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Abstract—The presence of sea ice is the predominant risk for
ship operations in the Arctic, and monitoring of ice condition
around a vessel is crucial during all times of operation. This
paper presents a system for online onboard assessment of ice
condition. It is demonstrated that ice-induced accelerations in
the bow section of the hull follow a bivariate t-distribution and
that parameters of the distribution have a one to one relation to
ice condition. The paper suggests a methodology to monitor the
ice condition in real time through estimation of parameters that
characterise the distribution of hull accelerations. It is shown how
a Kullback-Leibler divergence measure can classify ice condition
among a set of pre-trained conditions. An absolute measure of ice
load is suggested as an alternative for situations when pre-training
data are not available. The alternative algorithm quantifies the
condition through the entropy of measured accelerations. The
article presents a computationally easy methodology and tests
against data collected during Arctic transit of an icebreaker.
Further, the classification results are compared with the results
from two standard methods from machine learning, decision tree
and a support vector machine approaches. The results show that
the statistical methods provide robust assessment of the prevailing
ice conditions, independent of visual and weather conditions.
The also comparison shows that the statistical classification
methods, designed by process knowledge, provide steadier and
more reliable results.

Keywords—Arctic; bivariate t-distribution; entropy; generalised
log-likelihood ratio; IMU; Kullback-Leibler divergence; machine
learning; ocean engineering; sea ice; ship-ice interaction, statistical
change detection.

I. INTRODUCTION

Operations in the Arctic are heavily influenced by ice loads
as the predominant risk factor. Accidents impairing the fragile
environment of the Arctic have to be avoided at any cost
[1]. Therefore, ice management ensures that ice loads on a
protected vessel do not exceed its structural and operational
safety limits [2]. Ice management relies on ice intelligence,
which is the process of collecting and processing information
about the ice environment [3], [4]. It is beneficial to collect
this information in situ, without the need of external platforms
such as satellites, drones, or buoys. The system collecting the
information should be able to operate without weather-related
limitations. It should be possible to process ice information in
real-time into a format, which is useful as decision support
for operators, and which can be used as input to a control and
monitoring system.

Present ship-based ice observation systems employ optical
cameras, e.g. [5], [6], and image processing extracts informa-
tion such as ice concentration, floe size distribution [7]–[11],
and ice thickness [12]. Camera based ice intelligence becomes
unavailable in harsh weather conditions, such as fog or heavy
snow. Shipborne synthetic aperture radar (SAR) systems can

NOMENCLATURE
abib Dynamic acceleration at at origin of body frame
abis Dynamic acceleration at sensor location
B(x, y) Beta function
bbas Sensor bias
c Mean vector
Dkl Kullback-Leibler divergence
F Smooth function
fbi,s Specific force denoted in body frame
fsi,s Specific force denoted in sensor frame
f(x;µ, s, ν) Univariate t-distribution
f(x; θ) Multivariate t-distribution
f(z; θ) Bivariate t-distribution
G Cumulative distribution
Gki (θ̂, θp) Test statistic defined in (27)
ḡn Gravitational vector
g Standard gravity (9.80665 m·s−2)
g(k, θ̂) Test statistic of best fitting trained ice condition
hG Threshold for seperation of ice conditions
H(θ) Statistical entropy for bivariate t-distribution
Hp Hypothesis that trained ice condition p fits best
H6=p Hypothesis that any other condition besides p fits better
k Running index for sliding data window
Lki Log-likelihood function
lbs Lever arm length
N Length of sliding data window
P The set of all trained ice conditions
Pclas Probability of classification
pb
bs Position of sensor in regards to body frame
pb
CO Position of centre of orientation
p Index for trained ice condition
p(k) Declared ice condition
Rbn Rotation matrix between NED frame and body frame
R(Θ) Rotation matrix with orientation Θ
S Correlation matrix
s Scale parameter
wbas Sensor noise
zki Sliding data window
αbib Angular acceleration
Γ(x) Gamma function
θ Pitch angle
θ Parameters set
θ̂ Estimated parameter set
θp Parameter set for a trained ice condition p
µ Location parameter
ν Degrees of freedom
ξbs Local vibration component
φ Roll angle
Ψ(x) Digamma function
ψ Yaw angle
ω(x; θ) See (10)
ωbib Angular rate

help to identify ice fields, but SAR is unreliable in the close
vicinity of the vessel [13]–[15]. Inertial measurement units
(IMUs) provide direct information about exterior loads on
the vessel. IMUs are inexpensive, easy to install, and do not
depend on weather conditions. Johnston et al. [16] showed that
shipboard IMUs provide global loads from interaction with
sea ice. Kjerstad et al. [17], [18] extended the approach to
four distributed IMUs. These approaches provided global load
information. It is desired to obtain spatial information about the
surrounding ice, taking into account that the ship’s hull is not a



rigid, but rather a flexible and deformable body. Strain gauges
measure strain and bending. Locally induced ice loads can be
extracted from such measurements [19], [20]. In contrast to
IMUs, strain gauges are time-consuming to install, and thus
expensive [21]. This study therefore focus on the problem of
assessing local ice condition based on measurements by IMUs
placed in the hull of the ship.

Changes in ice load depend on the vessel’s velocity, shape
of the hull, and on the properties of the ice, such as density,
thickness, and salinity [22], [23]. The properties of the ice
have a large local variability, which results in sudden changes
in magnitude of the ice-induced loads, especially upon the
encounter of ice ridges [24]. Studies conducted with data from
strain gauges suggested that the measured ice loads could
be described statistically [25], e.g., by a Weibull distribution
[26], by a log-normal distribution [19], or by a 3-parameter
exponential distribution [27]. The Weibull and log-normal
distributions are heavy tailed distributions. A recent study [28]
showed that local ice-induced vibrations, measured by IMUs
in the hull of an icebreaker, follow a non-central, scaled t-
distribution, where the shape changes with the ice condition.

The goal of the paper is to develop and validate a fast,
online, shipborne ice assessment system based on the esti-
mation of parameters in the distribution of local accelera-
tions. Data from in-plane accelerometers are used to find a
statistical model of local ice-induced accelerations. Typical
distribution parameters for four ice conditions are determined
using training data. Under operations, the distribution param-
eters are estimated for small time windows and compared
to the parameter sets from the trained ice conditions. The
paper proposes two custom methods to assess ice-induced
hull accelerations: Method one employs a modified Kullback-
Leibler divergence to find the trained ice condition that best
describes the measured data. Method two utilises directly the
change in signal entropy to classify the severity of ice loads.
The results from both classification approaches are validated
using data obtained during the transit of an icebreaker. Data
from a camera system that observed the visual ice condition is
used for reference. Furthermore, the classification results are
compared with the results from two trained machine learning
classification models, namely a trained decision tree model and
a trained support vector machine (SVM) model.

