

f the HGSADC algorithm, shown by the blue points. The red points
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Fig. 3. The optimal Pareto front found by the ε-constraint method compared with the results from ten runs of the HGSADC algorithm for the four small test cases. 
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how the solutions that were part of the approximated Pareto front

ound by the HGASDC algorithm in at least one of the runs, but

hat were later dominated by the combined Pareto front. The num-

ers above each point show the number of times each solution

as found among the ten runs. For all four cases, the combined

ronts obtained among the ten runs of the HGASDC algorithm co-

ncide with the optimal Pareto fronts obtained by the ε-constraint

ethod, which show that the HGSADC algorithm was able to solve

hese cases to optimality. 

We note that most of the HGASDC runs are able to find almost

ll solutions along the Pareto front (i.e., most of the numbers above

he blue points are close to 10). Two exceptions here are Cases S-

 and S-3, where one of the Pareto-optimal solutions were found

nly one and four out of the ten runs, respectively. It can also be

oted that even the dominated solutions that were found in some

f the runs (the red points in Fig. 3 ) are good solutions that are

ery close to the optimal Pareto front. 

In Case S-1, for example, the optimal Pareto front consists of

our Pareto-optimal solutions. The rightmost Pareto-optimal point,

here the total cost increase is 0 and the number of changes from

aseline equals 22, represents the solution with the lowest pos-
ible total costs, i.e., the optimal solution with only cost mini-

ization as objective. On the contrary, the leftmost Pareto-optimal

oint on the optimal front represents the solution with the low-

st possible number of changes: 16 changes from the baseline so-

ution. In other words, after taking persistence into account, the

umber of changes can be reduced from 22 to 16 by increasing

he total costs by less than 0.35%. The decision as to whether it is

orthwhile then rests with the planners. 

It should be noted that the costs used in Fig. 3 (as well in Fig. 4 )

nclude the fixed time-charter costs for the PSVs (including crew),

s these are the costs that are of most interest to the planners.

ince the time-charter cost dominates the variable sailing (fuel)

ost, the cost differences are rather small. By only looking at the

ariable sailing cost in Case S-1 for example, the cost difference

etween the original and the updated cost-optimal plan is 2.3%

instead of less than 0.35% including the time-charter costs). 

Table 2 shows the run times for the ε-constraint method and

he HGSADC algorithm to obtain the Pareto fronts in Fig. 3 . For

he HGSADC algorithm, we record the average run time over ten

uns, and the coefficient of variation (CV) of the run time. The CV

s calculated as the standard deviation divided by the mean. 
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Fig. 4. The combined Pareto fronts found by ten runs of the HGSADC algorithm for each of the six large test cases. 
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Table 2 

Run times for the ε-constraint method and the HGSADC algorithm 

to obtain Pareto fronts for the small cases. Results for the HGSADC 

algorithm are based on ten runs. 

ε-constraint HGSADC 

Test cases Time (s) Avg. time (s) CV of time 

Case S-1 142 110 34% 

Case S-2 138 64 25% 

Case S-3 183 106 18% 

Case S-4 49 53 12% 

Average 128 83 25% 
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Table 3 

Run times for the HGSADC algorithm to obtain 

the Pareto fronts for the large cases. Results are 

based on ten runs. 

HGSADC 

Test cases Avg. time (s) CV of time 

Case L-1 364 124% 

Case L-2 192 30% 

Case L-3 347 40% 

Case L-4 243 26% 

Case L-5 324 23% 

Case L-6 600 46% 

Average 345 48% 
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From Table 2 we observe that the HGSADC algorithm requires

lightly less run time in general for solving the four small cases,

eeding on average 83 s in contrast to 128 s required by the

-constraint method. However, note that we only compare the

wo methods on small cases with a maximum of 12 installa-

ions because this is the largest size that FICO Xpress is able

o solve within a reasonable time (10,0 0 0 s). It has been shown

n Borthen et al. (2018) that when attempting to solve single-

bjective SVPP problems with 13 or 14 installations, FICO Xpress

nly manages to find solutions with large optimality gaps (around

0%) after 10,0 0 0 s and no feasible solutions at all for even larger

roblems. When implementing the ε-constraint method, since the

ingle-objective SVPP problem is not only solved once but must be

olved iteratively, FICO Xpress is therefore not able to handle cases

ith more than 12 installations. 