The paper is structured as follows. Section II introduces
the experiment setup and documents training data for dif-
ferent ice conditions. Section III describes how ice-induced
accelerations are modelled by a bivariate t-distribution and
derives a maximum-likelihood estimator for recursive param-
eter estimation of the distribution. Section IV presents the
statistical methods for ice condition classification seconded
by two standard machine learning approaches. Section V
validates the classification approaches with data sets obtained
onboard an icebreaker. Furthermore, the section also presents a
comparison between the custom classification approaches and
the two trained machine learning models. Section VI assess
the robustness of results and suggests how the monitoring
technology could best be applied. A final section provides
discussion of results and conclusions.

Fig. 1: Placement of the inertial measurement units (IMUs).

II. PROBLEM FORMULATION

The problem at hand is to determine the ice condition
and to capture changes in ice condition at a section of the
ship’s hull from local acceleration measurements in the interior
structure. The detection of a change in ice condition must be
fast enough to detect sudden changes in ice thickness, which
typically occur when the ship encounters an ice ridge [19],
[29]. The system must therefore detect changes within seconds
to give enough time for the crew or a control system to prevent
getting locked-in ice.

A. Measurement setup

A test system was established with two IMUs installed
on the Swedish icebreaker Oden during the Arctic Ocean
2016 expedition [30]. A summary of the icebreaker’s technical
specifications is given in Table I.

Figure 1 illustrates the placement of sensors. IMU 1 was
installed close to the geometrical centre of symmetry of the
hull. Its purpose was to provide reference data of the global
accelerations acting on the vessel. IMU 2 was installed inside
the hull, at the ice knife of the vessel. This unit recorded local
vibrations in the bow section of the hull. The data provided
by IMU 2 will be used for the ice diagnostic system, with the
aim to detect changes in ice condition at the bow section. The
full technical specifications of the IMUs can be found in [32].

B. Model of the sensor data

Each sensor contains three orthogonal accelerometers as
illustrated in Figure 2. The three accelerometers record the
specific forces, fsis ∈ R3 in the sensor frame {s} with
respect to an inertial frame {i}. A rotation matrix R(Θbs)
(see [33], Eq. 2.18), transforms the recorded specific forces to

TABLE I: Technical data of icebreaker Oden [31].

Length 107.75 m
Beam 31.2 m
Draft 7.0 - 8.5 m

Total power 18 MW
Speed in open water 15 knots

Icebreaking capability 1.9 m level ice at 3 knots
Bunker capacity 4600 m3

Displacement 11.000 - 13.000 t

Propulsion 4 medium speed diesel engines
2 propellers in nozzles



TABLE II: Placement of IMUs
relative to CO.

IMU 1 IMU 2

x 0 m 33.95 m
lbs y 0 m 0 m

z 0 m -8.39 m

φs −0.58◦ −2.90◦

Θbs θs 180.45◦ 180.05◦

ψs 106.00◦ 90.00◦

ax

ay

az

Fig. 2: IMU sensor con-
taining three accelerome-
ters.

the ship’s body frame {b}, where Θbs = (φs, θs, ψs) describes
the orientation of the sensor, see Table II:

f bis = R(Θbs)f
s
is. (1)

The rotated sensor output for the accelerations is modelled in
standard literature, [33], [34]:

f bi,s = abis −Rb
nḡ

n + bbas +wb
as , (2)

where abis ∈ R3 is the dynamic acceleration in the location s
of the sensor with respect to {i}, Rb

n ∈ R3×3 is the rotation
matrix between the north-east-down (NED) frame {n} and
{b}, ḡn = (0, 0, g) is the gravitational vector [34] in {n},
bbas ∈ R3 contains the sensor bias, and wb

as ∈ R3 accounts
for the sensor noise. The translational accelerations abis can be
transferred to the origin b of the ship’s body frame (i.e., the
centre of orientation (CO)),

abib = abis − S(ωbib)
2lbs − S(αbib)l

b
s, (3)

where ωbib ∈ R3 and αbib = ω̇bib are the angular velocities
and accelerations of b relative to {i}, respectively, and lbs =
pbbs−pbCO is the lever arm from {b} to {s}. S(ω) is the skew-
symmetric matrix, that represents the cross product operator
ω×,

S(ω) =

[
0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

]
. (4)

The measured accelerations f bi,s at the sensor’s location contain
a translational component abis, and in addition a local vibration
component ξbs, which is typically damped out through the
flexibility of the hull structure and attenuated in the vessel’s
origin b. Hence, an IMU located in CO may not feel the local
vibration component at the bow; however, when transforming
the measurements f bi,s in s to CO, the vibrations are part of
the signal, according to

abib = ãbis − S(ωbib)
2lbs − S(αbib)l

b
s

= f bi,s +Rb
nḡ

n − S(ωbib)
2lbs − S(αbib)l

b
s

− bbas − ξ
b
s −wb

as ,

(5)

with ãbis = abis − ξbs being the vibration free acceleration at
the sensor’s location. The rotated in-plane specific forces f bis,x
and f bis,y were utilised in this study.

C. Mapping of roll- and pitch angles from acceleration mea-
surements

Under operations, the ship experiences roll and pitch mo-
tions, which change the attitude angle of the ship. Under the
assumptions that the average acceleration with respect to the
environment is zero for a sufficiently large data window [33]
and the accelerometers are calibrated to remove bias, the total
additional roll and pitch angles experienced by the sensors can
be estimated by:

φadd ≈ atan2 (−āy,−āz) (6)

θadd ≈ −atan2
(
āx,
√
ā2
y + ā2

z

)
, (7)

where atan2(y, x) provides an angle in the interval (−π, π]. If
gyro data were available, they could be utilised to enhance the
precision of the attitude estimation, using an extended Kalman
filter or nonlinear observers; see [35].

D. Preprocessing

Preprocessing of accelerometer data were performed as
follows:

• To assure that sensor noise is not entering the di-
agnostic system, and to accelerate processing, the
data recorded at 100 Hz, were decimated to 20 Hz,
with prior lowpass filtering to 10 Hz and subsequent
downsampling. It was shown in [36], [37] that a
frequency spectrum up to 10 Hz allows for the capture
of relevant ice-induced hull vibrations. The utilised
lowpass filter was a Chebyshev Type I filter of order 8
with a passband ripple of 0.05 dB.

• Each accelerometer was calibrated to minimise the
measurement bias.

• Influence of roll and pitch were removed in pre-
processing using (6) and (7) on the mean of a suf-
ficiently large data window.