The HGSADC algorithm, on the other hand, has been shown to

nd high-quality Pareto fronts in reasonable time for all four small

ases. Its performance is also stable: it finds approximately the

ame front in each run ( Fig. 3 ); and a coefficient of variation of 25%

ndicates that its time consumption is also quite stable ( Table 2 ). 

.3. Results on large real-size cases 

When facing real-size problems with more than 20 installa-

ions, e.g., the large Cases L-1, L-2, L-3, L-4, L5, and L-5 in Table 1 ,

he exact ε-constraint method becomes computationally impracti-

able. Therefore, only the HGSADC algorithm is run on these four

ases. 

Fig. 4 shows the combined Pareto fronts obtained among ten

uns of the HGSADC algorithm for each of the large cases. The

orizontal axis is the number of changes from the baseline so-

ution, and the vertical axis shows the % increase in total costs

rom the lowest known total costs. The lowest known total costs

re obtained by ten runs of the single-objective HGSADC algorithm

 Borthen et al., 2018 ) for each case. 

From the results of Cases L-2 and L-3 in Fig. 4 , we see that the

GSADC algorithm manages to find solutions with zero changes

rom the baseline solutions, and increase in total costs of only

round 0.2% and 0.6%, respectively. These are probably the most

deal solutions for the management of the installations, since they

an expect the same visiting patterns from the depot as before.

owever, the Pareto fronts found by the HGSADC also provide

ther alternatives for the offshore planners if some changes from

he baseline solution are acceptable. 

In Fig. 4 , we also observe that more dominated solutions are

enerated by the HGSADC algorithm for the large cases compared

o the small ones shown in Fig. 3 . However, most of these domi-

ated solutions remain very close to the Pareto front. One excep-

ion here is Case L-4, where Fig. 4 shows several dominated so-

utions that are relatively far away from the Pareto front. Never-

heless, since every run is completed in a few minutes, this small

erformance instability can be circumvented by performing multi-

le runs and combining the fronts. Table 3 shows the average and
V of the run times for the HGSADC algorithm to obtain the Pareto

ronts in Fig. 4 . On average, HGSADC algorithm takes less than six

inutes, with a coefficient of variation of 48%, to obtain a Pareto

ront for a problem of realistic size. This enables multiple runs of

he algorithm in reality to achieve better Pareto fronts and a bet-

er decision support for offshore planners, since the frequency at

hich the problem needs to be solved is typically once very few

eeks. 

. Conclusion 

In this paper we have proposed a bi-objective optimization

ramework for the offshore supply vessel planning problem (SVPP)

hat simultaneously takes into account two objectives: minimiz-

ng cost and minimizing changes from the baseline solution (or max-

mizing persistence), so that the new solution deviates from the

aseline solution as little as possible. We presented a bi-objective

VPP model and a genetic search approach for providing high-

uality solutions, i.e., new weekly plans for the PSVs that are cost-

fficient and close to the baseline solution. We tested the solu-

ion approach on cases of both small and large sizes based on real

roblems faced by Equinor. Through comparison with an exact ε-

onstraint method on four small cases, we showed that the pro-

osed Hybrid Genetic Search Algorithm with Advanced Diversity

ontrol (HGSADC) algorithm is able to provide high-quality Pareto

ronts in reasonable time. For large real-size cases where the ε-

onstraint method is not applicable, the proposed HGSADC algo-

ithm was shown to have the decision support capability in real

ife operations. 

One interesting direction of future research is to modify the

GSADC algorithm to handle other objectives. For example, instead

f, or in addition to, persistence, one can consider robustness of

he weekly plan against unforeseen events as additional objectives.
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