• The in-plane (in body frame coordinates) acceleration
measurements were used. The horizontal plane accel-
eration will be shown to follow a bivariate statisti-
cal distribution, see III-B. This distribution has clear
mathematical advantages. By omitting the vertical
acceleration, compensation of fast pitch motions was
not needed.

E. Training data sets

Training data sets were recorded under the following
conditions:

• The training data sets were collected at a constant
speed of the vessel (5 knots). The result of the ice
condition assessment depends on the speed of the
vessel. Therefore the validation data were recorded
under normal ice-breaking velocities of the vessel (3-
7.5 knots).

• Because the sensor was placed in the bow, the ice
action had to occur against the bow of the vessel.

Four ice conditions are shown in Figure 3. The upper
left image shows the condition of open water, denoted as



Fig. 3: Pictures of the trained ice conditions, a) Open Water b) Broken ice, c) Close ice d) Very close ice.

HOW . The upper right image shows a condition of open
ice, HOI . The lower left image shows close ice, HCI , and
the lower right image shows very close ice, HV CI . Half a
minute of accelerations were recorded by the IMUs under
each ice condition. These data were used as training data for
the detection system. The rotated x- and y-acceleration data
from IMU 1 and IMU 2 are depicted in Figures 4a and 4b,
respectively, for each of the ice conditions. The scatter plots
also include the 99%-confidence ellipses for data from each
ice condition. The measurements from both IMUs, for all ice
conditions, are centred near the origin. Furthermore, the radius
of the confidence ellipses increases with the severity of the
ice conditions. The reason is that the measured accelerations
scatter significantly more under heavy ice conditions due to
an increase in variance of the recorded signals. The data from
IMU 2 show significantly more scattering for each ice condi-
tion than data from IMU 1. The additional local vibrations ξbs,
present at the location of IMU 2, are assumed to give rise to
this behaviour. Therefore, the measurements from the in-plane
accelerometers of IMU 2 will be used throughout this study.
Measurements from IMU 1 were discarded because they do
not contain local ice-induced hull vibrations that would allow
for a clear distinction of ice conditions based on acceleration
data.

F. Problem statement

The change in ice conditions around a vessel is a con-
tinuous process. The severity of ship-ice interaction can be
classified into a set of conditions, each of which characterise
the distribution of hull accelerations. Table III describes four
trained ice conditions. The number of ice conditions is arbi-
trary and can be increased if a more fine-grained classification
is of interest. The ice condition can change without notice at
an unknown change time k0. The x- and y-components of the
acceleration vector described in (5) are congregated in z. At
each time instance k, the last N measurements are considered:
z ∈ R2×N . The measurements are assumed independent and
distributed with a bivariate probability distribution f(z;θ).

TABLE III: Trained ice conditions.

Hypothesis Ice condition Ice cover*

HOW Open water < 10%

HOI Open pack ice 11% - 60%

HCI Close pack ice 61% - 80%

HVCI Very close pack ice 81% - 100%

*Visual ice coverage on sea surface.

To show that statistical independence can be justified, the
appendix provides a correlogram of the measurement data
from case 1 (see Section V.A). The parameters θ of this
joint probability distribution change with the ice condition.
Following the concept of change detection, described in [38],
at a time instant k it must be decided which of the trained ice
conditions fits the recorded data best. The problem consists of
three parts:

• Estimation of the current parameter vector θ.

• Generation of a test statistic.

• Decide on an ice condition hypothesis Hp.

This combination of estimation of parameters from given sig-
nals, change detection from an estimated set of parameters, and
declaring a hypothesis from a test statistic defines a diagnostic
system, as shown in Figure 5. The hypothesis testing is in its
principles similar to the one-vs-all multi-class extension for
support vector machines (SVMs) [39]. For each condition a
hypothesis test exists to distinguish the data sample between
two hypotheses, namely accept the condition or accept another
condition.
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Fig. 4: Scatter plots of 30 seconds of acceleration data from (a)
IMU 1, and (b) IMU 2 under each considered ice condition.
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Fig. 5: Structure of an ice diagnostic system.

III. PARAMETER ESTIMATION IN BIVARIATE
T-DISTRIBUTED DATA

A. Statistical change detection for heavy-tailed data

Hypothesis testing in Gaussian distributed data is a well
established field of research, and an extensive overview can
be found in [40]. Detecting changes in a measured signal
has parallels with outlier detection [41]. While in applied

statistics, the multivariate t-distribution is well established and
thoroughly treated in [42]–[44], it has just recently found
interest in fault diagnosis and statistical change detection. In
contrast to the Gaussian distribution, the t-distribution allows
for better modelling of heavy tailed data. Heavy tailed data
occur in cases of commonly expected outliers, which is often
the case in tracking applications [45] or in any application
where sudden changes are to be expected. Due to the heavy
tail characteristic of t-distributed data, outliers in the data have
less impact on the parameter estimates [46]. This allows for a
more robust parameter estimation, which is crucial for reliable
change detection [38].

For the purpose of drillstring washout detection, [47] first
presented statistical change detection on t-distributed data us-
ing generalised log-likelihood ratio (GLR) testing. The authors
derived GLR tests for changes in the mean of univariate
and multivariate t-distributed data. They assumed known scale
and degrees of freedom parameters, and then they employed
maximum likelihood estimators (MLE) for the estimation of
the mean in the t-distributed data. For condition monitoring of
floating wind turbine drivetrains, [48] showed that statistical
change detection for unknown changes in scale and degrees
of freedom of a univariate t-distribution can be used. The
authors employed both a moment estimator and an MLE for
estimation of the unknown parameters of the t-distribution.
While a moment estimator for scale and degrees of freedom
requires large window sizes for robust estimation and enough
degrees of freedom, such that the excess kurtosis is defined
(ν > 4), the MLE provided robust estimates, also for short
data windows, at the computational cost of solving a set of
nonlinear equations.

B. Bivariate t-distribution

The previous study [28] showed that ice-induced accelera-
tions can be statistically modelled by a univariate t-distribution.
This is defined as

f(x;µ, s, ν) =
Γ((1 + ν)/2)

Γ(ν/2)s
√
πν

(
1 +

(x− µ)2

νs2

)− 1+ν
2

, (8)

where Γ(x) =
∫∞

0
tz−1e−1 dt is the gamma function. The

three parameters that define the t-distribution are: location
µ ∈ R, scale s ∈ R, and degrees of freedom ν ∈ R. The
univariate t-distribution depends on the results from evaluating
the gamma function, which is a computational burden when
the parameters for the distribution have to be estimated [49].
To avoid this gamma function evaluation, the following will
show how the parameters of a bivariate t-distribution can be
estimated with ease if data sets of the x- and y-acceleration
are used together.

The bivariate t-distribution is derived from the joint proba-
bility distribution function of a q-variate t-distribution based
on the sample data vector x = [x1,x2, . . . ,xq]

T, accord-
ing to [43]

f(x;θ) =
Γ((q + ν)/2)

Γ(ν/2)|S| 12 (πν)
q
2

(1 + ω(x;θ))
− q+ν2 , (9)

with
ω(x;θ) =

1

ν
(x− c)TS−1(x− c), (10)



where θ = [c,S, ν]T congregates the parameters of the
distribution. Furthermore, the mean vector is defined by c =
[µ1, µ2, . . . , µq]

T, the correlation matrix is given by S ∈ Rq×q ,
which contains the scale parameter [s2

1, s
2
2, . . . , s

2
q] of each

node on its diagonal entries, and the degrees of freedom of
the distribution is ν.

As ν → ∞, (9) approaches the multivariate Gaussian
distribution [49]. Therefore, the t-distribution is also suitable,
as an approximation of the Gaussian distribution for large ν.

The x-acceleration and y-acceleration data can be con-
sidered as a sequence of two data sets x1 and x2, whose
correlation is described by a correlation coefficient ρ. Each
data set contains a sequence of independent random variables
with x1 ∼ t(µ1, s1, ν), x2 ∼ t(µ2, s2, ν). The joint t-
distribution (9) of z = [x1,x2] with q = 2 and

c = [µ1, µ2]T, (11)

is a bivariate t-distribution, given by

f(z;θ) =
Γ(1 + ν/2)

Γ(ν/2)|S| 12 (πν)
(1 + ω (z;θ))

− 2+ν
2 . (12)

Using the fact that

Γ(1 + ν/2)

Γ(ν/2)(πν)
=

1

2π
,

turns the evaluation of (12) particularly simple, since the
Gamma function evaluation vanishes,

f(z;θ) =
1

2π|S| 12
· (1 + ω(z;θ))

− 2+ν
2 , (13)

where the correlation matrix of the x and y accelerations is
described by

S =

[
s2

1 ρs1s2

ρs1s2 s2
2

]
. (14)

The mean vector c, which is caused by accelerometer bias,
remains constant and very small over short windows of time. It
is therefore only the scale matrix S and the degrees of freedom
ν that change with ice condition. By removing all biases and
the influence of the propulsion from the measurements, the
mean vector is assumed zero under all ice conditions. The
parameters are congregated in θp = [0,Sp, νp]

T for each of the
trained ice condition out of the set p ∈ {OW,OI,CI,VCI};
see Table IV. Note that the correlation ρp between the x
and y accelerations is close to zero in all cases. We assume
that the ice-induced vibrations measured by the bow sensor
clearly dominates any wind-induced vibrations. Furthermore,
we assume that waves can be neglected in the presence of sea
ice. Therefore, the parameters in Table IV are assumed to be
independent of weather conditions.

C. Maximum likelihood estimation of parameters

The parameters S and ν are estimated from data. Several
methods are available among which a maximum likelihood es-
timation approach was found to be convenient. This estimator
is derived as follows: Because an online estimation of the ice
conditions is desired, a sliding window of length N selects

TABLE IV: Parameter estimates for the bivariate t-distributions
under different ice conditions at constant speed (4 knots).

Condition (p) µ s1,p s2,p ρp νp

Open water (OW) 0 1.5 · 10−4 2.8 · 10−4 1 · 4.7−6 20.0

Open ice (OI) 0 1.1 · 10−3 1.1 · 10−3 6.3 · 10−5 9.5

Close ice (CI) 0 5 · 10−3 4.5 · 10−3 6 · 10−4 8

Very close ice (VCI) 0 0.7 · 10−2 1.2 · 10−2 2.0 · 10−3 2.8

a sequence zki with i = k − N + 1 from the accelerometer
measurements. The log-likelihood function for (13) is then

Lki (S, ν) =

N∑
j=1

ln f(zki (j);θ) (15)

=

N∑
j=1

ln |S|− 1
2

(
1 + ω

(
zki (j);θ

))− 2+ν
2

= −N
2
· ln |S|

− 2 + ν

2
·
N∑
j=1

ln(1 + ω(zki (j);θ))
(16)

The set of parameters θp can be estimated by solving the
maximisation problem

θ̂ = arg max
S,ν

Lki (S, ν). (17)

To find the maximum of this expression, the derivatives of
(16) with respects to S and ν have to be computed, and the
resulting set of two equations has to be equated to zero. With
c = [0, 0]T, the following set of equations derived from

∂Lki (S, ν)

∂S
= 0

gives

− N

2
· tr
(
S−1

)
+

2 + ν

2
·
N∑
j=1

zki (j)TS−2zki (j)

νp + zki (j)TS−1zki (j)
= 0, (18)

and from
∂Lki (S, ν)

∂ν
= 0

gives

N∑
j=1

−1

2
ln

(
1 +

1

ν
zki (j)TS−1zki (j)

)
+

2 + ν

2
· zki (j)TS−1zki (j)

ν
(
zki (j)TS−1zki (j) + ν

) = 0. (19)

To obtain the estimate θ̂ = [0, Ŝ, ν̂]T, the set of equations (18)
and (19) has to be solved using a nonlinear solver as described
in [50]. This result is the maximum likelihood estimate of the
parameters that describe the distribution of data within a time
window zki of N samples.



TABLE V: Decision thresholds for hypothesis testing (hG) and
for entropy based classification (H(θ)).

Condition (p) hG H(θ)

Open water (OW) 9.55 · 103 ≥ −12

Open ice (OI) 1.12 · 103 ≥ −5.0

Close ice (CI) 0.57 · 103 ≥ −3.2

Very close ice (VCI) 0.07 · 103 ≥ −1.8

IV. METHODS FOR ICE CONDITION ASSESSMENT

This section will introduce methods for assessment of ice
condition based on statistical measures. A hypothesis test based
on the Kullback-Leibler divergence is introduced to identify
the condition out of the set of trained ice conditions, which has
most similar distribution to the one observed. An alternative
approach is the direct comparison of the signal’s statistical
entropy, which does not require trained data for comparison.
Finally, two supervised machine learning approaches using a
decision tree model and quadratic support vector machines
allow for a benchmark between the two proposed custom meth-
ods and the two “off-the-shelf” machine learning approaches.

A. Hypothesis testing

The ice conditions during a sequence of N observations
collected in a vector zki with i = k−N + 1 are characterised
by a bivariate t-distribution with an estimated parameter set θ̂.

For each trained set of distribution parameters θ = {θp},
the distribution under the observed data is

Hp :

k∑
j=1

f(zki (j);θp)

p ∈ P = {OW,OI,CI,VCI}

(20)

and the distribution with the estimated parameter set θ̂:
k∑
j=1

f(zki (j); θ̂). (21)

The problem is to find the trained ice condition p out of the set
of trained conditions P that describes best the ice condition
characterised by θ̂. Each trained ice condition is described by a
bivariate t-distribution with parameter set θp. A hypothesis test
is needed to determine which condition θp ∈ P best describes
the observed condition θ̂.

For this purpose, the Kullback-Leibler divergence, see the
overview in [51], provides a measure of the divergence be-
tween two probability distributions. Calculating the divergence
between the current estimate with the parameter θ̂ and any of
the trained distributions with parameters θp, gives:

Dkl,p(k, θ̂|θp) =

N∑
j=1

f(zki (j); θ̂) ln
f(zki (j); θ̂)

f(zki (j);θp)
. (22)

The Kullback-Leibler divergence is 0 when the two distribu-
tions are identical.

If a trained ice condition θp describes the current ice
conditions well, then Dkl(k, θ̂|θp) will be a small positive

number. To find the trained ice condition that best fits the
observation, (22) is used as follows:

Dkl(k, θ̂|θp) = min
p∈P

N∑
j=1

f(zki (j); θ̂) ln
f(zki (j); θ̂)

f(zki (j);θp)
(23)

= min
p∈P

Gki (θ̂,θp). (24)

Selection of Hypothesis: The minimisation over p in (23)
finds the training distribution that is closest to the actual
sequence of observations. Thus, the most likely condition can
be communicated by evaluating:

p(k) = arg min
p∈P

Dkl(k, θ̂|θp). (25)

Equation (25) always provides a result that indicates which of
the pre-trained conditions are closest, in terms of divergence
measure, to the observed distribution. If two of the pre-trained
conditions have the same divergence to the distribution ob-
tained during the latest time window, the more severe condition
is decided.

Test statistic: The test statistic can be evaluated using (13):

f(zki (j); θ̂)

f(zki (j);θp)
=
|Sp|

1
2 ·
(

1 + ω(zki (j); θ̂)
)− 2+ν̂

2

|Ŝ| 12 ·
(
1 + ω(zki (j);θp)

)− 2+νp
2

, (26)

where ω(zki (j);θ) is defined in (10).

Gki (θ̂,θp) =

N∑
j=1

(
1 + ω(zki (j); θ̂)

)− 2+ν̂
2

2π|Ŝ| 12

· ln
|Sp|

1
2 ·
(

1 + ω(zki (j); θ̂)
)− 2+ν̂

2

|Ŝ| 12 ·
(
1 + ω(zki (j);θp)

)− 2+νp
2

(27)

It can be of interest to know how well an estimated dis-
tribution is separated from the other pre-trained conditions.
This information can be conducted by applying a supplemental
threshold test. With a threshold h, the hypothesis test can be
supplemented with the following test:

For each p ∈ P
if Dkl(k, θ̂|θp) ≤ hG accept Hp
if Dkl(k, θ̂|θp) > hG accept H 6=p.

(28)

Figure 6 shows the results of (27) for all combinations of
trained ice condition and the entire set of trained conditions,
which are represented by the t-distributions with estimated pa-
rameters for each condition. A threshold hG can be determined
for each ice condition to clearly separate the correct ice con-
dition from any other of the trained conditions. The procedure
of selecting a value of hG is described in Appendix B.

This section has shown how an estimate of the distribution,
based on horizontal acceleration data over a time window, can
be compared with pre-trained data, and a multiple hypothesis
test can determine which of the pre-trained conditions are
closest to the one observed. A threshold method was suggested
as a supplemental means to determine how well the observed
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Fig. 6: Probability plots of the result from the test statistic (27) with different data sets under each trained ice condition.
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Fig. 7: Probability plot of the entropy results under the four training data ice conditions.



data fit one of the trained conditions. When pre-trained data
are not available, ice load level assessment can be made
anyway, using a measure of statistical entropy. This approach
is elaborated next.

B. Condition assessment through statistical entropy

The Kullback-Leibler divergence is closely related to the
statistical entropy [51]. The statistical entropy is a measure on
the extent a single probability distribution concentrates on a
few points or disperses over many points [42]. Figure 4b shows
how the dispersion of datapoints depends on the ice condition.

The differential entropy for a random variable Z with prob-
ability function f(zki (j);θ), data sequence zki (j) of length N
with i = k − N + 1, and parameter vector θ, is defined by
[52] as

H(Z) = −
N∑
j=1

f(zki (j);θ) ln f(zki (j);θ). (29)

For a q-variate, central (c = 0) t-distribution (9), and the
parameter estimate θ̂ = [0, Ŝ, ν̂]T, the entropy solely depends
on the parameter estimate θ̂ and is given by [53] as

H(θ̂) =
1

2
ln |Ŝ|

+ ln

(
(ν̂π)

q
2

Γ
(
q
2

) B(q
2
,
ν̂

2

))

+
q + ν̂

2

(
ψ

(
q + ν̂

2

)
− ψ

(
ν̂

2

))
, (30)

where ψ(x) = d ln(Γ(x))/dx denotes the digamma function,
and B(x, y) = Γ(x)Γ(y)Γ(x+y)−1 denotes the beta function.

For a bivariate t-distribution (q = 2), the expression (30)
can be significantly simplified, using Γ(x + 1) = xΓ(x), and
ψ(x+ 1) = ψ(x) + x−1 to give:

H(θ̂) =
1

2
ln |Ŝ|+ ln(2π) +

(
ν̂

ν̂ + 2

)
. (31)

Figure 7 shows the entropy for the four different ice conditions
of Figure 3. The ice conditions can be discriminated by
defining entropy thresholds using the training data set.
Those entropy specific thresholds are given in Table V. The
statistical entropy is seen to associate a monotonic increasing
grade to ice condition. Being an absolute measure related to
measured accelerations, the statistical entropy measure can
be extrapolated beyond the range of pre-classified conditions,
and it can express a condition in between those that were
pre-classified. The expression (31) is computationally efficient.

C. Algorithm for ice condition assessment

The following algorithm summarises the proposed methods
for ice condition assessment:

Algorithm IV.1
Ice condition assessment algorithm

Preprocessing
• Collect motion data for a data window of

length N.
• Apply Chebyshev lowpass filter.
• Calculate roll (6) and pitch (7).
• Correct for attitude of sensor using (1).

Parameter estimation
• Find Ŝ and ν̂ with (18) and (19).

Ice condition assessment Method 1
• Calculate test statistics (27).
• Find minimum in (24) and evaluate (25).
• In case two pre-trained conditions have the

same divergence to the observed distribution,
chose the more severe of these.

Ice condition assessment Method 2
• Calculate statistical entropy using (31).
• Evaluate ice condition against predefined

thresholds (Table V).
Result
• Vector p(k) with decisions on ice condition at

bow.

D. Machine learning approaches

Two standard machine learning approaches serve as a
benchmark for the statistical classification methods introduced
earlier. Both machine learning approaches were trained with
the training data presented in Figures 3 and 4b.

The Matlab® Classification Learner toolbox provides a
number of supervised machine learning approach for training
of classification models, among others decision tree models,
support vector machines, and nearest neighbour classifiers. An
overview of classification learning methods is given in [54].

Training data: Using the pure acceleration data as depicted
in Figure 4b did not result in reasonable classification models.
Therefore, the machine learning models were trained with
statistical data, specifically the components of the correlation
matrix (14) and the degrees of freedom ν as described in (13).
For each considered ice condition, 30 seconds of training data
were used, the same length as for the earlier described change
detection methods.

Validation: Cross-validation with five folds was used for
validation of the trained models. For this approach the training
data were partitioned into five disjoint sets. For each set the
model was trained with the data which were not part of the
specific set. The data in the remaining disjoint sets were used
for validation. The process was repeated for each set. The best
training results were archived with a decision tree model and
a quadratic state-vector machine.

Decision Tree model: Decision Trees are a popular meth-
ods for classification models [55]. A detailed survey on the
construction of decision trees can be found in [56]. Figure 8
illustrates the trained decision tree for ice condition classifica-
tion.



𝑠1
2 < 1.39 ⋅ 10−3

𝑠1
2 < 2.1 ⋅ 10−4 𝑠1

2 ≥ 2.1 ⋅ 10−4

𝑠1
2 ≥ 1.39 ⋅ 10−3

𝑠2
2 < 4.81 ⋅ 10−3 𝑠2

2 ≥ 4.81 ⋅ 10−3

𝑠1
2 < 2.92 ⋅ 10−3 𝑠1

2 ≥ 2.92 ⋅ 10−3

𝑠2
2 < 3.12 ⋅ 10−3 𝑠2

2 ≥ 3.12 ⋅ 10−3

𝜈 ≥ 15.9𝜈 < 15.9𝜈 ≥ 7.0𝜈 < 7.0

Open water

Open ice

Close ice

Very close ice Start 

Fig. 8: Trained decision tree for ice condition detection

Support vector machine: Support vector machines try to
classify training data by introducing separating hyperplanes
which depend on data points lying on margins called support
vectors. Maximisation of the margins results in better gener-
alised performance under unknown data; see [57]. A kernel
operation can transform the training or input data to a higher
dimension feature space, which allows a clearer definition of
the margin regions. The best SVMs were obtained using a
quadratic kernel and the statistical properties of the training
data as input, specifically the results from equations (18) and
(19). Figure 9 contains three plots that illustrate the relation
between the estimated parameters of the statistical model (12)
for each ice condition in the training sets. It is obvious that
already with a linear SVM, planes can be constructed to
separate the ice conditions well. The quadratic SVM uses a
quadratic kernel to create a transformed feature space, allowing
for an even better separation of the ice condition regions.

V. VALIDATION OF CUSTOM CLASSIFICATION METHODS
USING FULL SCALE DATA

For three data sets, recorded during transit in ice, the ice
conditions at the bow of the vessel were determined using
two custom classification algorithms IV.1 with the trained
parameter sets (Table IV) and thresholds (Table V) found
with the training data set. The data sets serve as validation
for the proposed ice condition assessment system. In all
cases, the apparent windspeed and the heading of the vessel
were constant during the measurements. The sampling rate
of the sensors was decimated to 20 Hz. A sliding window
collects measurement samples for processing. The window size
determines the detection delay (more delay with larger data
window), but also the steadiness of the detection result (more
steady results with larger data window). Figure 10 presents
the detection results for three different window sizes. As a
compromise between speed of detection and steadiness of
result, a window size of 10 seconds was chosen for this study.

Figures 12 - 14 consist each of four sections:
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1) Section (1) shows images from a camera system.
The images were taking in synchronisation with the
acceleration measurements.

2) Section (2) gives a plot of the ice concentration at
the bow of the ship. The ice concentration has been
continuously determined (every 5 seconds) from the
images using image processing techniques described
in [8]. Because the camera system can only differ-
entiate between ice cover and open water, and does
not include a measure of other ice properties such as
thickness or porosity, the camera analysis is merely
an indicator of the ice condition.

3) Section (3) presents the results from the differential
entropy based classification of ice conditions. The
section contains a plot of the entropy (31), and a
colourbar, which indicates the results of the classi-
fication using the thresholds defined in Table V.

4) Section (4) gives the results of the hypothesis test.
The decision function Gki (θp, θ̂) for each trained
ice condition are plotted, and the result of (25) are
illustrated as a colourbar.

A. Case 1: Transit in open water until impact with a single
ice floe

In the scenario shown in Figure 12, the ship travelled at
6 knots in open water. Upon impact with an ice floe at 21:20.30
the speed over ground reduced to 4.5 knots.

Both diagnostic approaches recognise correctly the open
water condition at the beginning. Before the impact with the
solid ice floe smaller ice pieces were encountered, which both
systems classify as open ice condition. Upon impact with the
unbroken ice floe, the ship slows down due to the pressure
increase against the hull. Both approaches detect close ice
conditions. The pressure against the hull was released when
the ice floe broke. This causes the classification of the ice
condition to change to open ice. Towards the end of the
measurement the ship pushed the broken ice floes away instead
of further breaking them. This means that the bow of the vessel

(a) Data window of 5 seconds

(b) Data window of 10 seconds

(c) Data window of 20 seconds

Open water Open ice Close ice Very close ice

(d) Legend

Fig. 10: Detection results of Case 1 data under hypothesis
testing with different data window sizes.

travelled in open water, which is correctly assessed by both
diagnostic approaches. The entropy based method reacts more
sensitive to changes in the ice conditions.

B. Case 2: Transit in broken ice

Figure 13 shows the diagnostic results during transit at
7.5 knots in broken ice of 30-40 cm thickness.

At first the ship travelled for a short period in open water,
which both methods detect correctly. At 15:39.40 the ship
entered broken ice, and both approaches for the diagnostic
system correctly classify this as open ice. At 15:39:45 both
methods declare the encounter with a smaller unbroken ice
floe as close ice. At 15:40:30 the ship encountered several
larger ice pieces, which were rammed and split. Both methods
declare this as close ice. At 15:41.50 the ship encountered
open water followed by a channel of broken ice as shown in
the last image of Figure 13. Both system declare the open
water correctly. The entropy based method reacts faster on the
ice condition change. Compared to the result from the camera
system, the entropy based method seems to be more correct,
especially because it registers earlier the encounter of unbroken
ice pieces at 15:40:30.

C. Case 3: Transit in close ice

Figure 14 shows the third scenario in which the ship
encountered heavy ice conditions. The ice in this case was
thicker (>50cm) than in the previous two cases. It consisted
mostly of closed level ice with areas of newly frozen ice in
between. The ship travelled at 6.5 - 7.5 knots.

Both the entropy and the hypothesis testing methods reg-
ister close ice conditions at the bow of the vessel in the
beginning of the measurement with a short moment of open
ice. At 11:29.40, the ship encountered a large, unbroken ice
floe (with a diameter of 80-100 metres). It required several
seconds until the ice floe broke. During this time the pressure
against the hull increased so much that both methods classify
the situation as very close ice conditions. The speed of the
vessel reduced nearly to zero. At 11:30.25 the ice floe split and
the pressure was released. At this point the results from the
two approaches deviate slightly. The entropy based approach
detects open ice conditions while the hypothesis testing ap-
proach detects first close ice conditions. The camera image at
11:31.00 shows an area of newly formed ice, which should not
create major resistance against the hull. Therefore the entropy-
based result seems correct. Upon inspection of the full camera
image several ice pieces starboard of the vessel are visible.
These have formed a string and broke simultaneously just
before 11:31.00; see Figure 11. This may have caused pressure
against the hull. On the image at 11:32.00 an unbroken larger
ice floe can be seen ahead of the vessel’s bow. At 11:32.35 the
ship split the ice floe. Both systems declare this event as very
close ice conditions. On the last image a major unbroken ice
floe is visible. Forty seconds later the ship hits this ice floe.
That causes the ice diagnostic system to declare the situation
correctly as very close ice conditions again.

D. Comparison with machine learning approaches

Figure 15 gives a comparison of the detector results of
custom classification methods with the results from the two
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Fig. 11: Simultaneous breaking of ice pieces starboard of
vessel at 11:31.00.

trained “off-the-shelf” machine learning classification models
introduced earlier.

Using the data of Case 1, in which the vessel encountered
a larger unbroken ice floe, all methods are capable of detecting
the event. During transit in open water the decision tree based
classification model often classifies open ice conditions. The
SVM model provides more steady results. As an example,
Figure 16a provides a ground truth of the ice situation at
21:19:15 (marked with a black line in Figure 15a). The bow
was completely surrounded by open water. Therefore, the
assessment of the decision tree method is wrong.

Using the data of Case 2, in which the vessel transited
in broken ice and encountered an area of open water, the
decision tree model works more stable, whereas the SVM
model provides more erratic classification during the open
ice situation. All methods, however, detect correctly the open
water periods. The machine learning based models seem to
react faster on changes. Figure 16b shows that at 15:41:40
(marked with a black line in Figure 15b) the bow of the vessel
was already inside open water. The statistical change detection
methods react a few seconds delayed due to the sliding data
window. On the other hand, the sliding data window allows for
a more steady result compared to the machine learning based
models.

Using the data of Case 3, in which the vessel was exposed
to more severe ice conditions, all four methods detect all three
encounters of large and unbroken ice features (very close
ice conditions). The open water patch in the middle of the
measurement was thereafter reliably detected by all methods.
The SVM based classification gives more erratic results. In
the last quarter of the measurement, the decision tree model
wrongly classifies open water, where the camera images do
show the presence of light ice conditions; see Figure 16c.
Although it looks like open water, the bow actually travelled
inside thin, unbroken ice just in front of a major unbroken ice
floe. Open water appears darker on the image, as it is visible in
the left part of the image, where patches of sea water are visible
where the thin ice had broken up. Therefore, the assessment
of open ice is correct.

VI. DISCUSSION, PERSPECTIVES, AND CONCLUSION

A. Discussion

Two custom classification algorithms, that are based on
estimating the parameters of the t-distribution of data, were
compared with two machine learning methods. The methods
have the following characteristics:

• Hypothesis test is made by calculating (27). Training
data are needed to represent the categories in which
we wish to classify the ice condition. A hypothesis
is selected that is closest to fits a category using (25).
This study used four categories of ice conditions. Data
represented each by parameters of the associated t-
distribution. Additional training data can easily be
added, should this be preferred.

• Entropy test provides an absolute measure through cal-
culation of (31). The entropy detector can extrapolate
to conditions where training data are not available,
and can interpolate, and can supplement the hypothesis
test.

• Two machine learning methods were employed: a
decision tree model and a support vector machine
model. The training data sets were used for learning.
The training of machine learning models to data is
transparent and does not physical behaviours are not
directly represented in model parametrization.

The comparison of the two statical methods with the two
selected approaches from machine learning showed that the
statistical methods, being based on inherent knowledge of the
underlying statistics of the physical processes, provide steadier
results. The statistical tests have the window size is a tuning
parameter and more steady, albeit slower, assessment can be
achieved by using a larger data window size for parameter
estimation.

All methods were able to detect sudden and significant
changes of ice conditions, for example the transition from open
ice to harsh unbroken ice.

The training of machine learning models require test cases
to train correct classification, and it is difficult to control
how the models adapt to each ice condition. For example,
the automatically trained decision tree model in Figure 8
is unnecessarily complicated and does not follow a physical
reasoning.

The statistical classification is based on a physical reason-
ing: Heavier ice conditions causes more fluctuations of the
hull vibrations, and as a result the scale parameter of the t-
distribution increases. Furthermore, high energy spikes, caused
by the interaction of heavy ice feature, result in a heavy-
tail characteristic of the recorded signal, which results in a
low degree of freedom of the estimated t-distribution. An
automatically trained machine learning model does not take
these physical phenomena into account.

B. Perspective

The installation of IMUs in the hull of an ice-going ship
is very simple. In combination with the proposed diagnostic
system, there is a range of applications that this system can
be used for:

• The most obvious application is a decision support
system for ice-going vessel, especially container ves-
sels travelling the Arctic sea route or cruise ships
entering ice-infested waters. The system can support a
warning system for getting locked-in ice. The system



 
 
 

(1)

O
pen w

ater
O

pen
ice

C
lose

ice
V

ery
close

ice

-6 -4 -2

21:19:10
21:19:30

21:20:00
21:20:30

21:21:00
21:21:30

21:22:00

40 60 80

Ice (%)

(2) (3) (4)

p(k)p(k)

Fig. 12: Test statistic and classification result during transit onto an solid ice floe in open water (Case 1).



  
O

pen w
ater

O
pen

ice
C

lose
ice

V
ery

close
ice

-6 -4 -2

15:39:10
15:39:30

15:40:00
15:40:30

15:41:00
15:41:30

15:42:00
15:42:30

15:43:00
15:43:30

15:44:00

50

100

Ice (%)

(1) (3)(2)

p(k) p(k)

(4)

Fig. 13: Test statistic and classification result during transit in broken ice (Case 2).



 
 
 

(1) (2)(2)

O
pen w

ater
O

pen
ice

C
lose

ice
V

ery
close

ice

(4)

(3)

(3)

11:29:10
11:29:30

11:30:00
11:30:30

11:31:00
11:31:30

11:32:00
11:32:30

11:33:00
11:33:30

11:34:00

50

100

Ice (%)

(2)

p(k) p(k)

Fig. 14: Test statistic and classification result during transit in close ice (Case 3).



21:19:10 21:20:00

(a) Hypothesis testing

(b) Entropy based

(c) Decision tree

(d) Support vector machine
(a) Comparison of classification results for transit onto solid ice
floe in open water (Case 1).

15:39:10 15:44:00

(a) Hypothesis testing

(b) Entropy based

(c) Decision tree

(d) Support vector machine
(b) Comparison of classification results during transit in broken
ice (Case 2).

11:29:10 11:34:00

(a) Hypothesis testing

(b) Entropy based

(c) Decision tree

(d) Support vector machine
(c) Comparison of classification results during transit in close ice
(Case 3).

Open water Open ice Close ice Very close ice

(d) Legend

Fig. 15: Comparison of custom classification methods with
“off-the-shelf” machine learning approaches.

can also assist icebreakers which scout ice conditions
for ice management.

• By distributing a sensor array in the hull of the
vessel, a local awareness of the ice conditions around
a vessel can be obtained. Although the system has
not yet been deployed during stationkeeping in ice,

(a) Ice situation Case 1 at 21:19:15

(b) Ice situation Case 2 at 15:41:40

(c) Ice situation Case 3 at 11:30:20

Fig. 16: Use of image proof to determine correct ice condition

it can be tested if the proposed diagnostic system
can detect the accumulation of ice at one side of the
stationkeeping vessel; see [58]. This information can
be forwarded to a control system, which e.g. changes
the heading of the stationkeeping vessel to counteract
the accumulation of ice along the hull.

• The system is currently a reactive system. It commu-
nicates the ice conditions, which are directly affecting
the vessel. However, a deeper statistical analysis using
extreme value prediction of occurring ice loads can
allow for a forecasting of ice loads.

• This diagnostic system might be extended to differ-
entiate between different sea states in open water, see
[59] and references herein. In addition to in-plane ac-
celerometers, data from z-acceleration, angular rates,
and roll-pitch motion could be utilised, and a multiple
hypothesis test could be designed to decide between
different sea states.



C. Conclusion

A system for ice condition assessment was developed
which solely used data from accelerometers in the hull of
an ice-going vessel. Merging the data from the in-plane
accelerometers, it was possible to describe the ice-induced
accelerations with a bivariate t-distribution. The bivariate t-
distribution made it possible to obtain a maximum likelihood
estimator without making use of the Gamma function, and
it appeared to be very robust. Training data from differ-
ent ice conditions gave reference parameters of bivariate t-
distributions that represented each of the training conditions.

Two principal custom methods were proposed for detection
of the prevailing ice condition. A modified Kullback-Leibler
divergence formulation was used with a hypothesis testing
scheme to classify the current ice condition being closest
to a training condition. A second method did not require
training data but utilised the change in statistical entropy of
the accelerations. It was found that the entropy changes sig-
nificantly, and in a monotone way with ice conditions, which
demonstrated that the entropy measure is a good indicator for
ice load. Additionally, a decision tree model and a support
vector machine classifier were trained with the same training
data as the custom methods.

All classification methods were tested on three data sets,
obtained during transit in the Arctic Ocean under different
ice conditions. Both statistical classification methods, i.e.,
hypothesis testing and entropy estimation, produced valid
and very similar results for the ice condition assessment,
which appeared to agree with the ice conditions judged from
simultaneous camera system recordings. Classification using
standard machine learning models also produced valid results,
but they showed to be more fluctuating.

Working 24/7, being independent of visibility conditions,
and providing objective estimates of ice condition, it is con-
cluded that an IMU-based ice condition monitoring system can
indeed be a good addition for decision support on vessels oper-
ating in ice-infested waters. Installation of the required sensors
is easy, the method works robustly, and extrapolation outside
training data will be feasible. Further possible applications of
the monitoring system were proposed, such as the detection of
ice accumulation along the hull of a ship.
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Fig. 17: Correlogram of Case 1 measurements from IMU 2

APPENDIX A
STATISTICAL INDEPENDENCE OF MEASUREMENTS

One assumption is that the measurements are indepen-
dent. To show that this assumption is justified, Figure 17
presents a correlogram of the measurements from Case 1.
The entire dataset contained 3600 datapoints. Because the
proposed system operates on data windows of 200 samples,
the autocorrelation function was determined for a sliding
window of 200 samples at a time. The results are presented
as boxplots, showing in red the median value, and the box
representing the 25th to 75th percentiles. The 95% confidence
interval for assuming statistically independence is indicated
as purple line. The correlation plot shows for both x- and y-
accelerations an autocorrelation on the first lag (and third lag
for y-acceleration) that exceeds independence level. All other
lags show an autocorrelation that supports the hypothesis of
independence within a 95% confidence level. Because data
originate from a physical process, the assumption of statistical
independence may not hold perfectly. One consequence is that
the test statistics (27) will not follow a chi-square distribution
[40], [47]. The evidence for independence is concluded to be
strong enough for our development.

APPENDIX B
THRESHOLD SELECTION

This appendix details how a threshold is determined from
test data.



Algorithm B.1
Threshold calculation algorithm.

Distribution of test statistics
• Given the training datasets z(k; p), p ∈ P and

the parameter vector θp for each training data
set.

• Calculate the cumulative distributions Gq,p of
the test statistics Gk

i (θq,θp), q ∈ P and q 6= p.
• Approximate each of the cumulative distribu-

tions Gq,p(G) by smooth functions Fq,p(G).
• Define a probability of wrong classification

Pclas e.g. 10−4.
• ∀q, p, q 6= p, find a threshold

hG = max
h
|Gq,p(h)| ≤ Pclas.

Result
• A threshold hG that can determine whether an

observed cumulative distribution Gk
i (θ̂,θp) is

separated sufficiently from all but one of the
training sets with a probability Pclas.
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